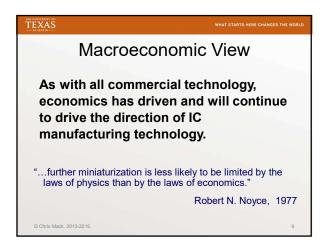
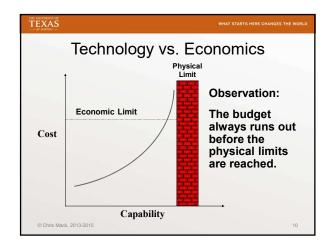
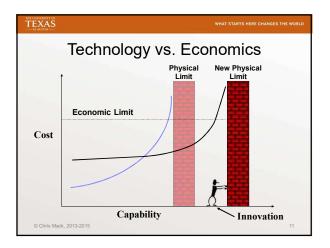
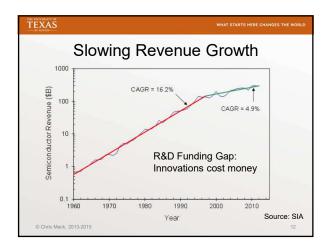

TEXAS		WHAT STARTS HERE CHANGES THE W
De	nnard's MOSFET	Scaling Rules
P N	Device/Circuit Parameter	Scaling Factor*
Robert Dennard • Constant electric field scaling	Device dimension/thickness	1/λ
	Doping Concentration	λ
	Voltage	1/λ
	Current	1/λ
	Capacitance	1/λ
	Delay time	1/λ
	Transistor power	$1/\lambda^2$
	Power density	1
There are	no trade-offs. Everything gets bette	r when you shrink a transistor!
IEEE Jour	nal of Solid-State Circuits, Vol. SC-	9, October 1974, pp. 256-268.
© Chris Mack, 2	013-2015	






Lithography Costs (single patterning)					
	1979 g-line stepper	2004 ArF scanner	2012 ArF scanner		
Wafer diameter (mm)	100	300	300		
Tool throughput (wph)	18	100	240		
Area throughput (cm^2/sec)	0.39	20	47		
Tool cost (M\$)	0.45	20	50		
Tool cost (¢/cm^2)	0.65	0.65	0.67		


THE UNIVERSITY OF TEXAS		WHAT STARTS HERE CHANGES THE WORLD
,	Wafer Size Tr	rend
Time betweet	een wafer size incre	eases is growing:
Year*	Wafer Diameter	
1969	3 inch	
1976	4 inch	
1984	5,6 inch	
1989	200mm	Will 450mm wafers
2000	300mm	ever happen?
*first year of m © Chris Mack, 2013-2015	ajor production	7

EUNIVERSITY ON EXAMPLE - AV AUSTIN	WHAT STARTS HERE CHANGES THE WORLD
Impact	of Economics
 Slower semicon inevitable sign o 	ductor revenue growth is an f maturation
 Chips are saturative structure Limited to electro 	ating electronics: chip growth now onics growth
 Electronics is st economy: mayl 	arting to saturate the world be soon electronics growth will be economic growth
Less revenue gr to invest in R&D	rowth means less opportunity
© Chris Mack, 2013-2015	13

What are the current Moore's Law doubling rates for logic and flash?
What is the fundamental economic principle of Moore's Law?
What are three ways manufacturers have been able to lower the cost per transistor?
How do lithography costs scale with wafer size?
Why is Moore's Law getting harder to keep going?

© Chris Mack. 2013-2015

<page-header><page-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item>