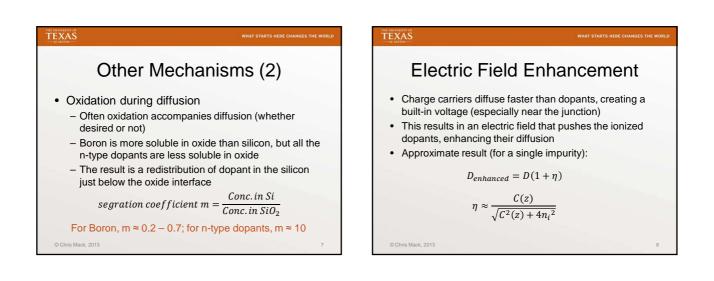
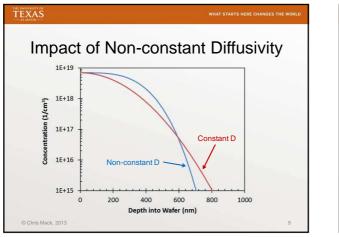
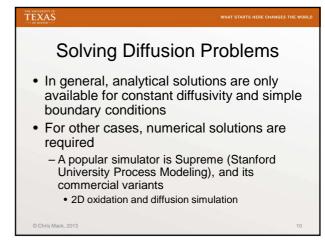


Mechanisms for Diffusion Example: N-type, ionized donor atom (+ charge) Let D⁻ be the diffusivity into a negatively charged vacancy Probability $= D^{-}\left(\frac{n}{n_{i}}\right)$ overall diffusivity $\propto D^- \times$ the vacancy is negatively · Add neutral and doubly negative vacancy diffusion $D = D^o + D^- \left(\frac{n}{n_i}\right) + D^= \left(\frac{n}{n_i}\right)^2$

TEXAS


Mechanisms for Diffusion


- For n-type material, n ≈ N_D
- Therefore, diffusivity is concentration dependent, $D(N_D)$, increasing with higher doping levels
- The same is true for positively charged vacancies and p-type material
- negatively charged vacancies may affect diffusion
- Near the junction, $n \approx p \approx n_i$, so both positively and


© Chris Mack, 2013

Other Mechanisms

- Transient Enhanced Diffusion
- At the beginning of the anneal step, the implant-damaged silicon is amorphous Dopants can diffuse quickly through the amorphous
- material Thus, at the very beginning of the anneal step, diffusion is rapid (TED)
- Interstitialcy Mechanism
 - Silicon self-interstitials move around then displace a lattice atom
 - If a lattice atom is a dopant, it becomes an interstitial and can rapidly diffuse before displacing a different lattice atom

TEXAS

ARTS HERE CHANGES THE WORLD

Multiple Diffusion Steps

- Wafer processing involves many high temperature steps
 For each step, there is more diffusion
- Recall the analytical solution of a Gaussian dopant distribution
 that diffuses
 - The final variance equals the original variance plus the diffusion length squared
- The total effect of all high temperature steps is approximately

 $Dt_{eff} = Dt_1 + Dt_2 + Dt_3 + \dots$

- · In general, the highest temperature process dominates
- · It is critical to control the entire thermal budget of the process
- © Chris Mack, 2013

<text><list-item><equation-block><equation-block><equation-block><equation-block><equation-block>

THE ANOMALY OF TEXAS	WHAT STARTS HERE CHANGES THE WORLD
Lecture 15: What	t have we learned?
 How does charge in diffusivity? 	a vacancy affect
	use of the concentration iffusivity of dopants in
 Define 'transient-enh 	anced diffusion'
 What is electric field diffusivity? 	enhancement of
 Explain how the over dopant diffusion is ad 	

13

© Chris Mack, 2013