
**4.31.** Figure P4.31-1 shows the overall system for filtering a continuous-time signal using a discrete-time filter. The frequency responses of the reconstruction filter  $H_r(j\Omega)$  and the discrete-time filter  $H(e^{j\omega})$  are shown in Figure P4.31-2.





 $2\pi \times 10^4$ 

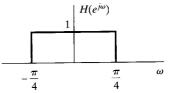



Figure P4.31-2

(a) For  $X_c(j\Omega)$  as shown in Figure P4.31-3 and 1/T = 20 kHz, sketch  $X_s(j\Omega)$  and  $X(e^{j\omega})$ .

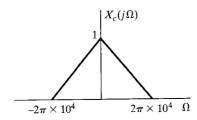



Figure P4.31-3

For a certain range of values of T, the overall system, with input  $x_c(t)$  and output  $y_c(t)$ , is equivalent to a continuous-time lowpass filter with frequency response  $H_{eff}(j\Omega)$  sketched in Figure P4.31-4.

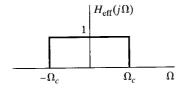



Figure P4.31-4

- (b) Determine the range of values of T for which the information presented in (a) is true when  $X_c(j\Omega)$  is bandlimited to  $|\Omega| \le 2\pi \times 10^4$  as shown in Figure P4.31-3.
- (c) For the range of values determined in (b), sketch  $\Omega_c$  as a function of 1/T.

*Note:* This is one way of implementing a variable-cutoff continuous-time filter using fixed continuous-time and discrete-time filters and a variable sampling rate.