5.45. The pole-zero plots in Figure P5.45 describe six different causal LTI systems.

Figure P5.45

Answer the following questions about the systems having the above pole-zero plots. In each case, an acceptable answer could be *none* or *all*.

- (a) Which systems are IIR systems?
- (b) Which systems are FIR systems?
- (c) Which systems are stable systems?
- (d) Which systems are minimum-phase systems?
- (e) Which systems are generalized linear-phase systems?
- (f) Which systems have $|H(e^{j\omega})|$ = constant for all ω ?
- (g) Which systems have corresponding stable and causal inverse systems?
- (h) Which system has the shortest (least number of nonzero samples) impulse response?
- (i) Which systems have lowpass frequency responses?
- (j) Which systems have minimum group delay?

5.46. Assume that the two linear systems in the cascade shown in Figure P5.46 are linear-phase FIR filters. Suppose that $H_1(z)$ has order M_1 (impulse response length M_1+1) and $H_2(z)$ has order M_2 . Suppose that the frequency responses are of the form $H_1(e^{j\omega}) = A_1(e^{j\omega})e^{-j\omega M_1/2}$ and $H_2(e^{j\omega}) = jA_2(e^{j\omega})e^{-j\omega M_2/2}$, where M_1 is an even integer and M_2 is an odd integer.

$$H(z) = \frac{21}{\left(1 - \frac{1}{2}z^{-1}\right)(1 - 2z^{-1})(1 - 4z^{-1})}.$$

It is known that the system is not stable and that the impulse response is two sided.

- (a) Determine the impulse response h[n] of the system.
- **(b)** The impulse response found in part (a) can be expressed as the sum of a causal impulse response $h_1[n]$ and an anticausal impulse response $h_2[n]$. Determine the corresponding system functions $H_1(z)$ and $H_2(z)$.
- **5.50.** The Fourier transform of a stable LTI system is purely real and is shown in Figure P5.50. Determine whether this system has a stable inverse system.

Figure P5.50

5.51. A causal LTI system has the system function

$$H(z) = \frac{(1 - 1.5z^{-1} - z^{-2})(1 + 0.9z^{-1})}{(1 - z^{-1})(1 + 0.7jz^{-1})(1 - 0.7jz^{-1})}.$$

- (a) Write the difference equation that is satisfied by the input and the output of the system.
- (b) Plot the pole-zero diagram and indicate the ROC for the system function.
- (c) Sketch $|H(e^{j\omega})|$.
- (d) State whether the following are true or false about the system:
 - (i) The system is stable.
 - (ii) The impulse response approaches a constant for large n.
 - (iii) The magnitude of the frequency response has a peak at approximately $\omega = \pm \pi/4$.
 - (iv) The system has a stable and causal inverse.

5.52. Consider a causal sequence x[n] with the z-transform

$$X(z) = \frac{\left(1 - \frac{1}{2}z^{-1}\right)\left(1 - \frac{1}{4}z^{-1}\right)\left(1 - \frac{1}{5}z\right)}{\left(1 - \frac{1}{6}z\right)}.$$

For what values of α is $\alpha^n x[n]$ a real, minimum-phase sequence?