CHE323/384 Chemical Processes for Micro- and Nanofabrication
Chris Mack, University of Texas at Austin

Homework #13 Solutions

1. Generate a plot of DOF versus feature size using the Rayleigh DOF criterion. Assume a 193
nm wavelength, equal lines and spaces, coherent three-beam imaging, and &, = 0.8.

e A (from lecture 48). Also, sin@ = A (position of first diffraction order).
2 n(l-cosé) hp

Assuming imaging in air (n = 1), we can use a spreadsheet to vary p, giving different angles 0.
Then using this angle in the DOF equation, we get DOF vs. pitch.
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2. Derive the diffraction pattern of an alternating phase shift mask (a repeating pattern of lines
and spaces where every other space is shifted in phase by 180°, resulting in a transmittance of

-1):

1 : <>
t(X) W) E W) “ Wi >
0 B _ | —
W1 x=0
-1

The diffraction pattern for a repeating pattern of spaces of width w; and pitch 2p, where p =
witw,, centered at x = 0:
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The diffraction pattern of a second repeating pattern of spaces of width w; and pitch 2p,
shifted by p and with transmittance -1:
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Using superposition to add these two arrays together:
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But, since f, = j/2p are the only non-zero values of the diffraction pattern, we can substitute
this value everywhere for f,:
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Notice that all the even values of j disappear.

To help illustrate this diffraction patter, let’s graph the resulting diffraction pattern out to the +5™

diffraction orders for the case of w; = w,. The diffraction pattern will have diffraction orders
spaced out at intervals of 1/2p with amplitudes
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3. Consider the coherent, in-focus 2-beam and 3-beam aerial images for equal lines and spaces:
11 ?
2-beam: I1(x)= {— +—cos(2mx/ p)}
2
12 ?
3-beam: I1(x)= {— +—cos(2mx/ p)}
2
Derive expressions for the NILS for each of these cases.

NILS = w%. For both images, I(x=p/4)=1/4.
X

For the 2-beam case, % = 2[%+lcos(27zx/p)}[—lsin(%zx/p)}@ﬂ/p) . Atx=p/4, and
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ignoring the sign, %zg Thus, NILS = %%%Z .
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For the 3-beam case, a similar derivations gives NILS = 8.

4. Consider a general expression for the aerial image of a line/space pattern.

N
I(x)= Z,Bj cos(27 jx/ p)
Jj=0

Derive an expression for the NILS for the case of equal lines and spaces.

The NILS calculated at the edge position x = w/2 = p/4 will be
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5. For the Mack model of development, what is the value of the development rate at m = my,?
For my, > 0, what is the limit of this value as n becomes large?
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As n gets very large, (1-my,)" goes to zero for m,, > 0. Thus, for this case,
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6. Consider the case when the diffusion rate constant for the development mechanism is large
compared to the surface reaction rate constant (i.e., the rate is reaction-controlled). If a » 1,
show that the Mack development rate will become
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Fora»1, r=r,, M+ e - Also, 1f @ » 1 we must necessarily have a >> (1-m)" for
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