
CHE323/384 Chemical Processes for Micro- and Nanofabrication 
Chris Mack, University of Texas at Austin  
Homework #10 Solutions 
 

1. A photoresist gives a final resist thickness of 320 nm when spun at 2800 rpm.   
a) What spin speed should be used if a 290-nm-thick coating of this same resist is desired? 
b) If the maximum practical spin speed for 200-mm wafers is 4000 rpm, at what thickness 

would a lower viscosity formulation of the resist be required? 
 

For resist thickness d, the impact of changing spin speed is given by 
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b)  The min thickness for the same viscosity would be nmdd 2684000
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a thinner resist, a lower viscosity resist formulation would be required. 

 
 
2. Complimentary mask features (for example, an isolated line and an isolated space of the same 

width) are defined by 
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Prove that the diffraction patterns of complimentary mask features are given by 
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Use this expression to derive the diffraction pattern of an isolated line.  

Taking the Fourier transform of the first equation: 
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For a 1-D space, 
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3. Show that the Fourier transform is a linear operation, that is, show that for two functions f(x,y) 

and g(x,y), and two constants a and b,  
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4. Prove the shift theorem of the Fourier transform: 
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 Applying the definition of the Fourier transform, then letting x' = x – a and y' = y – b,  
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5. Prove the similarity theorem of the Fourier transform: 
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Applying the definition of the Fourier transform, then letting x' = ax and y' = by,  
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Why the absolute value sign out in front (the factor 1/|ab|)?  Suppose a is negative.  Then the limits of the 
integration of x' would have to go from +∞ to ∞.  Multiplying the integral by -1 would put the range of 
integration back to its original  ∞ to +∞.  Thus, the multiplier in front of the integral would be -1/a if a is 
negative, and +1/a if a is positive.  This is equivalent to 1/|a|.  Of course, the same argument holds for b. 


