

TEXAS

Rapid Thermal Processing (RTP)

- Temperature uniformity is difficult to achieve
 - Radial heating lamps used, chamber reflects light
 - Edges radiate more heat out use an edge ring
 - Wafer can be rotated (~200 rpm) to improve uniformity
 - Pattern Loading Effect emissivity variation across die
- About 3°C across die variation possible, but hard to achieve
- Optical pyrometry used to measure wafer temp.
 measures the intensity of light within a certain bandwidth emitted
 - measures the intensity of light within a certain bandwidth emitted from a wafer
 - Emissivity variations of wafer make calibration difficult (absolute temperatures are almost never known)

© Chris Mack, 2013

TEXAS

Ť	EXAS		WHAT STARTS HERE CHANGES THE WORLD
RTA Process Matrix			
		Pros	Cons
	"soak" RTP Ramp < 100⁰C/s Time > 5 s	 Reasonable thermal control Low stress Simple Equipment 	Larger thermal budget (Dt)
	"spike" RTP Ramp > 100°C/s Time < 2 s	 Reduced TED Reduced thermal budget (Dt) 	 Higher peak temperature hard to measure and control More expensive
	© Chris Mack, 2013		10

TEXAS

Lecture 19: What have we learned?

- Why are shallow junctions needed today, and why are they hard to make?
- Describe the basic components of an RTP system
- How is heating accomplished in an RTP system?
- How is temperature measured in an RTP system?
- What is RTP used for?

© Chris Mack, 2013

2