
CHE323/384 Chemical Processes for Micro- and Nanofabrication 
Chris Mack, University of Texas at Austin  
Homework #11 Solutions 
 
1.  Consider a binary pattern of lines and spaces.  Which diffraction orders pass through the lens 
under these circumstances: 

(a)   = 248 nm, NA = 0.8, pitch = 300 nm, on-axis coherent illumination 
(b)  Same as (a), but pitch = 400 nm 
(c)  Same as (b), but illumination tilted by an angle sin' = 0.5 

 
a)  Spatial frequency = j/p.  Cutoff frequency = NA/.  Max j  pNA/ = 0.96.  Thus, only the 
zero order makes it through the lens. 
b)  Max j  pNA/ = 1.29.  Thus, the zero and ±1st orders make it through the lens. 
c)  Spatial frequency = j/p + 0.5/.  Cutoff frequency = NA/.  Max j  p(NA-0.5)/ = 0.48.  
Thus, the max order is 0.  Min j  -p(NA+0.5)/ = -2.096.  Thus, the min order is 2.  The 0, 1 and 2 orders go through the lens. 

 
(Note:  it is usually very helpful to draw pictures when working this type of problem.) 
 
 
2.  For a repeating line/space pattern and coherent illumination, derive expressions for the aerial 
image intensity at the center of the line and the center of the space as a function of the number of 
diffraction orders captured. 
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where the diffraction order amplitudes are real (true when we have a binary mask, such as 
chrome on glass, or an ideal phase-shift mask with only 0 and  phase shifts), 
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At the center of the line, x = p/2.  So    
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3.  For  = 248 nm, NA = 0.8, and pitch = 400 nm, below what value of  is the image entirely 
made up of three-beam interference?  At what  value does one-beam imaging first appear? 
 
The best way to work this problem is to draw the lens top-down as a unit circle (called sigma-space).  
Since the radius of the lens is NA/ in spatial frequency space, one must multiply spatial frequencies by /NA to convert them to sigma-space.  Thus, the position of the first order, which is 1/p in frequency 
space, becomes /(pNA) in sigma-space. 
 

  
 
From the geometry, imaging is entirely three-beam when 1
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As the source size increases we have both three-beam and two-beam imaging (see first figure 
below).  Imaging begins to have a one-beam component when pNA
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Example of dense line/space imaging where only the zero and first diffraction orders are used.  Red 
represents three-beam imaging, lighter and darker yellows show the areas of two-beam imaging, and blue 
represents one-beam imaging.  
 
 



4.  Consider the case of dense equal lines and spaces (only the 0 and ±1st orders are used) imaged 
with coherent illumination.  Show that the peak intensity of the image in the middle of the space 
falls off approximately quadratically with defocus for small amounts of defocus. 
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expansion of the cosine, for small defocus (and thus small  ), 
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Since  is directly proportional to defocus (even when we are not in the paraxial regime), 
one can see that the peak intensity will fall off approximately as the defocus squared.  Using 
the equal line/space values for a0 and a1 gives, in the paraxial limit, 
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 5.  Compare the depth of focus predictions of the high-NA version of the Rayleigh DOF equation 
to the paraxial (low-NA) version by plotting predicted DOF versus pitch (use k2 = 0.6,  = 248 
nm, pitch in the range from 250 to 500 nm, and assume imaging in air). 
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 6.  Consider the coherent image of a line/space pattern where only three orders are used to form 
the image: 
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Calculate the image contrast, defined as 
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For simplicity, assume the maximum intensity occurs in the middle of the space, and the 
minimum intensity occurs in the middle of the line (a common assumption). 
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