
1 of 54

High-Level Ethernet and Serial Interface Functions

Table of Contents

I. INTRODUCTION... 3

II. INTERFACE FUNCTIONS..4
FUNCTION INDEX.. 4

FUNCTION DESCRIPTIONS... 5

III. EXAMPLES.. 29
ACQUISITION...31
Fluoroscopy.. 31

Using Software Sync Signals...31
Radiography... 32

Using Software Sync Signals...32
Automatically Detect X-Rays On/Off... 32
Automatically Detect X-Rays; Stop when N Frames Collected..33

GAIN CALIBRATION.. 35
Fluoroscopy.. 35
Radiography... 37

OFFSET CALIBRATION...40

HANDLING IMAGES...41
Retrieve Image.. 41
Put Image..42

RETRIEVING SYSTEM DATA..44
System Information... 44
Mode Details...45

IV. APPENDIXES...47
APPENDIX A: ERROR CODES RETURNED BY THE COMMAND PROCESSOR...................................47

APPENDIX B: FILE NAME STRINGS USED IN THE COMMAND PROCESSOR...................................48

APPENDIX C: IMAGE TYPES..48

2 of 54

APPENDIX D: COMMAND PROCESSOR SYSTEM CONSTANTS..50

APPENDIX E: MODE TYPE CONSTANTS..52

APPENDIX F: COMMUNICATION TYPE CONSTANTS..53

APPENDIX G: ERROR STATUS BIT VALUES..53

V. SUPPLEMENTAL DOCUMENTS.. 54

To assist with navigation within this document, bookmark jumps, which are indicated as underlined
text, are used throughout. Clicking on a title in an index listing will move the cursor to the beginning
of the text of the title and vice versa.

3 of 54

I. INTRODUCTION

A set of interface functions are provided for controlling the VIP-9 Command Processor over an
Ethernet or a serial connection, via a Win32 DLL called VIP_Comm, that include vip_comm.h,
vip_comm.lib and vip_comm.dll.

In general, all function-return values are of type int. The return value always indicates the
success/failure of the function call, with a non-zero value meaning an error has occurred. The
definitions of the return values are listed in APPENDIX A at the end of this document.

Function arguments, which are declared to be pointers, are generally used for returning data to the
caller. These pointers should be addresses of appropriate type variables, and not merely un-initialized
pointers.

Finally, all function names are prefixed with vip_ and all constant and structure names are prefixed
with VIP_, to avoid namespace conflicts.
The function definitions for the Ethernet and serial external interface are listed in alphabetical order in
the next section.

Note that the following functions are available only for the Ethernet version of the interface, because
of bandwidth limitations for the serial interface:

 vip_get_config_data()

 vip_get_image()

 vip_put_config_data()

 vip_put_image()

4 of 54

II. INTERFACE FUNCTIONS

This section contains short summaries of the Ethernet and serial interface functions. It is intended for
use as a quick reference by users of vip_comm.dll. The remaining of this section is divided into two
tables. The first table lists function names. The other table contains the function descriptions.

FUNCTION INDEX

1. vip_analog_offset_cal() 2. vip_check_link()
3. vip_close_link() 4. vip_enable_auto_cal()
5. vip_enable_sw_handshaking() 6. vip_gain_cal_prepare()
7. vip_get_analog_offset_data() 8. vip_get_analog_offset_stats()
9. vip_get_cal_stats() 10. vip_get_config_data()
11. vip_get_correction() 12. vip_get_current_mode()
13. vip_get_image() 14. vip_get_lih()
15. vip_get_mode_acq_type() 16. vip_get_mode_details()
17. vip_get_num_acq_frames() 18. vip_get_num_cal_frames()
19. vip_get_rad_scaling() 20. vip_get_recursive_filter()
21. vip_get_self_test_log() 22. vip_get_system_info()
23. vip_get_system_version_numbers() 24. vip_get_wl()
25. vip_offset_cal() 26. vip_open_link ()
27. vip_put_config_data() 28. vip_put_image()
29. vip_query_error() 30. vip_query_progress()
31. vip_reset_state() 32. vip_select_mode()
33. vip_self_test() 34. vip_set_analog_offset_data()
35. vip_set_correction() 36. vip_set_debug()
37. vip_set_frame_rate() 38. vip_set_lih()
39. vip_set_mode_acq_type() 40. vip_set_num_acq_frames()
41. vip_set_num_cal_frames() 42. vip_set_rad_scaling()
43. vip_set_recursive_filter() 44. vip_set_wl()
45. vip_sw_handshaking()

5 of 54

FUNCTION DESCRIPTIONS

Each function description has five subsections containing the following information: (1) Function
name, (2) Function protocol as used in the Visual C++ vip_comm.dll, (3) Serial syntax as used in a
terminal application such Hyper Terminal, (4) Descriptions of all parameters used in the function and
(5) Remarks and notes about the function.

1. Function vip_analog_offset_cal()
Protocol int

vip_analog_offset_cal
(int mode_num);

Serial Syntax @AOC<mode_num><CR>
Parameters mode_num The number of the mode for which the Command Processor will

initiate an analog offset calibration.

Remarks This function allows the user to initiate an analog offset calibration for a specified
mode.

2. Function vip_check_link()
Protocol int vip_check_link void();
Serial Syntax @CKL<CR>

Parameters None.

Remarks Similar to the ping command, this function allows the user to check the
communication link with the Command Processor. The user does not normally
need to make this call.

3. Function vip_close_link()
Protocol int vip_close_link (BOOL unregister = FALSE);
Serial Syntax @CLL<CR>

Parameters unregister If TRUE, the link will be unregistered after it is closed. If FALSE, no
un-registration will occur.

Remarks This function allows the user to close the communications link. The VIP-9
software does not shut down, but enters a state where it is waiting for a client to
establish a new link, via a vip_open_link() command.

Note that in early version, it was necessary to call the function
vip_register_application() prior to opening a link. This requirement was eliminated
and the function vip_register_application() became obsolete. The function
vip_close_link() should be called with the default value FALSE for unregister.

6 of 54

4. Function vip_enable_auto_cal()

Protocol int vip_enable_auto_cal (int mode_num, BOOL enable, int minimum_delay,
int post_exposure_delay);

Serial Syntax @EAC<mode_num>;<enable>;<minimum_delay>;<post_exposure_delay><CR>

Parameters mode_num The number of the mode for which the Command processor
will enable the auto-offset calibration option.

enable If TRUE, the auto-offset calibration option will be enabled.
If FALSE, the auto-offset calibration option will be
disabled.

minimum_delay The minimum time delay between auto-offset calibrations.
It will be ignored if enable is FALSE. Units: seconds.

post_exposure_delay The amount of time delay required after an exposure. It
will be ignored if enable is FALSE. Units: seconds.

Remarks This function allows the user to enable or disable the auto-offset calibration.

5. Function vip_enable_sw_handshaking()

Protocol int
vip_enable_sw_handshaking

(BOOL enable);

Serial Syntax @ESH<enable><CR>

Parameters enable If TRUE, software handshaking option will be enabled. If FALSE, the
option will be disabled. At startup, the Command Processor enables both
hardware and software handshaking options.

Remarks This function allows the user to enable or disable the software handshaking option.

7 of 54

6. Function vip_gain_cal_prepare()

Protocol int vip_gain_cal_prepare (int mode_num, BOOL auto_sense = FALSE);

Serial Syntax @GCP<mode_num>;<auto_sense><CR>

Parameters mode_num The number of the mode for which the Command Processor will
prepare for a gain calibration.

auto_sense If TRUE, the Command Processor will perform a gain calibration by
automatically sensing X-rays on/off. If FALSE, the Command
Processor will wait for X-rays on/off messages.

Remarks This function allows the user to prepare the Command Processor for a gain
calibration. The minimum-required interval between gain calibrations is expected
to be fairly long, on the order of weeks. After this function is called, the system
operator should verify that the correct flat field conditions exist and the X-ray
beam should be established. The calibration then proceeds when the client sends
the proper hardware handshaking signals or equivalent software signals given
software handshaking option is enabled and auto_sense is FALSE.

8 of 54

7. Function vip_get_analog_offset_data()

Protocol int
vip_get_analog_offset_data

(int mode_num, int *target_value,
int *tolerance, int *median_percent,
double *fractional_iteration_delta,
int *number_iterations);

Serial Syntax @GAO<mode_num><CR>

Parameters mode_num The number of the mode whose analog offset data is to
be set at the Command Processor.

target_value The target value where analog offset calibration
occurs.

tolerance The tolerance value around the target_value that
makes the acceptable range of values for the analog
offset calibration.

median_percent The percentage of offset values accepted which are
below the target value.

fractional_iteration_delt
a

The scaling factor applied in determining the offset
adjustment between iterations. It influences the speed
of convergence.

number_iterations The number of iterations that will be attempted to
bring the offsets within range.

Remarks This function allows the user to retrieve the parameters that define how the analog
offset calibration is performed.

9 of 54

8. Function vip_get_analog_offset_stats()

Protocol This function is no longer supported.

int vip_get_analog_offset_stats (int mode_mum, int num_asics,
double *standard_deviation,
int *segment_defect_found);

Serial Syntax Serial communication for this function is no longer supported.

@GAS<mode_mum>;<num_asics><CR>

Parameters mode_mum The number of the mode whose analog offset statistics is
to be retrieved from the Command Processor.

num_asics The number of ASIC’s in the system.

standard_deviation The current standard deviation of the analog offset.

segment_defect_found The number of defect segments that have been detected.

Remarks This function allows the user to retrieve the offset statistics from the Command
Processor.

9. Function vip_get_cal_stats()

Protocol int vip_get_cal_stats (int mode_num, int *gain_median, double *gain_sigma,
int *offset_median);

Serial Syntax @GCS<mode_num><CR>

Parameters mode_mum The number of the mode whose calibration statistics is to be
retrieved from the Command Processor.

gain_median The number of ASIC’s in the system.

gain_sigma The current standard deviation of the analog offset.

offset_median The number of defect segments that have been detected.

Remarks This function allows the user to retrieve calibration statistics from the Command
Processor.

10 of 54

10. F
unction

vip_get_config_data()

Protocol int vip_get_config_data (char *full_file_path, char *target_file_name);

Serial Syntax Serial communication for this function is not supported.

@GCD<CR>

Parameters full_file_path A null-terminated string, which is the fully qualified path name
of the file that contains the information to be retrieved from the
Command Processor. Up to 256 characters is allowed,
including the null-termination character.

target_file_name A null-terminated string, which is the name of the file that
contains the data on the Command Processor. Up to 32
characters is allowed, including the termination character.
Currently, only the configuration data file named
“ConfigDataFile” is available for this function. Please, see
APPENDIX B for complete listing of available file names.

Remarks This function allows the user to retrieve a file such as the configuration data,
software or firmware file from a Command Processor.

11. F
unction

vip_get_correction()

Protocol int
vip_get_correction

(BOOL *offset_cal, BOOL *gain_cal,
BOOL *defect_map, BOOL *line_noise);

Serial Syntax @GCR<CR>

Parameters offset_cal If TRUE, the Command Processor will use offset-calibrated data
during the correction process. If FALSE, it will not apply the data on
the correction process.

If offset_cal is FALSE, then gain_cal is also assumed to be FALSE.

gain_cal If TRUE, the Command Processor will use gain-calibrated data
during the correction process. If FALSE, it will not apply the data on
the correction process.

defect_map If TRUE, the Command Processor will use defect-map data during
the correction process. If FALSE, it will not apply the data on the
correction process and defective pixels will be visible.

line_noise If TRUE, the Command Processor will use digital line noise
reduction during the correction process. If FALSE, it will not use
this method.

Remarks This function allows the user to retrieve information on which correction
algorithms are being applied to incoming pixel data. These parameters are global
for all modes.

11 of 54

12. F
unction

vip_get_current_mode()

Protocol int
vip_get_current_mode

(int *mode_num);

Serial Syntax @GCM<CR>

Parameters mode_num The number of the currently selected mode.

Remarks This function allows the user to retrieve the number of the currently selected mode
in the Command Processor.

13. F
unction

vip_get_image()

Protocol int vip_get_image (int mode_num, int image_type, int x_size, int y_size,
WORD *image_ptr);

Serial Syntax Serial communication for this function is not supported.

@GMG<mode_num><image_type><x_size><y_size><CR>

Parameters mode_num The number of the mode whose image is to be retrieved from the
Command Processor.

image_type The image type of the image to be retrieved. Please, see APPENDIX
C for complete listing of available image types.

x_size The horizontal size of the image to be retrieved. Units: number of
pixels.

y_size The vertical size of the image to be retrieved. Units: number of
pixels.

image_ptr A pointer to a memory block which will receive the image.
The block must be at least of size (2 * x_size * y_size) bytes.

Remarks The function allows the user to retrieve an image via the Ethernet connection. If
the Command Processor is actively acquiring images, no action will be taken and it
will return VIP_STATE_ERR for this function.

12 of 54

14. F
unction

vip_get_lih()

Protocol This function is not supported.

int vip_get_lih (int mode_num, BOOL *lih_active);

Serial Syntax Serial communication for this function is not supported.

@GLH<mode_num><CR>

Parameters mode_num The number of the mode whose last image hold (lih) option is to be
retrieved from the Command Processor.

lih If TRUE, lih filtering will be applied when fluoroscopy acquisition is
stopped. If FALSE, lih filtering will not be applied. The default
value of option is FALSE. It is ignored for accumulation or
radiography type acquisition.

Remarks This function allows the user to retrieve the last image hold status. Note that lih
filtering is only valid in fluoroscopic-type modes.

15. F
unction

vip_get_mode_acq_type()

Protocol int
vip_get_mode_acq_type

(int mode_num, int *mode_acq_type,
int *num_frames);

Serial Syntax @GMA<mode_num><CR>

Parameters mode_num The number of the mode whose mode acquisition type is to be
retrieved from the Command Processor.

mode_acq_type The mode acquisition type as described in APPENDIX E.

num_frames The number of frames used to terminate an acquisition process
in mode acquisition types VIP_VALID_XRAYS_N_FRAMES
and VIP_AUTO_SENSE_N_FRAMES as described in
APPENDIX E. This parameter is not used for other mode
acquisition types and might contain invalid data.

Remarks This function allows the user to retrieve the mode acquisition type of a mode.

13 of 54

16. F
unction

vip_get_mode_details()

Protocol int vip_get_mode_details (int mode_num, int *acq_type, double *frame_rate,
double *analog_gain, int *lines_per_frame,
int *columns_per_frame, int *lines_per_pixel,
int *columns_per_pixel, char *mode_description);

Serial Syntax @GMD<mode_num><CR>

Parameters mode_num The number of the mode for which mode details will be retrieved
from the Command Processor.

acq_type The acquisition type defined as
VIP_ACQ_TYPE_CONTINUOUS or
VIP_ACQ_TYPE_ACCUMULATION, which is described in
APPENDIX E.

frame_rate The frame rate at the receptor or the number of times the receptor
is read out per second. Units: Hz. A zero value indicates that the
Command Processor cannot return the proper frame rate value.

analog_gain The frond-end gain value applied to the signals before digital-to-
analog conversion. A zero value indicates that the Command
Processor cannot return the proper analog gain value.

lines_per_frame The number of lines per frame of an image or the vertical
resolution. This value may be less than the maximum resolution
of the receptor if this mode uses pixel binning.

columns_per_frame The number of columns per frame of an image data or the
horizontal resolution. This value may be less than the maximum
resolution of the receptor if this mode uses pixel binning.

lines_per_pixel The number of lines per pixel of an image or the number of
receptor pixels, which are binned in the vertical direction to make
one image pixel. A zero value indicates that the system cannot
return the proper value.

columns_per_pixel The number of columns per pixel of an image or the number of
receptor pixels, which are binned in the horizontal direction to
make one image pixel. A zero value indicates that the system
cannot return the proper value.

mode_description A text string, which describes the mode. The calling program
must allocate a string, which can hold up to 32 characters,
including the termination character.

dcds_enable True if DCDS is enabled, false is DCDS is disabled.

Remarks This function allows the user to retrieve detailed setting information of a mode.

14 of 54

17. F
unction

vip_get_num_acq_frames()

Protocol int vip_get_num_acq_frames (int mode_num, int *num_acq_frames);

Serial Syntax @GAF<mode_num><CR>

Parameters mode_num The number of the mode whose number of acquired frames is
to be retrieved from the Command Processor.

num_acq_frames -1: Start/stop using radiation auto-sense;
0: Start/stop using hardware or software handshaking;
n > 0: Start using hardware or software handshaking, stop

after n frames have been accumulated.

Remarks This function allows the user to retrieve the number of acquired frames that defines
how the accumulation-type mode functions.

Note for Command Processor software of revision H or later, a similar but easy to
use command, vip_get_mode_acq_type() should be called in this function’s place.

18. F
unction

vip_get_num_cal_frames()

Protocol int vip_get_num_cal_frames (int mode_num, int *num_cal_frames);

Serial Syntax @GCF<mode_num><CR>

Parameters mode_num The number of the mode whose number of calibrating frames is
to be retrieved from the Command Processor.

num_cal_frames The number of calibrating frames. The calibration acquisition
should end after this number of frames have been acquired;
values should be a power of 2, between 2 and 1,024. Non-
conforming values will be rounded down to the nearest power
of 2. For example, the number of calibrating frames of 30 is
greater than 16 or 24 but less than 32 or 25. Thus, it will be
rounded down to 16.

Remarks This function allows the user to retrieve the number of frames used for calibrating
a mode from the Command Processor.

15 of 54

19. F
unction

vip_get_rad_scaling()

Protocol int vip_get_rad_scaling (int mode_num, int *scaling_type, int *target_value);

Serial Syntax @GRS<mode_num><CR>

Parameters mode_num The number of the mode whose scaling information is to be
retrieved from the Command Processor.

scaling_type The scaling type of the mode. Possible values for this parameter are
VIP_RAD_SCALE_NONE, VIP_RAD_SCALE_UP,
VIP_RAD_SCALE_DOWN and VIP_RAD_SCALE_BOTH as
described in APPENDIX E.

target_value The target value where scaling occurs.

Remarks This function allows the user to retrieve the scaling information that defines how
an accumulation-type mode image is scaled by the Command Processor.

20. F
unction

vip_get_recursive_filter()

Protocol int vip_get_recursive_filter (int mode_num, double *buffer_weight);

Serial Syntax @GRF<mode_num><CR>

Parameters mode_num The number of the mode whose recursive filtering information is
to be retrieved from the Command Processor.

buffer_weight The fractional contribution to each output frame by the data
already in the recursive filter buffer. A value of 0.0 means no
recursive filtering is applied. This value is ignored for
radiography modes.

Remarks This function allows the user to retrieves the recursive filter setting for a mode
form the Command Processor.

21. F
unction

vip_get_self_test_log()

Protocol This function is not currently implemented and reserved for future revision.

int vip_get_self_test_log (void)

Serial Syntax This function is not currently implemented and reserved for future revision.

@GST<CR>

Parameters To be determined.

Remarks This function allows the user to retrieve the self-test results generated when
vip_self_test() is called.

16 of 54

22. F
unction

vip_get_system_info()

Protocol int vip_get_system_info (int *num_modes, int *default_mode_num,
int *max_lines_per_frame,
int *max_columns_per_frame, int *max_pixel_value,
BOOL *has_video, char *system_description,
int *startup_configuration = NULL,
int *num_asics = NULL);

Serial Syntax @GSI<CR>

Parameters num_modes The number of modes available in the Command
Processor.

default_mode_num The number of the default mode. It is normally set to
zero.

max_lines_per_frame The number of lines per frame of an image or the
vertical resolution of the full panel.

max_columns_per_frame The number of columns per frame of an image or the
horizontal resolution of the full panel.

max_pixel_value The maximum value of a pixel in the Command
Processor. For a Command Processor with 12-bit A/D
conversion, this value will be 4095. Note that the
minimum pixel value is always zero.

has_video If TRUE, the system is equipped with a video monitor.
If FALSE, the system is not equipped with a video
monitor.

system_description A text string, which describes the system. The calling
program must allocate a string, which can hold up to
32 characters, including the termination character.

startup_configuration The configuration that determines which activity the
Command Processor will do at startup time. Possible
values for this parameter are
VIP_DISPL_TST_PTTRN_STRTUP,
VIP_STANDALONE_STRTUP and
VIP_ACTIVE_ACQ_STRTUP as described in
APPENDIX D.

num_asics The number of ASICs in the system.

receptor_type The type of receptor, either normal (1) or DCDS (2).

Remarks This function allows the user to retrieve the system information from the
Command Processor.

17 of 54

23. F
unction

vip_get_system_version_numbers()

Protocol int vip_get_system_version_numbers (int sys_ver_type, char *ver_str);

Serial Syntax @GSV<sys_ver_type><CR>

Parameters sys_ver_type A system version number type as described in APPENDIX D.

ver_str A text string, which contains the returned system version number.
The calling program must allocate a string, which can hold up to
32 characters, including the termination character.

Remarks This function allows the user to retrieve a version number string of a system
component. The calling program must allocate a string, which can hold up to 32
characters, including the termination character for the version number.

24. F
unction

vip_get_wl()

Protocol This function is not currently implemented and reserved for future revision.

int vip_get_wl (int *bot, int *top, int *mapping);

Serial Syntax This function is not currently implemented and reserved for future revision.

@GWL<CR>

bot The pixel value below which a pixel is mapped to the lower of the low-
contrast region of the mapping curve. For mapping type
VIP_WL_MAPPING_LINEAR, this pixel value is set to zero.

top The pixel value above which a pixel is mapped to the upper, low-
contrast region of the mapping curve. For mapping type
VIP_WL_MAPPING_LINEAR, this pixel value is set to the maximum
grayscale value.

mapping The mapping type, which determines how 16-bit pixel data is to be
translated into 8-bit pixel data for display. Possible values for this
parameter are VIP_WL_MAPPING_LINEAR,
VIP_WL_MAPPING_NORM_ATAN and
VIP_WL_MAPPING_CUSTOM as described in APPENDIX D.

Remarks This function allows the user to retrieve the current window/level translation
settings from the Command Processor. Generally, window-level mapping is used
to increase the contrast for certain anatomy or regions of interest.

Note that this function is only valid when an optional card to provide 8-bit video
display is installed.

18 of 54

25. F
unction

vip_offset_cal()

Protocol int vip_offset_cal (int mode_num);

Serial Syntax @OFC<mode_num><CR>

Parameters mode_num The number of the mode whose offset calibration is to be
performed.

Remarks This function allows the user to initiate an offset calibration on the Command
Processor. It is not normally necessary for the user to call this function, unless
automatic offset calibration is disabled. Please, see the function
vip_enable_auto_cal().

26. F
unction

vip_open_link()

Protocol int vip_open_link (int new_link = VIP_ETHERNET_LINK,
const char *client_ip_address = NULL,
const char *server_ip_address = NULL,
int com_port = VIP_COM1);

Serial Syntax @OPL<CR>

Parameters new_link The link type to be established. Possible values for this
parameter are VIP_ETHERNET_LINK and
VIP_SERIAL_LINK as described in APPENDIX F.

client_ip_address The Internet Protocol address of the host computer such as
“132.190.17.179”.

server_ip_address The Internet Protocol address of the Command Processor
such as “132.190.17.169”.

com_port Serial com-port to be established. Possible values for this
parameter are VIP_COM1, VIP_COM2, VIP_COM3 and
VIP_COM4 as described in APPENDIX F.

Remarks This function allows the user to establish a communication link between the host
computer and the Command Processor. This function must be called upon system
startup, restart, or if the function vip_close_link() has been called.

Note when new_link is equal to VIP_ETHERNET_LINK, the serial parameter,
com_port is ignored. Likewise, when new_link is equal to VIP_SERIAL_LINK,
the parameters client_ip_address and server_ip_address are ignored.

19 of 54

27. F
unction

vip_put_config_data()

Protocol int vip_put_config_data (char *full_file_path, char *target_file_name);

Serial Syntax Serial communication for this function is not supported.

@PCD<CR>

Parameters full_file_path A null-terminated string which is the fully qualified path
name of the file that contains the information to be stored on
the Command Processor. Up to 256 characters is allowed,
including the termination character.

target_file_name A null-terminated string, which is the file name to be used to
store the data on the Command Processor. Up to 32
characters is allowed, including the termination character.
Currently, only the configuration data file named
“ConfigDataFile” is available for this function. Please, see
APPENDIX B for complete listing of available file names.

Remarks Use of this function is currently reserved. Its purpose is to permit dynamic
updating of configuration information for manufacturing and test purposes.

28. F
unction

vip_put_image()

Protocol int vip_put_image (int mode_num, int image_type, int x_size, int y_size,
WORD *image_ptr);

Serial Syntax Serial communication for this function is not supported.

@PMG<CR>

Parameters mode_num The number of the mode to which an image is to be
transmitted.

image_type The image type of the image to be transmitted. Please, see
APPENDIX C for complete listing of available image types.

x_size The horizontal size of the image to be transmitted. Units:
number of pixels.

y_size The vertical size of the image to be transmitted. Units: number
of pixels.

image_ptr A pointer to a memory block which holds the image.
The block must be at least of size (2 * x_size * y_size) bytes.

Remarks This function allows the user to transmit an image from the host computer to the
Command Processor via the Ethernet link. If the Command Processor is actively
acquiring an image, no action will be taken and the error code VIP_STATE_ERR
will be returned.

20 of 54

29. F
unction

vip_query_error()

Protocol This function is not currently implemented and reserved for future revision.

int
vip_query_error

(int *error_mask);

Serial Syntax This function is not currently implemented and reserved for future revision.

@QER<CR>

Parameters error_mask The error mask that contains error codes described in APPENDIX G.

Remarks This function allows the user to retrieve the error information on the Command
Processor.

30. F
unction

vip_query_progress()

Protocol int
vip_query_progress

(int *num_frames, BOOL *complete,
int *num_pulses = NULL,
BOOL *ready_for_pulse = NULL);

Serial Syntax @QPR<CR>

Parameters num_frames The number of frames acquired. If self-test is the current or
most recently executed process, this value is set to zero.

complete If TRUE, the acquisition or calibration process is complete. If
FALSE, the process is in progress.

num_pulses The number of “pulses” or X-rays on/off sequences that are
detected during the acquisition or calibration.

ready_for_pulse If TRUE, the Command Processor is ready for the next X-rays
“ON” command. If FALSE, the Command Processor is ready
for the next X-rays “OFF” command.

Remarks This function allows the user to query the Command Processor about its progress
in the course of an image acquisition or calibration. For non-accumulation type
modes, num_pulses will be equal to num_frames and ready_for_pulse is not used.

21 of 54

31. F
unction

vip_reset_state()

Protocol int vip_reset_state (void);

Serial Syntax @RSS<CR>

Parameters None.

Remarks This function allows the user to abort any in-process acquisition or calibration.
The Command Processor will return to the default mode.

32. F
unction

vip_select_mode()

Protocol int vip_select_mode (int mode_num);

Serial Syntax @SLM< mode_num ><CR>

Parameters mode_num The number of the mode to which the Command Processor will
switch.

Remarks This function allows the user to select a mode of operation corresponding to the
given mode number. If the Command Processor is in an idle state, acquisition does
not actually begin until the prepare flag is set to TRUE either via hardware or
software. This function can be used to jump directly from one active acquisition
mode to another active acquisition mode with minimal delay. If the Command
Processor is in a calibration mode, no action will be taken and the error code
VIP_STATE_ERR will be returned.

33. F
unction

vip_self_test()

Protocol This function is not currently implemented and reserved for future revision.

int vip_self_test (void);

Serial Syntax This function is not currently implemented and reserved for future revision.

@STT<CR>

Parameters None.

Remarks This function allows the user to initiate a self-test on the Command Processor. The
function vip_query_progress() can be used to poll the Command Processor to
determine when the self test is complete. In this case, the parameter num_frames
of the query function has no meaning. The function vip_get_self_test_log() can be
used to retrieve the results of the self test process, once it is complete. If the
Command Processor is actively acquiring, no action will be taken and the error
code VIP_STATE_ERR will be returned.

22 of 54

34. F
unction

vip_set_analog_offset_data()

Protocol int vip_set_analog_offset_data (int mode_num, int target_value,
int tolerance, int median_percent,
double fractional_iteration_delta,
int number_iterations);

Serial Syntax @SAO<mode_num><target_value><tolerance><median_percent>
<fractional_iteration_delta><number_iterations><CR>

Parameters mode_num The number of the mode whose analog offset data is
to be set at the Command Processor.

target_value The target value where analog offset calibration
occurs.

tolerance The tolerance value around the target_value that
makes the acceptable range of values for the analog
offset calibration.

median_percent The percentage of offset values accepted which are
below the target value.

fractional_iteration_delta The scaling factor applied in determining the offset
adjustment between iterations. It influences the speed
of convergence.

number_iterations The number of iterations that will be attempted to
bring the offsets within range.

Remarks This function allows the user to set the parameters that define how the analog
offset calibration is performed.

23 of 54

35. F
unction

vip_set_correction()

Protocol int vip_set_correction (BOOL offset_cal, BOOL gain_cal, BOOL defect_map,
BOOL line_noise);

Serial Syntax @SCR<offset_cal><gain_cal><defect_map><line_noise><CR>

Parameters offset_cal If TRUE, the Command Processor will use offset-calibrated data
during the correction process. If FALSE, it will not apply the data on
the correction process.

If offset_cal is FALSE, then gain_cal is also assumed to be FALSE.

gain_cal If TRUE, the Command Processor will use gain-calibrated data
during the correction process. If FALSE, it will not apply the data on
the correction process.

defect_map If TRUE, the Command Processor will use defect-map data during
the correction process. If FALSE, it will not apply the data on the
correction process and defective pixels will be visible.

line_noise If TRUE, the Command Processor will use digital line noise
reduction during the correction process. If FALSE, it will not use
this method.

Remarks This function allows the user to enable and/or disable the offset calibration
correction, gain calibration correction, defective pixel correction and digital line
noise correction. These parameters are global for all modes. If the Command
Processor is actively acquiring, no action will be taken and the error code
VIP_STATE_ERR will be returned.

36. F
unction

vip_set_debug()

Protocol int vip_set_debug (BOOL enable);

Serial Syntax @SDB<enable><CR>

Parameters enable If TRUE, the Command Processor will display debug information on a
Hyper Terminal window. If FALSE, no debug information will be
displayed.

Remarks This function allows the user to enable or disable the display of debug information
from the Command Processor on a Hyper Terminal window.

24 of 54

37. F
unction

vip_set_frame_rate()

Protocol int vip_set_frame_rate (int mode_num, double frame_rate);

Serial Syntax @SFR<mode_num><frame_rate * 1000 ><CR>

Parameters mode_num The number of the mode whose frame rate is to be set.

frame_rate The frame rate in frames per second (fps). For modes with image
size 768 x 960, valid frame rates are 7.5, 15.0 and 30.0 fps. And for
modes with image size 1536 x 1920, valid frame rates are 1.0, 2.0,
3.0, 3.75, 5.0 and 7.5 fps.

Remarks This function allows the user to set the frame rate of a mode.

Please, see the function vip_get_mode_details() for how to retrieve the image size
and frame rate of a mode.

Note the serial syntax specifies that the frame rate is multiply by 1000. This is to
reserved if the accuracy of up to three decimal digits.

38. F
unction

vip_set_lih()

Protocol int vip_set_lih (int mode_num, BOOL lih_active);

Serial Syntax @SLH<mode_num><lih_active><CR>

Parameters mode_num The number of the mode whose last image hold (lih) option is to be
set.

lih_active If TRUE, lih filtering will be applied when fluoroscopy acquisition is
stopped. If FALSE, lih filtering will not be applied. The default
value of option is FALSE. It is ignored for accumulation
radiography type acquisition.

Remarks This function allows the user to enable and disable the lih option. The lih option is
only valid for fluoroscopy acquisition type defined as
VIP_ACQ_TYPE_CONTINUOUS in APPENDIX E. It is ignored for radiography
type. If the Command Processor is actively acquiring an image, no action will be
taken and the error code VIP_STATE_ERR will be returned.

25 of 54

39. F
unction

vip_set_mode_acq_type()

Protocol int vip_set_mode_acq_type (int mode_num, int acq_type, int num_frames);

Serial Syntax @SMA<mode_num><acq_type><num_frames><CR>

Parameters mode_num The number of the mode whose mode acquisition type is to be set.

acq_type The mode acquisition type as described in APPENDIX E.

num_frames The number of frames used to terminate an acquisition process in
mode acquisition types VIP_VALID_XRAYS_N_FRAMES and
VIP_AUTO_SENSE_N_FRAMES as described in APPENDIX E.
This parameter is not used for other mode acquisition types and
ignored by the Command Processor. It should be in the range
between 0 to 255.

Remarks This function allows the user to set the mode acquisition type of a mode.

40. F
unction

vip_set_num_acq_frames()

Protocol int vip_set_num_acq_frames (int mode_num, int num_acq_frames);

Serial Syntax @SAF<mode_num><num_acq_frames><CR>

Parameters mode_num The number of the mode whose number of acquired frames is
to be set on the Command Processor.

num_acq_frames -1: Start/stop using radiation auto-sense;
0: Start/stop using hardware or software handshaking;
n > 0: Start using hardware or software handshaking, stop

after n frames have been accumulated. n should
be less than or equal to 255.

Remarks This function allows the user to set the number of acquired frames that defines how
the accumulation-type mode functions. The parameter num_acq_frames is only
valid for radiography acquisition type or VIP_ACQ_TYPE_ACCUMULATION
defined in APPENDIX E. It is ignored otherwise. If the Command Processor is
actively acquiring an image, no action will be taken, and the error code
VIP_STATE_ERR will be returned.

Note for Command Processor software of revision H or later, a similar but easy to
use command, vip_set_mode_acq_type() should be called in this function’s place.

26 of 54

41. F
unction

vip_set_num_cal_frames()

Protocol int vip_set_num_cal_frames (int mode_num, int num_cal_frames);

Serial Syntax @SCF<mode_num><num_cal_frames><CR>

Parameters mode_num The number of the mode whose number of calibrating frames is
to be set on the Command Processor.

num_cal_frames The number of calibrating frames. The calibration acquisition
should end after this number of frames have been acquired;
values should be a power of 2, between 2 and 1,024. Non-
conforming values will be rounded down to the nearest power
of 2. For example, the number of calibrating frames of 30 is
greater than 16 or 24 but less than 32 or 25. Thus, it will be
rounded down to 16.

Remarks This function allows the user to set the number of frames used for calibrating a
mode from the Command Processor. For low dose rate and high frame rate
techniques such as fluoroscopy, settings from 128 to 512 should be adequate. For
higher dose rate and lower frame rate techniques such as radiography, fewer
frames might be acceptable, e.g. 32.

42. F
unction

vip_set_rad_scaling()

Protocol int vip_set_rad_scaling (int mode_num, int scaling_type, int target_value);

Serial Syntax @SRS<mode_num><scaling_type><target_value><CR>

Parameters mode_num The number of the mode whose scaling information is to be set on
the Command Processor.

scaling_type The scaling type of the mode. Possible values for this parameter are
VIP_RAD_SCALE_NONE, VIP_RAD_SCALE_UP,
VIP_RAD_SCALE_DOWN and VIP_RAD_SCALE_BOTH as
described in APPENDIX E.

target_value The target value where scaling occurs.

Remarks This function allows the user to set the scaling information that defines how an
accumulation-type mode is scaled on the Command Processor.

27 of 54

43. F
unction

vip_set_recursive_filter()

Protocol int vip_set_recursive_filter (int mode_num, double buffer_weight);

Serial Syntax @SRF<mode_num><buffer_weight><CR>

Parameters mode_num The number of the mode whose recursive filter attribute is to be
set on the Command Processor.

buffer_weight The fractional contribution to each output frame by the data
already in the recursive filter buffer. A value of 0.0 means no
recursive filtering is applied and ignored for radiography modes.

Remarks This function allows the user to set the buffer weight of the recursive filter. This
value is only valid for the acquisition type VIP_ACQ_TYPE_CONTINUOUS and
ignored for other acquisition types. If the Command Processor is actively
acquiring an image, no action will be taken and the error code VIP_STATE_ERR
will be returned.

44. F
unction

vip_set_wl()

Protocol This function is not currently implemented and reserved for future revision.

int vip_set_wl (int bot, int top, int mapping);

Serial Syntax This function is not currently implemented and reserved for future revision.

@SWL<bot><top><mapping><CR>

Parameters bot The pixel value below which a pixel is mapped to the lower of the low-
contrast region of the mapping curve. For mapping type
VIP_WL_MAPPING_LINEAR, this pixel value is set to zero.

top The pixel value above which a pixel is mapped to the upper, low-
contrast region of the mapping curve. For mapping type
VIP_WL_MAPPING_LINEAR, this pixel value is set to the maximum
grayscale value.

mapping The mapping type, which determines how 16-bit pixel data is to be
translated into 8-bit pixel data for display. Possible values for this
parameter are VIP_WL_MAPPING_LINEAR,
VIP_WL_MAPPING_NORM_ATAN and
VIP_WL_MAPPING_CUSTOM as described in APPENDIX D.

Remarks This function allows the user to set the current window/level translation settings on
the Command Processor. Generally, window-level mapping is used to increase the
contrast for certain anatomy or regions of interest.

Note that this function is only valid when an optional card to provide 8-bit video
display is installed.

28 of 54

45. F
unction

vip_sw_handshaking()

Protocol int vip_sw_handshaking (int signal_type, BOOL active);

Serial Syntax @SHS<signal_type><active><CR>

Parameters signal_type A simulated signal type as defined in APPENDIX D.

active If TRUE, the signal is to be enabled. If FALSE, it is to be disabled.

Remarks This function allows the user to simulate a signal in software.

29 of 54

III. Examples

The purpose of this section is to provide a set of examples that can be used to write a software interface for
the VIP-9 system. These examples may need to be expanded to fit more specific user requirements.

To use the communications interface, the file vip_comm.h from the comm_dll folder must be included.
The vip_comm.lib must be linked with the application and the vip_comm.dll file must be in the search path.
The examples were developed as a console application using Microsoft Visual C++ 6.0 so there are a few
specifics included to compile within that framework (i.e. #include <windows.h> and the function SleepEx).

For system connection, each example is self-contained; i.e. each example establishes a connection with the
system and then closes that connection using vip_open_link and vip_close_link. This is not the expectation for
a typical system. The connection should be established once for numerous operations. The IP addresses will
need to be updated accordingly for the vip_open_link function.

The examples also assume that mode 0 is a fluoroscopy type mode and that mode 1 is a radiography type
mode.

The following is the menu part of the application.
#include <windows.h>

#include "vip_comm.h"

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <fstream.h>

#define NUM_MENU_ENTRIES 11

void FluoroAcq(void);

void RadAutoDetectAcq(void);

void RadAutoDetectNFramesAcq(void);

void FluoroGainCal(void);

void RadGainCal(void);

void OffsetCalibration(void);

void GetImage(void);

void PutImage(void);

void GetModeDetails(void);

void GetSystemInfo(void);

void main(void)

{

int choice = 0;

30 of 54

// display warnings

cout << "\n\nPlease note, this software assumes mode 0 is fluoro\n" << flush;

cout << "And mode 1 is rad\n" << flush;

while (choice != NUM_MENU_ENTRIES)

{

// display menu

cout << "\n\n\nPlease select from the following menu\n\n" << flush;

printf("\t1. Fluoro Acquisition with software sync signals\n");

printf("\t2. Rad Acquisition with auto-sense\n");

printf("\t3. Rad Acquisition with auto-sense and N-frames\n");

printf("\t4. Fluoro Gain Calibration\n");

printf("\t5. Rad Gain Calibration\n");

printf("\t6. Offset Calibration\n");

printf("\t7. Retrieve Current Image\n");

printf("\t8. Output Test Image\n");

printf("\t9. Get Mode Details\n");

printf("\t10. Get System Info\n");

printf("\t%d. Exit\n\n\n", NUM_MENU_ENTRIES);

cout << flush;

cin >> choice;

if (choice == 1)

FluoroAcq();

else if (choice == 2)

RadAutoDetectAcq();

else if (choice == 3)

RadAutoDetectNFramesAcq();

else if (choice == 4)

FluoroGainCal();

else if (choice == 5)

RadGainCal();

else if (choice == 6)

OffsetCalibration();

else if (choice == 7)

GetImage();

31 of 54

else if (choice == 8)

PutImage();

else if (choice == 9)

GetModeDetails();

else if (choice == 10)

GetSystemInfo();

}

}

Acquisition

Acquisition can be performed several ways by combining software or hardware sync signals, auto-detect x-
rays and/or collecting a predefined number of frames. This section will present a few examples

Fluoroscopy

Using Software Sync Signals

void FluoroAcq(void)

{

int ret_val;

// fluoroModeNum is the integer value for the mode number for a fluoro mode

int fluoroModeNum = 0;

// this call is needed to make a connection with the system

ret_val = vip_open_link(VIP_ETHERNET_LINK, "111.111.11.111", "111.111.11.111");

// select the appropriate mode

ret_val = vip_select_mode(fluoroModeNum);

// send prepare = true

ret_val = vip_sw_handshaking(VIP_SW_PREPARE, 1);

// send xrays = true

ret_val = vip_sw_handshaking(VIP_SW_VALID_XRAYS, 1);

int complete, numPulses, readyForPulse;

int numFrames = 0;

32 of 54

// this loop is an example of one way to terminate the acquisition

while (numFrames < 100)

{

ret_val = vip_query_progress(&numFrames, &complete, &numPulses, &readyForPulse);

// The ethernet can only be polled about once every second.

// The following function is an example of a delay that might be used.

SleepEx(1000, FALSE);

}

// send xrays = false

ret_val = vip_sw_handshaking(VIP_SW_VALID_XRAYS, 0);

// send prepare = false

ret_val = vip_sw_handshaking(VIP_SW_PREPARE, 0);

// end connection with the system

ret_val = vip_close_link();

}

Radiography

Using Software Sync Signals

See Fluoroscopy.

Automatically Detect X-Rays On/Off

void RadAutoDetectAcq(void)

{

int ret_val = 0;

// radModeNum is the integer value for the mode number for a fluoro mode

int radModeNum = 1;

// this call is needed to make a connection with the system

ret_val = vip_open_link(VIP_ETHERNET_LINK, "111.111.11.111", "111.111.11.111");

// setup acquisition to be auto-sense for x-rays on and off

ret_val = vip_set_mode_acq_type(radModeNum, VIP_AUTO_SENSE_ALL_FRAMES, 0);

// select the appropriate mode

33 of 54

ret_val = vip_select_mode(radModeNum);

// send prepare = true

ret_val = vip_sw_handshaking(VIP_SW_PREPARE, 1);

int complete, numPulses, numFrames;

int readyForPulse = 0;

// this is one way to check when the system is ready for x-rays

while (!readyForPulse)

{

ret_val = vip_query_progress(&numFrames, &complete, &numPulses, &readyForPulse);

// The ethernet can only be polled about once every second.

// The following function is an example of a delay that might be used.

SleepEx(1000, FALSE);

}

// now the system is ready for x-rays, the following is a simple way of indicating this

printf("\n\nREADY FOR X-RAYS\n\n");

SleepEx(5000, FALSE);

// at this time turn x-rays on/off accordingly

// send prepare = false to end the acquisition

ret_val = vip_sw_handshaking(VIP_SW_PREPARE, 0);

// end connection with the system

ret_val = vip_close_link();

}

Automatically Detect X-Rays; Stop when N Frames Collected

void RadAutoDetectNFramesAcq(void)

{

int ret_val = 0;

// radModeNum is the integer value for the mode number for a fluoro mode

int radModeNum = 1;

34 of 54

// this call is needed to make a connection with the system

ret_val = vip_open_link(VIP_ETHERNET_LINK, "111.111.11.111", "111.111.11.111");

// setup acquisition to be auto-sense for x-rays on,

// but stop collecting frames when 1 frame is collected

ret_val = vip_set_mode_acq_type(radModeNum, VIP_AUTO_SENSE_N_FRAMES, 1);

// select the appropriate mode

ret_val = vip_select_mode(radModeNum);

// send prepare = true

ret_val = vip_sw_handshaking(VIP_SW_PREPARE, 1);

int complete, numPulses, numFrames = 0;

int readyForPulse = 0;

// this is one way to check when the system is ready for x-rays

while (!readyForPulse)

{

ret_val = vip_query_progress(&numFrames, &complete, &numPulses, &readyForPulse);

// The ethernet can only be polled about once every second.

// The following function is an example of a delay that might be used.

SleepEx(1000, FALSE);

}

// now the system is ready for x-rays, the following is a simple way of indicating this

printf("\n\nREADY FOR X-RAYS\n\n");

SleepEx(100, FALSE);

// at this time turn x-rays on accordingly

while (!complete)

{

ret_val = vip_query_progress(&numFrames, &complete, &numPulses, &readyForPulse);

// The ethernet can only be polled about once every second.

// The following function is an example of a delay that might be used.

SleepEx(500, FALSE);

35 of 54

}

// send prepare = false to end the acquisition

ret_val = vip_sw_handshaking(VIP_SW_PREPARE, 0);

// end connection with the system

ret_val = vip_close_link();

}

Gain Calibration

This section will describe how to send the basic commands to perform a gain calibration. Gain calibration
for fluoroscopy requires a continuous beam during frame collection for gain. For radiography, the beam during
frame collection for gain is pulsed.

Fluoroscopy

void FluoroGainCal(void)

{

int ret_val;

// fluoroModeNum is the integer value for the mode number for a fluoro mode

int fluoroModeNum = 0;

// this call is needed to make a connection with the system

ret_val = vip_open_link(VIP_ETHERNET_LINK, "111.111.11.111", "111.111.11.111");

// this command will ensure that any previous action is halted and the system is in an idle state

ret_val = vip_reset_state();

// set the number of frames to acquire during the acquisition

ret_val = vip_set_num_cal_frames(fluoroModeNum, 64);

// tell the system to prepare for a gain calibration

ret_val = vip_gain_cal_prepare(fluoroModeNum);

// send prepare = true

ret_val = vip_sw_handshaking(VIP_SW_PREPARE, 1);

// send xrays = true

36 of 54

ret_val = vip_sw_handshaking(VIP_SW_VALID_XRAYS, 1);

int numPulses , readyForPulse , complete = 0;

int numFrames = 0;

// accumulates the gain frames

while (numFrames < 64)

{

ret_val = vip_query_progress(&numFrames, &complete, &numPulses, &readyForPulse);

// The ethernet can only be polled about once every second.

// The following function is an example of a delay that might be used.

SleepEx(1000, FALSE);

}

// tells the user to turn off x-rays to accumulate the offset frames

// the system will automatically collect these frames

printf("Xrays OFF NOW!\n");

// send xrays = false

ret_val = vip_sw_handshaking(VIP_SW_VALID_XRAYS, 0);

// wait for the calibration to complete

while (!complete)

{

ret_val = vip_query_progress(&numFrames, &complete, &numPulses, &readyForPulse);

// The ethernet can only be polled about once every second.

// The following function is an example of a delay that might be used.

SleepEx(1000, FALSE);

}

// end connection with the system

ret_val = vip_close_link();

}

37 of 54

Radiography

void RadGainCal(void)

{

int ret_val = 0;

// radModeNum is the integer value for the mode number for a fluoro mode

int radModeNum = 1;

// this call is needed to make a connection with the system

ret_val = vip_open_link(VIP_ETHERNET_LINK, "111.111.11.111", "111.111.11.111");

int complete = 0;

int numFrames = 0;

int pulseCnt = 0;

int readyForPulse = 0;

// this command will ensure that any previous action is halted and the system is in an idle state

ret_val = vip_reset_state();

// set the number of frames to acquire during the acquisition

ret_val = vip_set_num_cal_frames(radModeNum, 4);

// tell the system to prepare for a gain calibration using auto detection of x-rays

ret_val = vip_gain_cal_prepare(radModeNum, true);

// send prepare = true

ret_val = vip_sw_handshaking(VIP_SW_PREPARE, 1);

// will acquire the offset frames first, NO X-RAYS

while (numFrames < 4)

{

ret_val = vip_query_progress(&numFrames, &complete, &pulseCnt, &readyForPulse);

// The ethernet can only be polled about once every second.

// The following function is an example of a delay that might be used.

SleepEx(1000, FALSE);

}

38 of 54

// assume the user will collect 3 pulses

while (pulseCnt < 3)

{

// reset the counter

numFrames = 0;

while (!readyForPulse)

{

ret_val = vip_query_progress(&numFrames, &complete, &pulseCnt, &readyForPulse);

// The ethernet can only be polled about once every second.

// The following function is an example of a delay that might be used.

SleepEx(1000, FALSE);

}

// let user know the system is ready for x-rays

printf("\n\nREADY FOR XRAYS\n\n");

// turn x-rays on/off accordingly

ret_val = vip_query_progress(&numFrames, &complete, &pulseCnt, &readyForPulse);

// The ethernet can only be polled about once every second.

// The following function is an example of a delay that might be used.

SleepEx(1000, FALSE);

}

// send prepare = false

ret_val = vip_sw_handshaking(VIP_SW_PREPARE, 0);

// wait for the calibration to complete

while (!complete)

{

ret_val = vip_query_progress(&numFrames, &complete, &pulseCnt, &readyForPulse);

// The ethernet can only be polled about once every second.

// The following function is an example of a delay that might be used.

SleepEx(1000, FALSE);

39 of 54

}

// end connection with the system

ret_val = vip_close_link();

}

40 of 54

Offset Calibration

This section will describe how to perform offset calibrations. The offset calibration procedure is the same
for fluoroscopy and radiography. The offset calibration procedure is automatic, i.e. no sync signals are needed.

void OffsetCalibration(void)

{

cout << "\n\nPlease note, this software only executes offset calibration\n";

cout << "for Fluoroscopy mode\n\n" << flush;

int ret_val;

// fluoroModeNum is the integer value for the mode number for a fluoro mode

int fluoroModeNum = 0;

// this call is needed to make a connection with the system

ret_val = vip_open_link(VIP_ETHERNET_LINK, "111.111.11.111", "111.111.11.111");

int complete = 0;

int numFrames, pulseCnt, readyForPulse;

// this command will ensure that any previous action is halted and the system is in an idle state

ret_val = vip_reset_state();

// make sure the x-rays are off before performing an offset calibration

printf("\n\nTurn X-rays OFF\n\n");

SleepEx(3000, FALSE);

// fluoroModeNum is the integer value for the mode number for a fluoro mode

// send the command to tell the system to perform an offset calibration

ret_val = vip_offset_cal(fluoroModeNum);

// wait for the calibration to complete

while (!complete)

{

ret_val = vip_query_progress(&numFrames, &complete, &pulseCnt, &readyForPulse);

41 of 54

// The ethernet can only be polled about once every second.

// The following function is an example of a delay that might be used.

SleepEx(1000, FALSE);

}

// end connection with the system

ret_val = vip_close_link();

}

Handling Images

These examples show how to retrieve/put a single type of image for fluoroscopy. To retrieve/put another
type of image (i.e. defect map), simply change the image type in the command vip_get_image and handle file
I/O accordingly. To retrieve a radiography image, change the image size and use the correct mode number.
Please consult APPENDIX C for other image types that can be handled.

Retrieve Image

This example will retrieve the current fluoroscopy image (assuming mode 0 is fluoroscopy). This software
will result in a file that is stored to disk. The file is called “GetImageTest.dat”.

void GetImage(void)

{

cout << "\n\nPlease note, this software only executes an image retrieval\n" << flush;

cout << "for Fluoroscopy mode and only for the current image\n\n" << flush;

int ret_val;

// fluoroModeNum is the integer value for the mode number for a fluoro mode

int fluoroModeNum = 0;

// this call is needed to make a connection with the system

ret_val = vip_open_link(VIP_ETHERNET_LINK, "111.111.11.111", "111.111.11.111");

int x_size = 768; int y_size = 960; int npixels = x_size * y_size;

USHORT *image_ptr = (USHORT *)malloc(npixels * sizeof(USHORT));

ret_val = vip_get_image(fluoroModeNum, VIP_CURRENT_IMAGE, x_size, y_size, image_ptr);

char filename[32] = "GetImageTest.dat";

42 of 54

// file on the host computer for storing the image

FILE *finput = fopen(filename, "wb");

if (finput == NULL)

{

printf("Error opening image file to put file.");

exit(-1);

}

fwrite(image_ptr, sizeof(USHORT), npixels, finput);

fclose(finput);

free(image_ptr);

// end connection with the system

ret_val = vip_close_link();

}

Put Image

This example will cause the test image to be displayed for fluoroscopy mode (assuming mode 0 is
fluoroscopy).

void PutImage(void)

{

cout << "\n\nPlease note, this software only executes outputting\n" << flush;

cout << "the Fluoroscopy test image\n\n" << flush;

int ret_val;

// fluoroModeNum is the integer value for the mode number for a fluoro mode

int fluoroModeNum = 0;

// this call is needed to make a connection with the system

ret_val = vip_open_link(VIP_ETHERNET_LINK, "111.111.11.111", "111.111.11.111");

int x_size = 768; int y_size = 960;

ret_val = vip_put_image(fluoroModeNum, VIP_TEST_IMAGE, x_size, y_size, NULL);

// end connection with the system

ret_val = vip_close_link();

43 of 54

}

44 of 54

Retrieving System Data

The previous examples used hardcoded values for the mode number. The commands discussed in this
section can be used to obtain the system or mode information in actual applications. Please consult the textual
descriptions of the functions for more information about the data that is retrieved.

System Information

This command can be used to retrieve the number of modes and then the vip_get_mode_details command
can be placed in a loop based on the number of modes to retrieve the information for each mode.

void GetSystemInfo()

{

int ret_val;

// this call is needed to make a connection with the system

ret_val = vip_open_link(VIP_ETHERNET_LINK, "111.111.11.111", "111.111.11.111");

int num_modes, default_mode_num;

int max_lines_per_frame, max_columns_per_frame, max_pixel_value;

int startup_configuration, video_used;

int numAsics, receptorType;

char system_description[32];

ret_val = vip_get_system_info(&num_modes,

&default_mode_num,

&max_lines_per_frame,

&max_columns_per_frame,

&max_pixel_value,

&video_used,

system_description,

&startup_configuration,

&numAsics,

&receptorType);

printf("\nsystem data is:\n");

printf("\nNumModes is %d", num_modes);

printf("\nDefaultModeNum is %d", default_mode_num);

printf("\nMaxLinesPerFrame is %d", max_lines_per_frame);

45 of 54

printf("\nMaxColumnsPerFrame is %d", max_columns_per_frame);

printf("\nVideo is %d", video_used);

printf("\nstartupConfiguration is %d", startup_configuration);

printf("\nnum asics is %d", numAsics);

printf("\nreceptor type is %d", receptorType);

printf("\nsystem description is %s\n\n\n", system_description);

// end connection with the system

ret_val = vip_close_link();

}

Mode Details

This example only retrieves the information for mode 0. The vip_get_system_info command can be used
to retrieve the number of modes and then the vip_get_mode_details command can be called for each mode. The
mode_type returned by vip_get_mode_details will describe the type of mode as fluoroscopy (value of 0) or
radiography (value of 1) as described in Appendix E.

void GetModeDetails()

{

int ret_val;

// this call is needed to make a connection with the system

ret_val = vip_open_link(VIP_ETHERNET_LINK, "132.190.17.149", "132.190.17.148");

int mode_type, dcds_enable;

double frame_rate, analog_gain;

int lines_per_frame, columns_per_frame, lines_per_pixel, columns_per_pixel;

char mode_description[32];

ret_val = vip_get_mode_details(0,

&mode_type,

&frame_rate,

&analog_gain,

&lines_per_frame,

&columns_per_frame,

&lines_per_pixel,

&columns_per_pixel,

mode_description,

&dcds_enable);

46 of 54

printf("\n\nmode data is:\n");

printf("\nModeType is %d", mode_type);

printf("\nFrameRate is %f", frame_rate);

printf("\nAnalogGain is %f", analog_gain);

printf("\nHorizontalImageSize is %d", lines_per_frame);

printf("\nVerticalImageSize is %d", columns_per_frame);

printf("\nLinesPerPixel is %d", lines_per_pixel);

printf("\nColumnsPerPixel is %d", columns_per_pixel);

printf("\nmode description is %s", mode_description);

printf("\nDCDS enable is %d\n\n\n", dcds_enable);

// end connection with the system

ret_val = vip_close_link();

}

47 of 54

IV. APPENDIXES

APPENDIX A: Error Codes Returned by the Command Processor

This table describes the meaning of the return values of the functions. All function-return values are of
type int and indicate the success/failure of the function call. A non-zero return value means an error
has occurred. And return value of zero or VIP_NO_ERR implies that the function execution has
successfully been complete.

No. Error Code Name Value Description

1. VIP_NO_ERR 0x0000 The normal return value for most functions.

2. VIP_COMM_ERR 0x0001 Error occurred in the communications library, e.g., a
message could not be sent because of a socket
retry/timeout error.

3. VIP_STATE_ERR 0x0002 A function was called which violated the rules of the
server application’s state machine, e.g., vip_get_image()
was called while image acquisition was active.

4. VIP_DATA_ERR 0x0004 One of the arguments of the function was invalid.

5. VIP_SETUP_ERR 0x0020 An error was encountered involving the setup of a given
mode.

6. VIP_NO_CAL_ERR 0x0040 Attempted to activate a mode for which no valid
calibration data exists.

7. VIP_NO_IMAGE_ERR 0x0080 Used if vip_get_image() is called for an image type
which cannot be retrieved.

8. VIP_NOT_IMPL_ERR 0x4000 Used in development/debug.

9. VIP_OTHER_ERR 0x8000 Some other error value, not otherwise specified.

48 of 54

APPENDIX B: File Name Strings Used in the Command Processor

No. File Name Description

1. AuxDefectImage Auxiliary defect map image file.

2. BaseDefectImage Base defect map image file.

3. ConfigDataFile Configuration data file.

4. GainCalImage Gain calibrated image file.

5. GcFirmwareLocal Global control firmware file. Reserved for future use.

6. OffsetCalImage Offset calibrated image file.

7. RcptFirmware Receptor firmware file. Reserved for future use.

8. SystemDataFile System data file. Reserved for future use.

9. VideoOutFirmware Video-out firmware file. Reserved for future use.

APPENDIX C: Image Types

This table describes the possible types of images, which may be transmitted between the host computer
and the Command Processor via use of the vip_get_image() and vip_put_image() functions. All image
types use 16-bit, unsigned integer pixels.

No. Image Type Name Value Description

1. VIP_CURRENT_IMAGE 0 This image resides in the accumulation/recursion
buffer of the image processing system and can be
summarized in the following formula:

CURRENT_IMAGE = [(raw image data) –
OFFSET_IMAGE] / GAIN_IMAGE;

Actions for vip_put_image(): The image is
placed in output buffer memory and transmitted
continuously out over the 16-bit digital interface.
If the system has video display capability, the
image is also displayed.

2. VIP_OFFSET_IMAGE 1 This image resides in the offset calibration buffer.

Actions for vip_put_image(): The Command
Processor replaces the offset calibration buffer
currently in use. This only affects operation until
the next offset calibration occurs for the given
mode, or until the system is restarted, whichever
comes first.

49 of 54

3. VIP_GAIN_IMAGE 2 This image resides in the gain calibration buffer.
It is not a raw flat field image, but is already
offset-corrected.

Actions for vip_put_image(): The Command
Processor replaces the gain file in permanent
storage, as well as the gain calibration information
currently in use, with the new image.

4. VIP_BASE_DEFECT_IMAGE 3 This image resides in the base defect map buffer,
which is normally set up in manufacturing/final
test. This map is not affected by calibration. A
non-zero pixel value indicates the presence of a
defect.

Actions for vip_put_image(): The Command
Processor replaces the base defect map file in
permanent storage, as well as the base defect map
information currently in use, with the new image.

5. VIP_AUX_DEFECT_IMAGE 4 This image resides in the auxiliary defect map
buffer, which is normally set up in
manufacturing/final test. This map is
automatically re-calculated every time a gain
calibration is performed. A non-zero pixel value
indicates the presence of a defect.

Actions for vip_put_image(): The Command
Processor replaces the auxiliary defect map file in
permanent storage, as well as the auxiliary defect
map information currently in use, with the new
image.

6. VIP_TEST_IMAGE 5 This image is a progressive gray, test pattern
image, generated by the command processor.
This image type is not supported by
vip_get_image(). To obtain the test pattern image,
use vip_put_image() to place it in the current
image buffer and then retrieve the current image
with vip_get_image().

Actions for vip_put_image(): When the function
vip_put_image() is called, a test pattern image is
displayed until the current mode or operation is
changed. The x_size, y_size, and image_ptr
arguments are ignored by vip_put_image().

50 of 54

APPENDIX D: Command Processor System Constants

No. System Type Constants Value Description
Window Leveling Types:

1. VIP_WL_MAPPING_LINEAR 0 Window/level mapping function is linear.

2. VIP_WL_MAPPING_NORM_ATAN 1 Window/level mapping function uses a
normalized curve based on arctangent. In
this case, "normalized" means that the a
section of the arctangent curve around its
inflection point is stretched vertically down
and up so that the bottom of the window is
mapped to a gray level of zero (or max gray
if inverted) and the top of the window is
mapped to the max gray level (or 0 if
inverted).

3. VIP_WL_MAPPING_CUSTOM 2 Window/level mapping function is
customized.

Startup Configuration Types:

4. VIP_DISPL_TST_PTTRN_STRTUP 0 At startup, the Command Processor will
display the test pattern and wait for
commands from the host computer.

5. VIP_STANDALONE_STRTUP 1 At startup, the Command Processor will
attempt to detect X-rays on/off.

6. VIP_ACTIVE_ACQ_STRTUP 2 At startup, the Command Processor will be
in active for image acquisition.

Software Handshaking Types:

7. VIP_SW_PREPARE 0 Software-simulated as prepare signal.

8. VIP_SW_VALID_XRAYS 1 Software-simulated as valid X-rays signal.

9. VIP_SW_RADIATION_WARNING 2 Software-simulated as radiation warning
signal.

10.VIP_SW_RESET 3 Software-simulated as reset signal.

51 of 54

System Version Number Types:

11.VIP_MOTHERBOARD_VER 0 Version number of the motherboard.

12.VIP_SYS_SW_VER 1 Version number of the system software.

13.VIP_GLOBAL_CTRL_VER 2 Version number of the global control board.

14.VIP_GLOBAL_CTRL_FW_VER 3 Version number of the global control board
firmware.

15.VIP_RECEPTOR_VER 4 Version number of the receptor.

16.VIP_RECEPTOR_FW_VER 5 Version number of the receptor firmware.

17.VIP_IPS_VER 6 Version number of the IPS board.

18.VIP_VIDEO_OUT_VER 7 Version number of the video-out board.

19.VIP_VIDEO_OUT_FW_VER 8 Version number of the video out board
firmware.

52 of 54

APPENDIX E: Mode Type Constants

No. Mode Type Constants Value Description

Acquisition Types:

1. VIP_ACQ_TYPE_CONTINUOUS 0 This constant indicates the acquisition type
of continuous or fluoroscopy type.

2. VIP_ACQ_TYPE_ACCUMULATION 1 The constant indicates the acquisition type
of accumulation or radiography type.

Mode Acquisition Type:

3. VIP_INVALID_ACQ_MODE_TYPE -1 Invalid acquisition mode type.

4. VIP_VALID_XRAYS_N_FRAMES 0 Image acquisition starts when a valid X-
rays signal is received and stops when n
frames have been accumulated.

5. VIP_VALID_XRAYS_ALL_FRAME
S

1 Image acquisition starts when a valid X-
rays signal is received and stops when all
available frames have been accumulated.

Note that this acquisition mode type is
not currently supported. It is defined for
future implementation.

6. VIP_AUTO_SENSE_N_FRAMES 2 Image acquisition starts when a X-rays
beam is detected and stops when n frames
have been accumulated.

7. VIP_AUTO_SENSE_ALL_FRAMES 3 Image acquisition starts when a X-rays
beam is detected and stops when all
available frames have been accumulated.

Radiography Scaling Types:

8. VIP_RAD_SCALE_NONE 0 No scaling will be performed by software.

9. VIP_RAD_SCALE_UP 1 Only scaling up will be performed by
software.

10.VIP_RAD_SCALE_DOWN 2 Only scaling down will be performed by
software.

11.VIP_RAD_SCALE_BOTH 3 Scaling up or down will be performed by
software where appropriate.

53 of 54

APPENDIX F: Communication Type Constants

No. Mode Acquisition Type Value Description

1. VIP_NO_LINK -1 No communication link is established.

2. VIP_ETHERNET_LINK 0 An Ethernet link is established.

3. VIP_SERIAL_LINK 1 A serial link is established.

4. VIP_COM1 0 Constant for com-port 1.

5. VIP_COM2 1 Constant for com-port 2.

6. VIP_COM3 2 Constant for com-port 3.

7. VIP_COM4 3 Constant for com-port 4.

APPENDIX G: Error Status Bit Values

This table lists the error status bit codes returned by the function vip_query_error(). However, this
function is not currently implemented and reserved for future revision.

No. Bit Hexadecimal Value Description

1. 0 0000 0001 Error on CPU board or related component.

2. 1 - 7 0000 0002 – 0000 0080 Error on component related to CPU board (TBD).
3. 8 0000 0100 Error on Image Processor System (IPS) or related

component.

4. 9 – 13 0000 0200 – 2000 0000 Error on component related to IPS (TBD).
5. 14 0000 4000 Error on Global Control board or related component.

6. 15 – 21 0000 8000 – 0020 0000 Error on component related to Global Control board (TBD).
7. 22 0040 0000 Error on ABS board or related component.

8. 23 – 25 0080 0000 – 0100 0000 Error on component related to ABS board (TBD).
9. 26 – 31 0200 0000 – 8000 0000 Reserved for future use.

54 of 54

V. SUPPLEMENTAL DOCUMENTS

Further information on how to use Ethernet and serial interface function can be found in Serial
Communication of VIP-9 Command Processor under the file name sio_cmds_usage.doc.

	I. INTRODUCTION
	II. INTERFACE FUNCTIONS
	FUNCTION INDEX
	FUNCTION DESCRI

	III. Examples
	Acquisition
	Fluoroscopy
	Using Software

	Radiography
	Using Software Sy
	Automatically D
	Automa

	Gain Calibration
	Fluoroscopy
	Radiography

	Offset Calibrat
	Handling Images
	Retrieve
	Put Image

	Retrieving
	System Infor
	Mode Det

	IV. APPENDIXES
	APPENDIX A: Error Code
	APPENDIX B: File Name
	APPENDIX C: Image Type
	APPENDIX D: Command P
	APPENDIX E: Mode Type
	APPENDIX F: Communica
	APPENDIX G: Error Stat

	V. SUPPLEMENTAL DOCUMENTS

