

AN01010101 V1.00 Date: 2016/08/06

类别	内容
关键词	P800、NCF2961 芯片、烧写指南
摘 要	

修订历史

版本	日期	原因
V1.00	2016/08/06	创建文档

目 录

1.	适用范围	1
2.	工程新建	±2
	2.1	创建2
	2.2	芯片选择3
	2.3	查看描述
3.	配置	4
	3.1	烧写配置4
	3.2	通道配置5
	3.3	校验配置
	3.4	擦除配置
	3.5	查空配置7
	3.6	读取配置7
	3.7	组合配置
	3.8	设备配置
	3.8.1	1 程序烧写9
	3.8.2	2 电源设置10
	3.9	工程配置10
	3.10	量产配置11
	3.11	缓冲区11
	3.12	系统设置12
4.	工程管理	<u>l</u> 13
	4.1	保存工程13
	4.2	打开与删除工程14
5.	操作	
6.	高级配置	
	6.1	加密配置16
	6.2	通讯波特率设置17
7.	注意事项	ī18

1. 适用范围

本文档适合用于 P800 平台烧写 NCF2961 系列芯片。

本文档以汽车电子 NCF2961 芯片为例,详细讲解如何在 P800 平台上创建、配置和管理工程。

2. 工程新建

如下图,为 P800 的面板,点击创建开始 P800 工程的新建。

图 2.0 P800 顶层面板

2.1 创建

< ▲ 主界面	新建工程
工程名称: 1 NCF2961	
工程类型: Z SD卡	
	3 新建
	🔶 🖳 日志

图 2.1 新建工程

【**工程名称】**:输入工程的名称,一般以芯片的具体型号命名。 【**工程类型】**:选择工程存放位置,可选本机、SD 卡和 U 盘。 【**创建】**:创建当前工程。

2.2 芯片选择

双击芯片厂商 NXP,选择需要烧写芯片的具体型号,如下图所示:

图 2.2 芯片选择

2.3 查看描述

查看当前烧录芯片与 P800 的硬件连接图。

图 2.3 查看描述

3. 配置

3.1 烧写配置

由于 NCF2961 芯片包含两个区域(EROM 和 ULP EEPROM),每个区域的烧写方式不一样,在 P800 平台上分别用两个算法对应每个区域的操作,如下图所示:

く配調	E	烧	写配置			
当前算	法:NCF29xx 1	6kB EROM				
	NCF29xx 1	6kB EROM)
使能	文作NCF29xx 2	kB ULP-EEP	ROM			
						▲ 上移
L						▼ 下移
使能	段起始地址	段长度	地址配	置描述		
						二 抽取
1					Þ	■ 滤空值

图 3.1.0 两个不同的算法

需要用到某个区域时,选中对应区域的算法并添加对应烧写文件。以下演示两个算法分 别加载文件的过程:

(1) 首先选中【NCF29xx 16KB EROM】算法,点击【添加】,如图 3.1.1 所示,选择烧到 EROM 区的烧写文件。

<	Open 🟂 🔀 📰	
뇔	🔍 \Storage Card\测试代码\NCF2961测试文件	1
	INCF2961_EROM	j)
1		
Γ		Ц
k	NCF2961_EROM Type: Support Files (,*.hex,*.bin,*.dat,*.nv 💽	
1	能。段起始地址 段长度 地址配置描述	
		2
		值

图 3.1.1 加载 EROM 文件

(2) 选中【NCF29xx 2KB ULP-EEPROM】算法,点击【添加】,如图 3.1.2 所示,选择烧到 ULP EEPROM 区的烧写文件。

<	Open 😰 📴 📰	ок 🗙
뇔	🔍 \Storage Card\测试代码\NCF2961测试文件	
		h.
ſ		
Ľ		
E	Name: JOLP_EEPROM	it, * .riv 💌
1	能 段起始地址 段长度 地址配置描述	
6	0x00000000 8192 Algorithm0:[NCF29xx 1	6 【二抽取】
1		

图 3.1.2 加载 ULP EEPROM 文件

3.2 通道配置

配置通道的操作方法以及开启的通道数。

く配置		通道	配置	
	0 同步操	作	◎ 异步操作	
	2 1	2	I 3	a 4

图 3.2 通道配置

【同步操作】: 所有开启的通道同时烧录、同时结束,具有速度快的特点。 【异步操作】: 每个通道独立工作,互不干扰,操作灵活。

【通道编号】:选择开启的通道编号。

3.3 校验配置

可设置屏蔽校验区间,芯片无特殊区域时默认即可。

く配置	校验配置(屏蔽校验区间])	
当前算法:NCF29x	x 16kB EROM		📉 🔽 र्स	验配置区
校验屏蔽起始地址:	0x00000000			
校验屏蔽结束地址:	0x0000003			■ 挿入
使能 Flash器件		开始扇区	结束扇区	
				★删除
				● 清空
	111			

图 3.3 校验配置

【校验配置区】: 需要校验配置区时可选此项。

3.4 擦除配置

配置芯片需要擦除的区域、扇区,默认为全片擦除。

く配置		擦除配置		
选择算法:	NCF29xx 16kB E	ROM	I	擦除配置区
开始扇区:	Entire Chip			▼
结束扇区:	Entire Chip			- 🖬 插入
使能 Flas	h器件	开始扇区		结束
V NC	29xx 16kB ERON	1Entire Chip		Ent 🗙 删除
				▲ 上移
				▼ 下移
•				Þ

图 3.4 擦除配置

3.5 查空配置

配置芯片需要查空的区域、扇区,与擦除相对应,默认为全片查空。

く 配置		查空配置			
选择算法:	NCF29xx 16kB E	ROM	-		
开始扇区:	Entire Chip			$\overline{}$	
结束扇区:	Entire Chip			$\overline{}$	■ 插入
使能 Flas	h器件	开始扇区		鍄	
✓ NCF	29xx 16kB EROM	IEntire Chip		Ent	★ 删除
✓ NCF	29xx 2kB ULP-EE	Entire Chip		Ent	▲上移
					▼ 下移
1					

图 3.5 查空配置

3.6 读取配置

配置芯片需要读取的区域、扇区,可按扇区读取和地址读取,默认为全片读取。

く配置	读取函	置	
扇区读取	地址读取		📄 读取配置区
保存路径:			选择文件
选择算法:	NCF29xx 16kB EROM	~	
开始扇区:	Entire Chip	~	
结束扇区:	Entire Chip	~	軒 插入
使能	Flash器件	开始扇区	
✓ NCF2	9xx 16kB EROMEntire C	hip	Er <mark>× 删除</mark>
✓ NCF2	9xx 2kB ULP-EElEntire C	hip	Er 🔺 上移
↓			▶ ▼下移

图 3.6 读取配置

3.7 组合配置

配置组合操作的步骤,通过【插入】可增加操作的步骤,【上移】【下移】可配置操作的顺序,默认为【擦除】——【烧写】——【校验】。

图 3.7 组合配置

3.8 设备配置

配置设备的电源输出、时钟频率等信息。

设置为 P500 NCP2	2961 NXP		\times
一硬件选择 程序烧写 电線设置	硬件选择 (1) 厂商: NXP (2) 器件: NCF2961 (3) 仿真器: P500 (4) POD类型: 程序烷写 (1) 據除模式: 不予據除. (2) 编程Flash. (3) 不验证Flash.		
	加數保存 缺省	确认 取消	

图 3.8 设备配置

3.8.1 程序烧写

可查看、配置当前算法属性。双击算法可查看或配置当前算法的属性,如图 3.8.3 所示, 双击空白处可添加新的算法,无特殊需求时,默认即可。

稽	·序模写				×
-	<u> </u>				
	编程摘述	器任类型	器件尺寸	地址范围	
	NCF29xx 16kB EROM	片上器件	0x00004000	$0 \ge 000000000 = 0$)z00004
	NCF29xx 2kB ULP-EEPROM	片上器件	0x00000840	0x00000000 - ()x00001
	<u><</u>				>
				确认 [取消

图 3.8.2 程序烧写

程序焕写	×
算法属性	
编程选项	装载望法RAM
	起始 0x00000000 尺寸 0x00000110
望法文件	Flash选项
路役 \flashdisk2\p500\tkscope\	起始 0x00000000 尺寸 0x00004000
揪加塑法 删除 塑法	() 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一

图 3.8.2 算法属性

3.8.2 电源设置

配置编程器的电源输出使能、输出稳定时间等。当使用编程器供电时,此处需要配置。

电源设置		
工作电源 电压 3.3 □+ ▼被照器件 ● 允许输出 ● 禁止输出 编程电源	穆定时间ms 200 电压测试和调整	- 确定 - 取消
Note:		

图 3.8.3 电源设置

【允许输出】: 允许编程器输出电压,使用编程器供电时需选此项。

- 【禁止输出】: 禁止编程器输出电压, 使用外部供电时需选此项。
- 【按照器件】: 按照芯片标准电压输出。
- 【稳定时间】: 配置电压输出的稳定时间。

【电压测试和调整】: 可以测试和校正当前的输出电压。

3.9 工程配置

配置当前工程的属性。

く配置	工程配置
工程信息	工厂选项-操作 工厂选项-配置
软件标题栏:	KFlashPro
工程创建者:	user
📕 加密工程	密码设置生成授权文件

图 3.9 工程配置

【**工程信息】**: 配置当前工程的信息、加密设置等。 【**工程选项-操作】**: 配置【操作】的选项。 【**工厂选项-配置】**: 配置【配置】的选项。

```
产品应用笔记
```


3.10 量产配置

配置量产的属性、自动上下电检测等。

<配置	量产配置
🖌 使能量产	🗹 自动上下电检测
批量操作: <mark>组合</mark>	
量产次数: <mark>-1</mark>	稳定上电时间: 300 ms
成功次数: 0	
失败次数:0	成功率: 0.00 % 清空量产
主通道: 1	

图 3.10 量产配置

【批量操作】: 配置量产的操作,默认为【组合操作】。 【量产次数】: 配置量产的次数,默认为-1,即无穷多次。 【稳定上电时间】: 配置量产操作的稳定上电时间。 【成功次数】: 显示当前量产操作的成功次数。 【清空量产】: 清空当前量产的计数。

3.11 缓冲区

查看当前数据的缓冲区信息,包括源数据和读数据。

く配置	缓	钞中	X	(核	<u></u>	回:0	x00	10	DB9	4)	0x(000	000	00			Go	
当前算法:	NC	F29	XX (16k	ΒE	RO	М			·	0	原数	婮	Q	读	数据	保存	2
源缓冲区	0	1	2	3	4	5	6	7	8	9	A	В	с	D	E	F		^
00000000	В1	40	10	A4	43	62	91	4D	16	08	BF	E2	09	E8	92	AE		
00000010	65	62	8A	62	1C	D1	40	61	37	D2	81	9F	\mathbf{FC}	DA	50	В6		
00000020	93	Ε1	В4	6F	A6	10	90	6C	С6	18	4A	AD	98	4B	F5	AO		
00000030	ОC	FC	6E	F2	A1	СЗ	ΕВ	D4	06	36	10	66	02	2 C	7F	7F		
00000040	87	26	$\mathbf{E}\mathbf{D}$	8E	5D	60	4C	AE	2 B	AA	ЕD	45	77	AЗ	С9	BC		
00000050	ЗE	DB	CF	AC	С9	74	D7	8D	F4	66	28	ΒA	61	ΕO	28	67		
00000060	F5	72	AA	DЗ	OD	7C	70	51	B2	17	47	F5	ΕO	\mathbf{DF}	6E	86		
00000070	OF	66	98	73	09	31	40	79	DB	7D	9F	ЗB	61	46	04	E5		
00000080	1 B	2F	$C\mathbf{E}$	36	72	D4	CF	72	9D	38	Ε6	2 E	A6	AC	75	Ε6		
00000090	65	09	A5	CF	61	09	92	E8	67	97	ЗF	A8	DC	6E	FΕ	53		
000000A0	89	C9	$2 \mathrm{F}$	CE	5C	9A	76	16	80	6B	CF	83	AB	7D	24	2 A		
000000В0	FВ	В1	46	ΕE	$\mathbf{E}\mathbf{D}$	51	FЗ	91	96	55	47	ΕA	С1	ΑE	39	ΕE		
oooooco	24	B 5	9.6	5F	ልፑ	43	۵O	23	48	15	FQ	۵C	F7	80	76	00		×

图 3.11 缓冲区

3.12 系统设置

配置本机的 IP 地址。

< 配置	系统设置
本机IP地址:	192.168.9.140 配置
1 2	3 4 5 6 7 8 9 0
- 7	:;())\$&@"
#+=	
ABC	

图 3.12 系统设置

4. 工程管理

4.1 保存工程

完成芯片工程的新建和配置后,需要对工程进行保存。首先返回 P800 的顶层操作面板,如图 4.1.0 所示。

图 4.1.0 工程管理

点击【保存】,可以直接保存工程,或点击【选择工程】,进入到工程管理面板,如图 4.1.1 所示, O 为保存工程的图标按钮,单击即可保存工程。

图 4.1.1 保存工程

4.2 打开与删除工程

点击【选择工程】,进入到工程管理面板,选择需要打开或删除的工程,如图 4.2 所示。 为打开工程的图标按钮, 为删除工程的图标按钮, 单击即可打开或删除工程。

✓ 主界面	工程来源: 🔍 本地 🛛 🖂	満
	1、NCF2961	
	2、NCF2961_1	
厂商:NXP 芯片:NCF2961		• 日志

图 4.2 打开与删除工程

5. 操作

<mark>く</mark> 主界面			操作			
<mark>⊘</mark> 烧写	✓ ☆ 验	 擦除	② 查 空	臣 读 取	《 》 烧写配置	《 校验配置
读取配置	≵ 组合	世 里产				
厂商:NXP 芯;	≒: NCF2961				•⇔	日志

图 5.0 操作

- 【烧写】:将代码烧进芯片内部的 Flash。
- 【校验】: 校验芯片内部的 Flash 代码与烧写文件是否一致,检测【烧写】操作是否成功。
- 【擦除】:根据【擦除配置】,擦除芯片内部的 Flash 数据。
- 【查空】: 根据【查空配置】, 查询芯片内部 Flash 是否为空, 检测【擦除】操作是否成功。
- 【读取】:根据【读取配置】,读取芯片内部的 Flash 代码,可在【缓冲区】——【读数据】
- 查看。
- 【解锁】: 此操作为 MC9S12XEP 系列芯片特有的操作, 解除芯片的加密状态, 并将芯片全 片擦除。
- 【组合】: 根据【组合配置】, 依次执行各操作。
- 【量产】: 根据【量产配置】,执行各操作,适合工厂大规模生产。
- 【**烧写配置】**: 将配置区信息烧进芯片,NCF2961 为设置芯片的加密状态,详细配置可参考 第6章高级配置。
- 【校验配置】: 校验配置区是否烧写成功,此处为校验芯片是否加密成功。

6. 高级配置

操作路径:【配置】——【烧写配置】

< 配置	烧	写配置		
当前算法: NCF29xx	16kB EROM			T
②配置	%选项	✔ 编程配置区		╋ 添加
使能 文件类型	文件路径			
✓ Intel Hex File	\Storage Ca	ard\测试代码\N	CF2961测试文	★删除
🕢 🛛 Binary,Dat Fil	e \Storage Ca	ard\测试代码\N	CF2961测试文	▲ 上移
	_			▼ 下移
使能 段起始地址	段长度	地址配置描		
✓ 0x0000000	8192	Algorithm):[NCF29xx 16	二抽取
			Þ	■ 滤空值

图 6.0 配置与选项

②配置】和 ※选项 图标为 NCF2961 系列芯片的特有的高级配置选项,根据用户需求选择。

6.1 加密配置

操作路径:【配置】——【烧写配置】——【配置】 点击【配置】进入安全配置面板,如图 6.1 所示,可以设置芯片的保护使能。

NCF29xx Configuration	ок 🗙
Protection	
Configuration Protection	
Value Ox10	
Protection ODisable OEnable	
写入 校验 缺省	
	<u>+</u>

图 6.1.1 配置

此处保护使能后,需要使能【编程配置区】才会生效,如图 6.0 所示。当需要芯片编程 后,进入保护状态,防止代码被读出,【组合配置】可如下配置:

【擦除】——【烧写】——【校验】——【烧写配置】,如图 6.1.2 所示。

图 6.1.2 推荐组合配置

6.2 通讯波特率设置

操作路径:【配置】——【烧写配置】——【选项】

单击【选项】,进入波特率设置面板,如图 6.2 所示。选择需要设置的通讯波特率,并 点击【OK】。

NCF29xx Options	ок 🖂
BaudRate Set	
Select the communication BaudRate	
Value Dx03	
BaudRate 1MBit/s	
缺省	
	*

图 6.2 选项

7. 注意事项

- 1、 当板子与 P800 之间的接线较长时,请降低通讯的波特率。推荐线长为 30~50cm, 当接 线超过 50cm 时,请适当降低通讯波特率。以上仅供参考,具体以实际测试为准。
- 2、 当有一定的概率出现初始化失败或擦除失败的现象时,可在编程器的 Vsup 脚与 GND 脚 之间接一个 500 欧到 1000 欧姆的电阻。

销售与服务网络

广州致远电子股份有限公司

地址: 广州市天河区车陂路黄洲工业区 7 栋 2 楼
邮编: 510660
网址: <u>www.zlg.cn</u>

全国销售与服务电话: 400-888-4005

销售与服务网络:

广州总公司

广州市天河区车陂路黄洲工业区 7 栋 2 楼 电话: (020)28267985 22644261

北京分公司

北京市海淀区知春路 108 号豪景大厦 A 座 19 层 电话: (010)62536178 62635573

深圳分公司

深圳市福田区深南中路 2072 号电子大厦 12 楼 电话: (0755)83640169 83783155

武汉分公司

武汉市洪山区广埠屯珞瑜路 158 号 12128 室(华中 电脑数码市场) 电话: (027)87168497 87168397

成都分公司

成都市一环路南二段 1 号数码科技大厦 403 室 电话: (028)85439836 85432683

上海分公司:上海

上海市北京东路 668 号科技京城东楼 12E 室 电话: (021)53865521 53083451

上海分公司:南京

南京市珠江路 280 号珠江大厦 1501 室 电话: (025)68123923 68123920

上海分公司: 杭州

杭州市天目山路 217 号江南电子大厦 502 室 电话: (0571)89719491 89719493

重庆分公司

重庆市九龙坡区石桥铺科园一路二号大西洋国际大 厦(赛格电子市场)2705室 电话: (023)68796438 68797619

西安办事处

西安市长安北路 54 号太平洋大厦 1201 室 电话: (029)87881295 87881296

请您用以上方式联系我们,我们会为您安排样机现场演示,感谢您对我公司产品的关注!