

Dopant Dose
• The "total dose",
$$Q_T$$
, is the total number of dopants per unit area

$$Q_T(t) = \int_0^{\infty} C(z, t) dz$$
• For the constant source case,

$$Q_T(t) = \frac{2}{\pi} C_S \sqrt{Dt}$$

© Chris Mack, 2013

EXAMPLE 25 Constant dose: $\int_{0}^{\infty} C(z,t)dz = Q_{T} = constant$ **a** Solution: $C(z, 0) = \frac{Q_{T}}{\sqrt{\pi D t}}e^{-z^{2}/4Dt}, \quad t > 0$

	WHAT STARTS HERE CHANGES THE WORLD
Lecture 14: WI	hat have we learned?
 What are the case derived simple a diffusion equation 	ses where we have nalytical solutions to the n?
 What assumptio order to derive order 	ns did we have to make in our solutions?
 When might these 	se solutions be useful?
© Chris Mack, 2013	9
 derived simple a diffusion equation What assumption order to derive on When might these 	inalytical solutions to the on? Ins did we have to make in our solutions? se solutions be useful?