
CHE323/384 Chemical Processes for Micro- and Nanofabrication 
Chris Mack, University of Texas at Austin  
Homework #13 Solutions 
 
1.  Generate a plot of DOF versus feature size using the Rayleigh DOF criterion.  Assume a 193 
nm wavelength, equal lines and spaces, coherent three-beam imaging, and k2 = 0.8. 
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Assuming imaging in air (n = 1), we can use a spreadsheet to vary p, giving different angles .  
Then using this angle in the DOF equation, we get DOF vs. pitch. 
 

  
2.  Derive the diffraction pattern of an alternating phase shift mask (a repeating pattern of lines 
and spaces where every other space is shifted in phase by 180°, resulting in a transmittance of 1): 
 

  
 

The diffraction pattern for a repeating pattern of spaces of width w1 and pitch 2p, where p = 
w1+w2, centered at x = 0: 
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The diffraction pattern of a second repeating pattern of spaces of width w1 and pitch 2p, 
shifted by p and with transmittance -1: 
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Using superposition to add these two arrays together: 
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But, since fx = j/2p are the only non-zero values of the diffraction pattern, we can substitute 
this value everywhere for fx:        
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Notice that all the even values of j disappear. 

 
To help illustrate this diffraction patter, let’s graph the resulting diffraction pattern out to the ±5th 
diffraction orders for the case of w1 = w2.  The diffraction pattern will have diffraction orders 
spaced out at intervals of 1/2p with amplitudes 
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 3.  Consider the coherent, in-focus 2-beam and 3-beam aerial images for equal lines and spaces: 
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Derive expressions for the NILS for each of these cases.  
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For the 3-beam case, a similar derivations gives NILS = 8. 

 
4.  Consider a general expression for the aerial image of a line/space pattern. 
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Derive an expression for the NILS for the case of equal lines and spaces. 
 

The NILS calculated at the edge position x = w/2 = p/4 will be 
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5.  For the Mack model of development, what is the value of the development rate at m = mth?  
For mth > 0, what is the limit of this value as n becomes large? 
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As n gets very large, (1mth)n goes to zero for mth > 0.  Thus, for this case, 
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6.  Consider the case when the diffusion rate constant for the development mechanism is large 
compared to the surface reaction rate constant (i.e., the rate is reaction-controlled).  If a » 1, 
show that the Mack development rate will become 
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