CHE323/384 Chemical Processes for Micro- and Nanofabrication Chris Mack, University of Texas at Austin

Homework #1

- 1. For dopant atoms uniformly distributed in a silicon crystal, how far apart are these dopant atoms when the doping concentration is a) 2×10^{15} cm⁻³, b) 10^{18} cm⁻³, c) 7×10^{20} cm⁻³.
- 2. What is the resistivity of pure silicon at room temperature?
- 3. a) Show that the minimum conductivity of a semiconductor occurs when n = n_i√μ_p/μ_n.
 b) How does the minimum conductivity for silicon compare to the intrinsic conductivity of silicon at room temperature?
- 4. Consider a resistor made of pure silicon with a cross-sectional area of $0.5 \ \mu m^2$, and a length of 50 μm . What is the resistance of this silicon piece? For an applied voltage of 5 V, how much current would flow through it?
- 5. Suppose the resistor of problem 4 were made of p-type silicon. What doping level would be required to make the resistance equal to $25 \text{ k}\Omega$? 25Ω ?