


Figure 4.2 Arrhenius plot of the *B* oxidation coefficient. The wet parameters depend on the H₂O concentration and therefore on the gas flows and pyrolysis conditions (after Deal and Grove).

Figure 4.3 Arrhenius plot of the ratio (*B/A*) of the oxidation parameters (*after Deal and Grove*).

Deal-Grove Model:
$$t_{ox}^2 + At_{ox} = B(t + \tau)$$
, $\tau = \frac{t_o^2 + At_o}{B}$

Table and Graphs from S. Campbell, *Fabrication Engineering at the Micro- and Nanoscale*, 3rd edition.

Table 4.1	Oxidation coefficients for silicon	- For	(111	silicon
-----------	------------------------------------	-------	------	---------

	Dry			Wet (640 torr)	
Temperature (°C)	A (μm)	$B (\mu m^2/hr)$	$\tau (hr)$	A (μm)	B (μm²/hr)
800	0.370	0.0011	9	_	_
920	0.235	0.0049	1.4	0.50	0.203
1000	0.165	0.0117	0.37	0.226	0.287
1100	0.090	0.027	0.076	0.11	0.510
1200	0.040	0.045	0.027	0.05	0.720

The τ parameter is used to compensate for the rapid growth regime for thin oxides. (After Deal and Grove.)