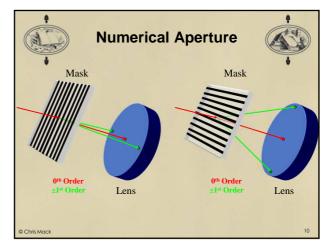
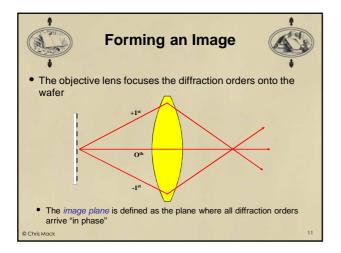
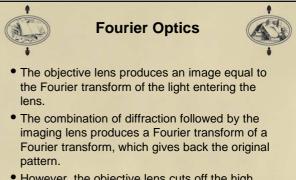
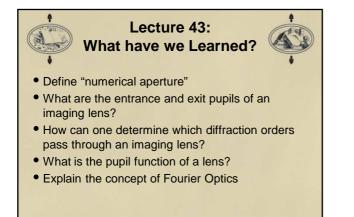

			ŧ
Fourier	Transform	Examples	At sta
g(x)	Graph of g(x)	$G(f_x)$	
$rect(x) = \begin{cases} 1, & x < 0.5 \\ 0, & x > 0.5 \end{cases}$	_\$	$\frac{\sin(\pi f_X)}{\pi f_X}$	*
$step(x) = \begin{cases} 1, & x > 0 \\ 0, & x < 0 \end{cases}$		$\frac{1}{2}\delta(f_x) - \frac{i}{2\pi f_x}$	
Delta function $\delta(x)$		1	
$comb(x) = \sum_{j=}^{} \delta(x-j)$		$\sum_{j=-\infty}^{\infty} \delta(f_x - j)$	
cos(Æt)	- /// -	$\frac{1}{2}\delta\!\!\left(f_x+\!\frac{1}{2}\right)\!+\!\frac{1}{2}\delta\!\!\left(f_x-\!\frac{1}{2}\right)$	
sin(#x)		$\frac{i}{2}\delta\!\!\left(f_x+\!\frac{1}{2}\right)\!\!-\!\frac{i}{2}\delta\!\!\left(f_x-\!\frac{1}{2}\right)$	
Gaussian $e^{-\pi \chi^2}$	$ \land $	$e^{-\pi f_x^2}$	
$circ(r) = \begin{cases} 1, & r < 1\\ 0, & r > 1 \end{cases}$ $r = \sqrt{x^2 + y^2}$		$\frac{J_1(2\pi\rho)}{\pi\rho}$ $\rho = \sqrt{f_x^2 + f_y^2}$	4
	$g(x)$ $rect(x) = \begin{cases} 1, & z < 0.5 \\ 0, & z > 0.5 \end{cases}$ $step(x) = \begin{cases} 1, & x < 0 \\ 0, & x < 0 \end{cases}$ Delta function $\delta(x)$ $contb(x) = \sum_{j=-\infty}^{\infty} \theta(x-j)$ $cos(\pi)$ $sin(\pi x)$ Gaussian $e^{-\pi x^2}$ $circ(r) = \begin{cases} 1, & z < 1 \\ 0, & z > 1 \end{cases}$	g(x) Graph of g(x) $rcc(x) = \begin{bmatrix} 1, & x < 0.5 \\ 0, & x > 0 \end{bmatrix}$	$\begin{array}{c c} \operatorname{rect}(s) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ z \\ z$









 However, the objective lens cuts off the high spatial frequencies of the diffraction pattern.

Fourier Optics
Fourier Optics
• The objective lens is described by its *pupil*
function,
$$P(f_x, f_y)$$
. For an ideal lens, this function
just describes the size of the aperture.

$$P(f_x, f_y) = \begin{cases} 1, & when \sqrt{f_x^2 + f_y^2} \le NA/\lambda \\ 0, & otherwise \end{cases}$$

Fourier Optics • Given a diffraction pattern T_m and a pupil function P, the light which makes it into the lens is just PT_m . • The lens then takes the inverse Fourier transform of this light to give the electric field of the image, E. $E(x, y) = \mathcal{F}^{-1} \{PT_m\}$ $I(x, y) = |E(x, y)|^2$

© Chris Mack