
P/N 24581 Rev B

April 2007

Virtual CP Communications Manual

PaxScan® Flat Panel Imagers

ii PaxScan Virtual CP Communications Manual

Abstract The PaxScan® Virtual CP Communication Manual (P/N 24581) provides reference
information and procedures for using Varian PaxScan digital imaging component
sub-systems.

Technical Support If you cannot find information in this user guide, you can contact us in several ways:

� United States

Varian X-Ray Products + 1 800 432 4422 Phone
1678 So. Pioneer Rd. + 1 801 972 5000 Phone
Salt Lake City, UT 84104 + 1 801 973 5023 Fax

� Europe

Varian X-Ray Products + 31 62 33 66 020 Cell
Zutphensestraat 160A + 31 575 566 093 Phone
6971ET Brummen + 31 575 566 538 Fax
The Netherlands

� East Asia

Varian X-Ray Products + 81 03 5652 4711 Phone
4th MY ARK Nihonbashi Bldg. + 81 03 5652 4713 Fax
10-16 Tomizawa-cho
Nihonbashi, Chuo-ku
Tokyo 103-0006, Japan

� China

Varian X-Ray Products + 86 10 6496 1585 Phone
B3-1801, Sunshine Plaza + 86 10 6494 0743 Fax
68 Anli Road, Chaoyang District
Beijing 100101, P.R. China

You can find more information about Digital Radiography on our Website:
http://www.varian.com.

Notice Information in this manual is subject to change without notice and does not represent a
commitment on the part of Varian to update information. Varian is not liable for errors
contained in this guide or for any damages incurred in connection with furnishing or use
of this material.

This document contains proprietary information protected by copyright. No part of this
document may be reproduced, translated, or transmitted without the express written
permission of Varian Medical Systems, Inc.

The PaxScan® 1313, 2520V, and 2520E, are Class 1, Type B component sub-systems per
the Standard for Medical Electrical Equipment, UL 60601-1 and IEC 60601-1.

CE Mark Varian Medical Systems imaging products are designed and manufactured to meet the Low
Voltage Directive 73/23/EEC and EMC 93/42/EEC.

Trademarks PaxScan® is a registered trademark and ViVA™ is a trademark of Varian Medical Systems,
Inc. Microsoft® is a registered trademark and Windows™ is a trademark of Microsoft
Corporation.

© 2007 Varian Medical Systems, Inc.
All rights reserved. Printed in the United States of America.

iii

CHAPTER SUMMARY

Introduction 1

2

Interface Functions - Rad Modes 3

Interface Functions - Fluoro Modes

Interface Functions - Common

4

Error Codes and Constants 5

Calibration and Configuration Files 6

Technical Support 7

iv PaxScan Virtual CP Communications Manual

Contents

CHAPTER 1 INTRODUCTION . 7

Virtual CP Interface . 7

CHAPTER 2 INTERFACE FUNCTIONS - COMMON . 11

CHAPTER 3 INTERFACE FUNCTIONS - RAD MODES . 33

CHAPTER 4 INTERFACE FUNCTIONS - FLUORO MODES . 39

Introduction to the Fluoro Interface . 39

Description of Fluoro Funtions . 40

Fluoro Parameter Calls . 47

HCP_FLU_SEQ_PRMS . 47

HPC_FLU_LIVE_PRMS . 48

HPC_FLU_STATS_PRMS . 49

HPC_FLU_TIME_INIT . 50

CHAPTER 5 ERROR CODES AND CONSTANTS . 53

Error Codes . 53

Non-fatal Error Codes . 53

System Version Number Types . 54

Image Types . 55

Software Handshaking Constants . 55

Acquisition Constants . 56

I/O Control: Enable Codes (Rad Modes) . 56

I/O Support: I/O Control Machine States (ioState) (Rad Modes) . 56

I/O Support: Exposure Control Machine States (expState) (Rad Modes) . 57

I/O Support: Valid Combinations of I/O Control and Exposure Control State (Rad Modes) 57

CHAPTER 6 CALIBRATION AND CONFIGURATION FILES . 59

Calibration Files . 59

Receptor Configuration File . 60

Virtual CP Configuration File . 60

Generator Warmup Time . 60

Frame Period Override . 61

Debug Mode . 61

Pleora Configuration File . 62

CHAPTER 7 TECHNICAL SUPPORT . 63

How To Reach Us . 63

v

Figures

I/O Control State Machine . 58

Exposure Control State Machine . 58

Tables

Function Index . 8

Function Descriptions - Common . 11

Function Descriptions - Rad Modes . 33

Function Descriptions - Fluoro Modes . 40

System Version Number Types . 54

Image Types . 55

Software Handshaking Constants . 55

Acquisition Constants . 56

I/O Control: Enable Codes (Rad Modes) . 56

I/O Support: I/O Control Machine States (ioState) (Rad Modes) . 56

I/O Support: Exposure Control Machine States (expState) (Rad Modes) . 57

I/O Support: Valid Combinations of I/O Control and Exposure Control State (Rad Modes) . . . 57

vi PaxScan Virtual CP Communications Manual

1–7Introduction

Chapter 1 Introduction

Virtual CP Interface
This document describes the set of interface functions provided by VirtCp.dll. These functions are similar

to those used by the 4030R and VIP Command Processor. Like the 4030R all processing occurs entirely

on the host computer.

With the software running on the host computer, all calibration files and configuration files must also

reside on the host. The VirtCp.dll expects these files to be organized into a fixed tree of subdirectories

which is similar to that for the 4030R. The root of this subdirectory tree may be chosen by the user. The

recommended configuration (the ViVA default) is to name the directory C:\IMAGERs, with one or more

subdirectories whose names are the serial numbers of the receptor panels that have been installed. This

path is saved in the registry and only needs to be set once on any computer. If not set during an instal-

lation, ViVA will set it when first launched.

The interface definition file is ‘HcpFuncDefs.h’. This file depends upon two additional files:

‘FluoroStructs.h’ and ‘HcpSundries.h’. HcpFuncDefs.h uses macros in the function declarations so that it

can be used in different ways internally by Varian Medical Systems. From the user perspective there are

no additional requirements since in the absence of any relevant #defines, it relaxes to user requirements,

and should simply be included in the usual way anywhere where the function set described below are used.

Additionally the library file VirtCp.lib is provided for developer use and also HcpErrors.h. The

HcpErrors.h file provides error codes in an enum and corresponding error strings in an array. An example

of how to safely dereference error codes is provided (commented out) at the bottom of the file. Also in

this file are #defines previously in vip_comm.h and also vip_4030R.h.

At run-time a user links the dll VirtCp.dll which requires the present of 4 other dlls when a receptor link is

opened:

HcpImgAcq.dll – Controls image acquisition and interfaces to I/O devices which may control the x-ray

generator.

HcpRecCtrl.dll – Controls the receptor, stores information parsed from receptor configuration file and

interfaces to frame grabber module.

HcpCorrections.dll – Performs image corrections and processes calibration data.

HcpCalibration.dll – Controls acquisition of calibration data.

These 4 modules in turn generally have other device-specific dependencies.

The entry point to VirtCp.dll is not protected with a full state machine so it is incumbent on the user to

make calls logically. Most of the time the VCP will handle situations silently or generate an error where

appropriate, but there is no explicit protection against reentrant calls. In general, all function-return values

are of type int. The return value always indicates the success or failure of the function call. A non-zero

value means that an error has occurred. The definitions of the return values are discussed later.

To avoid namespace conflicts, function names are prefixed with vip_ and constants are prefixed with VIP_

or HCP_.

1

1–8 PaxScan Virtual CP Communications Manual

Interface operation is initiated by calling vip_open_receptor_link(..). This call requires that a pointer to

a structure of type SOpenReceptorLink is passed. The only important information generally in this

structure is the path to the receptor directory (a sub-directory of IMAGERs). Many of the functions in

the current interface use structures where parameter lists were used in older versions. In nearly all cases,

functions where the parameters have changed have been renamed. General usage of all structures

should follow this example:

// standard initialization

SOpenReceptorLink orl;

memset(&orl, 0, sizeof(SOpenReceptorLink));

orl.StructSize = sizeof(SOpenReceptorLink);

// set any members as needed

strncpy(orl.RecDirPath, “C:\IMAGERs\1234-56L”, MAX_STR);

// make the call

int result = vip_open_receptor_link(&orl);

In general default values are zero, and only structure members of interest need be set, when this example

is followed. Other members of the SOpenReceptorLink structure should be left as zero normally. The

StructSize member is normally checked and must always be set as in the example. Failure to set it to a

valid value will normally result in error.

Nearly all of the functions should not be called until a link has been successfully opened. One excep-

tion to this rule is vip_set_debug(TRUE) which will open a debug window. Debug messages produced

by the dlls are shown and also written to a file ‘HcpDebug.txt’ when vip_set_debug(FALSE) is called.

In some instance functions are not yet supported while others are present in the user interface, but not

currently called by the user since the functionality is handled automatically. These functions are included

in the following listing but not described in the subsequent sections. The 3rd column in Table 1-1 indicates

mode applicability as COM (common), RAD, FLU(fluoro) or N/A (not available or not applicable).

Table 1-1 Function Index

1 vip_analog_offset_cal() COM

2 vip_cal_control(..) N/A

3 vip_cal_end() N/A

4 vip_check_link() COM

5 vip_close_link(..) COM

6 vip_correct_image(..) COM

7 vip_dcds_enable(..) COM

8 vip_enable_auto_cal(..) N/A

9 vip_enable_sw_handshaking(..) RAD

10 vip_fluoro_dispose() N/A

11 vip_fluoro_get_buffer_ptr(..) FLU

12 vip_fluoro_get_event_name(..) FLU

13 vip_fluoro_get_prms(..) FLU

14 vip_fluoro_grabber_start(..) FLU

15 vip_fluoro_grabber_stop() FLU

1–9Introduction

Table 1-1 Function Index

1

16 vip_fluoro_init_mode(..) FLU

17 vip_fluoro_init_sys(..) N/A

18 vip_fluoro_record_start(..) FLU

19 vip_fluoro_record_stop() FLU

20 vip_fluoro_set_prms(..) FLU

21 vip_gain_cal_prepare(..) COM

22 vip_get_analog_offset_info(..) N/A

23 vip_get_analog_offset_params(..) COM

24 vip_get_auto_cal_settings(..) N/A

25 vip_get_cal_info(..) COM

26 vip_get_cal_limits(..) N/A

27 vip_get_config_data COM

28 vip_get_correction_settings(..) COM

29 vip_get_current_mode(..) COM

30 vip_get_dll_version(..) COM

31 vip_get_gain_scaling_info(..) N/A

32 vip_get_hw_config(..) N/A

33 vip_get_image(..) RAD

34 vip_get_image_counts(..) N/A

35 vip_get_lih(..) N/A

36 vip_get_mode_acq_type RAD

37 vip_get_mode_info(..) COM

38 vip_get_num_acq_frames(..) RAD

39 vip_get_num_cal_frames(..) COM

40 vip_get_offset_cal_shift(..) COM

41 vip_get_rad_scaling(..) N/A

42 vip_get_recursive_filter(..) N/A

43 vip_get_self_test_log(..) N/A

44 vip_get_sys_info(..) COM

45 vip_get_sys_mode(..) COM

46 vip_get_system_version_numbers(..) COM

47 vip_get_video_timing(..) N/A

48 vip_get_vista_parameters(..) N/A

49 vip_get_wl(..) N/A

50 vip_hw_reset() N/A

51 vip_initialize_media N/A

52 vip_io_enable(..) RAD

53 vip_io_permit_exposure(..) RAD

54 vip_io_query_status(..) RAD

Table 1-1 Function Index

1–10 PaxScan Virtual CP Communications Manual

55 vip_offset_cal(..) COM

56 vip_open_receptor_link(..) COM

57 vip_put_config_data(..) COM

58 vip_put_image(..) COM

59 vip_query_error_info(..) N/A

60 vip_query_prog_info(..) COM

61 vip_reset_state(..) COM

62 vip_select_mode(..) COM

63 vip_select_receptor(..) N/A

64 vip_self_test(..) N/A

65 vip_set_analog_offset_params(..) COM

66 vip_set_cal_acq_data(..) N/A

67 vip_set_cal_limits(..) N/A

68 vip_set_correction_settings(..) COM

69 vip_set_debug(..) COM

70 vip_set_frame_rate(..) COM

71 vip_set_gain_scaling_info(..) N/A

72 vip_set_hw_config(..) N/A

73 vip_set_image_counts(..) N/A

74 vip_set_lih(..) N/A

75 vip_set_mode_acq_type(..) N/A

76 vip_set_num_acq_frames(..) RAD

77 vip_set_num_cal_frames(..) COM

78 vip_set_offset_cal_shift(..) COM

79 vip_set_rad_scaling(..) N/A

80 vip_set_recursive_filter(..) N/A

81 vip_set_sys_mode(..) COM

82 vip_set_user_sync(..) COM

83 vip_set_vista_parameters(..) N/A

84 vip_set_wl(..) N/A

85 vip_signal_frame_start() N/A

86 vip_sw_handshaking(..) COM

87 vip_total_reset_media() N/A

88 vip_validate_media(..) N/A

2–11Interface Functions - Common

Chapter 2 Interface Functions - Common

This section lists and describes function calls that are useful for all modes – rad or fluoro. Listed below

are short summaries of these VirtCp.dll interface functions.

Each function is referenced by the number in Table 1-1, and the description has subsections containing

the following information:

• function name

• function protocol as used in the Visual C++ VirtCp.dll

• descriptions of all parameters used in the function

• remarks and notes about the function

Table 2-1 Function Descriptions - Common

2

1 vip_analog_offset_cal()

Protocol

Parameters

Remarks

4 vip_check_link()

Protocol

Parameters

int vip_analog_offset_cal(int modeNum);

modeNum
Specifies the mode number for which the analog offset
is requested.

Currently can only specify the current mode.

int vip_check_link(SCheckLink* linkCheck);

linkCheck
struct SCheckLink
{

int StructSize; // Initialize to
//sizeof(SOpenReceptorLink)
int ImgMedianVal; // result of check_link –
//image Median
float ImgStdDev; // result of check_link –
// image StdDev
int ImgMedLoLim; // lo limit of acceptable
// median – zero default implies 100
int ImgMedHiLim;// hi limit of acceptable
// median – zero default implies value
// derived from receptor configuration
float ImgMedSDRatioLim; // Acceptable ratio
// Median / StdDev - zero default implies
// that it must not be below 2
int NumImgAcq; // number of images to acquire -
// zero default is interpreted as 1
int Reserved1;
int Reserved2;
int Reserved3;
int Reserved4;

};

2–12 PaxScan Virtual CP Communications Manual

Table 2-1 Function Descriptions - Common

Remarks

5 vip_close_link()

Protocol

Parameters

Remarks

6 vip_correct_image()

Protocol

Parameters

ImgMedianVal
A value returned by the Virtual CP representing the median
value from a part of the image. The area analyzed is a
central part of the image, where the fraction is ¼ x ¼ of
the full image dimensions.

ImgStdDev
A value returned by the Virtual CP representing the stan-
dard deviation value from a part of the image. The area
analyzed is as defined above.

ImgMedLoLim
A parameter specifying a lower threshold for an acceptable
median value. (Test #1)

ImgMedHiLim
A parameter specifying an upper threshold for an accept-
able median value. (Test #2)

ImgMedSDRatioLim
A parameter specifying a lower limit for the ratio of the
median divided by the standard deviation. (Test #3)

NumImgAcq
The number of images to be acquired. The last one is
analyzed.

This function verifies that a link to a receptor is available.
It forces the acquisition of one or more uncorrected images
and analyzes the last. It then analyzes the image as speci-
fied above and applies three tests. If any of the tests fails,
an error is returned. If all three tests are passed,
HCP_NO_ERR is returned.

int vip_close_link(int recNum=0);

recNum
This parameter should normally be 0. Multiple receptors
are not yet supported. However, it is used with the 2520E
and USB I/O device; in this case setting it to -1 results in
the receptor powering down when the link closes.

This function frees resources and memory used by the
interface (unloading all calibration data). Should only be
called when the acquisition session is finished.

int vip_correct_image(SCorrectImage* corrImg);

corrImg
struct SCorrectImage

2–13Interface Functions - Common

Table 2-1 Function Descriptions - Common

Remarks

{
Int StructSize;
// Initialize to sizeof(SCorrectImage)
WORD* BufIn;
int BufInX;
int BufInY;
WORD* BufOut;
int BufOutX;
int BufOutY;
int CorrType;
int Reserved1;

};

BufIn
Pointer to the buffer containing the image to be corrected.

BufInX
X dimension of the BufIn.

BufInY
Y dimension of the BufIn.

BufOut
Pointer to the buffer where the corrected image is to be
written. May be the same as BufIn.

BufOutX
X dimension of the BufOut.

BufOutY
Y dimension of the BufOut.

CorrType
Set to zero. Currently ignored.

This function is not normally needed. It may be used, how-
ever to perform corrections on an image to which none have
been applied already. If used, care should be exercised to
ensure that the image was acquired with the receptor and
mode currently selected. When called the pre-selected cor-
rections are applied; i.e those selected in the receptor con-
figuration file or as updated by a prior call to vip_set_cor-
rection_settings().

Images retrieved by vip_get_image() in rad modes automat-
ically have the pre-selected corrections applied. In fluoro
modes the pre-selected corrections are automatically applied
unless the setting in for CorrType in SAcqPrms is
HCP_CORR_NONE (see vip_fluoro_grabber_start() in
Table 4.1).

If any of the requested corrections are not available, an error
is generated and the return value indicates what corrections
are available. See Chapter 5 Non-fatal error codes for
additional information.

2

2–14 PaxScan Virtual CP Communications Manual

Table 2-1 Function Descriptions - Common

7 vip_dcds_enable()

Protocol

Parameters

Remarks

21 vip_gain_cal_prepare()

Protocol

Parameters

Remarks

22 vip_get_analog_offset_info()

Protocol

Parameters

Remarks

int vip_dcds_enable(BOOL enable);

enable
When set to FALSE, DCDS will be turned off. DCDS will
automatically turn back on when an offset or gain calibra-
tion is initiated.

Normally only used during calibration procedures.

int vip_gain_cal_prepare(int mode_num,
BOOL auto_sense = FALSE);

mode_num
The number of the mode for which gain calibration is to be
performed. Should always be the currently selected mode.

auto_sense
This parameter should be set to FALSE, as it is used to
request a feature that is not supported by the Virtual CP
(parameter is ignored).

This function initiates a gain calibration. More information
as to how a gain cal is done is included in the rad and fluoro
sections.

int vip_get_analog_offset_info(int mode_num,
SAnalogOffsetInfo* aop);

mode_num
The number of the mode for which info is requested.

struct SAnalogOffsetInfo
{

int
StructSize;

// Initialize to sizeof(SAnalogOffsetInfo)
int AsicNum;
int AnalogOfstElapsdTime;
int* AsicOffsets;

};

NOT YET IMPLEMENTED.

2–15Interface Functions - Common

Table 2-1 Function Descriptions - Common

2

23 vip_get_analog_offset_params()

Protocol

Parameters

Remarks

int vip_get_analog_offset_params(int mode_num,
SAnalogOffsetParams* aop);

mode_num
The number of the mode for which info is requested.

struct SAnalogOffsetParams
{

int
StructSize;
// Initialize to
// sizeof(SAnalogOffsetParams)
int TargetValue;
int Tolerance;
int MedianPercent;
float FracIterDelta;
int NumIterations;

};

TargetValue
The target value which will be the desired result of an ana-
log offset calibration.

Tolerance
The value around the TargetValue that defines the acceptable
range of values for the analog offset calibration.

MedianPercent
The percentage of pixel values below the target value.

FracIterDelta
The scaling factor applied in determining the offset
adjustment between iterations. This influences the speed
of convergence.

NumIterations
The maximum number of iterations that will be attempted to
bring the offsets within range.

This function allows the user to retrieve theparameters that
define how the analog offsetcalibration is performed.

2–16 PaxScan Virtual CP Communications Manual

Table 2-1 Function Descriptions - Common

25 vip_get_cal_info()

Protocol

Parameters

Remarks

int vip_get_cal_info(int mode, SCalInfo* calInfo);

mode
Mode for which statistics will be retrieved.

struct SCalInfo
{

int StructSize;
//Initialize to sizeof(SCalStats)
float OfstMedian;
float OfstStdDev;
float GainMedian;
float GainStdDev;
float GainScaling;
long Time;

};

StructSize
Must be set by caller to size of structure.

OfstMedian
The median offset value.

OfstStdDev
The standard deviation for the offset.

GainMedian
The median gain value.

GainStdDev
The standard deviation for the gain.

GainScaling
The average scaling value applied to each pixel.

Time
The time of the last calibration cast to a time_t type.

Retrieves calibration statistics from the VirtCp.dll.

2–17Interface Functions - Common

Table 2-1 Function Descriptions - Common

2

27 vip_get_config_data()

Protocol

Parameters

Remarks

28 vip_get_correction_settings()

Protocol

Parameters

Remarks

int vip_get_config_data(char *full_file_path, char
*target_file_name);

full_file_path
A null-terminated string which is the full path name of the
file where to which the file is to be copied. Up to 256 char-
acters are allowed, including the null-termination character.

target_file_name
A null-terminated string which is the name of the file on the
Command Processor containing the data. Only receptor con-
figuration files are supported in this function and
target_file_name must be set to "ConfigDataFile".

This function allows the user to retrieve the current receptor
configuration file.

int vip_get_correction_settings(SCorrections* corr);

struct SCorrections
{

int StructSize;
BOOL Ofst;
BOOL Gain;
BOOL Dfct;
BOOL Line;

};

Ofst
Set to TRUE if correcting images for pixel offset (FALSE if
disabled).

Gain
Set to TRUE if correcting images for pixel gain (FALSE if
disabled).

Dfct
Set to TRUE if correcting defective pixels, using the
defective pixel map (FALSE if disabled).

Line
Set to TRUE if correcting line noise, using data from a
reserved area in the receptor. Not applicable to most receptors
including 2520E.

This function allows the user to retrieve information as to
which correction algorithms are being applied to incoming
pixel data. These parameters are global for all modes.

The return value indicates what corrections are available (as
AND’d with the corrections requested) for the currently
selected mode. See Chapter 5 Non-fatal error codes for
additional information.

2–18 PaxScan Virtual CP Communications Manual

Table 2-1 Function Descriptions - Common

29 vip_get_current_mode()

Protocol

Parameters

Remarks

30 vip_get_dll_version()

Protocol

Parameters

Remarks

37 vip_get_mode_info()

Protocol

Parameters

int vip_get_current_mode(int* mode_num);

mode_num
Returns the currently selected mode.

This function allows the user to retrieve the number of the
currently selected mode.

int vip_get_dll_version(char* version, char* name, int size);

version
Pointer to a string buffer to receive the DLL version
information. Must be at least 256 characters.

name
For future use.

size
For future use.

This function returns the version information for the DLL,
revision letter, build number, date and time.

int vip_get_mode_info(int mdNum, SModeInfo* mdInfo);

mdNum
Selects the mode for which details are to be retrieved.

struct SModeInfo
{

int StructSize;
int ModeNum;
int AcqType;
float FrameRate;
float AnalogGain;
int LinesPerFrame;
int ColsPerFrame;
int LinesPerPixel;
int ColsPerPixel;
char ModeDescription[MAX_STR];
char DirReadyModeDescription[MAX_STR];
int DcdsEnable;
float MxAllowedFrameRate;
BOOL UserSync;
int AcqFrmCount;
int CalFrmCount;
int GainRoiUpperLeftX;
int GainRoiUpperLeftY;
int GainRoiLowerRightX;
int GainRoiLowerRightY;
int UncorrectablePixelRepValue;
int OffsetCalShift;

2–19Interface Functions - Common

Table 2-1 Function Descriptions - Common

2

int MaxDefectRange;
int Reserved1;
int Reserved2;
int Reserved3;
int Reserved4;
void* ExtInfoPtr;
int ExtInfoLen;

};

StructSize
Must be set by caller to size of structure.

ModeNum
Mode number for information (same as requested mdNum).

AcqType
Acquisition type. Variable is set to 0
(VIP_ACQ_TYPE_CONTINOUS) for fluoroscopy modes
or 1 (VIP_ACQ_TYPE_ACCUMULATION) for rad modes.
See Chapter 5 Acquisition Constants.

FrameRate
The frame rate.

AnalogGain
The analog gain.

LinesPerFrame
The number of lines per frame of an image i.e. the vertical
resolution of the mode.

ColsPerFrame
The number of lines per frame of an image i.e. the horizontal
resolution of the mode.

LinesPerPixel
The number of lines per pixel – this is the vertical binning
info for the mode.

ColsPerPixel
The number of columns per pixel – this is the horizontal bin-
ning info for the mode.

ModeDescription
A string that describes the mode.

DirReadyModeDescription
A string that describes the mode. It is normally based on the
ModeDescription but with any characters not permitted in
directory names and also spaces removed.

DcdsEnable
The DCDS enable state.

MxAllowedFrameRate
The maximum allowed frame rate for the mode.

2–20 PaxScan Virtual CP Communications Manual

Table 2-1 Function Descriptions - Common

Remarks

39 vip_get_num_cal_frames()

Protocol

Parameters

Remarks

40 vip_get_offset_cal_shift()

Protocol

Parameters

Remarks

UserSync
TRUE implies that the user will provide sync pulses to initiate
each frame readout cycle. FALSE implies that sync pulses
are internally generated at the selected frame rate.

AcqFrmCount
The number of frames to be acquired for each acquisition
cycle. Also used for flat field acquisition during rad-mode
gain calibrations.

AcqCalCount
The number of frames to be acquired for offset calibration.
Also used for flat field acquisition during fluoro-mode gain
calibrations.

This function allows the user to retrieve detailed mode infor-
mation. Note there are also additional fields which are not
intended for customer use.

int vip_get_num_cal_frames(int mode_num, int*
num_cal_frames);

mode_num
The number of the mode for which the number of calibration
frames will be retrieved.

num_cal_frames
The number of frames to be accumulated during offset cali-
bration or fluoro-mode flat fields during gain calibration.
(Also retrieved as AcqCalCount by vip_get_mode_info()).

This function allows the user to retrieve the number of frames
that will be accumulated during calibration.

int vip_get_offset_cal_shift(int mode_num,int*
offset_cal_shift);

mode_num
The number of the mode for which the offset calibration
shift will be retrieved.

offset_cal_shift
The value to bias the image. This value will be added to
all pixels uniformly.

Corrected pixels, which are unsigned, cannot represent values
less than zero. The pixels in a dark image are expected to
fluctuate both above and below their average offset values.
With the default offset shift of 0, any negative fluctuations
would be clipped to zero. A small positive offset shift (such
as 100) allows most or all of the distribution to be represent-
ed (down to -100): the mean value of the distribution should
then be equal to the offset shift.

2–21Interface Functions - Common

Table 2-1 Function Descriptions - Common

2

44 vip_get_sys_info()

Protocol

Parameters

int vip_get_system_info(SSysInfo* sysInfo);

struct SSysInfo
{

int StructSize;
int NumModes;
int DfltModeNum;
int MxLinesPerFrame;
int MxColsPerFrame;
int MxPixelValue;
BOOL HasVideo;
char SysDescription[MAX_STR];
int StartUpConfig;
int NumAsics;
int ReceptorType;
int BorderPixels;
int MxImageValue;
int Reserved1;
int Reserved2;
int Reserved3;
int Reserved4;

};

StructSize
Must be set by caller to size of structure.

NumModes
Set to number of defined modes in the receptor configura-
tion file.

DefaultModeNum
Zero-based index to the default mode. Currently always zero.

MxLinesPerFrame
The number of lines per frame; i.e., the vertical resolution of
the receptor with no binning.

MxColsPerFrame
The number of columns per frame; i.e., the horizontal
resolution of the receptor with no binning.

MxPixelValue
The maximum value of a pixel. For the 2520E, which has
12-bit A/D conversion, this value will be 4095. For recep-
tors with 14-bit A/D conversion, this value will be 16383.

HasVideo
Expected to be always set to false, indicating that the system
is not equipped with an analog video board.

SysDescription
A string that describes the system.

StartupConfiguration
An int: set to the startup configuration code = 0.

Continued....

2–22 PaxScan Virtual CP Communications Manual

Table 2-1 Function Descriptions - Common

Remarks

45 vip_get_sys_mode()

Protocol

Parameters

Remarks

46
vip_get_system_version_numbers()

Protocol

Parameters

NumAsics
The number of ASICS. For 2520, 1313 and 4030E receptors
this is equal to the horizontal resolution divided by the ASIC
width = 128. For receptors such as 4030A which have split
readout it is twice this value.

ReceptorType
A numerical value corresponding to the type of receptor.

BorderPixels
Number of receptor border pixels regarded as defective.
Normally set to zero.

MxImageValue
Maximum value that may be represented in the image. In the
current VirtualCP, this is always the same as the
MxPixelValue.

Reserved1
Reserved2
Reserved3
Reserved4

These last 4 values are not used or for internal use – must be
zero.

This function allows the user to retrieve the system information.

int vip_get_system_mode(SSysMode* sysMode);

struct SSysMode
{

int StructSize;
int SystemMode;

};

StructSize
Must be set by caller to size of structure.

SystemMode
The system mode.

Currently always zero.

int vip_get_system_version_number(int sys_ver_type,
char* ver_str);

sys_ver_type
Version type that is requested by the call. See Chapter 5
System Number Version Types. For a given system not all
values will be supported and a VIP_NOT_IMPL_ERR may be
returned.

continued...

2–23Interface Functions - Common

Table 2-1 Function Descriptions - Common

2

Remarks

55 vip_offset_cal()

Protoco

Parameters

Remarks

56 vip_open_receptor_link()

Protocol

Parameters

Remarks

ver_str
Pointer to a character array at least 256 characters in length. A
string description of the requested version will be returned.

Allows the user to interrogate the systems for various version
information.

int vip_offset_cal(int mode_num);

mode_num
The number of the mode for which offset calibration will be
performed.

This function initiates an offset calibration which runs imme-
diately autonomously.

vip_open_receptor_link(SOpenReceptorLink* orl);

struct SOpenReceptorLink
{

int StructSize;
void* VcpDatPtr;
char RecDirPath[MAX_STR];
int TestMode;
int DebugMode;

};

StructSize
Must be set by caller to size of structure.

VcpDatPtr
For internal use only – must be NULL.

RecDirPath
Must be set to the path to the directory containing informa-
tion about the receptor e.g. “C:\IMAGERs\1234-56”.

TestMode
Must be set to zero. Opens link in a special test mode where
some pixels are overwritten and other test conditions may
apply.

DebugMode
Normally zero. May be used to turn on the Debug window
feature of the Virtual CP as does vip_set_debug(). See
vip_set_debug() description for more detail.

This call performs a number of initialization tasks, and
prepares the receptor for acquisition. Must be called before
almost any other call.

The return value indicates what corrections are available (as
AND’d with the corrections requested) for mode 0. See
Chapter 5 Non-fatal error codes for additional information.

2–24 PaxScan Virtual CP Communications Manual

Table 2-1 Function Descriptions - Common

57 vip_put_config_data()

Protocol

Parameters

Remarks

58 vip_put_image()

Protocol

Parameters

int vip_put_config_data(char *full_file_path,
char *target_file_name);

full_file_path
A null-terminated string which is the full path name of the
file which is to become the new receptor configuration file.
Up to 256 characters are allowed, including the null-termi-
nation character.

target_file_name
A null-terminated string which is the name of the file on the
Command Processor containing the data. This version sup-
ports receptor configuration files - setting target_file_name
to "ConfigDataFile". Additionally it supports receptor
firmware files – setting target_file_name to "RcptFirmware".

This function allows the user to set a new receptor configu-
ration file. Note that the old one will be overwritten. Also it
is the user’s responsibility to re-sync the Virtual CP by clos-
ing and re-opening the link immediately afterwards.

Firmware download may take an extended time, and the
vip_put_config_data() is configured to return immediately
when a firmware download is requested. The user may poll
the VirtCp.dll with calls to vip_query_prog_info using the
SQueryProgInfoFw structure. The values in this structure
report progress. The ProgressLimit value represents the
number of operations required and the ProgressCurrent the
number done. These values can be used as the basis of a
progress bar or time estimate. ‘Complete’ is set when the
download completes.

int vip_put_image(int mode_num, int image_type, int x_size,
int y_size, WORD* image_ptr);

mode_num
The number of the mode for which an image is to be trans-
mitted.

image_type
The type of image to be retrieved. See Chapter 5 Image Types
in this document for a complete listing of available image types.

x_size
The horizontal size of the image to be retrieved. e.g. for 2520E
this must be set to 1536. Units: number of pixels.

y_size
The vertical size of the image to be retrieved. e.g. for 2520E
this must be set to 1920. Units: number of pixels.

image_ptr
A pointer to a memory block which holds the image. The block
must be at least 2 * x_size * y_size bytes.

2–25

Table 2-1 Function Descriptions - Common

2

Remarks

60 vip_query_prog_info()

Protocol

Parameters

This function allows the user to load an image to the Virtual
CP. This would typically be a calibration image or a defect map
(it cannot be an acquisition image).

int vip_query_prog_info(int uType, UQueryProgInfo* uq);

uType
Specifies the type of structure in the union pointed to by uq.
Normally (excepted for firmware downloads) must be zero.
Values derive from the enum in HcpSundries.h (HCP_U_QPI
etc).

uq
Pointer to a structure; generally this is SQueryProgInfo:

struct SQueryProgInfo // uType = HCP_U_QPI
{

int StructSize;
// Set to sizeof(SQueryProgInfo)
int NumFrames;
BOOL Complete;
int NumPulses;
BOOL ReadyForPulse;

};

NumFrames
The number of frames acquired.

Complete
If TRUE, the acquisition or calibration process is complete. If
FALSE, the process is in progress.

NumPulses
The number of “pulses” or x-rays on/off sequences that are
detected during the calibration.

ReadyForPulse
If TRUE, the VirtCp.dll is ready for the next x-rays “ON” com-
mand. If FALSE, the VirtCp is ready for the next x-rays
“OFF” command.

Also for firmware downloads (see vip_put_config_data()) the
uType=HCP_U_QPIFW, and the following structure must be
used: struct SQueryProgInfoFw//uType=HCP_U_QPIX

{
int StructSize;// Initialize to //

sizeof(SQueryProgInfoFw)
int ProgressCurrent;
int ProgressLimit;
BOOL Complete;

};

ProgressCurrent
Approximate number of operations completed.

ProgressLimit
Approximate number of operations required.

Table 2-1 Function Descriptions - Common

2–26 PaxScan Virtual CP Communications Manual

Remarks

61 vip_reset_state()

Protocol

Parameters

Remarks

62 vip_select_mode()

Protocol

Parameters

Remarks

65 vip_set_analog_offset_params()

Protocol

Parameters

Complete
Set to TRUE when download completes. Use this to determine
when download completes not the comparison of
ProgressLimit to ProgressCurrent.

This function allows the user to query the VirtCp.dll about
its progress during the course of an image acquisition or cal-
ibration.

It is used normally only during rad mode acquisitions. It is also
used during both rad and fluoro mode gain cals. See respective
descriptions of vip_sw_handshaking(..) in rad and fluoro mode
sections for more information.

int vip_reset_state();

None.

This function allows the user to abort any incomplete
acquisition or calibration.

int vip_select_mode(int mode_num);

mode_num
The number of the mode to be selected.

This function allows the user to select a mode of operation
by zero-based index.
NOTE: If an error is returned the virtual CP could be in an
intermediate state where some modules are out of sync in
terms of mode number. The user must reselect a valid mode
or reset the link if that is not possible.

The return value indicates what corrections are available (as
AND’d with the corrections requested) the newly selected
mode. See Chapter 5 Non-fatal error codes for additional
information.

int vip_set_analog_offset_params(int mode_num,
SAnalogOffsetParams* aop);

mode_num
The number of the mode for which info is provided.

struct SAnalogOffsetParams
{

int
StructSize;
// Initialize to
// sizeof(SAnalogOffsetParams)

2–27Interface Functions - Common

2

Table 2-1 Function Descriptions - Common

Remarks

68 vip_set_correction_settings()

Protocol

Parameters

int TargetValue;
int Tolerance;
int MedianPercent;
float FracIterDelta;
int NumIterations;

};

TargetValue
The target value which will be the desired result of an analog
offset calibration.

Tolerance
The value around the TargetValue that defines the acceptable
range of values for the analog offse tcalibration.

MedianPercent
The percentage of pixel values below the target value.

FracIterDelta
The scaling factor applied in determining the offset adjustment
between iterations. This influences the speed of convergence.

NumIterations
The maximum number of iterations that will be attempted to
bring the offsets within range.

This function allows the user to set theparameters that define
how the analog offsetcalibration is performed.

int vip_set_correction_settings(SCorrections* corr);

struct SCorrections
{

int StructSize;
BOOL Ofst;
BOOL Gain;
BOOL Dfct;
BOOL Line;

};

Ofst
Set to TRUE if correcting images for pixel offset (FALSE if
disabled).

Gain
Set to TRUE if correcting images for pixel gain (FALSE if
disabled).

Dfct
Set to TRUE if correcting defective pixels, using the defec-
tive pixel map (FALSE if disabled).

Line
Set to TRUE if correcting line noise, using data from a
reserved area in the receptor. Not applicable to most recep-
tors including 2520E.

2–28 PaxScan Virtual CP Communications Manual

Table 2-1 Function Descriptions - Common

Remarks

69 vip_set_debug()

Protocol

Parameters

Remarks

This function allows the user to set information as to which
correction algorithms are being applied to incoming pixel
data. These parameters are global for all modes.

The return value indicates what of the requested corrections
are available for the currently selected mode. See Chapter 5
Non-fatal error codes for additional information.

int vip_set_debug(int enable);

enable
Set to one of the following values as defined in
HcpSundries.h.
HCP_DBG_OFF 0 // no debug
HCP_DBG_ON 1 // debug on – output

//written to file when
//debug is turned off

HCP_DBG_ON_FLSH 2 // debug on – output
//written to file
//continuously

HCP_DBG_ON_DLG 3 // debug on – output
//written to file when
//debug is turned off and
//output to a dialog
//window

1. Should normally be zero.

2. When debug is enabled with HCP_DBG_ON, then the
debug output of all the modules is recorded and saved to a
file when the debug is turned off by a
vip_set_debug(HCP_DBG_OFF) call.

3. When debug is enabled with HCP_DBG_FLSH, then the
debug output of all the modules is recorded and saved to a
file continuously while operations are occurring. This mode
could be beneficial when trying to find a problem which
might cause a program to crash. Debug info up to approxi-
mately the time of the crash should be preserved. However,
because of time used updating the file, this mode is not pre-
ferred when time critical tasks are being performed.

4. When debug is enabled with HCP_DBG_ON_DLG then
operation with regard to the file is similar to that with
HCP_DBG_ON. In addition, a window is opened to which
output is written. This mode should only be used with MFC
type applications and will not work with console applications.

The file is saved as ‘HcpDebug.txt’. Normally it will be
saved to the ‘IMAGERs’ receptor directory in use. It may
also be saved to the most recently used receptor directory or
as a last resort if no other path is available when the file is
opened to ‘C:\temp’. The availability of the path depends
on when the debug is turned on/off with respect to calls to
open_receptor_link and the debug mode in use determines
when the file is opened.

2–29Interface Functions - Common

2

Table 2-1 Function Descriptions - Common

70 vip_set_frame_rate()

Protocol

Parameters

Remarks

77 vip_set_num_cal_frames()

Protocol

Parameters

Remarks

A limit of about 10-20MB of text output is set unless
HCP_DBG_FLSH is used.

Note that excepting that HCP_DBG_FLSH is used, the file
is written out only when vip_set_debug(HCP_DBG_OFF) is
explicitly called. If the program exits without doing this, the
text info is lost. You should arrange your program to
automatically make the call to
vip_set_debug(HCP_DBG_OFF) when it exits to avoid this.

You may only modify the debug mode by turning off and the
back on (e.g. you cannot just turn on the dialog with
HCP_DBG_ON_DLG after activating with HCP_DBG_ON).

int vip_set_frame_rate(int mdNum, double frame_rate);

mdNum
The mode number for which the frame rate is to be set. At
present must be the currently selected mode.

frame_rate
The frame rate requested (frames per second).

Must not exceed the maximum frame rate for the mode.
May also be limited if real-time corrections are employed
which will also be dependent on the computer system
employed. Also a minimum frame rate may be applicable.
For the 2520E the minimum is normally 1 fps except when
the frame override is used (see Chapter 6 Debug Mode).

int vip_set_num_cal_frames(int mode_num,
int num_cal_frames);

mode_num
The number of the mode for which the number of calibra-
tion frames will be set.

num_cal_frames
The number of frames to be accumulated during offset cali-
bration or fluoro-mode flat fields during gain calibration.

This function allows the user to set the number of frames
that will be accumulated during calibration.

2–30 PaxScan Virtual CP Communications Manual

Table 2-1 Function Descriptions - Common

78 vip_set_offset_cal_shift()

Protocol

Parameters

Remarks

81 vip_set_sys_mode()

Protocol

Parameters

Remarks

82 vip_set_user_sync()

Protocol

Parameters

Remarks

int vip_set_offset_cal_shift(int mode_num,
int* offset_cal_shift);

mode_num
The number of the mode for which the offset calibration
shift will be set.

offset_cal_shift
The value to bias the image. This value will be added to all
pixels uniformly.

Corrected pixels, which are unsigned, cannot represent values
less than zero. The pixels in a dark image are expected to
fluctuate both above and below their average offset values.
With the default offset shift of 0, any negative fluctuations
would be clipped to zero. A small positive offset shift (such
as 100) allows most or all of the distribution to be repre-
sented (down to -100): the mean value of the distribution
should then be equal to the offset shift.

int vip_set_system_mode(SSysMode* sysMode);

struct SSysMode
{

int StructSize;
int SystemMode;

};

StructSize
Must be set by caller to size of structure.

SystemMode
The system mode.

Currently not used as always zero.

int vip_set_user_sync(int mdNum, BOOL user_sync);

mdNum
The number of the mode for which the user sync will be set.
At present must be the current mode.

user_sync
Determines whether the frame start signal is internally
generated (FALSE) or supplied by the user (TRUE).

When TRUE the user must supply an appropriate signal to
the user sync input.

2–31Interface Functions - Common

Table 2-1 Function Descriptions - Common

2

86 vip_sw_handshaking()

Protocol

Parameters

Remarks

int vip_sw_handshaking(int signal_type, BOOL active);

signal_type
See Chapter 5 Software Handshaking Constants. Must be
either VIP_SW_PREPARE or VIP_SW_VALID_XRAYS.

active
If TRUE, the signal will be enabled. If FALSE, the signal
will be disabled.

This function is used differently for rad and fluoro modes.
Refer to the following sections for additional information.

In rad modes This function is used in place of hardware
handshaking signals to coordinate image acquisition with X-
ray generation. Setting VIP_SW_PREPARE=TRUE signals
the Virtual CP to prepare for the acquisition of an X-ray
image, but does not indicate whether the X-ray generator is
ready. When the X-ray generator is ready, the
VIP_SW_VALID_XRAYS= TRUE should be set. After the
image has been acquired, both of these signals should be set
to FALSE.

NOTE: when the optional I/O interface is in use, this call
would be used only for gain calibration (only the
VIP_SW_PREPARE option).

2–32 PaxScan Virtual CP Communications Manual

3–33Interface Functions - Rad Modes

Chapter 3 Interface Functions - Rad Modes

The three I/O Control functions (beginning vip_io) are enabled only if a HcpIo*.dll has been success-

fully loaded. When a HcpIo*.dll is not loaded, these functions return VIP_NOT_IMPL_ERR and

hardware handshaking is not available.

This section lists and describes function calls that are useful for rad modes. Listed below are short

summaries of these VirtCp.dll interface functions.

Each function is referenced by the number in Table 1-1, and the description has subsections containing

the following information:

• function name

• function protocol as used in the Visual C++ VirtCp.dll

• descriptions of all parameters used in the function

• remarks and notes about the function

Table 3-1 Function Descriptions – Rad Modes

3

9 vip_enable_sw_handshaking()

Protocol

Parameters

Remarks

33 vip_get_image()

Protocol

Parameters

int vip_enable_sw_handshaking(BOOL enable);

enable
Determines whether subsequent commands are accepted from
the I/O interface (if available; enable=FALSE) or from soft-
ware calls to vip_sw_handshaking(..) (enable=TRUE).

This command may be used to switch between software and
hardware handshaking, when hardware handshaking is avail-
able. Not needed otherwise. Default behavior is hardware
handshaking when an I/O card is present and software hand-
shaking when an I/O card is not present.

int vip_get_image(int mode_num, int image_type, int x_size,
int y_size, WORD* image_ptr);

mode_num
The number of the mode for which the image is to be retrieved.
NOTE: this parameter should normally be the current mode
number; the selection is significant only when retrieving an
offset or gain calibration image.

image_type
The type of image to be retrieved. See Chapter 5 Image Types
in this document for a complete listing of available image
types.

x_size
The horizontal size of the image to be retrieved. e.g. for
2520E this must be set to 1536. Units: number of pixels.

3–34 PaxScan Virtual CP Communications Manual

Table 3-1 Function Descriptions – Rad Modes

Remarks

36 vip_get_mode_acq_type()

Protocol

Parameters

Remarks

38 vip_get_num_acq_frames()

Protocol

Parameters

Remarks

52 vip_io_enable()

Protocol

Parameters

Remarks

y_size
The vertical size of the image to be retrieved. e.g. for 2520E
this must be set to 1920. Units: number of pixels.

image_ptr
A pointer to a memory block which will receive the image.
The block must be at least of size 2*x_size*y_size bytes.

The function allows the user to retrieve an image that was
acquired with the frame grabber.

int vip_get_mode_acq_type(int mode_num, int*
mode_acq_type, int* num_frames);

mode_num
The number of the mode for which the mode acquisition
type will be retrieved.

mode_acq_type
This is always set to
VIP_VALID_XRAYS_N_FRAMES (=0).

num_frames
The number of frames used to terminate an acquisition
process.

This function allows the user to retrieve the mode acquisition
type for a specified mode.

int vip_get_num_acq_frames(int mode_num,
int* num_acq_frames);

mode_num
The number of the mode for which the number of acquired
frames will be retrieved.

num_acq_frames
The number of frames to be accumulated during acquisition.
(Also retrieved as AcqFrmCount by vip_get_mode_info()).

This function allows the user to retrieve the number of
frames that will be accumulated during acquisition.

int vip_io_enable(int activeMode);

activeMode
Must be one of the I/O enable codes from table in Chapter 5
I/O Control: Enable Codes

Returns VIP_NOT_IMPL_ERR if HcpIo*.dll is not loaded.

3–35Interface Functions - Rad Modes

3

Table 3-1 Function Descriptions – Rad Modes

53 vip_io_permit_exposure()

Protocol

Parameters

Remarks

54 vip_io_query_status()

Protocol

Parameters

Remarks

75 vip_set_mode_acq_type()

Protocol

Parameters

Remarks

int vip_io_permit_exposure();

None.

This call is required as a safety feature. The user application
must grant permission each time the X-ray generator is to be
triggered. This should be called whenever the application is
ready to handle an image and vip_io_query_status() reads
back an exposure state code of EXP_AWAITING_PERMIS-
SION. The state code changes to EXP_PERMITTED as
soon as this call is made. Returns VIP_NOT_IMPL_ERR if
HcpIo*.dll is not loaded.

int vip_io_query_status(int *ioState, int *exposureState);

ioState
Pointer to int: set to the current state of the I/O control state
machine (encoded according to the table in Chapter 5 I/O
Support: I/O Control Machine States).

expState
Pointer to int: set to the current state of the exposure control
state machine (encoded according to the table in Chapter 5
I/O Support: Exposure Control Machine States). NULL
may be used if this information is not required.

Returns VIP_NOT_IMPL_ERR if HcpIo*.dll is not loaded.

int vip_set_mode_acq_type(int mode_num, int
mode_acq_type, int num_frames);

mode_num
The number of the mode for which the mode acquisition
type will be set.

mode_acq_type
This is always set to VIP_VALID_XRAYS_N_FRAMES
(=0).

num_frames
The number of frames used to terminate an acquisition
process.

NOT IMPLEMENTED IN VERSION L.01. Use
vip_set_num_acq_frames() to set the number of acquisi-
tion frames.

3–36 PaxScan Virtual CP Communications Manual

Table 3-1 Function Descriptions – Rad Modes

76 vip_set_num_acq_frames()

Protocol

Parameters

Remarks

86 vip_sw_handshaking()

Protocol

Parameters

Remarks

int vip_set_num_acq_frames(int mode_num,
int num_acq_frames);

mode_num
The number of the mode for which the number of acquired
frames will be set.

num_acq_frames
The number of frames to be accumulated during acquisition.

This function allows the user to set the number of frames
that will be accumulated during acquisition.

int vip_sw_handshaking(int signal_type, BOOL active);

signal_type
See Chapter 5 Software Handshaking Constants. Must
be either VIP_SW_PREPARE or VIP_SW_VALID_XRAYS.

active
If TRUE, the signal will be enabled. If FALSE, the signal will
be disabled.

In rad modes this function is used in place of hardware
handshaking signals to coordinate image acquisition with
X-ray generation. Setting VIP_SW_PREPARE=TRUE sig-
nals the Virtual CP to prepare for the acquisition of an X-
ray image, but does not indicate whether the X-ray genera-
tor is ready. When the X-ray generator is ready, the
VIP_SW_VALID_XRAYS= TRUE should be set. After
the image has been acquired, both of these signals should
be set to FALSE.

NOTE: when the optional I/O interface is in use, this call
would be used only for gain calibration (only the
VIP_SW_PREPARE option).

This command is used during gain calibration (note different
from fluoro modes):
1. A rad gain calibration is begun by issuing the
vip_gain_cal_prepare() command.

2. X-rays should be off as a dark field calibration is done
immediately with: vip_sw_handshaking(VIP_SW_PRE-
PARE, TRUE).

3. The VirtCp should then be polled with
vip_query_prog_info(..) until NumFrames is at least the
number of calibration frames (determined from e.g.
vip_get_mode_info(..) – AcqCalCount).

3–37Interface Functions - Rad Modes

3

Table 3-1 Function Descriptions – Rad Modes

4. An X-ray flat field is then done which may involve
repeated pulses. Either (software handshaking) initiate the
x-ray source and send vip_sw_handshaking
(VIP_SW_VALID_XRAYS, TRUE) OR (hardware hand-
shaking) use the handswitch to generate an X-ray pulse.

5. The VirtCp should then be polled with
vip_query_prog_info(..) until NumFrames is at least the
number of acquisition frames (determined from e.g.
vip_get_mode_info(..) – AcqFrmCount).

6. Several pulses may be delivered by repeating steps 4 & 5.

7. To terminate the gain cal send:
vip_sw_handshaking(VIP_SW_PREPARE, FALSE).

3–38 PaxScan Virtual CP Communications Manual

4–39Interface Functions - Fluoro Modes

4

Chapter 4 Interface Functions - Fluoro Modes

Introduction to the fluoro interface

The Virtual CP requires the presence of a frame grabber. The set of calls beginning vip_fluoro_ are

designed around this for use in fluoro modes. The virtual CP allocates buffers for use in conjunction

with the frame grabber.

There are normally 2 buffers – ‘grab’ buffers – allocated which are accessed directly by the frame grab-

ber. It will normally write to these buffers alternately - ‘ping-pong’ fashion – after a call is made to

vip_fluoro_grabber_start(), and continue doing so until vip_fluoro_grabber_stop() is called.

There are also some number of buffers – ‘sequence’ buffers – allocated which are accessed under pro-

grammatic control. The number of sequence buffers can be set by the user (see SSeqPrms structure),

but may also be automatically allocated if necessary to a larger number for calibration operations.

When vip_fluoro_record_start() is called buffers are copied in order of capture from the grab buffers

to the sequence buffers – beginning with buffer index 0 – until vip_fluoro_record_stop() is called or

the requested number of frames have been captured. If a specific number of frames is requested, at

least that number of buffers must be allocated. If acquisition is free-running then buffers are written in

‘circular’ fashion, meaning that once the allocated buffers have been filled, the earliest frames acquired

will be overwritten. Note that if this happens and the sequence acquisition is stopped arbitrarily, the

sequence ‘start index’ will generally not be zero. The start index may be discovered after the sequence

has stopped by calling vip_fluoro_get_prms() referencing SSeqStats. As of build 26, it is no longer

a requirement currently that once vip_fluoro_record_stop() has been called, the grabber must be

stopped (using vip_fluoro_grabber_stop()) and re-initialized before calling

vip_fluoro_record_start() again; i.e. multi-segment recording is permitted; see Chapter 4 Multi-

Segment Recording for additional information.

The vip_fluoro_record_start() has a single defaulted parameter – StopAfterN=0 – which may be used

to specify or change the number of frames to be acquired. The value zero is interpreted as using the

value set in a prior call to vip_fluoro_set_prms() referencing SSeqPrms or the default value of zero.

Zero is interpreted as free-running acquisition as referred to above.

The user should be aware that setting a non-zero value in the vip_fluoro_record_start() call may

result in re-allocation of sequence buffers which subjects the acquisition to a possible memory alloca-

tion error at a critical point. It is strongly recommended that, for any real data acquisition operation,

StopAfterN is set in a call to vip_fluoro_set_prms(). StopAfterN in the vip_fluoro_record_start()

call may be conveniently used for calibration operations if desired. Also see Chapter 4 Multi-Segment

Recording for additional information.

A successful call (return value = HCP_NO_ERR) to vip_fluoro_grabber_start() may be interpreted

as implying that the frame grabber is ready for x-ray acquisition. This is somewhat analogous to

Command Processor systems where a call to vip_sw_handshaking(VIP_SW_PREPARE, TRUE), is

followed by queries to vip_query_prog_info(..) to check that ReadyForPulse is TRUE. Here the suc-

cessful return to vip_fluoro_grabber_start() is considered sufficient. As an extra verification a call

may also be made to vip_fluoro_get_prms() referencing SLivePrms, and the VideoStatus member

checked against the StartUp indicated in SAcqPrms.

4–40 PaxScan Virtual CP Communications Manual

Many of the fluoro calls have structure pointers as parameters. Use of these should follow this example:

SAcqPrms acqPrm;
memset(&acqPrm, 0, sizeof(SAcqPrms));
acqPrm.StructSize = sizeof(SAcqPrms);

// set any members as required for custom use
// default behavior is defined by zero for each member

int result = vip_fluoro_grabber_start(&acqPrm);

Description of fluoro functions

This section lists and describes function calls that are useful for fluoro modes. Listed below are short

summaries of these VirtCp.dll interface functions.

Each function is referenced by the number in Table 4-1, and the description has subsections contain-

ing the following information:

• function name

• function protocol as used in the Visual C++ VirtCp.dll

• descriptions of all parameters used in the function

• remarks and notes about the function

Table 4-1 Function Descriptions – Fluoro Modes

11 vip_fluoro_get_buffer_ptr()

Protocol

Parameters

Remarks

int vip_fluoro_get_buffer_ptr(WORD** buf, int bufIdx, int
bufType=0);

buf
This is a pointer to a WORD* which is a variable declared by
the user to which the buffer pointer will be written.

bufIdx
This is the buffer index (zero-based) for which the pointer is
requested. If no buffer is available for the index specified the
return value of the function is HCP_GRAB_ERR.

bufType
This parameter defaults to zero which specifies the sequence
buffers as will be the normal useage. Pointers to grab buffers
(usually 2) can also be obtained by setting the bufType to any
non-zero value.

Pointers to buffers should be handled with great care. The
buffer size will currently be that specified by the mode (num-
ber of pixels x 2 bytes). (Provision is made - in the SSeqPrms
structure - for the user to specify an ROI for capture. However
this is not supported currently and should not be used.
Receptors with dual-gain capabilities such as 4030CB may
also involve different buffer sizes, but again these are not cur-
rently supported by the Virtual CP).

4–41Interface Functions - Fluoro Modes

4

Table 4-1 Function Descriptions – Fluoro Modes

12 vip_fluoro_get_event_name()

Protocol

Parameters

Remarks

13 vip_fluoro_get_prms()

Protocol

Parameters

Remarks

Buffer pointers should not be stored for future use. Except as
noted below, the buffer pointer may be considered valid until a
new command is sent to the Virtual CP or for the duration of
an acquisition. Various commands may involve the re-alloca-
tion of buffers; for example mode selection will generally
result in re-allocation of all buffers - both grab and sequence.
But also calibrations may require re-allocation of sequence
buffers. Auto-offset – when available – may break the rule that
a pointer is valid until a new command is issued since under
auto-offset, offset calibrations launch automatically; however,
a time limit is specified between prior activity and an automat-
ed offset calibration during which the buffer pointer may be
used safely.

As of build 26, this call is available during an acquisition. The
user must ensure that no access is attempted to the buffer being
written by the Virtual CP (indexed by the one after that speci-
fied in SLivePrms).

int vip_fluoro_get_event_name(int eventType,
char* eventName);

eventType
References a member of the HcpFgEvent enum defined in
FluoroStructs.h. The only event type currently intended for the
user is HCP_FG_FRM_TO_DISP which is set when a new
frame is ready to display. A future type will be defined when
the ‘Just-In-Time’ corrections method is implemented. This
event will be set by the user to request another corrected frame.

eventName
A pointer to a character buffer which should be able to hold at
least 32 characters. This name may be used in a call to the
Windows API CreateEvent().

This function is a generic method for retrieving a reference
name to a synchronization object. Current usage is to
determine when a frame is ready to display or for other
manipulation.

int vip_fluoro_get_prms(int structType, void* structPtr);

structType
References a member of the HcpFluoroStruct enum defined in
FluoroStructs.h.

structPtr
A pointer to a structure of the type specified by structType.

This function provides a generic method for obtaining various
parameter settings. More on usage is provided in section 4.3.

4–42 PaxScan Virtual CP Communications Manual

Table 4-1 Function Descriptions – Fluoro Modes

14 vip_fluoro_grabber_start()

Protocol

Parameters

int vip_fluoro_grabber_start(SAcqPrms* acqPrms);

acqPrms
Pointer to a SAcqPrms structure.

struct SAcqPrms
{

int StructSize;
int StartUp;
int ReqType;
int CorrType;
void* CorrFuncPtr;
void* ThresholdSelect;
double* CopyBegin;
double* CopyEnd;
int ArraySize;
int MarkPixels;
void* SnapBuf;
void* LivePrmsPtr;

};

StructSize
User must set to sizeof(SAcqPrms)

StartUp
Set from HcpFluoroStatus enum in FluoroStructs.h.
Default = 0 (HCP_REC_IDLE) is interpreted as
HCP_REC_GRABBING. Frames are being written to the grab
buffers but not saved to the sequence buffers.
If set to HCP_REC_RECORDING, it automatically calls
vip_fluoro_record_start().
If set to HCP_REC_PAUSED, the grabber is ready to start but
no frames are being written to the grab buffers. A subsequent
call to vip_fluoro_record_start() results in the immediate
acquisition of frames to grab and sequence buffers.

ReqType
Reserved use. Must be zero.

CorrType
Specifies real time corrections required. Set from enum
HcpCorrType in FluoroStructs.h. Only values currently
accepted are HCP_CORR_NONE or HCP_CORR_STD. In
the latter case the corrections determined in the receptor con-
figuration or updated by vip_set_correction_settings() are
applied.

CorrFuncPtr
May be used to specify a custom corrections routine - instead
of that integrated into the Virtual CP - that will be called in real-
time. Not recommended for most users. If used it would need
to point to a function with the same prototype as:int vip_cor-
rect_image(SCorrectImage* corrImg); Must be set to
NULL unless a user defined function is supplied.

ThresholdSelect
Not implemented; must be NULL.

Table 4-1 Function Descriptions – Fluoro Modes

4–43

Remarks

CopyBegin
May be set to point to an array of doubles (provided by the
user) to which timing information will be written. Each frame
captured will have the time (seconds) written here when it
becomes available in the grab buffer. This is the same infor-
mation used by ViVA when building the VideoTimingLog.txt.

CopyEnd
May be set to point to an array of doubles (provided by the
user) to which timing information will be written. Each frame
captured will have the time (seconds) written here when it
becomes available in the sequence buffer. This is the same
information used by ViVA when building the
VideoTimingLog.txt.

ArraySize
The size of the array supplied by the previous two members. If
the array is smaller than the number of frames captured, the
earliest members of the array are overwritten.

MarkPixels
This may be used in some debug or test situations. It causes a
line of pixels to be overwritten to the value 100 in the grab
buffer. The length of the line corresponds to the number of
frames captured. The line begins with pixel index 122881
which is (120,1) for a 2x2 mode with a 4030A receptor. When
viewing the video it results in a line of increasing length ‘walk-
ing’ across the image. Must be zero for all normal usage.

SnapBuf
Not used in this implementation. Must be NULL.

LivePrmsPtr
This pointer is returned by the Virtual CP. It points to a
SLivePrms structure which is allocated when the link opens
and de-allocated when it closes. It may be used with caution
to get status information at run time without the need for
repeated calls into the interface.

NOTE: See Chapter 4 Fluoro Parameter Calls for more
information on the SLivePrms structure members. The
NumFrames, BufIndex & BufPtr are updated in the Virtual CP
immediately before the Virtual CP sets the
HCP_FG_FRM_TO_DISP event. These members may there-
fore be safely read immediately after the event is set. The
VideoStatus and ErrorCode could change at any time and
hence should be read from the structure with caution. If the
value read differs from that expected, it would be a good idea
to check it with a call to vip_fluoro_get_prms() referencing
SLivePrms.

Starts the grabbing. Frames are being written to the grab
buffers (unless started PAUSED). A return value of
HCP_NO_ERR implies that the Virtual CP is ready to acquire
x-ray images.

4

Table 4-1 Function Descriptions – Fluoro Modes

15 vip_fluoro_grabber_stop()

Protocol

Parameters

Remarks

16 vip_fluoro_init_mode()

Protocol

Parameters

int vip_fluoro_grabber_stop();

None

Stops the grabber. May be called without a prior call to
vip_fluoro_record_stop().

int vip_fluoro_init_mode(SFluoroModePrms* modePrms);

modePrms
Pointer to a SFluoroModePrms structure.

struct SFluoroModePrms
{

int StructSize;
int FrameX;
int FrameY;
int BinX;
int BinY;
int RecType;// =0 default
float FrmRate;// =0.0 default (if not needed)
int UserSync;// =0 default
int TrigSrc;// =0 default
int TrigMode;// =0 default
void* GrabPrms;// =NULL default - not

//implemented
void* TimingPrms;// =NULL default - not

//implemented
char* FilePath;// =NULL default - path to

//cnfg file
};

StructSize
User must set to sizeof(SFluoroModePrms)

FrameX
Frame dimension horizontal.

FrameY
Frame dimension vertical.

BinX
Pixel binning horizontal.

BinY
Pixel binning vertical.

RecType
This specifies the receptor type in use and may be discovered
by a call to vip_get_sys_info(). It is used if necessary to trim
the frame location relative to the virtual frame.

FrmRate
No longer needed/used here. Should be set to zero.

4–44 PaxScan Virtual CP Communications Manual

4–45

Table 4-1 Function Descriptions – Fluoro Modes

Remarks

18 vip_fluoro_record_start()

Protocol

Parameters

Remarks

19 vip_fluoro_record_stop()

Protocol

Parameters

Remarks

UserSync
Not significant for most frame grabbers including Bitflow and
Pleora.

TrigSrc
Not significant for most frame grabbers including Bitflow and
Pleora.

TrigMode – Not significant for most frame grabbers including
Bitflow and Pleora.

GrabPrms – This may be set to point to a SGrbPrms structure
which should have its StructSize set correctly. If a valid point-
er is provided, information will be returned describing the grab
buffers: number, dimensions and bytedepth (always 2). If not
required this pointer may be left as NULL.

TimingPrms – Not implemented; ignored.

FilePath – Not implemented; ignored.

Note that this is called automatically when a vip_select_mode
is called (and vip_select_mode(0) is itself generated automati-
cally when vip_open_receptor_link is called). Should not be
needed normally.

int vip_fluoro_record_start(int stopAfterN=0, int
startFromBufIdx=-1);

stopAfterN
Sets the value for StopAfterN. Zero is interpreted as no
change to a previously set value (through a call to vip_fluo-
ro_set_prms() referencing SSeqPrms). If StopAfterN is zero
the acquisition is free-running and must be stopped by a call
to vip_fluoro_grabber_stop() or vip_fluoro_record_stop()

startFromBufIdx
Sets the start index for the buffers where the captured frames
are to be saved. A negative value will be interpreted as the
next available buffer – which is reset to zero when the grab-
ber is stopped and restarted. SeeChapter 4 Multi-Segment
Recording for additional information.

Starts the copying of frames from the grab buffers to the
sequence buffers with corrections being applied if appropriate.

int vip_fluoro_record_stop()

None

Stops the recording. No more frames will be copied to the
sequence buffers.

4

4–46 PaxScan Virtual CP Communications Manual

Table 4-1 Function Descriptions – Fluoro Modes

20 vip_fluoro_set_prms()

Protocol

Parameters

Remarks

86 vip_sw_handshaking()

Protocol

Parameters

Remarks

int vip_fluoro_set_prms(int structType, void* structPtr);

structType
References a member of the HcpFluoroStruct enum defined in
FluoroStructs.h.

structPtr
A pointer to a structure of the type specified by structType.

This function provides a generic method for setting various
parameters. More on usage is provided in section 4.3.

int vip_sw_handshaking(int signal_type, BOOL active);

signal_type
See Chapter 5 Software Handshaking Constants. Must be
either VIP_SW_PREPARE or VIP_SW_VALID_XRAYS.

active
If TRUE, the signal will be enabled. If FALSE, the signal
will be disabled.

In fluoro modes this function is used only in gain cals. (This
is different from Command Processor based systems.
Acquisitions in fluoro modes should use the vip_fluoro_
command set above.)

This command is used during gain calibration (note different
from rad modes):

1. A fluoro gain calibration is begun by issuing the
vip_gain_cal_prepare() command.

2. Next a vip_sw_handshaking(VIP_SW_PREPARE,
TRUE).

3. The VirtCp should then be polled with
vip_query_prog_info(..) until ReadyForPulse is TRUE.

4. An X-ray flat field is done first and when the receptor is pre-
pared and X-ray beam on the command vip_sw_handshak-
ing(VIP_SW_VALID_XRAYS, TRUE) should be called.

5. The VirtCp should then be polled with
vip_query_prog_info(..) until NumFrames is at least the num-
ber of calibration frames (determined from e.g.
vip_get_mode_info(..) – AcqCalCount).

6. After terminating the x-ray beam and allowing a short
interval for residual charge to clear, send
vip_sw_handshaking(VIP_SW_VALID_XRAYS, FALSE).

7. The VirtCp should then again be polled with
vip_query_prog_info(..) until Complete is TRUE.

8. Send a vip_sw_handshaking(VIP_SW_PREPARE,
FALSE).

4–47Interface Functions - Fluoro Modes

4

Fluoro Parameter Calls

The calls to vip_fluoro_get_prms() and vip_fluoro_set_prms() are essentially generic calls that specify a

structure type and a structure pointer. This section describes how to use these calls. The structure types are

specified in an enum, HcpFluoroStruct, in FluoroStructs.h. Only the structure types described here are

implemented currently, and - except for HCP_FLU_SEQ_PRMS – these only for vip_fluoro_get_prms().

HCP_FLU_SEQ_PRMS is implemented for both vip_fluoro_get_prms() and vip_fluoro_set_prms().

HCP_FLU_SEQ_PRMS

With HCP_FLU_SEQ_PRMS as the structure type, the structure pointer should point to a SSeqPrms struc-

ture. This call may be made when the frame grabber is idle to get or set the parameters described below.

struct SSeqPrms

{

int StructSize; // set to sizeof(SSeqPrms)

int NumBuffers; // number request - a smaller number may be allocated

// and returned at this same location

int SeqX; // dflt = 0 interpret = grbX

int SeqY; // dflt = 0 interpret = grbY

int SumSize; // dflt = 0 interpret =1

int SampleRate; // dflt = 0 interpret =1

int BinFctr; // dflt = 0 interpret =1

int StopAfterN; // dflt = 0

int OfstX; // dflt = 0

int OfstY; // dflt = 0

int Reserved1; // dflt = 0

int Reserved2; // dflt = 0

};

NumBuffers
This is the number of sequence buffers to be allocated. If there is insufficient memory available, a

smaller number may actually be allocated and the user should check this member when a vip_fluo-

ro_set_prms() call returns.

SeqX, SeqY
These set the size of the buffer required. When zero, these dimensions are determined from the mode

dimensions. Otherwise the user may specify the capture of an ROI instead of the whole image. NOT

YET SUPPORTED.

SumSize
When set to a number greater than 1, the specified number of frames are integrated to provide each

captured frame in a sequence buffer. The capture rate will be correspondingly smaller than the recep-

tor frame rate. NOT YET SUPPORTED.

SampleRate
When set to a number greater than 1, say N, then N-1 frames are ignored for each one captured in a

sequence buffer. The capture rate will be correspondingly smaller than the receptor frame rate. NOT

YET SUPPORTED.

4–48 PaxScan Virtual CP Communications Manual

BinFctr
May be set to either 1 or 2. When set to 2, software binning (2x2) is done. NOT YET SUPPORTED.

StopAfterN
This specifies a number of frames after the capture of which, recording will end. If it is set to zero,

then acquisition is free-running, and buffers are overwritten in circular fashion. This parameter may

also be set in the vip_fluoro_record_start(); when zero (default) in vip_fluoro_record_start(), it is inter-

preted as ‘use the prior value’. It is strongly recommended that it only be set in

vip_fluoro_record_start() for low importance operations such as calibrations.

See also discussion in Chapter 4 Introduction to the Fluoro Interface and Multi-Segment Recording.

OfstX, OfstY
These may be used in conjunction with SeqX, SeqY to set an ROI for capture. NOT YET SUPPORTED.

HCP_FLU_LIVE_PRMS

With HCP_FLU_LIVE_PRMS as the structure type, the structure pointer should point to a SLivePrms

structure. This call may be made at any time. This structure may only be referenced by

vip_fluoro_get_prms(). A copy of the global SLivePrms structure containing current video status info is

returned.

struct SLivePrms

{

int StructSize; // set to sizeof(SLivePrms)

int NumFrames;

int BufIndex; // index to buffer currently most recent for display

void* BufPtr; // pointer to buffer currently most recent for display

int VideoStatus;

int ErrorCode;

};

NumFrames
The number of frames acquired.

BufIndex
The index of the sequence buffer most recently updated.

BufPtr
A pointer to the sequence buffer most recently updated.

VideoStatus
The value is one of those in the enum HcpFluoroStatus defined in FluoroStructs.h.

ErrorCode
The value should normally be zero. A non-zero value means that an error has occurred. See error code

in HcpErrors.h or HcpConstants.h as appropriate.

4–49Interface Functions - Fluoro Modes

4

HCP_FLU_STATS_PRMS

With HCP_FLU_STATS_PRMS as the structure type, the structure pointer should point to a SSeqStats

structure. This call should be after an acquisition is complete to determine information about the com-

pleted acquisition. This structure may only be referenced by vip_fluoro_get_prms().

struct SSeqStats

{

int StructSize; // set to sizeof(SSeqStats)

int SmplFrms;

int HookFrms;

int CaptFrms;

int HookOverrun;

int StartIdx;

int EndIdx;

float CaptRate;

};

SmplFrms
This is the number of frames which potentially contributed to the sequence. If the sample rate is set to

2 then it is half the number of ‘hooked’ frames. This number reflects the total number of sampled

frames not limited by the number of sequence buffers allocated.

HookFrms
This is the number of frames grabbed by the frame grabber and may be larger than the number of sam-

pled frames if the sample rate is larger than 1. This number reflects the total number of hooked frames

not limited by the number of sequence buffers allocated.

CaptFrms
This is the number of frames written to the sequence buffers. This number reflects the total number

of captured frames not limited by the number of sequence buffers allocated.

HookOverrun
The routine that is called when a frame becomes available in a grab buffer can in principle be entered

re-entrantly. If this happens the HookOverrun counter is incremented. This value should be zero. A

non-zero value does not necessarily imply a problem but would indicate some likelihood of one.

StartIdx
As noted previously, the acquisition may be chosen to be free-running where more frames may be cap-

tured than sequence buffers exist. If this happens the earliest frames are overwritten and if the acqui-

sition is stopped at an arbitrary point, the start frame in the sequence may be anywhere. StartIdx gives

the index to the earliest frame (zero-based index) captured in the sequence buffers. ViVA uses this

information to show and save frames in the correct order.

EndIdx
Gives the index to the last frame captured. Generally either N-1 where N is the total number of frames

captured and N is less than or equal to the number of sequence buffers OR StartIdx - 1 when N is larg-

er than the number of sequence buffers.

CaptRate
Overall rate at which frames were written to the sequence buffers (frames per second).

4–50 PaxScan Virtual CP Communications Manual

HCP_FLU_TIME_INIT

With HCP_FLU_TIME_INIT as the structure type, the structure pointer should point to a SSeqTimer

structure. This call is not intended for non-Varian use as it returns a pointer to a Varian defined object.

However, when called, it resets the internal timer used for timing info that is written to the double

arrays reference by the SAcqPrms structure. (See description of vip_fluoro_grabber_start() above.) If

no call is made, the zero for timing info is when the link opened.

struct SSeqTimer

{

int StructSize; // set to sizeof(SSeqTimer)

void* SeqTimerPtr; // pointer to a Varian defined object

};

Multi-Segment Recording

NOTE: Multi-segment recording provides significant flexibility, and consequently more care is
demanded of the user application controlling acquisitions.

� As of build 26, it is permissible to record more than one segment of frames for only one
grabber_start call.

� An additional parameter in record_start allows the buffer index for the first frame of the segment
to be specified. Note that the increased flexibility allows the user to overwrite previously acquired
frames. No warning or error is generated.

� If StopAfterN is set to a non-zero value then the TOTAL number of frames captured will be
StopAfterN. e.g. Suppose you set StopAfterN to 5 through a call to set_prms or as a parameter in

the first record_start. Recording stops after 5 frames are captured. Suppose next you want to

capture 10 more frames. The second call to record_start MUST set the stopAfterN=15. However,

open-loop - start/stop with StopAfterN=0 - is OK still, but the original value of StopAfterN for

the first segment must be zero and maintained at zero for all subsequent calls.

� Use of multi-segment recording requires increased care by the user since a second call to record_start
involves increased opportunity for errors to be generated when the second record-start call is made.

Also buffers may be overwritten. Errors may be generated:

� --a) When the first record_start call is made, if the number of requested frames exceeds the number
of buffers available, the VCP will attempt to re-allocate buffers which could result in a memory

allocation error. (This possibility is not new.)

� --b) When the second or subsequent record_start calls are made, if the number of 'effective' (see more
below) frames exceeds the number of buffers available, no re-allocation is attempted, and an error is

generated.

� --c) If the specified buffer index is higher than the maximum available, an error is generated.

� If the second (new) parameter - 'startFromBufIdx' - in record_start is negative (default), the number
of 'effective' frames is equal to StopAfterN, and the multiple segments fill the buffers contiguously.

4–51Error Codes and Constants

4

� If startFromBufIdx is not negative, the number of 'effective' frames may be greater than
StopAfterN by the number of buffers in any implied gaps between segments. Or it may be

decreased from StopAfterN by the number of buffers in any implied overlaps of segments.

� In all cases the acquisition stops when the total number of acquired frames is StopAfterN irrespective
of any gaps or overlaps in segment disposition.

4–52 PaxScan Virtual CP Communications Manual

5–53

Chapter 5 Error Codes and Constants

There are various constants and error codes used and returned by the PaxScan system imaging system.

This section will discuss these values.

Error Codes

All function return values are of type int and indicate the success/failure of the function call. A non-

zero return value means an error has occurred. A return value of zero or HCP_NO_ERR or

HCP_NO_ERR implies that the function execution has been successful.

Error codes have been consolidated in the file HcpErrors.h (or HcpConstants.h and dependent files).

All error codes used in previous receptors are supported though some have been redefined so that cur-

rently all error codes are in the range 0-128 (though this may change). ViVA handles old error code

values as well as new ones and an example of a routine to do this is provided (commented out) at the

end of HcpErrors.h. Error strings in the form of an array are given in the file HcpErrors.h. When sup-

ported vip_query_error will provide the string and additional error information.

Non-fatal Error Codes

Certain calls as discussed below return non-fatal error codes that can be used to determine what cor-

rections are available. The return code is based on the requested corrections (as determined from

receptor configuration file with updates if any from calls to vip_set_correction_settings) AND the

available corrections:

HCP_NO_ERR – all requested corrections are available

HCP_OFST_ERR – no corrections are available

HCP_GAIN_ERR – of requested corrections only offset is available

HCP_DFCT_ERR - of requested corrections only offset and gain are available

Note if you want to get information as to available corrections only, call vip_set_correction_settings

with Ofst, Gain and Dfct all set to 1 (error return will be indicative of currently available corrections)

then call again to restore corrections as you actually want them if necessary.

vip_open_link(..)

Mode 0 is always selected.

The corrections in the receptor configuration are applied.

The return value indicates what corrections are available for mode 0 (as ANDed with the corrections

requested). For example if all corrections are turned off the return will be HCP_NO_ERR irrespec-

tive of corrections available. If all corrections are turned on and only offset corrections are available

the return value will be HCP_GAIN_ERR.

vip_select_mode(N)

Mode N is selected.

Corrections remain the same as already set.

The return value indicates what corrections are available for mode N as described above.

5

5–54 PaxScan Virtual CP Communications Manual

vip_set_correction_settings(..)

The requested corrections are set.

The return value indicates what corrections are available for the currently selected mode as described

above.

vip_get_correction_settings(..)

The currently requested corrections are returned.

The return value indicates what corrections are available for the currently selected mode as described

above. This call may be used to verify that corrections will succeed prior to the start of an acquisition

or safer yet call vip_correct_image() with a dummy buffer.

vip_correct_image(..)

If any of the requested corrections are not available, an error is generated and the return value indi-

cates what corrections are available. No corrections are applied. Note that one or more calls to

vip_correct_image() are implicit in a call to vip_get_image() in rad modes or a fluoro acquisition

where real-time corrections are turned on. Explicit calls to vip_correct_image() are not necessary.

ViVA
ViVA uses these returns by warning when corrections settings and availability are incompatible. If an

attempt is made to start an acquisition while that situation exists it generates an error.

System Version Number Types

Various version types may be interrogated by the call vip_get_system_version_inf(). Some version

types such as boards and firmware specific to the Command Processor are not relevant to all receptors

and will return VIP_NOT_IMPL_ERR.

Name Value Description

VIP_MOTHERBOARD_VER 0
Version number of the Command Processor

motherboard.

VIP_SYS_SW_VER 1 Version number of the system software.

VIP_GLOBAL_CTRL_VER 2 Version number of the global control board.

VIP_GLOBAL_CTRL_FW_VER 3
Version number of the global control board

firmware.

VIP_RECEPTOR_VER 4 Version number of the receptor.

VIP_RECEPTOR_FW_VER 5 Version number of the Receptor firmware.

VIP_IPS_VER 6 Version number of the IPS board.

VIP_VIDEO_OUT_VER 7 Version number of the 8-bit video board.

VIP_VIDEO_OUT_FW_VER 8 Version number of the 8-bit video board firmware.

5–55Error Codes and Constants

5

Image Types

The calls vip_get_image() and vip_put_image() specify an image_type. This should be one of the val-

ues in the following table. Note that vip_put_image cannot be used in conjunction with VIP_CUR-

RENT_IMAGE or VIP_TEST_IMAGE for non-Command Processor systems.

Software Handshaking Constants

These constants are used in conjunction with the vip_sw_handshaking() call, specifying the signal_type.

Name Value Description

VIP_CURRENT_IMAGE 0

This image resides in the accumulation buffer of the

image processing system and can be summarized in

the following formula:CURRENT_IMAGE = [(raw

image data) -OFFSET_IMAGE]/ GAIN_IMAGE

VIP_OFFSET_IMAGE 1
This image is the offset correction data obtained

during an offset calibration.

VIP_GAIN_IMAGE 2

This image is the gain correction data obtained dur-

ing a gain calibration. It is offset-corrected, not a

raw flat field image.

VIP_BASE_DEFECT_IMAGE 3

This image is the base defect map data which are

normally set up in manufacturing/final test. This

map is not affected by calibration. A non-zero pixel

value indicates the presence of a defect.

VIP_AUX_DEFECT_IMAGE 4

This image is the auxiliary defect map which is

recalculated during every gain calibration. A non-

zero pixel value indicates the presence of a defect.

VIP_TEST_IMAGE 5 A test image is generated by the Command Processor.

VIP_RECEPTOR_TEST_IMAGE 6 Initiates the generation of a test image by the receptor.

VIP_RECEPTOR_TEST_IMAGE_

OFF
7 Turns off the test image by the receptor.

Name Value Description

VIP_SW_PREPARE 0

TRUE signals the receptor to prepare for the acqui-

sition of an X-ray image. The FALSE signal, which

indicates no further acquisition is expected, should

not be sent until the acquisition is finished.

VIP_SW_VALID_XRAYS 1

TRUE signals that the X-ray generator is active

(either the beam is on or the generator is waiting

for a signal).FALSE signals the interface that the

acquisition is finished.

5–56 PaxScan Virtual CP Communications Manual

Acquisition Constants

These specify whether the mode type fluoro or rad. This value is returned by vip_get_mode_info() –

AcqType. Safe handling of this value requires that it be bitwise OR’d with VIP_ACQ_MASK = 0xFF

since some receptors provide additional information in higher bits.

I/O Control: Enable Codes (Rad Modes)

I/O Support: I/O Control Machine States (ioState) (Rad Modes)

Name Value Description

VIP_ACQ_TYPE_CONTINUOUS 0

A fluoro mode. Images are acquired continuously

while PREPARE is TRUE and additionally saved to

sequence buffers when VALID_XRAY is TRUE.

VIP_ACQ_TYPE_ACCUMULA-

TION
1

A rad mode. Images are acquired under software or

hardware handshaking control. Typically 1 image is

acquired and saved though if the number of accu-

mulation frames is set to more than 1 then the sum

is formed.

Name Value Description

HS_STANDBY 0
Idle frame start pulses are generated, but hand

switch is not active.

HS_ACTIVE 1 Hand switch may initiate an acquisition

HS_ACTIVE_SW 3
Software handshaking calls may initiate an

acquisition

Name Value Description

IO_STANDBY 0 Awaiting hand switch input

IO_PREP 1 Prep pressed, waiting for Ready

IO_READY 2 Ready pressed, waiting for imager to be ready

IO_ACQ 3 Image acquisition in progress

IO_FETCH 4 Image being transferred from imager to host

IO_DONE 5 Image acquisition is complete

IO_ABORT 6
Prep or Ready released before start of acquisition

(or timeout on receptor readout).

IO_INIT 7 Initial state after vip_open_link() call

IO_INIT_ERROR 8
Prep, Ready or A.L.E. asserted during initialization

(or receptor not working).

5–57Error Codes and Constants

5

I/O Support: Exposure Control Machine States (expState) (Rad

Modes)

I/O Support: Valid Combinations of I/O Control and Exposure

Control State (Rad Modes)

Name Value Description

EXP_STANDBY 0 Awaiting hand switch input

EXP_AWAITING_PERMISSION 1 Prep or Ready state, user app needs to respond

EXP_PERMITTED 2 User app has granted permission to expose

EXP_REQUESTED 3 Expose_request output asserted

EXP_CONFIRMED 4 A.L.E. is high

EXP_TIMED_OUT 5 Error condition

EXP_COMPLETED 6 Falling edge of A.L.E. or cycle time done

ioState expState Description

IO_INIT EXP_STANDBY Normal initialization

IO_STANDBY EXP_STANDBY Normal idle state

IO_PREP EXP_AWAITING_PERMISSION Prep pressed

IO_PREP EXP_PERMITTED Prep pressed

IO_READY EXP_AWAITING_PERMISSION Ready pressed

IO_READY EXP_PERMITTED Ready pressed

IO_ACQ EXP_PERMITTED Awaiting imager

IO_ACQ EXP_REQUESTED expose_req asserted

IO_ACQ EXP_CONFIRMED
A.L.E. from X-ray generator (expose_req

remains asserted)

IO_FETCH EXP_COMPLETED Reading out image

IO_DONE EXP_COMPLETED Acquisition complete

IO_ABORT EXP_STANDBY Prep or Ready released too early

IO_ABORT EXP_TIMED_OUT Imager failed to read out image

IO_INIT_ERROR EXP_STANDBY Prep, Ready or A.L.E. asserted

IO_INIT_ERROR EXP_COMPLETED DLL mismatch detected

IO_INIT_ERROR EXP_TIMED_OUT Imager not responding

5–58 PaxScan Virtual CP Communications Manual

Figure 5.1 - I/O Control State Machine

Figure 5.2 - Exposure Control State Machine

6–59Calibration and Configuration Files

6

Chapter 6 Calibration and Configuration Files

The VirtCp.dll reads in calibration files so that it can correct raw images acquired from the X-ray imag-

er panel. The files are read when vip_open_receptor_link() is called: the RecDirPath member of the

SOpenReceptorLink structure is expected to be a path name to the calibration tree. The recommend-

ed convention is to name this tree C:\IMAGERs\serialnbr. For example, if the imager serial number

is 1234-56, this path is C:\IMAGERs\1234-56.

Under this directory are subdirectories holding the calibration files for separate modes. Each mode

represents a different set of operating parameters as determined from vip_get_mode_info(). For many

applications, the panel is always in radiography mode, and there is only one X-ray exposure per image,

so there only needs to be one mode.

The mode subdirectory names start with a two digit mode number and an underscore. The first mode

is mode 0, and its directory name starts with "00_", followed by a name base on the ModeDescription
member of the SModeInfo structure. Characters not allowed in directory names together with spaces

are stripped out and the full path to the mode directory is given in the character string

DirReadyModeDescription member of the SModeInfo structure.

Using these choices (serial number “serialnbr” and mode 0 name “modename”), the directory tree

looks something like:

C:\IMAGERs\ serialnbr \ HcpConfig.ini

C:\IMAGERs\ serialnbr \ RecepConfig.dat

C:\IMAGERs\ serialnbr \ vivacy.xml

C:\IMAGERs\ serialnbr\00_ ModeDescription\ofst_img.viv

C:\IMAGERs\ serialnbr\00_ ModeDescription\gain_img.viv

C:\IMAGERs\ serialnbr\00_ModeDescription\defect_map.bin

Calibration Files

The original defect_map.dat file, which is a bit image that identifies the defective pixels at the time of

manufacture. This file is updated each time the panel is recalibrated, so that pixels that fail after man-

ufacture will be removed from the display. The defect_map file assigns 2 bits to each pixel: one for

original (factory) defects and one for defects that are discovered later.

The ofts_img.viv file is a standard VIVA format file that contains the average uncorrected data for a

series (usually 8) of dark fields images (no X-rays on the panel).

The gain_img.viv file is a standard VIVA format file that contains the average offset-corrected data for

a series of flat field images (X-ray directly on panel, but no subject).

6–60 PaxScan Virtual CP Communications Manual

Receptor Configuration File

The receptor configuration file contains the receptor configuration as generated by the configure.exe

program. This file is parsed and downloaded to the receptor when the link opens. Originally called

‘RecepConfig.dat’, the actual file to be used must be listed in the HcpConfig.ini file (see below). The

virtual CP will use the first file in the section ‘[HcpConfigFiles]’ that has the .dat extension. The name

may contain wildcards in which case there must only be one file in the receptor directory that match-

es the name template; otherwise the link open will fail. Do not replace the .dat with a wildcard as the

link open will fail.

If no valid receptor configuration entry is found in the ini file it will default the name to

‘RecepConfig.dat’.

Virtual CP Configuration File

The file HcpConfig.ini contains information as to the Virtual CP configuration. It specifies the sub-

modules that the HcpRecCtrl.dll should look for, and is contained in a section [ReceptorControl]. It

also specifies the names of additional files which are required for system configuration purposes. This

[ConfigFiles] section is used by ViVA when a new receptor is manually added.

As of build 25, a ‘FileRev’ value may be present in the [VirtCp] section. Its absence will result in prior

behavior. This setting was introduced to allow different versions of the Pleora configuration file – viva-

cy.xml – to be used. When FileRev is present and non-zero, the file name required is decorated. e.g.

[VirtCp]
FileRev=2

the Virtual CP looks for vivacy002.xml. This file should be the one supplied and used for version 2

receptors. In addition, correction file names are similarly decorated. e.g. an offset calibration produces

the file ofst_img002.viv.

Certain additions may be made manually by the user to customize their application. These are docu-

mented below.

Generator Warmup Time

The handswitch interface may be configured to require a minimum time interval from the PREP state

to the READY state (to give the X-ray generator time to prepare). A separate section is required for

this option. The value is set as follows:

[IoControl]
MinimumPrepMillisec=4000

The value 4000 in this example specifies that the handswitch must be held in the PREP position for

at least 4 seconds before the READY position is recognized. If this option is not specified in the con-

figuration file, the default value of 0 is used, so that no delay is required between PREP and READY.

6–61Calibration and Configuration Files

6

The [IoControl]section also allows other I/O state machine timing parameters to be set: the maximum

time to allow for fetching the image from the receptor, and the minimum times to remain in the

IO_DONE state (acquisition complete) and IO_ABORT (handswitch released prior to X-ray generator

firing) states. The default value for each is 2000, giving a 2 second delay:

[IoControl]
MaximumFetchMillisec=2000
MinimumDoneMillisec=2000
MinimumAbortMillisec=2000

The minimum times are provided so that I/O states are guaranteed to be seen by an application program

that is polling slowly (perhaps once per second). These should not be set to less than 200 milliseconds.

The MinimumAbortMillisec time applies only in the case where an acquisition is aborted and the

handswitch remains released. If the handswitch is operated again, the I/O state machine responds

immediately, and may exit the IO_ABORT state before the programmed minimum time has elapsed.

Frame Period Override

The Pleora module is used by the 2520E to generate frame start pulses, but allows only up approxi-

mately 1 s. frame periods. For longer periods it is possible to use the host computer to provide timing

via the ethernet link (hence not as precise). For frame periods over 1000 ms., the following addition

to the ini file may be made:

[HcpFgPleora]
FramePeriodOverrideMilliSec=1500

In this example the frame period will be 1.5 s. When the link is closed, the Pleora will take over the frame

start generation, so that the panel continues to be read out. Note that if this override mechanism is used,

the frame period will be the same for all modes, and the call vip_set_frame_rate() will be inoperative.

Debug Mode

As described for the vip_set_debug() call (Table 2-1, #69), a debug mode may be set through calls to

vip_set_debug() or when the vip_open_receptor_link() call is made. It may also be defaulted in the

HcpConfig.ini file by adding an entry:

[VirtCp]
DebugMode=1
;use one of the numerical values as given in HcpSundries.h or
;Table 2-1, #69 above.

This is equivalent to sending the value specified in the HcpConfig.ini in the open_receptor_link

structure. If both specify a non-zero value, that in the open_receptor_link structure will take prece-

dence. Subsequent calls to vip_set_debug have the effect stated above. You must send

vip_set_debug(HCP_DBG_OFF) in order to get the text file written unless using the

HCP_DBG_ON_FLSH mode.

6–62 PaxScan Virtual CP Communications Manual

Pleora Configuration File

The file vivacy.xml is used by the Pleora software to initialize the frame grabber configuration.

7

Chapter 7 Technical Support

How To Reach Us

In order to provide you with the most comprehensive technical support, please complete the following

problem report before contacting Varian technical support personnel.

If you prefer e-mailing the information to us, a .pdf version of this form is included on the CD ROM

you received with your system. You may also fax a completed copy of the problem report on the fol-

lowing page.

� To speak with our technical support personnel, call 1.800.432.4422 or 1.801.972.5000, or

� E-mail the report to paxscan.service@varian.com, then call the above number, or

� Fax a copy of the Problem Report to 1.801.973.5023

7–63Technical Support

7–64 PaxScan Virtual CP Communications Manual

65

Index
A
Acquisition Constants, 56

C
Calibration and Configuration Files, 59
Calibration Files, 59
Common Interface Functions, 11

D
Debug Mode, 61
Description of fluoro functions, 40

E
Enable Codes (Rad Modes), 56
Error Codes, 53
Error Codes and Constants, 53
Exposure Control Machine State diagram, 58
Exposure Control Machine States (expState)

(Rad Modes), 57

F
Fluoro Parameter Calls, 47
Frame Period Override, 61
Function Description - Comnon - 11
Function Descriptions - Fluoro Modes, 40
Function Description - Rad Modes, 33
Function Index, 8

G
Generator Warmup Time, 60

H
HCP_FLU_SEQ_PRMS, 47
HCP_FLU_LIVE_PRMS, 48
HCP_FLU_STAT_PRMS, 49
HCP_FLU_TIME_INIT, 50
How to Reach Us, 63

I
Image Types, 55
Interface Functions - Common, 11
Interface Functions - Fluoro Modes, 39
Interface Functions - Rad Modes, 33
Introduction, 7
Introduction to the fluoro interface, 39
I/O Control: Enable Codes (Rad Modes), 56
I/O Control State Machine diagram, 58
I/O Support: Exposure Control Machine States (expState)
(Rad Modes), 57
I/O Support: I/O Control Machine States (io state)

(Rad Modes), 56
I/O Support: Valid Combinations of I/O Control and

Exposure Control State (Rad Modes), 57

N
Non-fatal Error Codes Used to Show Correction

Capability, 53

P
Pleora Configuration File, 62

R
Receptor Configuration Files, 60

S
Software Handshaking Constantsm, 55
System Version Number Types, 54

T

Technical Support, 63

V
Valid Combinations of I/O Control and Exposure Control

State (Rad Modes), 57

Virtual CP Configuration File, 60

Virtual CP Interface, 7

66 PaxScan Virtual CP Communications Manual

