Continuous Time Butterworth Filters

Monotone decreasing

$$
|H_g(x)|^2
$$
 has 52 t

$$
Maximally flatFor $2\sqrt{2}L<1$

$$
|H_{B}(n)|^{2} = 1 - (\frac{\Omega}{2c})^{2N} + (\frac{\Omega}{\Omega})^{4N} ...
$$
⁵⁺ 2N-derivatives
$$

$$
\begin{aligned}\nT_{n} &= \rho |a_{n} \infty \\
|H_{B}(x)|^{2} = |H_{B}(x)|^{2} \times |H_{B}^{*}(x)| &= H_{B}(x)H_{B}(-x) \implies \\
|H_{B}(s)H_{B}(-s) &= \frac{1}{1 + (\frac{s}{3}x)} \times 1 & \text{ (use } s = jx) \\
\text{Poles} & \text{of } H_{B}(s)H_{B}(-s) &= \frac{1}{1 + (\frac{s}{3}x)} \times 1 & \text{ (use } s = jx) \\
\left(\frac{s}{3}x\right)^{2N} &= 1 \implies S_{k} = S_{k} \times 2^{2N} \times 2^{N-1} \\
\left(\frac{s}{3}x\right)^{2N} &= 1 \implies S_{k} = S_{k} \times 2^{2N} \times 1 & \text{ (use } s = jx) \\
\left(\frac{s}{3}x\right)^{2N} &= 1 \implies S_{k} = \frac{1}{1 + (\frac{s}{3}x)} \times 1 & \text{ (use } s = jx) \\
\left(\frac{s}{3}x\right)^{2N} &= 1 \implies S_{k} = \frac{1}{1 + (\frac{s}{3}x)} \times 1 & \text{ (use } s = jx) \\
\left(\frac{s}{3}x\right)^{2N} &= 1 \implies S_{k} = \frac{1}{1 + (\frac{s}{3}x)} \times 1 & \text{ (use } s = jx) \\
\text{Poles} &= \frac{1}{1 + (\frac{s}{3}x)} \times 1 & \text{ (use } s = jx) \\
\text{Poles} &= \frac{1}{1 + (\frac{s}{3}x)} \times 1 & \text{ (use } s = jx) \\
\text{Poles} &= \frac{1}{1 + (\frac{s}{3}x)} \times 1 & \text{ (use } s = jx) \\
\text{Poles} &= \frac{1}{1 + (\frac{s}{3}x)} \times 1 & \text{ (use } s = jx) \\
\text{Poles} &= \frac{1}{1 + (\frac{s}{3}x)} \times 1 & \text{ (use } s = jx) \\
\text{Poles} &= \frac{1}{1 + (\frac{s}{3}x)} \times 1 & \text{ (use } s
$$

For stable/causal H_B(s), choose pole s
\nin the left half plane
\n
$$
Tf N = 3
$$
\n
$$
S_{1} = -S_{2,2}n/3
$$
\n
$$
S_{2} = \pi_{c}e^{3}n/3
$$
\n
$$
S_{3} = S_{c}e^{-j2\pi/3}
$$
\n
$$
S_{4} = \pi_{c}e^{3}n/3
$$
\n
$$
S_{5} = \pi_{c}e^{3}n/3
$$
\n
$$
S_{6} = \pi_{c}e^{j2\pi/3}
$$
\n
$$
S_{7} = \pi_{c}e^{j2\pi/3}
$$
\n
$$
S_{8} = \pi_{c}e^{-j2\pi/3}
$$
\n
$$
S_{9} = \pi_{c}e^{-j2\pi/3}
$$
\n
$$
S_{1} = \pi_{c}e^{j2\pi/3}
$$
\n
$$
S_{1} = \pi_{c}e^{j2\pi/3}
$$
\n
$$
S_{2} = \pi_{c}e^{-j2\pi/3}
$$
\n
$$
S_{1} = \pi_{c}e^{j2\pi/3}
$$
\n
$$
S_{2} = \pi_{c}e^{-j2\pi/3}
$$
\n
$$
S_{1} = \pi_{c}e^{-j2\pi/3}
$$
\n
$$
S_{2} = \pi_{c}e^{-j2\pi/3}
$$
\n
$$
S_{1} = \pi_{c}e^{-j2\pi/3}
$$

 $\overline{\mathbf{3}}$

pass band
$$
|H_{B}(\pi_{S})|^{2} = \frac{1}{1+(\frac{\pi}{5\pi c})^{2N}} \geq (0.89)^{2}
$$

Stophond $|H_{B}(\frac{3\pi}{10})|^{2} = \frac{1}{1+(\frac{3\pi}{10\pi c})^{2N}} \leq (0.175)^{2}$

Design Example: choose
$$
\Sigma_c
$$
, N

\nExample: choose Σ_c , N

\nExample: $0.89 = 1 - 8\rho_1$, $0 \le |s| < 0.2\pi$

\nFigure: $1H_g(\Sigma) \ge 0.89 = 1 - 8\rho_1$, $0 \le |s| < 0.2\pi$

\nExample: $1H_g(\Sigma) \ge 0.89 = 1 - 8\rho_1$, $0 \le |s| < 0.2\pi$

\nExample: $1H_g(\Sigma) \ge 0.89 = 1 - 8\rho_1$, $0 \le |s| < 0.2\pi$

\nExample: $1H_g(\Sigma) \ge 0.89 = 1 - 8\rho_1$, $0 \le |s| < 0.2\pi$

\nExample: $1H_g(\Sigma) \ge 0.89 = 1 - 8\rho_1$, $0 \le |s| < 0.2\pi$

\nExample: $1H_g(\Sigma) \ge 0.89 = 1 - 8\rho_1$, $0 \le |s| < 0.2\pi$

$$
Stophand \qquad |H_{B}(\frac{3\pi}{10})|^{2} = \frac{1}{1 + (\frac{3\pi}{10\pi})^{2N}} \leq (0.175)
$$

Force equality at pass band edge to obtain

$$
N = 6
$$
, $SLc = 0.7024$

Copyright 2012 Barry Van Veen