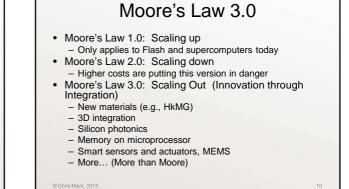


TEXAS		WHAT STARTS HERE CHANGES T	
Dennard's MOSFET Scaling Rules			
Robert Dennard • Constant electric field scaling	Device/Circuit Parameter	Scaling Factor*	
	Device dimension/thickness	1/λ	
	Doping Concentration	λ	
	Voltage	1/λ	
	Current	1/λ	
	Capacitance	1/λ	
	Delay time	1/λ	
	Transistor power	$1/\lambda^2$	
	Power density	1	
There are r	no trade-offs. Everything gets bette	er when you shrink a transistor	
IEEE Journal of Solid-State Ctrcuits, Vol. SC-9, October 1974, pp. 256-268.			
© Chris Mack, 2013			

TEXAST	WHAT STARTS HERE CHANGES THE WORLD
The Golden Age 1975 - 2000	9
 Dennard Scaling: as transisto gets Faster 	or shrinks it
– Lower power (constant power – Smaller/lighter	density)
 Moore's Law 	
 Keep the cost/area about cons shrinking 	tant while
 More transistors/chip & lower of 	cost/transistor
© Chris Mack, 2013	6

Noore's Law 1.0: scaling up Doubling the number of transistors every 1–2 years More powerful chip for the same price Moore's Law 2.0: scaling down Shrinking transistor area lowers the cost of a transistor by about 30%/year Same chip for lower price Both versions enable many new applications Results in a large increase in chip volumes

TEXAS


Problems with Dennard Scaling

- Voltage has always shrunk more slowly ($\sim 1/\sqrt{\lambda}$)
- Voltage essentially stopped shrinking 10 years ago
 Thermal noise (kT/q = 25 mV at room temperature)
 Subthreshold leakage current
- Power is at a wall, dominates shrink issues
- Clock speed is stuck we can't make our transistors faster
- Today, shrinking a transistor makes it worse

The only benefits of shrinking a transistor today are more functions/chip and/or lower cost/function
 Moore's Law cost: despite rising fab, equipment and material costs, and increasing process complexity, the cost/cm² of finished silicon has remained about constant (or risen

- Result: lower cost per transistor each year

only slowly) over the years.

© Chris Mack, 2013

TEXAS

WHAT STARTS HERE CHAI

Conclusions

- All three versions of Moore's Law have always been present

 A shift in emphasis over time
- The Golden Days of Moore + Dennard are
- over

ris Mack. 201:

- Moore's Law is primarily an economic law

 It is getting harder to keep costs down, putting the future of Moore's Law in danger
- Moore's Law 3.0 is the most exciting version yet

TEXAS

© Chris Mack, 2013

Lecture 2: What have we learned?

- What are the three versions of Moore's Law?
- What is Dennard scaling?
- Why does Dennard scaling no longer work?
- What are the consequences of the end of Dennard scaling?