




ITE USAVIKATIV OF TEXAS - AT ADSTIN	WHAT STARTS HERE CHANGES THE WORLD
CMP F	Process
Rotate table and wa	afer at about 10 rpm
 Polish rate depends between polishing p 	
– Average v ≈ 5 m/s	
 Adjustable pressure 	e (P) applied to wafer
 Typically about 6 psi 	i
Typical polish times	of about 10 min
Polish R	Rate $\propto vP$
@ Chris Mask, 2012	7

XAS

CMP Process

- Slurry is colloidal silicon or alumina with composition and particle size dependent on material being polished
- Chemistry used to soften the material and increase its mechanical abrasion rate
 - For oxides: silica + high pH
 - For metals: alumina + low pH

CMP Uses **CMP** Problems • The basic CMP use case is for additive Dishing patterning - Overpolish required due to thickness variations - Etch a hole - Plug material has higher polish rate - Fill the whole with material (but also coat the rest of the wafer) W W - Polish away the material not in the hole SiO₂ SiO₂ Common processes using CMP Si Si - Shallow Trench Isolation (STI) ideal overpolish - Tungsten plug - Copper damascene process • Erosion - removal of unintended material © Chris Mack, 2013 © Chris Mack, 2013

TEXAS

Lecture 30: What have we learned?

- Name three planarization techniques. Which technique is better, and why?
- What two adjustable polishing parameters control the polish rate?
- Name three CMOS process steps that require CMP
- What are the two biggest problems associated with CMP?

© Chris Mack, 2013