CHE323/384 Chemical Processes for Micro- and Nanofabrication Chris Mack, University of Texas at Austin

Homework #4

- 1. Suppose we perform a solid solubility-limited predeposition from a doped glass source which introduces a total of Q impurities per square cm.
 - a. If this predeposition was performed for a total of *t* minutes, how long would it take (total time) to predeposit a total of 3Q impurities into a wafer if the predeposition temperature remained constant?
 - b. Derive a simple expression for the $(Dt)_{drive-in}$ which would be required to drive the initial predeposition of Q impurities sufficiently deep so that the final surface concentration is equal to 1% of the solid solubility concentration. This can be expressed in terms of $(Dt)_{predep}$ and the solid solubility concentration C_s .
- 2. A diffused region is formed by an ultra-shallow implant followed by a drive-in. The final profile is Gaussian.
 - a. Derive an expression for the junction depth (x_j) given a background dopant concentration (of the opposite type) of C_B .
 - b. Derive a simple expression for the sensitivity of x_j to the implant dose Q. Is x_j more sensitive to Q at high or low doses?
- 3. Campbell textbook, Chapter 3, problem 7.