Programmer’s Guide

ACR Series Controllers

CAPMM Demos\Demo_

Help

TAaNKULBOOD
T —

2 Display Channel 4
2 m o|+ A channel 1 E4 Channel 3

- 5l channel2 [channel £

Motion. ‘Sampiing. Erase Display Data

ingle Zero Export Data] ADS

Gear Active

Cam Actve

Jog Active
Drive Enable

80/1

zoMa
N WO W)

«ill All Motion Request

Neg. Hard Limit Encountered
Home Found

cona

{

Effective: June, 2021
Document Number: 88-028698-0 1 E

E

Communicats

Connected

Hardware Limits

Positive Hard Limit Not Tripy

Negative Hard Limit N

Software Limits

Positive Soft Limit Not Tripped
Negative Soft Limit Not Tripped

ale V-Axis

JENNERTE]

setup.

Operations 2
Orive
Drive Not Enabled @ Drive Not Faulted

Enable Driy D

Zero Positions
Setup,

1519

ENGINEERING YOUR SUCCESS.

USER INFORMATION

User Information

Warning: ACR7000 and IPA products are used to control electrical and

A mechanical components of motion control systems. You should
test your motion system for safety under all potential

conditions. Failure to do so can result in damage to equipment
and/or serious injury to personnel.

Woarning: Risk of damage and/or personal injury.
A The ACR7000 and IPA described in this guide contain no user-
A serviceable parts. Attempting to open the case of any unit, or to
replace any internal component, may result in damage to the
unit and/or personal injury. This may also void the warranty.

ACR7000 and IPA products and the information in this guide are the proprietary property of Parker Hannifin
Corporation or its licensers, and may not be copied, disclosed, or used for any purpose not expressly authorized
by the owner thereof.

Since Parker Hannifin constantly strives to improve all of its products, we reserve the right to change this guide,
and software and hardware mentioned therein, at any time without notice.

In no event will the provider of the equipment be liable for any incidental, consequential, or special damages of any
kind or nature whatsoever, including but not limited to lost profits arising from or in any way connected with the
use of the equipment or this guide.

© 2021 Parker Hannifin Corporation
All Rights Reserved

Contact Information for Technical Assistance

Contact your local automation technology center (ATC) or distributor-.

North America and Asia

Parker Hannifin

Electronic Motion and Controls Division
5500 Business Park Drive

Rohnert Park, CA 94928

Telephone: (707) 584-7558

Fax: (707) 584-8029

Email: emn.service@support.parker.com

Internet: http://www.parkermotion.com

2 ACR Programmer’s Guide

mailto:emn.service@support.parker.com
http://www.parker.com/

IMPORTANT SAFETY INFORMATION

Important Safety Information

It is important that motion control equipment is installed and operated in such a way that all applicable safety
requirements are met. It is your responsibility as an installer to ensure that you identify the relevant safety
standards and comply with them; failure to do so may result in damage to equipment and personal injury. In
particular, you should study the contents of this user guide carefully before installing or operating the equipment.

The installation, set up, test and maintenance procedures given in this user guide should only be carried out by
competent personnel trained in the installation of electronic equipment. Such personnel should be aware of the
potential electrical and mechanical hazards associated with mains-powered motion control equipment—please see
the safety warnings below. The individual or group having overall responsibility for this equipment must ensure
that operators are adequately trained.

Under no circumstances will the suppliers of the equipment be liable for any incidental, consequential or special
damages of any kind whatsoever, including but not limited to lost profits arising from or in any way connected with
the use of the equipment or this guide.

Woarning: High-performance motion control equipment is capable of
producing rapid movement and very high forces. Unexpected
motion may occur especially during the development of
controller programs. KEEP WELL CLEAR of any machinery
driven by stepper or servo motors. Never touch any part of the
equipment while it is in operation.

This product is sold as a motion control component to be
installed in a complete system using good engineering practice.
Care must be taken to ensure that the product is installed and
used in a safe manner according to local safety laws and
regulations. In particular, the product must be positioned such
that no part is accessible while power may be applied.

This and other information from Parker Hannifin Corporation,
its subsidiaries, and authorized distributors provides product or
system options for further investigation by users having
technical expertise. Before you select or use any product or
system, it is important that you analyze all aspects of your
application and review the information concerning the product
in the current product catalog. The user, through its own
analysis and testing, is solely responsible for making the final
selection of the system and components and assuring that all
performance, safety, and warning requirements of the
application are met.

If the equipment is used in any manner that does not conform to
the instructions given in this user guide, then the protection
provided by the equipment may be impaired.

The information in this user guide, including any apparatus, methods, techniques, and concepts described herein,
are the proprietary property of Parker Hannifin or its licensors, and may not be copied disclosed, or used for any
purpose not expressly authorized by the owner thereof.

Since Parker Hannifin constantly strives to improve all of its products, we reserve the right to modify equipment
and user guides without prior notice. No part of this user guide may be reproduced in any form without the prior
consent of Parker Hannifin.

ACR Programmer’s Guide 3

CONTENTS

Contents
USEr INfOrMatioN...cuueeeeeeeeiieeeiiiisnsnneeeeenescsssssssnneeeesesssssssssssssessssssssssssssssssssessssssssssssssssssssssssssssasssses 2
Contact Information for Technical ASSISTANCE ... ssessessessssssnes 2
Important Safety INfOrmation.......iieeieiiiiniiiineeicceeecaeeeeaeeessnsseesssnssesssssnssesssannane 3
CONLENTES uuueeiiiiinneeeeinnetecsttttesssnteeesssssseessssssssesssssssessssssassssssssssesssssassssssssassssssssasesssssassssssssassssssns 4
Change SUMMArY....ceeeetieecciiinssnnnnetieeccsssssesssseeesecsssses 20
ReVISION E CRANGESeiuieiciicericertcentcene ettt ettt ettt st sttt st seasssensssenes 20
Before WE BEgiNuuuuueeeeeeenennnennennnnnnneeeneeeeneeeeeeensess 21
Assumptions of Technical EXPErienCec.cerirecincunenesicircineiseseseeeisessesseseessessesseasesseesacs 21
BefOre YOU BEGIN ...ttt eesessessesetse e ssessessess e et sseast s s sttt sseastasanssacs 22
CHAPTER | Parker Motion Managerueeeeereccennne. 23
Parker Motion Manager...........ueeeeeeeeeeeeeennneennnneeeeeneneenneennensessesss 24
Getting Started With PMMo..... ettt ettt ettt eaees 25
CONNECLION. ...ttt bbb bbbt 26
Uploading a Project from the Controller to PMMcnecneneseseeieisesenscseeeees 28
PrOCEAUIE. ...ttt ettt et et st et st et st st ettt ettt 28
Downloading a Project from PMM to the Controller ... 29
PrOCEAUIE. ...ttt ettt et et st et st et st st ettt ettt 29
REFEIENCE......ceee bbb bbb 31
Parker Motion Manager Parts........... o ccercncneniciesesesesecieisessesstesessessesstustassessesessssusssssaces 33
EINU ettt et et et et et et et ettt bt et ettt et bttt 33
FIIE MBNU ettt ettt ettt aes 34
Bt MNUL ettt ettt sttt aee 34
TOOIS MENU ...t bbb s s s bbbt 34
WVINAOW MENU ..ttt ettt ss ettt ettt bttt aes 35

4 ACR Programmer’s Guide

CONTENTS

HEIP IENU .ttt ss st e s sttt st ettt st mneas s 35
TOOIS D OPLIONS.....ouieeeeireiniieireeeaeessessease et ess s ssesse s s s ss bbb bbb e bbbt s s sassaseseas 36
TOOIDAN ...ttt s 36
EXPIOTEI .ttt ettt e ettt 38
CONNECLION w.cuenrneniuencicenetseuseae e tseasessesseaste e s sttt e s st ettt bttt e b sttt bbb st sstassaen 38
CONIGUIALION WVIZAI.....oieimieecicicineneeiciseiseisessee e esessess ettt essessess s s st bbb st sstaseassacen 38
PrOgram EQITON. ...ttt sttt et st st st st st st st sttt bttt 38
TerMINAl EMUIGEOT ...ttt sas st sas s nes 38
TOOIS et s R R R Rt 39
STALUS PANEIS ...t 39
SCOPES ettt ettt sttt st e e ettt sttt 39
MESSAZE WINOW....eiiriieeteecsec ettt et ettt et sttt st et st e st 39
WALCh WINAOWS......oecerieccienenetcienesesessescsessesessess s ssessessess s ssesssssessssssssssessessessanssass 40
Configuration WizZard.....iiiiiiiiiiiiiiiiiiiiniiciiniiiecicccncicssssnsssscssssscsss 43
AAXES e bbbt 43
MASEEE (UNILS)..ueurueeiuincicicieeineueieieisesseasesste et esseas et sse st s sttt bt st sttt asaassaces 45
DIFIVEIMOTONouereeeicrereneasictessesessessesc e ssessess e sse s st st s et ass bbb saseasenssac 46
Drive/Motor (ACR7XT STEPPEI) ...ccccurercurercurieureeusieusisesstsesstsesstsesstsesstsesstsesststussseassseasssenssssnssssussssnss 46
MOLOI SELLINES .c..cvneuiuceeeeeearieict ettt ettt sttt b sttt st as st sttt sttt st s st astasbasbacs 46
DIFIVE SEELINGS c.ceuveeeeuereiueicireeseusesie ettt ebsesstsst st bs st s sttt st sttt sttt s s st sstastaebacs 46
Drive/Motor (ACR7XV Servo OF IPA) ... ieicineisesesieseeseusestsesesessesseasessssssessesssuseassssacs 47
Drive/Motor (ACRT7ZXC).....ocirieericurireasieestseastesstsess st esstsesstsesstss st et st sseastsessssesstssussssnssscass 48
FEEADACK ...ttt ssessess e sse s e ss et bbb mseasaassacs 49
SCANNG ettt ettt e et 50
SPECHTY TrANSMISSION.c..cueuviuceiceicrecenecaneeastesst st s eesste e ss ettt s st e b ea st assensseassseassecacs 51
SPECITY REAUCEI(S) cuvvueueeuceeuceiceeceicnnecisecastcsstcsseess st esesseesseses e e e e et ess e s sse s sseasseasasenessensssensscacs 51

ACR Programmer’s Guide 5

CONTENTS

ENEEr SCAING FACLON ..ttt ses st s st st et eas e 51
FAUI ettt ettt sttt sttt ettt 52
Hardware Limit DeLECION ... sesse s s ssesssssessssssssssessessesssssssis 52
Assign Digital Inputs for Specific FUNCLIONScc.cuocuieeri ettt esseseaes 52
SOFEWArE LMt DELECTION ..cuueuveeececeeneicieiseasesseeacesessessesstss e ssessessesseas e ses st bbb sstss e sessstsssasaces 53
Maximum Position Error DETECION ... eierecerecerecieceseeeeeesesessesessenessenessescssensssencsseasssencssencsens 53
Position MainteNanCe SELLINESccceeeurecurecireeireeieeeieeeeeeeesee ettt sttt sttt s sttt seenesens 53
MEIMOTY ettt ettt st st st st st st st st st st ettt ettt 54
Finish and SyStem Code ...ttt ettt ettt ettt st 55

Program Editorcceeeciiiinnnnnneiiicccissscnnnneeeiecccsssnnennee 56

Terminal EMUIatoreeeeeneeecninneeecnssneeecsssneeessssneeessnnes 57
PrOMIPLS ...ttt sttt ettt et st st et et st et et et st et ettt et ettt 57
Basic Terminal OPerations..........ccecueercurercurencunincunecusisesstsesstseustsessesessasesstsesststassseasssessssensssensssenssscnss 57
USEI BULLONS......coucuemncminiececreneniceesseseseseaesessessesses s s ssessesstsssssssssssssesssnsssssssssessessesssssssessessessenssses 6l

LI LY 63
SEIVO TUNET ...ttt bbbt 63
CRANNELS ..ttt et st bt et 63
POSItION LOOP GAINS.....ueuiiuieurieeueineuciseneiste sttt ettt bt et st st et st st st st st sttt st 65
MOVE CONFIGUIATION c.cuererinieiecieieaeasee ettt seeasess st e st as st sttt bttt sstastastassacs 65
THMEDASE.....ec et s 66
DISPIAY ...eveevremeuincieueeuseuric ettt et eas st b st st e ettt sttt bttt 68
SEALUS AXIS(0)..vueuveueeiueerieeetetetetst ettt ettt et st ss s ss ettt sttt bttt sttt et st et ettt 68
THE SCOPE.....oeececeerenetcietrese st sse s ettt st st ettt aeas 68
JOZIHOME/LIMIES ..ottt ssese st staesseaesstne st setae st seeacsens 70
COMMUNICALIONS......cuieinicriainicrenenesisse st s sttt s bt st bbbttt 70
DIFIVE ettt R RS b bbbt 70

6 ACR Programmer’s Guide

CONTENTS

HArAWare LIMILS ...t sessessessee e ssessesstss s ssessessessase s ssesssssesssssssessssssssensssssssssssensenssncs 73
SOFEWAIE LIMIES «.eoeeeeeeencecrnemineeceetsessesseeietsessessessess e esessessessess e ssesstsstas bbb s st s tas bbb s sstassas s b ssesstasenssnes 74
POSITION EFTON ...eiieiiiciirieiictcecicteseses ettt sttt sttt nas s 75
LED LEZEN.....oimiiiceicesicerecrics et ess st esses ettt ettt ettt ettt 75
O UPALe....ueeiceceeneicieiseisesesieisesseasessese e ssesse st ssesst st s st sstasass st ssessass s ssesssasensensens 76

Status Panels..........coeeeeinnnerinnnnneiennsnneeennnnneeeesnneene 78
Motion Status Panel (ACR7000 Family)c.ccoceeeureniueeuneeereeireciseeieeeiseeesee e sseseaseneasenes 78
AXIS STATUS BiLS....eveerceiminiicrcreneiccceneese ettt ssesse sttt st sa s 79
PrOZIamS. ...ttt ettt et et et et et st st et st s et st sttt st bttt 79
AAXIS POSITION ...ttt s bbb bbb 79
MASTEL ...t b bbbt 80
OINIINE STATUS .cevrnreeieeecrereneaeerersensesess st sse st s st ss s sttt sttt sas s sestasases 80
MOLION ENADIE INPUL ...ttt sttt ettt st st st st et st st 80
Drive Status Panel (ACR7XV and ACRT7XT) ...ccccrirerircnincnencnnineusisesesessesesesessssesesessasessssessssensssenss 80
CONLIOI SLALUS ...ttt bbb bbb bbb bbb st 8l
DFIVE FAUILS......ccceiiicttcet s st bbb bbbttt 82
CoNLroller INFOrMALIONc.ceecececereereeececirerresesee et sse s sse s ssessess e sas s seseasesssses 82
CommOon Status Panel (IPA) ...ttt ettt ettt ettt aes 83
STALUS .ot b bbbt 83
BULLONS ...ttt st 83
Control Status and Drive FAUILS ...t ssssssssssasssssssssassaees 84
CoNLroller INFOrMALIONc.cevcececererrenececirerresesseeecesessessessese e ssessessess s s st ss s s ssess s ssessesssssses 84
PrOZIamMS. ...ttt ettt st ettt et st st st et st st et ettt bt ettt bttt 85
NUMETIC STATUS.....cuvieinincrcicrinircicicieisesesese et sss st sss b as st sssssssssssssssssssssscs 85
BIt SEALUS ..ot R 88
Ethernet/IP Status Panel...........iiiiiicicciicccisssesesesssssssssssessessssssssssesse 89

ACR Programmer’s Guide 7

CONTENTS

8 ACR Programmer’s Guide

FRIUFE STATUS ..ottt ess sttt ssesstas s e s st s s s s sttt s sst e sacs 89
SCANNEE PAFAMELELS ...ttt tses et s sttt st b sttt sacen 90
SCANNEr Parameter STAtUS........c.ccucucemiciciceccteresest et s st st sas s s sssassaes 90
EtherNet/IP NOAE Data........cciceiiiicicrcnecicienesesseressessessess s ssessesssssssssssssessesssssssssssssessessssesses 91
CONLIOIS ..ottt ettt bbb ss st ettt st b sttt bttt bbbt antassaen 9l
SEIVO LOOP SLALUS.......couiieiiiciinc ittt b sas s 92
... 93
COMMON TOOIS ..ttt bbb ettt naaes 93
CRANNELS ..ttt et st sttt 93
THMEDASE.....oeee bR bbb 94
CONLIOIS ...ttt bbb bbbt 94
DISPIAY ettt ettt ettt ettt 96
THE SCOPE.. ettt et sttt et st st st st et s st et et et st ettt e ettt 97
OSCllOSCOPE. ...ttt ettt ettt ettt ettt ettt 98
SEIP CNAIT ettt ettt ses sttt et s st st sttt sttt bbbttt sas 99
XY PlOTuieiiiiiiiniiieieii ettt sss st as 100
CHAPTER 2 ACR BaSICS .uuuutiieiiinnenciisnreccsssnnescssssseesssssssescssssssesssases 101
ACR BasSiCS.cciinnnnnneeienccisisssssnneereescssssssssseaeeescssssssssssssssessssssssssssasssssesssses . 102
DElIMITET ...ttt bbb 102
REMAIKS ..ottt 103
Program Labels.........cc.c ettt esseasess st bsease st sttt s ase st saces 104
MOVE—DEfAUI MOLION ...t sesesess e ssemsess e s ssessessesssaes 104
AXIS INBIMES ..ot caseseess e ssessess e s st ss et aas bbb e sstasensacs 105
SLOPPING MOLION ...ttt ettt sttt et st st se st se st asatacs 107
PrOgram FIOW ...ttt tsess et ese st ess e et ens st ssessssensssenss 109
Wait for Bit O Parameter....... . iciiiicceiicceessssssesesssssssssssssssessesssssssesses 110

CONTENTS

SIBCEION. ...ttt e ss e s st s e 11
IF/THEN .ottt es e es s s s bbbt sseses 1
[F/ELSE/ENIDIF ...ttt esesse s sssessessssasasesssse s sss s sassassssessessssasssssssessssassssessessesassssesnes 112
ELSE IF CONILION.c...urruirirrinieireiciniaeneiceseeseseasessesseessessessssasessessesssssstssssssssssssessessssssssssssessssassssesessesassssesnes 13
GOSUB/RETURN......outiuiueueieieiasessesseaessssasessessessssssessessessssassssesessssasssssssessssassssesssssesassssssnessessssssssnssnesassasssssns 13
GOTO ettt st st s e bbbt bbbttt 13
GOTO and GOSUB Sample Program.........nnncnencneeneeiseeseesseessesssessssessssesssense 14
REPELITION ..ttt st st et st st et et st st ettt bt 15
FOR/TO/STEP/NEXTouoiueierereeneeneuesseseesessessessesssessessessssssessessssssssssssssssssssssessessessssssssessssasssssssessesassssesnes 15
WHILE/WEND ...ttt st sss s st sss s st s ssssassassses 15
Bits, Parameters and Variables ... 116
USer Bits and Parameters ... cicenemncmeeceennenesesseseeessessessessessssessessessesssssssssessessesssssssessessessessessssess 117
Using Parameters and BiS ...ttt ittt st ssessssensssenss 118
SELUING BINArY Bttt ettt ettt et st st et st sttt eeas 118
ClEANING BINAIY BItS.....ccccueeueeuriueicieeecuneunieieeetsemseasieisessessesstss s ssessessesstss s e sst st s e ssesstustastassasssssstusenssnsens 118
Printing the CUITENT VAU ...ttt isesseasesste s sesseastas s e sse st s sseastassassaces 119
A WVOIA ON ALIBSES .ouererneiececreneniceeressesess e ssessessess e e ssessesseas s s ssessess s s st ssesssss s ssessessensenessen 119
Programming EXAMPIE ...ttt ettt sttt st sttt 119
LOCAl VariabIes........ciiiiiicici s ssssss s e e sassans 120
DEfINES ..cceteici st e 121
Starting, Pausing, and Halting Programscccnincncnencsesiseineiserseseseeesessessessesesesees 123
RUNNING @ PrOZIram ...ttt et et et st st st st st st et st st st sttt 123
RUNNING @ Program at POWEE UP ... eereicicinernesneseesessessessesseessessessessessssessessessessesessesessessessssens 123
LiSEENING TO @ PrOZIram ...t sseae st sstnessesessenessenessenssetassstnsetassstnssenssesnesesacsenssnens 123
Viewing @ RUNNING PrOZIam ... ssessesesessencssenessensssensssenssstnsssensssenesssnssssnessencssens 123
HAILING @ PrOZram ...ttt ssese e sttt ssens st st sttt sseaessencssensseas 124

ACR Programmer’s Guide 9

CONTENTS

PaUSING @ PrOZIam c...cucuceericecereeenneeicicisessessesese e ssessesstssese e ssessesstssess e ssesssssesssss s ssssssssessesssssssesssssensesssaees 124
Resuming @ PauSed Program ... icincenenenesiciseenessesseseessessessessesssessessessesssssssessssssssssssssssssssssssssssaces 124
Affecting MUILIPIE Programs ...ttt st st sttt et seeassens 124
RESLANT CONLIOIIEN ...ttt bbbttt ssns 124
RUNNING STArtUP Programs.......ccucuecueerericiciseineuseseeiessessessessesessessessessessssessessessssssassssssssssssssssssssesssssnsssssacss 124
Parametric EVAlUALIONcc.cuicuiceiceicntcnecnecaecnecseese e eessasessaessasessssensssenssensasensasensasense 124
Parentheses and Operational Order ...ttt ettt ssessssesssseasssensseeaes 125
NESLEA PAr@NTRESESccveeeenieircrenecteen sttt sttt sasssns 126
EXAMPIES ...ttt sttt st et et st st e et et et st et et et ettt 126
Example Code CONVENTIONSc.ccecreurececencinemnennesieeseseessessessaessessesstuseasssessessssstassassscssssssusssssassns 127

ACR SYStEM.cueeeeererererererereseresssssess 128
ACR AICHILECTUIE ...t sessessessess s ssessesstassasssessessensassssssessessessssssacs 128
BLREIMEL ..ttt ettt st 130
ELNEIMEE TCP/IP....ee ettt sse s as ettt esesnes 130
EtherNEt/IP SCANNET ...ttt sa s sassassass 130
ELNEINEU/IP INOGE ...ttt ss s sassasssses 131
EthErNEU/IP PEEr-t0-PEEN ...ttt ss e esseas s ssesessenssaees 131

ComMmMAaNd SYNtaX...ccceeeeeeeeeeeeeeeeneeeeeeeneseeeeeneeeseseseseseeesesesesens 133
DeSCriPLiON Of FOMMAL.....cucuieiciciecieueicicineieeiseeeeieiseteeasessee et aseastas st ssesstas s bsssseustassasencs 133
ArZUMENTS ANA SYNEAX .ueurriririnieireieeuneaeieiretsesseaseastetsessesetsstasasessessesstastas s sstastasaas s ssesssastusenssnc 134
Variable SUDSTIEULION SYNTAX......ccovirriuriricincirerneusieiciseeseseeseeaseeeessesstustas e ssessesseasassssssessesstaseassacs 135
Nested ComMMANAS SYNTAXccuriierieurieerieureeeseeesee st ste sttt etesetssstassetaestassstssetssseasscns 136
COMMANGS LISTS....vieirerenenceeererrernesneaeeeeessessessessesessessessessessessssessessessessessssesessessensesssssssssessessessssees 137
AXIS LIMILS coucereiiieircicniictcci st bbb bttt sacs 137
CRAFACLET /Ot st st s st 138
DFIVE CONLIOL.cuiuiiiiiiiniciciiiiccceee bbbt bbbttt 138

10 ACR Programmer’s Guide

CONTENTS

FEEADACK CONLIOL.....cceeeeceeeemeicictseiseie et ssessesseas s s sstss e ssesse s et ssesstasesssacen 138
GlODAI ODjJEECLSorueiueeicieirireisisesisee sttt sttt st st sa s seas st as s b stas st asssaassssasssaassssassesassssassesasssnassssans 139
INEEIPOIALION ...ttt et st st st et st st st st et st st st sttt 139
LOZIC FUNCLION ettt st et st st et st st st st et st et st sttt 140
MEMOIY CONLIOL ... etsessesseasese e sessess s s sttt bbb s st bttt se st sstasanssacen 140
NNON-VOIALIE .ottt sessesseas et ssease s et ss s st ettt e s st s en 140
OPEIatiNg SYSTEIMucueiueeuceeueieeuetseae sttt staessese st se s st s tas st s e e e st et st et et beemebetassetusetass 141
Program CONTrOl ...ttt et et ss sttt et sttt st st sttt bt 141
PrOgram FIOW ...ttt sttt ettt ettt sttt et sttt etas 142
SEIVO CONLION ..o 143
SEEPOINT CONEIOL....eieiceeeeieiicieeteeees ettt et s sttt s sttt ettt sttt bt bassns 143
TrANSTOIMALION «.cceuvreeiieicecrenenceerrenesesee e ssess st sse st s sttt sttt bttt sttt asassacn |44
VEIOCIEY ProOfile ...ttt sttt st st et st st st st st 144
SEATUP PrOgrams ...ttt ettt sttt st et st et st st st ettt 145
ReESELING the CONLIOIIEN ...ttt ettt ssesstas s ssesstaseasaasancs 145
MEIMOIY .ttt ettt sttt s ettt st e sttt sttt baeen 146
Return to FActory Default ...ttt sttt seeas 146
CONTIGUIALION ...ttt ettt st st et et st et st et st st et ettt eeas 147
What is Configuration CodeYcincurenerieicineeneisesesieesessesststsssessessesstasasssssessssstussassacs 147
TRE COdE . bbb 147
Resources Reserved for Generated Code...........iiiieiciiniineiieeiesessssssessesssaenns 51
FIASH MEIMOTY ..ttt et et st et ettt st et st et et 152
CHAPTER 3 Making Motionccccieeeeeciinneenccssneeecsssnneecssssnsencsssssenes .. 153
Making Motion.............uueeeeeeeeeeneeeeenenenenenenenenenenenenesesenees 154
Four Basic Categories of MOtIONc.cccvcrrcnercneneenecinecnecineeeecseesseesseesstsesseessesessenessencsens 154
MOVE TYPES ..ttt eessee sttt s e ettt e ettt e senes 154

ACR Programmer’s Guide 11

CONTENTS

ADSOIULE MOTION ...ttt sttt st st st st et st st st st I55
INCreMENTAl MOTION......c.cuiieecieietecre ettt ettt sttt bbbttt eaens I55
Comparing Absolute and Incremental MOtioNcceceeverencinencinencnecsecreesee e 156
Combining TYPESs Of MOLION ..ottt sttt st sseasaseass 157
IMMEAIALE MOAE ...ttt ettt sttt ettt st seaeas 157
Differences Between FOV and VEL ...ttt sses s sssssseens 158
What are Motion Profiles?ccceiiciereseessesesessessesssessessessessssssses 158
Interaction Between Motion Profilers ... iccnieeeenesesesssessesessesssesses 159
PrIMAry SELPOINT c....euceiceiceeicte ettt ettt eas ettt st st se bt et eeaes 159
Velocity Profile Commands........c.ccoeeeencinceneneneeicincencisesesieesessessestsssessessessessassessessessesssssac 162
VElOCity Profile SELUPc.oceeueeeiceecereeeecrctsctses ettt eses sttt ssesseaseas e sesseastaseassacs 162
Feedback Control CommMands.........ccecurecerecurencenenceneeeseeseeeseesseesstesseesstesstaestssseesseeseenssecns 163
REN DELAILS......eceeeeeenieeeieeeteeeieee ettt et et st et st st st st st et st st sttt
RES DIELAIIS ...ttt ittt et et st st st st et st st sttt st sttt
Coordinated Moves Profiler ... sssssssssssssssanes 166
JOG PrOfIlEr ..ttt ettt et sttt 168
JOG VEL DELAILS ...ccereeeeeeercrnceneneieicisessessessesseessesessessssssesssssessssssessessesassssessessessesssssssssessssasesesness 172
JOG COMMANGS....iitiiiicirictrteerteas ettt ess ettt ettt ettt ettt aen 173
JOG REN DELAILS ..ottt s ssssssssssasssssssssssssssasssssssssssssssssens 174
JOG RES DLalls......couiuieieiieiiniiciciciincieiesssssassesssssssssssss s ssssssssssssssssssssssesssssssssssssssssssssens 175
GEAN PrOfiler ...ttt ss s s s 176
CAM PrOFIlI ettt st et et st st st st st st et bttt 178
HOMING ..ttt st et et et et st st et st st et et st sttt 180
HOMING SUDIFOULINES ...ttt ettt sttt et sseseseeacsencsnens 182
Basic Homing (Homing Backup Disabled)cnnerecnecnecirecsecssencsseessenessenessenessencssencsens
Positive Homing (Homing Backup Enabled).........ccoccicnicnicnrcncricrecsesesiseeiseeeseseeseseeseseeseneanenes

12 ACR Programmer’s Guide

CONTENTS

Negative Homing (Homing Backup ENabled)...........ccocvereerenceneeneneneeecireineseseeiessessessesseessessessesseseesees 185
LiMit DELECLION «..cereeieueeceeeeniaricectsesseaseseecesessessessese e sessessessess s ssessesstaseassasssesssssesseassasssssssssasenssncs 186

Dedicated /O for HOMING ..ottt sttt st sttt sseasseens 186
Stopping Motion aNd MOVES........ccccureericrecrecseeiseesee sttt sttt sseassseass 187

Kill All Moves versus Kill All Motion REQUEST............ociiiiiiiciicciescesssssssessssssssases 187

FIAg COMPATISON .cceuerieeeiceceemeicireteeaseasteeetsessessess e e ssess et st ss st sttt bbbt sstaseassaeen 188

Bit Status WiINdOW COMPATiSONccuecueureuriremrireeeneneieeetsee e ssesessese sttt st st sstnssetassstnssetnssstnsssencssencscas 188
Contoured (Tiered) Profiles ...ttt ssessaseaes 191
Blended (Tiered) Interpolated MOVES..........cocvreenincenecinecinecsecisee ettt seens 193
High-speed Position Capture (INTCAP) ... creeerereeineireeseseseeiessessessesseesessessesseasessnes 193
LOCK oottt 195
ROLAIY AXIS...cueeuieneeeieineciseetsec sttt as st st st st et et et et sttt st sttt 197
EXEErNal TiME Base......cuocuiueeeceeeeceecrcteecte ettt sttt st ettt e 198
Servo Loop FUNAmMENTLAIS ...ttt st s 198
SEtPOINT COMPENSALION......cueceeuemeniaeecieasessesseaeeaetsessessesstastae e ssesstastas s e s st astastsssasssessssstaseassaces 198
Viewing the Setpoint CalCUIAtioNSc.cuvcueeureuririncineencinenieicireiseesesteteesessessessee e ssessesstasessncs 199

FOHOWING EITOr ...ttt et et et st et st st st st et st et st sttt 199
BallSCrew COMPENSALIONc.ocuiuiueeriueericiricieeeeneeiste et ettt bttt st ettt st seas 200

BSC WIth PPU ...ttt sas s sss s s s s st sas st assssssassasssnes 200

ENCOAEI ACCUIACY ..ottt ettt ettt ettt sttt sttt as s aeen 201

SIOPE COMTEELION ...ttt et b sttt s sttt ettt ettt bt ant b tas 201

Inverse KinematicCs....ccccceeeeinsnnnnneeeeeccisssssnenneeeeescssssnnnseeeenees 205
Programming the Inverse KINEMALICScocvuveurirerircnireriresieesisesiestses et tsesssseassseaes 205

CHAPTER 4 Writing ACroBASIC Programsccceceeeeeceeccscecscscscscsssssssssssssssssssssssssssssssssssssss 207

WEriting AcroBasic Programs..............eeeeeeeeeeeeeneeeeeneneneneneeenesesesesesesesees .208
APPlICAtION EXAMPIEScneenieeeeece ettt ss et ssene et seeasssenesnens 209

ACR Programmer’s Guide 13

CONTENTS

SAMPIE MOLION PrOZramc.ccccerceiecierremsesiceesersessessee e sseseessessese e ssessessess e ssessessessesssasssssssssensenssssens 209
ENQbIe DIriVes SUDFOULINGc.cueuececereeeaicictreesemsessieetsessessess e tsessesstssase e sessessess s ssessesstas s e ssesssmsesssaces 211
Absolute Interpolated Motion SUDIOULINE ...ttt seene 211
Incremental Interpolated Motion SUDFOULINE........cc.cceueieirecineeirecnecisecisee et ssene e sseneseens 212
Basic Absolute and Incremental Motion SUBroUtiNg..........ccuccerererecincireecece e eaens 212
ADBSOIULE JOZ MOVES SUDIFOULINE ...ttt ectseasessessese s sessessess e e sesseasess s ssessesseasene s 212
Incremental JOg MOVES SUDIOULING..........cciuiueereerer ettt sttt st st en 213
Absolute and Incremental Jog Moves SUBIroUtine..........ccveeecinecirecrecsee e seenesene 213
HOMING SUDIOULING ...ttt et sttt st st et et st st st st et sttt 213
AQVANCEA HOMING .ttt ease sttt ssess st e s s sttt sttt bt astasaaesas 214
HOMING Or XY Z SYSTEM ..ottt tsessesseas et sseastas st ss sttt bbb sstantassacen 215
OPEN SAMPIE ..ttt et et et st st et st s s st st st et et et et et eeas 217
TEACK AFTAY ettt ettt ettt et ettt sttt 218
Programmable Limit SWILCR ...ttt ettt sttt ettt 219
EIP SCANNEIr—WVAgO 750 ...t teasessessese et sseastas s s sttt bbb sesstantassacen 221
JOYSTICK ettt ettt sttt st sttt sttt ettt bbbt 222
CAPLUIE DAttt sttt ettt st et et st st et et st et et st sttt et beeas 224
PEEI=TO-PEEN ...ttt et e s st st e et 225
ACRTXT SEALUS ..ot siesessssssssse s sssssssssesss s s ssssss s ssssssssssssssssssssssssassssssssssssassssssssssssssssssnes 225
ACR7XT HOME €0 HAPd SLOP ..ceueureuinicicireiensieicinetseaststeictsessesseusese e sesseaseusess s e ssesstustasaas s ssssssastnsenssncs 227
TIME SUDFOULINE ...ttt sss s s 228
Error RECOVEIY (IPA) ...ttt ettt ettt et st st et st et st et st st st 229
Add-On Instructions (AOIS) fOr IPA ...t ressessessese e e ssessessessesssessesseaseasesesnes 230
Xpress HMI with ACR7000........ccuuiueuriaiieneninesessessssessessessessessessessssssssssssssssssssssssessssssssessessssssns 231
XPress HMI WIth [PA........o it sstasesss s ssssssesss s ssss s sassasssssassasssssssessssasssssans 232
Testing Programs........eeeeeeeeeeeeeeeeeeeeeeeceeecececccecceecceceecceeeeeees 234

14 ACR Programmer’s Guide

CONTENTS

Program NOT RUNNMING ... eessessessessesesessessessessesssessessessessssssssssssessesssaees 234
AXIS MOTION SEATUSY ...t esetsessessesseaessessessesseas e essesseastas s sesstasaas s ssessssstssenssncs 234
Graphing With OSCIllOSCOPEScuvuueurecuricinecinecineeineeisee sttt sttt sseasssenssseass 235
SAMIPIING ettt st sttt st st s s s et et et et ettt 235
Adding Lines of Code to Programs........ccreeercenceneunenesecesessessemsesesessessessessessssessessessesseesaes 236
TrACE @ PrOGIamcueciceeeenecicineineastsicisesseasessess et ssess st ssessesstassas s ssstusess s sasssesseasessansens 236
CHAPTER 5 Binary Host INterface....cccccceeeeeieieieiiieceeeeeieeenieeeeeeeeeeeeceeeeeeecceececeecececccsceesescscsceees 238
Binary Host INterface........uaueueeeeeeeeeeennennnnnnnennennnnnnenenenenenenemeeessess 239
BIiNary Data TranSfer. ...ttt sttt ettt bt ettt et 239
Control Character PrefiXing ... cceerisicineeseeseseseeeessessesstsssesessesstsstsssssssessesssusesssasssssssssusenssasens 240
THANSIMITEINGeecvecueueuiaceceneeeeuseae e eessesseas et et ssesstas st st st st s st as e e s sttt s st ast s b e seeastanenssacs 240
RECEIVING ..ttt bttt st et et st st st st st et st st st bt sttt 240
HiZh Bit STFIPPING...cueeurieeurieeueieeeieeeeseeteee ettt et et st st st st et st st et st st ettt 240
TPANSIMITEING c..cucveeeeeuceeeceeeceet ettt cast st et s et ss ettt ettt ettt ettt ettt asteaen 24|
RECEIVING covcererieieceeiensiieie ettt ettt e ase st bbbttt bttt bbb et sats 24|
BiNary Data PaCKELS ..ottt ettt sseastas s ssssseastussassncs 241
PACKEE REQUEST......eeeeeeieceecteece ettt ettt ettt ettt sttt bttt st st etas 24|
Group Code aNd INAEX ..ottt ettt st ettt et sttt et st bttt et betas 24|
[SOIALION MASK ...ttt bbb bbbt 241
Parameter ACCESS ...ttt bbb bbb 242
PaCKEE HEAAEN ...ttt 242
PACKEL DALA....ouereieececreremensicieiseseseseee e ssessessessese e ssessess s sse st s s bbbt ss s aa st eas s seseasesssaces 242
USAZE EXAMPIE ...t teesessesseasese e st ssessesseas s ssess s s sttt sse s ssssaces 243
BiNary Parameter ACCESSc.cocreceneceneneeneceneeeneesseesseseseaessenesstncssencssenessencsstucsssassssncsssncssencsens 243
USAZE EXAMPIE .ttt sttt ss e st ess ettt e sttt st 243
BINArY GEL LONGccuieuicnricnecmricieineetsenetseneisenets e eese et sttt st et st ettt et st st s st sens 244

ACR Programmer’s Guide 15

CONTENTS

BINAIY SEE LONG ...ttt s s sst s st et sst e en

BINAry GEL IEEE ...ttt e ssessesstss et e s st ettt saeen

BINAry ST IEEE ...ttt ettt ettt st st st st et st st st sttt

Binary Peek Command........c ettt sseaesstaesetesseaessencseenssecns 245

USAZE EXAMPIE ..ttt s ss st ss e ettt sseasseass

Binary Poke COmMMANd..........cocucuecereunemnerecineuneuniseeeeesessessessesesessesssssessesssssssesssssesssssssessssssssssssassass 247

USAZE EXAMPIE ..ttt ettt sttt ettt st st st st et

Binary Address COmMMAaNd........c.cocecrcerencerenceneneuneeaseessee e ssenesstaesseassstassstacsetassstassesacssencscns 248

USAZE EXAMPIE ..ttt ettt ettt ettt e sttt etas

Binary Parameter Address Command..........iiiniineiiieieiscsssesssssssssessssssssnns 250

USAZE EXAMPIE ..ttt ettt s s e s tse sttt e e ems sttt st seaes

Binary Mask Command ...ttt sttt et sst st eas s 251

USAZE EXAMPIE ..ottt ettt ettt ettt st ettt eeas

Binary Parameter Mask Command...........cccerrineunencenenceneneneeneceseciseesseesstestesseessteseeneseens 252

USAZE EXAMPIE .ottt st s s s tse st s e e e st e ems et ssensseass

Binary Move Command.............iiiiiiieiescsiesesessssssessssssssssssssssssssssssessssssssnss 252

[(2T [e Yo [O OO RORRR

g [XY= A e Yo [OOSR

LINEAI MOVES ..ttt b st sse et b s b e e b e st e se st e s s b ess b e st ssessesentessasessasensesentessasensnenssens

AATC MOVES ..ttt et et sb ettt e s b e s b e s b e st e b et e s s b e s s e b easese st esentessesensebensesenteneasensesensnens

NURB OF SPLINE MOVEScciuiiiiiiiiincieieisscsessesssesssssssns

BIiNary SET and CLR ...ttt et sttt st st et st et et 261

Binary FOV ComMandc.ccuvcuvceremnemerencencrnemnesnesesessessessessesessessessessessesssssssesssssessessssessesssssnsssssas 262

Binary ROV ComMmMan..........iiiiiciiiniiesescsisissesessssssssssssssesssssssssssssesssssssssssssesses 264

Application: Binary Global Parameter ACCESScoeveenecenencenenerreerneesseesseessesessencssencssens 266

DIESCIIPLION «.ccvreecnicueemecarerearereeisese e esese s asese st ssese e et st st st st st st et st sttt st seeacsseaeseens

16 ACR Programmer’s Guide

CONTENTS

ACR Programmer’s Guide

Reading GIODal VArIADIESc.cuviceeereeicecieieeeecetessesses ettt sessessess e ssessess s s ssessssseasssees 267

Setting GIODAl VArIADIES ..ottt st sesse st st ens 267
CHAPTER 6 TroubleSROOtingccccciiiiiiiiiiiieiiciceiniecnnnnesnscssecsesssess 269
TroubleShOOtiNG ...cccceeiiiiiiiiiieiiieiiiiiiiieiiieeeieieieeteeeeieeeeeceieeeteestetsesescststsesesesestsssescsssssssssssssssssssssees 270

Problem ISOIAtION........cccrieeie ettt sttt st s st snass 270

INfOrMation COllECTIONceuieeieietceecr ettt st st st st st s sens 270

TroubleShOoting TaAbBIe ...ttt ettt eaees 270
APPENDIX A Connecting to the Controlleruuueeeeeeeeeennneenenneneeneeeneneeeeneeeeeeeecsceseenaees 280
Connecting to the CoNLrOlIEriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiiiiiiinitesisstesesssessssssssssssssssssssssssesens 281

Setting the IP Address and Subnet Mask—PC.......c.cooinennniecncneseseseceeesessesseseeeees 281
Verifying the IP Address.....eiiiieciiiiiinnneiiiiicciiissnsnseiteeccsssssssssssettsesssssssssssssesssssssssssssssessssssns 284

TrOUDIESNOOTING.....ceceeeeeceiceicet ettt ettt ettt bttt 284

LoSt the ACR’S IP AdAress? ...ttt sttt st st s st s st sseensseens 285

Finding an ACR With the SCan TOol ...ttt sttt st sttt seeae 285

Finding an ACR USING WIF@SRAIKc.cucuiucurereriicrcircieeseeiciseisessessesese st ssesseastassasssessesstaseasssees 286

Resetting the ACRT74T Via HardWare........c.cicincincneseeieiseesesestsiessesseasess st ssesssustassasssssscsstasenssaces 287
APPENDIX B Ethernet BasiCS.....ccccccvvneeeereccssssssnnneeeeescsssssnssaneeeseccsnnes .288
Ethernet Basics.......uuuieieeeciiinnnnnneeeeenccisssnnneeeeeeccsssnnennee 289

IP Addresses, Subnets and Subnet Masks ... 289

[P AQArESSES......oeceveirieeicicisce sttt 289

SUDNEES ...ttt bbb 291

SUDNEL IDS ...ttt ettt st et et et st st st st et st ettt etas 291

SUDNEE MASKS ..ottt sttt ettt st st st et st st et st st st st ettt stas 291
APPENDIX C Servo PID Tuning......cccceeeeeeeeeeeeeeeeeeees 293
Servo PID TUNING . cccceiiiieiienineeeeeeeeeneeeneeeeeeeneeeeeeeeeseeeeesesesesen 294

PUIPOSE Of TUNING .ottt eses et tessasessaesaesssensssensasesssensssensasenss 294

17

CONTENTS

Test SIMPIE MOTION FirSTu.... et esessessesseas e sessessessess e ssessessessesseneens 294
BasSiC TUNING PrOCESS.....covuiueuriceceneuneanisicineisessesses e ssessessessese e ssessssstsseassasssessssseassassassssssssssnssassncs 294
Explanation of TUNING GaiNs........ccceeureeurencunenceneeineceseceseesseessescssencsseesseesseaesstaesstassseassssncssencsens 297
Proportional Gain (PGAIN) ...ttt csstesstesstsess s esstsessasesstsessssessssessssensssessssessssensscans 297
Derivative Gain (DGAIN) ...t ss s ssssssssssssssasssss 297
INte@ral GaiN (IGAIN) ..ottt et essesseae et s s st bbbt bbbt asenesacen 297
INEEEral LIMIT (ILIMIT) oottt sscsessessesasesessesasessesssssesssssssssessesssssssssessssasessessessesassssesnes 297
INtegral Delay (IDELAY) ... eiieeieineseneasessessessessessssasessessessssssesssssesssssssssessessssssssessesssssscssessesssssssnes 297
TOrqUE LIMIE (TLM) ettt ettt ettt ettt ettt ettt sttt 297
TIPS AN THICKS ceveneeeeiciceeeniicieieeaseste ettt ss st ase st bttt sas 297
CaAN’t FEACK SPEEAY ...ttt et b st s st e ettt sttt bttt 298
CaAN’T ACCRIETALEL........erecctrc ettt sttt st bttt 298
DEriVatiVe SIMOOTNINGcu vttt ettt st st st et st st st st sttt 298
AdVanCed TUNING GaNS.....ccocureiereineeieeeeeeieee ettt ettt sttt et st bttt sstaeseas 298
FF VEIOCILY (FFVEL) .eucuiieicieeeeeeieicicteeiseeieietseeseasessese e ssesseasese et ssesstastss e sess st s st ssssstnsenssaces 298
FF ACCEIEration (FFACKC) ...ttt ieesesseastss et ssesstasts e sstastas s et astas s ssesssustassaces 298
Derivative Width (DWIDTH) ...ttt sttt st sttt st st st sttt 298
Feedback VEloCity (FBVEL) ...ttt sttt st sttt st et sttt 299
LOWPASS FIlLEr (LOPASS) ...ttt teisesseasese et sseastasess e bbbt sas e ssesstustassaces 299
NOLCh FIlter (NOTCH) ...ttt iseisessesstae et sseastastas e sstastas s et sesstastassaces 299
APPENDIX D PMM Improvements Over ACR-View 300
PMM Improvements Over ACR-View..............cueeeeeeeeenenee. 301
APPENDIX E ACR7XC/ACR9000 COMPAFiSON ...cuueeeeecrssnneeccsssneecssssnsescssssanssssssanssssssssnssssns 317
ACR7xC/ACR9000 Comparisoncccceeeeeeeeeeeeceeeeeeeeens 318
APPENDIX F ACR7XV/IPA Differencesccccivvvunnerrrrreicssssssnnneersnsessssssssassessesssssssssssssssssessens 320
ACRT7XV/IPA Differ@nCes....uueccieireiinsssssnnetinesesssssssseseess 321

18 ACR Programmer’s Guide

APPENDIX G 6K to ACR Command Referenceu.eeueeeeeeeeereecnnes

6K to ACR Command Referenceceeeeeeeeeeereeceeennnes

APPENDIX H ACR7000 Bits and Parameters

ACR7000 Bits and Parameters

CONTENTS

ACR7XT Control and STatus BItscccccvceerereeencencenerneneeieesersessesseeesessessessessesessessessessesssesses 332
ACR7xT Latched Fault and Warning Bits........oeevevcrcreneneinceneinenesieiseenessesseseeesessessessesseeenes 332
ACR7XT Control and Status Parameterscceeeicrnernenesesssensessessessesessessessessessssesses 333
ACR7xV Configuration Bits and Parameters...........ccceevereneerenceneneenencenencesenesseesseesseesseessens 334
ACR7XV Status PAramELErsc.ccvcveuemrecerersemremeneecesessessessessesessessessessessssessessessessasssessessessessssssses 338
ACRT7XV SLALUS | FIAES c.cuvrerininiceciriniicieiseiseasestcisessessessese e ssessesstastas e ssessesstasans s ssesssastussnssncs 338
ACRT7XV SEALUS 2 FIAES ...euvreureminicecieensineeciseisesseasesieisessessesstss e ssessesstastasssssessesstusanssnssssssssstussassacs 340

ACR Programmer’s Guide

.. 322

323

19

BEFORE WE BEGIN

Change Summary

The change summary below lists the latest additions, changes, and corrections to the ACR Programmer’s Guide
and the corresponding section of Parker Motion Manager Online Help.

Revision E Changes

Document 88-028698-01E (ACR Programmer’s Guide) supersedes document 88-028698-01D. Changes
associated with this document are noted in this section.

e Updated for ACR7000 series and IPA, adding Parker Motion Manager. For prior ACR products, see
previous revision D.

20 ACR Programmer’s Guide

BEFORE WE BEGIN

Before We Begin

This document is intended to accompany the printed and online documents listed below, as part of the ACR

product user documentation.

Reference Document

Description

PMM Quick Start Guide

Walkthrough of Parker Motion Manager for first time users

ACR Command Reference

Provides detailed descriptions of all AcroBASIC language commands with
examples

ACR Parameter & Bit Reference

Provides list of all ACR and IPA Parameters and Bits with explanations

EtherNet/IP User Guide Feb 2015

How to setup ACR7000 or IPA as master for Wago 750 series expansion
I/O

ComACRServeré User Guide

Provides information about ComACRserver6é and detailed descriptions of
its properties and methods for PC interface via Visual Basic .NET, Visual
C++, Visual C#, Wonderware or LabView

ACR7000 Stepper Controller
Hardware Guide

Hardware-related information specific to the ACR7000 Stepper

ACR7000 Stepper Connection
Guide

IO connection document

ACR7000 Servo Controller User
Guide

Hardware-related information specific to the ACR7000 servo

ACR7000 Servo Connection
Guide

IO Connection document

ACR7000 Controller Hardware
Guide

Hardware-related information specific to the ACR7000 controller

ACR7000 Controller Connection
Guide

IO connection document

IPA Hardware Installation Guide

Hardware-related information specific to the IPA

IPA Quick Reference Guide

IO connection document

Assumptions of Technical Experience

To effectively use the information in this manual, you should have a fundamental understanding of the following:

e Electronics concepts such as voltage, switches, current, etc.

e Motion control concepts such as motion profiles, torque, velocity, distance, force, etc.

e Programming skills in a high-level language such as C or Python is helpful.

e Ethernet communication and networking.

e Safety requirements, standards and best practices for automation machinery.

If you are new to the AcroBASIC Programming Language, read the Quick Start and Chapter | thoroughly.

ACR Programmer’s Guide 21

BEFORE WE BEGIN

Before You Begin

Before you begin to implement the ACR or IPA controller’s features in your application you should complete the
items listed below.

e Complete all the installation provided in Hardware Installation Guide.

e For linear actuators, precision stages, linear motor systems and systems with limited travel, install end-of-
travel sensors and enable and test end-of-travel sensors.

e If you are controlling any servo axes, complete the servo tuning procedures. Be sure to use Parker
Motion Manager’s built-in tuning utility to easily tune the axis and integrate the gains into your motion
program.

e If you are new to the AcroBASIC Programming Language, begin with the Parker Motion Manager Quick
Start and read Chapter | (Programming Basics) thoroughly.

Keep in mind that this Programmer’s Guide covers most of what programmers need, but it is ultimately the
responsibility of the programmer to consider the requirements of the machine and develop their application
accordingly.

22 ACR Programmer’s Guide

PARKER MOTION MANAGER

CHAPTER |
Parker Motion Manager

ACR Programmer’s Guide 23

PARKER MOTION MANAGER

Parker Motion Manager

The ACR7000 series controller and IPA are configured and programmed with Parker Motion Manager (PMM), a
Windows-based programming tool designed to simplify and speed up your ACR programming efforts.

PMM’s Configuration Wizard has been streamlined to help you quickly set the controller’s:

e Units for each Master.
e Motor parameters for each axis.
e Scaling for each axis.

e Inputs for Limit and Home sensors.
PMM is an updated code development tool enabling programmers to:

e Create, edit, download and upload AcroBASIC programs.

e Test and debug programs and controller operation.

e Test motion and tune your system to optimize performance.

e Monitor controller, integrated drive, bit and parameter status.

e Use high-performance software oscilloscopes for advanced programming.
e Use an improved Servo Tuner screen featuring auto-scaling graphs.

Ease of use improvements:

e Start Page showing recent projects.

e Projects stored as single files for easy sharing and archiving.

e Improved Terminal Emulator with user buttons, preset buttons for common commands and a command
repeat feature that can be accessed using the arrow keys.

e Product-specific status panels.

o Copy Axis feature to save time when configuring similar axes.

As program development is done within PMM, let’s first learn the main parts of PMM.

24 ACR Programmer’s Guide

PARKER MOTION MANAGER

Getting Started with PMM

= Parkes Motion Manager

File Edit Tooks Windew Help

New Project
5 Open Project

£ Shaw this page on statup
7 Oose this page after propect load.

| Messages

Date&Tme + Source Message

When first starting PMM, the Start screen will appear. A new project can be initiated or an existing project can be
opened. As projects are created, they will appear under Recent Projects. The Start screen can be disabled or re-
enabled under Tools = Options. That menu also allows clearing the list of Recent Projects.

MNew Project x

Marme project
Location s} | | Browse...

IP Address 192,168.100.1

Conftroller ACRTAT - [Create Project From Device
ACRTAV -
ACRTEY oK | | Cancel
ACRTEV -
ACRTAC

ACRTSC

IPA

When creating a new project, give it a name, a location on the hard drive and a type (model number on the side of
controller). The IP address has been set as the controller default of 192.168.100.1. Users can also upload from
the controller for existing machines using the Create Project From Device check box.

ACR Programmer’s Guide 25

PARKER MOTION MANAGER

&L parker Motion Manager - C: 981\ Documents\Parker Hannifin\Parker Motion Manager\Projects\project.pprj *

File Edit Tools Window Help

L X

E|---_4 ix”" ACR74T: Connect X
E-@ ACR74T .
ﬁ .] . - Connection
£} Configuration Wizard
IP Address: 192.168.100.1 Ping Connect
B Terminal Emulator
& Tools
[Status Panels PCIP Address: |102,165.100.08 PC Network Settings
] Scopes
Project Information Controller Information
Controller: ACR74T Controller:
Firmware Version:
Boot Revision:
:'.Messages‘:
Date & Time Source Message

Connection

The Connect window can be opened by clicking the controller name in the Explorer (left-hand side of PMM). The
connection status is shown on the Explorer. The red circle with white X will appear when not connected to the
controller, making it easy to determine if you are not connected when in the Program Editor, Status Panels,
Scopes, etc.

The Ping button performs a quick check to see if your PC can see the controller's IP address successfully.
The Connect button attempts to connect to the controller specified by the IP Address field.

The PC IP Address field displays your PC's IP address. The first three octets (numbers) of this address will need to
match the first three octets of the controller’s IP address (192.168.100.x). The last number will be between 2-255
and unique on your network. Use the PC Network Settings button to change your PC’s IP address.

Need to change PC’s IP address? See Setting the IP Address and Subnet Mask—PC.

A project can have multiple controllers. Right-click on the project name to add additional controllers. This can be
for machines with more than one controller that store all of their configurations in one project file.

26 ACR Programmer’s Guide

PARKER MOTION MANAGER

Bj A |

Elﬁ AC |— Add Controller » | ACRTIT
d Open ACRT2T
ACRTIT
Expand
ACRTAT
Expand All
ACRTAV
Collapse ACRTEV
Collapse All ACRTAY
ACRTAC
ACRTAEC
P&

Multiple connections are supported but each controller will need its own unique IP address. For the ACR7000,
use the IP command in the Terminal Emulator to change the controller’s IP address. Issue the ESAVE command
and cycle power to make it take effect. Be sure to label and note the controller’s IP address!

=T Parker Motion Manager - A\jh17 ments\Parker Hannifin\Parker Motion Manager\Projects'project.pprj

File Edit Toels Window Help

S I Y ! VO

- <
=-1d project #% ACR74T: Connect X [T VAW NS g @ |PA: Connect X

o-#% ACR74T

--4# Configuration Wizard
[#-4” Program Editor IP Address:
----- B Terminal Emulator
-4 Tools

w-fg Status Panels
-5 Scopes

-#% 1PA Project Information Controller Information
+-4# Configuration Wizard
-4 Pragram Editor

----- B Terminal Emulatar Firmware Version: 7.49 Update 53
- Tools

[Status Panels
-] Scopes

- o OS]

#-4# Configuration Wizard
[~ Program Editor

----- B Terminal Emulator
- Tools

g Status Panels

-5 Scopes

Connection

=]
]
(=33
o
=
&
[

Ping Disconnect

PC IP Address: 4

0
ra
(=]
o
=]
&
1]
o

PC Network Settings

Controller: ACRT4V Controller: ACR78V

Eoot Revision: 37

For the IPA, use dial the switches (S| and S10) to set the IP address, or set the dials to 99 and use the IP
command like with the ACR7000.

Troubleshooting a connection? See Connecting to the Controller.

ACR Programmer’s Guide 27

Step I:

Step 2:

Step 3:

Step 4:

PARKER MOTION MANAGER

Uploading a Project from the Controller to PMM

One of the most common tasks with any motion controller is to upload a project from an installed controller so
that it can be downloaded to a replacement controller. There are two ways to upload a project in PMM:

e If there is no pre-existing project file on the PC, the user can upload the entire project from the
controller using the New Project dialog.

e Ifa project is already loaded in PMM, it can be updated to match the project on the controller by using
the upload button in the Toolbar.

This guide will show uploading from the New Project dialog as it is the better option for quickly replacing a
controller.

Procedure
Open Parker Motion Manager.

Click File = New Project (or the equivalent Toolbar button).

Give the project a name and choose a location to store the uploaded file. The defaults are fine. Put in the IP
address of the controller from which you want to upload. Check the Create Project From Device check box. Click
OK.

Mew Project

Marme Uploaded Project
Location |k:\Users\DefauItUser‘\Documents\Parker Hannifin} Browse...

IP Address 192.168.100.1
Controller Create Project From Device

OK Cancel

Wait for the upload to complete.

Marme Uploaded Project

Locatin Please wait... > EE“'
IP Addri Uploading 'Configuration'...

Controller Create Project From Device

OK Cancel

28 ACR Programmer’s Guide

PARKER MOTION MANAGER

Step 5: Once the upload is complete, the project will be loaded and PMM will connect to the controller automatically.

ronn Parker Motion Manager -

File Edit Tools Window Help
oY

CAPMM Demos\Uploaded Project.pprj

Lvvoe

=-#% ACRT4V

7§} Configuration Wizard
4 Program Editor

B Terminal Emulator

Connection

PC IP Address: 150,
+~,(i Scopes
Project Information

Controller: ACR74V

Step 6: Save the uploaded project to the PC by clicking File
Toolbar button for this as well.

IP Address: 192.168.11

254.49.15 PC Network Settings

Disconnect

Scan for IP Address

Controller Information
Controller: ACRT4V
Firmware Version: 7.51 Update 1

Boot Revision: a1

>Save Project or File = Save Project As. There is an equivalent

s

Downloading a Project from PMM to the Controller

There are two ways to download a project from PMM to an ACR controller:

clicks Finish.

This procedure will be explained assuming the user

Procedure
Step I:
Step 2:
Step 3: Click the download button in the Toolbar.
Step 4:

The Configuration Wizard has a check box on the Finish screen that initiates a download when the user

The project can be downloaded using a button in the Toolbar.

is downloading via the button in the Toolbar.

Open the Parker Motion Manager project that is going to be downloaded to the controller.

Connect to the controller. See the previous section for details on establishing a connection.

'Y

The Download Project to Controller dialog box will appear. This dialog box allows the user to configure what parts of

the project are downloaded to save time during development and troubleshooting. Users who are installing a
replacement controller should configure the options like they are set below (all boxes checked, Download

Program(s) pull-down set to All Programs). Click OK.

ACR Programmer’s Guide 29

PARKER MOTION MANAGER

Download Project to Controller X

Controller | ACR74V g

Download Configuration
Mote: Program memory wil be reset

Download Defines

Download Program(s) All Programs

Save configuration, programs to flash memory
All programs will HALT before download

WARNING: Configuration download will de-energize all
drives and halt all programs

@ Drive(s) Disabled & Program(s) not Running

Cancel

Step 5: Wait for the download to finish.

PMIM File Transfer X
Module Size(KB) Progress(%) S/F Errors

Config 13.587 1w @ i}
Defines 0|Pending... (%] 0
PROGRAM O 1.785 100 (]]
PROGRAM 15 30.603 100 (]]
Saving to flash memory. Please wait a few moments...

Step 7: A dialog will appear requesting that the controller be rebooted. Click Yes to reboot it, which will allow the new
motor configurations (if applicable) to take effect.

Please confirm Please wait...

Rebooting the controller. Please wait...

o This will reboot the controller. Continue fy/n)?

30 ACR Programmer’s Guide

PARKER MOTION MANAGER

Step 8: After the reboot is done, the PMM File Transfer dialog will reappear. Click Show Report to see what was
downloaded. Errors will be highlighted in red.

PMM File Transfer x Report x
Module Size(KE) Progress(%) S/F Errors current position of Axis of Peer0 which are Longs 2
X P33697= 4 : REM Peer 0 Group O Length - Peer0 p12288, p12289,
Config 13.587 100 @] p12280, p12291
Defines 0|Pending.. [x] 0 P39698= 0 : REM Peer 0 Group 0 Direction - 0 is from Peer0 to
Scanner
PROGRAM O 100 o o REM The Scanner will read these 4 parameters into GroupQ Long
PROGRA Q 0 registers (p39936, p39937, p39938, p39939)
o N P3959%= 39400: REM Peer 0 Group 1 Start Parameter - These are
Q 0 user parameters which are Floats
o N P38700= 2 : REM Peer 0 Group 1 Length - Peer(p39400, p39401
- P35701=1:REM Peer 0 Group 1 Direction - 1 is from Scanner to
[x] 0 Peerd
o - REM Scanner Group1 Floats are p40072 and p40073. Writing values
P - at Scanner will then be sent to p39400 & p39401 on Peerd.
o o P39702= 39300 : REM Peer 0 Group 2 Start Parameter - These are
. user parameters which are Floats
<] 0 P39703= 2 : REM Peer 0 Group 2 Length - peerd p39300, p39301
PROGRA 0 o 0 P39704= 0 : REM Peer 0 Group 2 Direction - 0 is from Peer0 to
Scanner
PROGRAM 11 <] 0 REM Writing values at Peerd p39300 and p39301 will be sent to
PROGRAM 12] 0 Scanner Group2 Floats p40080 and p40081.
PROGRAM 13 o 0 'SET 16672 : REM start the network
PROGRAM 14 0) 0 RETURN
ENDP
PROGRAM 15 30.603 100] o
w
@ Download completed. ok Show Report -
Reference

Several dialogs shown in the Procedure section above deserve more explanation. This information is shown
separately to keep the procedure light and easy to follow.

The Download Project to Controller dialog

has several options for choosing what gets Download Project to Controller x
downloaded.
Controller |ACR74W Nt
The Controller pull-down allows the user to Download Configuration
select which controller is being targeted for Mote: Program memory wil be reset
download. This only affects projects with FErniees) Bl

multiple controllers.
Download Programis) |All Programs

The Download Configuration check box selects Save configuration, programs to flash memory

whether the Configuration Wizard data All programs will HALT before downlosd
(System Code) will be sent down during the
download. It is sometimes helpful to uncheck WARNING: Configuration download will de-energize all

this if minor tweaks are being made to a drives and halt all programs

program. If the box is checked, existing _ . .
Drive(s) Disabled Program(s) not Running

programs and defines will be deleted, meaning
new ones will need to be downloaded to take

i : Cancel
their place at some point. anee

ACR Programmer’s Guide 31

PARKER MOTION MANAGER

The Download Defines check box selects whether defines are sent down.

The Download Program(s) check box selects whether programs are sent down. The associated pull-down selects
which program to send down. The user can also select All Programs.

There are also indicator lights to show that the drives have been disabled and the programs have been halted.

NOTE: Downloading to the controller will disable all drives and halt all programs.

The PMM File Transfer Dialog also has several

useful features. PMM File Transfer x

Module Size(KB) Progress(%) S/F Errors
Config 13.587 100

The Module column shows the various items
scheduled for download, most of which are
programs. Defines and configuration data are

. PROGRAM 0 1.785 100
listed as well.

The Size(KB) column shows the size of the PROGRAM 2 0|Pendin
data. PR

The Progress(%) column will show Pending... e = N
for sections whose download has not started - -
(or are not scheduled). It will otherwise
show how much of a section has been
download.

5] 3 5] 3]
(U] [ls] (U] (V=] Lo (U] [Us] [l=]

The S/F (success/failure) column shows a red PR
“x”” for sections that failed to download PR

fi
s

5] 3

(U] [ls] (U]

properly (or were never started). It shows a PROGRAM 12 0|Pendin
green check mark for sections that completed PROGRAM 13 0|Pendin

(U] [ls] (U]

without errors. PROGRAM 14 0P

PROGRAM 15 30,603 100

0000000 ODODOODODOODO0OO

The Errors column shows how many errors
were present during download of a section.
These can be AcroBASIC syntax errors, @ Download completed. oK Show Report

parameter range violations invalid options.

The Show Report button displays a full report of what was downloaded and highlights errors in red.

32 ACR Programmer’s Guide

PARKER MOTION MANAGER

Parker Motion Manager Parts

iy Parker Motion Manager - C:\PMM Demos\Project001.pprj * - o x

File Edit Tools Window Help

“ oo i

- ACR7AT _
g . - - Connection
E-4# Configuration Wizard

9 Axes IP Address: 192.168.100.1 Ping Connect

| Master 0 (Master 0)

—d Memaory

PC IP Address: 150.254.82.65 PC Network Settings

4 System Code
-4 Program Editor Project Information Caontroller Information
----- K Terminal Emulator
- Tools

- Status Panels Firmware Version:
_d Motion Status Panel

g Drive Status Panel

g Numeric Status

4 Bit Status

4 EtherNet/IP Status Panel
4 Servo Loop Status

(-] Scopes

Controller: ACRTAT Controller:

Boot Revision:

Watch1 Watch2 ‘Watch3 Watch4 >

Date & Time Source Message
o 2020-12-22 10:26:12.493 AM | PMM ‘watch 4 window was loaded
0 2020-12-22 10:26:10.035 AM | PMM ‘watch 3’ window was loaded
0 2020-12-22 10:26:05.896 AM | PMM ‘watch 2" window was loaded
2020-12-22 10:26:01,970 Ak | PMBA ‘watch 1' window was loaded

The main screen of PMM is divided the into seven different sections shown above: Menu, Toolbar, Explorer,
Workspace, Message Window and Watch Window(s).

Each section is further explained in the following pages.

Menu

The Menu bar provides quick access to common project management tools and options. Many of them are
familiar to Windows users.

ACR Programmer’s Guide 33

PARKER MOTION MANAGER

i

File Menu :
Manage project files. Most of these are standard Windows file g2l MNewProject... Ciri=N
management tools and are self-explanatory. . Open Project... Ctrl+0

Revert Project reloads the project from the saved copy on the hard drive. Close Project

4 Sawve Project Ctrl+5
Print allows the user to print any text-based editor (like the Program e r+

Editor) to PDF or a printer. [Save Project As...
Revert Project...

Recent Projects provides a list of recently edited projects so that they can

be quickly reopened. Print... Ctrl+P
Recent Projects 3
Exit Alt+F4

. Edit
Edit Menu
Undo Ctrl+Z

Provides a few standard text editing tools, such as Copy and Paste. The tools in
this menu are only usable in text-based editors like the Program Editor and Redo Ctrl+¥
textual fields like the ones in the Memory Configuration screen.

W Cut Crl+X

& Copy Crl+C

[E] Paste Ctrl+V
Delete

Select All - Chrl+A
75 Clear All

Tools

Download Project...

Tools Menu

Provides certain tools specific to PMM.
Upload Project...

Download Project can be used to quickly download an entire project to the

controller. Run Program...

Halt Program...

Ubload Project can be used to upload a project from the controller into PMM,

overwriting the current project data. Scan IPAddress...

Options...

FO OO CE

Run Program and Halt Program can be used to start or stop one or more
programs.

Scan IP Address is useful for finding a controller whose IP address is unknown. More information about using this
tool can be found in Finding an ACR with the Scan Tool.

34 ACR Programmer’s Guide

PARKER MOTION MANAGER

Window Menu Window

Provides options for managing internal PMM windows. Close
Close All
Close All is useful for quickly decluttering the screen.
Show Message Window
Show Message Window, Show Watch Windows and Show Start Page all Show Watch Windows -

display their respective windows, which are covered later.

Help |

Parker Motion Manager Users Guide Ctrl+F1

Show Start Page

Help Menu

Holds various help-related topics.
ACRTO00 Program Samples

Parker Motion Manager User’s Guide will open the
ACRT000 Online Program Samples

help file, which is an indexed and searchable CHM
file designed to allow for rapid look-up. Parker Motion Manager Online Video Training

Parker Motion Manager Release Motes
Parker Motion Manager Release Notes can help in

case you believe you have encountered a software Ll L et o=

bug. Parker Motion Manager Logs
About Parker Motion Manager

Take System Snapshot can help if you need to send
data about your PC configuration to Parker

engineers.

About Parker Motion Manager will display the version of PMM.

ACR Programmer’s Guide 35

PARKER MOTION MANAGER

Tools > Options Options -

This dialog contains settings for PMM. Most of them

are self-explanatory. Show start page on startup

|E| Close start page after project load
The Show menu and toolbar tool tips option is useful Load lastopened project on application startup
for new programmers who are not familiar with

PMM yet |:| Show splash screen on application startup

Show menu and toolbar toal tips
The Show debug messages option can be helpful if you

)) []5how debug messages
are using a pre-release build (unusual) or need to

supply application crash information to Parker show Update O5 Loader Button

support. []show SamplePrograms
Mew Projects
Default Contraller ACRTAT -

Default IP Address 192.163.100.1

Default Projects Folder

CHPMM Demos | | |
Recent Projects
Maximum number ofitems to display 5 -
Maximum display length of each item 40 5
[] Clear Recent Projects
| Reset | Cancel

Toolbar

The Toolbar is where the most commonly used tools are kept. Each tool gets an icon and a tool-tip (“hover-over”
text) that helps identify and describe it.

[(DEda@ o XY 2»«K L5200 ¥ O
Icon availability changes automatically and depends upon the Workspace.

| Opens a dialog for creating a new project.

Opens a dialog for selecting a previously saved project.

36 ACR Programmer’s Guide

L

PARKER MOTION MANAGER

Saves the changes to the current project.

Opens a print dialog for sending the current text to a printer (including print-to-PDF).

Displays/hides the Message Window.

Undoes the last change made to the text in the active control.

Redoes the last change made to the text in the active control.

Cuts the selected text to the Clipboard.

Copies the selected text to the Clipboard.

Pastes the selected text from the Clipboard.

Opens the Find/Replace dialog for finding and/or replacing the current text.

Increases the indentation of the selected line in the active program editor.

Decreases the indentation of the selected line in the active program editor.

Comments the selected block of text in the active program editor-.

Uncomments the selected block of text in the active program editor.

Adds a bookmark to selected line in the active program editor. Bookmarks are useful for quickly navigating

very large programs.

Goes to the next bookmark in the active program editor.

Goes to the previous bookmark in the active program editor.

Removes a bookmark from the selected line in the active program editor.

Opens the Download Project to Controller dialog.

Opens the Upload Project from Controller dialog.

Opens the Starts Program(s) dialog.

ACR Programmer’s Guide 37

PARKER MOTION MANAGER

@ Opens the Halt Program(s) dialog.

Explorer

The Explorer is divided into several sections.

=53 Projectt Connection
- dastilhal These tools allow the user to rename the controller, add another controller to

the project, delete a controller, connect to a controller or disconnect from a

controller. The Connect screen also provides useful information about the

controller, such as firmware level and model humber.

3 Configuration Wizard Conﬁguration Wizard
Axes

Master 0 (Master 0) This wizard is a comprehensive start-to-finish configuration tool that sets up axis

3 () Axis 0 names, motor data, engineering units, I/O configuration, default move
3 (V) Avds 1
-3 @ s 2
-3 (A) Ais 3
¢ Memaory
Finish

o System Code

characteristics and more.

-7 Program Editor Program Editor
----- T4 Defines Th . di h .
----- 4 Program 00 e various program editors are where programs are written.

----- 7 Program 01
----- 4 Program 02 The Defines editor is a tabular editor where a user can set up named aliases
""" ' ; Emgram gi (known as “defines”) for commonly used parameters. PMM’s Defines editor
""" & Frogram

..... 7 Program 05 provides a user-friendly experience by checking user input for validity.

----- 27 Program 06

----- 4/ Program 07

----- 47 Program 08

----- 47 Program 09

----- 47 Program 10

----- 4 Program 11

----- 47 Program 12

----- 47 Program 13

----- 47 Program 14

----- B Terminal Emulator Terminal Emulator

This is one of the most useful tools in PMM and will receive detailed coverage
later. The Terminal Emulator is used to send ASCIl commands directly to the
controller.

38 ACR Programmer’s Guide

PARKER MOTION MANAGER

Tools

& Servo Tuner

Jog/Home/Limits
T3 () Axis 0 evaluate performance and update gains. Not available for stepper axes.
=0 () Auis 1
9 (@) Axis 2
3 (A) Aois 3

The OS Update tool is used to update to load a new OS onto the controller.

] Status Panels Status Panels

o Motion Status Panel
4 Drive Status Panel
2 Numeric Status view position/speed data.
4 Bit Status

o EtherNet/IP Status Panel
¢ Servo Loop Status

or parameter in the controller.

The EtherNet/IP Status Panel displays connection and fault data specific to
EtherNet/IP.

The Servo Loop Status panel visually connects the various position command
registers on each axis with the output being generated to meet that position.

Scopes Scopes
o Oscilloscope 1 Th Il h h in th Il hel
5 Oscilloscope 2 € scopes allow the user to graph any parameter in the controller to help

3 Strip Chart evaluate performance or track down process issues.

Message Window

The Message Window provides status and error information while online with the controller. It also displays
“housekeeping” messages from PMM when not online. It is recommended that it be kept open when online.

The Servo Tuner is a graphical tuning tool that helps the user run test moves,

The Jog/Home/Limits screen is used to test jog motion on each axis, allowing the
=5 0S Update user to quickly verify that the hardware and configuration are working correctly.

The Motion Status Panel and Drive Status Panel are used to investigate faults and

The Numeric Status and Bit Status panels are used to check the status of any bit

Message =
Date & Time Source Message

0 2020-07-09 14:35:59.197 PM | PMM::ACRTAT Download completed.

o 2020-07-09 14:35:49.076 PM | PMM:ACRTAT Saving to flash memory.Please wait a few moments,

0 2020-07-09 14:35:32.757 PM | PMM::ACRT4T Stopping Programs execution...

0 2020-07-09 14:35:32.710 PM | PMM:: ACRTAT Kills all motion requests and disabled all drives.

0 2020-07-09 14:35:04,557 PM | PMM::ACRTAT Connecting to controller succeeded,

0 2020-07-09 14:35:04.230 PM | PMM:: ACRTAT Connecting to controller...

ﬂ 2020-07-09 14:34:57.737 PM | PMM:ACRTAT ‘project’ was loaded,
Informational messages appear in blue, warnings appear in yellow and errors appear in red. The Messages
Window is particularly useful when troubleshooting connection issues with the controller. Notice the two
warnings shown at the top of the image below:

y .
ACR Programmer’s Guide 39

PARKER MOTION MANAGER

e WatchdogTimeout Reconnect Event triggered. This means that PMM has previously lost its connection
to the controller but is attempting to reestablish it. This happens when the controller is rebooted after a

download.

e WatchdogTimeout Event triggered. This is the warning that occurs immediately after PMM loses its

connection to the controller. Again, this will occur during a reboot.

| Messages | Watch 1

Click on column headers to sort messages by that column’s data. Right-clicking the header presents an option to

Source
! PMM:ACRTAT
N, [2020-07-09 14 87 PM | PMM::ACRTAT

0 2020-07-0% 14:58:58.085 PM | PMM:ACRTAT
0 2020-07-09 14:58:57.700 PM | PMM:ACRTAT
o 2020-07-09 14:58:56.231 PM | PMM:ACRTAT
0 2020-07-0% 14:58:53.418 PM | PMM:ACRTAT

2020-07-09 14:58:48,944 PM | PMM::ACRTAT

@D 20200709 14:58:31,305 PM | PMRMACRTAT

Message

NatchdogTimeout Reconnect Event triggerec

WatchdogTimeout Event triggered

Connecting to controller succeeded.

Connecting to controller...
Ping to 192.168.100.1 Success.
Ping to 192.168.100.1 Success.
Connecting to controller failed.

Copneciing to coptroller,

clear messages. The messages can also be selected and copied to a text file, email or spreadsheet program.

| Messages |

Date & Time tirca M
@ 20200709 14:35:5 Copy Ctri+C Download completed.
@ 20200709 14:35:4 Clear Del saving to flash memary.Please wait a few moments,
0 2020-07-09 14:35:3 § Clear All Stopping Programs execution...
0 2020-07-09 14:35:3 Select All Crl+A Kills all motion requests and disabled all drives.
o 2020-07 09 14:35: 0 T FRTTFIITTTRCRTST Connecting to controller succeeded.

| 2020-07-00 14:35:04.230 PM | PMM:ACRTAT
o 2020-07-09 14:3457.737 PM | PMM:ACRTAT

Connecting to controller...

‘project’ was loaded.

Watch Windows

Watch windows let the user monitor bits and parameters in real time when PMM in online with the controller.
Four watch windows are available. These are saved within the project. If the user closes the project and loads the

project again, the watch windows are also loaded.

Right-click to the right of Messages to display watch windows or go to Menu = Window = Show Watch Windows.

- Watch 1 Close
Date &1 Watch2 Close All
0 2020-12- LUTIE R Show Message Window
P Show Watch Windows k m Watch 1
Show Start Page Watch 2
Watch 3
Watch 4

40 ACR Programmer’s Guide

PARKER MOTION MANAGER

Each watch window can hold 20 rows of bits or parameters.

Messages | Watch 1 x

Alias Description Type Address Value
4 AxisDriveEnable Bit: 8465 True
AxisDriveFault AxisDriveFault Bit: T False
AxisZeroActualPosition Auxis 00 Actual Position Parameter 12290 14924
UserVariablePZeroUserVar User Variable POOOD User Variable Parameter o0 123
Length User Variable PO01 User Variable Parameter 1 26.2

To add defines to a watch window, go to Program Editor = Defines and right-click the define you want to add.
Then, click Watch and select the watch window that should display the define.

Defines

Alias Description Type Address/Value
*» 1 Length User Variable POO1 User Variahble Parameter 1
#* Copy o add a new Define (Max allowed Defines are 1000,
Delete Row

Watch k Watch 1

Watch 2

Watch 3

Watch 4

Bits and parameters can also be added to a watch window from the Motion Status Panel or Drive Status Panel. To
add a bit or parameter, right-click on the indicator of interest and select a watch window:

B® ACR74T:Motion Status Panel X

Programs
0|1 /|2 |3
GearActive (@ | @ | @ | @ 0 ldle - D
CamActive |[@ @ | @ | @ 1 idle @ (0
Jog Active (@ | @ | @ | @ 3 1dle e lo
Drive Enable L | b | b |
Kill All Motion Request :|= Watch v || Watch 1 | D
Drive Fault | & | & | @ | @ Watch 2 [}
Maximum Position Error | @ | @ | @ | @ Watch 3 D
Pos. Hard Limit Encountered | @ | @ | & | @ Watch 4
Neg. Hard Limit Encountered | @ | @ | @ | & D
Home Found | & | & | @ | @ 7 Idle L D
Positive Soft Limit | @ | @ | @ | @
Megative Soft Limit | @ | & | @ | @

This feature is also supported on the Numeric Status panel.

ACR Programmer’s Guide 41

PARKER MOTION MANAGER

B® ACR7AT:Mumeric Status X

User Variables ~ | |User Doubles ~| | Group O ~
Item Description Parameter Value .
User Variable POOD User Variable POO 123
Copy
User Variable PO01 User Variable P01 26.2
User Variable P002 User Variable POz 0 Create Define
Watch
User Variable P003 User Variable P03 0 - ’ Watch 1
, . Watch 2
User Variable P0O04 User Variable P04 0
Watch 3
User Variable POOS User Variable P03 0
Watch 4
User Variable PO06& User Variable P0G 0
User Variable POO7 User Variable PO7 0
User Variable PO0S User Variable PO& 0

The Bit Status panel can also be used to populate watch windows.

™ ACRVATBIL Status X

Onboard /O ~ | | Onboard ;0 » | | Inputs ~ | P4096
@ BITO: INP 00 @ EBIT16: INP 16
Copy
@ BITT: INP 01 @ BITI7: INP 1T
Create Define
& BIT2: INP 02 & DT NP 18
Watch » Watch 1
& BIT3: INP 03 15 IMP 19
Watch 2
& BIT4: INP 04 20: IMNP 20
Watch 3
& BITS: INP O35 210 IMP 21
Watch 4
@ BITe: INP 06 w—urrec, [MP 22

42 ACR Programmer’s Guide

Configuration Wizard

PARKER MOTION MANAGER

The Configuration Wizard steps users through setting the controller for the motor or drive type, scaling,
limit/home sensor assignment and fault settings for each axis. These will be specific to the controller type. An
ACR74T integrated stepper will have four axes and need to know the step motor part number, whereas an
ACR78C controller will have eight axes and need to know the drive types (servo or stepper) and feedback
resolution for servos or closed-loop steppers. The ACR74V integrated servo will need to know the servo motor
type for each axis while the IPA is a single-axis servo. All screens in the Configuration Wizard have three common

buttons located at the bottom:

e Previous and Next allow the user to navigate back and forth through the Configuration Wizard.
e Reset to Default sets all parameters on the current screen back to their default values.

NOTE: The information presented here is referential in nature. For an example of setting up an
ACR for the first time, see the Parker Motion Manager Quick Start Guide.

Axes

The first item in the Configuration Wizard is the Axes screen, used to create basic functional groupings of axes.

P ACRT7A Anes X

Axes summary

Click on an "alias", "Command Output”, or "Master" cell to edit its value.

Axis Alias

0

a
= M = s

Command Output

Internal Servo Drive O
Internal Servo Crive 1
Internal Servo DCrive 2

Internal Servo Drive 3

Master
Master 0
Master O
Master O
Master O

Each axis has an alias, a short alphabetical name up to four letters long that can be used to command it to move
(X25 Y4), enable (DRIVE ON X), reset (RES X) or perform other tasks. Numbers and special characters are
not permitted in axis aliases—only letters are allowed. The defaults are:

o AxisOis X.
o Axis2isY.
o Axis2isZ
o Axis3is A

Axis 4 is B.
Axis 5 is C.
Axis 6 is U.
Axis 7 is V.

ACR Programmer’s Guide 43

PARKER MOTION MANAGER

Users can rename the axes if they prefer. The names are only used for identifying the axes and to not ascribe any
specific motion properties. For instance, an axis called U is not required to be a rotary axis.

The Command Output specifies the output hardware that will be used for an axis. This feature is mainly included
for the ACR7xC so that the user can select £10 VDC output or step-and-direction output. For the ACR7xT,
ACR7xV and IPA, the Command Output is fixed as the drive hardware is included in the product. Technically, the
user is also permitted to change the order of axes—Axis 0 can be made to use the hardware typically reserved for
Axis 3, for instance. This practice is discouraged and is permitted mainly to provide contingencies in the event of
hardware failure (swapping an axis to get a machine running).

B® ACRTACAxes X

Axes summary

Click on an "Alias", "Command Output”, or "Master" cell to edit its value.

Axis Alias Command Output Master
0 X External Servo Drive 0 hMaster 0
1 Y External Stepper Drive 1 Master O
2 z External Servo Drive 2 Master 0
3 A External Servo Drive 3 Master 0

Each axis is assigned to a master which is a motion trajectory calculator. A master is attached to a program
(Program O for Master 0, Program | for Master I, etc.). Each axis must be assigned to a master. By default, they
are all assigned to Master 0. The number of masters available is equal to the number of axes available on the
product and is never more than eight.

Interpolated motion between multiple axes requires that they be attached to the same master. Interpolated
motion refers to path-based motion that requires more than simple sequencing. The chart below helps explain
what types of motion are considered “interpolated” in the ACR.

Interpolated: Not Interpolated:
e Diagonal lines. e Jogging.
e Circles/arcs. e Gearing.
e Splines. e Camming.
e Smoothed paths (look-ahead). e Single-axis moves (via jog profiler).
e Modulo motion. e Homing (via jog profiler).

Each axis can also be commanded to be moved separately, as is the case with jog moves.

Some machines have multiple functional axis groups. For example, a machine might have one cartesian system that
performs a stacking process and another that handles an inspection process. Multiaxis ACR controllers are
capable of handling separate axis groups, a task best accomplished using multiple masters. Assigning a set of axes
to Master 0 allows for interpolated motion on those axes in Program 0—axes attached to Master | are similarly
coordinated using Program | and so on.

44 ACR Programmer’s Guide

PARKER MOTION MANAGER

In the system shown above, the two subsystems would be attached to different masters, like Master 0 and Master
I. This would allow the controller to tightly coordinate moves within each subsystem, but would also allow each
subsystem to maintain its independence from the other.

The advantage to using interpolated motion on a master is that it is easy to make a move on several axes start and
stop at the same time, following exactly the path that the user needs. This can save process time and fulfill certain
machine goals (e.g. “move the product in a circle”).

Master (Units)
The second screen in the Configuration

Wizard is the Master screen. Here the

units for the master can be selected. Master Name (Alias) |Master0
Users can use inches, millimeters,

degrees, revolutions, encoder counts or Units
SPeCif)’ their own. The units selected @ Inches O Millimeters (O Degrees O Revolutions O Counts (O Other Other
here are used throughout the rest of the

configuration and in AcroBASIC R

programs. Selecting Inches, Millimeters,

Acceleration Ramp |‘ID.DD | Inches/sec/sec
Degrees or Revolutions offers advantages :
Velocity |1.DD | Inches/sec
on the Scaling screen later in the
. X . Deceleration Ramp |‘ID.DD | Inches/sec/sec
configuration. Selecting Counts amounts
A) Stop Ramp |‘ID.DD | Inches/sec/sec
to no scaling, as all moves will use
encoder or stepper counts as their unit - i

of measure. Selecting Other provides no ﬁl}.—/i"‘?{“'
I 1
special features—this selection should ' |

only be used in special circumstances.

Users can also set default values for velocity, acceleration, deceleration and stop ramps for interpolated motion.
The stop ramp is used when stopping motion with interpolated moves. The provided diagram explains how the

ACR Programmer’s Guide 45

PARKER MOTION MANAGER

selected dynamics affect the motion profile. Note that the motion defaults can be changed at any time during
program execution, so getting them right here is not critical.

The Master alias can be changed to name the group of axes. This name is only used within PMM for
documentation purposes and is not used in the AcroBASIC program, nor is it stored in the controller.

Drive/Motor

The Drive/Motor screen lets the user configure what motor is connected to the AC. In the case of the ACR7xC,
the user instead configures parameters for the attached servo or stepper drive. This screen’s display is highly
dependent on the model of ACR in use, so it will be covered separately for each one.

The Motor/Drive screen includes an Invert Motor Direction checkbox. This makes it easier to reverse the
direction the user wants to be positive for the application. By default, clockwise looking at the motor shaft is
positive for all rotary motors, except the P Series drives with P Series motors which are counterclockwise positive
by default. For linear motors, the default positive direction is away from the cable exit on the coil.

DrivelMotor (ACR7xT Stepper)

This screen allows the user to configure the type of stepper B ACR74T:Master 0 (Master Qk(X) Axis 0:Drive/Motor X

motor connected to this axis.
Motor Settings

Motaor Series Motor Size/Winding

Motor Settings
ECLM hd S082F W

For Parker motors, use the Motor Series and Motor

Size/Winding pull-downs to select the type of motor in use. Motor Part Number eCLM-5082F
The motor’s model number can be found on its product label.
This will populate all the other data in the Motor Setting

II

Full Steps/Rev 20

Max Motor Current 5,
subpanel. 0.850

Feedback (built-in)
For third-party motors, select Other from Motor Series. Three Encader Resolution 4000
fields are available for editing:

e The Motor Part Number field is for documentation Drive Settings

Resalution
purposes only.
o The Full Steps/Rev field should usually be set to 200 Microsteps/Rev 21200
which corresponds to a 1.8° step motor (50 Current

cycle/rev). Set this field to 400 for motors with 0.9° i 0.850
steps (100 cycle/rev).

. . : Enable Standby Current Reducti
e Max Motor Current is the published current rating for nable Standby Current Reduction [

the motor in amps peak-of-sine. Standby Current %

Standby Current Celay, ms

T

Drive Settings
There are several fields here. The defaults are fine for most Invert Motor Direction
applications, but they are explained below for clarity.

46 ACR Programmer’s Guide

PARKER MOTION MANAGER

e The MicroSteps/Rev pull-down allows the user to configure how fine the smallest possible step is for this
axis. There is usually never a reason to set it to any value other than the default of 51,200, which is the
highest setting.

e The User Max Motor Current field allows the user to reduce current to the motor. Lowering this value can
help keep the motor cool but will also limit the maximum available torque.

e The Enable Standby Current Reduction check box allows the drive to reduce the current it delivers to the
motor when it is not moving. Using this check box reduces motor heating during standstill periods, but
also limits the available holding torque.

e The Standby Current % field allows the user to configure how much current will be delivered when standby
current reduction is enabled. The default is 50%, which is typically sufficient.

e The Standby Current Delay, ms field is the length of time between the end of motion and the start of
standby current reduction. The default is 0 ms. It can help to increase this time if the stepper motor
appears to “slip” a little at the tail end of 2 move.

e The Invert Motor Direction checkbox switches the direction of positive motion for the axis, useful if the
default positive direction is found to be going the wrong way.

Drive/Motor (ACR7xV Servo or IPA)

This screen allows the user to configure the [¥Ae XN EEEIN VEEEE RPN e VRTINS

type of servo motor connected to this axis. Select Mator Part Number (from Motor Nameplate)

Use the Series, Frame, Stack, Winding and Series Frame Stack Winding Feedback
Feedback pull-downs to configure the model BE ~||e ¥ ¥ |C MRE ¥
of motor used on this axis. The motor

model number should be printed on the Select Cooling Method == .
label on the side of the motor. This will set Heat Sink i Invert Motor Direction []

motor parameters such as rated current, Mote1: Changing the motor part number or cooling method will reset the fields

encoder resolution, torque constant and in 'Advanced Motor Parameters' to their default values.

Mote2: Hardware requires both motors on the same axis pair to be same

. i feedback type. For example, both motors connected to Axis0 and Axis1 need

the Series to Other (more on this below). to be either incremental encoders OR both motars need to be Biss-C
encoders.

many others. For non-Parker motors, set

The Invert Motor Direction checkbox switches
the direction of positive motion for the axis, [J show Advanced Motor Parameters

useful if the default positive direction is found to be going the wrong way.

The Brake checkbox should be checked for motors with a built-in failsafe brake. The ACR7xV has built-in brake
supplies tapped from the internal 24 VDC control power. The IPA has a dry contact brake relay that requires an
external 24 VDC supply.

The Select Cooling Method pull-down can be set to Heat Sink or No Heat Sink. For motors that will mount to a
metal actuator, like an electric cylinder or ballscrew table, this should be set to Heat Sink. For motors that will be
left in open air, it is better to select No Heat Sink. For motors that will be connected to gearheads run at a high
duty cycle, No Heat Sink is also a more appropriate option since gearheads can generate significant heat on their
own. The No Heat Sink option reduces the torque rating of the motor slightly to help prevent it from overheating.

The Show Advanced Motor Parameters checkbox activates a hidden screen that is not normally needed when using a
Parker motor—it is unchecked by default. However, it should be checked whenever a third-party motor or

ACR Programmer’s Guide 47

PARKER MOTION MANAGER

Parker kit motor is being used. It should also be checked for Parker linear motors purchased without mechanics
(i.e. Parker did not provide the encoder and bearings).

There are two notes on this screen and the second one bears clarification. For the ACR7xV, the axes are broken
into pairs. Axis 0 and Axis | are on the first power board, Axis 2 and Axis 3 are on the second power board and
so on. Each power board can only support one type of feedback. If a motor with BiSS-C feedback is selected for
Axis 0, so must one be selected for Axis |. If incremental feedback is needed on Axis 3, then Axis 2 will need to

use a motor with incremental feedback. Users should plan accordingly when selecting motors.

Drive/Motor (ACR7xC)
This screen allows the user configure the type of

servo/stepper drive and motor connected to this axis.

Select Drive
The Drive pull-down is used to select the model of Parker
. . . . Drive |P Series v|
servo or stepper drive connected to this axis. Available
drives will be filtered depending on whether the user
configured this axis for stepper or servo output. All of Select Motor
Parker’s currently offered compatible drives are listed as well
. . Matar |PM-FAL v
as several legacy models. For third-party drives, select Other.
Note that any axis set up for servo output must be Rotary Linear

connected to a servo drive configured for £10 VDC analog
torque control. Some Parker servo drives are listed for both o
Invert Motor Direction []
servo and stepper output because they support +10 VDC

torque control as well as step-and-direction.

Select Drive

Drive |E-AC « | Resolution |25000 pulses/rev

If the axis is configured as a stepper axis, a
Resolution field will be made available next to the

drive selection. This must be filled out with the
drive’s command resolution. Selecting a Parker
drive populates the resolution with the default for that drive. It is important to double-check the resolution
setting on drive to make sure the correct value is entered in this field.

The Motor pull-down is used to select the motor for this axis. The main purpose for doing this is to configure the
encoder resolution, used in scaling calculations. Both rotary and linear motors from Parker are listed. These
motors are filtered based on their compatibility with the selected drive. For third-party motors, select Other.

The Motor Type radio selector can be set to Rotary for rotary motors or Linear for linear motors. This helps with
automatic scaling calculations later. If a Parker motor and drive have been selected, this option is grayed out. If
Motor is set to Other, the user needs to select Rotary or Linear as appropriate.

The Invert Motor Direction checkbox switches the direction of positive motion for the axis, useful if the default
positive direction is found to be going the wrong way.

If Drive is set to Other, two additional radio selectors will become visible. These configure axis I/O for normally
open or normally closed operation. The Drive Fault Input radio selector configures the input used by the drive to
report a fault. On ACR7xC axis connectors, this input is on pins 16 and 17. The Drive Enable Output configures
the output used by the controller to enable the drive. On ACR7xC axis connectors, this output is on pins 20 and
21.

48 ACR Programmer’s Guide

Drive Fault Input Drive Enable Output
O MO @ NG O NO. @ N

Consult the drive’s documentation to know which is appropriate.

Feedback

The ACR7000 and IPA controllers support several standard
feedback types. The Feedback screen allows the user to fine-tune
their configuration. Each controller type has its own version of the
screen, but there are a few common tools:

e Set Up Position Feedback. This option is only present for
stepper axes. Stepper axes do not require position
feedback, but support it as an option. Unchecking this box
turns feedback off.

e Source Input. This selects which encoder will be used for
feedback on this axis. ACR74T and ACR7xC units allow

PARKER MOTION MANAGER

™ ACR74T:Master 0 (Master 0):0{) Axis 0:Feedback X

Set Up Position Feedback
Source Input | Encoder 0 (Default) ~
Use built-in motor encoder
Rotary Linear
4000.00

Invert Encoder Direction

the user to select any encoder except the auxiliary encoder. ACR7xV units only allow the user to select

one of the two encoders on the same power board as this axis. So, Axis 0 can use either Encoder 0 or

Encoder | for feedback.

e Use built-in motor encoder. If this option is selected, all
options below it are grayed out and default values are used
from the motor file.

e Type. This option is only available for the ACR7xC. It
allows the user to select either quadrature (default)
encoder feedback or SSI (Serial Synchronous Interface).

The SSI option is useful for interfacing with certain kinds of

position sensors, including devices that are not traditional
encoders. It is also useful when interfacing with an Aries
AE/SE servo drive for legacy machine upgrades.

™ ACR74V:Master 0 (Master 0):(X) Axis 0:Feedback X

Set Up Position Feedback
Source Input |Encoder 0 (Default) ~
Use built-in motor encoder
Rotary Linear

SO TW0)
UL U

e Package. The user can select Rotary or Linear. This helps PMM work out scaling by determining which

set of units apply.

e Resolution. Encoder resolution in counts/rev for B ACR78C:Master 0 (Master 00:00 Axis 0:Feedback X

rotary encoders or counts/mm for linear encoders.

e Invert Encoder Direction. This option is only
available for the ACR7xC. It allows the user to
change the positive direction (polarity) of the
encoder. This is useful in cases where the command
and feedback signal polarities do not match due to
system design.

The ACR74T integrated stepper has optional quadrature
encoder inputs for each axis. Open loop steppers (step
motors without encoders) are supported as well as closed-

Set Up Position Feedback

Source Encoder 0 b

Use built-in motor encoder

Full Quadrature

Rotary Linear

loop steppers. The eCL series closed-loop step motors’ encoder extension cables connect to these inputs,

resulting in a plug-and-play solution. Selecting an eCL motor sets the motor settings on the previous screen and

ACR Programmer’s Guide 49

PARKER MOTION MANAGER

the encoder resolution under Feedback. Linear quadrature encoders, such as with Parker precision stages, are
also supported.

The ACR7xV integrated servo requires encoder feedback for B IPA:Master 0 (Master 0):00 Axis 0:Feedback X

closed-loop servo control. If a Parker servo motor was selected on
. . Set Up Position Feedback
the Drive/Motor screen, the feedback screen will have already been P

set based on the motor specifications. Source Input | Encoder 0O w

Use built-i t |
The ACR7xC standalone controller supports stepper and servo > bulfin motor encoder

axes. Servo axes will produce a 10 VDC analog signal to an Rotary (' Linear
external servo amplifier and read its encoder feedback. The

arnn NN
UL U

ACR7xC supports both standard quadrature feedback (rotary or
linear) and SSI. The auxiliary encoder only supports quadrature. By
selecting the motor type on the Drive/Motor screen, the Feedback will have already been set.

The ACR7xC also supports stepper drives and servo drives in step-and-direction mode. In this mode, the drive is
closing the position loop. The controller does not require feedback but can read the encoder if connected.

Position Maintenance is available for end-of-move corrections for stepper systems and can use rotary or linear
feedback.

Scaling

The Scaling screen allows users to define a

relationship between encoder or stepper counts and Bt Ml

engineering units. The controller needs to know how i”k”;mp —

many counts are in one inch, millimeter, degree, Parker Actustor T View
revolution or whatever other unit is in use. Instead of | s« ¥ ordercode o2 1 H
requiring the user to perform this calculation, PMM Er e of e i

provides an easy way to configure the unit scale based

on easily found data about the components in use. Specily Reducer(s)

parker Gearhead v L 2
Parker Gearhead
Parker actuators, precision stages and gearheads have series 7 < ordercode oz s 7

been added' Use the Part number marked on the Enter the numerator of the gearbox ratio (input)
products to set the order code in PMM. Configuring e e comorminator of he gearbox atio

(output)

the Parker mechanics in use will automatically import
the correct scaling factors, like gear ratio or screw
pitch. Generic screw, belt, chain and gear elements

Enter Scaling Factor (if you did not specify a transmission and reducer]

are still available to support non-Parker mechanics. 1 motor revoluion = | s6eoces7 ilimeters

The top subpanel shows the units currently in use on this axis.

Units of this Axis: Millimeters

NOTE: The tools on this screen pertain to setting up rotary motors. For linear motors, leave all
options at default (None) and click Next.

50 ACR Programmer’s Guide

Specify Transmission

This subpanel allows the user to select the type of
linear or rotary mechanics in use. Parker mechanics
are available by selecting Parker Actuator/Precision Stage
or Parker Rodless Actuator from the top pull-down
menu. Following that, the type of actuator can be
selected using the Series pull-down. Most Parker
actuators have multiple drive train options, which are
specified in the model number. The Order Code pull-
down can be used to choose from the available
options.

PARKER MOTION MANAGER

Specify Transmission
Parker Actuator/Precision Stage ~

Parker Actuator

Series |400XR ~ Qrder Code D2 v

5.00000000 Enter the lead of the leadscrew in

Millimeters/Revolution

If a Parker actuator is not selected, the option is provided to enter the lead of the screw or diameter of the roller
in the provided field. This field is filled automatically if a Parker actuator is selected.

Specify Reducer(s)

This subpanel works like the previous one, but is
intended to be used for gearheads. The top pull-down
allows the user to select whether a Parker gearhead is
being used or some other gearing system. If a Parker
gearhead is in use, the Series pull-down can be set to
any currently available model family from Parker. The
Order Code pull-down is used to select the gear ratio,
which will be printed on the product label.

Non-Parker reducers are also supported. Users can

Specify Reducer(s)
Parker Gearhead ~

Parker Gearhead

Series | PX v Order Code Q03 w

3.00000000 Enter the numerator of the gearbox ratio (input)
1.00000000

Enter the denominator of the gearbox ratio
(output)

choose a custom gearbox and enter the ratio manually. Other less common reduction options are also supported,
such as pulleys and chains. Users can enter pulley diameters or tooth counts to configure the scale.

Enter Scaling Factor

This subpanel displays the ratio of motor revolutions to linear or rotary output units. It normally does not permit
changes, but will allow the user to enter any number if None is selected as the transmission and reducer.

Enter Scaling Factor (If you did not specify a transmission and reducer)

1 motor revolution =

Millimeters

The axis Scaling screen allows users to set the number of motor revolutions for their units. Predefined

Transmissions and Reducers help calculate the scaling.

ACR Programmer’s Guide 51

PARKER MOTION MANAGER

Fault

The Fault screen allows the user to set which inputs

Fault Detection

H H Hardware Limit Detection
are connected to the end-of-travel limit sensors and {5 oo o et Lot et I

[Enable Negative Hardware Limit Detection

whether they are normally closed or normally open.
When a limit sensor is encountered, further motion

Assign Digital Inputs For Specific Functions

Name Description Value

Positive Limit Specific Input ssigned as the positive limit No Ornboard Input v

in that direction is prevented but the drive is not

Positive Limit Input Type Nermally Closed = ‘SET', Normally Open = ‘CLR' [] Normally Closed

disabled. Motion in the opposite direction can be Negatie imit Specfic nput sssgned as e regate imt o Orboard nput v
Negative Limit Input Type Normally Closed = 'SET', Normally Gpen = ‘CLR' Normally Closed

commanded. End-of-travel sensors should be Home Limt Specific nput assigned as the home limit No Onboard Input =
Home Limit Input Type Normally Closed = 'SET, Normally Open = 'CLR' [_] Normally Open

normally closed in case the sensor fails. For

example, if its cable is cut or its connection comes Software Limi Detecion
. . . [enable Positive Limit h

loose, the sensor would fail open, faulting the axis e e
[Enable Negative Limit nches

and stopping motion. Software LiitDeceleration Inchesys*
Maximum Position Error Detection position Mantenance Settings
Positive Position Error Inches Deadband Stepper counts
Negative Position Error

iches Velocty inchesys
o e . Acceleration Inches/s®
Hardware Limit Detection

The check boxes Enable Positive Hardware Limit Detection and Enable Negative Hardware Limit Detection are used to
turn on limit checking. Without these checked, the axis will not respond to the limit sensors. They are

unchecked by default since not all applications need or use limit sensors.

The Hardware Limit Deceleration is the stop rate when the controller encounters a limit sensor. Make sure this is
high enough to stop the motor/stage before the actual hard-stop is hit.

[] Enable Positive Hardware Limit Detection Hardware Limit Deceleration [500.00 Inches/s?

[Enable Negative Hardware Limit Detection

Assign Digital Inputs for Specific Functions
This table is where specific digital inputs are assigned as limits and home. Any onboard input can be used for any
of the three functions.

The positive, negative and home inputs can be assigned to any input and are no longer required to be consecutive.

MName Description Value
Positive Limit Specific Input assigned as the positive limit Mo COnboard Input s
Positive Limit Input Type Mormally Closed = 'SET', Mormally Open = 'CLR' Mormally Closed
Megative Limit Specific Input assigned as the negative limit Mo Onboard Input ~
Megative Limit Input Type Normally Closed = 'SET', Mormally Open = 'CLR! Mormzlly Closed
Home Limit Specific Input assigned as the home limit Mo Onboard Input v

Home Limit Input Type Normally Closed = 'SET', Normally Open = 'CLR' [Normally Open

Configuration is done in the Value column. The Positive Limit, Negative Limit and Home Limit pull-downs (set to No
Onboard Input in the image above) are used to select which input serves this limit/home function. The Input Type
pull-downs can be used to select between Normally Open and Normally Closed. Most Parker mechanics that ship
with limits have normally closed limit switches and a normally open home switch.

NOTE: Normally open/normally closed is not the same distinction as sinking/sourcing or
NPN/PNP. For more information about I/O, refer to the appropriate hardware manual.

52 ACR Programmer’s Guide

PARKER MOTION MANAGER

Software Limit Detection
Software limits can be used to limit travel range. If the travel STILENE I LEEEET

range is exceeded, the axis will be brought to a controlled stop. L] Enable Positive Limit T
This is especially useful in systems that use absolute encoders [Enable Negative Limit Inches

but do not have limit switches. The check boxes Enable Positive Software Limit Deceleration 1500.00 Inches/s?
Limit and Enable Negative Limit turn on soft limit checking. The

associated fields set the distance from zero in user units at which the software limits will stop motion. The
Software Limit Deceleration field specifies the deceleration ramp that will be applied if the limits are violated.

Maximum Position Error Detection
Maximum Position Error is the maximum allowable error between Maximum Position Error Detection

the commanded position and the actual encoder position. This is Positive Position Errar Inches

required for a servo axis. This is not active for an open-loop stepper. Negative Position Errar

It can be used for a closed-loop stepper or servo in stepper mode

Inches

with the encoder connected. When the position error limit is violated, the controller assumes it has lost control
of the motor and disables the drive. The position error limits should be set large enough that the axis does not
generate nuisance faults during normal operation. They should also be set small enough that the drive cannot
cause the motor to “run away” in the event of catastrophic failure. The Positive Position Error and Negative Position
Error fields allow the user to set different limits in each direction if desired. Note that the negative limit must be
entered as a negative number.

Position Maintenance Settings
PMM allows Position Maintenance to be enabled for Position Maintenance Settings

end-of-move corrections with move settings and Deadband Stepper counts
deadband. This feature only applies to stepper axes ST Inches/s

with encoder feedback. When active, Position

Maintenance tries to improve precision by issuing a Acceleration Inches/S*

small correction move after motion stops to account for any position error at the end of the move. This move is
made automatically and is not shown to the user in the ACR’s position command registers.

The Position Maintenance Settings check box can be left unchecked (default) if Position Maintenance is not desired
or if there is no encoder available to support it. The fields within the subpanel configure move dynamics:

e Deadband configures the zone in which the axis is considered “settled”. If an axis gets close enough to its
intended destination that it is within the distance specified by Deadband, no corrective move is generated.
Note that this field is in stepper counts, not user units.

o Velocity configures the maximum velocity of the correction move in user units. It is best to keep this value
small to reduce the likelihood of a stall.

o Acceleration configures the acceleration and deceleration of the correction move in user units.

If the application calls for two axes that need to be set up identically, there is now an easy way to do it. Right-click
the axis in the Explorer and click Copy To. Changes can be made after the copy is complete.

ACR Programmer’s Guide 53

PARKER MOTION MANAGER

=-¢# Configuration Wizard

..... '_‘4 MES
=g Master O (Master 0)
Open
w0 (@) Axi Expand
- (A) Axi Expand Al
..... _‘4 Memcr}r
_____ == Finish Collapse
_____ =3 System Cq Collapse All
----- B Terminal Emulator (V) Ais 1
B"'?Ems (Z) Axis 2
o Servo Tuner]
{J— - (A) Asxis 3
g Jog/Home/Limits

Memory

This screen helps the user allocate the ACR’s available memory to programs, global variables and Defines. The
memory allocation (in bytes) can be altered in the Value column. The Allocation bar at the bottom of the screen
shows how much memory is used and how much is free.

Memory for programs has already been allocated.

Only if the programs are very large (notified on Allocate Program/Other Memory (bytes)

download) would these allocations need to be Name Value Comment
. . Program 0 100000
increased. Program memory is consumed by Program 1 10000
AcroBASIC code, locally dimensioned variables, Program 2 18000
. Program 3 10000
program statements with returns (GOSUB, IF, srogram 2 10000
WHILE and FOR statements) and interpolated Frogram 5 10000
3 7 Program & 10000
moves (e'g' X Y)' Program 7 10000
Program & 1000
Program 14 has a large allocation for the onboard Frogram 9 1000
. . . Program 10 1000
data capture for scopes. The Configuration Wizard .
rogram 11 1000
settings are stored within Program 15, which has a Program 12 1000
fixed allocation. Frosrem 12 1009
Program 14 200000 Reserved for Scopes data
Program 15 100000 Reserved for Configuration Source
By default, the number of g|0ba| variables is 4096 Number of Global Variables (64-bit floats) 4096
(PO—P4095). These are 64-bit floating point values Number of efines 100
available to the user for any use. They are not .
retained by default, but their values can be saved to pllcatediz588 byieslolliotalhivs 8576 lbyTeSITME)

flash using the FLASH IMAGE command. Itis
recommended to leave this allocation at default.

The memory for defines is also set here. By default, the user is given 100 Defines. This is sufficient for many
applications, but some may need more. If more are required, the allocation must be increased and the

54 ACR Programmer’s Guide

PARKER MOTION MANAGER

configuration must be downloaded to the controller again. If the configuration is re-downloaded, it is also a good
idea to download everything else as well since downloading a configuration wipes programs.

Finish and System Code

The Finish screen completes the Configuration Wizard. It displays any errors and warnings. Errors will need to
be corrected before downloading. Click on the error to go to that section and fix it.

Configuration Wizard - Errors & Wamings

Error 1: Axis 0 negative hardware limit is enabled, but it is not defined.

Warnings are a heads-up to double-check the settings. Click on the warning to go to that section and fix it.
Woarnings do not prevent proceeding to download.

Warning 1: Axis 0 positive hardware limit is defined, but it is not enabled.

If PMM is connected to the controller, the Download configuration to controller on Finish check box will be available
and checked by default. Clicking Finish completes the Configuration Wizard and generates the System Code. If the
aforementioned box is checked, it also initiates a project download.

When Finish is clicked, the entire Configuration Wizard settings are used to generate the AcroBASIC code shown
in the System Code viewer. The System Code is cleared when the project is closed or a setting within the
Configuration Wizard is changed. Finish needs to be clicked to regenerate this code before downloading. Clicking
Finish will also save the project.

35 REM AXIS O

Configuration Wizard - Errors & Wamings 37 ATTACH AYISO ENCO STEBEERD

38 BTS00 MULT 4

39 YISO PPU 51200.000000

40 BXTIS0 PM SCRLE 10.24

BITB469 : REM Disable EXC Response
BIT17163 : REM Disable step motor to encoder scaling
ACR Extended IO Settings

BITE468 : REM Enable Drive I/0

BITB464 : REM Enable CW CCW vs StepDir
BITE470 : REM DEC Serves Shutdown Function
BITB453 : REM Invert Drive Fault Input Level
Rxis Gains values

49 BXISO PGRIN 0.00244141

50 AXISO IGRIN O

51 BXIS0 ILIMIT O

5Z AXISO IDELAY O

53 BXISO DGRAIN O

54 AXISO DWIDTH 0

55 BXIS50 FFVEL 0

56 AXISO FFACC 0

57 BXIS0 TLM 10

58 AXISO FBVEL 0

58 REM Bxis Limits

60 BXIS0 HLBIT (127,127,2)

61 BXT150 HLDEC 500

62 SET BIT16144 : REM Positive EOT Limit Level Invert
- . . 63 SET BIT16145 : REM Negative EOT Limit Level Invert
Download configuration to controller on Finish 64 CLR BIT16146 : REM Home Limit Level Invert
65 CLR BIT16148 : REM Positive EOT Limit Enable
66 CLR BIT16149 : REM Negative EOT Limit Enable

€7 AXIS50 SLM (0,0)
€8 RXIS0 SLDEC 500
. . 69 CLR BIT16150 : REM Positive Soft Limit Enable
< Previous Finish 70/CLR BIT16151 : REM Negative Soft Limit Enable
71 REM Axis Stepper Motor Settings
72 P7938=2.8 : REM Max amps peak (user)
73 P7946=256 : REM Micro Step

74 BIT15618=1 : REM Standby Enal

75 P7944=50 : REM Standby Percentage

76 P7945=0 : REM Standby Delay

77 BITEB455=0 : REM Invert Motor and Encoder direction
78 BIT15616=1 : REM Assert Config flag

TS BXISO CON

ACR Programmer’s Guide 55

PARKER MOTION MANAGER

Program Editor

The Program Editor section in the Explorer has fifteen program editors (Program 00 to Program 14) and the
Defines editor. The program editors are used for writing programs in AcroBASIC and support syntax highlighting:

e BLUE for AcroBASIC keywords.
e CRIMSON for text strings.
e GREEN for comments.

AcroBASIC programming is covered in detail in Programming Basics.

The Defines editor provides a central location for defined aliases, referred to hereafter as defines. Programmers
can use defines to refer to bits and parameters by name in their programs. Any bit or parameter can be assigned a
define. Using a define instead of a bit or parameter number can make a program more readable and easier to
maintain. Defines are global and are recognized across all programs as well as the system prompt in the Terminal
Emulator.

Programmers can also define constants in the Defines editor. The only permissible values are positive integers and
zero.

Defines
Alias Description Type Address/Value
*» 1 rlength User Variable POO1 Farameter 1
2 Conversion User Constant Constant 32768
MotinPositionx MotlnPosition Bit 768
4 JoggingX Jogactive Axis0 Bit 792

56 ACR Programmer’s Guide

PARKER MOTION MANAGER

Terminal Emulator

The Terminal Emulator allows programmers to send AcroBASIC commands directly to the controller. The
Terminal Emulator is frequently used to:

e List programs so that their contents can be reviewed without having to do an entire project upload.
e Listen to a program’s PRINT statements, which are useful for debugging.

e Change settings, like move dynamics or the IP address.

e Set and clear bits.

e Interrogate bits and parameters for their values.

e Issue motion commands for testing, troubleshooting or prototyping.

| 2 ACR74T:Terminal Emulator X [RIS BB 4 T X

User Buttons x

Group W

i

LIST LINE NUMBER |I*T T2 :

mEw
Y

—0 User 1
Clear Display d

User 2
User 3

User4

Prompts

The short sequence of characters that is printed by the controller at the start of every line is called the prompt.
The prompt displayed represents the context of the Terminal Emulator and where any typed commands will be
routed in the controller.

SYS> is the system prompt. Here, the programmer can use commands like ATTACH and DIM to query system-
level information like axis attachments and global memory allocation.

P0OO0> is the prompt for Program 0. There is a prompt for every program. Each program prompt gives the
programmer access to the data within that program. For instance, issuing the DIM command from the P03>
prompt displays local memory allocation for variables and arrays in Program 3. Certain motion command,
specifically the ones requiring the use of an axis alias, will only work from the program prompt to which their
master is assigned (Program 0 by default).

Use the pull-down menu in the top left to switch prompts. Users can also change the prompt by typing SYS,
PROGO, PROGI, etc.

Basic Terminal Operations

Most operations in the Terminal Emulator are accomplished by typing a valid AcroBASIC command. After typing
the command, the programmer must press Enter for the command to be accepted by the controller. Commands

ACR Programmer’s Guide 57

PARKER MOTION MANAGER

are case-insensitive, but axis aliases (e.g. X or Y) and defines are not. While it is typical for one line to have one
command, multiple commands can be put on the same line by separating them with a space, a colon and another
space (“ : ”). This is helpful when trying to get two commands to process in rapid succession when issuing them
manually.

Programmers can save time by using the up and down arrow keys (1 and |) to scroll through commands that have
already been used in the session. This is an easy way to repeat commands.

| 2 ACR74T:Terminal Emulator T X

User Buttons x
FROGD w
LIST LINE NUMBER
: 0 STP 10 V ECHO
10 STE A0 VER 4
ECHOA
ERASE

To list a program, switch to that program prompt and click the LIST button or LIST LINE NUMBER.

| 2 ACR7AT:Terminal Emulator X T X

Command2 W

10 DEC 10 STP 10 VEL 1
LRUN

TERRLG AXISD
[Servo Only)

TERRLG AXIS1
[Servo Only)

TERRLG AXIS2
[Servo Only)

TERRLG AXIS3
[Serva Only)

PRINT "EXTENDING
5 PRINT "GOING TO

Every AcroBASIC program has a line number for each line. Line numbers proceed in increments of 10. These line
numbers are shown in the Motion Status Panel when a program is running. When troubleshooting, the line
number can be used to find out which command is causing a program to stall or abort.

Programmers can use the Terminal Emulator to temporarily add extra lines of code between the existing ones.
This is done by typing a line number followed by a command, for example, “21 AXIS 0 DRIVE ON”. Lines can
also be overwritten using this method. Lines can be deleted by simply typing the line number and pressing Enter.
These changes remain in effect until power is cycled or a REBOOT command is issued. If desired, the changes can
be permanently saved to flash using the FLASH IMAGE command.

For very large programs, users can partially list a program up to a specific line number.

58 ACR Programmer’s Guide

PARKER MOTION MANAGER

POO>LIST, 40

10 PROGRAM

20 REM my first program
30 DRIVE ON X

CC 10 DEC 10 STP 10 VEL 1

PRINT "GOING TO XO"
ENDP

To start two programs and the same time and listen to one, separate RUN PROGx and LRUN with a “space :
space” command delimiter.

POO>PROGL
PO1>1ist

Fl0= P10+1
PRINT P10
INH -82
GOTO MATH
ENDP

POl>run progl : lrum

1
3
4
=
]

The LRUN command runs a program and enters listen mode (LISTEN + RUN) and allows users to see output
from PRINT statements while the program is running. To exit LISTEN mode, press Escape.

In the above sample, bit 82 is a system bit that toggles every second. INH is an inhibit command waiting for bit 82
to turn on and INH -82 waits for it to turn off. Hence, global parameter P10 is incremented every second and is
printed as the program loops through MATIN.

The status of a bit or parameter can be checked in the Terminal Emulator using the PRINT command. When
checking bits, the bit is “clear” (“off” or “false”) if it returns 0 and “set” (“on” or “true”) if it returns -1. The
example below checks the status of the PROGO Running bit and indicates Program 0 is indeed running.

ACR Programmer’s Guide 59

PARKER MOTION MANAGER

POO>PRINT BIT1024

-1

The “?” operator can be used as shorthand for PRINT, saving time when querying bits and parameters.

POO>? BIT1024

u

Write to a bit with SET and CLR.

| 2 ACR74T:Terminal Emulator X I ACRTAT:Eit Status X

Onboard /O ~ | | Onboard YO ~ | | Qutputs ~
@ BIT32: OUT 32

Bit 32 is the controller’s first onboard output. If it is not connected to an indicator, its status can be viewed on
the Bit Status panel or queried by issuing “? BIT32” in the Terminal Emulator.

|2 ACR74T:Terminal Emulator X B ACRT4TSEit Status X

Onboard /O ~ | | Onboard IyO ~ | | Outputs ~

@ BIT32: OUT 32

Parameter values can be checked with PRINT or “?”. Parameters can be assigned values with “=".

| ™ ACRT4T:Terminal Emulator X

Programs marked with the PBOOT command are automatically started on power-up. To start running all PRBOOT
programs without having to cycle power, issue the PBOOT command in the Terminal Emulator.

To cycle power on a controller, issue the REBOOT command. Note that the connection will be lost when the
controller reboots. PMM will reconnect automatically after a few seconds. The message window will show the
connection timeout and reconnection.

60 ACR Programmer’s Guide

PARKER MOTION MANAGER

reboot

Messages

Date & Time Source Message

User Buttons

User Buttons have been improved. Users can now name these buttons and insert commands or multiple lines of
code. This can save time and prevent typos while debugging. The code is sent with a mouse click.

L}ACR?‘T:Tenninal Emulator X ﬁACR?rlT:Connect x T x
PROGO o

Groupl ~

LIST LINE NUMBER

Print P10, Position

Clear Digplay
User2
User 3
Edit User Buttons
User4
User Button
Print P10, Position User 5
User 6
Text |Print P10, Position
Commands LT
PRINT P10 User 8
PRINT P12280/P12375
User 9
User 10
User 11
User 12

In the example above, the RUN ALL command starts all programs. P10 is a global user parameter and
P12290/P12375 is the actual position for Axis 0, scaled in engineering units. These commands can be added to
a button to automate tedious and repetitive command sequences.

ACR Programmer’s Guide 61

PARKER MOTION MANAGER

There are 60 User Buttons (5 groups of 12) with common commands preloaded in the last two.

4
4

® T X

4

User Buttons X User Buttons User Buttons X User Buttons X User Buttons

<

£
|
|
i
1

Print P10, Position

TERRLG AXISO
(Servo Only)

TERRLG AXI51
(Servo Only)

TERRLG AXI52
(Servo Only)

TERRLG AXIS3

2
2

:
-
g

62 ACR Programmer’s Guide

Tools

PARKER MOTION MANAGER

The Tools section in the Explorer includes the Servo Tuner, Jog/lHome/Limits screen and OS Update panel.

Servo Tuner

B ACR74V:Servo Tuner X

Servo Tuner

(X) Axis 0

Position Loop Gains
Basic
Proportional Gain |0.00244141 |3
Derivative Gain |0.00000000 =
Integral

Integral Gain |0.00000000
Integral Limit |0.00000000 =
Integral Delay |0.00000000 =

Advanced

v

]

FF Velocity |0.00000000

FF Acceleration 0.00000000

v

Derivative Width |0.00000000 |5

v

Feedback Velocity |0.00000000

1

Torque Limit |10.00000000 =

Send To

Controller

Save To Save To
project Controller
Get From Get From
Project Controller

Timebase

<

Sampling...

Zero

Erase

>

Display
Channel 1 Channel 3
Channel 2 Channel 4

Display Data

Export Data

Move Configuration

Move Settings...

Single Run

Repeat Run

Position Data
® Ccounts O user units

Channel 1

Auto Scale Y-Axis

Channel 2
[Axi 1t Jog

R

Auto Scale Y-Axis

Auto Scale Y-Axis

Status Axis(0)

@ Connected Channel 4

@ Drive Enabled Integral Term
Motion Killed

U
Enable Drive —
] &

LAl A s Tor Auto Scale Y-Axis

Clear All Kills

The Servo Tuner is a fast and easy way to tune servo axes. The axis can be selected from the pulldown in the
upper left-hand corner of the Servo Tuner. Servo gains are listed on the left-hand side.

This section is intended to provide an overview of the Servo Tuner itself. For a procedure on tuning a servo axis

see Servo PID Tuning.

The Servo Tuner is broken into several panels:

e Channels

e Position Loop Gains

e Timebase
e Display

e Move Configuration

e Status Axis(0)

e The Graph

Channels

By default, the four channels are set up as follows:

ACR Programmer’s Guide 63

PARKER MOTION MANAGER

e Channel | shows Following Error in yellow. Units are encoder counts.

e Channel 2 shows Current Jog Velocity in green. Units are encoder counts per second.

e Channel 3 shows Final Output Signal in orange. Units are +10 and represent the torque command in
volts.

e Channel 4 shows Secondary Setpoint in purple. Units are encoder counts.

In addition to controls specific to each channel, there is a global Position Data
setting for all position-related parameters to be graphed in ® Counts () User Units
encoder counts (default) or in user units.

Each channel has several controls:

e The parameter field (top) displays the parameter being Channel 1
graphed. This can be changed to any parameter desired
using the “...” button to the right of the field (details
below).
e The time field (second from top) displays the horizontal 1 Unit / Div -

and vertical shift for this channel. The vertical shift can

Auto Scale Y-Axis

be altered using the vertical slider at the right. See
Timebase for details on the horizontal shift.

e The unit field (bottom) field displays the vertical scale
(default | unit/div). This can be altered using the up and down arrow buttons to the right. Check Auto
Scale Y-Axis (checked by default) to make the graph fit the available vertical space. This option is usually
preferred as it makes the data easy to read.

When the user clicks the “...” button to select a new

. . : Parameter Pick X
parameter, the Parameter Picker dialog appears. This FremeterTicker
dialog helps the user drill down to a parameter of interest A -
by using three pull-down menus. The top menu selects the

1. Position Parameters ~ Cancel
parameter group, the second menu selects the subgroup
and the third selects the individual parameter type. The list Following Error -
at the bottom breaks a specific parameter type (Following Item Description Parameter
Error in this case) down into enumerated options, often Axis 00 Following Error P12291
based on axis number (otherwise encoder number, stream fads 01 Following Error F1zsa7

Axis 02 Following Errar P12803
number, ADC number, etc.). ’

Axis 03 Following Error P13059

. . . . Axis 04 Following Error P13315

The Parameter Picker dialog is consistent across PMM and i _ .

Axis 05 Following Error P13571
is also used in the Oscilloscope and Strip Chart tools. It is s 06 Following Error P13827
conceptually very similar to the Pick A Bit dialog that Axis 07 Following Error P14083

serves the same purpose for bits. The same pull-down
menus used in the Parameter Picker are also used in the
Numeric Status panel.

When a flag parameter is selected (P4096-4375), the bottom pull-down makes it

possible to select a specific bit (or bits) to watch in the scope. [] BIT791: Ballscrew Activate
BIT792: log Active
[] BIT793: Jog Direction
[] BIT794: Jog At Speed
[] BIT795: Jog Stopping
[1 BIT73A: lnn Forwarsd

64 ACR Programmer’s Guide

Position Loop Gains

Servo gains can be changed using the fields on the left-hand side of
the Servo Tuner. There is a pull-down at the top of the panel to
select which axis to modify.

The gains are broken into three groups:

e Basic gains are used on every application.

e Integral gains are used on applications requiring very
precise settling.

e Advanced gains are used on applications requiring
precision tracking or high acceleration.

There is also a Torque Limit field near the bottom. Scaled 0-10,
this allows users to limit output torque on an axis. On an

ACR7xC standalone controller, the value in this field represents
the physical voltage limit of the torque command analog output.

After changing a value, press Enter to send that value to the
controller. Otherwise, the text will turn blue to indicate that the
value has not been sent. The Send To Controller button can be used
to send multiple values at once.

Basic

Proportional Gain |0.00244141 |5

Derivative Gain |0.00002000 =

This panel comes with several buttons:

e Save To Project saves the values in the panel to the project
file on the hard drive.

e Get From Project loads values from the project file into the
panel, but does not send them to the controller.

e Send To Controller sends the values from the panel to the
controller.

e Save To Controller issues an ESAVE command to the
controller, which tells the controller to save its current
values to flash memory.

e Get From Controller uploads values from the controller to
the panel.

After getting the gains dialed in, it is a good idea to press Save To Controller and Save To Project to make sure the

gains are preserved and will not be lost when power is cycled.

Move Configuration
The Move Configuration panel has three buttons:

PARKER MOTION MANAGER

Position Loop Gains
Basic

Proportional Gain

Derivative Gain

Integral

Integral Gain
Integral Limit

Integral Delay

Advanced
FF Velocity
FF Acceleration
Derivative Width

Feedback Velocity

Torque Limit

Save To
project

Get From
Project

ACR Programmer’s Guide 65

(X} Axis O

000244147

0.00001000

0.00000000

0.00000000

0.00000000

0.00000000
0.00000000

0.00000000

0.00000000

10.00000000

Send To
Controller

Save To
Controller

Get From
Controller

L4

PARKER MOTION MANAGER

e Move Settings Move Configuration

e Single Run

* Repeat Run Move Settings...

The Move Settings dialog allows users to input a distance and time for a test move

that will be executed by the Servo Tuner. It automatically calculates the velocity Single Run
and acceleration ramps required and allows the user to specify several levels of S-

curve profiling (jerk limiting). Users can check Return Move to return to the starting

position after the end of the move. Users can also select a triangular motion profile Repeat Run
or their own user-defined profile. It is best to start testing with a small move, tune
the axis with a basic move and then tune to a move typical for the application.
Move Settings x
Profile Definition Maotion Profile
: Distance 2.000 Millimeters
(® Trapezoidal
O Triangular Time 1.000 Seconds
(0 User Defined Velocity 3.000 Millimeters/s
‘ﬂ.cceleratign 11.250 r‘\."'“l”r'l"IEtEr-S.."IS1
S-Curve
; 11.250 Millimeters/s*
O None Deceleration /
® 25% Jerk 168.750 Millimeters/s*
O 50% Return Move
Dwell Before
O 100% Return 1.000 Seconds
(a]4 Cancel

Users can execute the move once by clicking Single Run or multiple times by clicking Repeat Run. This provides the
ability to change tuning gains while doing the same move over and over to see the effect of the changes (rather
than having to click to start the move repeatedly). Note that Repeat Run requires onboard sampling, covered
under Timebase.

Timebase
The Timebase panel controls the graph’s time (horizontal) axis. It consists of several tools:

66 ACR Programmer’s Guide

PARKER MOTION MANAGER

e The time/division indicator shows the length of time represented by Timebase

one division on the horizontal axis. This can be changed using the up S00 ms / Div
SIS > f LAY . -

and down buttons to its left.
e The slider beneath the time/division indicator can be used to scroll < >
data in the graph back and forth horizontally.
e Clicking Zero resets the time slider as well as the vertical slider for sampling... Zero
each channel, an effect only noticeable if Auto Scale is disabled.
e Clicking Erase erases all data from the graph. Eai-
Clicking Sampling opens the sampling dialog. Here, the user can select PC-based Sampling (default) or Onboard
Sampling.

Sampling >

Sampling

QK

() PC-based Sampling 20 ms
Cancel

® Onboard Sampling

PC-based sampling means that PMM will request the parameter value over Ethernet at the specified rate. The
sample data is transmitted as needed without buffering. This is convenient and does not impose a memory burden
on the controller, meaning the graph can store very large data samples. However, PMM does not permit sampling
faster than 20 ms with this option to avoid taxing network and processor resources on the controller and the
user’s PC.

Onboard sampling means that the controller will allocate a memory buffer for the data it needs to take in advance.
When the user clicks Single Run or Repeat Run, the controller will store the data it acquires in the buffer and
transmit it all at once after the test is finished. The main advantage of this option is that it allows the user to
acquire data at a faster interval (all the way down to the servo period). However, ACR controllers have limited
memory and large data samples are not always possible. If there is not enough memory available to run the test
with onboard sampling, PMM will log the error message “failed to allocate program memory for sampling buffer”
to the Messages window.

NOTE: The Repeat Run button requires onboard sampling.

The approximate amount of memory in bytes required to run a test move with onboard sampling can be calculated
using the following formula:

ttest
Mbytes = 4Nchannels <t

sample

ACR Programmer’s Guide 67

PARKER MOTION MANAGER

Nchaness is the number of channels in use, t. is the length of time visible on the horizontal axis in seconds and tsmpe
is the sample time in seconds. If the sample time is set to Servo Period, the actual sample time depends on the
controller in use. For ACR7000 controllers, the default servo period is 500 ps. For the IPA, it is 250 ps.

Display

The Display panel has four checkboxes that allow the user to show or hide each channel on the graph. Users can
click Display Data to display all of the captured data in a textual format, which makes it easy to copy the data to
other applications like Microsoft Excel. Users can click Export Data to directly save the data to a text or CSV file.

| *Untitled - Notepad - O X
Display File Edit Format View Help
"Clock™ "Channel 1" "Channel 2" ~
L “0.001000" “0.010000" “8.2995
Channel 2 Channel 4 "B.ea2eee" "B.819999" "8.2983
"B.ea3eee" "B.B829996" "8.2962
: "g.oadee0" "0.839959" "8.2933
Display Data "@.0085000" "@.949979" "§.2896
"B.aaeaee" "B.859964" "8.2856
Export Data "B.ea7eee" "B.869943" "8.2796
"g.ooseea" "g.879915" "8.2734
"B.ea%age" "B.B889879" "8.2664
"B.alease" "B.899833" "8.2585 v
< >
Status Axis(0)
This panel has indicators to show whether PMM is connected to the controller, whether Status Axis(0)

this axis is enabled and whether a Kill All Motion Request is active for this axis. AKill Al & Nat Connected

Motion Request prevents all motion on an axis. .
9 P Drive Enabled

Users can click Enable Drive to enable this axis. Kill All Motion issues a Kill All Motion Mation Killed
Request to the current axis. Clear All Kills removes the Kill All Motion Request to allow

) . Enable Drive
motion again.

Kill All Mot
The Scope | oren

The scope is the central feature of the Servo Tuner and shows data captured from the Clear all Kills
controller during a test. This helps users visually understand what their axis is doing

during the test. It is common to graph parameters like Following Error, Secondary Setpoint, Actual Torque and
other control loop parameters.

Data channels display their current values when sweeping the cursor over the scope. This makes it easy to
correlate specific channel values with specific times. One of the biggest new features to the Servo Tuner in PMM
is Auto Scale (on by default), which makes the scope much easier to read.

68 ACR Programmer’s Guide

PARKER MOTION MANAGER

AAANA XA = x|
¥ MY NN e At A, [‘u‘_
UV /

V o

ACR Programmer’s Guide 69

PARKER MOTION MANAGER

Jog/Homel/Limits

5% ACRTAV .
. . . . Status Operations
[-4g# Configuration Wizard
[#-4” Program Editor Communications Drive
Terminal Emulator @ Connected @ Drive Enabled @ Drive Not Faulted
Toals Enable Drive Disable Drive

Hardware Limits

4 Servo Tuner
-- g Jog/Home/Limits @ Positive Hard Limit Mot Tripped Drive Reset Zero Positions

@ Negative Hard Limit Not Tripped Setup...
g (@) Axis 2
T4 05 Update Software Limits
UL: Status Panels @ Positive Soft Limit Not Tripped
B Scopes @ Negative Soft Limit Not Tripped Setup...
@ Ready to Jog.
Position
Jog Home
Commanded Position |1.407
- Jog Lockout Not Enabled
Revolutions

Jog Limit Check Mot Enabled

Actual Position |1.407 .
Jog Mot Active

Revolutions . -
Mot Jogging Positive

Position Errar MNot Jogging Negative
@ Max Position Error Not Exceeded Setup... Jog Not At Speed

Jog Mot Stopping
Moation Enable

@ Motion Enable Input Active Jog Megative Jog Setup...

Kill All Motion & Disable All Drives

LED Legend

@ = not ready o =error @ =ready = inactive

The Jog/Home/Limits screen gives users the ability to enable the drive and jog the motor in either direction and
provides additional dialogs for users to fine-tune their limit and home settings. The screen is divided into several
subpanels that either display status or allow the user to perform an operation with the axis. Each subpanel is
discussed in detail here.

Communications

The Communications subpanel has a single indicator that shows whether PMM is connected to the ACR. PMM
must be connected for most of the tools on this screen to function.

Communications
@ Connected

Drive

This subpanel has an indicator to show whether the drive is enabled and another to indicate whether it is faulted.
It has buttons to enable or disable the drive. Click Drive Reset to recover from drive-related faults, such as
encoder loss or overtemperature. Click Zero Positions (equivalent of RES command) to reset the commanded and
actual position to zero for this axis.

70 ACR Programmer’s Guide

PARKER MOTION MANAGER

Drive

@ Drive Enabled @ DOrive Mot Faulted
Enable Drive Disable Drive
Drive Reset Zero Positions

Below the Drive subpanel is the control panel for jogging. When the drive is enabled, click Jog Positive or Jog
Negative to jog the axis. Clicking Kill All Motion & Disable All Drives will stop all motion on all axes and disable
torque on all drives.

log Home

Jog Lockout Mot Enabled
Jog Limit Check Mot Enabled

log Mot Active

Mot Jogging Positive
Mot Jogging Megative
log Mot At Speed

log Mot Stopping

Jog Positive Jog Megative Jog Setup...

Kill &ll Motion & Disable all Drives

NOTE: The Kill All Motion & Disable All Drives button is a software feature. It is not designed or
tested for fault tolerance and is not a replacement for an Emergency Stop and machine
safety plan.

There are also several useful indicators on this panel:

e Jog Lockout. When this bit is on, jog motion is inhibited.

e Jog Limit Check. On when the jog limits (JLIM command) are in effect.

¢ Jog Active. On when the axis is jogging.

e Jogging Positive. On when the axis is jogging in the positive direction.

e Jogging Negative. On when the axis is jogging in the negative direction.

e Jog At Speed. On when the Jog Profiler has finished ramping up to the user-set JOG VEL speed.
e Jog Stopping. On when the Jog Profiler is ramping speed to zero in preparation to stop.

The jog velocity, acceleration and deceleration can also be altered here. Click Jog Setup and a dialog will appear
where new dynamics can be entered.

ACR Programmer’s Guide 71

PARKER MOTION MANAGER

Jog Setup et
Jog Mation
Velocity [1.00 Millimeters/s
Acceleration [1.00 Millimeters/s®
Deceleration |1.00 Millimeters,;s?
Jerk |0.00 Millimeters/s?
Cancel

NOTE: Remember that in the ACR architecture, setting acceleration, deceleration or jerk
parameters to 0 is interpreted as setting them to infinity. In the example above, zero jerk
will result in a trapezoidal or triangular move profile.

Select the Home tab to view indicators and controls for homing the axis. Click Home Positive to start searching for
home in the positive direction or click Home Negative to start searching for home in the negative direction.

Jog Home

Homing Mot Active

Mot Homing Paositive
Mot Homing Megative
Homing Mot At Speed
Homing Mot Stopping
Home Input Mot Tripped

Home Positive Home Megative Home Setup...

Kill &ll Motion & Disable all Drives

This panel has several indicators:

e Homing Not Active. Indicates whether the axis is homing.

e Not Homing Positive. Indicates whether the axis is homing with an initial positive direction.
¢ Not Homing Negative. Indicates whether the axis is homing with an initial negative direction.
e Homing Not Stopping. Indicates whether the axis is stopping its homing move.

72 ACR Programmer’s Guide

PARKER MOTION MANAGER

e Home Input Not Tripped. Indicates whether the home input has turned on.

Homing dynamics can be altered on this screen. Click Home Setup to change them.

Home Setup

Home Maotion
Velocity
Acceleration

Deceleration

Jerk

Home Options

Backup

Final Direction
Final Velocity

Edge

1.00

1.00

1.00

0.00

Enable

Positive

1.00

Positive

Ok

Millimeters/s
Millimeters/s*
Millimeters,/s?

Millimeters,s®

Millimeters,/s

Cancel

NOTE: These options are not saved with the project configuration. However, the code to set
these options can be copied out of the Terminal Emulator as long as it is open when
clicking OK. Copy the code into a program for easy homing setup.

Hardware Limits

The Hardware Limits subpanel has indicators to display whether either of the limits have been tripped.

Hardware Limnits

@ Positive Hard Limit Mot Tripped
@ Megative Hard Limit Mot Tripped

Setup...

Click Setup to make adjustments to the limit switch configuration. Most of the options in this dialog should be
familiar since they are also found on the Fault screen of the Configuration Wizard. Click Send to apply the new
settings to the controller. To make the changes permanent, check the Save changes to Configuration box and click
OK. This will apply the changes to the project configuration.

ACR Programmer’s Guide 73

PARKER MOTION MANAGER

Hardware Limit Setup >
Note: Hardware limit input assignments are setup in the
Fault step of the Configuration Wizard.
Input Type
L] Enable Positive Hardware Limit ® N.C. O NO.
Input Type
[Enable Negative Hardware Limit ® NC O NO.
Hardware Limit Deceleration |500.00
Millimeters,/s*
[] save changes to Configuration
| oK Send Cancel

Software Limits
The Software Limits subpanel shows the status of the position soft limits for the axis.

Software Limits

@ Positive Soft Limit Mot Tripped
@ Megative Soft Limit Mot Tripped sefup...

Click Setup to make changes. The options presented in this dialog work the same way as the ones on the Fault
screen in the Configuration Wizard. Click Send to apply the new settings to the controller. To make the changes
permanent, check the Save changes to Configuration box and click OK. This will apply the changes to the project
configuration.

74 ACR Programmer’s Guide

PARKER MOTION MANAGER

Software Limit Setup

[] Enable Positive Software Limit
[] Enable Megative Software Limit

Software Limit Deceleration

[] save changes to Configuration

Ok

*
0.00 Millimeters
0.00 Millimeters
500.00 Millimeters/s®
Send Cancel

Position Error

The Position Error subpanel shows whether this axis has exceeded its maximum allowable position error.

Position Error

@ Max Position Error Mot Exceeded Setup...

Click Setup to make changes. The options presented in this dialog work the same way as the ones on the Fault
screen in the Configuration Wizard. Click Send to apply the new settings to the controller. To make the changes
permanent, check the Save changes to Configuration box and click OK. This will apply the changes to the project

configuration.

Maximum Position Error Setup

Maximum Positive Position Error

Maximum Megative Position Error

[] save changes to Configuration

Send Cancel

1.00

Millimeters

-1.00

Millimeters

LED Legend

This subpanel just displays four sample LEDs with information about what their color codes mean.

ACR Programmer’s Guide 75

PARKER MOTION MANAGER

OS Update

The OS Update screen is used to install a newer version of firmware into an existing controller. This may be
required to take advantage of a previously unavailable feature or improvement. Some users prefer to standardize
on one OS version and “back-rev” new units. This screen can be used to revert a controller to an older firmware
revision as well.

Basic controller information, including the model family, firmware revision and bootloader revision is shown under
Controller Information.

It is required that the controller’s memory be wiped before downloading a new OS. To do this, click Return to
Factory Settings (same as issuing the FLASH RES command). This will also set the IP address back to the factory
default. For the ACR7000, this is 192.168.100.1. For the IPA, the default address is 192.168.100.x, where “x” is
determined by the rotary switches.

NOTE: Make sure the program is backed up and saved on a PC prior to clicking Return to Factory
Settings. All application data will be deleted from the controller by clicking this button.

B® ACETAV0S5 Update X

Please visit the ACR7000 product page for a link to the latest Operating System Update

http:/Awww. parkermotion.comydscripts/support downloads.asp®ACRT000

@ all Drives Disabled Disable all Drives

@ All AcroBasic Programs Halted Halt All AcroBasic Programs

Controller Information

Controller: ACRT4V
Firmware Version: 7.50 Update 1 Update O5...
Boot Revision: 40

Return to Factory Settings

To install a new OS, click Update OS. This will halt any running programs and disable all drives (buttons and
indicators are also provided to do this manually). A dialog will appear permitting the user to select a “.ops”
operating system file and download it. Operating system packages for the ACR7000 or IPA can be downloaded
from the link on this screen.

76 ACR Programmer’s Guide

PARKER MOTION MANAGER

[] ©530_updoor.cps

Repairs
Techbt-temp

™
I Thi Pe
1 30 Cijects
B Desktap

|
|
| R T—
|

File narne: [0550_upd0tt ops <] | prsting System P o)

Click Open to start the download.

NOTE: Do not interrupt the OS download process. Cycling power on the controller or
disconnecting during an OS download can ‘“brick” the unit and leave it in an unbootable
state. If this happens, the unit may need to be returned to the factory for repair.

Another dialog will then indicate the status of the download and confirm success.

Please wait... *

Downloading Operating System...

After the OS update is complete, make sure to download the application to the controller again.

ACR Programmer’s Guide 77

PARKER MOTION MANAGER

Status Panels

The status panels are designed to aide in commissioning and troubleshooting a machine. When problems arise, it
usually helps to find a status panel that displays the data you need and pin it somewhere convenient.

The available status panels are:

e Motion Status Panel (ACR7000 family).

e Drive Status Panel (ACR7xT and ACR7xV only).
e Common Status Panel (IPA only).

e Numeric Status.

e Bit Status.

e EtherNet/IP Status Panel.

e Servo Loop Status.

Motion Status Panel (ACR7000 Family)

The Motion Status Panel, available for all ACR7000 models, displays basic status and fault data about all the axes at
once. It also shows basic status information on programs, communications and the Enable Input.

@ ACR74T:Motion Status Panel X

Programs
0|12 |3]
Gear Active 0 Running @ |70
Cam Active 1 Idle 0
Jog Active 2 idle 0
Drive Enable | @
Kill ll Mation Request e 0
Drive Fault 4 Idle 0
Maximum Position Errar 5 Idle 0
Pos. Hard Limit Encountered
MNeg. Hard Limit Encountered J Er 0
Home Found 7 Idle 0
Positive Soft Limit
Megative Soft Limit

Online Status Master Axis Position

@ Communications Online Moving Kil Actual Commanded Velocity
0@ 0 2.838 2.84 1

Mation Enable Input ; 1 0 0
2 2 o o

@ Enable Input OK 3 3 a T

Kill all Motion

Clear all Kills

78 ACR Programmer’s Guide

PARKER MOTION MANAGER

Axis Status Bits
The upper left-hand subpanel displays status bits for

each axis. The bits are each labeled with easy-to- 0|1 2 3
understand descriptions on the left. Gear Active
For more information on a particular status light, Cam Active
hover the mouse over the light in question. A Jog Active
tooltip with appear with the bit number for that Crive Enable
indicator. The bit number can be searched in the Kill All Mation Request
help file for full documentation. If you want to add DriveFauk | @ | @& | & | @

that bit to a Watch List, simply right-click it and
click Watch - Watch | (or any other Watch List

Maximum Position Error
Pos. Hard Limit Encountered

number). o
Meg. Hard Limit Encountered
Home Found
Positive Soft Limit
Megative Soft Limit
Programs

This subpanel shows which programs are currently running. It also shows their ~ Programs
current state and line number. Line numbers typically go by 10s in ACR

programs. To see a program listed with its line numbers, go into the Terminal 0 Running @

Emulator and click List Line Number. Programs can have the following status

codes: 2l 0
2 Idle

e Idle. Program is not running or has stopped running. This is common
if the program has not been commanded to run, in which case the line 3 Idle 0
number should be zero. In the case of a program crash, the line 4 Idle 0
number will show the line on which the crash occurred.

e Running. Program is executing code. The line number should be 5 Idle 0
constantly changing. This is normal when the RUN command is given 6 Idle 0
to a program. Programs can also go int run mode if they use the
PBOOT command or if their Run Request flag has been set. 7 Idle 0

¢ Dwelling. The program has encountered a DWL command and will stay on that line until the programmed
dwell time has elapsed.

e Inhibited. The program has stopped on a line and will stay there until a certain condition is met. This is
caused by the INH and THPOS commands.

Axis Position

This subpanel shows the Commanded Axis Position

Position, Actual Position and Actual Velocity Actual Commanded Velocity

for each axis. The position values are in 0 12.329 0
user units and the velocity is in user units/s. 1 3 0
It is important to remember that

Commanded Position is the sum of four : g g

ACR Programmer’s Guide 79

PARKER MOTION MANAGER

different move profilers—more on that later.

Master
This subpanel just displays the status of the Moving and Kill All Moves flags for each Master
master. When a Kill All Moves Flag is turned on, all master moves (e.g. X12 Y/5) hMoving Kill

will be prohibited until it is cleared. Click Kill All Motion, located in the bottom left-
hand side of the Motion Status Panel, to issue a Kill All Motion request to each axis
and a Kill All Moves request to each master. Click Clear All Kills to reverse that

W = o

action and ready the system for motion again.

Online Status

This subpanel just indicates whether PMM is currently connected to the controller.
Online Status

@ Communications Online

Motion Enable Input
This subpanel indicates whether the Motion Enable Input is closed. If this input is open, none of the drives will be
permitted to enable.

Motion Enable Input
@ Enable Input OK

Drive Status Panel (ACR7xV and ACR7xT)

The Drive Status Panel, available for ACR7xV and ACR7xT models, shows fault-related data for each of the built-in
servo or stepper drives. Some of the information displayed is duplicated from the Motion Status Panel to provide
the user with a complete interface for fault-finding.

80 ACR Programmer’s Guide

PARKER MOTION MANAGER

@ ACRT4V:Drive Status Panel X

Control Status Drive Faults

Kill &l Motion Request
Drive Fault

Maximum Position Errar
Paositive Hard Limit Hit
Megative Hard Limit Hit
Home Failed

Paositive Soft Limit Hit
Megative Soft Limit Hit

Motar Config Error

Bridge Hardware Fault

Bridge Temp Fault

Drive Over-voltage

Drive Under-voltage

Bridge Foldback

Power Regen Fault

Feedback Failure

Motor Thermal Model Fault

Motor Temp Fault

Bad Hall State

Over Current Fault

W Exceed Bus Voltage

Low Voltage at Enable

Controller Information Alignment Errar
Encoder Read Fault

| Encoder Loss Fault

S G E G O
L N N
L O
L N

GG GG GG E SO E &
GG GG LGSO |
GG GG GGG ES S E |V
GG GG GGG E |V

Current Operating Time |3hr5 8min

Current Power-On Time |Dhrs 2min 29.42?5| |

Control Status

The Control Status subpanel shows information Control Status
also available on the Motion Status Panel. Anything

not related to fault conditions has been omitted.

Kill All Motion Request
Drive Fault

Maximum Position Error
Positive Hard Limit Hit
Megative Hard Limit Hit
Home Failed

Positive Soft Limit Hit
Megative Soft Limit Hit

These “controller level” faults are not specific to
any particular model of ACR and are also found on
the IPA and older ACR9000 series.

¢ FSG SO EEG S
&GO OEGE |-
¢SSO EEG M
L O O T

ACR Programmer’s Guide 81

PARKER MOTION MANAGER

Drive Faults

The Drive Faults subpanel varies depending on
whether the axis is a stepper or servo axis. The
image here shows the servo version. Some of
these bits are faults and others are warnings. All of
them are related to a hardware problem on the
axis. If a drive fault is present, it can be cleared by
issuinga DRIVE RES command followed by a
DRIVE ON command. If that does not succeed,
the fault condition is still present and will need to
be addressed by a hardware or configuration
change (e.g. reconnect encoder cable, increase
available power, etc.).

The Drive Faults subpanel for stepper axes is more
limited as there are fewer possible fault causes.

Controller Information

The Controller Information subpanel, available for
the ACR7xV, shows the Current Operating Time
and Current Power-On Time. The Current
Operating Time shows the total powered-on time
for this controller since the last factory reset
(FLASH RES). The Current Power-On Time
shows how long the controller has been powered

Drive Faults

Motor Config Error ¢ (@ @
Bridge Hardware Fault
Bridge Temp Fault
Drive Over-voltage
Drive Under-voltage ¢ (@ @
Eridge Foldback

Power Regen Fault
Feedback Failure

Maotor Thermal Maodel Fault
Motor Temp Fault

Bad Hall 5tate L
Over Current Fault

VO Exceed Bus Voltage
Low Violtage at Enable
Alignment Error
Encoder Read Fault
Encoder Loss Fault

Drive Faults

User configuration invalid
Drive at Standby current
hotor short to ground fault
Over temperature fault
Drive Under-voltage

Drive Initialize Fault

Controller Information

Current Operating Time |3hrs 8min

Current Power-On Time |Ohrs 2min 29.427s

on since the last power cycle or REBOOT command. These values are useful for maintenance purposes.

82 ACR Programmer’s Guide

PARKER MOTION MANAGER

Common Status Panel (IPA)

The Common Status Panel, available for the IPA, combines the Motion Status Panel and Drive Status Panel into a

single interface to show the user all relevant status and fault data at once. This is feasible because the IPA only has
a single axis.

Status

The Status subpanel displays several types of information. The left-hand side shows motion status bits, the center

shows /O and the right-hand side shows various status parameters.

Status

@ Connected Input 0 Qutput 0 Actual Position 12323

Drive Enable Input 1 Qutput 1 Commanded Position 12329

Moving Input 2 Output 2 Following Eror E
Jog Active Input 3 Output 3 Commanded Velocty [0 |
Gear Active Input 4 Actual Velocity, pm CI
Cam Active Input 3 Velocity % 0
Home Found Input & Actual Torque, Nm ICI
Analog Input 0 ICI e 5
Analog Input 1 ICI "

RMS Max 0%

Bus Voltage VDC

Most of the fields and indicators here are self-explanatory, but a few deserve special mention:

The Moving indicator references bit 516, the In Motion bit. This bit only reflects the status of master
moves (e.g. X15). In other words, motion can occur without this bit turning on. For instance, the
command JOG FWD X is a jog move and would not turn on the In Motion bit.

The Home Found indicator will turn on if the homing move succeeds. However, it will turn off again as
soon as a new move is commanded.

The Analog Input fields show the ADC input values after the offset and gain are applied. The default
range is £10 VDC, but this can be changed using the ADC OFFSET and ADC GAIN commands.

Actual Position, Commanded Position and Following Error are shown in user units. Commanded Velocity
is shown in user units/s.

The Velocity % and Torque % fields show actual values. These fields take into account physical limits
imposed by the motor, drive and available bus voltage. For instance, if the motor is designed for 340
VDC but is being run on 48 VDC, the Velocity % field will display the actual speed relative to the motor’s
estimated performance at the lower voltage. The Torque % field makes similar adjustments in cases
where the drive has a lower rated current than the motor.

The RMS Max field shows root mean square current usage, useful for making sure the application is not
exceeding the continuous current limits of the motor or drive.

Buttons
The Common Status Panel comes with four buttons to make basic troubleshooting tasks easier:

ACR Programmer’s Guide 83

PARKER MOTION MANAGER

e Kill All Motion. Issues a Kill All Motion Request, which will bring the axis to a stop and prevent further
motion.

e Clear All Kills. Clears any previously initiated Kill All Motion Request, allowing motion again.

e Drive Enable. Issues a DRIVE ON command, enabling the drive. If the drive is already enabled, this
button will instead be labeled Drive Disable and can be used to disable the drive.

e Drive Reset. Issues a DRIVE RES command, necessary for clearing drive level faults (e.g. undervoltage).

Control Status and Drive Faults
The Common Status Panel has a simplified fault reporting interface that relies on text descriptions rather than
labeled indicators. If there are no problems, both panels will display “Ready” in green text.

Control Status Drive Faults

Ready Ready

When a fault occurs, a red message will appear in the appropriate subpanel. Controller level faults like excess
position error or hard limit trips are displayed under Control Status. Hardware-related faults like undervoltage or
feedback faults are displayed under Drive Faults.

Control Status Drive Faults
Kill All Motion Request Motor Config Error Dirive Under-voltage

Drive Fault

Controller Information
The Controller Information subpanel shows the Controller Information
Current Operating Time and Current Power-On Time.

The Current Operating Time shows the total powered- Current Operating Time |Dhrs 8min |

on time for this controller since the last factory reset
(FLASH RES). The Current Power-On Time shows
how long the controller has been powered on since the

Current Power-On Time |Ehrs 8min 55.181s |

last power cycle or REBOOT command. These values
are useful for maintenance purposes.

84 ACR Programmer’s Guide

PARKER MOTION MANAGER

Programs

This subpanel shows which programs are currently running. It also shows their
current state and line number. Line numbers typically go by 10s in ACR
programs. To see a program listed with its line numbers, go into the Terminal
Emulator and click List Line Number. Programs can have the following status
codes:

e Idle. Program is not running or has stopped running. This is common
if the program has not been commanded to run, in which case the line
number should be zero. In the case of a program crash, the line
number will show the line on which the crash occurred.

e Running. Program is executing code. The line number should be
constantly changing. This is normal when the RUN command is given
to a program. Programs can also go int run mode if they use the
PBOOT command or if their Run Request flag has been set.

e Dwelling. The program has encountered a DWL command and will
stay on that line until the programmed dwell time has elapsed.

Programs

0 Running
1 Dwelling
Idle

Idle

Idle

Idle

Idle

Idle

=] o w E W M

OO0

¢ Inhibited. The program has stopped on a line and will stay there until a certain condition is met. This is

caused by the INH and THPOS commands.

Numeric Status

The Numeric Status provides users with access to view any parameter in the ACR. Parameters are grouped based

on function. In many cases, the parameters shown related to an enumerated resource, such as an axis, an
encoder, a master, an ADC or a program. The pull-down menus can be used to select a parameter group.

@ IPA:Mumeric Status X

1. Axis Parameters ~ | |1. Position Parameters W
ltem Description Parameter Value

Axis 00 Current Position P12288 12315

Axis 01 Current Position P12544 -125688

Axis 02 Current Position P12B00 5468435

Axis 03 Current Position P13036 -4

Axis 04 Current Position P13312 0

Axis 05 Current Position P13368 0

Axis 06 Current Position Pi13824 0

Axis 07 Current Position P14080 0

Right-click a parameter to create a define for it or add it to a Watch List.

Current Position

ACR Programmer’s Guide 85

PARKER MOTION MANAGER

Item

Axis 00
Axis 01
Axis 02
Axis 03
Axis 04
Axis 05
Axis 06

Description

Current Position
Current Position
Current Position
Current Position
Current Position
Current Position

Current Position

Parameter Value

P12288 12315

P12544 Copy

P12E200 Create Define

P13056 Watch b Watch 1
P13312 0 Watch 2
P13568 0 RS
P13824 0 Watch 4

Axis parameter indices are separated by 256 (12290 + 256 = 12546). For example, Axis 0 Current Position is
P12288 and Axis | Current Position is PI12544. This pattern can be seen with other resources (like encoders), but

the offset is not always 256. For more information on specific parameters, click Help = Parker Motion Manager

User’s Guide. Click the Search tab and enter the parameter number.

W ACRT4T:Numeric Status. X

E? PMM _Users Guide

1. Axis Parameters

Item Description
Axis 00 Current Position
Axis 01 Current Position
Axis 02 Current Position
Axis 03 Current Position
Axis 04 Current Position
Axis 05 Current Position
Axis 06 Current Position
Axis 07 Current Position

~ | 1. Position Parameters

~ || Current Position

Parameter Value
P12288
P12544
P12800
212056
P13312
P13568
P13824

o olo o o olaao

P14080

v =i
Hde Back Pmt Opfions
Corterts | Index Search | Favortes |
Type inthe keyordto find

[12288
List Topics

Select Topicto display:

Bit12032 - Bt 12543 Node 0 Digtal Output Flags

F12283 F14207 Aus Parameters

Sc

Parameter Reference

P12288 - P14207 Axis Parameters

Mask 0x01 0x02 O0x04 0x08 Oxi0 020 O0x40 0x80

Position Axis Humber

Index Parameters
Code=0x30 0 1 2 3 4 5 6 7

0x00 ;:;’;U’": Lone [BEE 2544 12800 13056 13312 13568 13824 14080
Target

001 LONG 12288 12545 12801 13057 1333 13569 13825 14081
Postion
Actual

0x02 LONG 12200 12546 12802 13088 13314 13570 13826 14082
Postion

03 9O iong izzm r2saT 12803 1305 1330S 131 13827 14083
Hardware

roll down below parameter chart for further description.
beserption e Descrition

CurrentPosion RW This is the current commanded position of the axis.

TargetPostion R User programmed target postion of the buffered move.
AcualPoston R Current actual postion read through feedback
Folowing Error RV Current following error n servo control loop
Hardwarz R Latest hardware-caplure register value.

Capture

Numeric Status has hundreds of system parameters, such as the program line numbers.

Item
Program 00
Program 01
Program 02
Program 03
Program 04
Program 05
Program 06

86 ACR Programmer’s Guide

Description Parameter Value

Line Mumber F7168 30

Line Mumber F7ig4 30

Line Mumber F7200 0

Line Mumber F7216 168

Line Mumber P7232 0

Line Mumber F7248 0

Line Mumber F72o4d 0

Or an axis’ drive settings.

ACRT74T Stepper

Drive - Stepper Parameters

Item Description
Stepper Drive Item 00
Stepper Drive Item 01 Mator resistance (ohms)
Stepper Drive ltem 02 Maotor inductance (mH)
Stepper Drive ltem 03 Standby Current Percentage
Stepper Drive Item 04
Stepper Drive ltem 05
Stepper Drive ltem 06 Configuration error code
Stepper Drive ltem 07 Drive write value

Stepper Drive Item 08 Drive read value

~ | Stepper Drive Parameters

User Maximum motor current (Amps rms)

Standby Current Delay (msec.)
Micro-steps per full step (power of 2)

Parameter

P7938
p7939
P7340
p7o44
P79435
P7946
P7947
P74
P7948

~ | | Stepper Drive Axis 0

o @

a0

)
=Y

e e e M oe w M e o~

W ACR74V:Numeric Status X

PARKER MOTION MANAGER

ACRT4V Servo

| |Servo Drive Parameters

~ Servo Drive Parameters

Value Item D
Axis 00 Feedback Resolution
Axis 00 Continuous Current
Axis 00 Continuous Current Derating
Axis 00 Peak Current
Axis 00 Motor Inductance
Axis 00 Motor Inductance Factor
Axis 00 Motor Maximum Temperature
Axis 00 Winding Resistance
Axis 00 Motor Rated Speed
Axis 00 Motor Pole Pairs
Axis 00 Motor Damping
Axis 00 Motor Rotor Inertia
Axis 00 Linear Motor Pole Pitch
Axis 00 Motor Maximum Torgue
Axis 00 Motor Constant, Ke
Axis 00 Torgue Scaling
Axis 00 Encoder Polarity
Axis 00 Invert Halls
Axis 00 Hall Only Commutation
Axis 00 Motor Ambient Temperature
Axis 00 Motor Thermal Resistance
Axis 00 Motor Thermal Time Constant
Axis 00 Winding Time Constant
Axis 00 Disable Thermal Switches
Axis 00 Motor Velocity Limit
Axis 00 Encoder Commutation Offset
Axis 00 Serial Encoder Valid Bits

P28674
P28704
P28705
P28706
P28707
P28708
P28709
P28710
P28711
P28675
P28712
P28713
P28715
P28717
P28714
P28718
P28776
P28678
P28775
P28719
P28720
P28721
P28722
P28679
P28716
P28725
P28769

~| |Servo Drive Axis 0

[
w

R

oo e e Moo oo
o

=
0

o o

NOTE: Not all parameters are used in all products. For example, the ACR7xC controller does
not have integrated steppers and thus the stepper drive parameters would all be 0.

User parameters are now in the Numeric Status. This includes User Doubles (P0-P4095), User Non-Volatile
Longs (P38912-P39167) and User Non-Volatile Floats (P39168-P39423).

User Variables

ltem
User Variable PO00
User Variable POD1
User Variable P002
User Variable P003
User Variable P0O04
User Variable PO05

~ | User Doubles

Description

User Variahle
User Variable
User Variable
User Variable
User Variable

User Variable

Parameter

POO
PO1
POZ
P03
P04
P05

v | [Group O

Value

ACR Programmer’s Guide

87

PARKER MOTION MANAGER

Bit Status

The Bit Status shows the status of every bit in the ACR. It works much like the Numeric Status. Indicators show
green for on (a.k.a. set or non-zero) and red for off (a.k.a. clear or zero).

™ IPA:BIt Status X

Axis Flags

BIT768: Mot In Position
BITY6%9; Mot Excess Errar
BIT770: Within & Limit

~ | | Primary Axis Flags

BIT771: Mot Within B Limit

BIT772: Mot Torque Limit

BIT773: Mot In Torque Band

BIT774: Reserved
BIT775: Reserved
BIT776: Mot Marker

BITY77: Capture Complete
BIT778: HSINT Registered

BIT77%: HSIMNT Aborted
BIT720: Sinusoidal Mode
BIT721: Gear Lock
BIT782: Gear At Speed
BIT783: Gear Stopping

BIT784:
BIT785:
BIT786:
BIT7ET:
BIT788:
EIT78%:
BIT790:
BIT791:
BIT792:
BIT793:
BIT794:
BIT795:
BIT7596:
BIT7S7:
BIT794:
BIT79%:

~ | | Primary Axis 0 Flags

Clamp Qutput Signal
Open Servo Loop
Biquad Filter Activate
REM Request Flag
Gear Activate

Gear Active

Cam Activate
Ballscrew Activate
log Active

log Direction

log At Speed

log Stopping

log Forward

log Reverse

log Limit Check

log Lockout

P4120

The parameter for all 32 bits is also shown. For example, P4120 is the 32-bit integer containing the Axis 0 Primary
Axis Flags. Bit 768 is bit 0 of P4120’s 32 bits. Bit 799 is bit 31 of P4120.

Axis bit indices are separated by 32, so if the Not In Position bit for Axis 0 is bit 768, the Not In Position bit for
Axis | is bit 800.

Users can quickly add specific bits to their Defines list or Watch Lists by right-clicking from this panel.

Axis Flags

Similar to parameters, if needing a better description of a specific bit, search the online help file with the bit

BIT768: Mot In Position

~ | |Primary Axis Flags

BIT769: Mot Excess
BIT770: Within A Lim

Copy
Create Define

~ | |Primary Axis O Flags

@ BIT784: Clamp Cutput Signal
& EBIT7585: Open Servo Loop
@ BIT786: Biguad Filter Activate

BIT771: Mot Within |

BIT772: Mot Torque Limit

BIT773: Mot In Torque Band

BIT774: Reserved

Watch Watch 1 | Request Flag
Watch 2 ar Activate
Watch 3 ar Active
Watch 4 n Activate

number and scroll down past the bit table.

88 ACR Programmer’s Guide

P4120

PARKER MOTION MANAGER

Ethernet/IP Status Panel

The EtherNet/IP Status Panel shows detailed status information for the controller’s EtherNet/IP adapter, master
and peer-to-peer connections.

W™ ACR74V:EtherNet/IP Status Panel X

EtherMet/IP Scanner Status

EtherMet/IP Mode Data

@ Network Operational 1/0 Status Node 0 Node 1 Node 2 Node 3
Failure Status Node IP Address 192.168.100.2 192.168.100.3 | 192.168.100.4 | 192.168.100.5
MNetwork Start Failed Node Status Code 0 0 0 0
1/0 MNode Failure Neode Status Description Mot Found Mot Found Mot Found Mot Found
Peer Mode Failure Operational Duration 0 0 0 0
Peer Configuration Data Error Operation Error Code 0 0 0 0
Mode Reset Failure Operation Error Description Mo errors Mo errors Mo errors Mo errors
Node Failure Count 0 0 0 0
Scanner Parameters
Number of [/O Nodes D Peer Status Node 0 Node 1 Node 2 Node 3
Number of Peer Nodes Node Status Code 1 0 0 0
Node Status Description Found Not Found Mot Found Mot Found
RS e Operational Duration 232 0 0 0
Mon-Operating Modes Bit Reparts D Operation Error Code 0 0 0 0
. Operation Error Description MO errors Mo errors Mo errors MNo errors
Operation Error Code EI B
Node Failure Count 0 2 0 0

Operation Duration in Seconds

Start Network Stop Network

Scanner Parameters Status
MNetwork State Description Operational

Discover Network Reset Network Nodes

Operation Error Description Mo errors

The EtherNet/IP Status subpanel houses fields and indicators pertaining to overall network status. The Network
Operational indicator at the top shows whether the EtherNet/IP network is running and exchanging data. Note
that this does not mean the network is free of errors. It is possible for the network to start even if not all of the
nodes are found.

Failure Status

This subpanel displays indicators that address specific failure
conditions:

Failure Status
Metwork Start Failed

e Network Start Failed. Errors occurred during startup that /0 MNode Failure

prevented operation. Peer Mode Failure
e /O Node Failure. Network failure occurred on a specific I/O i]
node Peer Configuration Data Error

e Peer Node Failure. Network failure occurred on a specific Mode Reset Failure
peer (another ACR).

e Peer Configuration Data Error. Configuration data invalid for peer connection (e.g. parameter range
exception).

e Node Reset Failure. Node was unable to reset connection.

ACR Programmer’s Guide 89

PARKER MOTION MANAGER

Scanner Parameters
This subpanel displays basic network status data:

e Number of I/O Nodes. This is the number of

connected PIO-363 (Wago 750-363)
EtherNet/IP bus couplers. Up to four
connections are supported.

e Number of Peer Nodes. This is the number

of connected ACR controllers. Up to four
connections are supported.
e Network State Code. Represents overall
network status. Typical states are:
o 0—Reset or Not Active.
o 5—Operational.
o 6—Stopped.

Scanner Parameters

Mumber of I/0 Modes 0
Mumber of Peer Nodes 1
Metwaork State Code g

Mon-Operating Modes Bit Reports 0

Operation Error Code 0

Operation Duration in Seconds 237

¢ Non-Operating Nodes Bit Reports. Each non-operating I/O Node or Peer Node will trigger a bit to turn
on in this parameter. 1/O Nodes start at bit 0 and Peer Nodes start at bit 16.
e Operation Error Code. Network error code (0 indicates no error). Full listing below.

e Operation Duration Time in Seconds. Time elapsed since network was started.

Value | Description Value | Description

0 No errors I I/O Node Online, but no response

I Invalid user supplied I/O Node count 12 I/O Node error response

2 Invalid user supplied Peer Node count 13 UCMM data range

3 Error in user supplied external node data | 14 Internal error in EtherNet/IP cycle start

4 Invalid IP address 15 Invalid number of Peer parameter groups

5 Error in UCMM transfer 16 Invalid Peer parameter direction

6 UCMM request timeout 17 Invalid number of parameters in a Peer group
7 Excess I/O on node or system 18 Invalid parameter number in a Peer group

8 Unknown I/O node vendor 19 Excess inputs or outputs within a single Peer
9 Unexpected I/O node device type 20 Excess inputs or outputs for total Peer collection
10 I/O Node offline

Scanner Parameter Status

This is a text summary of the network status, specifically the Network State Code and Operation Error Code.

90 ACR Programmer’s Guide

PARKER MOTION MANAGER

Scanner Parameters 5tatus

Metwork State Description Operational

Operation Error Description Mo errors

EtherNet/IP Node Data

This subpanel, located on the right-hand side, houses tables displaying node-specific status data. This is helpful

when troubleshooting node-specific problems.

The top table displays the status of the I/O I/O Status Node 0 Node 1
nodes:
Mode IP Address 192.168.100.2 | 192.168.100.3
e Node IP Address. IP address of Node Status Code 0 0
the node. Note that every IP
address on a network must be Mode Status Description Mot Found Mot Found
unique—this address should not Operational Duration 0 0
be the same as the controller’s Operation Error Code 0 0
address.
e Node Status Code. Typical codes Operation Error Description Mo errors Mo errors
are 0 (not found), | (found)and 2 Ngde Failure Count 0 0
(found then lost).
e Node Status Description. Text description reflecting the Node Status Code.
e Operational Duration. Seconds since the node was connected.
e Operation Error Code. 0 means no error.
e Operation Error Description. Text description of Operation Error Code.
¢ Node Failure Count. Number of dropped packets recorded since the node connected.
The bottom table displays the status of the Peer Status Node 0 Node 1
peer nodes:
Mode Status Code 0
e Node Status Code. Typical codes Mode Status Description Found Mot Found
are 0 (not found), | (found) and 2 Qperational Duration 232 0
(found then lost). Operation Error Code 0 0
° NOde. St,atus Description' Text Operation Error Description Mo errors Mo errors
description reflecting the Node .
Mode Failure Count 0 2

Status Code.

e Operational Duration. Seconds since the node was connected.

e Operation Error Code. 0 means no error.

e Operation Error Description. Text description of Operation Error Code.

¢ Node Failure Count. Number of dropped packets recorded since the node connected.

Controls

There are also four buttons on this panel to provide basic control over the network:

e Start Network. Attempt to start the network. This will connect to any configured nodes and begin

exchanging data.

e Stop Network. Stops data updates and disconnects from all nodes.

ACR Programmer’s Guide 91

PARKER MOTION MANAGER

e Discover Network. Checks to verify the availability of all nodes. Good for verifying network integrity
before starting the network.
e Reset Network Nodes. Reset connections to all nodes and restart the network.

Other useful data related to EtherNet/IP can be found in the Numeric Status and Bit Status. In particular, the
values of actual /O data and peer-to-peer data can be found there.

Servo Loop Status

The Servo Loop Status panel gives users immediate visibility as to the different types of motion being commanded
for an axis. Interpolated, Gear, Jog and Cam together are the Primary Setpoint. Backlash and Ballscrew
compensation are added to generate the Secondary Setpoint. Current Position is the commanded position from
interpolated MOV commands.

Actual Position is based on the servo feedback, typically a rotary or linear encoder. Following error is generated
by subtracting the Secondary Setpoint from Actual Position. This is provided to the servo loop, which processes
the error and multiplies it by gains to generate the Proportional Term, Integral Term and Derivative Term. The

Velocity Term and Acceleration Term are feed-forward values. The Summation Point is the just the sum of all of
these terms.

The output from the Summation Point is processed by a lowpass and a notch filter. The result is clamped to £10
VDC or a lower limit if configured by the user. The £10 VDC range represents the full range from peak positive

torque to peak negative torque (force in the case of linear motors). This value is proportional to the current that
will be delivered to the motor.

™ ACR7T4V:Servo Loop Status X

Paosition Type

() Auis 0 > (O Courts
(® User Counts
Current position
CH o
Gear Offset Velocity Term

+ Primary Setpaint -12000 +

Acceleration Term

Jog Offset
e e

Cam Offset

Secondary Setpoint

Following Error Proportional Term

-0.00225 H'D-DMQ '_' + Summation Paint
Integral Term 00177 r

Actual Position

Derivative Term
o b

Actual Velocity

Digital Filter

Positive Torque Limit

Filter Qutput Final Output

Megative Torque Limit

The Servo Loop Status can display position and velocity data in encoder counts, but can also display it in user units,
saving the effort of translating counts into meaningful information.

92 ACR Programmer’s Guide

PARKER MOTION MANAGER

Scopes

There are four independent scopes in PMM:

e Oscilloscope I.
e Oscilloscope 2.
e Strip Chart.

e XY Plot.

These scopes are not tied to any specific purpose and can be used for general troubleshooting. Most of the tools

will be familiar to anyone who has already used the Servo Tuner.

Common Tools

The Scopes are all built on a common interface with variations for each use case. Those common tools are
covered here. The scopes themselves are covered afterward.

Channels
By default, the four channels are set up as follows:

e Channel | shows Following Error in yellow. Units are encoder counts.

e Channel 2 shows Current Jog Velocity in green. Units are encoder counts per second.

e Channel 3 shows Final Output Signal in orange. Units are £10 and represent the torque command in
volts.

e Channel 4 shows Secondary Setpoint in purple. Units are encoder counts.

In addition to controls specific to each channel, there is a global Position Data
setting for all position-related parameters to be graphed in ® Counts () User Units
encoder counts (default) or in user units.

Each channel has several controls:

e The top field displays the parameter being graphed. This =~ Channel 1
can be changed to any parameter desired using the “...” :
button to the right of the field (details below).

e The middle field displays the horizontal and vertical shift

for this channel. The vertical shift can be altered using 1 Unit / Div -l

the vertical slider at the right. See Timebase for details
on the horizontal shift.

Auto Scale Y-Axis

e The bottom field displays the vertical scale (default |
unit/div). This can be altered using the up and down
arrow buttons to the right. Check Auto Scale Y-Axis (checked by default) to make the graph fit the
available vertical space. This option is usually preferred as it makes the data easy to read.

ACR Programmer’s Guide 93

PARKER MOTION MANAGER

When the user clicks the “...” button to select a new

. . . Parameter Pick X
parameter, the Parameter Picker dialog appears. This FremeterTicker
dialog helps the user drill down to a parameter of interest PR —— -
by using three pull-down menus. The top menu selects the
1. Position Parameters v Cancel
parameter group, the second menu selects the subgroup
and the third selects the individual parameter type. The list Following Error -
at the bottom breaks a specific parameter type (Following Item Description Parameter
Error in this case) down into enumerated options, often Axis 00 Following Error P12251
based on axis number (otherwise encoder number, stream fads 01 Following Error F1zsa7
Axis 02 Following Error P12803
number, ADC number, etc.).
Axis 03 Following Error P13059
. . . . Axis 04 Following Error P13315
The Parameter Picker dialog is consistent across PMM and - -
Axis 05 Following Error P13571
is also used in the Servo Tuner. It is conceptually very s 06 Following Error P13827
similar to the Pick A Bit dialog that serves the same Axis 07 Following Error P14083
purpose for bits. The same pull-down menus used in the
Parameter Picker are also used in the Numeric Status
panel.
When a flag parameter is selected (P4096-4375), the bottom pull-down makes it [77 . =
e
possible to select a specific bit (or bits) to watch in the scope. [] BIT791: Ballscrew Activate :
BIT792: Jog Active
H BIT793: Jog Direction
Timebase [Bir793tJog

[] BIT794: Jog At Speed
The Timebase panel controls the graph’s time (horizontal) axis. It consists of several |7 &ir795:10g Stopping

tools: [RIT796: lnn Farward
e The time/division indicator shows the length of time represented by Timebase
one division on the horizontal axis. This can be changed using the up 00 ms / Div
UL ms S LI P

and down buttons to its left.
e The slider beneath the time/division indicator can be used to scroll
data in the graph back and forth horizontally.

Controls
Most scopes have two rows of buttons near the bottom left-hand corner that perform major functions, although
there will be variations on exactly which buttons are present.

Matian... Sampling... Erase Display Data

Run Single Zero Export Data

Clicking Motion provides a dialog where the user can write a small snippet of code. This code will be sent down
the controller and executed during a test. The default code just does an incremental jog move on an axis defined
by the user. To turn off the motion code, simply uncheck the Download Commands box. Some users may find it
useful to alter the program to which the commands are sent (particularly if interpolated motion is required), which
can be done with the program pull-down at the bottom of the dialog.

94 ACR Programmer’s Guide

PARKER MOTION MANAGER

Mation bt
DIM V(1) : REM Dimension local variable, QK
LW0=0: REM Change this value to determine motic
REM Change motion profile values as needed. Cancel

AXIS(LVO) JOG WEL 1

AXIS(LVO) JOG ACC 10

AXIS(LVO) JOG DEC 10

AXIS(LVD) JOG JRK O

AXISLVD) JOG INC 1

INH -(792+LW0*32) : REM Waits for move to comp
DWL 1 : REM Wait between moves.

AXIS(LVO) JOG INC -1

< >

[pownload Commands to |PROG14 ~ | When Run button clicked

Clicking Sampling opens the sampling dialog. Here, the user can select PC-based Sampling (default) or Onboard

Sampling.
Sampling X
Sampling
® PC-based Sampling |20 ms v

Cancel
O onboard sampling 2 ms

Trigger
Trigger Channel

® Trigger Off
O Channel 1
O Channel 2
O Channel 3
O Channel 4

=]
(==

PC-based sampling means that PMM will request the parameter value over Ethernet at the specified rate. The
sample data is transmitted as needed without buffering. This is convenient and does not impose a memory burden
on the controller, meaning the graph can store very large data samples. However, PMM does not permit sampling
faster than 20 ms with this option to avoid taxing network and processor resources on the controller and the

user’s PC.

Onboard sampling means that the controller will allocate a memory buffer for the data it needs to take in advance.
When the user clicks Single or Run, the controller will store the data it acquires in the buffer and transmit it all at
once after the test is finished. The main advantage of this option is that it allows the user to acquire data at a

ACR Programmer’s Guide 95

PARKER MOTION MANAGER

faster interval (all the way down to the servo period). However, ACR controllers have limited memory and large
data samples are not always possible. If there is not enough memory available to run the test with onboard
sampling, PMM will log the error message “failed to allocate program memory for sampling buffer” to the Messages
window.

NOTE: The Run button requires onboard sampling.

The approximate amount of memory in bytes required to run a test move with onboard sampling can be calculated
using the following formula:

ttest
Mbytes = 4Nchannels <t

sample

Nchaness is the number of channels in use, t is the length of time visible on the horizontal axis in seconds and tsmpe
is the sample time in seconds. If the sample time is set to Servo Period, the actual sample time depends on the
controller in use. For ACR7000 controllers, the default servo period is 500 ps. For the IPA, it is 250 ps.

The other buttons have simpler functions and are explained below:

o Clicking Display Data displays all of

the captured data in a textual J “Untitled - Notepad _ O W

format, which makes it easy to

copy the data to other File Edit Format View Help

applications like Microsoft Excel. “Clock™ "Channel 1" “Channel 2” ~
e Clicking Export Data directly saves "0.001000" "0.016000" "8.2935
the data to a text or CSV file. "0.00.2008" "0.9819993" "8.2983
e Clicking Run will run the Motion "9.003000" "8.9829996" "8.2962
code over and over, producing "g.eed4e88" "8.839989" "8.2933
graphs over and over. This is "B.eeseee" "8.e49979" "8.2896
useful for viewing how an issue "0.006000" "0.859964" "8.2850
reacts over many cycles. It is "0.007000" "0.869943" "8.2796
helpful in troubleshooting "P.0ese8" "8.879915" "8.2734
intermittent problems. "0.eaoeee" "8.B89879" "8.2664

e Clicking Single will run the Motion "9.016000" "9.899833" "8.2585 v
< >

code exactly once and produce
one graph. This is the most
common way to use the oscilloscope.
e Clicking Zero resets the time slider as well as the vertical slider for each channel, an effect only noticeable
if Auto Scale is disabled.
o Clicking Erase erases all data from the graph.

Display
The Display panel has four checkboxes that allow the user to show or hide each channel on the graph.

Display
Channel 1 Channel 3
Channel 2 Channel 4

96 ACR Programmer’s Guide

PARKER MOTION MANAGER

The Scope

The graphical scope is the central feature of each scope tool and shows data captured from the controller during a
test. This helps users visually understand what their axis is doing during the test. It is common to graph
parameters like Following Error, Secondary Setpoint, Actual Torque and other control loop parameters.

Data channels display their current values when sweeping the cursor over the scope. This makes it easy to
correlate specific channel values with specific times. One of the biggest new features to the Servo Tuner in PMM
is Auto Scale (on by default), which makes the scope much easier to read.

IR AT R 3 77
o FAWANA B A I AT —
R AT Y oy v

\J
v

ACR Programmer’s Guide 97

PARKER MOTION MANAGER

Oscilloscope
:

Oscilloscope

Counts User Units

Channel 1

Auto Scale Y-Axis

Channel 2

Auto Scale Y-Axis

Channel 3

Auto Scale Y-Axis

Channel 4

Timebase Display
Channel 1 Channel 3
< 3 Channel 2 Channel 4 v
Auto Scale Y-Axis
Motion... sampling... Erase Display Data
Run Single Zero Export Data

The Oscilloscope is the most flexible scope tool in PMM. For convenience, there are two of them. This allows
users to monitor or troubleshoot two entirely different issues without needing to constantly reconfigure their
scope. The Oscilloscope is very similar to the Servo Tuner and has access to all of the tools mentioned
previously. It can be considered the basic form of all the scopes.

98 ACR Programmer’s Guide

PARKER MOTION MANAGER

Strip Chart

=
Strip Chart
Counts User Units
Channel 1

Auto Scale Y-Axis

Channel 2

Er coder Position

T ——F

Auto Scale Y-Axis

Channel 3

Auto Scale Y-Axis

Channel 4

Timebase Display
- channel 1 [] Channel 3 MY
[channel 2 [Channel 4 Auto Scale Y-Axis
Motion... Sampling... Erase Display Data
Stop Single Zero Export Data

The Strip Chart is like the Oscilloscope, but is designed to monitor signals for longer periods. Because it is meant
for monitoring slower signals, onboard sampling is not an option. The Strip Chart only uses PC-based sampling.

The scope for the Strip Chart comes with an extra slider at the bottom. This slider can be used to select a subset
of the total elapsed time for viewing. If the user changes the position of the slider, the scope will pause at the
desired section, but will keep collecting data. Clicking Resume will put the Strip Chart back in “scrolling” mode.

ACR Programmer’s Guide 99

PARKER MOTION MANAGER

XY Plot

XY Plot
Position Data
@® Counts (O User Units

Channel 1

Auto Scale Y-Axis

Channel 2

Auto Scale Y-Axis

Display
Channel 1 [channel 2

Motion... Sampling... Erase Display Data

Run Single Zero Export Data

The XY Plot replaces the time axis with another value axis. It is designed to compare two signals that have a

relationship, like the positions of an X and a Y axis.

The XY Plot only has two channels instead of the usual four. Each channel maps one parameter to the horizontal
axis (top parameter) and another to the vertical axis (bottom parameter). The rest of the tools work normally.

100 ACR Programmer’s Guide

ACR BASICS

CHAPTER 2
ACR Basics

ACR Programmer’s Guide 101

ACR BASICS

ACR Basics

The AcroBASIC programming language accommodates a wide range of needs by providing basic motion control
building blocks, as well as sophisticated motion and program flow constructs.

The language comprises simple ASCIl mnemonic commands each on its own line or separated by a delimiter.

Let us start by taking a look at a basic program and what each line does:

PROGRAM & Starts program definition. First line of any program. Valid AcroBasic
commands appear in blue, but that is not shown here for formatting
reasons.

DRIVE ON X < Enable the X axis motor.

RES X < Reset the X position to 0.

ACC 10 DEC 10 STP 10 VEL 1 & Sets acceleration/deceleration/stop/velocity.
X10 < Go to 10 position on X. Units based on config wizard scaling.

X0 < Return to starting position of 0 on X axis. Controller waits until X is at
10 before returning.

ENDP < End of program. Must always be last line of a program.

Note most commands are on their own lines but ACC, DEC, STP and VEL are all used by the motion calculator
simultaneously and thus can be on one line, saving vertical programming space.

The AcroBASIC programming language uses a parent child approach. A parent can have child statements. A child
statement is considered a sub-statement of the parent.

Parent Command DRIVE ON X Child Command

You can issue many parent statements alone—some provide the current status related to that particular
command, others perform an action. For example, issuing the VEL command online with the controller in the
terminal emulator at the Program 0 prompt provides the velocity setting. Conversely, issuing the PROGRAM
command initiates defining a program.

Delimiter

Commands can be on their own line; a carriage return or line feed at the end of a line separates one command
from the next. Or, you can put multiple commands on the same line separated with a “space-colon-space” (*:).
This can be used to separate two commands on the same line to save vertical space.

DRIVE ON X : REM Enable the X axis motor.
X0 : PRINT "MOVING TO 0O POSITION"

102 ACR Programmer’s Guide

ACR BASICS

The multiple spaces between X and : are extra and okay; the minimum is one space, followed by a colon, followed
by one space. This allows programmers to align their program notes for readability. REM is a remark for
programmer’s notes but is technically a command and thus needs to be separated from DRIVE ON X with the
delimiter. Though commands are on the same line, they are executed sequentially left to right.

JOG REV Y Z : JOG FWD X : PRINT "RETRACTING YZ, ADVANCING X"

More than two commands can be on the same line, but this can be harder to read in larger programs.

Remarks

Remarks are for programmers to add notes on the purpose of different sections or lines of code. They can be on
their own line or at the end of line with space-colon-space.

REM Remarks are stored within the controller. Remarks in PMM automatically change to green in the program
editors.

By using an apostrophe (') in place of REM, the controller strips comments on downloading the program. This
can help minimize program space within the controller. This originated from memory limitation of controllers
many years ago and is not a limitation for new controllers such as the ACR7000 or IPA controllers. Apostrophe
comments must appear on their own line.

Remarks cannot be on PROGRAM or ENDP lines or on program labels.

No commands can be at the end of a remark. Programmer comments must be on their own line or at the end of
line. Let us take the first program and add remarks.

PROGRAM

' My first program. This would not be stored in the controller
DRIVE ON X : REM Enable the X axis motor.

RES X : REM Resets current X position to O.

REM Each comment line must have REM or ' at the beginning.
REM These would be stored within the controller.

REM Sets accel, decel, stop and velocity.

ACC 10 DEC 10 STP 10 VEL 1

X10 : REM Move to 10 on X axis.
X0 : REM Return to start on X axis.
ENDP

This program could be inserted into Program 0 and downloaded as is. The program could be run several ways:

e Use the Start button in the Toolbar.

>

e From the Terminal Emulator, type RUN PROGO.
e Set the program run request flag, bit 1032.

ACR Programmer’s Guide 103

ACR BASICS

Program Labels

Labels are program pointers which provide a method of branching to specific locations, including subroutines,
within the same program. Labels can only be defined within a program and executed with a GOTO or GOSUB from
within the same program.

Observe the following rules when creating and using labels:

e Precede the label with an underscore (_) character.
e Use letters (case-sensitive) and numbers, but not spaces or symbols.
e Use the RETURN command to indicate the end of the subroutine.

e Do not put a REM command on the same line as a label.

Example:

PROGRAM

GOSUB STARTUP : REM Go subroutine to STARTUP label.
ACC 10 DEC 10 STP 10 VEL 1

_MAIN

X10 : REM Move to 10 on X axis.

X0 : REM Return to start on X axis.

GOTO MAIN : REM continue program at MAIN label.
_ STARTUP

DRIVE ON X : REM Enable the X axis motor.

RES X : REM Resets current X position to O.
RETURN : REM Go back to GOSUB STARTUP and continue.
ENDP

This program adds two labels: STARTUP and MAIN. The program first does a GOSUB (subroutine) to
__STARTUP, where it enables the X axis motor and resets the position. With the RETURN it goes back from
where it was called and continues to line of ACC 10 DEC 10... ltthen enters a section of code with label of
_MAIN and with the GOTO MAIN would repeatedly move the motor back and forth between position of 10 and
0. The Halt Program button (stop sign icon on the Toolbar) can be used to stop the program. Even though ENDP
is never reached, it is still needed as part of the download to define the end of the program.

Move—Default Motion

The ACR controllers are programmable motor controllers. The default move type is MOV, which is a coordinated
move in a straight line for all axes involved.

An axis with a number would imply moving to that position. The ACR will interpret these as coordinated moves
by default and hence the MOV command is optional. These lines are the same:

X10 : REM Move to 10 on X axis.
MOV X10 : REM Move to 10 on X axis.

This saves typing and thus the MOV doesn’t need explicitly typed but is the parent to the child axis X.

X/10 : REM Increment X 410 /is an incremental move

104 ACR Programmer’s Guide

ACR BASICS

X0 : REM Move 0 position. This is an absolute move
X-5 Y5 : REM Linearly interpolated move to X-5 Y5

With a linearly interpolated move, all axes start and stop at the same time. The velocity, accel and decel are for
the path of all commanded axes.

For MOV commands, the program starts the move and then continues the program. If there is a new MOV
command, it will wait until the first MOV is done before starting the new MOV.

All MOV interpolated moves must be commanded from the program to which their master is attached. The master
is the motion calculator and ACR controllers have eight masters available. The above commands need to be in
Program 0 because, by default, X and Y are attached to Master 0, which is attached to Program 0.

More motion types are available and further explanation is provided in Making Motion.

Axis Names

In ACR Series example code, Axis 0 is the X axis and Axis | is the Y axis, unless otherwise specified. Axis names
(aliases) are only recognized within the program to which their master is attached!

PMM’s Configuration Wizard allows users to assign axis names on Axes within the Alias column. This adds the
alias to the axis in the System Code with the ATTACH command. Or, programmers could also assign an axis name
to an axis through the ATTACH SLAVE command. The name can be |-4 alpha character string (no numbers or
special characters).

By default, ACR74 will have four axes, ACR78 will have eight axes and IPA will have one axis:

ATTACH SLAVEQ AXISO "X"
ATTACH SLAVE1l AXIS1 "Y"
ATTACH SLAVE2 AXIS2 "zZ"
ATTACH SLAVE3 AXIS3 "A"
ATTACH SLAVE4 AXIS4 "B"
ATTACH SLAVES5 AXIS5 "C"
ATTACH SLAVE6 AXIS6 "U"
ATTACH SLAVE7 AXIS7 "V"

The axis name is valid at the program prompt in the Terminal Emulator:

POO>DRIVE ON X
POO>DRIVE ON X Y

It is also valid from within the program to which it is attached—Program 0 by default.
Outside of the program to which the axis is attached, users can set axis parameters using AXIS syntax:
AXISO DRIVE ON

..Or...

DRIVE ON AXISO

ACR Programmer’s Guide 105

ACR BASICS

Or, for multiple axes:

DRIVE ON AXISO AXIS1

Programmers will get an Unknown command error message if trying to use the axis name outside the program to
which it is attached:

|2 ACR74T:Terminal Emulator X

|F‘HOG1 »

LIST LINE NUMBER

on X

Clear Display

To see a controller’s attachments, type ATTACH in PMM’s Terminal Emulator and press Enter. Here is an example
for an ACR74T four-axis stepper:

MASTERO
SLAVEQ AXISO "X"

SLAVEL wIS myn

CT. A% > 5 5 W
P L) g £ o

HA "
These attachments are already set by PMM’s Configuration Wizard after download. As the sample programs

command motion with X, the sample programs must be used within Program 0. Syntax errors occur within other
programs as X is not recognized outside of Program 0:

106 ACR Programmer’s Guide

ACR BASICS

e Transfe *
Size(KB) Progress(%) S/F Errors
0|Pending... [%] 0
0|Pending... [%] 0
0|Pending... Q 0
100 € 6
o 0

PROGRAM my first program
PROGRA
PROGRA
PROGRA
PROGRANRES X :rem Reset the X position to 0.
PROGRA
e JACC 10 DEC 10 STP 10 VEL 1 :rem Sets accel, decel, stop ramps and
T velocity.
PROGRANX10 :rem Go to 10 user units on X. Units based on config wizard
PROGRA scaling.
PROGRA!

_STARTUP

1 DRIVE OM X
RETURM
EMNDP

Stopping Motion
When running and testing a program, users should be ready to kill motion—there is a button on the Motion Status
Panel for this purpose.

ACR Programmer’s Guide 107

ACR BASICS

™ ACR74T:Motion Status Panel X ﬁ'ACRMT:CDnnect b4

Programs
01|23
Gear Active 0 Ide
Cam Active 1 Idle D
Jag Active 2 1dle D
Drive Enable | @

Kill All Motion Request | @ | @ | @ | @ 2l o |
Drive Fault 4 |dle D
Maximum Position Errar 5 Idle D

Pos. Hard Limit Encountered
Meg. Hard Limit Encountered 5l D
Home Found 7 Idle D

Positive Soft Limit

Megative Soft Limit

Online Status Master Axis Position
@ Communications Online Moving Kill Actual Commanded Velocity
0 ? 0 9 9.635 0
Maotion Enable Input 1 0 0
2 i] 0
@ Enable Input OK 3 0 =

Kill All Motion

Clear All Kills

With the Kill All Motion button, all programs are halted and the Master Kill is set as well as each axis’ Kill All Motion
Request (KAMR) bit. The axes will not be disabled. To run the program again, click Clear All Kills. This will clear
the Kill for the Master(s) as well as the KAMR for the axes. Then the program can be run again.

There are several ways to kill motion from Parker Motion Manager:

e Ctrl+X in terminal window — Kill All Motion.

e Ctrl+Z in terminal window — Kill All Motion and Disable drives.

o Kill All Motion button in Motion Status panel (shown above), sends Ctrl+X.
o Kill All Motion & Disable All Drives button in Jog/Home/Limits, sends Ctrl+Z.
e Kill All Motion button in Servo Tuner, sends Ctrl+X.

e Disabling the drives is the same as sending the DRIVE OFF command.

Motion can be stopped programmatically from an AcroBASIC program, external HMI or PLC by setting the Kill All
Motion Request (KAMR) flag.

Killing/stopping motion this way relies on being connected to the controller. If you lose the connection, users will
need to stop motion on the machine either with a switch or by removing power. Use an E-stop switch into the
IPA’s Torque Enable inputs to remove power from the motor or for ACR7000 to cut the enable input. See the

108 ACR Programmer’s Guide

ACR BASICS

controller’s hardware installation manuals for details. Local safety standards may require removing power from
the controllers. Note that when the motors are disabled, the drive’s brake outputs (for servo drives) will turn off,
engaging brakes on the motor. Parker servo motors have standard fail-safe brakes as an option, where the brake
needs to be powered to disengage.

Killing or stopping motion is stopping commanded motion. If a servo system is unstable or position error is very
high, a servo system can still be moving. If position maintenance is on it can also still be moving though position
maintenance velocity is typically set low for slow end-of-move corrections.

Clicking a Kill button in PMM or doing a Ctrl+X or Ctrl+Z will set the Kill All Motion Request flag on all axes.

Any motion command issued while this flag is set will result in an error message Associated Slave Kill Motion Request
Active in the terminal emulator. This is true if any axis assigned to the same master is commanded to move.

The Kill All Motion Request will also be set if an axis trips a limit sensor or if a servo or closed-loop stepper faults
on a tracking error. To restart the controller, click the Clear All Kills before running the program or starting
motion again.

NOTE: Enabling drives using DRIVE ON command will clear the Kill All Motion Request (KAMR)
and Kill All Moves bits if the drive is not currently enabled.

We will discuss more about stopping in Stopping Moves and Motion.

PMM’s Toolbar allows the user to start and halt programs.

> =

This presumes the controller has been setup with the Configuration Wizard, with the motor selected, end of
travel sensors connected and the program downloaded.

We recommend having the Motion Status Panel open to Kill All Motion when first running the program in case
unexpected motion occurs.

Program Flow

Code is executed sequentially, following the order in which it is written. But based on some input, you can stop
and wait, or shift code execution elsewhere in a program using conditional statements. Using conditional
statements, you can create code that tests for specific conditions and repeats code statements.

The conditional statement provides a logical test—a truth statement—allowing decisions based on whether the
conditions are met. In the code, you create an expression and test whether the result is true.

The selection structure controls the direction of program flow. Think of it as a branch in your program. You can
divide conditional statements into three sub-categories: wait, selection and repetition.

ACR Programmer’s Guide 109

ACR BASICS

Wait for Bit or Parameter

There are two commands that pause program execution waiting for a condition: INH and IHPOS. The INH
command lets you inhibit (pause) program execution until the state of a selected bit occurs. Similarly, the THPOS
command lets you inhibit program execution until a parameter value is reached.

Either can pause the program execution forever until the bit/parameter condition is met and thus both have an
optional timeout.

INH O : REM Wait until bit 0 is on or true.

INH-0 : REM Wait until bit 0 is off or false.

IHPOS P12290 (40000,0) : REM Wait until AxisO actual position > 40000 cts.
IHPOS -P12290 (40000,5) : REM Wait until AxisO act. pos. < 40000 or 5 sec.
IHPOS P12290 (40000,5) : REM Wait until AxisO act. pos. > 40000 or 5 sec.

NOTE: Position parameters in ACR are in counts. To convert from user units, multiply by axis
PPU. This can be done inside parentheses.

IHPOS P12290 ((5*P12375),0) : REM Wait until X reaches 5 user units.

Modifying our previous example, we can use INH and THPOS to wait until X is past | unit to turn on an output.
After reaching a position of 10, it turns the output off and returns to 0.

PROGRAM

GOSUB STARTUP : REM Go subroutine to STARTUP label

ACC 10 DEC 10 STP 10 VEL 1 : REM Set move parameters

_MAIN

X10 : REM Move to 10 on X axis

IHPOS P12295 ((1*P12375),0) : REM Wait until X axis is past 1 unit

SET 32 : REM Turn on output bit32

INH-516 : ? "AT X10" : REM Wait until move is done, print

CLR 32 : REM Turn off output bit32

X0 : REM Return to start on X axis

INH-516 : ? "AT XO" : REM Wait until move is done, print

GOTO MAIN : REM continue program at MAIN label
_STARTUP

DRIVE ON X : REM Enable the X axis motor

INH 8465 (3) : REM Wait until AxisO is enabled or 3seconds
IF (NOT BIT8465) THEN ? "DRIVE DIDN'T ENABLE" : END

RES X : REM Reset current X position to O

RETURN : REM Go back to GOSUB STARTUP and continue
ENDP

Because ACR controllers buffer MOV moves, AcroBASIC programs will continue to process command lines. If
another MOV move is encountered, the program will wait there until the first move is done.

For interpolated MOV moves, an inhibit command using the In Motion flag can be used to make the program wait
until the move is complete before proceeding.

110 ACR Programmer’s Guide

ACR BASICS
The Jog Active bit can be used for Jog moves. Jog moves are not buffered and a second Jog move will interrupt the
first one.

INH -516 This will inhibit the program until Master 0’s In Motion flag is off. This can be used for any MOV,
such as a single-axis X10 or a multiaxis MOV such as X5 Y5.

INH -792 This will inhibit the program until Axis 0's Jog Active bit is off. This would be for a single-axis Jog
move such as JOG ABS X10.

From the program above:

X10 : REM Move to 10 on X axis

IHPOS P12295 ((1*P12375),0) : REM Wait until X axis is past 1 unit
SET 32 : REM Turn on output bit32

INH-516 : ? "AT X10" : REM Wait until move is done, print

Without the THPOS and INH-516, the move would start, then output 32 would immediately turn on and the
message would print even though the axis is still moving.

NOTE: Do not use INH or DWL in programs 8-15. If you have multiple non-motion programs, an
inhibit or dwell in one non-motion program affects all non-motion programs.

With a timeout, the condition would need to be checked to see if the program continued because the condition
was true or because the timeout elapsed. From the program above:

DRIVE ON X : REM Enable the X axis motor
INH 8465 (3) : REM Wait til Axis0O is enabled or 3seconds
IF (NOT BIT8465) THEN ? "DRIVE DIDN'T ENABLE" : END

This second line will print a message and end (stop) program execution if the drive did not enable.

Selection

The selection structure controls the direction of program flow. Think of it as a branch in your program. When
the conditions are met, the program moves to a different block of code. AcroBASIC provides the following
conditional statements:

e IF/THEN

e IF/ELSE/ENDIF
e GOSUB/RETURN
e GOTO

IF/THEN

Programs need to run code based on specific conditions. The IF/THEN statement lets a program test for a
specific condition and respond accordingly.

ACR Programmer’s Guide 111

ACR BASICS

The IF portion is the condition to test; if the condition proves true, the THEN portion of the statement executes.
If instead the condition proves false, the THEN statement is ignored and program execution moves on to the next
statement.

NOTE: Enclose the condition being tested in parentheses.

Though the IF/THEN statement provides a single-line test, it can execute multiple statements when the condition

proves true. All the statements must appear on a single line and be separated by a delimiter (space, colon, and
another space).

When using an IF/THEN statement, users can nest GOTO and GOSUB statements.

IF (BIT 24) THEN PO = PO+1
IF (PO < 2) THEN GOSUB LoadParts : PO = 100

Or, from the previous program sample, check if the drive did not enable. If it did not enable, print a message and
end the program:

IF (NOT BIT8465) THEN ? "DRIVE DIDN'T ENABLE" : END

IF/ELSE/ENDIF

The IF/ELSE statement provides a powerful tool for program branching and program flow control. The
IF/ELSE statement allows you to run one set of code if the condition is true, and another set of code if the
condition is false. The IF/ELSE statement must end with ENDIF.

When using an IF/ELSE statement, observe the following:

¢ You can nest GOSUB statements in an IF/ELSE statement. The GOSUB provides a return into the
IF/ELSE statement.

¢ Do not nest GOTO statements in IF/ELSE statements. The GOTO statement exits the IF/ELSE
statements and does not provide any link back inside.

e Do not nest IF/THEN statements in IF/ELSE statements—the logic may not provide the results you
expect.

Tip: When troubleshooting programs, use the LIST command to view the program stored on the controller. In
recognizing IF/ELSE statements, the controller indents the statements under the IF including the ENDIF. If any
statements in the IF/ELSE are not indented but should be, check the code in the program editor and re-
download.

The following demonstrates different actions based on conditions being true or false. If the input (bit 24) is true,
the long array increments and axis X moves an incremental distance of 25 units. If false, the long array decrements
and axis Y moves to an absolute position of 5.

IF (BIT 24)

LAO (1) = LAO(1)+ 1
X/25

ELSE
LAO(1) = LAO(1)- 1
Y5

112 ACR Programmer’s Guide

ACR BASICS

ENDIF

ELSE IF Condition

The IF/ELSE statement can include the ELSE IF condition. The ELSE IF condition lets you create a series
of circumstances to test. There is no practical limit to the number of ELSE IF conditions you can include.
However, they must come before the ELSE condition.

Here is how it works. When the IF condition is true, the subsequent statements are executed. When the IF
condition is false, each ELSE IF statement is tested in order. When an ELSE IF condition tests true, the
subsequent statements are executed. When the ELSE IF condition test false, the statements following the
ELSE condition execute. After executing the statements following an IF, ELSE IF or ELSE, the program
moves past the ENDIF to continue program execution.

When using the ELSE IF condition, you can omit the ELSE condition. When the IF and ELSE IF conditions
test false, statement execution after the ENDIF continues. Think of it as creating a series of IF/THEN
statements.

IF (P0>0)
X/25
ELSE IF (P0=0)
X0
ELSE
X-10
ENDIF

GOSUB/RETURN

The GOSUB branches to a subroutine and returns when complete. You can use GOSUB and RETURN anywhere in
a program, but both must be in the same program. A procedure can contain multiple RETURN statements.
However, on encountering the first RETURN statement, the program execution branches to the statement directly
following the most recently executed GOSUB statement.

The following example demonstrates a simple GOSUB routine.

GOSUB Labell

_Labell
PRINT "Inside Labell subroutine"
RETURN

GOTO

The GOTO statement provides an unconditional branch within a procedure. You can only use the GOTO in the
procedure in which it appears.

You can nest GOTO statements in an IF/THEN statement.

NOTE: The GOTO statement makes code difficult to read and maintain. Use it wisely.

ACR Programmer’s Guide 113

ACR BASICS

The following demonstrates a simple GOTO statement. The program sets output bit 32, then moves axis X one
incremental unit in the positive direction. The program pauses until Axis 0’s Not In Position bit (bit 768) turns off
(meaning it is in position), then clears the output, waits 2 second, and goes to LOOP1.

ACC10 DEC10 STP10 VEL1
_1OOP1

SET 32

X/1

INH -768

CLR 32

DWL 2
GOTO LOOP1

This would loop continuously until the program was halted by another program (HALT PROGO), by the user using
PMM (Halt button on Toolbar or via the Terminal Emulator) or by setting bit 1033 (Program 0 Halt Request bit).

GOTO and GOSUB Sample Program

Runs on Auto mode or Jog mode based on inputs.

PROGRAM
GOSUB STARTUP : REM Go subroutine to STARTUP label
ACC 10 DEC 10 STP 10 VEL 1 : REM Set move parameters
_MAIN
'AUTO MODE
IF (BIT 0) : REM InputO Auto Switch on
X10 : REM Move to 10 on X axis
SET 32 : REM Turn on output bit32
DWL 0.5 : REM Dwell 0.5 sec
CLR 32 : REM Turn off output bit32
X0 : REM Return to start on X axis
PO=PO+1 : REM increment a part counter
'JOG MODE
ELSE IF (BIT1) : REM If Jog+ switch
JOG FWD X
ELSE IF (BIT2) : REM If Jog- switch
JOG REV X
ELSE
JOG OFF X : REM If Auto and Jog are off, Stop Jog
ENDIF
IF (P0>=3) THEN END : REM end program after 3 cycles
GOTO MAIN : REM continue program at MAIN label
__STARTUP
DRIVE ON X : REM Enable the X axis motor
INH 8465 (3) : REM Wait until AxisO is enabled or 3seconds

REM 1If drive does not enable, end program
IF (NOT8465) THEN ? “DRIVE NOT ENABLED” : END
RES X : REM Reset current X position to O

114 ACR Programmer’s Guide

ACR BASICS

RETURN : REM Go back to GOSUB STARTUP and continue
ENDP

Repetition
The repetition structure—known as a loop—controls the repeated execution of a statement or block of
statements.

While the conditions remain true, the program loops (or iterates) through the specific code. Typically, the
repetition structure includes a variable that changes with each iteration. And a test of the value determines when
the conditions of the expression are satisfied. The program then moves to the next statement past the repetition
structure.

If the condition is not met, the loop does not execute. In many cases that is acceptable behavior. Conversely, if
the condition is always met, then the loop does not end. An endless loop is probably not a desired result, so be
mindful when writing the loop conditions.

AcroBASIC provides the following conditional looping commands:

e FOR/TO/STEP/NEXT
e WHILE/WEND

FOR/TO/STEP/NEXT

When you expect to loop through a block of code for a number of times, the FOR/NEXT loop is a good choice.
It contains a counter, to which you assign starting and ending values. You also assign a STEP value (positive
direction only), the value by which the counter increments.

When the FOR/NEXT loop executes the first time, the end value and the counter are compared. If the current
value is past the end value, the FOR/NEXT loop ends and the statement immediately following executes.
Otherwise, the statement block within the FOR/NEXT loop executes.

On each encounter of the NEXT statement, the counter increments and loops back to the FOR statement. The
counter is compared to the end value with each loop. When the counter exceeds the end value, the loop skips
the statement within, and proceeds to execute the statement immediately following the FOR/NEXT statement.

You can exit a FOR/NEXT loop before the counter is complete using a BREAK statement. When the condition is
met, the statement immediately following the FOR/NEXT loop executes.

FOR LVO = 0 TO 499 STEP 1
PRINT LAO (LVO), SAO(LVO)
DWL 0.01
IF (BIT 24)
BREAK
ENDIF
NEXT

WHILE/WEND
The WHILE/WEND loop executes as long as its condition remains true. You can use the WHLE /WEND anywhere
in a program.

ACR Programmer’s Guide 115

ACR BASICS

The WHILE sets the condition and is followed by statements you want executed when the condition is true.
When the condition is false, the statement immediately following WEND executes. The condition is evaluated only
at the beginning of the loop.

When using a WHILE/WEND statement, observe the following:

e Do not nest GOTO statements in a WHILE/WEND statement.
e At the start of each loop through the WHILE condition, the validity of the condition is tested.

The following demonstrates a WHILE/WEND loop. While the encoder position for Axis 2 is less than 1500 units,
the WHILE statement evaluates as true. As the loop runs, the array acts as a counter, incrementing with each
loop; axis X move an incremental 25 units; the program pauses for 1.5 seconds, then prints the current value of
the array; if the input (bit 24) is set, the loop breaks. When the encoder count exceeds 1500, the condition is
false and execution moves past the WEND statement.

WHILE (P6176 < 1500)
LAO(1) = LAO(1) + 1
X/25
DWL 1.5
PRINT LAO (1)

IF (BIT 24)
BREAK
ENDIF
WEND

Bits, Parameters and Variables

The ACR uses parameters (registers) and flags (bits) to store information and define the behavior of the
controller. Users have almost unlimited access to the parameters and flags for use in programs or a user interface.
Most applications only need to utilize a small set of the thousands of registers available. The more complex the
application, the more parameters are likely to be used.

Parameters are registers of numeric data that are either 32-bit integers (LONGs) or 32-bit decimal values
(FLOATS). Flags (bits) are binary and are either TRUE (high or -1) or FALSE (low or 0).

There are two types of bits: request and non-request.

Request Bits: The bit is self-clearing when processed by the main processor. All request bits include “request” in
the name. In most cases, there are complimentary flags that perform the opposite action. For example, the Run
Request bit and the Halt Request bit control the running and halting of programs.

Non-Request Bits: The bit requires clearing through a program or manually through a terminal.

There are separate parameter and bit tables within PMM’s online help and also the separate ACR Parameter and
Bit Reference. Following each is a table providing descriptions of the parameters or bits and the read/write
attributes.

116 ACR Programmer’s Guide

ACR BASICS

NOTE: The values for some parameters and bits change automatically through operation of the
ACR controller. Changing (writing) a value does not ensure the parameter or bit retains
the value over the course of operations. Use caution—forcing a value to change can cause
unpredictable results.

Following is a list of the most commonly used parameter and bit tables:

e Master Parameters

e Master Flags

e Axis Parameters

e Axis Flags

e Object Parameters (includes analog inputs)
e Program Parameters

e Program Flags

In addition to the system bits and parameters, you have your own user bits and parameters that can be used within
the controller and to interface to other devices like an HMI or PLC.

User Bits and Parameters
Five groups of global parameters are available as user defined parameters.

Retained
Parameter Range Data type Notes
ACR7xx0 IPA

Must be dimensioned prior to use.
P0-P4095 64-Bit Float Flash Flash Dimensioning included in PMM Configuration
Wizard. FLASH IMAGE to save

Each parameter contains 32 user flags

P4100-P41 2-Bit L N N
00 03 32-Bit Long o o (BIT128-255)
Each parameter contains 32 user flags
P4156-P4159 32-Bit L N N
it ong ° ° (BIT1920-2047)

P38912-P39167 32-Bit Long Yes Yes Retained in Non-Volatile USER RAM
P39168-P39423 32-Bit Float Yes Yes Retained in Non-Volatile USER RAM
BIT128-255 Bit No No Also accessible as P4100-P4103
BIT256-511 Bit No No Also accessible as P4104-P41 11
BIT1920-2047 Bit No No Also accessible as P4156-P4159

Note that P4100 is 32 bits long, which are bits 128-159.

Each bit can be cleared individually, or more easily P4100 = 0 would do the same thing and save a lot more
programming space. P4100 = -1 would set all the bits.

The range of a 32-bit Long is -2147483648 to 2147483647.

ACR Programmer’s Guide 117

ACR BASICS

PMM’s Bit Status now includes the User Flags. Note the P4/00 in the top-right indicating that parameter is made

of bits 128-159.

| 2 ACR74T:Terminal Emulator X

M B ACR7AT:Eit Status X

5]

Ys ~

LIST LINE NUMBER

LIST

User Flags

@ BIT128:
BIT12S:
BIT130:
BIT131:
BIT132:
BIT133:
BIT134:
BIT135:
BIT136:
BIT137:
BIT138:
BIT13G:
BIT140:
BIT141:
BIT142:
BIT143:

User defined 128
User defined 129
User defined 130
User defined 131
User defined 132
User defined 133
User defined 134
User defined 135
User defined 136
User defined 137
User defined 138
User defined 139
User defined 140
User defined 141
User defined 142
User defined 143

Using Parameters and Bits

You can specify parameters and bits in your programs or in the Terminal Emulator. Use the format Px or BITx,

where x represents the parameter or bit number.

~

User Flags

BIT144:
BIT145:
BIT146:
BIT147:
BIT148:
BIT148:
BIT150:
BIT151:
BIT152:
BIT153:
BIT154:
BIT155:
BIT156:
BIT157:
BIT158:
BIT15%:

~ | |User Group 0

User defined 144
User defined 145
User defined 146
User defined 147
User defined 148
User defined 149
User defined 150
User defined 151
User defined 152
User defined 153
User defined 154
User defined 155
User defined 156
User defined 157
User defined 158
User defined 159

~ | PA100

The following demonstrates how to format parameters and bits. Suppose your program refers to the current
position for Axis O (see table P12288-P14199 Axis Parameters) and input 24 (see table Bit0-Bit3| Opto-Isolated

Inputs).

pP12288
BIT24

Setting Binary Bits

You can use the SET command, or fix the bit value equal to |I. The following demonstrates how to set at bit. All

methods are valid.

SET 32
Bit32=1
SET Bit32
SET BIT 32

SET is always used with a bit. Thus, the BIT in the line is redundant and optional. Note the space between BIT

and the number is optional and both are valid syntax.

Clearing Binary Bits

You can use the CLR command or fix the bit value equal to 0. The following demonstrates how to set at bit. All

methods are valid.

CLR 32
Bit32=0

118 ACR Programmer’s Guide

ACR BASICS

CLR Bit32
CLR BIT 32

CLR is also always used with a bit. Thus, the BIT in the line is redundant and optional. Note the space between
BIT and the number is optional and both are valid syntax.

Printing the Current Value
You can send the PRINT command followed by a parameter or bit whose value you want to see. Bits return the
following values:

e -| when set.
e 0 when clear.

You can use a question mark in place of the PRINT command. The question mark is a shortcut in the Terminal
Emulator.

NOTE: When printing a system parameter, the value returned is either an integer or a 32-bit
floating point.

When printing a user parameter (P0-P4095), the value returned is either an integer or a 64-bit floating point.

The following demonstrates how to view values stored in parameters and bits. Parameter 6144 provides the
current position of Encoder 0; bit 24 provides the current state of input 24.

PRINT P6144
PRINT Bit24
? P6l44
? Bit24

Note a PRINT statement can be used for parameters, bits or strings and thus querying a bit status will require
"BIT" in the line.

A Word on Aliases

Parameters and bits can use aliases. You only need to assign the alias once, and then can use it throughout user
programs. The alias lets you provide a name that makes sense for programs and makes programs easier to read.

For more information, see Defines.

Programming Example

The following program uses two orthogonal axes, X and Y, to draw a square. You can use PMM to set up the
controller. Then, enter the program into Program 0 and download it to the controller.

RES X Y : REM Reset encoder registers to 0 at startup.
_LOOP

ACC 50 : REM Set trajectory generator acceleration.
DEC 50 : REM Set trajectory generator deceleration.
STP 50 : REM Set trajectory generator stop ramp.

ACR Programmer’s Guide 119

ACR BASICS

VEL 5 : REM Set target velocity.
X5 : REM Move axis to position.
Y5 : REM Move axis to position.
X0 : REM Move axis to position.
YO : REM Move axis to position.
GOTO LOOP

ENDP

Before running the program, make sure you are at the Program 0 prompt in the Terminal Emulator. The LRUN
command lets you listen through a terminal to the PRINT statements and error messages. This is the only way to
view program errors.

To run the program, type LRUN. When ready to exit the listening mode, press Escape (ASCII 27, top-left on most
keyboards).

As the program runs, you can pause the program by setting the Feedhold Request bit or sending the PAUSE
command. The Feedhold Request bit stops the axes using the deceleration value. To set the Feedhold Request
bit, issue the command SET 520.

You can resume the program by setting Cycle Start Request bit or sending the RESUME command. The Cycle
Start Request bit starts the axes using the acceleration value. To set the Cycle Start bit, issue the command SET
521.

While the program is in a feedhold, you can check the encoder position of each axis. To view the axis X encoder
position, issue PRINT P6144. To view the axis Y encoder position, issue ?P6160.

Note the space between "?" and "P6160" is optional.

Local Variables

Users can also dimension and use different types of variables local in each program:

Identifier Type Description Initialization

LV Long (32 bit integer) DIM LV(count)
SV Single (32 bit floating point) DIM SV(count)
DV Double (64 bit floating point) DIM DV(count)
$v String (8 bit characters) DIM $V(count)
LA Long Array DIM LAn(count)
SA Single Array DIM SAn(count)
DA Double Array DIM DAn(count)
$A String Array DIM $An(count)

120 ACR Programmer’s Guide

ACR BASICS

Local variables need to be dimensioned within program. Place a CLEAR command prior to a DIM statement to
clear out any previously dimensioned variables.

Below is a sample program that extends and retracts and actuator to feed out material, printing the number of
cycles, the length and the motor position.

PROGRAM

CLEAR : REM Clear any dimensioned variables.

DIM LV (1) : REM Dimension 1 long variable.

DIM DV (2) : REM Dimension 2 double variables.

Lv0=0 : REM Initialize cycle counter.

Dv0=3.1412 : REM Set material feed distance.

_LABEL1

PRINT "Cycles=",LVO0 : REM Comma inserts a tab character between.
PRINT "Length=";DV1l : REM Semicolon indicates there is no space.
PRINT "X", (P12290/P12375)

X (DVO) : REM Feed out material.

X0 : REM Retract actuator.

LV0=LVO0+1 : REM Increment the cycle count.

DV1=DVO*LVO : REM Update the total length fed out.

GOTO LABEL1

ENDP

Use LRUN to execute the program in the Terminal Emulator and listen to PRINT commands. A PRINT
statement that does not end with either a comma or a semicolon produces a carriage return and linefeed
combination.

Defines

From examples up to this point, AcroBASIC extensively uses bits, parameters and variables. These bits and
parameters can be for controller status or the programmer’s user data in programs. Alternative names, called
defines, can be assigned to parameters, bits, constants and variables to make program code more readable.
Defines are recognized globally (across user programs).

Observe the following rules when creating and using defines:

e Use a maximum of 23 letters.

o Defines are case sensitive.

e The first character must be a letter, but numbers can be used after that.
e Do not use spaces or special characters (such as _ and @).

e Use caution when using defines with local variables.

A define is recognized across programs, while local variables are limited to the program in which they are created.
This can cause problems if you have created similar local variables in different programs. For example, if long
variables are dimensioned in three programs, then the define “counter” is assigned to LV1 (long variable 1), the
controller recognizes “counter” as a define in all three programs, though it represents a counter in only one
program.

ACR Programmer’s Guide 121

ACR BASICS

To assign defines, use the Defines editor in the Program Editor tree. This is a central location for defines that are
global across all programs.

The #DEFINE command can be used within a program editor, at the top, before the PROGRAM line.

NOTE: Aliases are reserved in memory. If changing an existing bit or parameter alias,
redownload the configuration with the defines in PMM.

Defines
Alias Description Type Address/Value
1 bAutoRun AutoRun pushbutton Bit 0
2 blogRight Extend pushbutton Bit 1
3 bloglLeft Retract pushbutton Bit 2
4 bXenabled Motor energized status Bit 8485
5 pCounter Cycle counter Parameter 0
& bExtending Dutput light/valve/relay Bit 32
Updated sample program to either run in Auto mode or Jog mode with defines:
PROGRAM
GOSUB STARTUP : REM Go subroutine to STARTUP label.
ACC 10 DEC 10 STP 10 VEL 1 : REM Set move parameters.
_MAIN
'AUTO MODE
IF (bAutoRun) : REM Input0O Auto Switch on.
X10 : REM Move to 10 on X axis.
SET (bExtending) : REM Turn on output bit32.
DWL 0.5 : REM Dwell 0.5 sec.
CLR (bExtending) : REM Turn off output bit 32.
X0 : REM Return to start on X axis.
bCounter=bCounter+1l : REM Increment a part counter.
'JOG MODE
ELSE IF (bJogRight) : REM If Jog+ switch.
JOG FWD X
ELSE IF (bJogLeft) : REM If Jog- switch.
JOG REV X
ELSE
JOG OFF X : REM If Auto and Jog are off, Stop Jog.
ENDIF
IF (bCounter>=3) THEN END : REM end program after 3 cycles.
GOTO MAIN : REM continue program at MAIN label.
__STARTUP
DRIVE ON X : REM Enable the X axis motor.
INH bXenabled (3) : REM Wait until Axis0O is enabled or 3seconds.
REM If drive does not enable, end program.
IF (NOT bXenabled) THEN ? "DRIVE NOT ENABLED" : END
RES X : REM Reset current X position to O.
RETURN : REM Go back to GOSUB STARTUP and continue.

122 ACR Programmer’s Guide

ACR BASICS

ENDP

Aliases thus make programs easier to read by allowing programmers to name bits and parameters.

Starting, Pausing, and Halting Programs

PMM’s Toolbar allows you to start and halt programs using buttons.

> =

From the Terminal Emulator, you can also control programs from the SYS prompt, as well as any PROG prompt.
You must include the program number when issuing the command from outside its program—for example, RUN
PROGO. The commands described in this section provide immediate program control from PMM's Terminal
Emulator.

Running a Program
When the program starts, the controller returns to the SYS or PROG prompt. You can then enter immediate
commands as the program runs.

To start a program, send the RUN command from the program prompt. Use PMM’s buttons to change to the
PROGO prompt or type PROGO and press Enter. PO0> is the PROGO prompt. If the program does not run, issue
the LIST command to see the program.

After a download, the terminal will be at the P15 prompt. You could start Program 0 from here with RUN
PROGO. This could also be done from the SYS prompt or any other program prompt such as PROGI (P01> in

the terminal).

Running a Program at Power Up
You can set a specific program to automatically start after powering up or rebooting the controller. In the
program editor, enter the PBOOT command as the first line in a program.

NOTE: PBOOT must be the first line of the program. Any or all programs can be PBOOT.

Listening to a Program
While a program is running, you can “listen” to it. The listen mode displays data from the program PRINT
statements and error messages.

To enable the listening mode on a running program, issue the LISTEN command. To exit the listening mode,
press the Escape key (ASCII 27).

Viewing a Running Program
You can also start and listen to a program using a single command. This is best used for development
troubleshooting purposes. It is the only time you can view program syntax errors.

To start a program with the listening mode enabled, issue the LRUN command. To exit the listening mode, press
the Escape key (ASCII 27).

ACR Programmer’s Guide 123

ACR BASICS

Halting a Program
You can stop program execution from the SYS or PROG prompts using the HALT command. This will not
interrupt a move in progress.

NOTE: HALT cannot be used inside a program. To terminate a program in the middle of
execution inside a program, use the END command.

Pausing a Program
Pausing a program places a feed hold on the current move and suspends the program at the current command line.

To suspend a currently running program, send the PAUSE command.

Resuming a Paused Program
Once paused, you can resume the program—motion and code execution continue from the places at which they
paused.

To continue program operation, issue the RESUME command.

Affecting Multiple Programs
You can control all programs simultaneously using the ALL argument. For example: RUN ALL, HALT ALL,
PAUSE ALL, or RESUME ALL.

To control all programs, use the ALL argument in a command.

Restart Controller

To test starting the controller, users could cycle power on the controller. Note this will cause the computer to
lose connection to the controller temporarily. The REBOOT command is the same as cycling power-.

To restart a controller, issue the REBOOT command.

Running Startup Programs
You can run all startup programs without having to send individual RUN PROG commands.

To start all PBOOT programs, send the PBOOT command.

Parametric Evaluation

Most commands take arguments. Often, those command-line arguments are literals—values that are interpreted
as they are written. For example, axis numbers, bit index numbers, acceleration/deceleration speeds or positional
values.

In addition to literals, you can use expressions (also called formulas). The ACR controller can solve complex
integer or floating-point math. To use expressions, you must enclose them in parentheses. Expressions can use
the following data sources:

e Constants
e Literals

124 ACR Programmer’s Guide

ACR BASICS

e Variables

e Parameters
e Bits

o Aliases

An expression is comprised of at least one operand and one or more operators. Operands are values, whether
literals or variables. Operators are symbols that represent specific actions. For example, the plus sign (+)
represents addition, and the forward slash (/) represents division. In the expression:

A+ 7

A and 7 are operands, and + is an operator.

NOTE: For a complete list of operators available, see the Expression Reference section of the
ACR Command Language Reference.

Operations are performed in the following order:

e Powers
e Multiplication and division
e Addition and subtraction

o Relational operations (such as greater than, less than, not equal to)

The trigonometric (sine, cosine, tangent, etc.) and miscellaneous operators (absolute value, natural log, square
root, etc.) require parentheses around their own expressions. The order of operations with such operators
begins with the deepest nested parentheses.

Parentheses and Operational Order
Using parentheses, you can group operations in an expression to change the order in which they are performed.
For example, the expression:

4 +6 /2

Provides the answer 7, and not 5, because division performs before addition. When a mathematical expression
contains operators that have the same rank, operations are performed left to right. For another:

2 +6 /3 *5-9

Division and multiplication perform before addition and subtraction. The first operationis 6 / 3; the second
operation multiplies the result 2 by 5, which results as 10. In the third operation, add 2 to 10, which results as 12.
In the fourth operation, subtract 9 from 12 to produce the final answer of 3.

By using parentheses, you can change the order of operations in an expression. That is, operations in parentheses
are performed first, then operations outside the parentheses. For example, the expression:

(2 +6 /3) *5 -9
Results in an answer of ||, while the expression:

(2 +6/3) * (5-209)

ACR Programmer’s Guide 125

ACR BASICS

Results in -16 as the answer.

Nested Parentheses

You can also embed parentheses, where operations in the deepest parentheses are performed first. For example,
the expression:

((7 +3) / 2) *3

Contains embedded parentheses. From the example, the first operationis 7 + 3, the second operationis 10 /
2, and the third operationis 5 * 3, which results in |5 as the answer.

Examples

The following demonstrate some simple uses of expressions. The examples assume memory space is allocated for
the variables.

The following causes axis X to move position to the resulting value of the expression.

X(PO + P2 * P30)

When the following IF statement proves true, the message “OK” prints.

IF (P0=1234) THEN PRINT “OK”

The following concatenates strings $V| and $V2 and sets string $V0 equal to the result.

SVO = $V1 + $V2

The following program generates a random number from 0 to 999. As the program loops, it counts each loop.
When the number equals 123, the program exits the loop and prints the count.

PROGRAM

DIM LV (2) : REM dimension 2 long variables
Lv0=0 : REM set LVO equal to O

_LOOP1

LV1=RND(1000) : REM set LV1 equal to random number
LV0=LVO0+1 : REM increment LVO with each loop

IF (LV1<>123) THEN GOTO LOOP1
PRINT "Done in";1v0;"tries"
ENDP

To view the print statements and run this program, do LRUN from program prompt in the Terminal Emulator.

The following flashes the first 30 outputs in a random sequence.

PROGRAM
DIM DV (1) : REM dimension 1 floating point wvariable
_LOOP2

126 ACR Programmer’s Guide

ACR BASICS

DVO=RND (4294967295) : REM set DVO equal to random number
P4097= DVO : REM set onboard outputs equal to DVO
GOTO LOOP2

ENDP

Example Code Conventions

Examples that include code are provided throughout most of the ACR Series documentation to illustrate a
concept, supply model code samples or to show multiple ways to employ the commands.

The example code may include the terminal prompt or configuration code if it is necessary for clarity. Example
code is complete only as far as conveying information about the discussion, and configuration and other
information may need to be added in order for the code to be of use in an actual application.

NOTE: In ACR Series example code, Axis 0 is the X axis and Axis | is the Y axis unless otherwise
specified.

ACR Programmer’s Guide 127

ACR BASICS

ACR System

This section details the architectural layout of the ACR. Knowing the system architecture can help a developer
better understand the product's strengths and limitations, allowing them to take full advantage of it.

ACR Architecture

The ACR7000 uses a high-speed multitasking System on Module (SOM) processor for program and motion
control. FPGAs are sent the position updates and output analog command signals or step and direction signals.
The ACR7xV multiaxis servo platform uses one dedicated processor per axis to control current and close the
position loop. The ACR7xT multiaxis stepper platform uses stepper ASICs to control current. The ACR7xV and
ACR7xT use cutting edge high-power MOSFETSs to drive current to the motors. For the ACR7xC controller, the
FPGAs output the drive control signals for external drives.

The SOM processor is a pre-emptive multi-tasker. Users can use up to |5 programs, 8 high priority tasks (Motion
programs Prog 0-Prog 7) and 7 low priority tasks (Non-Motion programs Prog 8-Prog 14). On the ACR7xV, the
individual axis processors run a 500 ps (default) position loop and 31.25 ps current loop. On the ACR7xC, the
position loop for all axes is run on the main SOM processor on a 500 ps (default) interval. Inputs and outputs are
updated every 0.5 ms.

Prog 0-Prog 7 each have a | ms time slice and are used for Motion Programs. Each program has its own
coordinated group of axes for motion and can run independently of the other programs. Each program has its
own set of local variables (longs, floats, strings, arrays).

Prog 8-Prog 15 all share a | ms time slice and are used for non-motion programs. These programs are to be used
for monitoring conditions, error recovery and handling communications to external devices.

Perlod 0.0005 (500uSec)

TR e P e

R R R

Ll —Pariat—-
Sarvo
=0 |
FrogO i 1
! !
I 1
Prog 1 [i
o
o2 |
1 1
I
: i e
Hming %% \
Fourground
timing 7% PLC wcanner wanin
CPU loading Is variable dependant el yan
curent opemtions being performed. b 'E“""".”:.Tﬂ'u'
maGUmuMdmrd M gn u.pﬁmm
L] LRily L] b3 - PLCY update
unmmmndhm -

128 ACR Programmer’s Guide

Ethernet
Communications

Stream1 —

Stream2 #—u-

ACR BASICS

Stream3 |«

Ethernet
Communications

Streamd fe——

Stream5 —

ACR7V ACRTT IPA

Mator Motor
Internal cos | mp?
Y

Stream1 ‘\I“

Stream2 —7mHu0 _ |

Ethernet
Controller

ACR Controller

System on

Module
(SOM)
Processor

‘ FPGA ‘ ‘ FPGA ‘

Motion ProgramO

Motion Programl

Motion Program2

Motion Program3

Motion Program4

Motion Program5

Motion Programé

Motion Program?7

Non-Motion Program8 ‘

‘ Non-Motion Program9 ‘

‘ Non-Motion Program10 ‘

‘ Non-Motion Program11 ‘

‘ Non-Motion Program12 ‘

‘ Non-Motion Program13 ‘

Non-Motion Program14 ‘

Y
‘ Motord | | Motor7 ‘

Stream3 «

Stream4 [——

Stream5 /

Ethernet
Controller

ACR Controller

FRAM /
System on
Module /

(SOM)

Processor

| Non-Motion Program13

I Non-Motion Program14

Servo [Stepper ... Servo [Stepper |:
Amp [Drive Amp [Drive
External b f
¥
| Motor0 | ‘ Motor7 |

Motion ProgramO

Motion Program1l

Motion Program2

Motion Program3

Motion Program4

Motion Program5

Motion Programé

Motion Program7

Non-Motion Program8

Non-Motion Program9

Non-Motion Program10

Non-Motion Program11

Non-Motion Program12

ACR Programmer’s Guide 129

ACR BASICS

Ethernet

The ACR7000 and IPA’s Ethernet implementation has 5 communication streams available, allowing 5 different
connections to the controller. In addition to TCP/IP communications, both the ACR7000 and IPA controllers can
be used in EtherNet/IP systems.

Ethernet TCP/IP

You would first use the Ethernet port to configure and program the controller using Parker Motion Manager
(PMM). PCs, HMIs and other machine components can also connect using Ethernet TCP/IP. The ACR7000 and
IPA allow both ASCII communications through port 5002 and binary communication through port 5006.

For Windows PC communications, ComACRServeré is a 32 bit OLE automation server providing communications
between ACR controllers and compatible PC software applications such as LabVIEWV, Visual Basic.NET, Visual
C++, C#, etc. Samples are available here.

ComACRserveré is installed and used with Parker Motion Manager (PMM), running in the background. It is based
on the Microsoft Component Object Model (COM) and allows for reading/writing bits and parameters, initiating
motion and uploading/downloading programs. It is a wrapper for the Binary Host Interface. For further details see

ComACRServeré User’s Guide.
e

Precision Stage
or Actuator

- Precision Stage

For PC-based applications for OEM machinery using a non-Windows PC for control, or for users wanting faster
communications, the Binary Host Interface can be used to connect to and control ACR or IPA controllers,

explained here. This option is not recommended for most users.

EtherNet/IP Scanner

For applications needing more I/O than the controller’s onboard inputs and outputs, the ACR7000 and IPA can be
configured as a scanner for up to 16 Wago 750 series EtherNet/IP bus couplers. This allows for larger numbers of
inputs and outputs, analog I/O and other types of I/O (higher current relay modules, temperature/thermistor
modaules, etc.) and distributed I/O on the machine. Each node can have max of 512 bits of inputs and 512 bits of
outputs, 32 analog inputs and 32 analog outputs. For further information, see IPA Ethernet I/O User Guide (same
applies to ACR7000). A sample ENIP Scanner program is available in Application Examples.

Gearhead /
Motor1 B [TECISION StagE
fActuator
Onboard Inputs
ACR/IPA & Outputs
- Inputs &
Wago 750 B Outputs

130 ACR Programmer’s Guide

https://community.parker.com/technologies/electromechanical-group/w/electromechanical-knowledge-base/2273/pc-to-acr-program-samples-excel-labview-vb-net-c-c

ACR BASICS

EtherNet/IP Node

The ACR7000/IPA can also be a node on an EtherNet/IP network for use with Allen Bradley and Omron PLCs
(others too). Both support class | and class 3 messaging. Further information can be found in IPA Ethernet/IP
Programmer’s Guide.

Add-On Instructions (AOls) are available for the IPA for control from Allen-Bradley ControlLogix and
CompactlLogix PLCs. Further details can be found here.

Gaarhoad §
n<m Seamead
Ed [TECIS 10N Stage:
Oeibnand Inputs fActuator
& Oulpifs

Gearhead /

Gaahead | Precision
e Freisicn Sags i
fACiuator

Gearhead /
E o I TECIS 0N Stage

Tactualor

=] e

- Gaarhead | & Outpans

Molordd S Previzion Stage
tAgtualon
Inputs &
B Clulputs

Woge 75 I')"Jl;';.

PLC with multiple IPAs. IPA is a node on EtherNet/IP PLC with a multiaxis ACR. ACR is a node on
and can simultaneously be a scanner. EtherNet/IP and can simultaneously be a scanner.

Ethernet/IP Peer-to-Peer

The ACR7000 and IPA’s EtherNet/IP implementation can be a scanner for Peer-to-Peer communications with up
to four other ACR7000 or IPA controllers. Though not for expansion of interpolated motion, this can be used to
coordinate between controllers using only an Ethernet cable. Users can have systematic exchange up to 128 longs
or floats in both directions. For further information, see IPA Ethernet I/O User Guide (ACR7000 is the same). A
sample Peer-to-Peer program is available in Application Examples.

An ACR7000 or IPA can only be a scanner (client) for one type of device; it can be a scanner for a Wago 750 or
another ACR7000/IPA, but not both. The peer ACR7000/IPA however can be a server to the first ACR7000/IPA

and a scanner for a Wago 750 series.

ACR Programmer’s Guide 131

ACR BASICS

ACR

ACR

PC control via TCP/IP and two ACRs with Peer-to- ACR standalone Peer-to-Peer (up to 4).
Peer.

PLC control via EtherNet/IP with two ACRs Peer-to- ACR cannot be an EtherNet/IP slave to both a PLC and
Peer. another ACR.

132 ACR Programmer’s Guide

ACR BASICS

Command Syntax

The AcroBASIC programming language accommodates a wide range of needs by providing basic motion control
building blocks, as well as sophisticated motion and program flow constructs.

The language comprises simple ASCIl mnemonic commands, with each command separated by a command
delimiter (carriage return, colon, or line feed). The command delimiter indicates that a command is ready for
processing.

The AcroBASIC programming language uses a parent-daughter approach. A parent can have daughter statements;
a daughter statement is considered a sub-statement of the parent.

You can issue many parent statements alone—some provide the current status related to that particular
command, others perform an action. For example, issuing the ATTACH command at the program level provides
you with a report of the axis attachments to the master. Conversely, issuing the CLEAR command at the system
level frees the memory allocated to all programs.

You can only issue some parent commands in conjunction with a daughter statement. For example, the DRIVE
command has the ON, OFF, and RES daughter statements. Therefore, you can issue the DRIVE ON (axis),
DRIVE OFF (axis) and DRIVE RES (axis) commands, but not DRIVE by itself.

Description of Format

©,
ACC Set Acceleration Ramp
@ Format RCC { rate }
@ Group Velocity Profile
@ Units units/second?2 scalable by PPU
@ Data Type FP32
@ Default 0
Prompt Level PROGx
@ See Also DEC, EVEL, IVEL, PPU, STP, VEL
@ Related Topics Master Parameters (0-7) (8-15)
@ Product Revision Command and Firmware Release

Mnemonic Code: The ASCIl command.

Name: A short description of the command.

Format: Indicates the proper syntax and arguments for the command.

Group: The functional group to which the command belongs.

Units: Indicates the units of measurement required by the argument(s) in the command syntax.
Data Type: Indicates the class of data required by the argument(s).

Default: Indicates the setting or value automatically selected unless you specify a substitute.
Prompt Level: Indicates the communication level at which you can use the command. For more

© N LA WD —

information, see Communication Levels.
9. See Also: Indicates commands related or similar to the command you are reviewing.
10. Related Topics: Indicates parameter and bit tables related to the command you are reviewing.

ACR Programmer’s Guide 133

ACR BASICS

I'l. Product Revision: To determine whether the command applies to your specific ACR series controller
and firmware revision, see the Command and Firmware Release table.

Arguments and Syntax

The syntax of an AcroBASIC command shows you all the components necessary to use it. Commands can contain
required and optional arguments. They also contain a number of symbols:

e Braces { }—arguments that are optional. Do not type the braces in your code.

e Parentheses ()—arguments that are optional, and must appear within the parentheses in your code. Also
used to indicate variables and expressions. If replacing a constant with a variable or parametric equation,
use parentheses to “contain” the variable/equation. Signed (-) or (+) constants must be in parentheses.

e Commas (,)—delimiters between arguments in specific commands. In addition, select commands use
commas to control spacing and line feeds. To understand the separator’s specific use in a command, refer
to the command’s format and description.

e Semicolons (;)—delimiters between arguments in specific commands. In addition, select commands use
semicolons to control spacing and line feeds. To understand the separator’s specific use in a command,
refer to the command’s format and description.

e Slash mark (/)—signifies an incremental move in select commands.

* Quotes (“ ”)—arguments within the quotes must appear within quotes in your code.

e Number sign (#)—device arguments following number signs must include the number sign in your code.

o Ellipsis (...)—arguments can be given for multiple axes.

The following examples illustrate how to interpret common syntax:

ACC {rate}

In the ACC command, the lower-case word rate is an argument. Arguments act as placeholders for data you
provide. If an argument appears in braces or parentheses, the argument is optional.

For example, the following sets the acceleration ramp to 10,000 units per second”.

ACC 10000

When you issue a command without an optional argument, the controller reports back the current setting. Not
all commands report back, and some require you to specify an axis. For example, the following reports the
current acceleration rate in Program O.

POO>ACC
10000
PGAIN {AXIS {value}} {AXIS {value}l} ...

Optional arguments can nest. This provides the flexibility to set data for or receive reports on multiple axes. For
example, the following sets the proportional gain for axes X and Y to 0.0001 and 0.0002 respectively.

PGAIN X 0.0001 Y 0.0002

134 ACR Programmer’s Guide

ACR BASICS

Because the PGAIN command can report on multiple axes, you specify at least one axis on which the controller is
to report back.

POO>PGAIN X
0.0001
POO>PGAIN X Y
0.0001

0.0002

IPB {AXIS {value}} {AXIS {(valuel, value2)}}

The AcroBASIC language provides programming shortcuts. You can set positive and negative values for
commands using one argument. If the values differ, you can use two arguments. The command format illustrates
when this is possible. For example, the following sets the in-position band for axis X to +0.05 and for axis y to 3
and —1.

IPB X 0.05 Y (3, -1)
Or:
IPB AXISO 0.05 AXIS1(3,-1)

Notice that the two values for axis Y are given inside parentheses and separated by a comma, as shown in the
format of the command.

Note the X and Y aliases are only valid within the program to which the axes are attached (see ATTACH). Using
AXISO or AXISL1 is valid in any program.

HALT {PROGx | ALL}

The vertical bar indicates a choice between arguments. For example, the HALT command lets you stop a user
program or all programs.

HALT PROGO
HALT ALL

Variable Substitution Syntax

AcroBASIC commands can be used with parameters instead of numeric values. However, variable substitution
requires use of parentheses.

Modifying Example 3 to do the same thing but with variable substitution:

PO = 0.05
Pl = 3
P2 = -1

IPB X (PO) Y ((P1), (P2))

ACR Programmer’s Guide 135

ACR BASICS

Or:

IPB AXISO (PO) AXIS1((Pl), (P2))

Same if using Aliases with variable substitution:

#DEFINE ipbx PO

#DEFINE ipbypos P1

#DEFINE ipbyneg P2

IPB X (ipbx) Y ((ipbypos), (ipbyneqg))

Or:
IPB AXISO (ipbx) AXIS1 ((ipbypos, ipbyneqg))
Note that NOT is not an operation and does not need to be in parentheses with a bit. This is valid syntax:

IF (BIT 0 AND NOT BIT 1) THEN P100=6

Program sample using variables for move parameters:

PROGRAM

DIM SV10

SV2=100 : SV3=6

ACC (SV2) VEL (SV3) DEC (SV2) STP (SV2)
X/100

? SV2 : ? SV3 : INH 516

ENDP

Nested Commands Syntax

Parametric evaluation can be used within commands, but as it is a command within a command, it needs to be
within parentheses. This is a great way to condense program code.

JOG HOME X1 : REM Start homing X positive

REM Infinite WHILE statement while X is trying to HOME
WHILE ((NOT BIT 16134) AND (NOT BIT 16135))

WEND

REM Prints Information regarding "X" Axis homing

IF (BIT 16134) THEN PRINT "X HOMING SUCCESSFUL"

IF (BIT 16135) THEN PRINT "X HOMING UNSUCCESSFUL"

Axis X starts homing. The program continues into a WHILE loop. This is looping while axis X is homing, that is,
while it has not found home (bit 16134, Axis 0 Found Home) and not failed (bit 16135 Axis O Failed to Find
Home). We know either one or the other will happen. After homing, the WHILE loop is exited. This WHILE
loop shows how to evaluate multiple bits within a command.

136 ACR Programmer’s Guide

Commands Lists

The tables in this section list commands according to the following command groups:

Axis Limits
Character 1/O
Drive Control

Feedback Control

Global Objects
Interpolation
Logic Function

Memory Control

The ACR Command Reference and PMM online help gives full syntax and explanation of these commands with

Non-Volatile

Operating System

Program Control
Program Flow

Servo Control

Setpoint Control

Transformation

Velocity Profile

ACR BASICS

example code. The more common commands are covered within this Programmer’s Guide. Many of the
commands are settings and are part of the System Code generated by PMM’s Configuration Wizard. See

Configuration.

Axis Limits

Command Description

ALM Set stroke limit ‘A’

BLM Set stroke limit ‘B’

EXC Set excess error band
HLBIT Set hardware limit/homing input
HLDEC Hardware limit deceleration
HLIM Hardware limit enable

IPB Set in-position band

ITB Set in-torque band

JLM Set jog limits

MAXVEL Set velocity limits

PM Position maintenance

ACR Programmer’s Guide

137

ACR BASICS

SLDEC Software limit deceleration
SLIM Software limit enable
SLM Software positive/negative travel range
TLM Set torque limits
Character 1/1O
I
CLOSE Close a device
INPUT Receive data from a device
OPEN Open a device
PRINT Send data to a device
TALK TO Talk to device

Drive Control

DRIVE Drive report-back

Feedback Control

HSINT High speed interrupt
INTCAP Encoder capture

MSEEK Marker seek operation
MULT Set encoder multipliers
NORM Normalize current position
OOP High speed output

PPU Set axis pulse/unit ratio

REN Match position with encoder
RES Reset or preload encoder

138 ACR Programmer’s Guide

ACR BASICS

ROTARY Set rotary axis length

Global Objects

ADC Analog input control

AXIS Direct axis access

CIP Ethernet/IP status

DAC Analog output control

ENC Quadrature input control

FSTAT Fast status setup

LIMIT Frequency limiter

MASTER Direct master access

PLS Programmable limit switch

RATCH Software ratchet

SAMP Data sampling control
Interpolation

.

CIRCCW Counter clockwise circular move

CIRCW Clockwise circular move

INT Interruptible move

INVK Inverse kinematics

MOV Define a linear move

NURB NURBs interpolation mode

SINE Sinusoidal move

SPLINE Spline interpolation mode

TANG Tangential move mode

ACR Programmer’s Guide 139

ACR BASICS

TARC 3-D circular interpolation

TRJ Start new trajectory

Logic Function

CLR Clear a bit flag

DWL Delay for a given period
IHPOS Inhibit on position

INH Inhibit on bit high or low
MASK Safe bit masking

SET Set a bit flag

TRG Start move on trigger

Memory Control

CLEAR Clear memory allocation

DIM Allocate memory

MEM Display memory allocation
Non-Volatile

ELOAD Load system parameters

ERASE Clear the EEPROM

ESAVE Save system parameters

FIRMWARE Firmware upgrade/backup

FLASH Create user image in flash

PARTNUMBER Displays controller part number

140 ACR Programmer’s Guide

ACR BASICS

PBOOT Auto-run program

Operating System

ATTACH Define attachments
BOOTREV Displays boot revision
CONFIG Hardware configuration
CPU Display processor loading
DEF Display the defined variable
#DEFINE Define variable

DETACH Clear attachments

DIAG Display system diagnostics
ECHO Character echo control
HELP Display command list

IP IP address

MODE Binary data formatting
PASSWORD Block uploading programs
PERIOD Set base system timer period
PROG Switch to a program prompt
REBOOT Reboot controller

STREAM Display stream name

SYS Return to system prompt
VER Display firmware version

Program Control

AUT Turn off block mode

ACR Programmer’s Guide 141

ACR BASICS

BLK Turn on block mode

HALT Halt an executing program
LIST List a stored program
LISTEN Listen to program output
LRUN Run and listen to a program
NEW Clear out a stored program
PAUSE Activate pause mode

REM Program comment
RESUME Release pause mode

RUN Run a stored program
STEP Step in block mode

TROFF Turn off trace mode

TRON Turn on trace mode

Program Flow

BREAK Exit a program loop

END End of program execution
ENDP End program without line numbers
FOR / TO / STEP / Relative program path shift
NEXT

GOSUB Branch to a subroutine

GOTO Branch to a new line number
IF/ELSE Conditional execution
IF/ELSE/ENDIF

IF / THEN Conditional execution
PROGRAM Beginning of program definition
RETURN Return from a subroutine

142 ACR Programmer’s Guide

ACR BASICS

WHILE/WEND Loop execution conditional

Servo Control

DGAIN Set derivative gain

DIN Dead zone integrator negative value
DIP Dead zone integrator positive value
DWIDTH Set derivative sample period

DZL Dead zone inner band

DZU Dead zone outer band

FBVEL Set feedback velocity

FFACC Set feedforward acceleration

FFVC Feedforward velocity cutoff region
FFVEL Set feedforward velocity

FLT Digital filter move

IDELAY Set integral time-out delay

IGAIN Set integral gain

ILIMIT Set integral anti-windup limit

KVF PV loop feedforward gain

KVI PV loop integral gain

KVP PV loop proportional gain

LOPASS Setup lopass filter

NOTCH Setup notch filter

PGAIN Set proportional gain

Setpoint Control

ACR Programmer’s Guide 143

ACR BASICS

BKL Set backlash compensation

BSC Ballscrew compensation

CAM Electronic cam

GEAR Electronic gearing

HDW Hand wheel

JOG Single axis velocity profile

LOCK Lock gantry axis

UNLOCK Unlock gantry axis
Transformation

e e

FLZ Relative program path shift

OFFSET Absolute program path shift

ROTATE Rotate a programmed path

SCALE Scale a programmed path

Velocity Profile

ACC Set acceleration ramp

DEC Set deceleration ramp

F Set velocity in units/minute
FOV Set feedrate override

FVEL Set final velocity

IVEL Set initial velocity

JRK Set jerk parameter (S-curve)
LOOK Lookahead mode

MBUF Multiple move buffer mode

144 ACR Programmer’s Guide

ACR BASICS

ROV Set rapid feedrate override
SRC Set external time base

STP Set stop ramp

SYNC Synchronization mode

TMOV Set time-based move

TOV Time override

VECDEF Define automatic vector
VECTOR Set manual vector

VEL Set target velocity for a move

Startup Programs

You can set a program to automatically run on powering up or rebooting the controller. The PBOOT command
provides that ability.

The PBOOT command must appear as the first statement in a program. From a terminal, sending the PBOOT
command starts all PBOOT programs. Every program can use PBOOT.

The following program runs on power-up, flashing output 32.

PROGRAM

PBOOT : REM PBOOT must appear as first line
REM Beginning of loop

_LOOP1

BIT 32 = NOT BIT 32

DWL 0.25

GOTO LOOP1

ENDP

Resetting the Controller

When you reset the controller, it shuts down communications, turns off outputs, and kills all programs. For
controllers with non-volatile memory, the controller stores all conditions.

There are three ways to reset the ACR series controller:

e Cycle power.
e Send the REBOOT command from the Terminal Emulator.

e Send a binary reboot request, typically done via ComACRServer.

ACR Programmer’s Guide 145

ACR BASICS

Memory

Memory allocation is completely customizable on the ACR series controllers. The DIM commands allocate

memory to program, global and local variables, and communication streams.

Once you have allocated memory, you cannot change it without first clearing the memory space. Otherwise, you
receive a “re-dimensioned block” error.

To change memory allocations, use PMM’s Configuration Wizard and download to the controller.

Return to Factory Default

To erase the controller’s programs and settings and reset back to factory default:

I. Open Parker Motion Manager

2. Connect to the controller.

3. Open the Terminal Emulator.

4. Type FLASH RES and press Enter.

Or, from PMM’s OS Update screen, click Return to Factory Settings.

—-#% ACRTAT
+ﬁ Configuration Wizard Please visit the ACR7000 product page for a link to the latest Operating System Update
+-4” Program Editor i]
B Terminal Emulator http: Jparkermaotion.com/scripts/support downloads.asp#ACRT
Tools
j Jog/Home/Limits
L] : (0] AJ(-IS 0 @ All Drives Disabled Disable all Drives
o) fas 1
g (Z) Axis 2
g (A) Axis 3 @ Al AcroBasic Programs Halted Halt All AcroBasic Programs
] O5 Update
7 Status Panels
| Scopes Controller Information
Controller: ACRTAT
Firmware Version: 7.50 Update 1 Update OS...
Boot Revision: 37
Return to Factory Settings

Before starting a new project on any ACR controller, ensure the controller is set to factory default settings and up
to date with the latest operating system.

This will reset the IP address to the default of 192.168.100.1 for the ACR7000 or, for the IPA, to 192.168.100.x
where “x” is the rotary dial value on the front of the IPA.

New controllers will always ship with the latest OS.

146 ACR Programmer’s Guide

ACR BASICS

Configuration

Because the ACR series controller is powerful and flexible, it requires configuration for your particular application.
There are two methods: you can manually write the configuration code or use the Configuration Wizard in the
Parker Motion Manager (PMM) software.

As the number of axes increase, the code required to configure a controller can be extensive. The Configuration
Wizard helps ensure all constituent devices are configured quickly and correctly.

The configuration code for different models of ACR series controllers varies—dependent on each model’s distinct
feature set and options, as well as various drives, motors and encoders connected to it. In addition, the firmware
revision you have for a controller can affect which features and AcroBASIC commands are available to you.

The wizard makes some choices for you behind the scenes. The ACR7000 controllers are available as an
integrated multi-axis stepper drive and controller ACR7xT, integrated multi-axis servo drive and controller
ACR7xYV, and multi-axis controller ACR7xC. The Configuration Wizard is slightly different for each, showing
stepper motors for the ACR7xT, servo motors for the ACR7xV and asking for the drive info for the controller.

PMM generates the system code when Finish is selected at the end of the Configuration Wizard. The project is
also saved.

NOTE: The wizard does not collect data in the same order in which code is written.

What is Configuration Code?

To get a sense of what configuration code looks like—the requirements and order of items, as well as information
that goes into the program space—the following example looks at the code resulting from the PMM Quick Start.

NOTE: The application is controlled by a 4-axis ACR74T integrated stepper controller.

The Code

The wizard generates the Primary System Settings automatically and does not collect data for this. If you are
writing your own configuration code, it is good coding practice to include the following at the beginning. The
controller is switched to the SYS prompt. From there, all program execution is halted (HALT ALL), all user
programs and PLC programs are deleted (NEW ALL), all memory allocations are cleared (CLEAR), and all slaves
are detached from their respective masters (DETACH ALL).

REM - - - - ————
REM --- Primary System Settings

REM - - - - — =
SYS

HALT ALL

NEW ALL

CLEAR

DETACH ALL

ACR Programmer’s Guide 147

ACR BASICS

If you do not make any changes to the Memory defaults, the wizard allocates memory to all programs with a large
size for Program 0, 10 kB for motion programs Prog |-Prog 7 and | kB for non-motion programs Prog 8-Prog |3.
Program 14 is used for PMM’s graphing tools (Servo Tuner and Oscilloscope) and thus has a large memory set for
onboard data collection. In addition, the wizard allocates memory to Program |5, which stores wizard data. User
global parameters P0-P4095 are dimensioned and 100 defines are allocated by default.

DIM PROGO
DIM PROG1
DIM PROG2 (10000
DIM PROG3 (10000

(100000)
(
(
(
DIM PROG4 (10000
(
(
(
(

10000)

DIM PROGS5 (10000
DIM PROG6 (10000
DIM PROG7 (10000
DIM PROG8 (1000)
DIM PROGY (1000)
DIM PROG10(1000)
DIM PROG11(1000)
DIM PROG12(1000)
DIM PROG13(1000)

(

(

—_— = — — ~— ~—

DIM PROG14 (200000)
DIM PROG15(100000)
DIM P(4096)
DIM DEF (100)

Then begins axis-specific configuration. The axis feedback and signal output information comes from the Axes and
Feedback dialogs. The PPU (pulses per programming unit) is computed from data provided through the Feedback
and Scaling dialogs and units selected. The excess error band data comes from the Fault dialogs. PM SCALE is
set when a stepper motor with an encoder is used.

REM - - - - = ————

ATTACH AXISO ENCO STEPPERO

AXISO MULT 4

AXISO PPU 30720.000000

AXISO EXC (1,-1)

AXISO PM SCALE 12.8

SET BIT8469 : REM Enable EXC Response

SET BIT17163 : REM Enable step motor to encoder scaling

The Extended I/O section sets and clears bits related to enabling the axis control, drive enable output (DEO)
polarity, fault input polarity.

REM ACR Extended IO Settings

SET BIT8468 : REM Enable Drive I/0

CLR BIT8464 : REM Enable CW CCW vs StepDir

CLR BIT8470 : REM DEO Serves Shutdown Function
CLR BIT8453 : REM Invert Drive Fault Input Level

148 ACR Programmer’s Guide

ACR BASICS

The next section is the Axis Gains values. Servo Gains for a stepper axis are set by default and used internally by

the controller. Default tuning gains are set for the IPA, ACR7xV and ACR7xC servo axes and can be tuned with

the Servo Tuner.

REM Axis Gains values
AXISO PGAIN 0.00244141
AXISO IGAIN O

AXISO ILIMIT O

AXISO IDELAY O

AXISO DGAIN O

AXISO DWIDTH O

AXISO FFVEL O

AXISO FFACC O

AXISO TLM 10

AXISO FBVEL O

The Axis Limits section sets the homing, hardware and software limits based on user input on the Fault screen in

the Configuration Wizard.

REM Axis Limits
AXISO HLBIT (0,1,10)
AXISO HLDEC 500.000000

SET BIT16144 : REM Positive EOT Limit Level Invert
SET BIT16145 : REM Negative EOT Limit Level Invert
CLR BIT16146 : REM Home Limit Level Invert

SET BIT16148 : REM Positive EOT Limit Enable

SET BIT16149 : REM Negative EOT Limit Enable

AXISO SILM (10,0)

AXISO SLDEC 500.000000

SET BIT16150 : REM Positive Soft Limit Enable

SET BIT16151 : REM Negative Soft Limit Enable

The ACR7xT has step motor parameters and are set based on the motor
selection.

REM Axis Stepper Motor Settings

P7938=2.38 : REM Max amps peak (user)

P7946=256 : REM Micro Steps (Power 2)

BIT15618=1 : REM Standby Enable flag

P7944=50 : REM Standby Percentage

P7945=0 : REM Standby Delay

BIT8455=0 : REM Invert Motor and Encoder direction
BIT15616=1 : REM Assert Config flag

AXISO ON

Axis | is set the same but note Axis | has different addresses for the bits and parameters.

REM ————— = m—mm oo oo
ATTACH AXIS1 ENC1 STEPPERI
AXIS1 MULT -4

ACR Programmer’s Guide

149

ACR BASICS

AXIS1 PPU 30720.000000

AXIS1 EXC (1,-1)

AXIS1 PM SCALE 12.8

SET BIT8501 : REM Enable EXC Response

SET BIT17195 : REM Enable step motor to encoder scaling
REM ACR Extended IO Settings

SET BIT8500 : REM Enable Drive I/0

CLR BIT8496 : REM Enable CW CCW vs StepDir

CLR BIT8502 : REM DEO Serves Shutdown Function
CLR BIT8485 : REM Invert Drive Fault Input Level
REM Axis Gains wvalues

AXIS1 PGAIN 0.00244141

AXIS1 IGAIN O

AXIS1 ILIMIT O

AXIS1 IDELAY O

AXIS1 DGAIN O

AXIS1 DWIDTH O

AXIS1 FFVEL O

AXIS1 FFACC O

AXIS1 TLM 10

AXIS1 FBVEL O

REM Axis Limits

AXIS1 HLBIT (0,1,10)

AXIS1 HLDEC 500.000000

SET BIT16176 : REM Positive EOT Limit Level Invert
SET BIT16177 : REM Negative EOT Limit Level Invert
CLR BIT16178 : REM Home Limit Level Invert

SET BIT16180 : REM Positive EOT Limit Enable

SET BIT16181 : REM Negative EOT Limit Enable

AXIS1 SLM (10,0)

AXIS1 SLDEC 500.000000

SET BIT16182 : REM Positive Soft Limit Enable

SET BIT16183 : REM Negative Soft Limit Enable

REM Axis Stepper Motor Settings

P7954=2.38 : REM Max amps peak (user)
P7962=256 : REM Micro Steps (Power 2)

BIT15650=1 : REM Standby Enable flag

P7960=50 : REM Standby Percentage

P7961=0 : REM Standby Delay

BIT8487=0 : REM Invert Motor and Encoder direction
BIT15648=1 : REM Assert Config flag

AXIS1 ON

Axis 2 and Axis 3 are not shown for length but have similar settings to Axis 0 and Axis |. The firmware is
structured for multiaxis though the hardware defines the number of axis possible, so we turn off unused axes.

REM Turn off any unused Axes

AXIS4
AXIS5
AXIS6

OFF
OFF
OFF

150 ACR Programmer’s Guide

ACR BASICS

AXIS7 OFF
AXIS8 OFF
AXIS9 OFF
AXIS10 OFF
AXIS11 OFF
AXIS12 OFF
AXIS13 OFF
AXIS14 OFF
AXIS15 OFF

Program 0, a motion program, is attached to Master 0 which is the multiaxis motion trajectory calculator. Axes 0-
3 are attached based on the Axes settings in the Config Wizard and the default profiles values are also set.

REM --——===——— - ————
REM --- Program Level setup
REM --—— === ————

PROGO
DETACH
ATTACH MASTERO
ATTACH SLAVEO AXISO "X"
ATTACH SLAVE1l AXIS1 "y"
ATTACH SLAVEZ2 AXIS2 "z"
ATTACH SLAVE3 AXIS3 "A"

REM the desired master acceleration
ACC 10
REM the desired master deceleration ramp
DEC 10
REM the desired master stop ramp (deceleration at end of move)
STP 10
REM the desired master velocity
VEL 1
REM the desired acceleration versus time profile.
JRK 0

Resources Reserved for Generated Code

When you click Finish, the Configuration Wizard generates the System Code. On download it is saved as XML in
Program 15. This allows the Configuration Wizard to be populated when uploading. No changes from the user
need to be made.

NOTE: Do not edit the source files generated by the Configuration Wizard.

The PMM project file (.pprj) includes the Configuration Wizard settings, the AcroBASIC programs and defines, the
servo tuning settings, scope settings, terminal user button settings, oscilloscope motion test code and watch
window settings. The project file can have multiple controllers and subsequent controller programs and settings
that are also saved within the one project file.

ACR Programmer’s Guide 151

ACR BASICS

Flash Memory

The table below describes an overview of the Flash Memory for the ACR Controllers.

Memory Usage
SAVE IPA 00x0PxUxMx | 90x0PxUxBx ACR7000
System Parameters _
(Attachments, Masters) ESAVE ESAVE ESAVE FLASH IMAGE
Retained in Non-
IP Address Volatile USER RAM ESAVE ESAVE ESAVE
Axis Set-up Parameters
(Gains, PPU. etc.) ESAVE ESAVE ESAVE ESAVE
Moter Configuration Retained in Non- . ,
Volatile USER. AN NA NA ESAVE
Programs retained in
FLASH SAVE or FLASH SAVE or .
User Programs T ASH IMAGE T ASH IMAGE USER. FAM with FLASH IMAGE
BERAM
Local Variables and Betained in USER.
Arravs FLASH IMAGE FLASH IMAGE B AM with BERAM FLASH IMAGE
User Global Double Betained in USER.
Variahles P0-4005 FLASH IMAGE FLASH IMAGE B AM with BERAM FLASH IMAGE
User Global Float Retained in Non- NR® Betained in USER. Betained in Non-
Varighles P39168-P39423 | Volatile USER RAM |~ BAM with BERAM | Volatile USER. RAM
User Global Long Retained in Non- NRS Betained in USER. Betained in Non-
Variables P33912-P39167 | Volatile User BAM - BAM with BERAM | Volatile User BAM

152 ACR Programmer’s Guide

MAKING MOTION

CHAPTER 3
Making Motion

ACR Programmer’s Guide 153

MAKING MOTION

Making Motion

Now that the controller is configured, it is ready to make motion. The ACR controller can perform linear,
circular, or more complex motion with a single axis or multiple axes.

Four Basic Categories of Motion

There are four basic categories of motion used in motion control: coordinated, jog, gear, and cam.

e Coordinated Moves Profiler (Multi-Axis Profile): Use the MOV command for linear-interpolated
incremental and absolute moves. It also allows circular interpolation (CIRCW, CIRCCW, SINE, and
TARC). The trajectory values are “path” values.

¢ Jog Profiler (Single-Axis Profile): Use the JOG commands for incremental, absolute, or continuous
moves. The Jog Profiler is axis-independent, meaning that each axis uses its own trajectory values
independent of other axes.

e Gear Profiler (Electronic Gear): Use the GEAR commands to control motion based on an external
source—such as a linespeed encoder for feed-to-length, electronic gearbox, trackball, follower axis, or
changes of ratio related to position.

e Cam Profiler (Electronic Cam): Use the CAM commands to control irregular motion using data
tables. The Cam Profiler provides control of complex motion and is best used in situations where the
desired motion is non-linear using an external source.

Regardless of the type of motion or number of axes used, the controller must always be set up for coordinated
motion. This may be done by using the Configuration Wizard or by writing custom configuration code, and
including master, slave, and axis attachment statements. The attachment statements make the basic connections to
a coordinated motion profiler. For more information, see Attachments.

After making the necessary attachments, a motion profile can be defined. The following sections examine the
different move types and motion profilers.

Move Types

To command motion, use a command appropriate to the desired type of motion, such as JOG (single-axis profile),
CIRCW (two-dimensional clockwise circle), CIRCCW (two-dimensional counter clockwise circle), SINE (sinusoidal
move), or TARC (3-D arc). The MOV (define a linear move) command activates linear-interpolated motion.

When the user includes several axes in a single statement, the controller coordinates the moves, meaning the axes
complete their respective moves at the same time. Whereas, if each axis is written as an independent statement,
the controller treats them as independent moves and they are performed one at a time.

The MOV command is not necessary for coordinated motion because the controller recognizes an axis name and a
value as commanded motion, such as X500. When multiple axes are written in a single statement, such as X500
Y100, the motion is coordinated.

154 ACR Programmer’s Guide

MAKING MOTION

NOTE: When commanding motion, you must use the axis name; the axis number is not a valid
way to indicate an axis. For more information on axis names, see Slaves and Axis Names.

Absolute Motion

Absolute motion is commanded with respect to the established “home” or reference location.

To make a linear-interpolated move with the MOV command, use the arguments axis target, specifying the axis
name followed by the target position.

The following moves the X axis to the absolute position of 10 units.

MOV X10

To command linear-interpolated motion without MOV, the axis and position must be designated. The following
also moves the X axis to the absolute position of 10 units in an identical manner as Example |.

X10

If motion is commanded for multiple axes on a single line, the controller treats it as coordinated motion. The X
and Y axes complete their respective moves at the exact same time.

X20 Y-30

L
Incremental Motion
Incremental motion is commanded relative to the current position.
To move an incremental distance (a distance “relative” to the current position), use a slash mark (/) following the

axis.

NOTE: The slash mark is only applicable in linear-interpolated motion.

In this example, the X axis moves an incremental distance of 20 units from its current position. Then, the Y axis
moves a decremental distance of 30 units from its current position.

X/20
Y/-30

The X axis makes an incremental move, Y axis makes an absolute move and Z axis makes a decremental move.
Written on the same line, this is a coordinated move; all axes complete their moves at the same time.

ACR Programmer’s Guide 155

MAKING MOTION

X/2 Y2 7/-2

Comparing Absolute and Incremental Motion

Different types of motion can be used to achieve the same result. The following examples show absolute and
incremental motion, and a combination of the two. All three examples end at the absolute position of 400 units.

The X axis is commanded to the following absolute positions:

X0

X100
X200
X300
X400

X400

e
X300
X200
X100

I 1 I I I I I 1

I
-400 -300 -200 -100 0 100 200 300 400

The X axis is commanded to the following relative positions:

X0
X/-400
X/500
X/200
X/100
X/100

X/200

Y

X/500

\i

X/-400

[
%

I 1 I I I I I 1

I
-400 -300 -200 -100 0 100 200 300 400

The X axis is commanded to the following absolute and incremental positions.

x/=-400
x200

156 ACR Programmer’s Guide

MAKING MOTION

x/50
x400

X400 i
A E—
X/50

X200

\i

X/-400

-l
%

I 1 I I I

I
-400 -300 -200 -100 0 100 200 300 400

Combining Types of Motion

The user can command multiple types of motion (linear, circular or sinusoidal) in a single statement. The
controller coordinates the motion of all axes in the statement regardless of the type of motion.

The following illustrates a coordinated move where the X axis performs linear interpolation and the Y axis
performs sinusoidal interpolation.

X2 SINE Y(0,90,90,100)

Immediate Mode

While a program is running, the path velocity can be changed for a master and all axes attached to it. The change
is instantaneous and takes effect even if the axis or axes are moving.

Use the FOV (set feedrate override) command to set a floating-point scaling factor to adjust the master velocity. If
a move is in progress, the master uses the established acceleration or deceleration ramp to adjust to the new
velocity.

NOTE: The FOV command does not change the master velocity permanently and the change is
not saved. To make a permanent change, adjust the master velocity in the program code
either manually or through the Configuration Wizard.

For more information about feedrate override, see the FOV command in the ACR Command Language Reference.

The following is typed in at the prompt by the user. It reduces the master velocity for all attached axes to 75%,
then 50%, and then returns the velocity to 100%.

FOV 0.75
FOV 0.50

ACR Programmer’s Guide 157

MAKING MOTION

FOV 1.00

Differences Between FOV and VEL

While a program is running, both the FOV and VEL (set target velocity for a move) commands can be set, but each

affects motion differently:

e FOV immediately affects all axes attached to the master.
e VEL is buffered in memory. The newly commanded velocity does not take effect until current motion is

completed.

What are Motion Profiles?

To make motion, the user must define the motion profile. The acceleration, deceleration, stop ramps, velocity,
and distance (ACC, DEC, STP, VEL and MOV commands, respectively) set the motion profile values.

e Acceleration: The ACC (set acceleration ramp) command sets the master acceleration. The master
acceleration is used to ramp from lower to higher speeds. The value is in units per second®

e Velocity: The VEL (set target velocity for a move) command sets the target velocity for subsequent
moves. The value is in units per second.

o Deceleration: The DEC (set deceleration ramp) command sets the deceleration used to ramp from
higher to lower speeds. The value is in units per second®. The deceleration ramp is only used when the
stop ramp is zero. Use the DEC ramp to blend moves.

e Stop: Use the STP (set stop ramp) command to set the master deceleration ramp used at the end of the
next move. The value is in units per second”. When the stop ramp is set to zero, the move ends without
ramping down. This allows you to merge back-to-back moves. The final velocity of the first move
becomes the initial velocity of the second move.

Motion profiles can be graphically represented. The following illustrates the ACC, DEC, and STP values as a typical

trapezoidal motion profile.

-4 DEC

Velocity

Time

All motion profile values are entered in user-based units (inches, millimeters, degrees, revolutions or other units).
Use the PPU (set axis pulse-per-unit ratio) command to relate the feedback pulse to the unit of measure. The
PPU command sets the ratio of pulses per programming unit. The controller computes the motion trajectory

from the motion profile data.

Motion profile values for each master can be set in two ways:

158 ACR Programmer’s Guide

MAKING MOTION

e Through the Configuration Wizard.
e Ina program using the appropriate motion profile statements (ACC, DEC, STP or VEL).

In either case, the program continues to use those motion profile values until new values are commanded.

NOTE: Motion profile values in a specific program can be changed from within a different program
using the MASTER (Direct Master Access) command. A master must be attached to each
program and is usually the same number as the program number. For more information
about masters, see Master/Slave Attachments. For example, to change the velocity in
program zero to 500, send the following: MASTERO VEL500.

The following example assumes a 1000 line encoder attached to a motor. The MULT (set encoder multiplier)
command brings the value to 4000. Then, PPU X4000 sets the programming units to revolutions (4000
pulses/rev) for the rest of the program. The X axis moves 200 revolutions at 20 revs/second using 10
revs/second? ramps.

MULT X4
PPU X4000
ACC 10
DEC 10
STP 10
VEL 20
MOV X200

Interaction Between Motion Profilers

Any combination of motion profilers can be used to carry out motion for an application. As stated previously, the
controller must be set up for coordinated motion. Once this is done, the other motion profilers can be accessed
through the JOG, GEAR, and CAM commands.

Before writing code, it is important to understand how the motion profilers interrelate:

I. Each motion profiler calculates its own commanded position—the absolute and relative moves for an axis
or axes.
2. No motion profiler supersedes another—there is no hierarchy among the profilers.

Primary Setpoint
All profilers feed their commanded positions to a summation point, and the result is the Primary Setpoint for each
axis.

ACR Programmer’s Guide 159

MAKING MOTION

Coordinated
Moves Profiler

Primary
Setpoint

Jog Profiler (to Secondary Setpoint)

Gear/Handwheel >

Profiler

Cam Profiler

In effect, the Jog, Gear and Cam profilers act as offsets to the Coordinated Motion Profiler. The example below
demonstrates the offset concept.

Suppose an application cuts four diamond shapes from sheets of stock. The program commands motion of axes X,
Y, and Z. For simplicity, this example focuses only on the X and Y axes.

Rather than plotting the cutting motion by providing the coordinates for each diamond, the code in this example
provides the coordinates for one diamond and uses the Jog Profiler to offset the coordinates for the remaining
diamonds.

The axes are attached to a Coordinated Moves Profiler (see Master/Slave Attachments). The cutting tool starts at
coordinates (0, 0) in the lower left quadrant of the stock. Subsequent diamonds are cut in sequence from upper
left, upper right, and lower right quadrants. The first shape is cut based on the following moves:

X-2 Y1
X0 Y2
X2 Y1
X0 YO

For the second shape, instead of providing a new set of X and Y coordinates, a jog statement is used to shift the Y
axis 3 units. You can then provide the same coordinates used to cut the first shape. The new starting position
becomes coordinates (0, 3).

JOG ABS Y3
X-2 Y1

X0 Y2

X2 Y1

X0 YO

160 ACR Programmer’s Guide

MAKING MOTION

JOG ABS X5

£¢A Sd¥ Dor

(0,0)

To cut the third and fourth diamond shapes, jog statements again shift the starting positions for axes X and Y.
After each jog statement, the coordinates of the first shape are reused.

JOG ABS X5
X-2 Y1
X0 Y2
X2 Y1
X0 YO
JOG ABS YO
X-2 Y1
X0 Y2
X2 Y1
X0 YO

So what is happening? Each motion profiler calculates its own commanded position, which is sent to a summation
point. The coordinated move, jog, gear, and cam data is combined for each axis to create a setpoint.

The Coordinated Moves Profiler always starts and ends at coordinates (0, 0). With the first shape, there are no
JOG, GEAR or CAM commands, so the setpoint for the X and Y axes is (0,0):

Summation Point X Axis Y Axis
Coordinated Moves Profiler 0 0
Jog Profiler 0 0
Gear Profiler 0 0
Cam Profiler 0 0

SETPOINT

[=}

0

For the second shape, the jog statement tells the Jog Profiler to start the Y axis at 3 units. At the summation
point, this data is added to the values from the other profilers to yield a Y-axis setpoint of +3:

Summation Point X Axis Y Axis
Coordinated Moves Profiler 0 0
Jog Profiler 0 +3
Gear Profiler 0 0
Cam Profiler 0 0
SETPOINT 0 +3

ACR Programmer’s Guide 161

MAKING MOTION

For the third shape, the jog statement adjusts the starting point again, this time changing the X axis to 5. The Y
axis has not been jogged so it stays at its previous value of +3:

Summation Point X Axis Y Axis
Coordinated Moves Profiler 0 0
Jog Profiler +5 +3
Gear Profiler 0 0
Cam Profiler 0 0
SETPOINT +5 +3

For the fourth shape, the jog statement adjusts the starting point for the Y axis back to 0. The X axis has not been
jogged so it stays at its previous value of +5:

Summation Point X Axis Y Axis
Coordinated Moves Profiler 0 0
Jog Profiler +5 0
Gear Profiler 0 0
Cam Profiler 0 0
SETPOINT +5 0

Without offsets, coordinates for each shape would have to be calculated (and debugged). Instead, one set of
coordinates can be reused and the starting point shifted through an offset.

Velocity Profile Commands

A basic motion profile for coordinated motion, controlled by an attached master, consists of acceleration,
deceleration, stop ramps and a velocity. You can further control coordinated motion using additional velocity
profile commands.

Axis motion with gear, cam or jog offsets are controlled solely by their associated commands—for example, CAM
OFFSET, CAM SCALE, GEAR ACC, GEAR RATIO, JOG DEC or JOG JRK.

NOTE: To check the setting of a specific motion profile command, enter the command without

any arguments.

NOTE: To disable a command, set its value to zero.

Use the ESAVE command to save coordinated motion and feedback control values in the controller. Otherwise,
the system parameters, motion profiles, and master and axis attachments are retained by the controller only until
the controller is rebooted or its power cycled. Then all data reverts to its default values.

Velocity Profile Setup

The following commands further shape and refine the coordinated motion profile. For more information about
each command, see the ACR Command Language Reference.

162 ACR Programmer’s Guide

MAKING MOTION

F (set velocity in units per minute)—sets a move velocity in units/minute. The F command otherwise functions
the same as the VEL command.

FOV (set federate override)—sets the move velocity manually, without changing the current VEL value. Use FOV
to superimpose an additional move onto existing motion. Typically, the FOV provides a manual way to change
velocity from a terminal. You can also assign the FOV to an input, providing users a manual way to initiate the
superimposed move. For more information, see Immediate Mode.

FVEL (set final velocity)—sets a final velocity value. When a STP value has been set, FVEL can be used to set a
target final velocity value. The value is used to slow down between moves, but not stop. Moreover, a move only
ramps down to the FVEL value, never up to the value.

JRK (set jerk parameter)—sets the slope of acceleration versus time profile. An S-curve profile provides a
smoother motion control by reducing the jerk (rate of change) in acceleration and deceleration portions of the
move profile. Because S-curve profiling reduces jerk, it improves position tracking performance.

ROTARY (set rotary axis length)—sets a rotary axis length used in a shortest-distance calculation. The resulting
move is never longer than half the rotary axis length.

TMOV (time-based move)—sets the time (in seconds) in which the move is completed. The controller calculates a
new master motion profile to complete the move in the specified time. The new motion profile values for
acceleration, deceleration, stop ramps and velocity are no greater than the user-specified values.

VECDEF (define automatic vector)—controls how the Coordinated Moves Profiler calculates the master move
vector. The VECDEF command defines the weight each axis receives in the vector calculation. The default value
is | for every axis.

In some applications, it is not desirable to include an axis in the motion profile calculation. Suppose there is an
application with coordinated motion for axes X, Y, and Z and rotary axis A. Setting the axis A value to zero
removes it from the vector calculation. Axis A makes its move within the defined motion profile, but is not part of
the calculation itself.

VECTOR (set manual vector)—sets an independent vector value for an axis removed from the motion profile
calculation through the VECDEF command. Because the axis is no longer part of the motion profile calculation, it
has no master velocity with which it can make independent moves. The VECTOR command provides that value so
the axis can make independent moves.

Feedback Control Commands

The feedback control commands affect the velocity profiles and define the encoder feedback used by axes in the
current program. Values must be set for each axis.

MULT (set encoder multipliers)—sets the count direction and the hardware multiplication for the encoder of a
given axis. This command affects tuning gains, directions, distances, velocities and accelerations.

ACR Programmer’s Guide 163

MAKING MOTION

MULT is changed to a value inappropriate to the application. Carefully
consider the effects throughout the application before applying a new
value and perform a test without the load or mechanics attached.

f Caution: Damage to equipment and/or serious injury to personnel may result if

PPU (set axis pulse per unit ratio)—sets the pulses per programming unit for an axis, allowing convenient units for
motion profiles such as inches, millimeters or degrees. The PPU for each axis is independent of that of other axes.

MULT is changed to a value inappropriate to the application. Carefully
consider the effects throughout the application before applying a new
value and perform a test without the load or mechanics attached.

t Caution: Damage to equipment and/or serious injury to personnel may result if

REN (match position with encoder)—sets the commanded position equal to the actual position for a given axis,
thus removing the following error.

RES (reset or preload encoders)—sets the commanded position and actual encoder position to zero for a given
axis. It also allows the user to preload an axis with a position.

REN Details

The REN command copies the actual position from the encoder into the Secondary Setpoint of the servo loop.
The values for the Primary Setpoint register and for the Coordinated Moves Profiler’s offset are then calculated
backwards from the Secondary Setpoint. This action removes the following error.

In the example below, the actual position is | |. That number is copied into the register for the Secondary
Setpoint, and the Primary Setpoint is then calculated (I 1).

The Jog, Gear and Cam profilers’ offsets do not change. The values in their registers are subtracted from the
Primary Setpoint to get the offset for the Coordinated Moves Profiler:

1-Q+3+4)=2

164 ACR Programmer’s Guide

MAKING MOTION

Coordinated Italicized numbers in boxes are example
Moves Profiler values for profiler and summation
registers. (A number crossed out is the
M original value that has been corrected
by the calculation.)

Jog Profiler

L2]

Primary
Setpoint

Gear/Handwheel
Profiler

5]

+

Secondary
Setpoint

Backlash

Generator
Cam Profiler
. Ballsgrew
Profiler
L]
Following
Error
+ + (to PID loop)
- Actual
Position (from feedback device)

7] -

RES Details
The RES command is used to zero out the primary setpoint (RES) or to preload positions into the Coordinated
Moves Profiler and Actual Position registers (example: RES X10).

See below for a diagram of the profiler and summation registers for the command RES X10. The values of the
Coordinated Moves Profiler, Primary and Secondary Setpoints and Actual Position registers have been changed to
10. The remaining profilers have been changed to zero.

ACR Programmer’s Guide 165

MAKING MOTION

Coordinated Italicized numbers in boxes are example
Moves Profiler values for profiler and summation
registers. (A number crossed out is the
| 210 | original value that has been corrected
by the calculation.)

Jog Profiler

Lo]

Primary
Setpoint

Gear/Handwheel
Profiler

(o]

+ Secondary

Setpoint

Backlash
Generator

Cam Profiler Ballscrew

Profiler
Lo]
Following
Error
+ + (to PID loop)

- Actual
Position (from feedback device)
w10 -

If RES is used without an axis and preload value, all the registers shown in the above figure would be zero (0).

Coordinated Moves Profiler

The Coordinated Moves Profiler (formerly called the current position profiler) controls motion for multiple axes
using a single set of motion profile values. The MOV command (define a linear move) commands absolute and
incremental motion.

NOTE: The MOV command is not necessary for coordinated motion. The controller recognizes
the axis name and a value as commanded motion, such as X500. Multiple axes can be
commanded in a single code statement, such as X500 Y 100; the motion is coordinated.

No matter what the designed application is, the controller must first be configured for coordinated (linear
interpolated) motion. This does not limit the user from simultaneously using the other motion profilers—jog, gear
or cam. Information regarding which elements are involved is provided to the Coordinated Moves Profiler by the
master, slave and axis attachment statements. The other motion profilers look to the Coordinated Moves Profiler
for the configuration data. For more information about making attachments, see Attachments.

166 ACR Programmer’s Guide

MAKING MOTION

When multiple axes are moving, the Coordinated Moves Profiler computes the vector based on all the axes’ target
points. The vector moves at the values set through the motion profile (ACC, DEC, STP, and VEL) and is scaled
for each axis. Therefore, all axes start, accelerate, decelerate and stop at the same time.

When only one axis is moving, the ACC, VEL and STP are the same as the master.

NOTE: The Coordinated Moves Profiler typically uses the clock as its timebase.

Two axes are attached to the same master and instructed to move to absolute positions: axis X to 25 millimeters
and axis Y to |5 millimeters. Both axes start, accelerate, decelerate and stop together.

ACC 750 DEC 750 VEL 75 STP 750
X25 Y15

80
70
60
50 -
40

304 4 ANAN
20 v/ NN

0y N

0 0.1 0.2 0.3 0.4 0.5

Time — seconds

Velocity — units/sec

Legend
— — & Vector
30 M X
25 /*’ ™~
3 20 P AY
c
£ 15 <
R2! 7
0 10 7~
5 | e
-—
. F—_V

0 0.1 0.2 0.3 0.4 0.5
Time

Two axes are attached to the same master and the program moves one axis to an absolute position: axis X to 25
millimeters. As only axis X is commanded to move, axis Y is not included in the motion trajectory calculation.

ACC 750 DEC 750 VEL 75 STP 750
X25

ACR Programmer’s Guide 167

MAKING MOTION

80
70
60
50

40

20 1/ | \
10

0 . .
0 0.1 0.2 0.3 0.4 0.5

Time — seconds

Velocity — units/sec

~
L~

Legend

30 - — — @ Vector
25 & X

20 L4 —aAY

15 -

Distance

5
0 —— . o A
0 o0

—_—
o
N
o
w
(]
o~

0.5
Time

Jog Profiler

Each axis has a dedicated Jog Profiler which can, using a set of motion profile values, control absolute, incremental,
or continuous motion for that axis. It can do this independently or in conjunction with the other profilers (Cam,
Gear and Coordinated Moves).

NOTE: Multiple axes may be commanded in a single jog statement, such as JOG ABS X500 Y100.
The motion is not coordinated.

For any application, the controller is first configured for coordinated motion. This does not exclude
simultaneously using the other motion profilers.

The Jog Profiler looks to the Coordinated Moves Profiler for its configuration data (master, slave, and axis
attachment statements). For more information about making attachments, see Attachments.

The Jog Profiler computes motion based on axis target positions and on the motion profile values (JOG ACC, JOG
DEC, JOG JRK and JOG VEL). The motion profile is scaled by the PPU (pulses per programming unit) for each
axis. All axes may start, accelerate and decelerate at different times.

NOTE: The Jog Profiler typically uses the clock as its timebase.

168 ACR Programmer’s Guide

MAKING MOTION

NOTE: The ACR controller uses the Jog Profiler for jogging and homing routines. If the
acceleration, deceleration, velocity and jerk values are set for jogging, those values are
also used for homing. Therefore, it is a good programming practice to declare the motion
profile at the beginning of every jog subroutine. Doing so ensures the correct motion
values are used for a jogging or homing routine, regardless how the program branches to
a subroutine.

NOTE: The Configuration Wizard contains a Jog/lHome Commissioning dialog. The dialog only
allows the user to test the setup of an axis—it does not produce jogging or homing code.

Two axes are set to different acceleration, deceleration and velocities, and are moved the same distance.

JOG ACC X1000 Y500
JOG DEC X1000 Y500
JOG VEL X25 Y50
JOG INC X10 Y10

The figure below looks at the commanded motion of the X axis. In the upper graph (velocity motion profile), JOG
ACC and JOG DEC determine the acceleration and deceleration values, which always graph as ascending and
descending slopes, respectively. JOG VEL always graphs as a horizontal line once the axis is up to speed. The
area under the velocity profile graph is the distance traveled.

[$,]
o
|

Velocity
N
T

/: \— —————— JOG VEL X25
0 - :

—— constantvelocity —————————————»/
!

—D;ACC:Q— —MDECH—

JOGINCX10

Position

Y

Time

ACR Programmer’s Guide 169

MAKING MOTION

In the lower graph (position motion profile) of the previous figure, the curve between to and t; shows the change
in position during the time it takes for the X axis to accelerate from zero to the target velocity. Likewise, the
curve between t; and t3 shows the change in position during deceleration to zero. The actual acceleration and
deceleration curves shown are approximated due to the resolution of the graph. The straight line between points
Pi and P, is where the X axis movement is a constant velocity.

The next figure looks at the movement for the Y axis, characterized by more gradual slopes for acceleration and
deceleration values of 500 in the velocity motion profile (as compared to the X axis’ values of 1000).

50

— ~— JOGVEL Y50

25—

Velocity

(=

[
'
'
'
i
'
'
I
'
i
'
'
'
I
'
L
'
'
i
'
'
'
'
'
I
i

—> constant velocity «—

I

ACC —> —— DEC —>

JOGINCY10

Position

Time

Again, the straight line between points P, and P, on the position motion profile is where the Y axis movement is at
a constant velocity.

The figure below shows the velocity motion profiles for both the X and Y axes superimposed. The Y axis is
dashed. Due to a higher JOG VEL value, the Y axis finishes its commanded motion in less time than the X axis.

170 ACR Programmer’s Guide

MAKING MOTION

A | ‘ :
50 : SRR .. JOGVELY50 ‘
- : L AN ‘
= . * |
G ! L ! s, ! |
o 25— - ; — \ | JOGVELX25
g YV S \
0- ; : * ‘
ty ty ty ts ty ts te
Time

The following figure graphs the change in position for the X and Y axes. The Y axis is dashed. The overall slope of
the position curve for the Y axis is steeper, reflecting its higher JOG VEL value (JOG VEL X25 Y50).

Comparing the first curve after to for the axes show that a higher acceleration value presents as a more gradual
curve (JOG ACC X1000 Y500).

10— JOGINCX10

i 1JOGINC Y10

Position

Y

The JOG VEL value is changed while a single axis is in motion (on the fly—OTF).

JOG ACC X20
JOG DEC X25
JOG VEL X10
JOG INC X10
DWL 1.0

JOG VEL X5

At one second (to + 1.0 s), the axis is commanded to decrease speed to the new velocity. See below for the
velocity profile. Motion ends at t.

ACR Programmer’s Guide 171

MAKING MOTION

Velocity

ty+1.0s t,

Time

To illustrate sequential jog moves, two axes are attached to the same program. The program moves each axis an
incremental distance of 10 units using two separate moves. The program waits until the Jog Active Bit (bit 792) is
off, indicating that Axis X has finished its move, after which time the Y axis is commanded to move to its
incremental position. The figure below shows the velocity profile of this example.

JOG ACC X1000 Y500
JOG DEC X1000 Y500
JOG VEL X25 Y50
JOG INC X10

INH -792

JOG INC Y10

X Axis

Velocity
o &
N

Time \\k_
Bit 792 goes off

JOG VEL Details

The next figure shows the bit profiles for the Jog Flags (bits 792 through 796) as a JOG VEL command is

executed.

172 ACR Programmer’s Guide

Bit 792

Bit 793

Bit 794

Bit 795

Bit 796

JOG VEL

Jog Active

Jog Direction

Jog At Speed

Jog Stopping

Jog Forward

Velocity

JOG Commands

See the ACR Command Language Reference for detailed information, including necessary arguments, on JOG

(single axis velocity profile) and its associated commands:

00—

MAKING MOTION

o
o
|

N
w
|

o

Time

e JOG ABS (jog to absolute position)—uses the current jog settings to jog an axis to an absolute jog offset.

e JOG ACC (set jog acceleration)—sets the programmed jog acceleration for an axis.

e JOG DEC (set jog deceleration)—sets the programmed jog deceleration for an axis.

e JOG FWD (jog axis forward)—initiates a ramp to the velocity programmed by the JOG VEL command.

ACR Programmer’s Guide 173

MAKING MOTION

e JOG HOME (go home)—instructs the controller to search for the home position in the direction and on
the axes specified.

e JOG HOMVF (home final velocity)—specifies the velocity to use when the homing operation makes the
final approach.

e JOG INC (jogan incremental distance)—uses the current jog settings to jog an axis an incremental
distance from the current jog offset.

e JOG JRK (set jog jerk (S-curve))—controls the slope of the acceleration versus time profile.

e JOG OFF (stop jogging axis)—initiates a ramp down to zero speed.

e JOG REN (transfer current position into jog offset)—either clears or preloads the current position of a
given axis and adds the difference to the jog offset parameter-.

e JOG RES (transfer jog offset into current position)—either clears or preloads the jog offset of a given
axis and adds the difference to the current position.

e JOG REV (jog axis backward)—initiates a ramp in the negative direction to the velocity programmed
with the JOG VEL command.
e JOG SRC (set external timebase)—specifies the timebase for jogging.

e JOG VEL (set jog velocity)—sets the programmed jog velocity for an axis.

JOG REN Details

The JOG REN command (transfer current position into jog offset) clears the Coordinated Moves Profiler of a
given axis and adds the difference to the Jog Profiler offset (example: JOG REN X). It can also be used to preload
a position into the Coordinated Moves Profiler, adjusting the Jog Profiler to make up the difference (example: JOG
REN X2). In either case, the Gear and Cam profilers and the Primary and Secondary setpoints do not change.

The drawing below illustrates JOG REN as it clears the Coordinated Moves Profiler.

Coordinate_,d Italicized numbers in boxes are example
Moves Profiler values for profiler and summation
| T 71-0 I registers.
Jog Profiler
Primary
| 2+1= 3| Setpoint

Gear/Handwheel
Profiler

Ls]

Secondary
Setpoint

Backlash
Generator

Cam Profiler Ballscrew

Profiler
<]

174 ACR Programmer’s Guide

MAKING MOTION

The drawing below illustrates JOG REN as it preloads the Coordinated Moves Profiler.

Coordinated

” ltalicized numbers in boxes are example
Moves Profiler

values for profiler and summation

| v 2| registers.
Jog Profiler
Primary
2. 1=1 Setpoint
Gear/Handwheel Secondary
Profiler

Setpoint

La]

Backlash
Generator

Cam Profiler

o Ballscrew

Profiler
<]

JOG RES Details

The JOG RES command (transfer jog offset into current position) clears the Jog Profiler offset of a given axis and
adds the difference to the Coordinated Moves Profiler (example: JOG RES X). It can also preload the Jog
Profiler offset, and, again, adjusts the Coordinated Moves Profiler to make up the difference (example: JOG RES
X2). In either case, the Gear and Cam profilers and the Primary and Secondary setpoints do not change.

The drawing below illustrates JOG RES as it clears the Jog Profiler.

ACR Programmer’s Guide 175

MAKING MOTION

Coordinated Italicized numbers in boxes are example
Moves Profiler values for profiler and summation
l TTo 3| registers.
Jog Profiler
Primary
2.2=0 Setpoint
Gear/Handwheel + Secondary
Profiler Setpoint
| 3 | Backlash
Generator
Cam Profiler
. Ballscrew

Profiler
<]

The drawing below illustrates JOG RES as it preloads the Jog Profiler.

Coordinated ltalicized numbers in boxes are example
Moves Profiler values for profiler and summation
registers.
[1-1=0] ¢
Jog Profiler
Primary
| 2+1= 3| Setpoint

Gear/Handwheel
Profiler

L]

+ Secondary

Setpoint

Backlash
Generator

Cam Profiler

4]

o Ballsgrew
Profiler

Gear Profiler

The Gear Profiler controls motion for axes needing to match their motion output to some form of input. The
input source is usually external, such as an electronic gearbox, trackball, follower axis or changes of ratio related
to position. In electronic gearing, pulses are fed from a selected source into the gear offset of a slave axis. These

176 ACR Programmer’s Guide

MAKING MOTION

pulses are scaled by a ratio that is equivalent to a gear ratio on a mechanical system. The rate at which the ratio
changes is controlled by a ramping mechanism similar to a clutch or a variable speed gearbox.

Gear Control
Flags

GearRatio
Calculator

| GEARACC |

GearAdlivale

GEARDEC || T

Gear Stalus
Flags

GearActive
| __—

——| GearatSpeed

pping

GEAR SRC X P12546
GEAR PPU X51200
GEAR RATIO X.25
GEAR ON X

Current Gear Ratio
¥

Gear Pulse,
Scaling, &
Offset Calculator

GearPosition
| AXISPPU | e

GEARPPU GearVelocity

GEARMIN

GEARMAX

| GEARSRC } >

REM Gear X to Actual Position of Axis 1.
REM Master is 51200 pulses per rev.

REM Set gear ratio at 1/4 master.

REM Turn electronic gearing on.

For each revolution of Y, X would move 0.25 inch. An external encoder could be used (Encoder 8 or, for IPA,
Encoder 1). The above PPU is for an ACR7xT stepper axis. The master’s axis PPU could be used as GEAR PPU

instead to set similar units.

The external encoder input can also be a gear source:

GEAR SRC X ENC1
GEAR PPU X 4000
GEAR RATIO X-1.5
GEAR ON X

REM Gear X to Actual Position of Axis 1.
REM Master is 4000 pulses per rev.

REM Set gear ratio at -1.5 of master.
REM Turn electronic gearing on.

No external encoder wired to the controller? Use the global clock:

P6916=0

GEAR SRC X P6916
GEAR PPU X1000
GEAR RATIO X.25
GEAR ON X

REM Reset Global System Clock to O.

REM Tie slave gearbox to Global System Clock.
REM Master is 1000 counts (1 second).

REM Set gear ratio at 1/4 (0.25 in/rev).

REM Turn electronic gearing on.

The above simple examples do not set GEAR ACC or GEAR DEC. As soon as gearing is enabled, X will use

infinite acceleration to match speed with its gear source. If the source to which you are gearing is already moving
at high speed or you have a high gear ratio, this can cause high jerk in the system or cause the axis to accelerate at
a very high rate; hence GEAR ACC and GEAR DEC can be used to limit the acceleration and deceleration ramps.

GEAR RATIO can be changed while gearing is active, but programmers should be careful; large changes in the
ratio can lead to abrupt changes in velocity.

ACR Programmer’s Guide 177

MAKING MOTION

GEAR ACC X10000
GEAR DEC Y10000

GEAR SRC YO : REM Gear Y axis to ENCO.
GEAR RATIO Y1 : REM Gear ratio of 1/1.
X/ 200000 : REM X axis move.

GEAR ON Y TRG(2, 0) OFFSET 3000

REM Mode 2, Rising Primary external.

REM Capture Register 0, gear source is ENCO.

REM Offset is positive, X-axis is moving

REM in positive direction.

INH 2344

REM Wait, capture register is shared by GEAR TRG ON
REM and GEAR TRG OFF.

GEAR OFF Y TRG(2,0) OFFSET 6500

REM The gear will turn off 6500 pulses after the
REM trigger is received.

INH 2348

For GEAR SRC see the SRC command (set external timebase) for available sources. Parameters can be used but
care should be taken that these do not change abruptly (mistakenly written to from another program, PLC or
HMI) or are subject to noise corruption.

NOTE: The Gear Profiler typically uses a source other than the clock as its timebase.

Gantry Lock is a special application as compared to gearing. See Lock.

Cam Profiler

An electronic cam is primarily used as a replacement for a mechanical cam. The Cam Profiler controls motion for
axes needing precise motion. It uses an array of target points in relation to an externally sourced timebase. By
breaking the motion into discrete target points, the cam arrives at the exact point needed. The source can be the
position of another axis, an external encoder or any parameter within the controller.

The Cam Profiler provides linear interpolation between points, regardless of how many points are necessary for
the move. All changes in motion are real time. The Cam Profiler does not compile motion.

Cam uses an arbitrary source to generate an index into a table of offset values. If this index falls between two
table entries, the cam offset is linearly interpolated between the entries. This offset is then scaled, shifted by the
output offset, and then multiplied by the PPU for the given axis.

A cam table can be composed of more than one segment with each segment having different distances between
table entries. The data for each segment of the table resides in separate long integer arrays, possibly of different
sizes. This allows some parts of the table to be defined coarsely and others to be defined in more detail. Each
point of the cam table is scaled by PPU of the cam axis.

178 ACR Programmer’s Guide

MAKING MOTION

You can only use long integer arrays in a cam table. The table index automatically tracks which segment it is in and

where it is within that segment. It also wraps around if it goes off either end of the table. The wraparound point

is determined by the total length of the table that is equal to the summation of the individual segment lengths.

NOTE: The Cam Profiler typically uses a source other than the clock as its timebase.

NOTE: The cam table is stored within an array of long integers, not real numbers. Thus, the
position data in the cam table would be in counts; convert real positions to counts by

multiplying by PPU.

For CAM SRC, see SRC command (set external timebase) for available sources. Parameters can be used but care

should be taken that these do not change abruptly (mistakenly written to from another program, PLC or HMI) or

are subject to noise corruption.

CAM RES (transfer cam offset)—this command either clears or preloads the cam offset of a given axis and adds

the difference to the current position. It also clears out any cam shift that may have been built up by an
incremental cam.

DRIVE ON X Y

REM START CAM TABLE ARRAY*X** X *k&*xkx%

DIM LA (2) REM Dimension 2 long arrays

DIM LAO (9) REM LAO has 9 elements

LAO (00)=0 REM Start defining cam table segmentl
LAO(01)=73

LAO (02)=250

LAO (03)=427

LAO (04)=500

LAQ (05)=427

LAO (06) =250

LAO(07)=73

LAO (08)=0

DIM LAl (6)

LA1(00)=0 REM Start defining cam table segment?2
LA1(01)=0

LA1(02)=-500

LA1(03)=-500

LAl (04)=0

LA1 (05)=0

REM END CAM TABLE ARRAY XX ** % *x %% x k%

CAM DIM X2 REM Define 2 cam segments

CAM SEG X (0, (P12631*1/3),LA0)

REM Cam segmentO, range (counts of src), data table
CAM SEG X (1, (P12631*2/3),LAl1)

REM Cam segmentl, range (counts of src), data table
CAM SRC X1 REM Define cam source as ENC1
CAM SCALE X(1/P12375)

Set Cam Scaling

ACR Programmer’s Guide

179

MAKING MOTION

REM Set to 1/ (PPU X) for 1/1 relation between cam scale and axis units

CAM SRC X RES : REM Reset cam source to O
CAM RES X : REM Reset cam to O
CAM ON X : REM Start camming
Y/2
DWL 1
YO
Segment 0 Segment 1

500]
1
] \\

-500

¥
A

FOLLOWER COUNTS
(=]
/

-— 1/3 CAM 2/3 CAM >
MASTER MASTER
-+ CAM MASTER 1 USER UNIT -

For each unit of Y moved, X would progress through the cam table, repeating as it moved and reversing if Y is

reversed:

osdllescope

Auto Scale Y-Axis

Channel 2

Auto Scale Y-Axis

Cha

o2 kUnit / Div
[Auto Scale v-Axis

Channel 4

Outputs can be set to turn on position automatically with Programmable Limit Switch (PLS). See PLS sample.

Homing
The homing operation is a sequence of moves that position an axis using the Home Limit inputs. The goal of the

homing operation is to return the load to a repeatable starting location.

When the homing operation successfully completes, the controller sets the absolute position register to zero,
establishing a zero reference position. For servo axes using analog feedback, the controller sets the voltage

register to zero.

180 ACR Programmer’s Guide

MAKING MOTION

The Jog Profiler controls homing operations. If the acceleration, deceleration, velocity, and jerk values are set for
jogging, those values are also used for homing.

NOTE: It is a good programming practice to declare the motion profile at the beginning of every
jog subroutine. Doing so ensures the correct motion values are used for a jogging or
homing routine, regardless how the program branches to a subroutine.

NOTE: A homing routine cannot be started for an axis that is already in motion.

The relevance of positive and negative direction with respect to limit switches is shown below.

Negative Direction Positive Direction

Edge of Home Edge of Home
Home Switch
Active Region

Negative Direction Positive Direction
End-of-Travel Limit End-of-Travel Limit

If an end-of-travel limit is encountered during the homing operation, motion is reversed and the home switch is
sought in the opposite direction. If a second limit is encountered, the homing operation is terminated, stopping
motion at the second limit.

NOTE: For homing operations, always use the clock as the source of the Jog Profiler.

The controller uses the following guidelines for all backup-enabled profiles:

e Search for the selected edge at the velocity set with the JOG VEL command (set jog velocity).

e Use the direction given in the JOG HOME command (go home). If the home input is already active, start
toward the selected edge. On finding the selected edge, decelerate.

e Return to the selected edge at the velocity set with the JOG HOMVFEF command (home final velocity). If
the returning direction is the same as the selected final direction, the profile is complete. Otherwise, find
the edge again in the selected final direction using the velocity set with the JOG HOMVF command.

The homing routine sets the conditions for homing: a motion profile, the inputs related to homing and homing
velocity. In addition, specific bit conditions are set out. The JOG HOME command then starts the homing
process.

The WHILE/WEND statement (loop execution conditional) causes the program to wait until the homing conditions
it contains are met. In the first AND statement, Axis 0 cannot have found home and cannot have failed to find
home. The second AND statement does the same for Axis |. Once conditions are met, the code within the
WHILE/WEND statement is executed.

ACR Programmer’s Guide 181

MAKING MOTION

Finally, the program prints that the Y axis homing is successful and initiates Z channel homing (MSEEK command—
marker seek operation) for axis X. When axis X has successfully completed the Z channel homing, the program
prints that X axis homing is successful.

PROGRAM

JOG VEL X10 Y10 : REM Set axes jog parameters used during homing
JOG ACC X100 Y100

JOG DEC X100 Y100

HILBIT X0 Y3 : REM X uses 1Home (input2), Y uses 2Home (inputb)
HLIM X3 Y3 : REM enable EOT limit checking for box axes

JOG HOMVFEF X0.1 Y0.1 : REM Set backup to home velocity

SET 16144 SET 16145 : REM Invert axisO level of limit inputs

SET 16176 SET 16177 : REM Invert axisl level of limit inputs

CLR 16152 CLR 16184 : REM Disable backup to home

CLR 16153 CLR 16185 : REM Look for positive edge of sensor

CLR 16154 CLR 16186 : REM Final homing direction will be positive

JOG HOME X-1 Y1 : REM start homing x negative, y positive

REM The WHILE/WEND statement uses Boolean logic to define homing
REM conditions. Bits 16134 and 16166 are the Found Home bits for axes
WHILE (((NOT BIT 16134) AND (NOT BIT 16135)) OR ((NOT BIT 16166) AND (NOT BIT
16167)))
WEND
IF (BIT 16166) THEN PRINT "Y HOMING SUCCESSFUL"
IF (BIT 16134)

MSEEK X (1,0)

INH -516

IF (BIT 777)

PRINT "X HOMING SUCCESSFUL"

ENDIF
ENDIF
ENDP

Homing Subroutines

Typically, the homing code is a subroutine in a program. The Jog commands define the motion (JOG ACC, JOG
DEC, JOG HOME, JOG HOMVF, JOG JRK and JOG VEL) and three bits in the Quinary Axis Flags (bit 16128-
16639) control other aspects of a homing routine:

e Home Backup Enable (bit index 24).
e Home Negative Edge Select (bit index 25).
e Home Final Direction (bit index 26).

The JOG HOME command simultaneously homes multiple axes. The arguments for this command, axis and
direction, allow the user to specify an axis and the direction in which it seeks the homing region. For example,
JOG HOME X1 Y-1 homes the X axis in the positive direction, and the Y axis in the negative direction.

The following diagrams illustrate the combinations and interactions of the three homing bits (above) and the JOG
HOME command.

182 ACR Programmer’s Guide

MAKING MOTION

Basic Homing (Homing Backup Disabled)

When the Home Backup Enable bit (Bit 24) is clear, the controller ignores the Home Negative Edge Select bit (bit
25) and Home Negative Final Direction bit (bit 26). Consequently, when the controller finds any homing edge
(positive or negative), the move decelerates. The controller does not attempt to back up to the found edge.

Figures A and B show the homing operation when the Home Backup Enable, Home Negative Edge Select, and
Home Negative Final Direction bits are clear (Quinary Axis Flags, bit 16128-16639).

Hoge Active Homing Profile Attributes:
egion

JOG HOME X1

Velocity

Position

Initial !
Position Neg. Edge Pos. Edge
of Home of Home

Home Backup Enable (bit index 24) is clear.
! Home Negative Edge Select (bit index 25) is clear.

Negative Positive Home Negative Final Direction (bit index 26) is clear.
imit Limit

Homing Profile Attributes:

JOG HOME X-1

Velocity

1 Home Backup Enable (bit index 24) is clear.

Position

Initial

I
| Neg. Edge Pos. Edge Position) . s .
| oiHome of Homa ‘ Home Negative Edge Select (bit index 25) is clear.

Negative Positive

Limit Limit Home Negative Final Direction (bit index 26) is clear.

Positive Homing (Homing Backup Enabled)
Figures C through F show the homing operation when the Home Backup Enable bit is set (parameters 4600-4615).

The seven steps below describe a sample homing operation, as illustrated in Figure C. Figures D through F show
the homing operation for different values of the Home Negative Edge Select and Home Negative Final Direction

bits—the Home Backup Enable bit is set.

A positive home move is started with the JOG HOME X1 command at the JOG ACC and JOG JRK

accelerations. Default JOG ACC is 10 revs (or volts or inches) per sec’.
The JOG VEL velocity is reached (move continues at that velocity until home input goes active).

The negative edge of the home input is ignored and the move continues until the positive edge is detected. At this
time, the move is decelerated at the JOG DEC and JOG JRK command values.

After stopping, the direction is reversed and a second move with a peak velocity specified by the JOG HOMVF

value is started.

This move continues until the positive edge of the home input is reached.

ACR Programmer’s Guide 183

MAKING MOTION

Upon reaching the positive edge, the move is decelerated at the JOG DEC and JOG JRK command values, the
direction is reversed, and another move is started in the positive direction at the JOG HOMVF velocity.

As soon as the home input positive edge is reached, this last move is immediately terminated. The load is at home

and the absolute position register is reset to zero.

Home Active

Region
! i !
| i !
z : 1
of i I
o ' i I
2. ; :
I i !
| | !
! ' ‘
s — Position
' Initial ! ! !
' Position Neg. Edge Pos. Edge !
. of Home of Home .
Negative Paositive
Limit Limit
Home Active
Region
: 1
! 1
2 1 !
£ I
g | i 1 :
=1 i 1 ‘
, I
' ! : '
; L — Pasition
! Initial | | '
' Position Neg. Edge Pos. Edge !
. of Home of Home .
Negative Positive
Limit Limit
Home Active
Region
! b ' !
' ' '
2 i > . i
B | h !
k<] ' i i
EI ! ‘
I i !
' !
, : — Position
' Initial ! !
' Position Neg. Edge Pos. Edge !
. of Home of Home .
Negative Paositive
Limit Limit
Home Active
Region
: e : :
i : I !
2 1 '
S| F I !
al 1 I !
i
2 : -
: ‘ | 1
: ‘ — Position
! Initial I ! !
| Position Neg. Edge Pos. Edge
| of Home of Home |
Negative Positive
Limit Limit

184 ACR Programmer’s Guide

Homing Profile Attributes:

JOG HOME X1

Home Backup Enable (bit index 24) is set.

Home Negative Edge Select (bit index 25) is clear.

Home Negative Final Direction (bit index 26) is clear.

Homing Profile Attributes:

JOG HOME X1

Home Backup Enable (bit index 24) is set.
Home Negative Edge Select (bit index 25) is set.

Home Negative Final Direction (bit index 26) is clear.

Homing Profile Attributes:

JOG HOME X1

Home Backup Enable (bit index 24) is set.

Home Negative Edge Select (bit index 25) is clear.

Home Negative Final Direction (bit index 26) is set.

Homing Profile Attributes:

JOG HOME X1

Home Backup Enable (bit index 24) is set.
Home Negative Edge Select (bit index 25) is set.

Home Negative Final Direction (bit index 26) is set.

MAKING MOTION

Negative Homing (Homing Backup Enabled)
Figures G through] show the homing operation for different values of the Home Negative Edge Select and Home
Negative Final Direction bits—the Home Backup Enable bit is set.

_ H°"R”§gf;°n”"e Homing Profile Attributes:
z| : — : JOG HOME X-1
ol ! 1 !
SR i |
| 1 ‘ Home Backup Enable (bit index 24) is set.
! P
H L — Pasition
! ! I \nitigl !
b e g Position ! Home Negative Edge Select (bit index 25) is set.
Negat_ive Pc_siti_ve
Limit Limit Home Negative Final Direction (bit index 26) is set.
H°g§g’m"’e Homing Profile Attributes:
gl : i JOG HOME X-1
I :
: ‘ 1 Home Backup Enable (bit index 24) is set.
: L 1 — Position
! | I Init__al '
e P S Home Negative Edge Select (bit index 25) is clear.
Negat_ive Po_siti_ve
Limit Limit Home Negative Final Direction (bit index 26) is set.
H“Q:g’lil”"e Homing Profile Attributes:
2zl : — : JOG HOME X-1
o ')
IS 1
: ! ! : Home Backup Enable (bit index 24) is set.
. . — Position
! [| Ini‘FiaI !
t MNeg.Rdge Poe Bige Position : Home Negative Edge Select (bit index 25) is set.
Negative Positive
Limit Limit Home Negative Final Direction (bit index 26) is clear.
e Homing Profile Attributes:
N i : JOG HOME X-1
S| : :
Q | 1 [
> | Il '
: ! : Home Backup Enable (bit index 24) is set.
. " : o — Position
! Neg Edge Pos.Edge Position ; Home Negative Edge Select (bit index 25) is clear.
. of Home of Home .
Negative Positive Home Negative Final Direction (bit index 26) is clear.
imit Limit

ACR Programmer’s Guide 185

MAKING MOTION

Limit Detection

The Configuration Wizard assists with setting up the Hardware and Software Limits Detection.

HLIM command- Enables the

Fault Detection positive or negative hardware limits. HLDEC command- Sets the
Hardware Limit Detection) £) hardware limit deceleration.
[Enable Positive Hardware Limit Detection j Hardware Limit Deceleration |500.00 Inches/s?

Enable Negative Hardware Limit Detection

Assign Digital Inputs For Specific Functions

Name Description Value

Positive Limit Specific Input assigned as the positive limit Onboard Input 0 +—__ [HIBIT command- Assigns the
positive or negative hardware limits.

Positive Limit Input Type Normally Closed = 'SET", Normally Open = 'CLR' [V] Normally Closed
A 4

Negative Limit Specific Input assigned as the negative limit Onboard Input 1 v

Negative Limit input Type Normally Closed = 'SET', Normally Open = 'CLR' [V/] Normally Closede - 1BITs 16144 16145 16146

sets limit and home polarity.

Home Limit Specific Input assigned as the home limit Onboard Input 2

Home Limit Input Type Normally Closed = 'SET", Normally Open = 'CLR' [_] Normally Open*

SLIM command- Enables
oz 3 the positive and negative
Software Limit Detectlon; p €9

software limits.
[Enable Positive Limit

24.00 Inches S1M command- Sets the
0

positive and negative travel

4 Enable Negative Limit |0.0 Inches«— | range for software limits
Software Limit Deceleration (500.00 Inches/qu\ SLDEC command- Sets the

hardware limit deceleration

Maximum Position Error Detection

Positive Position Error 0.20 Inches
Negative Position Error -0.20 Inches

If limits are enabled, motion stops when the load encounters a limit. If the load hits a hardware limit, motion stops
at the rate set by the HLDEC; if the load hits a software limit, motion stops at the rate set by the SLDEC.

Dedicated I/O for Homing

For each axis, the user can assign which inputs are used for positive and negative hardware limits as well as the
input used for homing. The inputs can be assigned or changed using the HLBIT command (no corresponding
parameter exists). Use the HLBIT command to set the inputs for the positive hardware limit, negative hardware
limit and homing sensor input.

HLBIT X (0, 1, 2)
For legacy systems or upgrading from ACR9000:

When using HLBIT without the parentheses, the number specifies the first input and the controller sets the next
two contiguous inputs for the negative hardware limit and home limit.

HLBIT X0 : REM Input 0 is Pos. Limit, 1 is Neg. Limit and 2 is Home Limit.

For example, HLBIT X0 assigns input 0 as the positive hardware limit and then the next two inputs. Input |
becomes the negative hardware limit and input 2 becomes the home limit.

186 ACR Programmer’s Guide

MAKING MOTION

This syntax is still supported in ACR7000 and IPA firmware. However, you need to exercise caution with that
syntax as the controller does not roll the assignment to the next block of 32 bits. For example, if HLBIT X31 is
issued, the negative hardware limit and homing input are not assigned and they become imaginary inputs with a
value of zero.

Stopping Motion and Moves

When an axis’ KAMR is activated (by the user or automatically by the controller) the controller will:

e Attempt to stop the axis using the current setting for hardware limit deceleration, HLDEC. This is set
within the Fault screen in the Configuration Wizard.

e Use the jog profiler to generate the setpoints necessary to bring the axis to a controlled stop. This may
result in a Jog Offset. Use the JOG RES command to transfer the Jog Offset to the Current
(coordinated) Position register. Or home the axis to re-establish the desired zero position.

e Stop jog, cam, gear or ballscrew motion on the axis by clearing those flags (gear activate, cam activate, jog
active, jog forward and jog reverse).

e Set the Kill All Moves flag for the master that is assigned to that axis. This will stop and prevent any
coordinated motion.

e Set the Kill All Motion Request flag for any other axes on that same master-.

Any motion command issued while this flag is set will result in an error message “Associated Slave Kill Motion
Request Active” in the Terminal Emulator. This is true if any axis assigned to the same master is commanded to
move.

The user is responsible for clearing this flag.

Within a program, to resume motion, first clear the Kill All Motion Request flag for the axis (and any other axis on
the same Master) and then clear the Kill All Moves flag in the master.

Enabling a drive using the DRIVE ON command will clear the Kill All Motion Request (KAMR) and Kill All Moves
flag if the drive is not currently enabled.

Within the terminal emulator in PMM, the KAMR and Kill All Motion Request flags may be cleared for all axes by
issuing a CTRL-Y.

The KAMR flag does not halt any programs. However, if the program encounters a new command to move while
this bit is set, the program will halt. Non-motion programs can be running, monitoring motion program status for
error recovery.

Kill All Moves versus Kill All Motion Request

The Kill All Moves bits are for the interpolated motion moves. If you had an 3-axis X/Y/Z system, setting the Kill
All Moves flag would immediately kill any MOV (single axis X1 0 move, or interpolated X5 Y/ 3 for example).
Master 0 Kill All Moves bit 522 and Stop All Motion bit 523 would kill or stop all interpolated moves for the
Master 0.

Setting the master's Kill All Moves or Stop All Motion bits will have no effect on other types of single axis moves
like JOG, GEAR or CAM.

ACR Programmer’s Guide 187

MAKING MOTION

Setting the axis' Kill All Motion Request bit (bit 8467 for Axis 0) will kill all motion, including jogging for that axis
and all other axes that are associated to that master.

Axis 0 and Axis | are attached to Master 0—Axis 2 and Axis 3 are attached to Master |. When all axes are
jogging, setting bit 522 and bit 523 will have no effect on jogging. But when setting bit 8467, Kill All Motion
Request for Axis 0, Axis 0 and Axis | will stop but Axis 2 and Axis 3 will continue to jog.

Flag Comparison
The following table shows the bit numbers for Kill All Motion Request axis flags and the bit numbers for Kill All
Moves master flags.

Kill All Motion Request

Quaternary Axis Flags

Axis Number

0 | 2 3 4 5 6 7

8467 | 8499 | 8531 | 8563 | 8595 | 8627 | 8659 | 8691

Axis Number

8 9 10 I 12 13 14 I5

8723 | 8755 | 8787 | 8819 | 8851 | 8883 | 8915 | 8947

Kill All Moves

Master Flags

Master Number

0 | 2 3 4 5 6 7

522 | 554 | 586 | 618 | 650 | 682 |714 |746

Master Number

8 9 10 I 12 13 14 I5

7434 | 7466 | 7498 | 7530 | 7562 | 7594 | 7626 | 7658

Bit Status Window Comparison
Locate the Bit Status Panel by clicking on the plus sign (+) next to Status Panels on the Explorer in PMM and
clicking on Bit Status.

188 ACR Programmer’s Guide

MAKING MOTION

=g Mew

Project

2% ACR7AT

-8 Configuration Wizard
-4 Program Editar

----- B Terminal Emulator
- Tools

=-{zg Status Panels

----- o Maotion Status Panel

----- o Drive Status Panel

----- o Mumeric Status

----- o Etherhet/IP Status Panel

----- @ Servo Loop Status

-4 Scopes

Select Axis Flags in the first pull-down menu, Quaternary Axis Flags in the second pull-down menu and Quaternary
Axis 0 Flags in the third pull-down menu to display the Kill All Motion Request bit for Axis 0. A green LED, as
circled in red below, indicates that the flag is set. All motion is stopped for this axis and all other axes on the same

master.

Axis Flags

BIT&450:
BIT2451

BIT2453

BITE463

BITE448:
BIT844%:

. Ethernet alarm on Stall Detect @ BIT8466: Drive Reset Output
: Disable Encoder Fault Response €@ BIT2467: Kill All Motion Request >

BITS452:

~ | | Quaternary Axis Flags ~ | |Quaternary Axis 0 Flags ~ | P4360
Ethernet Alarm on Drive Fault @ BITE464: Enable CW/CCW
Ethernet Alarm on Hard Limit Hit @ BIT8465: Drive Enable Output

Disable Drive Fault Response

¢ Invert Drive Fault Input Level
BIT3454:
BITE455:
BIT3456:
BITE45T:
BIT3458:
BITE450:
BIT8460:
BIT8461:
BIT8462:
: P Megative Direction

Position Maintenance
Invert Motion Direction
PM Enable

Ph Active

PM Interrupted

PM Excess Error

PM In Dead Band

PM Correction Started
PM Paositive Direction

@ BITS468: Enable Drive 1/0

@ EIT8469: Enable EXC Response

@ BIT8470: DEO Serves Shutdown Function
@ EIT8471: Disable Drive on Kill

& EBIT3472: Drive Fault Input

@ EIT8473: Reserved

@ BIT3474: DFl Response Inhibit

@ EIT8475: Completing Drive Reset

@ BIT8476: Physical Drive Enable State

@ EBIT8477: Drive Fault Latched

@ BIT8478: EPL Axis

@ BIT8479: Latched Excess Position Error

Select Master Flags in the first pull-down menu, Primary Master Flags in the second pull-down menu and Primary
Master 0 Flags in the third pull-down menu to display the Kill All Moves Request bit for Master 0. A green LED, as
circled in red below, indicates that the flag is set.

ACR Programmer’s Guide 189

MAKING MOTION

Master Flags ~ | Primary Master Flags ~ | |Primary Master 0 Flags ~| P4112
@ BIT512: Accelerating @ BIT528: Not In Position
@ BIT513: Decelerating @ BIT529: Mot Excess Error
@ BIT514: Stopping & BIT530: Within A Limit
@ BIT515: Jerking @ BIT337: Not Within B Limit
@ BIT316: In Motion @ BIT332: Not Torgue Limit
@ BIT317: Move Buffered @ BIT5333: Mot In Torque Band
@ BIT518: Feedholding @ BIT534: Reserved
@ BIT51%: In Feedhald @ BIT535: Reserved
@ BIT520: Feedhold Request @ BIT336: Decrement Count
@ BIT521: Cycle Start Request @ BIT5337: Increment Count

@ BIT53%: Interrupt On Move
@ BIT523: Stop All Moves @ BIT339: TRG Pending
@ BIT524: FVEL Zero Pending @ BIT540: Start Move Inhibit
@ BIT525: FVEL Zero Active @ BIT541: REM Request Flag
& BIT526: FOV/ROV Lock Pending @ BIT542: Cycle Start Lockout
@ BITS527: FOV/ROV Lock Active @ BIT543: Reserved

This example uses terminal commands.

POO>ATTACH

ATTACH MASTERO

ATTACH SLAVEQ AXISO "X"
ATTACH SLAVE1l AXIS1 "Y"

The ATTACH command will reply with information about which axes are part of the master group.
PO0>JOG FWD X

JOG FWD X starts a continuous jog move on X axis.

POO>SET 8467

SET 8467 sets the KAMR for the X axis. It would decelerate at the HLDEC rate.

PO0>JOG FWD Y
POO>Associated Slave Kill Motion Request is active

Y-axis motion is prevented due to the X-axis KAMR flag being active.

POO>CLR 8467 CLR8499
PO0>JOG FWD Y

Y-axis motion is now allowed.

NOTE: Enabling drives using the DRIVE ON command will clear the Kill All Motion Request
(KAMR) and Kill All Moves bits if the drive is not currently enabled.

190 ACR Programmer’s Guide

MAKING MOTION

Contoured (Tiered) Profiles

Changes to jog velocity take effect immediately (velocity moves JOG FWD or JOG REV).

DRIVE ON X
JOG VEL X5
JOG FWD X
JOG VEL X8
JOG OFF X

Velocity

Time

Or decelerating:

JOG VEL X5

JOG FWD X

JOG VEL X3

JOG OFF X
2
&
e,
>

Time

ACR Programmer’s Guide 191

MAKING MOTION

If a Jog move is in progress, another Jog move command (JOG INC or JOG ABS) will cause the current move to

abort and ramp to zero velocity before starting the next move.

DRIVE ON X
JOG VEL X5
JOG INC X20
JOG INC X3

Or:

DRIVE ON X
JOG FWD X
JOG INC X3

Velocity

192 ACR Programmer’s Guide

MAKING MOTION

Blended (Tiered) Interpolated Moves

W ACR78V:Osdilloscope 1 X T X

Osdlloscope

Channel 1

Auto Scale Y-Axis

Channel 2

Encoder 01 iEncoder Position [

Auto Scale V-Axis

Channel 3

Encoder 02 :Encoder Position

[Auto Scale Y-xis

Channel 4

Display Auto Scale Y-Axis
- Channel 1 [J Channel 3
< > Channel 2 Channel 4

Motion. Sampling.. Erase Display Data

Run single Zero Export Data

With an interpolated move, it would be programmed as two moves but with the stop ramp STP set to 0 so it
would start the second move after completing the first move.

ACC 10 DEC 10 STP O VEL 3

Y/4 Z/4 : REM Start incremental move for Y and Z at speed of 3.
VEL 1 STP 10

Y/1 Z/1 : REM Toe-in with another move for Y Z at speed of 1.
INH-516 : REM Wait until move stops.

DWL 1 : REM Wait 1 second.

VEL 3 STPO

Y1l 71 : REM Return move same but in absolute values.

VEL 1 STP10

YO z0

High-speed Position Capture (INTCAP)

INTCAP allows you to capture an axis position when one of the controller’s high-speed trigger inputs or the
encoder reference (Z channel) turns on. The position is stored in the capture register. The ACR7000 stepper has
four capture registers, one for each stepper axis. The IPA has two, one for its servo axis and another for its
auxiliary encoder input (ENC 1). The ACR7000 servo has one for each servo axis. The ACR7000 controller has
one for each axis and any of the first four can also be used for the auxiliary encoder input (ENC 8).

PMM’s online help for INTCAP has charts for the different ACR controllers (ACR7xT stepper, IPA single axis
servo, ACR7xV servo and ACR7xC controller). Capture modes marked with (+) capture a rising edge while (-) is
a falling edge. INP is a trigger input and Z ENC is the encoder reference mark. These are necessary as they arm
the specific hardware at the chip level to capture the encoder position very precisely (1 ps latency). Multiple
captures can be armed at the same time. No motion is initiated by INTCAP—it is simply a mechanism to arm the

ACR Programmer’s Guide 193

MAKING MOTION

capture to take place when the source is triggered. INTCAP is also used in other AcroBASIC commands such as
HSINT (high speed interruptible move) and MSEEK (marker seek).

ACR7000 Servo (ACR74V, ACR78V)
SRC ENCO ENC1 ENC2 ENC3
capture_
register CAPD CAP1 CAP2 CAP3
Mode
0 +Z-ENCO | +Z-ENC1 | +Z-ENC2 | +Z-ENC3
1
2 #INP24 | +INP25 | +INP28 | +INP30
3 #INP25 | +INP27 | +INP29 | +INP31
a -Z-ENCO | -Z-ENC1 | -Z-ENC2 | -Z-ENC 3
5
6 -INP24 | -INP26 | -INP28 | -INP 30
7 -INP25 | -INP27 | -INP29 | -INP31

Note for the stepper axis, PMM already attaches the encoder whether selected or not and the correct settings will
be applied to the ACR7000 stepper controller. If there is no encoder (open loop stepper), the current position
register value is used.

A Capture Complete Flag indicates when the capture is complete and then the Hardware Capture register will
have the position information:

Axis Capture Complete Har!::l?.rare Capture
Flag Position

o 77T 12292

1 209 12548

2 841 12804

3 873 13060

4 905 13316

5 937 13572

& 969 13828

7 1001 14084

REM Y axis use capture register 1, ModeO, rising edge of Encoderl
REM reference marker.

INTCAP YO : REM arms capture for Y Axis

JOG FWD Y : REM initiate jogging move on X axis

INH 809 : REM wait until Axisl flag “Capture Complete” is set
JOG OFF Y : REM stop jogging

REM capture parameter was not specified in INTCAP command, defaults to
REM Axisl

194 ACR Programmer’s Guide

MAKING MOTION

PRINT P12548 : REM Print Axisl hardware Capture position
RETURN

AXISO INTCAP 10 CAP2 P12804

REM Model0O, CAP2 : Rising 3rd External, CAP2 uses Input24
AXIS1 INTCAP 11 CAP3 P13060

REM Modell, CAP3 : Rising 4th External, CAP3 uses Input24
AXIS0O JOG FWD : AXIS1 JOG FWD

INH 841 : INH 873

PRINT "AxisO Capture Position", P12804
PRINT "Axisl Capture Position", P13060

Instead of a hardware capture, software capture is available with SET |13. It captures all encoder positions at the
next period for the controller and stores them within the software capture parameters (P12293 for Axis 0 and so
on).

Lock

The LOCK command redirects one axis to follow the primary setpoint of a second axis. This can be used to have
multiple axes receive the same setpoint in the same servo cycle rather than following another axis (one servo
period behind).

LOCK is essential for controlling a gantry system where two mechanical systems need to be coupled. Once the
two axes are locked, a special control loop will minimize the error between them assuring perfect coordination.
This is important for an XX’ (X/X prime) so that one axis is not fighting the other, leading to crabbing or having to
detune one of the axes.

ACR Programmer’s Guide 195

MAKING MOTION

When two axes are locked together using the LOCK command, their primary setpoints become the same. In
other words, the two axes will get exactly the same command signal. However, in the real world, the response of
the two physical motors/actuators will be slightly different. To compensate for this error, the user can turn on a
feedback loop by setting some gain values for the “Lock Feed Back Gain” parameters of the locked axes. Thus, if
one axis has a disturbance and corrects for the position error, the locked axes will also correct. The default value

is zero, which turns this feedback loop off.

Command for

¥

Servo Loop 1

Locked Axes

L 4

With feedback gain:

b
3\ =
+4
Secordary
Setpornt 4
Aws C
007 command
li=s fogethsr
axes Cand 1.
Prnmary
Sewpoin —
Sacondary
Separt 4
Axis 9

P12376 = 3.5 :
P12632 = 3.5 :
LOCK Y X :

196 ACR Programmer’s Guide

Y

Acsdad
AIMWANE Werson
1 18 15 upclate 7

+

Fealtion diffaranca
raquinad etwaen
W Axes

Achus Fositian

e Gan
Axe

Command Position

DMarencs Satasan
Monar O 8 Motor 9

(1)=
NS

= Lock Feedback
/ Gain 1
\ - Lock Feedback
Gain 2
Sarvo Loop 2
>eye o |Acal Pasticn
Command Pozitian 3o Mitor 0
+ Axig § Serva Loop
120K Gan
:I\XI: 0!

Axiz 1 Servo Locp

REM Set lock gain axis 0.
REM Set lock gain axis 1.

Actual Poszition
Natar 1

REM Lock axis Y to axis X's primary setpoint.

MAKING MOTION

X/20 : REM Start motion axis X, axis Y also moves due to lock.
UNLOCK Y : REM Unlock axis Y.

When the UNLOCK command is issued, that axis’ position will be 0 and will need to be reset. The difference
between the two positions should be stored and the unlocked axis should be reset to the main axis position less
the offset.

Rotary Axis

The ROTARY command allows a rotary axis to take the shortest path to a position, whether for a precision rotary
stage, standalone motor or motor with gearhead. ROTARY sets the rotary axis length used for the shortest-

distance calculations.

If the rotary length of an axis is non-zero, a MOD function is performed on absolute moves and the result is run
through a shortest-distance calculation. The resulting move will never be longer than half the rotary axis length.
Incremental moves are not affected by the rotary axis length.

This command only affects MOV absolute moves. JOG moves are not affected. Before enabling the ROTARY
command, it may be useful clear the JOG offset register by issuing the JOG RES command, transferring the Jog
Offset to the Coordinated Position register.

The NORM command can be used to return the current position to within the bounds of the rotary length. Issuing
a ROTARY command without an argument will display the current setting. To disable, set ROTARY length to 0.

To increase the accuracy of the rotary motion, use degrees for the units. This can be selected within the
Configuration Wizard.

The following example sets the rotary length of the A axis to 360 units:

ROTARY A360

Al120 : REM Move to 120 units results in positive motion.
AQ : REM Go back to 0 position.
A275

REM Move to 275 units results in negative motion as this is the

ACR Programmer’s Guide 197

MAKING MOTION

REM shortest distance.

External Time Base

By default, motion’s time base is set to the servo clock. The SRC command can be used to change to an external
timebase, such as an encoder or parameter. This is done with the SRC (source) command. This is similar to CAM
SRC or GEAR SRC, but those are only for CAM motion or GEAR motion. During each servo interrupt, the
change in source pulses is multiplied by the servo period and the resulting delta time is fed into the velocity profile
mechanism. Redirecting the source allows the controller to use an external time base for coordinated motion.
Note when using P parameter, do not use a source that could be changed abruptly or have discontinuities. The
encoder inputs would be good choices, either with ENC1 syntax or the corresponding P parameter P6272 for
ENC8. Ratchets are also available as a source.

SRC P6272

Servo Loop Fundamentals

Each of the profilers contains a register with a value of the current offset. These values are added together and the
summation is called the Primary Setpoint (PSP).

PSP = Coordinated Moves + Jog + Gear + Cam

See below for a diagram of the Primary Setpoint summation.

Coordinated
Moves Profiler

Primary
Setpoint

Jog Profiler (to Secondary Setpoint)

Gear/Handwheel
Profiler

Cam Profiler

Setpoint Compensation

There are two mechanical characteristics that the controller takes into consideration and compensates for:
hysteresis losses and non-linear position error, which are processed by the Backlash Generator and Ballscrew
Profiler, respectively.

Backlash Generator: Used to compensate for error introduced by hysteresis in mechanical gearboxes. Backlash is
used in the Secondary Setpoint summation if the Primary Setpoint value is positive. Use the BKL command (set

198 ACR Programmer’s Guide

MAKING MOTION

backlash compensation) to set the compensation, or, without an argument, to display the current setting for an
axis.

Ballscrew Profiler: Used to compensate for non-linear position error introduced by mechanical ballscrews and
gearboxes. Use the BSC command (ballscrew compensation) to initialize and control ballscrew compensation for

an axis.

The values of the Backlash Generator and Ballscrew Profiler are added to the Primary Setpoint, and this
summation is called the Secondary Setpoint (SSP).

SSP = PSP + Backlash + Ballscrew

The information up to and including the SSP is the commanded position. See the figure below.

Coordinated
Moves Profiler

Primary
Setpoint

Jog Profiler
Gear/Handwheel
Profiler Secondary
Setpoint
) Backlash
Cam Profiler

Generator

Ballscrew
Profiler

Viewing the Setpoint Calculations

Servo loop calculations for the actual position of an axis can be observed in PMM. The Servo Loop Status panel
shows the motion offsets, primary and secondary setpoints, servo gains and other values, and how they result in
the final position output.

In the Explorer, click Status Panels, then click Servo Loop Status.

Note that PMM’s display will be slow due to the communications. The update of the servo loops is the PERIOD
of the controller (see PERIOD in ACR Command Reference or PMM’s online help file for further details).

Following Error
The Secondary Setpoint is compared with the value of the Actual Position received from a feedback device. See
the figure below. The difference between the Secondary Setpoint and Actual Position is called the Following Error:

Following Error = Secondary Setpoint - Actual Position

The controller makes adjustments to the motor position through a constant cycle of comparison and correction.
Following Error is used by the PID loop (servo control algorithm) to keep the Actual Position equal (or
approaching equal) to the Secondary Setpoint.

ACR Programmer’s Guide 199

MAKING MOTION

o Coordi"at‘?jd Italicized numbers in boxes are example
Moves Profiler values for profiler (offset) and summation
registers. (A number crossed out is the
iﬁl original value that has been corrected
by the “following error” calculation.)

Gear/Handwheel
Profiler

[2]

Primary
Setpoint

Secondary
Setpoint

O— Jog Profiler
L2]

O——— Cam Profiler

L]

Backlash
Generator

o Ba\lsgrew
Profiler

Following
Error
+ /-;-\ {to PID loop)
e
Actual
Position (from feedback device)
| 11 -

Ballscrew Compensation

Ballscrew compensation is primarily used to compensate for nonlinear position error introduced by mechanical
ballscrews and linear encoders. Ballscrew commands are identical to cam commands. Both ballscrews and cams
can be active at the same time, each with different settings and offset tables.

The main difference between ballscrew and electronic cam is that the default source for a ballscrew points to the
primary setpoint, therefore the BSC SRC command is normally not required. The primary setpoint is used so
that the ballscrew offset is not fed into the calculation of the ballscrew index, causing an unstable condition.

NOTE: The primary setpoint is the summation of the coordinated position and the total cam, gear
and jog offsets. The secondary setpoint is the summation of the primary setpoint and the
total ballscrew and backlash offsets. The secondary setpoint is the one that is actually
used by the servo loop.

BSC with PPU

When PPU is set for an axis you must use a BSC SCALE equal to 1/PPU and enter all values in pulses.

PPU X 1000 : REM 1 micron linear encoder, user units 1 mm, BSC SCALE X 0.001.

200 ACR Programmer’s Guide

MAKING MOTION

All entries in the long array used to designate a BSC segment MUST be made in encoder pulses.
LAO(0)=100 : REM Array entry in encoder pulses, 100 micron.

When PPU is specified for the axis that is used as the ballscrew, axis segment lengths must still be entered in

encoder pulses.

BSC SEG X(0,100000,LA0) : REM Master encoder pulses 100000 microns or 100 mm.

Encoder Accuracy

The 406LXR Series makes use of an optical linear encoder for positional feedback. This device consists of a
readhead, which is connected to the carriage, and a steel tape scale, which is mounted inside the base of the
406LXR. The linearity of this scale is £3 microns per meter, however the absolute accuracy can be many times
larger. To compensate for this error, an error plot of each 400LXR is done at the factory using a laser
interferometer. From this plot a linear slope correction factor is calculated (Figure 2). Then a second error plot
is run using the slope correction factor. These tests are conducted with the Point of Measurement (POM) in the
center of the carriage 35 mm above the carriage surface.

Slope Correction

Slope correction is simply removing the linear error of the table. The graphs below show an example of a non-
slope corrected error (Figure 2) plot and the same plot with slope correction (Figure 3). As can be seen, the
absolute accuracy has been greatly improved. The slope factor is marked on each unit. It is the slope of the line in
microns per meter. This factor may be positive or negative, depending on the direction of the error.

If the application requires absolute accuracy, the slope factor must be incorporated into the motion program. This
is a matter of either assigning variables for motion positions and using the slope correction in the variable equation
or, for ACR series controllers, using the ballscrew compensation feature, which simplifies error correction.
Accuracy can be improved even more by using the actual data points and incorporating these into a compensation
array used by the BSC command (Figure 4).

NOTE: The zero position (or starting point) of the error plots is at the extreme NEGATIVE end
of travel.

24* 23° 22
Negative Center Pasitive

142 Travel - 10 mm—|——1f2 Travel - 10 mmT

8 Pole Camiage = 288 mm
12 Pole Camiage = 373 mm

|
1

IL |

0% v
———{ [clojofofolcjofo| [ojafofefo fofolojofo[[o

Front View
{(Z-Cchannel Location)
* 22,23, 24 shows Catriage Cantes 4ine Location for Selected 2-Channd Pasition

ACR Programmer’s Guide 201

MAKING MOTION

Sample Data from LXR Error Report

Axis
Location
Title

Increment Size
Total Travel

Slope (um/mm)
Slope (um/meter)
Accuracy (um)
Bi-Dir Repeat(um)
Corrected Acc.(um)

406T12LXRMP

1450
{0.034)
(34.31)

16.58

25

61.7
22

Non-cormected Error Plot

Figure 2
Actual error plot before
correction

Slope value =-34.3

BSC Using Slope Correction Yalue

Slope value 34.3 pm/m. Value at 1450 mm: 34.3 [pum/m] * 1.45 [m] = 49.6 [um]

DIM LA (1)

DIM LAO(2)
LAO (0)=0

LAO (1)=50
BSC DIM X1
BSC SEG X (0,

REM
REM
REM
REM
REM

1450000, LAO)

BSC SCALE X 0.001

BSC ON X

Dimensions one long array for correction values.
Dimension array zero with 2 data points.

Set first array value

(negative end of travel) to zero.

Set last array value to inverse of slope correction value.
Dimension one segment for correction values.

REM Segment 0 is 1450000 microns (1450 mm) .
REM Scale

REM Activate ballscrew compensation.

Error,um

(5)

(10)

(15)

Corrected Error Plot

Travel, mm

Figure 3

Corrected error plot
using slope correction
value

BSC Using Error Data Points From Laser Report

DIM LA (1)
DIM LAO (59)
LAO(0)=0
LAO (1)=1
LAO (2)=3
LAQO (3)=4

REM Dimensions one long array for correction values.
REM Dimension array 0 with 59 data points.

202 ACR Programmer’s Guide

MAKING MOTION

ACR Programmer’s Guide 203

MAKING MOTION

LAQ (53)=
LAO (54)=
LAO (55)=
LAO (56) =
LAQ (57)=
LAO (58) =

BSC DIM X1 : REM Dimension one segment for correction values.
BSC SEG X (0, 1450000, LAO) : REM Segment 0 is 1450000 microns (1450 mm) .
BSC SCALE X 0.001 : REM Scale = 1/PPU.

BSC ON X : REM Activate ballscrew compensation.

Figure 4
Corrected Error Plot

Corrected error plot using laser table
compensation points.

Error, um

Travel, mm

204 ACR Programmer’s Guide

MAKING MOTION

Inverse Kinematics

Kinematics is a branch of mechanics that provides a mathematical means of describing motion. Inverse kinematics
looks at a position and works backwards to determine the motions necessary to obtain that position.

Robotic applications frequently use inverse kinematics. Algorithms describe the mechanical system and translate
the rotational motion of robotics into Cartesian coordinates. Consequently, an end user provides simple
Cartesian coordinates for an application and the inverse kinematics calculates necessary movements to reach that
position.

Suppose an application has a cutting tool at the end of a four-axis robotic arm and an HMI. The controller, using
algorithms developed by the application builder, transforms the motion target points from Cartesian coordinates
to rotational coordinates to position the arm joints and cutting tool. Once transformed, the controller
interpolates the target points to generate a motion path. See the illustration below:

ACR Controller

H
Entry of H Load Move
target points f Target Points

Inverse ' " ;
] e o

Points in H Joint angles for
Cartesian space H robotic armature

Feedback

E Executed by foreground
1 task each time new target H .
! points are received + Updates every servo period

Programming the Inverse Kinematics

Each application is different. The algorithm for your application can consist of equations, logical expressions and
commands in the AcroBASIC language. You can do the following:

e Store algorithms in any of the programs 0 through 14 (be sure to dimension memory for the program).
e Save the program to Flash memory.

e Use the PASSWORD command to protect the program from uploading or listing.

¢ Include the INVK commands in a program, or in the setup before a program.

The following program results in a circle instead of a straight line because of the transformation described in
program 7 (PROG7).

PROG7

PROGRAM

P12361= SIN(P12360) : REM Describe transformation in PROG7.
P12617= COS (P12360) : REM Describe transformation in PROG7.
ENDP

PROGO

ATTACH MASTERO

ATTACH SLAVEQO AXISO "X"

ACR Programmer’s Guide 205

MAKING MOTION

ATTACH SLAVE1l AXIS1 "Y"

PPU X 2000 Y 2000 : REM Scale commands to engineering units

ACC 100 DEC 100 STP 0O VEL O

INVK PROG7 : REM Tell MASTERO where the transformations are.
INVK ON : REM Turn on the Kinematics.

PROGRAM

_start

X/ 0.2 : REM Incremental move in Cartesian space.

GOTO start

ENDP

RUN PROGO : REM Run the program.

Note the following limitations with the ACR's inverse kinematics feature:

e It only applies to master moves, such as X4 Y/-8. Jogging, gearing and camming are unaffected.

e Only the end point of the move is modified—it is not guaranteed that the system will move along a
desired path.

The inverse kinematics feature is best suited to testing and prototyping.

206 ACR Programmer’s Guide

WRITING ACROBASIC PROGRAMS

CHAPTER 4
Writing AcroBASIC Programs

ACR Programmer’s Guide 207

WRITING ACROBASIC PROGRAMS

Writing AcroBasic Programs

AcroBASIC programming is text-based and top down. When writing programs, use subroutines from a main
routine. This makes it easier to add, read and test new sections of code rather than having to troubleshoot a large
multi-page program. Thus, removing a subroutine is easy by removing the GOSUB (or commenting it out by
placing a ‘ single apostrophe at the beginning of the line) and re-downloading.

Test your code as the program is developed. Use Save As to backup copies of the code before changes are made
so you always have a starting point to which you can go back. You are your own revision control.

Below is a sample structure we recommend using—note the Application Examples also use this structure.

Comments are helpful. If you need to revisit your code after some time, they can help describe what sections of
code are doing.

The error recovery program would be in another program, such as Program |. This would spend its time
monitoring whether the motion program, Program 0, has stopped running, and handle the errors, reset the drive
and restart Program 0.

Parameters and bits are global. This makes it easier to use them across programs. However, be careful if two
programs can write and change the value of the same parameter or bit. If one program is using its value and the
other program changes the value, this can cause problems. If the first program needs to complete its sequence
before the value changes, consider using a local variable as a copy of the parameter or use a user bit to inhibit
changing the value until the first program is complete.

Non-motion programs, Program 8 through Program 14, share a | ms time slice. An inhibit or dwell in one
program will affect all the non-motion programs.

PROGRAM
PBOOT : REM Assigns program to run automatically.
REM Description of program
GOSUB SETUP : REM SETUP does this part.
_MAIN
REM This calls 3 subroutines sequentially.
GOSUB SubroutineA : REM SubroutineA does this.
GOSUB SubroutineB : REM SubroutineB does this.
GOSUB SubroutineC : REM SubroutineC does this.
GOTO MAIN : REM This goes to MAIN looping continuously.
END : REM Ends the program.
SETUP

REM ONE TIME SETUP
<insert AcroBasic code>
RETURN

SubroutineA

<insert AcroBasic code>
RETURN

208 ACR Programmer’s Guide

WRITING ACROBASIC PROGRAMS

_SubroutineB
<insert AcroBasic code>
RETURN

_SubroutineC
<insert AcroBasic code>

RETURN

ENDP

Application Examples

The sample programs in this section provides more in-depth program examples of the following topics:

e Sample Motion Program

e Enable Drives Subroutine

e Absolute Interpolated Motion Subroutine

e Incremental Interpolated Motion Subroutine

e Basic Absolute and Incremental Motion Subroutine

e Absolute Jog Moves Subroutine

e Incremental Jog Moves Subroutine

e Absolute and Incremental Jog Moves Subroutine

e Homing Subroutine

e Advanced Homing
e Homing for XYZ System

e Open Sample

e Teach Array
e Programmable Limit Switch

e EIP Scanner - Wago 750
e Joystick

e Capture Data
e Peer-to-Peer

o ACR7xT Status

o ACR7xT Home to Hard Stop

e Time Subroutine

o Add-On Instructions (AQls) for IPA
o Xpress HMI with ACR7000

e Xpress HMI with IPA

Note that these samples and others are available for download and use from Parker Community Knowledge Base,
also linked from ACR7000 product page.

Sample Motion Program

Sample two-axis motion program with main program using subroutines for enable, home, interpolated motion and
jog moves with full comments. The subroutines are highlighted with headings. The program finishes after the
homing subroutine.

ACR Programmer’s Guide 209

https://community.parker.com/technologies/electromechanical-group/w/electromechanical-knowledge-base/2254/acr7000-program-samples

WRITING ACROBASIC PROGRAMS

Similar samples for one-axis, three-axis and four-axis systems are available on the Knowledge Base.

PROGRAM

PBOOT

REM PBOOT assigns the program automatically on powerup or reboot.

REM PBOOT has to be the first command within the program.

REM This is a sample program showing enabling, homing and two types

REM of moves (MOV and JOG) .

REM In terminal window, go to Prog0O prompt after downloading and type LRUN
REM to run and view PRINT (?) statements.

REM After running, you can view axis status and program line numbers

REM incrementing under Status Panels > Motion Status Panel.

REM This assumes default assignment that Axis0O is X and Axisl is Y and

REM are attached to ProgO.

REM The X and Y are axis aliases and only recognized within Prog0, so use the
REM below sample code in ProgO0.

REM This sets default values for MOV (default interpolated moves)

ACC 10

DEC 10

STP 10

VEL 1

REM This sets default values for JOG (single axis offset moves)

JOG ACC X 10
JOG DEC X 10
JOG VEL X 1
JOG ACC Y 10
JOG DEC Y 10

JOG VEL Y 2

GOSUB ENABLEDRIVE : REM GO TO SUBROUTINE "ENABLEDRIVE"

REM This will then go to ENABLEDRIVE and run that subroutine until

REM the return and then come back to this point.

GOSUB HOMING : REM GO TO SUBROUTINE HOMING

REM This will then go to HOMING and run that subroutine until the return
REM and then come back to this point.

REM Presumes limits/homes assigned per Configuration Wizard and wired.
REM If not used, change to 'GOSUB HOMING to comment this line out and

REM not execute that subroutine.

_MAIN

' This is a label used with GOTO MAIN below to run continuously.

' Comments can be made with ' on its own line. These are not downloaded to
' the controller.

REM Comments can be made with REM on its own line (short for remark).

' Comments can also be made at the end of line with a : REM.

' Comments with the REM are downloaded to the controller and thus retrieved
' on upload.

GOSUB BasicABSMotion : REM Subroutine for absolute moves.

GOSUB BasicINCMotion : REM Subroutine for incremental moves.

GOSUB BasicCOMBOMotion

REM Subroutine for combination of absolute and incremental moves.

GOSUB JogABSMotion : REM Subroutine for absolute jog moves.

210 ACR Programmer’s Guide

WRITING ACROBASIC PROGRAMS

GOSUB JogINCMotion : REM Subroutine for incremental jog moves.
GOSUB JogCOMBOMotion

'GOTO MAIN : REM Remove the ' to run this continuously.
END : REM Ends the program.

Enable Drives Subroutine

_ENABLEDRIVE
DRIVE ON X Y : REM TURNS ON OUTPUT TO ENABLE DRIVE.
INH 8465 (3) : REM Wait until drive enables or 3 seconds.

IF (BIT 8465) THEN PRINT "Axis0O is enabled"

REM AXISO IS ENABLE, PRINT MESSAGE

IF (NOT BIT8465) THEN PRINT "AxisO is not enabled. Ending program. Check
Motion and Drive Status Panels for errors" : END

REM AXISO IS NOT ENABLED, PRINT MESSAGE AND END PROGRAM.

INH 8497 (3) : REM Wait until drive enables or 3 seconds.

IF (BIT 8497) THEN PRINT "Axisl is enabled"

REM AXIS1 IS ENABLED, PRINT MESSAGE

IF (NOT BIT8497) THEN PRINT "Axisl is not enabled. Ending program. Check

Motion and Drive Status Panels for errors" : END
REM AXIS1 IS NOT ENABLED, PRINT MESSAGE AND END PROGRAM.
RETURN : REM RETURN BACK TO GOSUB

Absolute Interpolated Motion Subroutine

' Subroutine of Basic Absolute Moves

_BasicABSMotion

' Interpolated multi-axis moves cause all axes to start and stop at

' the same time.

' The ACC DEC VEL are the trajectory settings:

ACC 10

DEC 10

STP 10

VEL 1

' ABSOLUTE MOVES

' X0, X1, Y0, Y1l etc are MOV (The MOV is implied and not required).

' These are interpolated moves and the first move will complete before the
' next interpolated move is started.

' The program continues execution (commands are not blocking) but will wait
' on next move until current move is done.

X0

X1

Y1

X-1 v-1

X1 Y2

X0 YO

INH -516 : REM Inhibit (pause) program until absolute moves are done

REM The minus in the INH -516 is NOT bit 516, so this is waiting until the
REM InMotion bit turns off.

REM INH is only used with BIT so the BIT is not necessary.

REM Bit 516 is In Motion bit for MasterO - the trajectory calculator

ACR Programmer’s Guide 211

WRITING ACROBASIC PROGRAMS

REM for ProgO.
RETURN

Incremental Interpolated Motion Subroutine

' Subroutine of Basic Incremental Moves

_BasicINCMotion

' The / is incremental, from wherever the motor currently is.
X/-8

Y/5

X/2 Y/-3

X/-2 Y/1

INH -516 : REM Inhibit program until incremental moves are done.

REM Bit 516 is In Motion bit for MasterO - the trajectory calculator
REM for ProgO0.
RETURN

Basic Absolute and Incremental Motion Subroutine

' Subroutine Of Basic both Absolute and Incremental Moves
_BasicCOMBOMotion

X/-4 YO

X2 Y/-4

X/5 Y/5

X4 YO

INH -516 : REM inhibit program until combo moves are done
RETURN

Absolute Jog Moves Subroutine

' Subroutine of Jog Absolute Moves

' JOG ABS are single axis jog moves.

' Multiple jog moves from multiple axis are independent moves stopping

' at different times.

' They would use their own accel/decel/velocity settings

' (with axis in settings):

JOG VEL X1 : REM Note jog acc / dec / vel are per axis and thus the
REM axis alias is necessary.

JOG ACC X10

JOG DEC X10

JOG VEL Y2

JOG ACC Y10

JOG DEC Y10

' JOG moves will interrupt the current move so for sequencing an INH

' is needed waiting for the JOG Active bit (bit 792 for axis0) is off.

' The jog offset moves has its own reference, independent of the coordinated

' motion. This allows offset of coordinated motion but can cause confusion.

_JogABSMotion

JOG ABS X-4

INH -792 : REM Inhibit program until jog move is done.

JOG ABS Y5

INH -824

212 ACR Programmer’s Guide

WRITING ACROBASIC PROGRAMS

JOG ABS X-2 Y-2

INH -792

INH -824

JOG ABS Y-1
INH -824

JOG ABS X0 YO
INH -792

INH -824
RETURN

Incremental Jog Moves Subroutine

' Subroutine of Jog Incremental Moves
_JogINCMotion

JOG INC X-8

INH -792 : REM Inhibit program until jog move done.
JOG INC Y-8

INH -824

JOG INC X2 Y2

INH -792

INH -824

RETURN

Absolute and Incremental Jog Moves Subroutine

' Subroutine of Both Absolute and Incremental Moves

_JogCOMBOMotion

JOG INC X-4

INH -792 : REM Inhibit program until jog move done.

JOG ABS Y-2

INH -824

JOG INC X5

JOG ABS Y5 : REM This would start an absolute move on Y axis after starting
REM incremental move on X axis.

INH -792

INH -824

JOG ABS X0 YO

INH -792

INH -824

RETURN

Homing Subroutine

_HOMING

JOG VEL X1 : REM Set axes jog parameters used during homing.
JOG ACC X10

JOG DEC X10

' HLBIT XO

REM X uses PosEOT (inputO), NegEOT (inputl), Home (input2).

REM The HLBIT LIMIT/HOME assignments are normally set in Configuration
REM Wizard. Uncomment the ' to use.

JOG HOMVF X0.1 : REM Set backup to home velocity.

ACR Programmer’s Guide 213

WRITING ACROBASIC PROGRAMS

JOG HOME X1 : REM Start homing X positive

REM Infinite WHILE statement while X is trying to HOME.
WHILE ((NOT BIT 16134) AND (NOT BIT 16135))

WEND

REM Prints Information regarding "X" Axis homing.

IF (BIT 16134) THEN PRINT "X HOMING SUCCESSFUL"

IF (BIT 16135) THEN PRINT "X HOMING UNSUCCESSFUL"

JOG VEL Y1 : REM Set axes jog parameters used during homing.
JOG ACC Y10

JOG DEC Y10

' HLBIT Y3

REM Y uses PosEOT (input3), NegEOT (input4), Home (input))
REM The HLBIT LIMIT/HOME assignments are normally set in Configuration
REM Wizard. Uncomment the ' to use.

JOG HOMVFE YO0.1 : REM Set backup to home velocity

JOG HOME Y1 : REM start homing Y positive

REM Infinite WHILE statement while Y is trying to HOME.
WHILE ((NOT BIT 16166) AND (NOT BIT 16167))

WEND

REM Prints Information regarding "Y" Axis homing.

IF (BIT 16166) THEN PRINT "Y HOMING SUCCESSFUL"

IF (BIT 16167) THEN PRINT "Y HOMING UNSUCCESSFUL"

RETURN

ENDP

Advanced Homing

This sample shows how to first home two axes to their respective home sensors, then perform an additional
marker search so that they find and settle on their encoders' Z channels. This is a very high-precision homing
strategy.

PROGRAM
DRIVE ON X Y
INH 8465 (3

)
INH 8497 (3)

IF (NOT BIT 8465) THEN PRINT "X DIDN'T ENABLE" : END
IF (NOT BIT 8497) THEN PRINT "Y DIDN'T ENABLE" : END
GOSUB HOMING : REM GO TO SUBROUTINE HOMING
END
' SUBROUTINE HOMING
_HOMING
JOG VEL X1 Y1 : REM Set axes jog parameters used during homing.

JOG ACC X10 Y10

JOG DEC X10 Y10

HLBIT X0 Y3 : REM If assigned in Config Wizard, remove this line.
' X uses PosEOT (input0O), NegEOT (inputl), Home (input2).

' Y uses PosEOT (input3), NegEOT (input4), Home (inputb).

JOG HOMVF X0.1 Y0.1 : REM Set backup to home velocity.

JOG HOME X-1 Y1 : REM Start homing X negative, Y positive.

' Infinite WHILE statement while both are still trying to HOME.

214 ACR Programmer’s Guide

WRITING ACROBASIC PROGRAMS

WHILE (((NOT BIT 16134) AND (NOT BIT 16135)) AND ((NOT BIT 16166) AND (NOT
BIT 16167)))

WEND

' Prints Information regarding Y Axis homing.

IF (BIT 16166) THEN PRINT "Y HOMING SUCCESSFUL"

IF (BIT 16167) THEN PRINT "Y HOMING UNSUCCESSFUL"

' If X Axis homing successful, find X encoder ref marker.

ACC 10 : REM Set motion profile for MSEEK incremental move.
DEC 10 VEL 0.5 STP 10

IF (BIT 16134)

MSEEK X (1,0) : REM Performs search for index marker in
REM 1 incremental unit.
INH -516 : REM Waits for Master to Not be "IN MOTION"
IF (BIT 777) : REM If Capture of Index Marker was complete.
PRINT "X HOMING SUCCESSFUL" : REM Prints information.
ENDIF
ENDIF
IF (BIT 16135) THEN PRINT "X HOMING UNSUCCESSFUL"
RETURN

ENDP

Homing for XYZ System

This sample shows a sophisticated homing algorithm for a three-axis system. After homing each axis to a switch,
an additional move is performed to settle on the Z channel of each encoder, which is an extremely repeatable way
to home. Following that, the actual positions are preloaded. This allows the programmer to set the machine zero
to any place desired while respecting that the machine's design may require homing to occur at a specific location,
like at a Z pulse on a linear encoder.

The sample also makes use of a practice that should be sparingly used. There are two WHILE loops in the code
below that contain IF/THEN and GOTO statements. In many programs, these cause problems because they do
not return to the calling code. Here, however, the GOTO statements are used to bring the program to an error
handler and eventually terminate the program, making this problem irrelevant.

PROGRAM

GOSUB EnableDrives

GOSUB HomeAll

REM Insert application code here.

END : REM End program.

_EnableDrives

DRIVE ON X Y Z

DWL 0.15 : REM Wait 150ms for servos to enable before commanding moves.
RETURN

_HomeAll

HLIM X3 : REM Enable limits.

HLIM Y3 : REM Enable limits.

HLIM Z3 : REM Enable limits.

JOG ACC X500 : REM Set jog accel for homing.

ACR Programmer’s Guide 215

WRITING ACROBASIC PROGRAMS

JOG DEC X500 : REM Set jog decel for homing.

JOG VEL X100 : REM Set jog velocity for homing.

JOG HOMVF X25 : REM Set jog final velocity for homing.

JOG ACC Y300 : REM Set jog accel for homing.

JOG DEC Y300 : REM Set jog decel for homing.

JOG VEL Y75 : REM Set jog velocity for homing.

JOG HOMVF Y15 : REM Set jog final velocity for homing.

JOG ACC 7100 : REM Set jog accel for homing.

JOG DEC 7100 : REM Set jog decel for homing.

JOG VEL Z25 : REM Set jog velocity for homing.

JOG HOMVE Z5 : REM Set jog final velocity for homing.

REM X Axis settings

SET 16152 : REM Backup to edge is enabled.

CLR 16153 : REM Backup to positive edge.

CLR 16154 : REM Set Final approach direction is positive.
REM Y Axis settings

SET 16184 : REM Backup to edge is enabled.

CLR 16185 : REM Backup to positive edge.

SET 16186 : REM Set Final approach direction is negative.
REM Z Axis settings

SET 16216 : REM Backup to edge is enabled.

SET 16217 : REM Backup to negative edge.

SET 16218 : REM Set Final approach direction is negative.

REM Home 7 Axis first.
JOG HOME 7Z-1
REM Home Successful - BIT16198. Home Failed - BIT16199.
WHILE (NOT BIT 16198)
IF (BIT 16199) THEN GOTO HomeFailed
WEND
REM 7Z is successful, home X and Y.
JOG HOME X1 Y-1

REM X Home Successful - BIT16134
REM X Home Failed - BIT16135
REM Y Home Successful - BIT16166
REM Y Home Failed - BIT16167

WHILE (NOT BIT 16134 OR NOT BIT16166)
REM Jump to User error routine if home fails.
IF (BIT 16135 OR BIT 16167) THEN GOTO HomeFailed
WEND
REM Find the Z markers for each axis encoder for more accurate positioning.
REM MSEEK uses master move profile settings.
ACC 250 VEL 50 DEC 250 STP 250 JRK 1250
REM X axis ballscrew is 10 mm per motor rev, so command a move of 10.5.
MSEEK X (10.5,0)
REM Rising First Marker - Z Mark, ENCO
REM Hardware Capture Parameter - P12292
REM Capture Complete Flag - BIT777
REM Y axis ballscrew is 10 mm per motor rev, so command a move of 10.5.
MSEEK Y (10.5,0)

216 ACR Programmer’s Guide

WRITING ACROBASIC PROGRAMS

REM Rising First Marker - Z Mark, ENC1

REM Hardware Capture Parameter - P12548

REM Capture Complete Flag - BIT809

REM Z axis ballscrew is 5 mm per motor rev, so command a move of 5.5.
MSEEK Z(5.5,0)

REM Rising First Marker - Z Mark, ENC2

REM Hardware Capture Parameter - P12804

REM Capture Complete Flag - BIT841

REM All position counters are now set to 0 by successful MSEEKs.
REM If home sensors/Z marks are not at the desired

REM machine zero location, move to "true zero"

REM or preload current location settings "RES X97 Y57.5 Z4.4".
X-97 Y-57.5 7 -4.4

INH -516 : REM Wait until moves are complete.

RES X Y Z : REM Reset all counters to O.

REM Change master move profile back to normal operation settings.
ACC 750 VEL 250 DEC 750 STP 750 JRK 2250

REM Change jog profiles back to normal operation settings.

JOG ACC X1000 Y1000 Z200

JOG DEC X1000 Y1000 Z200

JOG VEL X300 Y300 Z100

RETURN : REM Go back to main program execution.

_HomeFailed

IF (BIT 16199) THEN PRINT "Z Homing Failed"
IF (BIT 16135) THEN PRINT "X Homing Failed"
IF (BIT 16167) THEN PRINT "Y Homing Failed"
END

ENDP

Open Sample

PROGRAM

' THIS PROGRAM IS INTENDED TO BE RUN FROM AN EXTERNAL TERMINAL
' SUCH AS HYPERTERMINAL. USE PORT 5002 TO CONNECT WINSOCK TO
' ACR7000 ETHERNET.

CLEAR : REM Clear any variables dimensioned in program.
DIM $V(1,10) : REM Dimensions one string variable of length 10.
GOSUB OPENPORT : REM Go to subroutine OPENPORT.

END

' SUBROUTINE OPENPORT

_OPENPORT

' Opens Ethernet Stream3 (PMM uses Streaml).
OPEN "STREAM2:" AS #1

' Continuous loop as long as "X" is not entered.
_LOOP1

' Set String Variable 0 to nothing.

$vo = ""

PRINT #1, ""

PRINT #1, "What kind of fruit do you want?"

ACR Programmer’s Guide

217

WRITING ACROBASIC PROGRAMS

PRINT #1, " (A)pple, (B)anana, (C)oconut"
PRINT #1, "I would like to have a";
' Infinite WHILE loop if they do not enter anything.
WHILE ($V0O = "")
SV0 = UCASES (INKEYS (1))
REM Stores Keyboard entry into String Variable 0

WEND

IF ($V0O = "A") THEN PRINT #1, "n Apple"

REM If "A" was entered, then print n Apple (reads as "an Apple").
IF ($V0O = "B") THEN PRINT #1, " Banana"

REM If "B" was entered, then print Banana.

IF ($V0 = "C") THEN PRINT #1, " Coconut"

REM If "C" was entered, then print Coconut.

IF (S$V0 = "X") THEN GOTO LOOP2

REM If "X" was entered, then go to LOOP2 to terminate program.

IF ($V0 = CHR$(27)) THEN GOTO LOOP2

REM If "ESC key" was entered, then go to LOOP2 to terminate program.
GOTO LOOP1

_LOOP2

PRINT #1, "Program terminated"

CLOSE #1

RETURN

ENDP

Teach Array

PROGRAM

CLEAR : REM Clear out any variables dimensioned.

DIM LV (2) : REM Dimension 2 Long Variables.

DIM DA (1) : REM Dimension 1 Double Array.

DIM $V(1,10) : REM Dimension 1 String Variable of length 10.

' Go to subroutine Teach.
GOSUB Teach

END

_Teach

RES X : REM Reset position to zero.

DRIVE OFF X : REM Disable drive, teach points by manually moving motor.

' Start of InputPoints Routine

_InputPoints

' Print to the terminal "points to teach" and stores value into String

' Variable 0.

INPUT; "Enter number of points to teach (value must greater than 0) = "; $VO
' Stores the Value of String Variable 0 into Long Variable 1

LV1 = VAL (S$V0)

PRINT ""
PRINT LV1
' If statement to check if value entered is correct.
IF (LV1<=0)
PRINT "ENTERED VALUE IS NOT VALID "; $VO

PRINT "Value must be a number greater than 0"

218 ACR Programmer’s Guide

WRITING ACROBASIC PROGRAMS

GOTO InputPoints
ENDIF
DIM DAO (LV1) : REM Dimension array - number of points to teach.
' Use input 24 to tell controller to collect a teach point.
' Use a FOR/TO/STEP/NEXT loop to teach points into an array.
FOR LVO = 0 TO (LV1l-1) STEP 1
PRINT "TURN MOTOR, THEN HIT INPUT 24 TO TEACH POINT"
INH 24 : REM Inhibits the program until Input 24 is pressed

DAO (LV0)=P12290/P12375 : REM Stores Double Array entry with
REM Encoder Positive divide by PPU of AxisO.
INH -24 : REM Waits for Input 24 to turn off.
NEXT
PRINT "Teach Completed, Total Points Taught = ";LV1

PRINT "Press Input 24 to enable drives and move to zero/start"
INH 24

INH -24

DRIVE ON X : REM Enable Axis0 "X".

DWL 0.5

X0 : REM Moves to zero position.

INH -516 : REM Waits for motion to be completed.
PRINT "Input 24 to run taught points"

INH 24

' FOR/TO/STEP/NEXT loop to make absolute moves to position taught.
FOR LV0=0 TO (LV1-1) STEP 1
X (DAO (LVO0))
INH -516
PRINT DAO (LVO) : REM Print the position to the terminal.
NEXT
RETURN
ENDP

Programmable Limit Switch
A programmable limit switch (PLS command) turns on an output based on an axis position automatically when
enabled. This position is based on an array variable.

Oscilloscope

Green: Master
Orange: Cam Axis

Pink: PLS Output

PROGRAM

ACR Programmer’s Guide 219

WRITING ACROBASIC PROGRAMS

ACC 10 DEC 10 STP 10 VEL 1

DRIVE ON Y Z
DWL 0.1
RES Y Z

GOSUB SetupArrays

CAM DIM Z2

REM Define cam segment range and source
(P12631*1/3)
(P12631*2/3)

CAM SEG Z (0,
CAM SEG Z (1,
CAM SRC Z1

REM Set scale to cam axis PPU for 1/1.
CAM SCALE Z(1/8000)
PLSO SRC P12802

PLSO DST P4100
PLSO BASE LA2

PLSO RATIO 0.01

PLSO MASK 256
CAM SRC Z RES
CAM RES Z

CAM ON Z

PLS0O ON

Y/2

DWL1

YO

CAM OFF Z
PLSO OFF

END

_SetupArrays
DIM LA (3)
DIM LAO(9)
LAO (0
LAO (
LAO (
LAO (
LAO (
LAO (
(
(
(

REM Define 2 cam segments

, LAO)
,LAL)

REM Define cam source as ENC1

500 cam counts

REM Array entries per input count
REM (500 for cam peak / 5 array for PLS).

REM Start camming.

REM Dimension 2 long arrays.
REM LAO has 9 elements.
REM Start defining LAO cam table.

220 ACR Programmer’s Guide

500 encoder counts.

WRITING ACROBASIC PROGRAMS

LA2(0) =0
LA2(1) =0
LA2(2) =0
LA2(3) = 256
LA2 (4) = 256
RETURN

ENDP

Note that output on position (OOP) is not supported on the IPA, so PLS should be used instead. ACR7000
products have OOP support in addition to PLS. OOP uses a different set of commands.

EIP Scanner-Wago 750

' EtherNetIP Scanner Sample

' Valid for ACR7000 or IPA (not ACR9000).

' For use with Wago 750 series Ethernet/IP bus coupler.

' To check EthernetIP status in terminal emulator, use DIAG ETHIP.
PROGRAM

PBOOT : REM LRUN to troubleshoot

REM Sample code for IPA or ACR7000 series as scanner to Wago 750 series
REM EtherNet/IP bus coupler.

REM Not compatible with ACR9000 or 3rd party EtherNet/IP devices.
P37392=1 : REM number of I/O nodes
P39424=((192<<24)+(168<<16)+(100<<8)+(28))

REM IP=192.168.100.28 on Node 0 - set this to Wago IP.

P39425=10 : REM Input data interval in ms.

P39426=10 : REM Output data repetition interval.

P39427=0

_ START

ETHIP LOOK

PRINT "DISCOVERING"

INH -16674

PRINT "COMPLETE"

IF (bit 16682) THEN PRINT "Failed to find."

IF (P37397<>0) : REM If any node is not discovered on network...
DWL 1
GOTO START

ENDIF

PRINT "Starting network..."

SET 16672 : REM START EIPIO.

WHILE (NOT (BIT16681 OR BIT16682))

WEND

IF (BIT16681)

REM START SUCCESS

PRINT "Starting success!"
ENDIF
IF (BIT16682)

REM START FAILED

PRINT "Start failed!"
ENDIF

ACR Programmer’s Guide 221

WRITING ACROBASIC PROGRAMS

ENDP

Joystick
This sample uses EtherNet/IP (Wago 750 bus coupler) with two analog inputs to create an analog joystick.

#DEFINE XjoyRest PO
#DEFINE YjoyRest Pl
#DEFINE Deadband P2
#DEFINE XanalogIn P35332
#DEFINE YanalogIn P35340

#DEFINE Xon BIT8465

#DEFINE Yon BIT8497

PROGRAM

PBOOT : REM LRUN to troubleshoot.

REM Sample code for IPA or ACR7000 series as scanner to Wago 750

REM series Ethernet/IP bus coupler.

REM Not compatible with ACR9000 or other 3rd party Ethernet/IP devices.
P39424=((192<<24)+(168<<16)+(100<<8)+(2))

REM IP=192.168.100.2 Node 0 verify in Status Panels > EtherNet/IP.
REM First 2 analog inputs on EtherNet/IP are X and Y joystick.

DIM LV (1) : REM Dimension 1 local variable

1v0=0 : REM Reset value

GOSUB START

REM This sets default values for MOV (default interpolated moves)

ACC 10 DEC 10 STP 10 VEL 1

REM This sets default values for JOG (single axis offset moves)

JOG ACC X 10

JOG DEC X 10

JOG VEL X 1

REM In case already running, stop jogging

JOG OFF X Y

GOSUB ENABLEDRIVE : REM GO TO SUBROUTINE "ENABLEDRIVE"

REM This will then go to ENABLEDRIVE and run that subroutine until
REM the return and then come back to this point.

_MAIN

IF (BIT16683) THEN PRINT "ETHERNET/IP NODE FAILURE" : JOG OFF X : END
IF ((XanalogIn < 0.1) OR (YanalogIn < 0.1)) THEN PRINT "JOYSTICK
DISCONNECTED" : JOG OFF X : END

REM X analog input is into P35332 (See Numeric Status > Ethernet/IP >
REM NodeO ADC > ADC Input Value).

REM Y analog input is into P35340

XjoyRest = 4.6 : REM X joystick resting voltage value.
YjoyRest = 3.823 : REM Y joystick resting voltage wvalue.
Deadband = 0.1 : REM Deadband.

IF (NOT Xon) THEN PRINT "X AXIS NOT ON" : DWL 1 : GOTO MAIN

IF (XanalogIn > (XjoyRest + Deadband)) THEN JOG FWD X : PRINT "JOG X
SPEED", (XanalogIn-XjoyRest)

222 ACR Programmer’s Guide

WRITING ACROBASIC PROGRAMS

IF (XanalogIn < (XjoyRest - Deadband)) THEN JOG REV X : PRINT "JOG X

SPEED", ((XanalogIn-XjoyRest) *-1)

IF ((XanalogIn < (XjoyRest + Deadband)) AND (XanalogIn > (XjoyRest -

Deadband))) THEN JOG OFF X

JOG VEL X (absf (XanalogIn-XjoyRest))

IF (NOT Yon) THEN PRINT "Y AYIS NOT ON" : DWL 1 : GOTO MAIN

IF (YanalogIn > (YjoyRest + Deadband)) THEN JOG FWD Y : PRINT "JOG Y

SPEED", (YanalogIn-YjoyRest)

IF (YanalogIn < (YjoyRest - Deadband)) THEN JOG REV Y : PRINT "JOG Y

SPEED", ((YanalogIn-YjoyRest) *-1)

IF ((YanalogIn < (YjoyRest + Deadband)) AND (YanalogIn > (YjoyRest -

Deadband))) THEN JOG OFF Y

JOG VEL Y (ABSF(YanalogIn-YjoyRest))

DWL 0.1 : REM Loop execution very fast. This dwell slows down in case you
REM do LRUN in the terminal so it does not flood the port.

GOTO MAIN

END : REM Ends the program

_ ENABLEDRIVE

REM ENABLE AXISO

DRIVE ON X : REM TURNS ON OUTPUT TO ENABLE DRIVE.

INH 8465(3) : REM Wait until drive enables or 3 seconds.

IF (BIT 8465) THEN PRINT "Axis0O is enabled."
IF (NOT BIT8465) THEN PRINT "AxisO is not enabled. Ending program. Check

Motion and Drive Status Panels for errors" : END

REM ENABLE AXIS1

DRIVE ON Y : REM TURNS ON OUTPUT TO ENABLE DRIVE.

INH 8497 (3) : REM Wait until drive enables or 3 seconds.

IF (BIT 8497) THEN PRINT "Axisl is enabled."
IF (NOT BIT8497) THEN PRINT "Axisl is not enabled. Ending program. Check

Motion and Drive Status Panels for errors" : END
RETURN : REM RETURN BACK TO GOSUB
_START

' EtherNet/IP Scanner sample

' Valid for ACR7000 or IPA (not ACR9000).

' For use with Wago 750 series EtherNet/IP bus coupler.

' To check EtherNet/IP status in terminal emulator, use DIAG ETHIP.

P37392=1 : REM Number of I/0 nodes.

P39425=10 : REM Input data interval.

P39426=10 : REM Output data repetition interval.
P39427=0

ETHIP LOOK

PRINT "DISCOVERING..."

INH -16674

PRINT "COMPLETE"

IF (BIT16682) THEN LVO=LVO+1 : PRINT "Failed to find.", LVO

IF (LV0O>=3) THEN END

IF (P37397<>0) THEN DWL 1 : GOTO START : REM If any node is not discovered
REM on the network...

PRINT "Starting network..."

ACR Programmer’s Guide 223

WRITING ACROBASIC PROGRAMS

SET 16672 : REM START EIPIO
WHILE (NOT (BIT16681 OR BIT16682))
WEND
IF (BIT16681)

REM START SUCCESS

PRINT "Start success!"
ENDIF
IF (BIT16682)

REM START FAILED

PRINT "Start failed!"
ENDIF
RETURN
ENDP

Capture Data

PROGRAM

REM Program to set up multi-channel high-speed data capture.
REM Initialize local long variables.

DIM LV2

REM Initialize local arrays.

DIM LA(2) : REM Dimension 2 long integer arrays

DIM LAO (500) : REM Dimension 500 elements for Long Array0

DIM LA1(500) : REM Dimension 500 elements for Long Arrayl

REM General sample settings.

SAMP CLEAR : REM Clear current sampling settings

P6915 = 10 : REM Sample timer period in ms (O=servo period)
SAMP TRG +792 : REM Start recording on rising edge of axisO jog

REM Note that motion would be within another program, typically Prog O.
REM If capturing data for Master(O (Interpolated motion such as X Y), use
REM Master 0 In Motion bit 516.

REM Channel 0 sample settings

SAMP 0 SRC P12290 : REM Set the source to Axis 0 Actual Position.

SAMP 0 BASE LAO : REM Array for recording data.

REM Channel 1 sample settings

SAMP 1 SRC P6916 : REM Set the source to Global System Clock.

SAMP 1 BASE LAl : REM Array for recording data.

REM Begin

SET 104 : REM Arm sample trigger.

INH-104 : REM Wait for capture for all arrays to complete.

REM List both arrays of captured data.
REM To see in terminal emulator do LRUN, to exit press ESC key.
FOR LV1 = 0 TO 1 STEP 1

PRINT "LA";LV1;" ARRAY"

FOR LVO = 0 TO 499 STEP 1

PRINT LA (LV1) (LVO)

NEXT

Lv0=0
NEXT
ENDP

224 ACR Programmer’s Guide

WRITING ACROBASIC PROGRAMS

Peer-to-Peer

' EtherNet/IP Peer-to-Peer sample

' Valid for ACR7000 or IPA (not ACR9000).

' To check EtherNet/IP status in terminal, use DIAG ETHIP.
' To check EtherNet/IP status at peer in terminal, use CIP.

PROGRAM

PBOOT

GOSUB ConfigScanner

END

_ConfigScanner

P37392 = 0 : REM # I/O nodes.

P37393 =1 : REM # Peer nodes.

P39680 = ((192<<24)+(168<<16)+(100<<8)+(2)) : REM IP for Peer 0 adapter

REM unit is 192.168.100.2.

P39681 = 10 : REM Input RPI.

P39682 = 10 : REM Output RPI.

P39683 = 0 : REM Participation mode, 0 = mandatory.

P39684 = 33 : REM Connection type.

P39685 = 4 : REM # of groups of data to be exchanged.

P39686 = 100 : REM Max consumed parameters.

P39687 = 100 : REM Max produced parameters.

P39696 = 12288 : REM Peer 0 Group O Start Parameter - This is the current
REM position of Axis 0 of Peer 0 which are Longs.

P39697 = 4 : REM Peer 0 Group 0 Length - Peer 0 P12288-P122091.

P39698 = 0 : REM Peer 0 Group 0 Direction - 0 is from Peer 0 to
REM Scanner. The Scanner will read these 4 parameters
REM into Group 0 Long registers (P39936-P39939).

P39699 = 39400 : REM Peer 0 Group 1 Start Parameter - These are user

parameters which are Floats

P39700 = 2 : REM Peer 0 Group 1 Length - Peer 0 P39400, P39401.

P39701 =1 : REM Peer 0 Group 1 Direction - 1 is from Scanner to
REM Peer(O. Scanner Groupl Floats are P40072 and P40073.
REM Writing values at Scanner will then be sent to P39400
REM and P39401 on Peer O.

P39702 = 39300 : REM Peer 0 Group 2 Start Parameter - These are user
REM parameters which are Floats.

P39703 = 2 : REM Peer 0 Group 2 Length - Peer 0 P39300, P39301.

P39704 = O : REM Peer 0 Group 2 Direction - 0 Peer 0 to Scanner.

REM Writing values at Peer 0 P39300 and P39301 will be sent to Scanner Group
REM 2 Floats P40080 and P40081.

SET 16672 : REM Start the network.

RETURN

ENDP

ACR7xT Status

REM Sample program to view axis status. Download to an empty program and then
REM LRUN from terminal emulator to read report. Other programs can be running
REM and will not stop. When downloading do not save to flash or it will stop
REM the other programs.

ACR Programmer’s Guide 225

WRITING ACROBASIC PROGRAMS

PROGRAM

CLEAR

DIM LV7 : REM Dimension/allocation 7 long local variables.
LV1=0

LV3=4 : REM ENTER THE NUMBER OF AXES USED.

?" Dim lists memory allocation for programs, streams, globals and defines.
must be done at sys prompt"

DIM : REM Must be done at sys prompt.

ATTACH : REM Lists program master and slave axis attach, alias.
ATTACH AXIS : REM Lists axis type (stepper/DAC), feedback.

FOR LV1 = 0 TO (LV3-1) STEP 1

F : REM prints blank line -- used for formatting.

o

?"AXIS", LVvl, " PULSES PER UNIT: ", P(12375+LV1*256)

REM ACR Extended IO Settings

?"AXIS", LV1, " Enable Drive I/O: ", BIT (8468+LV1*32)

?"AXIS", LV1, " Enable CW/CCW (versus Step/Dir): ", BIT (8464+LV1*32)
?"AXIS", LVl, " DEO Serves Shutdown Function: ", BIT (8470+LV1*32)
?"AXIS", LV1l, " Enable EXC Response: ", BIT (8469+LV1*32)

?"AXIS", LVl, " Invert Drive Fault Input Level: ", BIT (8453+LV1*32)

PRIAL

onn

REM Axis Gain Values

? "AXIS", LV1, " PGAIN", P(12304+LV1%*256)
? "AXIS", LV1, " IGAIN", P(12305+LV1%*256)
? "AXIS", LV1, " ILIMIT", P(12306+LV1*256)

7 "AXIS", LVI, " IDELAY", P(12307+LV1%256)

"AXIS", LV1, " DGAIN", P(12308+LV1*256)

"AXIS", LV1l, " DERIVATIVE WIDTH", P(12309+LV1*256)
"AXIS", LV1, " FEEDFORWARD VEL", P(12310+LV1%*256)
"AXIS", LV1, " FEEDFORWARD ACC", P(12311+LV1%*256)
"AXIS", LV1l, " PLUS TORQUE LIMIT", P(12328+LV1*256)
"AXIS", Lv1l, " MINUS TORQUE LIMIT", P(12329+LV1*256)
? "AXIS", LVl, " FBVEL GAIN SETTING", P(12352+LV1*256)
REM Axis Limits

RO B S N V)

? "AXIS", LV1, " HLDEC: ", P(12421+LV1%*256)

? "AXIS", LV1l, " Positive EOT Limit Level Invert: ", BIT(16144+LV1*32)
? "AXIS", LV1l, " Negative EOT Limit Level Invert: ", BIT(16145+LV1*32)
? "AXIS", LV1, " Home Limit Level Invert: ", BIT(16146+LV1*32)

? "AXIS", LV1l, " Positive EOT Limit Enable: ", BIT(16148+LV1*32)

? "AXIS", LV1, " Negative EOT Limit Enable: ", BIT(16149+LV1%*32)

PRIAL
SN

REM AXISO SLM gives eval overflow error, must query via read-only parameters.
REM NOTE THESE P VALUES ARE MISSING IN HELP FILE

? "AXIS", LV1, " Positive Soft Limit: ", P (12424+LV1*256)
? "AXIS", LVl, " Negative Soft Limit: ", P(12425+LV1*256)
? "AXIS", LV1, " Soft Limit Decel: ", P(12422+LV1*256)

226 ACR Programmer’s Guide

? "AXIS",
? "AXIS",

vi, "
Lvl, "

?llll

onn

REM This command
REM the bit flag
? "AXIS", Lvl, "
BIT (785+32*LV1)

PRI

PRI

WRITING ACROBASIC PROGRAMS

Positive Soft Limit Enable",
Negative Soft Limit Enable",

BIT(16150+LV1*32)
BIT(16151+LV1*32)

enables the servo loop associated with an axis without using
designated for this purpose.

NOT ENABLED (0 AXIS ENABLED, 1 AXIS DISABLED): ",

REM STEPPER SETTINGS

"AXIS",
"AXIS",

Lvl, "
v1l, "

nwn

"AXIS",
"AXIS",
"AXIS",

nwn

Vi, "
1, "
1, "

RO B S S A R LY B N B S LS AR IV}

> "Lvl= ",
NEXT
ENDP

Lvl

"Standby Current Delay
"Micro-steps per full step
"Enable Auto Standby ",
"Assert Drive configuration ",

User Maximum motor current (Amps) : ", P(7938+LV1*16)
Standby Current Percentage: ", P(7944+LV1*16)
P(7945+1LV1*16)

P(7946+LV1*16)

(msec.) : ",
(power of 2) = ",
BIT(15618+LV1*32)

BIT(15616+LV1*32)

STEPPER SETTING2 IN DEC ISs: ",
STEPPER SETTING3 IN DEC ISs: ",
STEPPER SETTING4 IN DEC IS: ",

P(8066+LV1*16)
P(8067+LV1*16)
P(8068+LV1*16)

ACR7xT Home to Hard Stop

PROGRAM

REM Stepper motors are open loop. Below code presumes encoder

REM attached for
CLEAR

DIM LV10
DRIVE ON X
JOG ACC X 10
JOG DEC X 10
JOG VEL X 1

the step motor to detect hard stop.

REM DIMENSION 10 LOCAL VARIABLES

GOSUB HOMEHARDSTOP

_MAIN
DWL 2

JOG ABS X 10

INH -792

DWL 2

JOG ABS X 0

INH -792
LV2=LV2+1

PRINT "CYCLES=",
GOTO MAIN

REM WAIT 2 SECONDS
REM MOVE TO POSITION 10
REM INHIBIT PROGRAM UNTIL MOVE IS DONE

REM MOVE TO POSITION O

Lv2

ACR Programmer’s Guide 227

WRITING ACROBASIC PROGRAMS

_HOMEHARDSTOP
JOG REV X
WHILE (BIT 792)

LVO=P6144

DWL 0.1

LV1=P6144

IF (LV1>=LVO0)

JOG OFF X

ENDIF
WEND
JOG INC X 1 : REM MOVE 1 REV OFF HARDSTOP
INH -792
JOG RES X : REM RESET THIS JOG POSITION AS O
RES X : REM RESET THE CURRENT POSITION AS O
PRINT "AT HOME"
RETURN
ENDP

Time Subroutine
This Time subroutine implements a "clock" for showing time since power up or reboot, assuming P6916 is not
reset by the user. P6916 resets at 2%, or 2,147,483,648. P6916 is a free-running clock in milliseconds.

This could be added to a program or, if a program is already running, downloaded into an empty program. To see
the values, go into the Terminal Emulator and type LRUN at the program prompt after downloading.

#DEFINE Time LVO
#DEFINE ms LV1

#DEFINE seconds LV2
#DEFINE ExcSeconds LV3
#DEFINE minutes LV4
#DEFINE ExcMinutes LV5
#DEFINE hours LV6
#DEFINE ExcHours LV7
#DEFINE days LV8

DIM LV10

_CheckTime

Time = P6916 : REM capture current time in ms.

REM Extract the millisecond portion.
ms = Time MOD 1000 : REM Extract any ms less than 1 full second.

REM Extract the second portion.

REM Remove ms from the Time and convert time to seconds.

seconds = (Time - ms) /1000

ExcSeconds = seconds MOD 60 : REM Extract any seconds less than
REM a full minute.

REM Extract the minute portion.
REM Remove seconds from the Time and convert time to minutes.

228 ACR Programmer’s Guide

WRITING ACROBASIC PROGRAMS

minutes = (seconds - ExcSeconds) / 60
REM Extract any minutes less than a full hour.
ExcMinutes = minutes MOD 60

REM Extract the hour portion.

REM Remove excess minutes and convert to full hours.
hours = (minutes - ExcMinutes) /60

REM Remove any hours less than a full day.

ExcHours = hours MOD 24

REM only full days are left. Only works up to <25 days.
REM Remove excess hours and convert what is left to days.
days = (hours - ExcHours) /24

PRINT "Approximate Time Running : ";days;" Days ";
PRINT USING "##";ExcHours;" Hours ";

PRINT USING "##";ExcMinutes;" Minutes ";

PRINT USING "##";ExcSeconds;".";ms;" Seconds "
RETURN

Error Recovery (IPA)
This sample on error handling addresses error checking and recovery, which should be programmed into each
application. Error handling is then done automatically as the application runs and is helpful in diagnosing problems.

PROGRAM
PBOOT
REM Error recovery program.
_LOOP
IF (BIT8467)
REM Kill all motion was signaled, check causes
IF (BIT8465)
REM DRIVE IS STILL ENABLED
GOSUB CheckLimits
ELSE IF (BIT10009)
REM TORQUE ENABLE INPUT WAS OPENED
GOSUB CheckTorqueEnable
ELSE IF (BIT9498)
REM DRIVE FAULTED
AXISO DRIVE RES
INH -8475 : REM WAIT FOR RESET TO COMPLETE
IF (BIT9498)
GOTO FaultLatched
ENDIF
ELSE IF (BIT8479)
REM EXCESS POSTION ERROR WAS TRIPPED
CLR 8467 CLR 522
ENDIF
ENDIF

IF (NOT BIT8467)

ACR Programmer’s Guide 229

WRITING ACROBASIC PROGRAMS

REM Kill has been cleared, restart Program O.
RUN PROGO

ENDIF

GOTO LOOP

_CheckTorqueEnable
IF (BIT10011)
REM Torque enable inputs mismatch.
REM Requires a HARD power cycle.
? "TORQUE ENABLE HEALTH EVENT"
? " CYCLE POWER"
GOTO FaultLatched
ENDIF
WHILE (BIT10010)
REM WAIT HERE UNTIL THE INPUT IS CLOSED
WEND
CLR 8467
AXISO DRIVE ON
RUN PROGO
RETURN

_CheckLimits

IF (BIT16132 OR BIT16133)
REM HARD LIMIT WAS HIT
CLR 8467
CLR 522

ENDIF

IF (BIT16136 OR BIT16137)
REM SOFT LIMIT WAS HIT
CLR 8467
CLR 522

ENDIF

RETURN

_FaultLatched

?"DRIVE FAULT DID NOT CLEAR, CHECK HARDWARE"
?"requires a HARD power cycle"

END

ENDP

Add-On Instructions (AOls) for IPA

The IPA and ACR7000 are compatible for use with CompactLogix and ControlLogix PLCs and can utilize both
Class | I/O messaging and Class 3 MSG instructions. Add-On Instructions are available to enhance the
development of IPA applications within the RSLogix environment.

This includes an IPA program already written that you can adjust (to set their desired units and select the motor,
etc.) and AOIs and UDTs you import into RSLogix. These make it easy to control the IPA with these function
blocks directly on the ladder logic:

230 ACR Programmer’s Guide

3 Controller Organizer

> 3 X

WRITING ACROBASIC PROGRAMS

£1-£3 Motion Groups
----- [Ungrouped Axes
=-43 Add-On Instructions

B MainProgram - MainRoutine

!
:

b ¥ Gk

=N (=R

[4] Data Type: IPA_Axis

Description

These AOIs include over 400 predefined boolean tags and 50 parameters that update every EtherNet/IP cycle
(adjustable, default 10 ms) for the PLC to read/write to the IPA, including most of the commonly used bits and
parameters (axis, master, program, etc.). The AOIs use these tags, but users can also use them.

The AOIs can be downloaded from the IPA product page here.

Further details can be found in the EtherNet/IP Programmer’s Guide for IPA. Available AOIs include:

e |PA_ServoOn

e |PA_ServoOff

e |PA_Home
e |PA_Move

e |IPA_MoveStop

e |IPA_MoveVelocity

e |PA_SetPosition

o |PA_SetTorqueLimit

e |PA_Fault Reset

Xpress HMI with ACR7000

The Xpress HMI is a compatible HMI for the ACR7000 for applications that need an operator touchscreen

interface. This sample includes 2-axis jog and teach panels.

Click here for a complete sample on parker.com.

= Name: 1PA_fis
w03 IPA_AxisManager) - =
-3 IPA_MoveABS PA_Axisitanager Axians () Description -
-3 PA_MoveRelative Axis IPAAXISS
203 PA_Power Datan IPAS:
+m watchdog DataOut IPAS:O
£-&3 Data Types 1 =
=5 ser-Defmed Serve0n AP
ACRSetFlag 1 |
PA_Axis IPA_Power IPA5_DriveOn () <.DNI— Members: Data Type Size: 320 bytefs]
W £ Drive_Enable 1€ HErori—
PA Dataln s PAAxE Hame Data Type Style Descr
TPA DataOut B B TFA_Dataln
IPA Inputs CoordinatePosition DINT Decimal
E: % it;‘:gui et Movel AL TargetPostion DINT Decimal
e -On-Define 2 e - :
5L Predefined IPA_MoveRelative PAMove! (o) |Done— FEE A IRl L
558 Moduie. Defined Execute e Fallowing_Enor DINT Decimal
Distance 100.0 [CBusy>— Hardware_Capture DINT Decimal
..... £ Trends .
£-£3 /0 Configuration Velocity 55 Lcerror— Eultwareﬁl:ap%ure DINT Dec!mal
- Backplane, CompactLogix Syster) . Fimary_Setpoint DINT Decimal
0 1769-L32E EIP_Test2 Acceleration 582 [CABorted>— CommandedPasition | DINT Decimal | Secar
S 1760-L32E Ethernet Port Loca _ Jerk noe Riinarishiags LI Cecral
, : ERES— - Axis IPAAXISS 9
ErrorCode o0& o

ACR Programmer’s Guide 231

http://www.parkermotion.com/products/Servo_Drive_Controllers__7313__30_32_80_567_29.html
https://community.parker.com/technologies/electromechanical-group/w/electromechanical-knowledge-base/1915/acr7000-controller-and-acr9000-xpress-jog-teach-sample

WRITING ACROBASIC PROGRAMS

Interact Xpress - :

Super
Jog

HARD
LIMITS

KAMR
JOG

e
Recipe

[Upload
|Redpe
Save
lRecipe

[Save As
| Recipe

Xpress HMI with IPA

The Xpress HMl is a compatible HMI for the IPA for applications that need an operator touchscreen interface.
This sample includes a jog panel similar to PMM's and a status panel similar to PMM’s Common Status Panel.

Click here for a complete sample on parker.com.

232 ACR Programmer’s Guide

https://community.parker.com/technologies/electromechanical-group/w/electromechanical-knowledge-base/1955/ipa-software---example---interact-xpress-hmi

WRITING ACROBASIC PROGRAMS

Super

—Darker Jog
HARD
LIMITS
KAMR
JOG
ACC
Interact Xpress DEC
IPA DRIVER e
Act
Position
Cmd
“WATCH Position .
|| PARAMETERS Co Hormej
‘ero Positiol
Set
MAIN‘ Position = TEACH‘ STATUS1
MENU oto Positiol MENU ||| PANEL
0 Inputs
MAIN MENU/| staws - Morive Enatie F'”.U rote T 325 Y
Movi
[Bvours B Commandes (T
JOG MENU | B oo 2cive Position :
- e B copmandes TGO
EACH MENU B Velociy :
.C"”’” Active Folowing Error | 0,00 !
Home Found
Control Statb . — ;u'n Faults Actual Torque I U Ug I
. Nirol ats nve rau % ak .
. Drive Fault . Motor Config Error . Foadback Error epeak)
. Kill All Motion Request . Bridge Hardware Flt B Lo votage Eravi Analog Inputo 0,07 !
. Max Pos Error Bridge Temp Fault . Control Power Active Analeg Input 1 1—5-52—!
imi Drive Over-voltage
. Pos Hard Limit . g . Alignment Error Programs
. Neg Hard Limit . Drive Under-voltage Drive Param Error Running Dwell Inhibited
B Pos sot Limit Bl aricge Foldback ! - -D ;I 12C
. Neg Soft Limit . Power Regen Fault
B o Tomp Fou J Kill Al Motion| | ‘ Disable |}
. Torque Enable Fault . = -
Thermal Model Fault . .
. Torque Enable Open J Clear All Klllsll J Drive Reset | ¥
. . Motor Temp Fault - N
Torque Enable Health Event|
q Bad Hall State J Halt Prog0 Il ‘ Run Prog0 Il

ACR Programmer’s Guide 233

WRITING ACROBASIC PROGRAMS

Testing Programs

PMM’s Panels and Oscilloscopes give visual indications of the controller status. The Motion Status Panel lists the
program line numbers as well as axis positions, program status and common errors. This same information is in

the Bit Status Panel and Numeric Status Panel but placed in a single panel. You can have your own list of bits and
parameters with Watch Lists, a new feature of PMM.

If a program stopped running, the line number will be the last line executed when the program halted. This can
help determine why the program stopped, if there is a syntax error or if motion is commanded and the there is a
KAMR (Kill All Motion Request). If the line number is 0, the program never ran.

If a program is starting but you are not sure about the program flow, you can insert PRINT statements in the
program. As an example see EIP scanner - Wago 750. Print statements can be your own programmer notes
(strings are in quotes), parameter values such as motor positions or global parameters that may be updated from
external HMI/PLC/PC connections.

Program Not Running?

There are several common reasons a program might not run:

Syntax error in the code. This is not as likely unless the syntax issue is in a part of code that does not always
run, but instead runs based on some early logic and causes the program to sometimes take another branch.

Check the Motion Status Panel for a line number. This will be set to the line last executed when the program
halted. In the Terminal Emulator, go to program prompt and click List With Line Numbers to see the program with
line numbers in controller’s memory (these are automatically assigned on download).

HALT command. A legitimate command to halt a program via the HALT command or something setting the
program's control flag directly (BIT1033 Program Halt Request for Prog 0). Is there an HMI or other external
connection used in the system normally during operation such as a PLC or PC?

Axis not ready. Trying to command a move before the axis is able to move, either because the KAMR flags have
not been cleared yet or drive is not fully enabled yet, etc.

Out of memory. This would not generally occur on first power up, more if you were using GOSUB commands
and the subroutines did not always have a RETURN from them. In this case, the pointers created by the GOSUB
branch would not always be cleared by doing a RETURN from the subroutine and these pointers would build up in
memory over time and eventually exceed the memory allocation for that particular program space. The result is a
program crash.

Axis Motion Status?

Each axis can have multiple types of motion as we have seen from the Setpoint Summation explanation. Visually,
we can view axis motion status in Status Panels = Servo Loop Status and select the axis and desired units (counts or
user units):

234 ACR Programmer’s Guide

WRITING ACROBASIC PROGRAMS

-4 acrvv_cam_2axis-units-pls W ACR78VServo Loop Status X

—’ ACR78V Position Type
- Configuration Wizard 12 Ais 2 ~ @® Courts
- 47 Program Editor O User Units

B Terminal Emulator
+ & Tools Current position
=-{kg Status Panels DpT
-4 Mation Status Panel

! .IJ Drive Status Panel Gear Offset Velocity Term

-_g Mumeric Status Dﬁ + Primary Setpoint 4052.0979 +

-{7g Bit Status

Acceleration Term

4 EtherNet/IP Status Panel Jog Offset
R v Loop status o e Secondary Setpoit R o
f-5f| Scopes .
Cam Offset Following Error Proportional Term

¢ +
D— Backlash Offset

P

22 HDBGEQ " i Summation Point
Integral Term 01238

Derivative Term

Actual Position
[189

Actual Velocity

Digital Filter

Positive Torque Limit

Filter Qutput Final Qutput

MNegative Torque Limit

Graphing with Oscilloscopes

W ACRTBV:Oscilloscope 1 X Motion x|

Oscillascope

run progo oK

Cancel

lia}

Auto Scale Y-Axis

Channel 2

.

.II

=

Auto Scale Y-Axis

Channel 3 [Download commands to | PROG14 ~| When Run button dlicked

.

»II

[Auto Scale Y-Axis

Channel 4

&
I
g
<
E

Display
[channel 1 2 channel 3

< > [channel2 B4 Channel 4

Sampling Erase Display Data

Run single Zero Export Data

PMM includes a 4-channel oscilloscope and you can use it to graph any parameter and any flag, including user
parameters and user flags.

Sampling

The channels can be sampled on a regular basis from the PC or at higher speed with onboard sampling. This will
start with the selected bit trigger, typically the Master In Motion bit or, for a single axis, its Jog Active bit, though

ACR Programmer’s Guide 235

WRITING ACROBASIC PROGRAMS

any bit can be used in either rising edge (bit turning on starts the sampling) or falling edge (bit turns off starts the
sampling) mode.

Note that Program |4 has a large memory allocation set as default to use local arrays to capture the selected
channels. After sampling is complete, if onboard was used, the data will then be uploaded to the PC and graphed.
Run will run the code specified by the Motion button continuously and graph it. Single will run the code within
Motion one time and graph.

The channels can be toggled on/off with the checkboxes. Users can display the numeric data with Display Data
and Export Data that they can then import into Excel or other programs for further analysis.

To scope a program, change the Motion code to "RUN PROGO" but leave Download Commands set to PROGI4 (as
shown in picture above); that sets where the data collection is done and we do not want it to conflict with the
arrays used in our user PROGO.

Adding Lines of Code to Programs

You can add lines of code to a program that is already downloaded to the controller. This can be useful when
testing or debugging an application when you do not want to make a permanent change to the program stored in
PMM. This would be done in PMM’s Terminal Emulator while online with the controller.

Each code statement you want to add must include a line number. Otherwise, the controller could not
understand where to place each code statement. To determine the correct line numbers, go into the Terminal
Emulator in Parker Motion Manager and click List Line Number.

This turns on line numbering with the Force Line Numbers with List bit (bit 5651) and then sends a LIST
command. The LIST command displays the current program.

Having determined the correct line number placement for the code statements, enter the line number, a space and
the command. For example:

15 VEL 10

The new program lines are stored in the program space.

NOTE: Code changes made with this procedure are not reflected in the program stored in PMM.
To ensure your changes are permanent, enter them in the PMM Program Editor and
download it to the controller with the Save to Flash option checked.

Trace a Program

PMM’s Motion Status Panel lists the program line numbers while the program is running. The program can run
faster than this panel updates unless a dwell or inhibit is encountered. To see the stream of line numbers as they
are executed go into the Terminal Emulator and type TRON and then LRUN at the correct program prompt (e.g.
P00>). This will then echo the line numbers of the program in sequence. This can be helpful to determine if

236 ACR Programmer’s Guide

certain lines are executed or not in case of conditionals

off, use TROFF.

SYS>PROGO

POO>NEW

P00>10
P00>20
P00>30
P00>40
P00>50
P00>60

DIM LV1

LvO = 0

PRINT CHRS (65+LVO0) ;

LVO = LV0O+1

IF (LVO < 3) THEN GOTO 30
PRINT

POO>TRON
POO>LRUN
<10><20><30>A<40><50><30>B<40><50><30>C<40><50><60>
POO>TROFF
POO>LRUN

ABC
POO>

WRITING ACROBASIC PROGRAMS

. To exit listen mode, press Escape. To turn trace mode

ACR Programmer’s Guide 237

BINARY HOST INTERFACE

CHAPTER S
Binary Host Interface

238 ACR Programmer’s Guide

BINARY HOST INTERFACE

Binary Host Interface

You can enhance communications with the ACR series controller through the binary host interface.

Binary Data Transfer

Binary Data Packets

Binary Parameter Access

Binary Peek Command

Binary Poke Command

Binary Address Command

Binary Parameter Address Command

Binary Mask Command

Binary Parameter Mask Command

Binary Move Command

Binary SET and CLR

Binary FOV Command

Binary ROV Command

Application: Binary Global Parameter Access

NOTE: For Windows applications, it usually makes much more sense to use the ComACRServeré
APIl, a COM server designed to automation communications to ACR controllers.
ComACRServeré is compatible with VB.NET, C#, VBA and many other Windows
programming tools (any that can use COM).

Binary Data Transfer

The binary data transfers in this chapter consist of a control character (Header ID) followed by a stream of data
encoded according to the current state of the MODE command. Note that regardless of the mode, the Header ID
is never converted during binary data transfer.

NOTE: Much of the data in this section pertains specifically to serial/parallel communications on
older ACR products. The protocol has not been changed to preserve backwards
compatibility with older applications. Information relating to serial/parallel data transfer
is not relevant to ACR7000 and IPA controllers, which only have Ethernet.

ACR Programmer’s Guide 239

BINARY HOST INTERFACE

During binary transfers to the controller, the delay between bytes must be no more than the communications
timeout setting for the given channel. If the timeout activates, the transfer is thrown out and the channel goes
back to waiting for a normal character or a binary header ID. The default communication timeout is 50
milliseconds.

The following is a list of valid data conversion modes. The default mode for the FIFO channel is zero and the
default for the COM| and COM2 channels is one. Note that high bit stripping cannot be done without also
activating the control character-prefixing mode.

Mode Description

MODE 0 No Conversion (recommended for Ethernet)

MODE | Control Character Prefixing

MODE 2 No Conversion

MODE 3 Control Character Prefixing and High Bit
Stripping

Control Character Prefixing

Control character prefixing follows Kermit communications protocol conventions. The escape code for control
character prefixing is the '#' character. The control character-prefixing mode prevents valid data within a binary
packet from being confused with the serial XON / XOFF flow control codes.

Transmitting
If the character to be sent is either a Ox7F or a character in the range of 0x00 to Ox|F, the character is "XORed'
with 0x40 and proceeded with a '#' character. Otherwise, the byte is sent normally.

For example, if the character to be sent is 0x01, the character is transmitted as a "#A" string (0x0l XOR 0x40 =
O0x41 ='A"). The special case where the character to be sent is the '#' character is handled with the two character
"HH" string.

Receiving

When receiving control prefix encoded data, a '#' character is thrown away and causes the next character to be
read from the data stream. If the character is in the range of 0x3F to Ox5F, the character is "XORed' with 0x40 to
decode the true value. Otherwise, the character is used exactly as read from the stream.

High Bit Stripping

High bit stripping follows Kermit communications protocol conventions for 7-bit data paths. The escape code for
high bit stripping is the '&' character and must be used in conjunction with the control character prefixing
described above.

High bit stripping is for cases in which a 7-bit data path must be used for binary data transfer. This mode
introduces a large overhead in the transfer of binary data since over half of the bytes are expanded to two-byte
sequences and several are expanded to three bytes. If possible, an 8-bit data path should be used for binary data
transfer.

240 ACR Programmer’s Guide

BINARY HOST INTERFACE

Transmitting

If the character to be sent is greater than 0x7F, the character is '"ANDed' with 0x7F and proceeded with the '&'
character. Note that the AND may result in a control code which must then be handled by control character
prefixing. The original character may also need to be sent with control character prefixing.

For example, if the character to be sent is 0xC2, the character is transmitted as a "&B" string (0xC2 AND 0x7F =
0x42 ='B'). As another example, if character to be sent is 0x83, the character is transmitted as the three
character "&#C" string (0x83 AND 0x7F = 0x03 (control character)). The special case where the character to
be sent is the '&' character is handled with the two character "#&" string.

Receiving
When receiving high bit encoded data, '#' characters are handled as normal control character prefix sequences. If
the received character is neither a '#' nor a '&' character, the character is used exactly as read from the stream.

If the received character is the '&' character, it is thrown away and causes the next character to be read from the
data stream. This new character may be a '#' character, which will initiate control prefix decoding sequence. The
result is a value in the range of 0x00 to 0x7F, which is then 'ORed' with 0x80 to reestablish the high bit in the data.

Binary Data Packets

Packets allow binary access to system parameters at any time. This method must be used if commands are sitting
in the input queue since PRINT statements would also be buffered. The packet is the quickest way to access
information such as current position and following error for display in an application program.

Packet Request
Packets are requested by sending a four-byte binary request record. The following is a list of the bytes contained
in this record:

Data Field Description

Byte O Header ID (0x00)
Byte | Group Code

Byte 2 Group Index

Byte 3 Isolation Mask

Group Code and Index

The group code and group index work as a pair to select the data coming back in a data packet. The group code
selects a general data grouping and the group index selects a set of eight fields within that group. The isolation
mask then selects which of these eight fields is to compose the final data packet.

Isolation Mask

The isolation mask acts as a filter to select only the specific data required (for example, actual position for Axis 2,
Axis 3 and Axis 5). If a bit is set in this mask, the corresponding data field is allowed to return in the data packet.
In order to return all eight fields, the isolation mask must be OxFF. Mask bit 0 is used to isolate the first field in a
group and bit 7 is used to isolate the last field.

ACR Programmer’s Guide 241

BINARY HOST INTERFACE

Parameter Access
The following is a list of groups and what the isolation mask will isolate:

Group Description Isolation Usage

0x10 Flag Parameters Eight consecutive parameters
0x18 Encoder Parameters ENCO-ENCI5

0xI19 DAC parameters DACO0-DAC7

OxI1A PLC parameters PLCO-PLC7

Ox1B Miscellaneous Eight consecutive parameters
oxIC Program Parameters PROGO - PROGIS5

0x20 Master Parameters MASTERO - MASTER7

0x28 Master Parameters MASTERS - MASTERI5
0x30 Axis Parameters AXISO - AXIS7

0x38 Axis Parameters AXIS8 - AXISI5

0x40 CMT Parameters CMTO - CMT7

0x50 Logging Parameters Eight consecutive parameters
0x60 Encoder Parameters ENCI6 - ENC23

Packet Header

After a packet request is received, the ACR responds by sending back a four-byte packet header. This header is a
direct echo of the request record. The echoing allows host software to do asynchronous sampling. A request can
be sent by one part of the program and packet retrieval can be done by a centralized receiver. This routine would
recognize the 0x00 in the header as an incoming packet and act accordingly.

In a synchronous retrieval mode, it is possible for extra data to be in front of an incoming packet header. This
would occur if there were any ASCII data pending at the time of the request, such as duringa LIST. In order to
retrieve a packet correctly, the host software must be able to process this data while waiting for the packet header
to arrive. This should not be a problem, however, if all system echoing is turned off and no ASCII data retrieval is
being done.

Packet Data

After the packet header is received, the data arrives as a set of four-byte fields. The bits in the isolation mask
determine the number of fields and what they apply to. If the mask is OxFF, a total of eight fields (32 bytes) would
follow. The first field to be returned corresponds to the bit position of the lowest bit in the mask that is set.

Long integers (LONG) are returned as a four-byte field. Floating point numbers (FP32) are returned in 32-bit IEEE
floating-point format. Both types of field are returned with the low order byte first.

242 ACR Programmer’s Guide

BINARY HOST INTERFACE

Usage Example
This example requests actual positions from axes 2, 3 and 5:

Output: 003002 2C
Input: 003002 2C 2021 2223 30313233 5051 52 53
Actual Positions:

e AXIS2: 0x23222120
e AXIS3: 0x33323130
e AXIS5: 0x53525150

Binary Parameter Access

Binary parameter access provides a method of reading from and writing to single system parameters on the
controller. Unlike binary data packets, binary parameter access uses the index of the parameter directly from
Appendix A. There are no groups or masks.

A parameter access header consists of a Header ID (0x00) followed by a Packet ID code and a two-byte
parameter index. The Packet ID codes for the different types of packets are shown below. The following pages
define each of the packets in detail.

0x88 Binary Get Long Receive long integer from controller
0x89 Binary Set Long Send long integer to controller
O0x8A Binary Get |IEEE Receive IEEE value from controller
0x8B Binary Set IEEE Send IEEE value to controller

Usage Example
This example requests current position from axis 0 parameter P12288:

Output: 00 88 00 30
Input: 0088 00 30 10111200
Current Position Parameter Value:

e AXISO: 0x00121110

ACR Programmer’s Guide 243

BINARY HOST INTERFACE

Binary Get Long
This packet gets a single parameter from the controller. The parameter index is a two-byte value sent low-order
byte first. The parameter value in the receive packet is a four-byte long integer received low-order byte first.

Byte 0 BYTE Header ID (0x00)
Byte | BYTE Packet ID (0x88)
Byte 2-3 WORD Parameter Index
[Pl o e
Byte 0 BYTE Header ID (0x00)
Byte | BYTE Packet ID (0x88)
Byte 2-3 WORD Parameter Index
Byte 4-7 LONG Parameter Value

Binary Set Long
This packet sets a single parameter on the controller. The parameter index is a two-byte value sent low-order
byte first. The parameter value is a four-byte long integer and is sent low order byte first.

Byte 0 BYTE Header ID (0x00)

Byte | BYTE Packet ID (0x89)

Byte 2-3 WORD Parameter Index

Byte 4-7 LONG Parameter Value
None.

Binary Get IEEE

This packet gets a single parameter from the controller. The parameter index is a two-byte value sent low-order
byte first. The parameter value in the receive packet is a four-byte image of an IEEE floating point number received
low-order byte first.

244 ACR Programmer’s Guide

BINARY HOST INTERFACE

Byte 0 BYTE Header ID (0x00)
Byte | BYTE Packet ID (0x8A)
Byte 2-3 WORD Parameter Index
Byte 0 BYTE Header ID (0x00)
Byte | BYTE Packet ID (0x8A)
Byte 2-3 WORD Parameter Index
Byte 4-7 IEEE32 Parameter Value

Binary Set IEEE

This packet sets a single parameter on the controller. The parameter index is a two-byte value sent low-order
byte first. The parameter value is a four-byte image of an |IEEE floating point number and is sent low-order byte
first.

Byte 0 BYTE Header ID (0x00)

Byte | BYTE Packet ID (0x8B)

Byte 2-3 WORD Parameter Index

Byte 4-7 IEEE32 Parameter Value
None.

Binary Peek Command

A binary peek command consists of a four-byte header followed by an address and the data to be fetched from
that address. The header contains a data conversion code that controls pointer incrementing and the FP32 >
IEEE floating point conversion. The conversion only applies to older ACR controllers. The ACR7000 and IPA use
ARM Cortex processors, which support 32-bit IEEE754 floating point values natively.

ACR Programmer’s Guide 245

BINARY HOST INTERFACE

NOTE: Refer to Binary Global Parameter Access Note at end of Binary Host Interface section for
details.

The command returns the header and peek address followed by the requested data.

Transmit Packet

Byte 0 Header ID (0x00)
Byte | Packet ID (0x90)
Byte 2 Conversion Code
Byte 3 Peek Word Count
Long O Peek Address

Receive Packet

Byte O Header ID (0x00)
Byte | Packet ID (0x90)
Byte 2 Conversion Code
Byte 3 Peek Word Count
Long O Peek Address

Long | Peek Data 0

Long 2 Peek Data |

Long N Peek Data (Count - 1)

Conversion Codes

0x00 LONG LONG
0x01 FPé64 IEEE32
0x02 FP32 IEEE32

246 ACR Programmer’s Guide

BINARY HOST INTERFACE

Usage Example
This example peeks at three words, starting at peek address 0x404500.

NOTE: Addresses shown are for example only. Addresses will vary from controller to controller
depending on system memory allocation.

Fields: Header Address Data0 Datal Data2
Output: 00 90 00 03 00 50 40 00
Input: 00 90 00 03 00 50 40 00 0111213 2021 2223 30313233

Requested data at address:

e 0x405000: Ox13121110
e 0x405001: 0x23222120
e 0x405002: 033323130

Binary Poke Command

A binary poke command consists of a four-byte header followed by an address and the data to be stored at that
address. There is no information returned from this command. The header contains a data conversion code that
controls pointer incrementing and the IEEE - FP32 floating point conversion. The conversion only applies to
older ACR controllers. The ACR7000 and IPA use ARM Cortex processors, which support 32-bit IEEE754
floating point values natively.

NOTE: Refer to Binary Global Parameter Access Note at end of Binary Host Interface section for

details.
Data Field Description
Byte O Header ID (0x00)
Byte | Packet ID (0x91)
Byte 2 Conversion Code
Byte 3 Poke Word Count
Long O Poke Address
Long | Poke Data 0
Long 2 Poke Data |

ACR Programmer’s Guide 247

BINARY HOST INTERFACE

Data Field Description

Long N Poke Data (Count - |)
None.

Code Source Destination

0x00 LONG LONG

0x01 IEEE32 FP64

0x02 IEEE32 FP32

Usage Example
This example pokes data into three words, starting at poke address 0x405000.

NOTE: Addresses shown are for example only. Addresses will vary from controller to controller,
depending on systemm memory allocation.

Fields: Header Address Data0 Datal Data2
Output: 00 91 00 03 00 50 40 00 10111213 2021 2223 3031 3233

Data poked into addresses:

e 0x405000: Ox13121110
e 0x405001: 0x23222120
e 0x405002: 0x33323130

Binary Address Command

A binary address command consists of a four-byte header containing a program number and a parameter code.
The command returns the header followed by the base address of the parameter type in question. If the returned
address is zero, no parameters of that type have been allocated in the given program.

Peeking at the returned address will return the number of variables dimensioned for the requested type. In the
case of numeric variables (DV, SV, LV), the count will be followed by the actual numeric data. For arrays (DA, SA,
LA), the count will be followed by the addresses of the individual arrays. These addresses point to storage areas
as if they were normal numeric variables of the same type (count followed by data).

248 ACR Programmer’s Guide

BINARY HOST INTERFACE

Transmit Packet

Byte 0 Header ID (0x00)
Byte | Packet ID (0x92)
Byte 2 Program Number
Byte 3 Parameter Code

Receive Packet

Byte 0 Header ID (0x00)
Byte | Packet ID (0x92)
Byte 2 Program Number
Byte 3 Parameter Code
Long O Parameter Address

Parameter Codes

0x00 DV Double Variables
0xO0l DA Double Arrays
0x02 N\ Single Variables
0x03 SA Single Arrays
0x04 LvV Long Variables
0x05 LA Long Arrays
0x06 $Vv String Variables
0x07 $A String Arrays

Usage Example
This example requests the starting address of the Single Variable information for Program 5.

NOTE: Addresses shown are for example only. Addresses will vary from controller to controller,
depending on system memory allocation.

ACR Programmer’s Guide 249

BINARY HOST INTERFACE

Output: 00 92 05 02
Input: 00 92 05 02 00 80 40 00
Starting address of the Single Variable information for Program 5:

Address: 0x408000

Binary Parameter Address Command

A binary parameter address command consists of a four-byte header containing a parameter index. The command
returns the header followed by the address of the parameter. If the returned address is zero, the parameter index

was invalid.

Byte 0 BYTE Header ID (0x00)
Byte | BYTE Packet ID (0x93)
Byte 2-3 WORD Parameter Index
Byte 0 BYTE Header ID (0x00)
Byte | BYTE Packet ID (0x93)
Byte 2-3 WORD Parameter Index
Long 0 LONG Parameter Address

Usage Example
This example requests the address of the axis 0 current position parameter.

NOTE: Addresses shown are for example only. Addresses will vary from controller to controller,
depending on system memory allocation.

Output: 00 93 00 30

Input: 00 93 00 30 31504000

250 ACR Programmer’s Guide

Current Position Parameter Address:

AXIS0: 0x405031

BINARY HOST INTERFACE

Binary Mask Command

A binary mask command consists of a four-byte header followed by an address and two bit masks to be combined

with the data at that address. There is no information returned from this command. The address must point to a
long integer storage area. The NAND mask is used to clear bits and the OR mask is used to set bits (OR mask is
dominant). The data is modified as follows:

data = (data AND NOT nandmask) OR ormask

Data Field Data Type Description
Byte O BYTE Header ID (0x00)
Byte | BYTE Packet ID (0x94)
Byte 2 BYTE Reserved (0x00)
Byte 3 BYTE Reserved (0x00)
Long 0 BYTE Data Address
Long | BYTE NAND Mask
Long 2 BYTE OR Mask

None.

Usage Example
This example uses the Binary Mask Command to clear all of the Opto-isolated Outputs and then set Output 32.

The data address for Opto-isolated Outputs Parameter P4097 is assumed to have been previously returned using
the Binary Parameter Address Command on the previous page.

NOTE: Addresses shown are for example only. Addresses will vary from controller to controller,

Fields:

Output:

depending on system memory allocation.

Header Parameter Address NAND Mask OR Mask

00 94 00 00 43 60 40 00

FFFFFFFF 01 00 00 00

Opto-isolated Output Parameter P4097 Modified Data at address:

0x406043: 0x00000001

ACR Programmer’s Guide 251

BINARY HOST INTERFACE

Binary Parameter Mask Command

A binary parameter mask command consists of a four-byte header followed by two bit masks to be combined with
a system parameter. There is no information returned from this command. The parameter index in the header
must be a long integer. The NAND mask is used to clear bits and the OR mask is used to set bits (OR mask is
dominant). The data is modified as follows:

data = (data AND NOT nandmask) OR ormask

Data Field Data Type Description
Byte 0 BYTE Header ID (0x00)
Byte | BYTE Packet ID (0x95)
Byte 2-3 WORD Parameter Index
Long O LONG NAND Mask
Long | LONG OR Mask

None.

Usage Example

This example uses the Binary Parameter Mask Command to clear all of the Opto-isolated Outputs and then set
Output 32.

Fields: Header NAND Mask OR Mask
Output: 009501 10 FF FF FF FF 01 00 00 00
Opto-isolated Output Parameter P4097 Modified Data:

P4097: 0x00000001

Binary Move Command

A binary move consists of a variable length header followed by a number of four-byte data fields. The bit-mapped
information in the header determines the number of data fields and their content. All data fields are sent low
order byte first.

Data Field Data Type Description
Head 00 BYTE Header ID (0x04)
Head 01 BYTE Header Code 0

252 ACR Programmer’s Guide

BINARY HOST INTERFACE

Data Field Data Type Description

Head 02 BYTE Header Code |

Head 03 BYTE Header Code 2

Head 04 BYTE Header Code 3

Head 05 BYTE Header Code 4

Head 06 BYTE Header Code 5

Head 07 BYTE Header Code 6

Head 08 BYTE Header Code 7

Data 00 IEEE32 Master VEL

Data Ol IEEE32 Master FVEL

Data 02 IEEE32 Master ACC/DEC

Data 03 LONG* Slave 0 Target or NURB/Spline control point
Data 04 LONG* Slave | Target or NURB/Spline control point
Data 05 LONG* Slave 2 Target or NURB/Spline control point
Data 06 LONG* Slave 3 Target or NURB/Spline control point
Data 07 LONG* Slave 4 Target or NURB/Spline control point
Data 08 LONG* Slave 5 Target or NURB/Spline control point
Data 09 LONG* Slave 6 Target or NURB/Spline control point
Data 10 LONG* Slave 7 Target or NURB/Spline control point
Data || LONG* Slave 8 Target or NURB/Spline control point
Data 12 LONG* Slave 9 Target or NURB/Spline control point
Data |3 LONG* Slave 10 Target or NURB/Spline control point
Data 14 LONG* Slave || Target or NURB/Spline control point
Data |5 LONG* Slave 12 Target or NURB/Spline control point
Data 16 LONG* Slave 13 Target or NURB/Spline control point
Data 17 LONG* Slave 14 Target or NURB/Spline control point
Data I8 LONG* Slave 15 Target or NURB/Spline control point

ACR Programmer’s Guide 253

BINARY HOST INTERFACE

Data 19 LONG* Primary Center

Data 20 LONG* Secondary Center

Data 21 IEEE32 Primary Scaling or NURB/Spline Knot
Data 22 IEEE32 Secondary Scaling or NURB Weight

* These fields are in IEEE32 format if bit 2 of header code 3 is set.

Header Code 0

There are two versions defined for Header Code 0 based on Secondary Master Flag Bit Index 5, Enable Rapid

Move Modes.

The default-disabled mode for this flag (Secondary Master Flag Bit Index 5 cleared) uses the following Header
Code 0 definition.

Enable Rapid Move Modes Flag Disabled—Default Cleared Value:

Bit 0

FVEL Lockout

Forces FVEL to zero for this move

Bit | FOV Lockout Forces FOV to 1.0 for this move

Bit 2 STP Ramp Activate Sets STP equal to DEC, else STP 0

Bit 3 Code 3 Present Header contains "Header Code 3"

Bit 4 Velocity Data Present Packet contains master VEL

Bit 5 Acceleration Data Packet contains master ACC/DEC
Present

Bit 6 Counter Dir Count down if set, else up

Bit 7 Counter Mode Master move counter enable

The enabled mode for this flag (Secondary Master Flag Bit Index 5 Set) uses the following Header Code 0
definition. The Move Modes for this header code are defined following the header code definitions.

Enable Rapid Move Modes Flag Enabled—Set Value:

Bit O

Move Mode Bit |

Selects the move mode for this move
along with Header Code 0 Bit 2.

254 ACR Programmer’s Guide

BINARY HOST INTERFACE

Bit | FOV/ROV Lockout Forces FOV or ROV to 1.0 for this move
Bit 2 Move Mode Bit 0 Selects the move mode for this move
along with Header Code Bit 0.

Bit 3 Code 3 Present Header contains "Header Code 3"

Bit 4 Velocity Data Present Packet contains master VEL

Bit 5 Acceleration Data Packet contains master ACC/DEC
Present

Bit 6 Counter Dir Count down if set, else up

Bit 7 Counter Mode Master move counter enable

Header Code |

Bit 0 Master Bit 0 Master for this move packet

Bit | Master Bit |

Bit 2 Master Bit 2

Bit 3 Interrupt Select Interrupt host when move starts

Bit 4 Arc Direction CCWV ff set, else CW

Bit 5 Arc Mode Packet contains center points or Spline
Knot present

Bit 6 Arc Plane Bit 0 Primary and secondary axis or NURB
Mode

Bit 7 Arc Plane Bit | For binary arc move commands or

SPLINE Mode

Header Code 2

Bit O

Slave 0 Present

Bit |

Slave | Present

Slave target positions to be contained in

this move packet

ACR Programmer’s Guide

255

BINARY HOST INTERFACE

Bit 2 Slave 2 Present
Bit 3 Slave 3 Present
Bit 4 Slave 4 Present
Bit 5 Slave 5 Present
Bit 6 Slave 6 Present
Bit 7 Slave 7 Present

Header Code 3

Bit 0 Incremental Target Target positions are incremental

Bit | Incremental Center Center points are incremental

Bit 2 Floating Point Data Targets and centers are |IEEE32

Bit 3 Arc Radius Scaling Packet contains radius scaling /
NURB/Spline

Bit 4 FVEL Data Present Packet contains master FVEL

Bit 5 Block Skip Check Sets the master Block Skip Check

Bit 6 NURB or Spline Move data packet for NURB or Spline

Interpolation

Bit 7 Extended Codes Extended codes 4,5,6 and 7 are present.
This bit should be set if DBCB is used

Header Code 4

Bit 0 Reserved Reserved
T
T R
Bit 3 Master Bit 3 Master for this move packet

256 ACR Programmer’s Guide

BINARY HOST INTERFACE

Reserved

Reserved

Header Code 5

Reserved

Reserved

Header Code 6

Bit 0

Slave 8 Present

Bit |

Slave 9 Present

Bit 2

Slave 10 Present

Bit 3

Slave | | Present

Bit 4

Slave |2 Present

Bit 5

Slave |3 Present

Bit 6

Slave 14 Present

Bit 7

Slave |5 Present

Slave target positions to be contained in

this move packet

ACR Programmer’s Guide 257

BINARY HOST INTERFACE

Header Code 7

Bit 0 Reserved Reserved

The following Move Modes definition applies to Header Code 0 used with the Master Enable Rapid Move Modes
flag set.

Move Modes

Bits 0 and 2 in Header Code 0 indicate which type of move mode is contained in the binary move packet as
follows:

0 0 Move Mode 0 - Feed Continuous
0 I Move Mode | - Feed Cornering

I 0 Move Mode 2 - Feed Stopping

I I Move Mode 3 — Rapid

Where: 0 = Bit Cleared; | = Bit Set

Example |
The following illustrates Move Mode 0—Feed Continuous:

258 ACR Programmer’s Guide

Move Mode 0—Feed Continuous

50

FVEL

The foll

owing illustrates Move Mode |—Feed Cornering:

Move Mode 1—Feed Cornering

50

FVEL

The following illustrates Move Mode 2—Feed Stopping:

BINARY HOST INTERFACE

ACR Programmer’s Guide 259

BINARY HOST INTERFACE

Move Mode 2—Feed Stopping

VEL
L VEL = 100.0
FVEL = 20.0
FOvV = 0.5
ROV = 0.25
50 -y
FVEL -f------ N
The following illustrates Move Mode 3—Rapid:
Move Mode 3—Rapid
VEL
100 fommmmmmmmmmmmmmmm VEL = 100.0
FVEL = 20.0
FOV = 0.5
ROV = 0.25
25 | o
FVEL -f-f--------\-f--moo- oo

Linear Moves

The bits in header code 2 indicate which target positions are contained in the binary move packet. If the
"incremental target" bit in header code 3 is set, the targets are relative to the current target positions of the
slaves; otherwise, the targets are absolute. The "floating point data" bit in header code 3 indicates that the target
data is in IEEE floating point format, otherwise they are long integers.

Arc Moves

When the "arc mode" bit in header code | is set, a circular arc is generated using two of the first three slaves
attached to a master. Any slaves that are given a target position, but are not part of the circular interpolation, are
executed as normal linear moves. This allows for helical interpolation.

The "arc plane” bits in header code | are combined to generate a number from 0 to 3 that defines the primary and
secondary axes for the arc as follows:

260 ACR Programmer’s Guide

BINARY HOST INTERFACE

Arc Plane Primary Axis Secondary Axis
0 Slave 0 Slave |

I Slave | Slave 2

2 Slave 2 Slave 0

3 Reserved Reserved

The "arc direction" bit in header code | indicates the direction of the arc relative to the primary and secondary
axes. A counter-clockwise arc is defined as an arc from the positive primary axis toward the positive secondary
axis.

The radius of the arc will be equal to the distance between the arc target position and the given center point. If
the arc target position is equal to the target position of the previous move, a 360-degree path will be generated.
The target position of the previous move must lie on the defined arc or the axes will jump to that location before
the arc begins.

If the "incremental center" bit in header code 3 is set, the center points are relative to the current target positions
of the slaves, otherwise the center points are absolute. The "floating point data" bit in header code 3 indicates that
the given center points are in IEEE floating point format, otherwise they are long integers.

NURB or SPLINE Moves

When the "NURB or Spline" bit in header code 3 (Bit 6) is set, the move data packet includes NURB or Spline
curve data. In addition, bit 5 and 6 in header code | will differentiate if the data is NURB or Spline. Bit 5 of
header code | is set when Spline data includes Knots.

The control points for NURB and Spline are sent as DATA3 thru DATAIO, similar to the way the normal slave
targets are sent. Load the Knot in DATAI3 and Weight in DATAI4 and set bit 3 in header code 3.

Binary SET and CLR

The immediate setting and clearing of bits can be accomplished with a 3-byte binary command sequence. This
sequence is a |-byte command header followed by a two-byte index value. The index value is sent low order byte
first. The command is not queued and the set or clear occurs when the command is first seen by the board.

Data Type Description

Byte O Header ID (0x1C)

Byte | Index Byte O

Byte 2 Index Byte |

Byte 3 0x00, present for backwards
compatibility.

ACR Programmer’s Guide 261

BINARY HOST INTERFACE

Data Type Description

Byte O Header ID (0x1D)

Byte | Index Byte O

Byte 2 Index Byte |

Byte 3 0x00, present for backwards
compatibility.

Binary Output Description
IC 08 02 Set bit 520 (0x0208)

ID 20 00 Clear bit 32 (0x0010)

Binary FOV Command

The immediate setting of feedrate override for any or all axes can be accomplished with an eight-byte binary
command sequence. This sequence is a four-byte command header followed by a four-byte FOV value. The
command is not queued and the FOV occurs when the command is first seen by the board.

The second byte in the header is a bit mask that determines which masters are affected by the FOV value that
follows. The FOV value is an image of an |IEEE 32-bit floating-point value, sent low order byte first.

For more than eight masters (not possible on the ACR7000 or IPA) the header bit mask byte | should be set to
zero and the two optional |16 master header bit mask byte 2 and byte 3 should be filled accordingly.

Data Type Description

Byte O Header ID (0x07)

Byte | Header Bit Mask

Byte 2 |6 Master Header Bit Mask, Part |
Byte 3 | 6 Master Header Bit Mask, Part 2
Byte 4 FOV Byte 0

Byte 5 FOV Byte |

Byte 6 FOV Byte 2

262 ACR Programmer’s Guide

BINARY HOST INTERFACE

Byte 7

FOV Byte 3

Header Bit Mask

Bit 0 Master 0 Affected
Bit | Master | Affected
Bit 2 Master 2 Affected
Bit 3 Master 3 Affected
Bit 4 Master 4 Affected
Bit 5 Master 5 Affected
Bit 6 Master 6 Affected
Bit 7 Master 7 Affected

NOTE: Masters affected by the FOV contained in

this command.

16 Master Header Bit Mask, Part |

Bit 0 Master 0 Affected
Bit | Master | Affected
Bit 2 Master 2 Affected
Bit 3 Master 3 Affected
Bit 4 Master 4 Affected
Bit 5 Master 5 Affected
Bit 6 Master 6 Affected
Bit 7 Master 7 Affected

NOTE: Masters affected by the FOV contained in

this command.

ACR Programmer’s Guide 263

BINARY HOST INTERFACE

Data Type Description

Bit 8 Master 8 Affected
Bit 9 Master 9 Affected
Bit 10 Master 10 Affected
Bit 11 Master | | Affected
Bit 12 Master |2 Affected
Bit I3 Master |3 Affected
Bit 14 Master |4 Affected
Bit I5 Master |5 Affected

NOTE: Masters affected by the FOV contained in
this command.

This example uses the following IEEE conversions:
0.500 = 3F000000

0.123 = 3DFBE76D

Binary Output Description
07 08 00 00 00 00 00 3F Set Master 3 FOV to 0.5
07 05 00 00 6D E7 FB 3D Set Master 0 and Master 2 FOV to 0.123

Binary ROV Command

The immediate setting of rapid feedrate override for any or all axes can be accomplished with an eight-byte binary
command sequence. This sequence is a four-byte command header followed by a four-byte ROV value. The
command is not queued and the ROV occurs when the command is first seen by the board.

The second byte in the header is a bit mask that determines which masters are affected by the ROV value that
follows. The ROV value is an image of an IEEE 32-bit floating-point value, sent low order byte first.

For more than eight masters (not possible on the ACR7000 or IPA) the header bit mask byte | should be set to
zero and the two optional 16 master header bit mask byte 2 and byte 3 should be filled accordingly.

264 ACR Programmer’s Guide

BINARY HOST INTERFACE

Binary Format

Byte 0 Header ID (0xIF)

Byte | Header Bit Mask

Byte 2 | 6 Master Header Bit Mask, Part |
Byte 3 |6 Master Header Bit Mask, Part 2
Byte 4 ROV Byte 0

Byte 5 ROV Byte |

Byte 6 ROV Byte 2

Byte 7 ROV Byte 3

Header Bit Mask

Bit 0 Master 0 Affected
Bit | Master | Affected
Bit 2 Master 2 Affected
Bit 3 Master 3 Affected
Bit 4 Master 4 Affected
Bit 5 Master 5 Affected
Bit 6 Master 6 Affected
Bit 7 Master 7 Affected

NOTE: Masters affected by the ROV contained in this command.

16 Master Header Bit Mask, Part |

Bit 0 Master 0 Affected
Bit | Master | Affected
Bit 2 Master 2 Affected
Bit 3 Master 3 Affected

ACR Programmer’s Guide 265

BINARY HOST INTERFACE

Bit 4 Master 4 Affected
Bit 5 Master 5 Affected
Bit 6 Master 6 Affected
Bit 7 Master 7 Affected

NOTE: Masters affected by the ROV contained in this command.

16 Master Header Bit Mask, Part 2

Bit 8 Master 8 Affected

Bit 9 Master 9 Affected

Bit 10 Master 10 Affected
Bit 11 Master || Affected
Bit 12 Master 12 Affected
Bit 13 Master |3 Affected
Bit 14 Master 14 Affected
Bit 15 Master |5 Affected

NOTE: Masters affected by the ROV contained in this command.

Usage Example
This example uses the following IEEE conversions:

0.500 = 3F000000

0.123 = 3DFBE76D

07 08 00 00 00 00 00 3F Set Master 3 ROV to 0.5

07 05 00 00 6D E7 FB 3D Set Master 0 and Master 2 ROV to 0.123

Application: Binary Global Parameter Access

Also see Binary Peek and Binary Poke commands.

266 ACR Programmer’s Guide

BINARY HOST INTERFACE

Description
Global user variables (see Variable Memory Allocation) can be read and set using the Binary Peek and Poke
Command interface.

NOTE: A maximum word count of 255 can be used when using the Binary Peek and Poke
Command interface.

Controller System Pointer
Address
ACR1200 0x400008
ACR1500 0xC08008
ACR2000 0x400008
ACR8000 0x403E08
ACR80I10 0x403E08
ACR8020 0x400009

Reading Global Variables

Peek at the System Pointer Address (see above information) to receive the Global_Variable_Address. If the
returned address is zero, there are no dimensioned global variables (see the DIM command). If the returned
address is other than zero, peek at this address to receive the number of dimensioned global variables.

Read a global variable P(index) using the following addressing scheme for Peek:
Peek_Address = Global_Variable_Address + | + (iindex *2)
Where index = 0 to (number of dimensioned global variables — 1).

Even though global variables are stored on-board as floating point 64 (FP64) numbers, they are returned as IEEE32
numbers (Conversion Code 0x01).

Setting Global Variables

Peek at the System Pointer Address (see System Pointer Address on previous page) to receive the
Global_Variable_Address. If the returned address is zero, there are no dimensioned global variables (see the DIM
command). If the returned address is other than zero, peek at this address to receive the number of dimensioned
global variables.

To prevent corruption of user memory, always verify P(index) is within the dimensioned global variable range
before performing a POKE command. Set a global variable P(index) using the following addressing scheme for
Poke:

Poke_ Address = Global_Variable_Address + | + (iindex *2)

ACR Programmer’s Guide 267

BINARY HOST INTERFACE

Where index = 0 to (number of dimensioned global variables — 1).

Even though global variables are sent as IEEE32 numbers, they are stored on-board as floating point 64 (FP64)
numbers (Conversion Code 0x01).

268 ACR Programmer’s Guide

TROUBLESHOOTING

CHAPTER 6
Troubleshooting

ACR Programmer’s Guide 269

TROUBLESHOOTING

Troubleshooting

When a system does not function as expected, the first thing to do is identify and isolate the problem. When this
is accomplished, steps may be taken toward resolution.

Problem Isolation

The first step is to isolate each system component and ensure that each component functions properly when it is
run independently. This may require dismantling the system and putting it back together piece by piece to detect
the problem. If additional units are available, it may be helpful to exchange them with the system’s existing
components to help identify the source of the problem.

Determine if the problem is mechanical, electrical or software related and note whether it can be recreated or is
repeatable.

Random events may appear to be related, but they are not necessarily contributing factors to the problem.

There may be more than one problem. Isolate and solve one problem at a time.

Information Collection

Document all testing and problem isolation procedures. If the problem is particularly difficult to isolate, be sure to
note all occurrences of the problem along with as much specific information as possible. These notes may come in
handy later and will also help prevent duplication of testing efforts.

Once the problem is isolated, refer to the table below, Common Problems and Their Solutions. If instructed to
contact Parker Technical Assistance, please refer to Technical Assistance for contact information.

Troubleshooting Table

This section includes a table of common problems and their solutions. For locations of the ACR7000 or IPA
status LEDs, see their Hardware Installation Guides. This table only lists problem LED indications.

PROBLEM CAUSE / VERIFICATION SOLUTION

Power Status LED

Power status There is no power to the controller. Check for disconnected power cable.

LED is not on
Check for blown fuse.

Verify the power source meets requirements
outlined in the Hardware Installation Guide.

270 ACR Programmer’s Guide

PROBLEM CAUSE / VERIFICATION

TROUBLESHOOTING

SOLUTION

Power status
LED is steady red

There is inadequate power to the
controller.

Verify the power source meets requirements
outlined in the Hardware Installation Guide.

Remove all cables except power.

If the LED turns green after removing the
cables, re-attach the cables one at a time to
determine which cable or device is causing
the problem.

If the LED does not turn green, contact
Parker Technical Assistance. The unit is
likely damaged.

Power status Controller encountered error during boot
LED is alternating

red/green

process.

Contact Parker Technical Assistance. The
unit will likely need to be sent back to the
factory for repair.

Axis Status LED

Axis status LED
is not on

Axis is disabled with no fault (normal state
for steppers or servo motors).

Enable drive.

Axis status LED
is red

Axis fault. Motion on this axis is disabled
during a fault state.

NOTE: The LED illuminates red whenever
the drive fault input is activated (drive
faulted, no axis cable connected, etc.).

Check for faulted drive. Enable drive. Refer
to Operation section of this table.

Check for axis cable disconnected.

Ethernet Status LED

Ethernet No Ethernet link is detected.
link/activity:

yellow LED is off

Check for the correct type of cable and try
different Ethernet cable.

Ethernet speed:
green LED is
flashing

Ethernet port is getting intermittent 10
Mbps and 100 Mbps connection.

Verify the Ethernet port on the PC is
functioning correctly.

Verify the ACR controller Ethernet port is
functioning correctly with different PC.

Ethernet Communication

Communication
Error: 11003

Wrong computer IP address and/or subnet
mask.

Change IP address of computer in Network
Settings.

Communication Same IP address as ACR.

Error: 10061

Change IP address of computer in Network
Settings.

ACR Programmer’s Guide 271

TROUBLESHOOTING

PROBLEM CAUSE / VERIFICATION

SOLUTION

Communication Wrong IP address configured in PMM

Enter in correct ACR IP address in

Error: 11010 communication window. controller’s connection window. Check
IPA’s dial switches for IP address.
In PMM, click Ping. If ping fails, see
Connecting to the Controller.

Operation

Drive will not Motion Enable Input is open. Check if 24 VDC is applied to the Motion

enable Enable Input.

Verify by checking Status Panels = Bit
Status = Miscellaneous Control Flags.

Bit 5646 indicates status of 24 VDC Motion
Enable Input.

Bit 5645 indicates if Motion Enable Input has
been latched.

If both 5645 and 5646 are set, reapply 24
VDC to Motion Enable Input.

If only 5645, then SET 5647 to clear 5645
latch.

Encoder signal fault and/or encoder signal
is lost.

Verify by checking Status Panels = Bit
Status = Encoder Flags.

NOTE: Each encoder input has specific flag
sets.

For Encoder Signal Fault: Check for incorrect
termination. Noise in the system can cause
missed and/or false encoder feedback values.

For Encoder Signal Lost: Check feedback
cables.

Amplifier/drive is not powered on.

Check if power is applied to the
amplifier/drive.

Many drives have separate control and motor
power. Check fuses/breakers in cabinet and
estop/safety circuit.

Excess position error (EXC). Motor has
exceeded maximum position error.

Verify by checking Status Panels = Bit
Status = Axis Flags = Primary Axis Flags.

Each axis is indicated by Bit “Not Excess
Error.”

272 ACR Programmer’s Guide

Increase the EXC setting.

PROBLEM

CAUSE / VERIFICATION

TROUBLESHOOTING

SOLUTION

Axis Enable output or Axis Fault input are
wrong.

Use Configuration Wizard to select Parker
drive used, or select Other and set NO or
NC for Enable and Fault.

Compax3 with ACR7xC: Drive X4/3 STO
Enable input open. Check machine safety
circuit is not open.

C3 X4/3 requires 24 VDC to enable. Apply
and then enable from ACR7xC controller
with DRIVE ON command.

Compax3 with ACR7xC: Drive
configuration incorrect for Axis type
(External Stepper or External Servo).

Check Compax3 Drive configuration for Axis
type: [10T 10 Position Control Step/Dir 5V
for Stepper, Torque Control Standard Mode
for Servo.

PD-xxP with ACR7xC: Drive configuration
incorrect for Axis type (External Stepper
or External Servo).

Check P series drive configuration Control
Mode (Pulse Input for Stepper, Analog
Torque for Servo).

PD-xxP with ACR7xC: Inputs need to be
pulled high to 24 VDC.

For 71-032478 cable, connect White with
Blue Stripe to DC reference, Blue wire to
+24 VDC.

Drive will not
enable (cont.)

Drive faulted

PMM =2 Status Panels = Motion Status
Panel.

For ACR7xC controller, check drive for
faults/errors/alarms.

For ACR7xV or IPA, see Bit Status = Servo
Drive Flags.

For ACR7xT, see Bit Status = Stepper Drive
Flags.

Drive will enable,
but will not hold
torque

Incorrect configuration for motor
attached.

Correct the configuration for servo or
stepper through the Configuration Wizard.

For ACR7xC, check drive configuration or
stepper drive current settings.

Servo motor running open loop.

Verify that the drives are running open
loop: Status Panels = Bit Status = Axis Flags
= Primary Axis Flags.

Each axis is indicated by Bit “Open Servo
Loop.”

Disable drive and clear the appropriate bit.

Tuning gains are not set correctly.

Use PMM'’s Servo Tuner (Tools = ServoTuner
= Select Axis).

ACR Programmer’s Guide 273

TROUBLESHOOTING

PROBLEM

CAUSE / VERIFICATION

SOLUTION

Check if the tuning gains are set too low:
Status Panels = Numeric Status = Axis
Parameters = Servo Parameters.

Torque limit is not set correctly.

Verify torque limit setting: Status Panels =
Numeric Status = Axis Parameters = Limit
Parameters =2 Plus/Minus Torque Limit.

Example: TLM XI indicates torque is limited
to 10% of drive motor capacity for axis X.

Drive will enable,
but loads drops

Brake is released before motor is enabled.

Delay motion after enabling by brake’s
release time.

ACR7xV: Set Brake Relay Delay on Enable
(P28686 for Axis 0).

ACR7xC: Brake would be released by drive,
check drive settings.

IPA: Set C41 OUTBD (Output Brake Delay)
in milliseconds.

Load drops when

drive disabled

Motor is disabled before brake engages.

Delay disabling motor by brake’s set time.

ACR7xV: Brake Delay after Disable (P28687
for Axis 0).

ACR7xC: Brake would be set by drive, check
drive settings.

IPA: Set C103 INUFD (User Fault Delay) in
milliseconds.

Drive will enable,
but motor will
not move

Stepper output motion does not occur.
ACR controller not configured for stepper
output in Configuration Wizard.

Correct configuration for stepper through
Configuration Wizard. Tuning gains must
remain at default values: PGAIN
0.002441406; IGAIN, ILIMIT, IDELAY,
DGAIN, DWIDTH, FFVEL, FFACC, and
TLM=0.

Axis encountered limits.

Verify: Status Panels = Bit Status = Axis
Flags = Quinary Axis Flags.

Each axis is indicated by Bit
“Positive/Negative End-of-Travel Limit
Encountered.”

274 ACR Programmer’s Guide

Clear the appropriate Positive/Negative End-
of-Travel Limit Encountered Bit.

Clear any Master Kill All Motion Request Bits
and Axis Kill All Motion Request Bits. PMM
- Status Panels = Motion Status = Clear All
Kills.

PROBLEM

CAUSE / VERIFICATION

TROUBLESHOOTING

SOLUTION

Check PMM Configuration Wizard’s EOT
polarity is correct.

Master Kill All Moves request is active.

Verify: Status Panels = Bit Status = Master
Flags.

Each master is indicated by Bit “Kill All
Moves Request.”

Clear the appropriate Master Kill All Moves
Request Bit.

Also clear all associated Slave Kill All Motion
Request Bits.

Axis Kill All Motion Request is active.

Verify: Status Panels = Bit Status = Axis
Flags = Quaternary Axis Flags.

Each axis is indicated by Bit “ACR9000 Kill
All Motion Request.”

Clear the appropriate Axis ACR7000 Kill All
Motion Request Bit.

PMM = Status Panels = Motion Status Panel
= Clear All Kills.

Master in feedhold or feedholding state.

Verify: Status Panels = Bit Status = Master
Flags.

Each master is indicated by Bit “In
Feedhold or Feedholding.”

Set the appropriate Cycle Start Request Bit.

Slave axis not attached to master.

Check the configuration by going into the
correct PROG level. Type ATTACH.

Correct the configuration through the
Configuration Wizard and download the
setup code.

Jog or Master Velocity set to zero (no
Master Profile).

Check these parameters by going into the
correct PROG level. Type VEL or JOG
VEL.

Assign Velocity or Jog Velocity values.
Example: VEL | or JOG VEL X I.

Commanded feedrate override set to zero.

Check the feedrate override by going into
the correct PROG level. Type FOV.

Assign the appropriate feedrate override
value.

Example: FOV | indicates a master feedrate
of I.

Brake is not released.

Check wiring for brake and brake voltage
requirements. Confirm brake voltage is not
backwards.

Torque Limit is set to zero (servo).

Assign the appropriate Torque Limit value.

ACR Programmer’s Guide 275

TROUBLESHOOTING

PROBLEM CAUSE / VERIFICATION SOLUTION
Verify Torque Limit setting by Status Panels ~ Example: TLM XI indicates torque is limited
- Numeric Status = Axis Parameters > to 10% of drive motor capacity for axis X.
Limit Parameters = Plus/Minus Torque Limit.

Improper Feedback device counts are missing. Check the feedback cable and connections.

operation

Check the amplifier to send back correct
signals.

Servo motors
make audible
noise

Incorrect tuning gain settings.

Check tuning gain settings.

Incorrect motor commutation.

Verify drive settings, motor connections.

For ACR7xV multi-axis servo, motor
power and feedback cables switched.

Confirm motor and feedback cables for each
axis.

Brake not released.

If motor has brake or load has brake, check
its releasing when drive enables. Disconnect
load, power brake directly, motor shaft
should be free to turn.

Contamination/dry mechanics.

Remove motor to confirm it is the
mechanics. Check gearhead for
contamination. Check leadscrew and square
rail bearings for lubricant. See
manufacturer’s recommendations.

Mechanical misalignment.

Check load, bearings, ballscrew for
misalignment. Disconnect load from motor
to confirm if it is the mechanics.

Stepper motors
hot

Stepper motors are running at full current
when in motion and will be hotter
compared to servos.

Step motors can be hot to touch and safety
(burn) hazard, shroud/guard motor from
human contact.

Wrong motor current set.

Check step motor current settings.
PMM = Config Wizard - Drive/Motor.

Confirm max case temperature does not
exceed motor rating.

Motor set for max current at 100%.

Enable Standby Current Reduction. This will
reduce holding torque when not commanding
motion.

Motor current too high for ambient
temperature.

276 ACR Programmer’s Guide

Lower motor current for steady state case
temperature.

PROBLEM

CAUSE / VERIFICATION

TROUBLESHOOTING

SOLUTION

Motor current too high for no heat-sink.

Lower motor current for steady state case
temperature.

Stepper motors
make audible

Contamination/dry mechanics.

Remove motor to confirm it is the
mechanics. Check gearhead for

noise contamination. Check leadscrew and square
rail bearings for lubricant. See
manufacturer’s recommendations.
Mechanical misalignment. Check load, bearings, ballscrew for
misalignment. Disconnect load from motor
to confirm if it is the mechanics.
One of the two step motor phases are not Check motor connectors. Re-terminate
connected. motor connection.
Check motor resistance when For eight-lead step motors, check that the
disconnected from drive. A phase and B center taps are connected.
phase should have similar resistance.
Replace step motor if resistance check
indicates motor short.
Motor not Velocity commanded exceeds Master Confirm in terminal emulator at motion
moving at velocity limit VEL LIMIT. program. Example: VEL LIMIT.

correct velocity

Axis max velocity is limiting MAXVEL.

Check the feedrate override by going into
the correct PROG level. Type FOV.

Confirm in terminal emulator at motion
program. Example: MAXVEL X or AXISO
MAXVEL.

Assign the appropriate feedrate override
value. Example: FOV | indicates a master
feedrate of I.

Incorrect torque
limit (servo only)

Verify Torque Limit setting by Status Panels
- Numeric Status = Axis Parameters >
Limit Parameters = Plus/Minus Torque Limit.

Assign the appropriate Torque Limit value.
Example: TLM X1 indicates torque is limited
to 10% of drive motor capacity.

“Not valid while
in motion”
message received

Tried to enable/disable axis while motion is
commanded.

Check if axis is making coordinated motion:
Status Panels =2 Bit Status - Master Flags.
Each master is indicated by Bit “In Motion.”

Check if the axis is making jog motion: Status
Panels =2 Bit Status = Axis Flags = Primary
Axis Flags. Each axis is indicated by Bit “Jog
Active.”

Motion stops
unexpectedly

Axis has encountered soft limits.

Jog off the limit. Clear the appropriate
Positive/Negative Soft Limit Encountered Bit.
Clear the associated Master Kill All Moves

ACR Programmer’s Guide 277

TROUBLESHOOTING

PROBLEM

CAUSE / VERIFICATION

SOLUTION

Verify: Status Panels = Bit Status = Axis
Flags = Quinary Axis Flags. Each axis is

indicated by Bit “Positive/Negative Soft
Limit Encountered.”

Request Bits. PMM - Status Panels - Motion
Status = Clear All Kills.

Axis has encountered Positive/Negative
End-of-Travel (EOT) Limits.

Check if EOT limits have been
encountered: Status Panels = Bit Status 2>
Axis Flags = Quinary Axis Flags. Each axis is
indicated by Bit “Positive/Negative EOT
Limit Encountered.”

Clear the appropriate Positive/Negative End-
of-Travel Limit Encountered Bit. Clear any
Master Kill All Motion Request Bit and any
Axis Kill All Motion Request Bits.

I/Os not working

Positive/Negative End-of-Travel (EOT)
Limits not working.

Check the wiring of the limits, referring to
their respective hardware installation
guides.

Check if the Positive/Negative EOT Limits
are enabled: Status Panels = Bit Status 2
Axis Flags = Quinary Axis Flags. Each axis is
indicated by Bit “Positive/Negative EOT
Limit Enable.”

Check that the associated inputs toggled:

If using onboard I/O: Status Panels = Bit
Status = Onboard /0 = Onboard 110 2>
Inputs.

If using expansion I/O: Status Panels = Bit
Status = EtherNet/IP Scanner Flags = Node xx
Digital Inputs.

Check Configuration Wizard for inputs
assigned as EOTs.

NOTE: A triggered output will create a
contact closure, not a voltage source.

I/O not working
properly

Incorrect I/O wiring.

Check wiring and external circuitry. Refer to
the Hardware Installation Guide.

Stepper motor
losing position

In vertical applications or applications
where a spring/applied force is resisting
motion, when the step motor stops, motor
current is reduced to standby current,
reducing holding torque.

In PMM 2 Configuration Wizard = Motor,
turn off Standby Current Reduction.

Step motor stalling. Motor does not have
torque for the load/acceleration/friction or
speed is beyond motor’s performance.

Reduce load, reduce acceleration (change
motion profile to trapezoidal), reduce
velocity, use larger motor, review motor
sizing.

Mechanical friction may be preventing
accurate positioning, though motion would
be repeatable.

278 ACR Programmer’s Guide

If you have encoder on motor or load, turn
on Position Maintenance mode to enable end
of move correction.

PROBLEM

CAUSE / VERIFICATION

TROUBLESHOOTING

SOLUTION

Stepper motor
moving at
standstill

Confirm other programs are not running
or other motion is not being commanded.

See Status Panels = Motion Status Panel. Also
see Status Panels = Servo Loop Status.

If step motor has encoder and excess
position error is set in Fault menu in
Configuration Wizard, Position
Maintenance is turned on.

Within program, at that section, consider
turning PM off or adjusting Position
Maintenance settings.

Servo motor
runs away

Analog output / encoder multiplier
mismatch.

Verify analog output by Status Panels 2
Numeric Status = Object Parameters = DAC
Parameters.

Verify encoder input by Status Panels 2>
Numeric Status = Encoder Parameters =
Encoder Parameters = Encoder Position.

If encoder feedback is correct for
appropriate direction, change “DAC GAIN”
to the opposite value.

If encoder feedback is not correct for
appropriate direction, change “ENC MULT”
to the opposite value.

Unstable servo loop if drive is in velocity
mode.

Check the servo amplifier is in analog torque
mode.

Unstable servo loop gains.

Servo gains too high. Can be issue if load has
decreased significantly. Retune with PMM 2>
Tools = Servo Tuner.

Motor miswiring to drive.

Confirm motor and drive wiring and motor
configuration. Use servo drive alignment
procedure.

Encoder disconnected from motor.
Disable drive but have control power (for
feedback power), move motor or load and
encoder counts should be changing
incrementally as it is moved.

Replace motor with spare. Contact local
sales channel to set up a repair for the motor
or linear motor stage.

Amplifier has an analog input offset.

Correct the analog offset in the amplifier.

Electrical noise.

Reduce electrical noise or move the product
away from the noise source.

Improper shielding.

Use shielded, twisted pair wiring for encoder
inputs, DAC/stepper outputs, and ADC
inputs.

Improper wiring.

Check wiring for shorts, opens, and mis-
wired connections.

ACR Programmer’s Guide 279

APPENDIX A: CONNECTING TO THE CONTROLLER

APPENDIX A
Connecting to the Controller

280 ACR Programmer’s Guide

APPENDIX A: CONNECTING TO THE CONTROLLER

Connecting to the Controller

Connect one end of an Ethernet cable to the PC. Connect the other end to one of the controller’s two R|-45
socket connectors. The two RJ-45 sockets can be used interchangeably and have the same IP address.

Turn on Control Power to the ACR/IPA.

The ACR7000 has a programmed IP address, whereas the IPA’s is set via rotary switches. The default address is
shown below. This address can be changed after initial communication is established. The PC will need to be
assigned a compatible |IP address to communicate with the controller. These steps are detailed below.

The factory assigns the following to each ACR7000 and IPA.

IP Address Subnet Mask (fixed)
192.168.100.01 255.255.255.0

Setting the IP Address and Subnet Mask—PC

Set the IP address and Subnet mask for your PC. These instructions are for Windows 10 users. If you have
another Windows version, the steps may vary. Please consult your Network Administrator.

I. Open the Windows Search tool (tap the Windows key).
2. Type Change Ethernet Settings.
3. Click Change Ethernet Settings.

0 0% Filters ~

Best match

Change Ethernet settings

Systern settings

AR change ethernet s

4. Select Change adapter options.

ACR Programmer’s Guide 281

APPENDIX A: CONNECTING TO THE CONTROLLER

Settings

@ Ethernet

Ethernet

Unidentified network
No Internet

Related settings
Change adapter options

-
Change advanced sharing options

Network and Sharing Center

Windows Firewall

5. Select Ethernet. More than one Ethernet connection may be displayed. When a cable is plugged into the
controller and PC and the controller is powered on the Ethernet connection will show as “Unidentified

network”.

E’ Metwork Connections

ul IEF <« All Control Pa... » Metwork Connections

Organize +

Bluetooth Metwork
Connection
Mot connected

P

x

Ethernet 2
Unidentified network
Intel(R) Ethernet Connectio...

k-
L
Mpcap Loopback Adapter

> _ Disabled
aET MNpcap Loopback Adapter

fPr

6. Click Properties. Administrator rights may be required.

282 ACR Programmer’s Guide

A
e

(W

® @

W
il

Search Metwork

v D

Ethernet
Disabled
AGN Virtual Network Adap...

Ethernet 3
Metwork cable unplugged

Wi-Fi

APPENDIX A: CONNECTING TO THE CONTROLLER

[.E.] Ethernet 2 Status
General
Connection
IPv4 Connectivity: Mo network access
IPvi Connectivity: Mo network access
Media State: Enabled
Duration: 02:48:37
Speed: 100.0 Mbps
Details. ..
Activity
Sent — %! —— Received
Packets: 24,750 | 0
GProperh’es GDisable Diagnose
L T4 Close
7. Select Internet Protocol Version 4 (TCP/IPv4).
8. Click Properties.
U Ethernet 2 Properties x
Metworking Sharing
Connect using:
[? Intel{R) Ethemet Connection [218-LM
Configure...

This connection uses the following tems:

E3 Client for Microsoft Networks ~
’:]? File and Printer Sharing for Microsoft Metworks

43 AGN Fitter Interface (LWF)

A Npcap Packet Driver (NPCAP)
Q05 Packet Scheduler

Y Intemet Protocal Version 4 (TCP/1Pwd)

[5 Microsoft Network Adapter Muttiplexor F‘M W
£ >
Install.. Uninstall

Description

Transmission Control Protocol/Intemet Protocol. The default
wide area netwark protocol that provides communication
across diverse interconnected netwarks.

oK Cancel
\._j

ACR Programmer’s Guide 283

APPENDIX A: CONNECTING TO THE CONTROLLER

9. Click the radio button next to Use the following IP address.

10. Enter an IP address with the same first three octets as the default ACR7000 IP address (192.168.100).
The last octet of the ACR7000 is “1” by default. Select a different number for the PC—the valid range is
| to 254. Using 0 or 255 is not valid. In the example the IP address is set to 192.168.100.222. Set the
Subnet mask value to 255.255.255.0. Your window should look like the following:

Internet Protocel Version 4 (TCP/IPvd) Properties b4
General

‘You can get IP settings assigned automatically if your network supports
this capability, Otherwise, you need to ask your network administrator
for the appropriate IP settings.

(C) Obtain an IP address autematically
(®) Use the following IP address:

" 1P address: 192 . 165 . 100 . B8
Subnet mask: 255,255 .285. 0 |

3in DS server address automatically

(®) Use the following DNS server addresses:

Preferred DNS server: l:l
Alternate DNS server: l:l

[Jvalidate settings upon exit Aivanced

oK | Cancel

I1. Click OK. It is now safe to close these windows.

NOTE: It is good practice to isolate the ACR/IPA and related devices on their own subnet so that
their performance is not affected by high volume network traffic.

Verifying the IP Address

The following verifies that Ethernet is set up correctly.

12. In Parker Motion Manager, the IP Address field is the value for the controller.
13. On the Connect screen, click Connect.

In the Terminal Emulator, type VER. If Ethernet is set up correctly, the Terminal Emulator will report the
controller’s firmware version information.

Troubleshooting

Having problems connecting? This section covers some easy-to-execute troubleshooting options to fix common
connection problems. This is not a procedure, but rather just of list of things to check.

. Make sure the unit is powered on with Control Power.

284 ACR Programmer’s Guide

2.

APPENDIX A: CONNECTING TO THE CONTROLLER

Make sure the Ethernet cable is connected from the controller to the PC. The LEDs will indicate the
hardware connection:

) .l”—l"m

If there are no lights, unplug the Ethernet cable and plug it in again. Check the lights again. If they do not
turn on, try another Ethernet cable.

Check that another device on the network does not have the same IP address.

Disconnect the Ethernet cable. Click Ping in PMM. Ping should fail. If it does not, connect the PC directly
to the controller without going through a switch. Check that the PC’s IP address is different than the
controller’s address. Try clicking Ping again and if successful, click Connect.

Confirm the PC does not have VPN running—close it if it is.

Cycle power on the controller and restart PMM. Note that Ethernet communications are available about
20 seconds after cycling power on the controller.

The IPA has rotary dial switches to set the IP address. If set to 99, then the IP address is set based on the
IP command. If unable to connect, change the dial switches to | and 0, changing the IP address back to
the default of 192.168.100.1. Update PC’s IP address per above and try connecting again. After
connection, you can check the IPA’s intended IP address using the TP command.

NOTE: ACR7000 series products do not have dial switches. If you change the IP address from the

default, we recommend labeling the controller with the new IP address on the front or
side of the unit.

Lost the ACR’s IP Address?

There are multiple ways to find the IP address of an ACR whose address has been lost. It is also possible to reset
the controller’s memory without software, useful if the address cannot be found.

Finding an ACR with the Scan Tool

This procedure is the simplest and requires no additional software beyond PMM.

I
2.

Open PMM.

Make sure the PC is plugged into the ACR/IPA via Ethernet. The connection should be direct—there
should be no switch between the ACR/IPA and the PC.

Make sure the controller’s Ethernet lights are on.

In PMM, click Tools = Scan IP Address.

The Scan IP Address dialog will appear. It will list IP addresses available for connection from this PC.

ACR Programmer’s Guide 285

APPENDIX A: CONNECTING TO THE CONTROLLER

Scan IP Address >
Instructions:
1. Power off the controller

2. Connect PC via ethernet directly to ACR7000 or IPA (not through ethernet hub/switch).

3. Power on controller.

IP Address Physical Address
192.168.100.1 34-15-13-97-25-f4
172.26.128.8 00-0c-29-fe-c8-dd
172.26.128.14 18-66-da-94-3e-37
172.26.128.21 00-0c-29-fe-c3-e8
172.26.128.24 00-0c-29-fe-c9-e8
172.26.128.55 14-18-77-26-81-d2
172.26.128.180 fO-1f-af-d2-41-40
172.26.128.250 08-3b-0e-bb-18-3a
172.26.128.251 00-0c-28-3a3-34-37
172.26.120.8 00-0c-29-4b-95-24d
172.26.135.254 el-3f-b9-c2-b3-40
Refresh Ok

6. The IP address of the ACR controller is usually at or near the top. IP addresses for IPAs are highlighted
in orange, but this is not done for ACR7000 series controllers. Click Refresh to scan again or click Ok to
select that IP address for use in the project.

7. Not sure which IP address is the right one? Try turning off Wi-Fi.

Finding an ACR Using WireShark

This procedure uses WireShark, a popular third-party tool for recording network traffic that is free and open-
source. An understanding of WireShark is needed to use this procedure, so it is not recommended for novice
users.

NOTE: WireShark is a third-party tool and is not maintained or endorsed by Parker. These
instructions are provided for the convenience of users who are familiar with and prefer to
use WireShark.

. Make sure the PC is plugged into the ACR/IPA via Ethernet. The connection should be direct—there
should be no switch between the ACR/IPA and the PC.

2. Open WireShark (may need to run as Administrator) and monitor the PC’s Ethernet port. Filter for ARP
commands.

3. Cycle power on the controller. After it powers on, it will broadcast a gratuitous ARP, which will indicate
its IP address.

4. Label the controller.

286 ACR Programmer’s Guide

APPENDIX A: CONNECTING TO THE CONTROLLER

Resetting the ACR74T via Hardware

This procedure is a way to recover the ACR74T in the event the IP address cannot be found. The procedure
wipes memory on the controller and is equivalent to a FLASH RES.

I. Remove power and disconnect all cables.

2. Remove cover taking electronic static discharge precautions (ESD wrist strap, foot strap and ideally a
jacket).

3. Locate JUI jumper on the control board (board with the Ethernet port) and short the two sides together

while turning on control power. The pads can be shorted using copper tap, ground strap or a small piece
of wire (ideally stranded).

4. Connect with terminal software (such as PuTTY or Hyperterminal) to 192.168.100.1 port 5002. Type
clear -user, press Enter and cycle power. This erases the controller’s programs and non-volatile
settings back to factory default. The IP address will be reset to default (192.168.100.1). Re-connect with
PMM and re-download the project.

5. Use the TP command and ESAVE to change the IP address. Cycle power for the new address to take

effect. Change the PC’s IP address if the first three octets have changed.
6. Label the controller.

ACR Programmer’s Guide 287

APPENDIX B: ETHERNET BASICS

APPENDIX B
Ethernet Basics

288 ACR Programmer’s Guide

APPENDIX B: ETHERNET BASICS

Ethernet Basics

The appendix contains supplemental materials not directly related to any specific ACR series controller discussion.

IP Addresses, Subnets and Subnet Masks

The factory assigns an IP address of 192.168.100.1 and a subnet mask of 255.255.255.0 to each controller. Before
adding the controller to your network, assign it an IP address and subnet mask appropriate for your network.

Caution—Talk with your Network Administrators before assigning an IP address or subnet
mask to a controller. They can provide you with an available IP address, as well as which
y subnet mask is appropriate for your particular network configuration.
A Isolate the controller and related devices on their own subnet. The high-volume traffic on
networks could affect the ACR controller's performance. A closed network restricts the flow
of traffic to only the controller and related devices.

The IP address and subnet mask you assign each controller determines the subnet to which the controller belongs.
To manage the flow of data across a network, it can be divided into subnets, smaller networks within a network,
to provide more efficient delivery of data.

IP Addresses

An IP address is an identifier for a device on a TCP/IP network. Every device connected to the Internet must use a
unique IP Address.

The IP address is comprised of a 32-bit binary address that is subdivided into four 8-bit segments known as octets.
Because people do not generally think in binary, the address is expressed in dotted decimal format. Each binary
octet is converted to a decimal number ranging from 0 to 255, with each octet separated by a decimal point. For
example, an IP address in dotted decimal format looks like the following:

192.168.100.120

The address consists of a network ID and a host ID. The network ID acts as a general address, like a zip code.
The host ID is the address for a specific device within the network, like a home address. Most IP addresses fall
into one of the following address classes:

e Class A range. The first 8 bits are for the network ID; The remaining 24 bits are for the host ID.
e Class B range. The first 16 bits are for the network ID; The remaining |16 bits are for the host ID.
e Class C range. The first 24 bits are for the network ID; The remaining 8 bits are for the host ID.

The number of bits used for the network ID determine how many hosts a given address can support. Class A
networks provide a small number of network IDs but a very large number of host IDs and class C networks
provide a huge number of network IDs but a small number of host IDs.

ACR Programmer’s Guide 289

APPENDIX B: ETHERNET BASICS

Before a computer or router can send data, it has to identify the network ID through the address class. Each class
is assigned a range of numbers.

Address First octet in Excluded from Internet, allowed
Class dotted decimal for Intranet
format begins
with
A 0to 127 10.0.0.0 to 10.255.255.255
127.0.0.0 to 127.255.255.255
B 128 to 191 172.16.0.0 to 172.31.255.255
C 192 to 223 192.168.0.0 to 192.168.255.255

Certain IP addresses have particular meanings and are not assigned to host devices:

e Using zeroes as a host ID signifies the entire network. For example, the IP address of 192.168.0.0
indicates network 192.168 where specific hosts can be found.

e Using 255 in an octet indicates a broadcast, where data is sent to all host devices on a network. For
example, the IP Address 192.168.255.255 will broadcast data to all host devices in that network.

Suppose you have 6 computers in a class C network. All share the same network address 192.168.10 in the first
three octets. The final octet for each computer is different, and represents the host ID.

Network 192.168.10.0

To 192.168.10.120 f|———»

I
il \

— —l — — —
— — — — —
o o Q o Q
I Hosts |

Some addresses are reserved for private networks or intranets, where networks are masked or protected from
the Internet:

e 10.0.0.0 to 10.255.255.255
e 172.16.0.0 to 172.31.255.255
e 192.168.0.0 to 192.168.255.255

For additional information on private IP addresses, refer to |IEEE specification RFC 1918 Address Allocation for
Private Internets. You can view it at http://www.fags.org/rfcs/rfc1918.html.

290 ACR Programmer’s Guide

http://www.faqs.org/rfcs/rfc1918.html

APPENDIX B: ETHERNET BASICS

Subnets

As networks increase in size, it becomes more complex to deliver information. Subnets provide a logical way to
break apart network addresses into smaller, more manageable groups. There are additional benefits including
more efficient communications between devices and increases to the overall network capacity.

Subnet IDs

When sending data from one host to another, routers use the network ID (see above) in the IP address to locate
the network. On finding the network, the network is searched for the specific host. With a great deal of network
traffic this proves cumbersome. Under these circumstances, an IP address does not provide enough information
for routers and host devices to efficiently locate a host device.

To provide another level of addressing, some of the host ID is borrowed to create a subnet ID. The subnet ID
allows you to logically group devices together (often related to a specific network segment). Once data arrives at
the network, the subnet ID allows routers or host devices to locate the appropriate network segment and then
the host.

Internet

Network | Subnet | Host
1D ID I

Network | Subnet | Host

1. Network ID used to D 1D ID
locate the network

2. Subnet ID used to locate
subnet on the network

)

Network | Subnet | Host
1D 1D 1D

3 e Host ID to locate the
host device on subnet

Suppose you have a class C network, comprised of 6 computers. All share the same network ID 192.168 but are
divided into two subnets. Three computers use 192.168.10, where 10 is the subnet ID; the remaining three use
192.168.5, where 5 is the subnet ID.

Subnet Masks

A subnet mask determines how many bits after the network ID are used for the subnet ID. As the subnet ID
increases, the number of host IDs available for that network decrease. Similarly, a smaller subnet ID allows you to
increase the number of hosts on the network. For simplicity, this discussion only looks at complete octets in
dotted decimal format and does not explore converting partial masks from binary to decimal.

ACR Programmer’s Guide 291

APPENDIX B: ETHERNET BASICS

What subnet mask to use depends on your network configuration and address class. Where the host ID appears
in the IP address, use a zero in the subnet mask. And where the network ID and subnet ID appear, use 255 in the
subnet mask. Suppose on network 172.20.0.0 (class B) you have to set up a new computer. You assign it
172.20.44.180 as the IP address. As a class B network, the first two octets are reserved for the network ID. The
third octet is reserved for the subnet ID and the last octet is for the host ID. So, using the subnet mask

255.255.255.0 identifies the final octet as the host ID.

Internet Protocol Version 4 (TCP/IPvd) Properties
General

You can get IP settings assigned automatically if your network supports
this capability, Otherwise, you need to ask your network administrator

for the appropriate IP settings.

() Obtain an IP address automatically
(®) Use the following IP address:

IP address: | 172, 20 . 44 . 180 |
Subnet mask: | 255 .255.255. 0 |
Default gateway: | |

Obtain DMS server address automatically

(@) Use the following DMNS server addresses:

Preferred DMS server; |

Alternate DMS server; |

[]validate settings upon exit

Advanced...

Cancel

292 ACR Programmer’s Guide

APPENDIX C: SERVO PID TUNING

APPENDIX C
Servo PID Tuning

ACR Programmer’s Guide 293

APPENDIX C: SERVO PID TUNING

Servo PID Tuning

PMM’s Servo Tuner helps you tune each analog torque servo drive to determine the gains for your application.
This can be done after the Configuration Wizard has been completed and downloaded.

For an introduction to PMM’s Servo Tuner, click here.

Purpose of Tuning

The tuning process determines the PID gains (see explanations below) that provide optimum servo performance

for your electromechanical system (servo motor with attached load). The gains can be adjusted in the Servo
Tuner under Tools in the Explorer. The Servo Tuner graphs motor performance and the gains can then be saved
to memory and optionally the project. Different machines may have different gains based on friction, component

rigidity/compliance and part-to-part variations.

The tuning gains should be adjusted with a move that is significant enough to excite the mechanical load. A slow,
low-speed move cannot excite the mechanical resonances of the load and tuning to such can lead to an unstable

system during higher-speed moves.

After tuning, test a move typical for the machine requirements to confirm system performance and further adjust

gains if necessary.

Test Simple Motion First

This first procedure is important to verify that the system is functional and stable.

v

In PMM's Servo Tuner, select the axis to tune.

Click Enable Drive. The motor should energize and be stable at standstill.

Click Move Settings and change if necessary. Start with a | revolution move in | second to confirm that
the motor starts and stops okay. Distances will be in user units (mm, inches, revs, etc.), so translate |
motor revolution to those units. Leave S-Curve at 25% and Profile Definition as Trapezoidal.

For linear systems, users can check the Return Move box. Set Dwell Before Return to | second.

Click Single Run to do the move once.

Click Sampling and change the selection to Onboard Sampling to allow Repeat Run to work. The Repeat
Run button runs the move repetitively, uploading and graphing motor performance after each move.

Basic Tuning Process

This procedure is for developing a set of gains that will allow the machine to run at optimum performance.

Increase the Excess Position Error setting to 4 revolutions. This can be done in the Configuration Wizard
and then downloaded to controller but will be in user units. This can be changed back after tuning.
Change the move's Profile Definition to Trapezoidal with a distance of | revolution in 0.10 seconds with S-
Curve set to None.

Change Channel 3 from Actual Velocity to Actual Position for the specific axis being tuned.

294 ACR Programmer’s Guide

APPENDIX C: SERVO PID TUNING

4. Adjust the Proportional and Derivative gains per the diagram below, monitoring the Following Error.

NOTE: Be ready to disable or power down the system in event of uncontrolled motion.

Torque Limit can be used to limit the DAC output to the servo. The default is 10, which is the full £10 VDC output
range for the servo output to the drive. The drive’s torque scaling per volt determines the current command and
torque output to which this translates.

In most cases, just the Proportional Gain and Derivative Gain can be iteratively adjusted until overshoot and
oscillatory responses at the end of the move are small and following error is minimal (first-order response). While
doing this, keep looking at the Following Error after the Secondary Setpoint has stopped moving. Following error
during motion is normal but most servo systems only need to settle into the final position quickly.

Save to Controller—After axis has been tuned, click Save to Controller. This stores axis tuning gains to non-volatile
memory.

Save to Project—This allows you to save the tuning gains as part of the project. This can be handy for creating a
backup copy of the project for the machine.

However, if users have multiple machines, different machines’ mechanics will vary; even if the machine and parts
are the same, alignments will be slightly different, seal/wiper friction will be slightly different, the load may be
slightly different, etc. Depending upon the application needs, you may want to re-tune each system starting from
the default values instead of a previous machine’s tuning gains. In this case you would not save the gains to the
project. This situation is uncommon.

You can use File 2 Save As to create a backup for this specific machine with the final tuning gains, leaving the initial
project at the default tuning gains.

For multi-axis systems, you can select a different axis to tune using the Axis pull-down and repeating the
procedure.

ACR Programmer’s Guide 295

APPENDIX C: SERVO PID TUNING

Tuning Process Flowchart

LEGEND

P = Proportional Gains
v = Derivative

Increase P
UNTIL ..

N

T e

- *
Decrease v

UNTIL ... Increase v
v UNTI'L...
ﬁ /V-wwvwwv- Eorp —

Decrease v

UNTIL ...

S —t— Gy

Increase v
F UNTIL ... i

P

Decrease v
UNTIL ...

o

296 ACR Programmer’s Guide

APPENDIX C: SERVO PID TUNING

Explanation of Tuning Gains

Proportional Gain (PGAIN)
This command modifies the value used in the PID algorithm to control proportional gain. The default gain is
0.0024414 (10 volts at 4096 pulses) for all axes. Units are volt/pulse.

Derivative Gain (DGAIN)
This command modifies the value used in the PID algorithm to control derivative gain. The default gain is 0.0001
for all axes.

Integral Gain (IGAIN)

This command modifies the value used in the PID algorithm to control integral gain. Increase the integral gain to
counter any steady-state error after the commanded move is complete. The default gain is 0.0 for all axes. Units
are volts/second/pulse.

NOTE: If ILIMIT is zero the integral will remain off, even if the IGAIN value is set to something
other than zero.

Integral Limit (ILIMIT)
This command modifies the value used by the PID filter to limit the amount of integral term allowed to build up in
the loop. The default gain is 0.0 for all axes. Units are volts/second/pulse.

Integral Delay (IDELAY)

This command modifies the value used in the PID algorithm to control integral delay. The integral delay
determines the amount of time, after a move ends, before integration begins. If the value is set to zero, integration
is active all the time, even during moves. The default gain is 0.0 for all axes. Units are milliseconds.

Torque Limit (TLM)

This is the controller’s analog max output in volts (max is 10 volts = 100%). Users can use this to limit motor
torque—| volt would be a 10% limit. This would be a limit to the servo amplifier in torque mode. The amplifier
setting sets the motor current scaling for 10 volt input to the drive and can be used to correlate the motor torque
to DAC output voltage.

The IPA uses the standard ACR tuning gains (PGAIN, DGAIN, etc.), however with the IPA the feedback resolution
is normalized to 8000 counts per revolution. With other the ACR controllers the gains are feedback resolution-
dependent.

Thus, the IPAs gains will be similar for standard and high-resolution servos. An ACR’s gains will be linearly lower
for higher resolution servos.

Tips and Tricks

Auto Scale is on by default for vertical scaling in PMM. Note the following error values as you are tuning; the
graph may appear larger but that may just be the Auto Scale adjusting based on the data spread.

The position values and following error are in encoder counts.

ACR Programmer’s Guide 297

APPENDIX C: SERVO PID TUNING

Can’t reach speed?
It could be a lack of torque from the motor. Try slowing down acceleration ramp.

Your power supply could be pulling down if it does not have the capacitance or is undersized for the current
needed. Monitor the Bus Voltage parameter for the ACR7xV or the voltage of the servo drive for ACR7xC.

Check that you are not approaching the max speed of the motor. Check the motor speed-torque rating for the
voltage at which it is powered.

Move Settings will automatically calculate based on the distance. If the distance is too short with low
acceleration/deceleration, the maximum velocity may not be reached. Increase the distance or the accel/decel.

Can’t accelerate?
Check the DAC output. If this is 10 volts, check that the amplifier's voltage scaling is correct. If it is, you may
need to:

e Get a larger motor.

o Decrease the system load.

o Decrease friction.

e Lower the acceleration/deceleration for the moves.

Derivative Smoothing
Take away humming noise from the servo motor due to DGAIN. The smoothing parameter is P12402 for Axis 0.

Axis parameter “DGAIN Smooth” is used to subdue the humming noise in the torque loop due to DGAIN. The
default value is 0, which means no smoothing is applied. The user may typically change this value from 0 to 5. The
DGAIN command must be used after changing this parameter to make this change effective.

REM The DGAIN term will be averaged over 4 samples.
P12402 = 4 : REM Turn on smoothing.
DGAIN X0.0001

Advanced Tuning Gains

See PMM online help or Command Reference for further details.

FF Velocity (FFVEL)

This sets the velocity feedforward for an axis. Used to correct for velocity error while moving.

FF Acceleration (FFACC)

This sets the acceleration feedforward gain for an axis. Used to correct for acceleration error while accelerating
or decelerating.

Derivative Width (DWIDTH)

Sets the control derivative sampling rate. Default width is 0. Determines how often following error is sampled
when calculating derivative term. At 0, sampling occurs at servo interrupt rate (PERIOD). For legacy systems
only. For modern servo motors, this should be left at 0.0.

298 ACR Programmer’s Guide

APPENDIX C: SERVO PID TUNING

Feedback Velocity (FBVEL)

Sets the velocity feedback gain to amplify the rate of change of feedback. Only for analog feedback systems or
dual-feedback loop systems (motor feedback for velocity and load-mounted encoder for position). For standard
servo drives, this should be left at 0.0.

Lowpass Filter (LOPASS)
This command initializes the output filter as a lowpass filter, reducing high-frequency noise that may occur in a
system. Setting the cutoff frequency to zero turns off the lowpass filter.

Notch Filter (NOTCH)
This command sets up the first half of the output filter to act as a notch filter, reducing mechanical resonance that
may occur in a system. Setting the center frequency to zero turns off the notch filter.

ACR Programmer’s Guide 299

APPENDIX D: PMM IMPROVEMENTS OVER ACR-VIEW

APPENDIX D
PMM Improvements Over ACR-View

300 ACR Programmer’s Guide

APPENDIX D: PMM IMPROVEMENTS OVER ACR-VIEW

PMM Improvements Over ACR-View

The ACR7000 family is supported by a new software tool, Parker Motion Manager (PMM). Parker Motion
Manager combines the best of ACR-View and years of user feedback in a modern, user-friendly and scalable
software development environment. PMM is newly built and independent from ACR-View, allowing both software
tools to be installed on the same PC if needed.

New features include:

e Streamlined Configuration Wizard

e Product-specific status panels

e Improved Terminal Emulator

e Reimagined scope tools

e Projects now stored as single files for easy sharing and archiving

For ACR programmers new to Parker Motion Manager (PMM), many improvements have been implemented. The
layout is similar in terms of having a connection panel, Configuration Wizard, program editor and status panels.
This summary is a brief synopsis of the major differences between the two development packages.

Parker Motion Manager supports all ACR7000 controllers plus the IPA single-axis drive/controller. It does not
support the ACR9000, ACR9600 or any prior generation ACR.

Improvement |—Both use ComACRServer6, which is installed with PMM or ACR-View 6. If users have
developed PC interfaces to the ACR9000 or IPA, these will work the same with the ACR7000.

Improvement 2—When starting PMM, users will immediately note the File = Recent Projects menu option
allowing users to quickly jump in and get working. These are both on the optional Start Page and under the File
menu. The default number of recent projects is nine files, but this can be changed under Tools = Options.

= parker Motion Manager - C\Users\jh17981\Documents\Parker Hannifin\Parker Motion Manager\Projects\7t2_s232

File | Edit Tools Window Help

| MewProject.. Ctrl+N v

L OpenProject.. Ctrl+0
ﬁ ACRTAT: Connect X Siart Page X

Close Project

[SaveProject Ctrl+S 2
[l SaveProject As...

Revert Project... || New Project ...
Print... Ctrl+P L Open Project ...
| Recent Projects r 17t2_s232f_hv231
Exit Alt+F4 2 7t desk 23X _hv23l
3Tt test-standl Esk
47¢_desk] e standl
5 hammer3_upload] s
A= e nerd_uploadl
1 training A
ng
&7v_hammer2 .
ammer.
9 7t_training3
=BiNing3

By default, PMM will reopen the last project worked on. This can be changed in the Options menu:

ACR Programmer’s Guide 301

APPENDIX D: PMM IMPROVEMENTS OVER ACR-VIEW

Options x

[#] Show start page on startup

|2| Close start page after project load

Load last opened projecton applicationstartup
|:| Show splash screen on application startup

[#] Show menu and toolbar tool tips

[[] 5how debug messages

[#] Show Update OS Loader Button

[] show SamplePrograms

Mew Projects
Default Controller ACRTAT -
Default IP Address. 192.168.100.1

Default Projects Folder
C:APMM Demos | |:|

Recent Projects
Maximum number ofitems to display 9=
Maximum display length of each item 40 3

[[]Clear Recent Prajects

| Reset | | Cancel |

As comparison, ACR-View had a scroll list of projects but they were not sorted by last used. The image below
shows PMM on the left and ACR-View on the right.

Jacuments\Parker Hannifin\Parke:

L I < p .
15 openProject.. cule0
& AcR7aT: Comect X
Close Project
[SaveProject CirleS Open Project
P Save Project As Lootion
Bevert Project... L] New Project T Wsers\11 7381 \OneDiive - parkercorpProjects miir]
§ Print. Ctl+p 3 Open Project
- i Proiect Name
Recent Projects 5 1765232 231 7455 daris_deskcmpmaligriest B
232 23t 7455 be2 w23

Bt Alt+F4 27t desk - [l
3714 test-stand1 = i Phanie:
47t deskl Bzl
5 hammer3_upload1 =
6 nen_hammer2 erd pload
o hammer2
7 training st

] 0 24XISTEST

&7v_hammer2 Lmer2 0001 AesStepper
97 training3 1 _MM P4 S0 M

Coca

Improvement 3—Uploading from an existing controller is now easier from the New Project window (File =
New Project).

302 ACR Programmer’s Guide

APPENDIX D: PMM IMPROVEMENTS OVER ACR-VIEW

Mew Project

Mame

Location

IP Address

Controller

Upload

ChUsers\jh17981\Documents\Parker Ha..\Projects

Browse...

192.168.100.1

Create Project From Device

Cancel

With ACR-View, users would have to create a new project, select the controller and then upload.

Improvement 4—With Parker Motion Manager, projects are now stored as a single file (.pprj), making it easier
to transfer and share (below, left). In ACR-View, projects were a folder with separate files for the .8k programs,

configuration, etc. (below right) that had to be zipped to be shared.

= Open Project

r JMI7881 5> Documents > ParkerHanaifin » Parker Motion Mansger » Projects

Organize v Hew folder
Product Lit
Projects
Fef
Te Do
vb

0 This PC

B 30 Objects
I Cesktep

9 Documents
& Downloads
D Music

& Pictures

B videos

= Local Disk (C:)

-~

Fike name: |

] T destcppr

B Te_desk.pprj

) Ted_test-standl.gpr

) v hamment ppn

hammer3.ppq

£ hammer3_uploadl ppij

ammer ppi

E L]

7] training.ppe

| [Project File(" ppr)

Cancel

Location

C et 7981 =
Prosoct N] 5000_Preresinolog -

9000_Preres_$UR_Anion
455 das_dock

T4 beZY a2} 9000_Preries_ansiog_be3
"%Wrﬂnz 9000_Pseries_Force_ansion
T455_pholonic:: N

Eare iy 5000_Preries 4R _stepper
5000_Psesies_triogy
9000_Preries_wiogy_tran
9000_pSERIES_TRI_ANA

Téwep_pac_tent

T et 9000_stepper_enc

e 2060 tem
000, 24MSTEST ‘ v
000 xat1Ammes < >

Improvement 5—In Parker Motion manager, System Code is generated every time on Finish or before
downloading. System Code is not stored within the project. This prevents changes in the Configuration Wizard
from failing to update System Code.

In ACR-View, it was generated as users moved through the Configuration Wizard, which caused issues if users
reopened the project and jumped around in the different sections to edit/tune/adjust settings.

Improvement é—Terminal Emulator changes:

A. Users can now arrow up and arrow down rather than retype commands. This much-loved feature of

power coders (from DOS PCs of yester-year) is now available!

B. Dedicated buttons include LIST (list program), LIST LINE NUMBERS and Clear Display. There is also a pull-
down to select which program prompt you want to receive commands.

C. Expanded buttons on the right for common commands (5 groups of |12 user buttons).

D. Expanded User Buttons with multiple lines.

ACR Programmer’s Guide 303

APPENDIX D: PMM IMPROVEMENTS OVER ACR-VIEW

|2 ACR74T:Terminal Emulator X [ENC P TITEIb d v X
575 v
A
LIST LINE NUMBER
User 1
Clear Display
User 2
- User 3
Edit User Buttons “E0

User Button User4

User 1
User 5
Commands User7

C
7BIT104

7BIT105| User
User9
User 10
User 11
User 12

E. The fourth and fifth groups of buttons have been pre-populated with common commands. Power users
have full edit access and can re-use these groups, but these predefined buttons help new users.

304 ACR Programmer’s Guide

APPENDIX D: PMM IMPROVEMENTS OVER ACR-VIEW

UACR?JT:TeiminaI Emulator X T X

User Buttons x
Command1 e
ECHO
ECHOA
ERASE
ESAVE
1P
FLASH IMAGE
SYS DIM
ATTACH AXIS
DIAG
FLASH RES
LISTEM
RUMN
Edit...

Improvement 7—The Defines editor is now in table format, making it easier for programmers to put in a
description and name for bits, parameters and constants.

S Parkes Motion Manager - C:\Users\jAT78T\Documents\Parker Hanesdin Parker Moticn Manager Projects\ N2 5232 231,554 *

: 2?NK UL BOOCY
] =5 cs¢rstemory X W ACRTATTeminw Emuator X @ ACKIAT Corret X
Defines
Description Address
o3
-
-
=
2 Program 11
2 progra
£ 2 X[oue Source Mesage
Date & Time Meiage o) 0 01209 31536PM ACRView Project loaded successfully. (5000_IPA_SO)
g
1
U
o 1
@ 01 teoller 15 o s
0 20 ¥ ot % 5
Resdy n7 Col? NUM

ACR Programmer’s Guide 305

APPENDIX D: PMM IMPROVEMENTS OVER ACR-VIEW

Improvement 8—Defines can be created directly from the Numeric Status panels by right-clicking.

& parker Motion Manager - C:\Users\jh17981\Documents\Parker Hannifin\Parker Motion Manager\Projects\2020_Enip.pprj
File Edit Tools Window Help

. o | A\ 22 | % © \ -~
“_,._H X AP A SR v

\4' 4 ‘\ 4 & -
=g 2020_Enip ’ACRMT: Connect X StartPage X

o ACR7AT
- Configuration Wizard 1. Axis Parameters ~ 1. Position Parameters ~ | | Actual Position 3
w7 Progljam Editor Item Description Parameter Value
- Terminal Emulator - o
- Tools Axis 00 Actual Position P12290 Offline
{4 Status Panels Axis 01 Actual Position P12546 Copy
-{_g Motion Status Panel Axis 02 Actual Position P12802 Create Define
& Drive Status Panel Axis 03 Actual Position P13058 Offline
| Numeric Status = ;
.75 Bit Status Axis 04 Actual Position P13314 Offline
..2=J EtherNet/IP Status Panel Axis 05 Actual Position P13570 Offline
-] Scopes Axis 06 Actual Position P13826 Offline
Axis 07 Actual Position P14082 Offline

&% parker Motion Manager - C\Users\jh17981\Documents\Parker Hannifin\Parker Motion Manager\Projects\2020_Enip.pprj *
File Edit Tools Window Help

DEdeBloexug*»«/I32002 ¥ vOE

=g 2020_Enip L _PXey 2y O o BT DR [T ACR74T:Numeric Status X ' ACR74T: Connect X Start Page X

B ACR74T

q : Defines

-§# Configuration Wizard

B 7 Program Editor Alias Description Type Address/Value

H jm » 1 AxisZeroActualPosition Axis 00 Actual Position Parameter 12290
-4/ Program 00 * Click here to add a new Define (Max. allowed Defines are 20).

.47 Program 01
4 Program 02
4 Program 03

A RELEN —na

Improvement 9—PMM Windows can be docked, pinned or resized. They can also be popped out and placed
anywhere on the screen, very useful for users with two monitors. This is a feature of PMM’s new user interface
engine.

306 ACR Programmer’s Guide

APPENDIX D: PMM IMPROVEMENTS OVER ACR-VIEW

D WY Wi ACR74T-Terminal Emulator Ml &

1 PROGRAM
2
3
4 rem AXISO Enable Encoder based stall detection
S ATTACH AXISO ENCO STEPPERO
6
7EXC X 1 : rem Sets Excess Position error in user units (scaled based on PPU)
8 PM SCALE X (51200/4000) : rem Position Maintenance Scale, steps of stepper to encoder
9
10/SET 8469 : rem Enables Excess Position reaction
11 SET 17163 : rem Enables step motor to encoder scaling
12
13/pm off x
14 7
15 & ACR74T:Program Editor:Program 01
16 ENDP
17 PROGRAM
18
REM Program to set up multi-channel high-speed data capture.
REM Inicialize 1 long variables.
DIM LV2
REM Initialize 1:Dana-,-s.
DIM LA(M ension 2 long integer arrays.
l, pu Lao gl DD :.ns; 500 elements for Long Array 0 ,.
DIM LAl 8oy v :¥@nsion 500 elements for Long Array 1
REM General sampl
SAMP CLEAR — rrent samp g settings.
P6915 = 10 Y imer period in me (0 = servo period).
SAMP TRG 4792 : REM Start recording on rising edge of axis0 jog
REM Channel 0 sample settings.
SAMP 0 SRC P12290 : REM Set the source to Axis 0 Actual Position.
SAMP 0 BASE LAO : REM Array for recording data.
M Channel 1 sample settings.
AMP 1 SRC P6916 : REM Set the source to the Glcbal System Clock.
4/ SAMP 1 BASE LAl : REM Array for recording data.
REM Begin.
SET 104 : REM Arm sample trigger.
INH-104 : REM Wait for capture for all arrays to complete.
ist both arrays of captured data
To see in terminal emulator do LRUN (Run program and enter Listen mode)
35/REM To exit Listen mode in ter press ESC escape key
36
37|FOR LV1 = 0 TO 1 Sl R
38/PRINT "LA";Lvi;" NN
397 um
v M i
S8) FOR LVO = 0 TO 499 STEP 1
§ PM | Alias cannot be empty. PRINT LA(LV1) (LVO)
PM ee NEXT
7 PM | Alias can only contain alpha charact LVo=0
7 PM | Alias can only contain alpha charactler—

5 PM | The Controller is offline.

Improvement 10—The Configuration Wizard now includes Parker mechanics (actuators, precision tables and
gearheads) for inches or millimeters. This saves the user from having to look up the stage and/or gearhead
specifications in the catalog when configuring the unit scale.

ACR Programmer’s Guide 307

APPENDIX D: PMM IMPROVEMENTS OVER ACR-VIEW

B ACR74T:Master 0 (Master 0):00 Axis O:5caling * X

Units of this Axis: Millimeters

= Specify Transmission

Parker Actuator/Precision Stage

Parker Actuator = Transmission View

Series |ETH ~ | Order Code | p0S v

Enter the lead of the leadscrew in
Millimeters/Revolution

Specify Reducer(s)

Parker Gearhead v

Parker Gearhead

Series | PV ~ | Order Code po3 w

Enter the numerator of the
gearbox ratio (input)

Enter the de_nomlnator of the
gearbox ratio (output)

Improvement | |—Same motor on multiple axis? Quickly populate the Configuration using Axis Copy (right-click
on Axis).

308 ACR Programmer’s Guide

APPENDIX D: PMM IMPROVEMENTS OVER ACR-VIEW

& Parker Mation Manager - L Yarker Hannifin\Parker Motion Manager\Projec
File Edit Tools Window Help

5 " = - « .
FEY| ® X Py » K PG 24
B¢ 7000_servo I ACR74V:Master 0 (Master 0::(X) Axis 0:Drive/Motor X 5 Rl TV b4
=@ ACRMV_ . _ Select Motar Part Number (from Mator Nameplate)
=¥ Configuration Wizard

TJ Axes Series Frame Stack Winding Feedback

T4 Master 0 (Master 0) SM v 23 | |3 «|la ~ |E w

Open l
Exoand ect Cooling Method
pa [Sink - Invert Motor Direction []
Expand All
Collapse Changing the motor part number or cooling method will reset the fields
. lvanced Motor Parameters' to their default values.
=J System Code Collapse All
274 Prog.ram Editor T , | T Dparameters
----- B Terminal Emulatar iy
-4 Tools Re| s
{4 Status Panels @ '_s
-] Scopes (A) Axis 3

Improvement |2—Testing code and want to remove a section of code (comment out multiple lines)? Rather
than typing REM or ' at the beginning of each line, select the lines and use the Toolbar icon highlighted below.

& Parker Motion Manager - ers\jh17981\Documents\Parker Hannifin\Parker Motion Manager\Projects\7000_servo.pprj *
File Edit Tools Window Help

HEdemoe xaoi»»«
=-59 7000_servo
=@ ACR74V 34

+- Configuration Wizard 35 MAIN
. 36 'This is a label used with GOTO MAIN below to run continuocusly.
7 Program Editor 37 'Comments can be made with ' on its own line. These are not downloaded to the controller.

« ACR74V:l rogra n Editor:Program 00 *

omments the selected block of text in the active program file editor. i

T Defines 38/REM Comments can be made with REM on its own line (short for remark).
¥4 Program 00 39|' Comments can also be made at the end of line with a : REM (space:space REM)
% 40/' Comments with the REM are downloaded to the controller and thus retrieved on upload.
7 Program 01 41
47 Program 02 42
.4 g 43 GOSUB BasicABSMotion : REM subroutine for absolute moves
& Program 03 44 GOSUB BasicINCMotion : REM subroutine for incremental moves
7 Program 04 45/GOSUB BasicCOMBOMotion
46
7 Program 05 47|REM subroutine for combination of absclute and incremental moves
4 Program 06 48 REM GOSUB JogABSMotion : REM subroutine for absolute jog moves
Vi Program 07 49 REM GOSUB JogINCMotion : REM subroutine for incremental jog moves
'¢ o 08 50 REM GOSUB JogCOMBOMotion
Y- rogram 51
.4 Program 09 :i 'GOTO MAIN : REM Remove the ' to run this continuously.
.4 Program 10 54 END : REM Ends the program
47 Program 11 55
56

47 Program 12 57 ENABLEDRIVE
Improvement |13—In ACR-View, when doing a Find (CTRL+F), the first instance was found and then the focus
was set on the program editor. So, when users pressed Enter, ACR-View would remove that text, inserting a
carriage return and linefeed in its place.

In PMM, the focus remains on the Find Next window. So now when pressing Enter, it will move to the next
instance, allowing users to quickly move through the code instead of clicking with the mouse. Not a big change, but
a nice change for power users and heavy programmers.

ACR Programmer’s Guide 309

APPENDIX D: PMM IMPROVEMENTS OVER ACR-VIEW

File Edit Tools Window Help

2B oc X022 2»« L3200

T3 7000_servo ACRI4V:Program Editor:Program 00* X

& ACR74V 1/ PROGRAM
#-@ Configuration Wizard 2
7 Program Editor
79 Defines
E4proaram 0|
47 Program 01
2 Program 02
47 Program 03
7 Program 04
7 Program 05
4 Program 06
/7 Program 07
7 Program 08
47 Program 09
4 Program 1
7 Program 11
4 Program 12
47 Program 13
47 Proaram 14

Find: [rem|
[J Matchcase [] Match whole word [] Regex

S

"7 GOSUB ENABLEDRIVE
Improvement 14—Improved Servo Tuning screen and graphing!
Channel defaults are set for standard motion tuning. Auto-Scaling is turned on, so no more hunting for the signal.

" ACR74V:Servo Tuner * X T X

Servo Tuner

z Channel 1
(X) Axis 0 v E

Position Loop Gains

Basic

Proportional Gain

Derivative Gain

Integral Delay

Feedback Velocity

0.002441410 5

0.000030000 -5

0.000000000 =

0.000000000 5

Auto Scale Y-Axis

Channel 2

itegral Py B
imegral Gain (00000000002 omsou]
itegralLimit (00000000002 pesis B

Auto Scale Y-Axis

Advanced |’_‘| ‘\J Channel 3
FF Velocity |0.000000000 = 1 H : —
FF Acceleration |0.000000000 -+ & ‘)I‘} —
Derivative Width 0.000000000 = _

Auto Scale Y-Axis

Channel 4

—= B 0y S|
Torque Limit |10.00000000 -+ ST Div @ Connected
. @ oeenbed R
Save To Save To 7 5
project Controller Semping. Zero Disable Drive Auto Scale Y-Axis
Erase Kill All Motion
Get From G oW Clear Al Kills
Project Controller

Note the Servo Tuner is a separate tool like in ACR-View, but there is not the simple step-tuning in the
Configuration Wizard which was limited with high-resolution encoder systems. This was removed because tuning
is best performed after configuration is complete.

Easy motion! Set the distance, time and move shape with optional S-curving and motion is generated

automatically.

310 ACR Programmer’s Guide

APPENDIX D: PMM IMPROVEMENTS OVER ACR-VIEW

Move Settings

Profile Definition Maotion Profile
@® Trapezoidal Distance 1.000 Inches
O Triangular Time 1.000 Seconds
(O User Defined Velocity 1,500 Inches/s
Acceleration 9.625 Inches/s*
S-Curve
O None Deceleration 7529 Inches/5*
® 25% Jerk 84.375 Inches/5*
O s50% [Return Mave
Dwell Before
O 100% Return oo Seconds
oK Cancel

What is the value of each channel at a given point in time? Just mouse over! No need to export to Excel (though
that is still available with the Export Data button).

i

| M | 'F.', I

Improvement | 5—PMM File Transfer provides status information during download. It will also highlight
download errors.

ACR Programmer’s Guide 311

APPENDIX D: PMM IMPROVEMENTS OVER ACR-VIEW

v File Transfer

Module Size(KB) Progress(%) S/F Errors
Config 3.702 100 € 16
Defines 0|Pending... Q 0
PROGRAM O 0257 w00 @ 0
PROGRAM 1 0.946 w00 @ 0
PROGRAM 2 0 Pending... L] 0
PROGRAM 3 0 Pending... L] 0
PROGRAM 4 0/Pending... L] 0
PROGRAM 5 0/Pending... L] 0
PROGRAM 6 0|Pending... L] 0
PROGRAM 7 0|Pending... L] 0
PROGRAM & 0|Pending... L] 0
PROGRAM 9 0|Pending... L] 0
PROGRAM 10 0|Pending... L] 0
PROGRAM 11 0|Pending... L] 0
PROGRAM 12 0|Pending... L] 0
PROGRAM 13 o|pending... (> 0
PROGRAM 14 o|pending... (> 0
PROGRAM 15 9,354 we & 1]
Show Report
Improvement | 6—Product-specific status panels.
Control Status Drive Faults Control Status Drive Faults
o[1[2]3 [e]1T27]3 0o[1][2][3] o[1[2]3
Kill All Motion Request | @ (@ (@ | @ User configurationinvalid | @ | @ [@ | @ Kill All Motion Request | @ | @ | & | @ Motor Config Error L I | o9
DriveFault | @ |@ |9 [@ Drive at Standby current LR BR J DriveFault | @ (@ | @ | @ Bridge Hardware Fault 9|9 9|9
Maximum Position Error | @ | @ | @ | @ Motor short to 9":"“: L B g B Maximum Position Error | @ | @ | @ | @ “D"_d99079'“9 F""‘U" Sliledle
Over temperature faul I BLRECCl) % % rive Over-voltage |
Positive Hard LimitHit | @ | @ (@ | @ Drive Under-voltage loeTeoTe | e Positive Hard Limit Hit | @ | @ | @ | @ Drive Under-voltage olole|e
Negative Hard imt HR | @ (@ | @ | & Drive Initialize Fault |ofo|e]e Negative Hard Limit Hit | | @ | @ | @ Bridge Foldback o|e|o|e
Home Failed (@ | @ (@ | @ - HomeFailed | @ | @ | @ | @ Power Regen Fault 99|99
Positive Soft LimitHit | @ | @ | @ | @ Positive Soft LimitHit | @ | @ |9 | @ Feedback Error 1 o9 Ea °
Negative Soft Limit Hit | @ [@ | @ Negative Soft Limit Hit (@ [@ | @ | @ Motor Thermal Model Fault | @ | @ |® 9
Motor Temp Fault 9|9 9|9
Bad Hall State o |o|e®
Low Voltage Enable o
Control Power Active o
Alignment Error 9|99 |9
Controller Information Feedback Error 2 bl Bl el B
R Feedback Error 3 9|99
Current Operating Time ~ |157hrs 59min ‘ Orive Param Eror WO I

Improvement | 7—Oscilloscope now has Flag Parameters available to graph. ACR-View had this function with a
work-around, but now users can easily select Flag Parameters to visually graph these changes compared to other

bits/parameters in their programs.

312 ACR Programmer’s Guide

Current Power-On Time |Ohrs 6min 10.2285 }

Oscilloscope

083.246

Mation...

Run

APPENDIX D: PMM IMPROVEMENTS OVER ACR-VIEW

Display
Channel 1 Channel 3
> Channel 2 [Channel 4

Sampling... Erase Display Data

Single Zero Export Data

Parameter Picker

Channel 1

Auto Scale Y-Axis

Channel 2

Auto Scale Y-Axis

Channel 3

[Auto Scale Y-Axis
Channel 4

ser User

Auto Scale Y-Axis

Flag Parameters W (0] 4
Axis Flags ™ Cancel
Primary Axis Flags ~

Item Description Parameter
Axis 0O Primary Axis Flags P4120
Axis 01 Primary Axis Flags P4121

Improvement |8—Four Watch windows now available. Each Watch list can hold 20 lines of bits or parameters.
No more switching between the Numeric and Bit Status panels!

ACR Programmer’s Guide 313

APPENDIX D: PMM IMPROVEMENTS OVER ACR-VIEW

Messages | Watch 1 x

Alias D ipti Type Address Value
AxisDriveEnable Bit 8463 True
AxisDriveFault AxisDriveFault Bit T False
AxisZeroActualPosition Aois 00 Actual Position Parameter 12290 14524
UserVariablePZeroUservar User Variable P00 User Variable Parameter 00 123
Length User Variable POO1 User Variable Parameter 1 26.2

To populate the Watch lists, right-click on indicators within the Motion Status Panel.

" ACR74T:Motion Status Panel X

Programs
[63 B e A
GearAdive | [0 |0 | @ 0 idle b E
CamActive | @ |9 | o | @ 1 idle) :]
JogAdive | @ | @ | @ |9 2 idle ° o]
Drive Enable LA AR T
Kill All Motion Request ’- Watch _ » Watch 1 CJ
Drivefault | @ | @ |9 | @ Watch 2 0
Maxmum PositionError | @ |9 | @ | @ Watch 3 0
Pos. Hard Limit Encountered | @ | @ | @ | @ Watch 4
Neg. Hard Limit Encountered | @ | @ | @ | @ g
HomeFound | @ |9 |9 | @ 7 idle ® [0
Positive Softlimit | @ (@ | @ (@ =
Negative SoftLimt | @ (@ | @ | @

Or, from the Numeric Status Panel, Bit Status Panel or Defines editor, just right-click.

vlll.lsernwbles ¥ | Group 0 '|

Item Description Parameter Value -
User Variable POOD User Wariable B00 123
User Variable POO1T User Variable PO 26.2 e
User Variable PO02 User Variable POz 0 Shaia Definn
User Variable 003 User Variable pO3 0 — bl Wichi
User Variable POO4 User variable PO4 0 vaten
User Variable POOS User Variable P05 0 s
User Variable PO0OE User Variable POG 0 e
User Variable POOT User Variable P07 0
User Variable POOE User Variable POB 0

314 ACR Programmer’s Guide

APPENDIX D: PMM IMPROVEMENTS OVER ACR-VIEW

" ACRTAT:Bit Status X

Onboard I/0 ~| | Onboard /O ~ | | Inputs ~ | PAD96
& BITO: INP 0O & EBITie: INP 16
C
@ BITT: INP O Ry @ BITI7:INP 17
& BIT2: INP 02 Create Define & DITYg: MNP 18
' | Watch 3 Watch 1 '

& BIT3: INP 03 19 IMNP 19
Watch 2

@ BIT4: INP 04 20 INP 20
Watch 3

& BITS: INP 05 21: INP 21
Watch 4

@ EBITo: INP 06 w2 INP 22

Improvement 19—User Parameters and User Bits are now in the Numeric and Bit Status panels! This includes
user parameters P0-P4095, user non-volatile parameters (P39168-P39423) and non-volatile longs (P38912-P39167).

B ACR74V:Numernic Status X

User Variables ~ | |User Doubles ~ | Group 0 W
Item Description Parameter Value -

User Variable P00D User Variable POO 0

User Variable P01 User Variable PO1 10

User Variable P002 User Variable PO2 3.14159

User Variable P003 User Variable P03 26.2

User Variable P004 User Variable PO4 524288

User Variable P005 User Variable P05 1234.567

Improvement 20—The positive direction on an axis is now easily changed with a check box in the Configuration

ACRT4T Stepper ACRT74V Servo ACRTAC Controller
3 project 9 ACKTATMaster O (Master 0:0) As ODThe/Motor X W0 ACRT4vMMaster © Master G:90) Axis 0D o 9 ACRTACMaster O Master 000 Axis ODmveMotor X
7 ACSIAT Select Motor Part Number (from Motor Nameplate)
& Configuration Wizard Motor Settings Select Drive
3 Axes Motor Series Motor Size/Winding Series Frame stack Winding Feedback F
3 Master 0 (Master 0) EaM ¥ s v M = P =R 2 [= Orive | Series
3 00 Aws 0
= Motor Part Number €CLM-S232F
=5 Feedback Select Cooling Method Select Motor
Full Steps/Rev 200 invert Motor Direction [
= scaling Heat Sink % vert Motor Dir]
9 Faut Max Motor Current 2500 Motor |PM-FEL
523 0 Adis | Note1: Changing the motor part aumber or cooling method will reset the fields
- AR Feedback (bult-in) in "Advanced Motor Parameters' to their default values. Rotary Linear
o 55 @ A2 RIS e Note2: Hardware requires both motors on the same axis pair to be same
o (A) Avis 3 feedback type. For example, both motors connected to Axis0 and Axis! need
= :Aem:ry :1:;:7?7 incremental encoders OR both motors need to be iss-C et Moo Direction L
i Drive Settings
3 System Code
427 Program Editor Resolution [Show Advanced Motor Parameters
B Terminal Emulator Microsteps/Rev 51200 ¥
4 @ Tools
9 [Status Panels Current Reset to Default
4§ Scopes User Max Motor Current 2800

Enable Standby Current Reduction [
Standby Current % 50

Standby Current Delay, ms

Irvert Motor Direction [

Improvement 21—Save to Flash in ACR-View was 30-60 seconds. This has been greatly improved with PMM.

Improvement 22—New ease of use feature: zoom in the Program editor. Hold the CTRL key and use the
mouse scroll wheel to zoom in and out.

ACR Programmer’s Guide 315

APPENDIX D: PMM IMPROVEMENTS OVER ACR-VIEW

7

5 ABS X-1
-792

145 J0G ABS X0
146 INH -792

47 RETURN

) ' SUBROUTINE OF

_JogINCMotion

158/ INH -792
159 RETURN

161 'SUBROUTINE OF both Absolute and Incremental Moves

162 _JogCOMBOMotion

163 JOG INC X-4
164 INH -792 RE hik pr ran
5 J0G ABS X-2
INH -792
167 JOG INC X5
168 INH -792

9/J0G ABS X0

Improvement 23—By default, PMM is set for 100 Defines, allowing users to name their bits/parameters. The
default for ACR-View was 20.

Improvement 24—All programs have memory allocated by default, whereas in ACR-View, only Program 0 and
Program |5 had memory allocated by default.

Improvement 25—Program [4 has been set for use with the oscilloscopes to prevent conflict with the user’s
arrays in their programs.

Improvement 26—Scope tools (Servo Tuner, Oscilloscope, etc.) can graph individual bits when configured to
graph flag parameters.

Channel 1

1 Unit / Div -

Auto Scale Y-Axis

Improvement 27—Scope tools (Servo Tuner, Oscilloscope, etc.) can now graph position and speed data in user
units instead of encoder counts (at the user’s option).

316 ACR Programmer’s Guide

APPENDIX E: ACR7XC/ACR9000 COMPARISON

APPENDIX E
ACR7xC/ACR9000 Comparison

ACR Programmer’s Guide 317

APPENDIX E: ACR7XC/ACR9000 COMPARISON

ACR7xC/ACR9000 Comparison

This section covers similarities and differences between the ACR7xC controller and the ACR9000. The 7000
series controller is designed as a direct replacement for the ACR9000, supporting up to 8 servo and stepper axes
in any combination.

The default IP address of all ACR7000 controllers is 192.168.100.1. The default for the ACR9000 was
192.168.10.40.

The ACR9000's Ethernet port did not auto-detect straight-through/crossover cables. The ACR7000 auto-detects
straight-through or crossover ethernet cables. Both products support 10/100 Mbps.

The ACR7xC has the same axis connector pinout and discrete /O pinout as the ACR9000.

The 7000 controller has two Ethernet ports available for use. The ports are configured as an unmanaged switch
and have the same IP address. The ACR9000 had one ethernet port.

Like the ACR7xT and IPA, the ACR7xC can be an EtherNet/IP master to a Wago 750-363 EtherNet/IP bus
coupler for expansion IO (or Wago's previous 750-352 or 750-341 bus coupler modules).

The ACR7xC can also be a slave on an EtherNet/IP network for an Allen Bradley or Omron PLC. This can be
done at same time as being an EtherNet/IP master to a Wago 750 (although this is discouraged).

There is no serial or USB port, but there are five Ethernet streams available. The ACR9000 supported 4.

No battery! The ACR7000 is entirely flash-based. Using retentive variables such as P38912-P39167 (32-bit longs)
or P39168-P39423 (32-bit floats)? No worries! The ACR7000 saves these in the background to behave the same
as a battery-backed ACR9000 (9000PxUxBx), with the benefit of not having to periodically replace a battery or
modify the program when upgrading.

No |IEC support. Most users using the 9600 were using the AcroBASIC programs and not IEC, which was not
expanded to work on Windows 10 anyway.

Powered from 24 VDC. The ACR9000 was powered from 120 VAC or 240 VAC.
The same AcroBASIC programming that has worked for |5+ years with the ACR9000 will work with the 7000.

Same ComACRServer: any PC applications (VB, LabVIEW, .NET, etc.) that a machine builder developed work the
same with the 7000 as the 9000.

The 7000 controller has one |5-pin high density D-sub auxiliary encoder input that can only be used with
incremental quadrature encoders. The ACR9000 had one (2/4-axis models) or two (6/8-axis models) 9-pin D-sub
auxiliary encoder ports that supported incremental and SSI encoders.

The same axis I/O cables can be used, allowing users to easily upgrade systems. The same cables to connect to
Parker drives all work with the 7000 series controller: P series, Aries, Compax3, Gemini Servo and Stepper, Zeta,
E-AC, etc. The 7000 controller supports SSI feedback on its axis connectors just like the 9000.

Much smaller. A four-axis 9000P3U4B0 and a four-axis ACR74C-A0V2CI are shown below.

318 ACR Programmer’s Guide

APPENDIX E: ACR7XC/ACR9000 COMPARISON

New and improved software, Parker Motion Manager, supports the ACR7000 series controller, integrated stepper
controller and integrated servo controllers. Anyone familiar with ACR-View will be able to pick it up very quickly
since it has a similar look and feel, but we have taken out what is not needed and made drastic improvements to
the usability.

The ACR7xC does not have RS485 on the axis connectors and thus do not support Drive Talk and those related
commands (DTALK).

The ACR7000 does not have EthernetPOWERLINK and those related commands are not supported (EPLC).

More form factors are available beyond just the ACR7xC. The ACR7000 integrated stepper (ACR7xT) and
ACR7000 integrated servo (ACR7xV) are available for new applications with a multi-axis controller and multiple
motor drives within a single package, saving space and cabling.

ACR Programmer’s Guide 319

APPENDIX F: ACR7XV/IPA DIFFERENCES

APPENDIX F
ACR7xV/IPA Differences

320 ACR Programmer’s Guide

APPENDIX F: ACR7XV/IPA DIFFERENCES

ACR7xV/IPA Differences

The 7000 series integrated drive/controller products share aspects of the 9000 multi-axis controller and the IPA
integrated servo drive/controller. All the 9000 commands, parameters, and flags that are used to control
programs, masters and axes are present on the 7000 series. These include the position loop servo gain command
and parameters specifically. There are also parameters and flags used for servo drive or stepper drive
configuration and status reporting. Those for the servo drive are analogous to the “C” and “S” parameters of the
IPA in terms of function but are consistent with the ACR parameter and flag model rather than the legacy Aries
parameters and commands. Also, these values may be saved with the ESAVE command and will automatically be
restored on power up, but they are not automatically saved like the Aries-style parameters of the IPA.

The motor parameters can be viewed in both the Numeric Status Panel and under Configuration Wizard -
Drive/Motor = Show Advanced Motor Parameters.

= @ 76v._teststand_upload_3016 O 7 £cr7mvaster 0 (Master 0x00) Avis O:Advanced Motor Parameters X

Edit Your Motor Parameters (Advanced): [
Motor Part Number: BE161C)

Parameter Parameter Name Units Vslue ./ Motor Default MinValue MaxValue

counts/rev 8000 8000 32 10737

5 DriveMotor
B cvanced o prs
3 Feedback
3 Scaling
73 Fault
553 0 Axs 1
T3 @) Axis 2

=3 Memary
=3 Finish
73 System Code
427 Program Editor
1B Terminal Emulator

@ Tools

uNmy/rad/sec 37 damping, includes bearing and magnetic losses (N/meter/sec for linear motors).

s kgm210+-6 28 128 0 ¢ rotor in o r linear mos
mm

Nm

V/krpm or Vjm/s

Nm 052 052

of winding power dissipation between the winding and case.

f the motor given constant power.

ACR Programmer’s Guide 321

APPENDIX G: 6K TO ACR COMMAND REFERENCE

APPENDIX G
6K to ACR Command Reference

322 ACR Programmer’s Guide

APPENDIX G: 6K TO ACR COMMAND REFERENCE

6K to ACR Command Reference

This section covers common 6K commands and their closest ACR equivalents where applicable. The ACR uses a
different architecture than the ACR, so this table should be taken as suggestion only.

NOTE: "P" parameters and flags will show the parameter/flag number for the first axis or master.
Others can be found in PMM help file.

Most 6K programs only run one at a time. ACR programs can all be running at the same time. So, most 6K
programs would be rewritten in ACR as subroutines with labels, unless the 6K is using multitasking.

6K Command ACR Command Shorthand ACR Command Notes

Scaling Setup

SCLA, SCLV, SCLD PPU Requires RES after changing PPU.
Part of Configuration Wizard.
SCLMAS GEAR PPU
Limits
LH3,1 HLIM X3 Y1
LS2,3 SLIM X2Y3
LSNEG -1: LSPOS +I SLM X1 Could also set differently using SLM
X(-10,25). Axis 0 bits shown. SET
and CLR bits as appropriate
(Positive EOT bit shown is for Axis
0).
LIMLVLO00 SET 16144 : SET 16145 :
CLRI16146
INFNCO-R, INFNCI-S, HLBIT X0 or HLBIT HLBIT XO0: Negative and home
INFNC2-T X(1,0,2) automatically assigned as next
contiguous inputs (I and 2). Set
within Configuration Wizard on
Fault Screen.
LHAD100,200 HLDEC X100 Y200
TLIM BITI6132
BITI6133
BIT 16130

ACR Programmer’s Guide 323

APPENDIX G: 6K TO ACR COMMAND REFERENCE

6K Command ACR Command Shorthand ACR Command Notes

Homing

HOMZ MSEEK Home to a Z-channel (mode 0).

HOMO0, HOMI JOG HOME XI, JOG Home to a trigger input (mode 2).
HOME X-1, MSEEK

HOMVF HOMA JOG HOMVF, JOG ACC

HOMAA/HOMADA JOG JRK, JOG DEC

HOMAD

HOMBACI, HOMDFI, SETI16152, SET 16154, Home Backup Enable bit must be on

HOMEDGI SET16153 (BIT 16152).

PSET RES REN Use to reset or preset the position

counters for an axis. Zeroes the
Current Position (MOV) register
and adds parameter.

See also: JOG RES, GEAR RES,
CAM RES JOG REN.

Non-Interpolated Motion

Incremental Motion

D+4:MC0:MA0:GO | JOG INC X4 See Also: JOG ACC, JOG DEC,
JOG VEL

D+4,-3:MC00: MAOO: JOGINC X4Y-3
GOl |l

Absolute Motion

D :MC0: MAI : GOl JOG ABS X4 Move to the Jog Offset register's
absolute position.

Continuous Motion

D+ :MCl : GOI JOG FWD X SET 796 Flags shown for Axis 0.
D-:MCI : GOl JOG REV X SET 797
SI JOG OFF X CLR 796 : CLR

797

Non-Interpolate Motion Trajectory

A JOG ACC Scaled by PPU to user units/second”.

324 ACR Programmer’s Guide

APPENDIX G: 6K TO ACR COMMAND REFERENCE

6K Command ACR Command Shorthand ACR Command Notes

AD JOG DEC Scaled by PPU to user units/second”.
Scaled by PPU to user units/second
Scaled by PPU to user
units/second”3. Pure S-Curve

\ JOG VEL Scaled by PPU to user units/second.

AA/ADA JOG JRK Scaled by PPU to user units/second®.

Interpolated Motion

S SET BIT 523 SET 523 Flags shown for Master 0. Uses
DEC setting.

K SET BIT 522 SET 522 Uses the HLDEC deceleration
ramp.

'K CTRL+X or CTRL+Z CTRL+X kill all motion for all
programs. CTRL+Z kills motion
and disables all drives.

KDRIVE SET BIT 8471 SET 8471 BITS 8471, 8503, 8535, 8567, 8599,
8631, 8663, 869.

Linear Interpolated Motion

D2,3:MC00:MAII : MOV X2 Y3 X2Y3 Absolute moves.

GOLI |

D 7,8:MC00: MAOO : MOV X/7 Y/8 X/7Y/8 Incremental moves.

GOLI |

D 4,5:MC00: MAIO: MOV X4 Y/5 X4 Y/5 Mixed moves.

GOLI |

Circular 2D Interpolated

PARCOM CIRCCW Counter-clockwise.

PARCOP CIRCW Clockwise.

PARCOM/PARCOP SINE

PARCM No equivalent

PARCP No equivalent

Circular 3D Interpolated

ACR Programmer’s Guide 325

APPENDIX G: 6K TO ACR COMMAND REFERENCE

6K Command ACR Command Shorthand ACR Command Notes

No equivalent TARC Axes must have same PPU.

Interpolated Motion Trajectory

PA ACC Scaled by PPU to user units/second?
PAD DEC/STP Scaled by PPU to user units/second’
PV VEL Scaled by PPU to user units/second

PAA/PADA JRK Scaled by PPU to user units/second’.

Pure S-curve is ACC**2/VEL.

See also: IVEL, FVEL, F

PAXES TANG

Interpolated Motion Trajectory

FOLEN GEAR ON/OFF LOCK can be used for gantry axes.

FOLMAS GEAR SRC Can gear to any encoder or
parameter.

FOLRN GEAR RATIO GEAR RATIO sign determines
direction.

FOLRD

Use ratio rather than decimal
number, ex. "(1/10)". GEAR RATIO
is a 64-bit floating point value.

FOLMD GEAR ACC/DEC GEAR ACC/DEC is change in ratio
over time.
SCLMAS GEAR PPU
FMCLEN No direct equivalent.
Use MOD.
NMCY No direct equivalent. Can use simple division algorithm

and use whole number.

Tuning

All' ACR gains are in volts. 6K gains are in volts, millivolts or microvolts.

SGP (mV) PGAIN PGAIN = SGP/1000

SGV (uV) DGAIN DGAIN = SGV/le6

326 ACR Programmer’s Guide

APPENDIX G: 6K TO ACR COMMAND REFERENCE

6K Command ACR Command Shorthand ACR Command Notes

SGI (mV) IGAIN IGAIN = SGI/1000

SGILIM (mV) ILIMIT ILIMIT = SGILIM/1000

SGVF (uV) FFVEL FFVEL = SGVF/le6

SGAF (uV) FFACC FFACC = SGAF/le6

DACLIM (V) TLM TLM = DACLIM

TDAC PRINT P6400 P6400 Pnnnn prints the value in
parameter nnnn.

DAC P6400

Communications

NTADDR192,168,10,30 IP"192.168.100.1" Defaults shown. Requires ESAVE

and REBOOT to take effect

NTMASK255,255,255,0 IP MASK "255.255.255.0"

Variables

VARBI User Flag Parameters Bits 128-255 (P4100-4104) and bits
1920-2047 (P4156-4159) are user
bits.

VARII LvO Must dimension local variables first.
Example: DIM SV(10).

Variables start at "0" for ACR
controllers.

VARSI $vo Must dimension number and length
of string variables.

VARI-255 SV0 or DVO SV are 32-bit floating point local
variables. DV are 64-bit floats. LV
are 32-bit LONG integers.

VARI-255 P0-P4095 P0-P4095 are 64-bit global floating
point user variables (already default
in Config Wizard).

Position Counters

ITPC P12295 Secondary Setpoint in raw counts.

It is the sum of interpolated
command, jog, gear, cam (Primary

ACR Programmer’s Guide 327

APPENDIX G: 6K TO ACR COMMAND REFERENCE

6K Command ACR Command Shorthand ACR Command Notes
Setpoint) with Backlash and
Ballscrew Compensation.

ITPE P12290 Actual Position in raw counts.
Depends upon ENC SRC Following
Error in raw counts.

ITPER P12291 Hardware Position capture in raw
counts.

'TPCE P12292
See also: INTCAP, HSINT, GEAR
ON/OFF TRG.

ENCPOLI ENCO MULT -4 Valid values are "4" and "-4" for
ACR/IPA.

SMPER 0.25,0.33 EXC X0.25 Y0.33 EXC X0 does not disable excess
error checking.

SMPERO CLR 8469 Disables error checking.

Program

BREAK END Used to terminate program.

COMMENT (;) REM Comment is stored.

Apostrophe (') Comment is stripped. MUST be on

its own line.

DEL NEW Automatically performed by PMM,
not needed in

DEF PROGRAM Starts program definition

END ENDP Used to terminate program
definition.

GOTO program GOTO label You cannot GOSUB or GOTO to
another program; use label in the

GOSUB program GOSUB label same ACR program instead.

Drive Control

DRIVEO DRIVE OFF X CLR 8465 AXISO DRIVE OFF

DRIVEI DRIVE ON X SET 8465 AXIS0 DRIVE ON

No Equivalent DRIVE RES X Axis LED: Green = Enabled, Red =

328 ACR Programmer’s Guide

Disabled or Faulted

APPENDIX G: 6K TO ACR COMMAND REFERENCE

6K Command ACR Command Shorthand ACR Command Notes

AXISO DRIVE RES: toggles axis'
reset output.

IO Control
OUTI SET BIT 32 SET32 or Could also use P4097 = P4097 OR
BIT32 =1 I
OouTo CLR BIT 32 CLR32 or Could also use P4097 = P4097
BIT32=0 AND 2#*3 |
OUTXXXI SET BIT 35 SET 35 or Bit0 - 31 are inputs. Discrete
BIT35 =1 outputs start at bit32
OUTXXX0 CLR 35 CLR 35 or
BIT35=0
TIN ’P4096 Response is a decimal
representation of binary bits
TIN.I !BITO Reports back a 0 (zero) for inactive,
-1 for active input
ITIN P4104 Response is a decimal
representation of binary bits
TOUT 1P4097 Response is a decimal
representation of binary bits
ITOUT P4105 Response is a decimal
representation of binary bits
TOUT.I BIT32 Reports back a 0 (zero) for inactive,
-1 for active output
Other
SSFR PERIOD ACR7000 and IPA much faster than
6K / Gemé6K.
BAUD No serial
communication.
TREV VER Also can use P7042 and P7043 to
retrieve VER and U.
TCOM HELP Shows a list of reserved words that

should not be used as aliases.

ACR Programmer’s Guide 329

APPENDIX G: 6K TO ACR COMMAND REFERENCE

ENCSNDO ENCO0 SRCO Quadrature encoder mode.
ENCSNDI ENCO SRCI Step and direction mode.
CMDDIR BIT8455 Could also use ENC MULT and

DAC GAIN together (required for
ACR7xC). Already part of Config

Wizard.
EPM PM See Position Maintenance.
ANI P6408 ADC inputs.
ANO P6400 DAC outputs.
AS, ASX P4120, 4168, 4296, 4360, There are five groups of axis flags in
4600 the ACR.

330 ACR Programmer’s Guide

APPENDIX H: ACR7000 BITS AND PARAMETERS

APPENDIX H
ACR7000 Bits and Parameters

ACR Programmer’s Guide 331

APPENDIX H: ACR7000 BITS AND PARAMETERS

ACR7000 Bits and Parameters

This section covers bits and parameters added to the ACR firmware specifically to handle new hardware features
on the ACR7000. Relevant bits and parameters therefore vary by product.

ACR7xT Control and Status Bits

The control, status, fault and warning bits are in the Stepper Flags. These bits will only have meaning for integrated
steppers and will be ignored for other types of steppers. The bit numbers shown below are for Stepper 0, P4584.

For each subsequent stepper, add 32 to the bit number.

Control Bits Flag Fault and Warning Bits Flag
Assert new configuration 15616 Motor short to ground fault 15624
Set parameters to factory default 15617 Over temperature warning 15625
Enable Auto Standby 15618 Over temperature fault 15626
Assert Standby current 15619 Stall threshold warning 15627
Status Bits Under voltage 15628
Driver chip configured 15620 Drive at Standby current 15629
Driver chip configuration underway 15621 General fault 15630
User configuration invalid, default installed | 15622 Debug Control/Status Bits
Change to Standby current underway 15623 Assert Debug write register 15632
Debug configuration underway 15633

ACR7xT Latched Fault and Warning Bits

The fault and warning bits listed above represent the instantaneous state of any fault or warning that is present in

the drive hardware. But these bits will disappear if the underlying hardware condition disappears, so it may not be

possible to diagnose a problem with the current state only. The bits below represent a sort of latched state of the
fault and warning bits listed above. Every time the bits above are monitored, their state is OR’ed into the

corresponding bits below. That allows a persistent record of any of the bits above having been present. The bits
below are cleared when the drive is enabled from a previously disabled state.

Latched Fault and Warning Bits

Flag

Axis 0 Axis | Axis 2

Axis 3

332 ACR Programmer’s Guide

APPENDIX H: ACR7000 BITS AND PARAMETERS

P4584 P4585 P4586 P4587
Motor short to ground fault 15640 15672 15704 15736
Over temperature warning 15641 15673 15705 15737
Over temperature fault 15642 15674 15706 15738
Stall threshold warning 15643 15675 15707 15739
Under voltage 15644 15676 15708 15740
Not used 15645 15677 15709 15741
General fault 15646 15678 15710 15742

ACR7xT Control and Status Parameters

The control and status parameters are additional stepper parameters. These parameters will only have meaning
for integrated steppers and will be ignored for other types of steppers. The parameter numbers shown below are
for stepper 0. For each subsequent stepper, add 16 to the parameter number. Unlisted parameters are reserved.
The parameters are listed first and then fully described individually in the paragraphs below.

Default

Float Parameter Descriptions Parameter Value Range

Full scale current (Amps) P7936 N/A Value reported as status
Product maximum motor current (Amps) P7937 N/A Value reported as status
User selected maximum motor current P7938 0.5 0.0-4.0

(Amps)

Motor resistance (ohms) P7939 0.9 0.1-15.0

Motor inductance (mH) P7940 2.5 0.1-40.0

Integer Parameter Descriptions Parameter Default Value Range

Standby Current Percentage P7944 100 3-100

Time from full to standby current (msec.) P7945 0 0-5000

Micro-steps per full step (power of 2) P7946 256 1-256

Configuration error code P7947 N/A Value reported as status
Drive Register write value (for debug) P7948 N/A

ACR Programmer’s Guide 333

APPENDIX H: ACR7000 BITS AND PARAMETERS

Drive Register read value (for debug) P7949 N/A Value reported as status
Drive Register tuning value (for tuning) P7950 73765 0-131071 (OxIffff)
Drive Register raw status read P7951 N/A 16 or 20 bit number

The table below shows the possible values returned in P7947 above and their meanings.

Error description Value
No error 0
Max Current setting range error I
Motor resistance range error 2
Motor Inductance range error 3
Standby Current range error 4
Standby time range error 5
Micro-stepping setting value error 6

ACR7xV Configuration Bits and Parameters

The table below shows the parameters used for servo drive configuration. Note these are set from PMM’s
Configuration Wizard. These parameters occupy the same parameter space that had been used for Drive Talk on
the ACR9000 and in most cases, have the same names and meanings as those parameters.

P t Mot Mi
Parameter | . o oorer Units Value oror n Max Value | Description
Name Default | Value
28674 Feedback Counts/Rev | 524288 | 524288 | 32 1073741823 | Rotary motor: Counts per
Resolution full revolution. Linear
Motor: counts/electrical
pitch.
28704 Continuous Arms 2.6 2.6 0 200 Continuous operating
Current current in Amps (rms).
28705 Continuous % 10 10 0 100 Current derating
Current Derating percentage at rated speed.
28706 Peak Current A rms 7.8 7.8 0 400 Maximum allowable
current for the motor,
Amps (rms).

334 ACR Programmer’s Guide

APPENDIX H: ACR7000 BITS AND PARAMETERS

28707 Motor Inductance mH 5.68 5.68 0 200 Maximum value of motor
inductance.

28708 Motor Inductance None 0.75 0.75 0 I Minimum motor inductance

Factor divided by the maximum
motor inductance.

28709 Motor Maximum °C 125 125 0 200 Maximum allowable motor

Temperature winding temperature.

28710 Winding Resistance | Ohm 1.33 1.33 0 100 Motor winding resistance,
Ohms (measured line-to-
line).

28711 Motor Rated Speed | RPS 83.3 83.3 0 400 Speed of motor at
maximum power.

28675 Motor Pole Pairs None 4 4 I 200 Motor pole count divided
by 2.

28712 Motor Damping uNm/rad/sec | 67 67 0 10000 Value of the motor's
damping, includes bearing
and magnetic losses
(N/meter/sec for linear
motors).

28713 Motor Rotor kgm?x 107 25 25 0 1000000 Motor rotor inertia for

Inertia/Forcer Mass rotary motors, or the
forcer mass (kg) for linear
motors.

28715 Linear Motor Pole mm 0 0 0 300 Electrical pitch of the

Pitch magnets for use with linear
motors. (Set to zero for
rotary motors).

28717 Motor Maximum Nm 4.67 4.67 0 4000 Maximum torque available

Torque for motor. Maximum force
in N for linear motors.

28714 Motor Constant, Vikrpm or 443 443 0 800 Motor voltage constant

Ke Viml/s (Ke). Volts(0-peak).

28718 Torque Scaling Nm 4.67 4.67 0 4000 Full scale torque available
for motor. Maximum force
in N for linear motors.

28776 Encoder Polarity None I I 0 I Positive Encoder direction:
0 for CW, | for CCW.

ACR Programmer’s Guide 335

APPENDIX H: ACR7000 BITS AND PARAMETERS

28678 Invert Halls None 0 0 0 I Controls the logic sense of
the Hall sensors. Set = |
to invert the halls.

28775 Hall Only None 0 0 0 4 Commutation with

Commutation incremental encoders: 0 =
hall, 2=DC brush mode.

28719 Motor Ambient °C 25 25 -50 250 Motor ambient

Temperature temperature used by the
software motor thermal
model.

28720 Motor Thermal °CIW |.4 1.4 0 16 Temperature rise of the

Resistance motor winding above
motor case temperature
per watt of winding power
dissipation between the
winding and case.

28721 Motor Thermal Min 20 20 0 7200 Time the motor takes to

Time Constant reach 63% of its final
temperature given constant
power.

28722 Winding Time Min 0.7 0.7 0 3600 Time for the winding to

Constant reach 63% of its final
temperature rise above the
rest of the motor given
constant power.

28679 Disable Thermal None I I 0 I Thermal Switch Checking:

Switches = enable=0, disable=1.

28716 Motor Velocity RPS 83.3 83.3 0 250 Maximum velocity of

Limit motor in revs/s. Linear
motor in meters/s.

28725 Encoder Counts -0.45 -0.45 -1 | Encoder commutation

Commutation offset. 1=180 degrees.

Offset

28769 Serial Encoder Valid 35 35 0 214783647 Number of valid bits for

Bits serial encoder. Single and
multi-turn total.

28771 Feedback Type 5 5 0 10 Feedback type. | =
incremental encoder,
5=BiSS

336 ACR Programmer’s Guide

APPENDIX H: ACR7000 BITS AND PARAMETERS

28772 Serial Encoder Valid 65535 | 65535 214783647 | Number of supported multi
Turns turns for a serial encoder
28800 BiSS Single Turn 21 21 64 Number of single turn bits
bits in BiSS frame
28801 BiSS Multi Turn bits 16 16 20 Number of multi turn bits
in BiSS frame
28802 BiSS Status Bit 0 0 16 Status bit offset in BiSS
Offset frame
28803 BiSS CRC_Invert 0 0 | Set = | if BiSS CRC is not
inverted
28804 BiSS CRC 0 0 | Set =1 to skip BiSS CRC
check
28805 BiSS Status Bit | | | BiSS Status bit polarity
Inversion (O=inverted)
28806 BiSS Position Bits 2 2 32 Position data offset in BiSS
Offset frame
28807 BiSS Protocol Type 0 0 I BiSS Protocol type. BiSS
C=0, BiSS B=1
28686 Brake Relay Delay ms 50 0 Delay in milliseconds after
on Enable DRIVE ON. Brake will
remain engaged/holding for
delay time.
28687 Brake Delay after ms 50 0 Delay in milliseconds after
disable DRIVE OFF. Servo loop
will continue operating,
allowing time for brake to
engaged/hold.

Brake Relay Delay on Enable: Specifies the amount of time that the brake relay will remain asserted after the

current is applied to the motor windings when the drive is enabled. This allows torque to build up in the motor

while the brake output is off (brake set). This is important in vertical applications where the motor must be able
to support the load before the brake is released. This should be set for the disengage/release time of the brake.

Brake Delay after disable: Specifies the amount of time that current will remain in the motor windings after DRIVE
OFF issued. This setting is intended to be used in vertical applications, where the brake must be enabled while the

motor still has torque so that the load is always supported. This is the complement to the Brake Relay Delay on

Enable setting. This should be set for the engage/set time of the brake. This delay will not occur in error

condition, only when axis is disabled.

ACR Programmer’s Guide 337

APPENDIX H: ACR7000 BITS AND PARAMETERS

ACR7xV Status Parameters

The usual scheme for P parameters applies for eight axes here. So Axis| will be Axis 0 +256, axis2 is +512, etc.

Parameter Name Axis0 Axisl Axis2 Axis3 Axis4 Axis5 Axisé Axis7
Drive Continuous Current P28736 P28992 P29248 P29504 P29760 P30016 P30272 | P30528
Rating

Drive Maximum Current P28737 P28993 P29249 P29505 P29761 P30017 P30273 | P30529
Rating

Commanded Current P28738 P28994 P29250 P29506 P29762 P30018 P30274 | P30530
Commanded Torque P28739 P28995 P29251 P29507 P29763 P30019 P30275 | P30531
Actual Torque P28740 P28996 P29252 P29508 P29764 P30020 P30276 | P30532
Actual Velocity P28741 P28997 P29253 P29509 P29765 P30021 P30277 | P30533
Shaft Power, watts P28742 P28998 P29254 P29510 P29766 P30022 P30278 | P30534
Drive Temperature P28743 P28999 P29255 P29511 P29767 P30023 P30279 | P30535
Motor Temperature P28744 P29000 P29256 P29512 P29768 P30024 P30280 | P30536
Bus Voltage P28745 P29001 P29257 P29513 P29769 P30025 P30281 | P30537
Thermistor temperature P28746 P29002 P29258 P29514 P29770 P30026 P30282 | P30538
Fan On P28691 P28947 P29203 P29459 P29715 P29971 P30227 | P30483
Custom Product ID P28692 P28948 P29204 P29460 P29716 P29972 P30228 | P30484
Encoder Position P28693 P28949 P29205 P29461 P29717 P29973 P30229 | P30485
Current Hall State P28694 P28950 P29206 P29462 P29718 P29974 P30230 | P30486
Operating Hours P28695 P28951 P29207 P29463 P29719 P29975 P30231 | P30487
Operating Minutes P28696 P28952 P29208 P29464 P29720 P29976 P30232 | P30488
Operating Milliseconds P28697 P28953 P29209 P29465 P29721 P29977 P30233 | P30489

ACR7xV Status | Flags

All eight axes have their status parameters in a row rather than offset by increments of 256.

338 ACR Programmer’s Guide

APPENDIX H: ACR7000 BITS AND PARAMETERS

Parameter Name Mask | 0x01 0x02 0x04 0x08 0x010 0x20 0x40 0x80
Flag Parameter P4392 P4393 P4394 P4395 P4396 P4397 | P4398 | P4399
Code=0x10; Index=0x04
Axis Number

Status Flags Bit 0 I 2 3 4 5 6 7

Index
Motor Configuration 0 9472 9504 9536 9568 9600 9632 9664 9696
Woarning
Motor Configuration Error I 9473 9505 9537 9569 9601 9633 9665 9697
Invalid OS Loader 2 9474 9506 9538 9570 9602 9634 9666 9698
Max Inductance = 0 3 9475 9507 9539 9571 9603 9635 9667 9699
Rated Speed =0 4 9476 9508 9540 9572 9604 9636 9668 9700
DPOLE =0 5 9477 9509 9541 9573 9605 9637 9669 9701
Resistance = 0 6 9478 9510 9542 9574 9606 9638 9670 9702
Ke=0 7 9479 9511 9543 9575 9607 9639 9671 9703
Continuous Current = 0 8 9480 9512 9544 9576 9608 9640 9672 9704
Peak Current =0 9 9481 9513 9545 9577 9609 9641 9673 9705
Cont Motor Current > 10 9482 9514 9546 9578 9610 9642 9674 9706
Drive
Torque Rating > Drive I 9483 9515 9547 9579 9611 9643 9675 9707
Peak Current > Drive 12 9484 9516 9548 9580 9612 9644 9676 9708
Inertia = 0 13 9485 9517 9549 9581 9613 9645 9677 9709
Damping = 0 14 9486 9518 9550 9582 9614 9646 9678 9710
Reserved I5 9487 9519 9551 9583 9615 9647 9679 9711
Reserved 6 9488 9520 9552 9584 9616 9648 9680 9712
Reserved 17 9489 9521 9553 9585 9617 9649 9681 9713
Reserved 18 9490 9522 9554 9586 9618 9650 9682 9714
Reserved 19 9491 9523 9555 9587 9619 9651 9683 9715

ACR Programmer’s Guide 339

APPENDIX H: ACR7000 BITS AND PARAMETERS

Reserved 20 9492 9524 9556 9588 9620 9652 9684 9716
Reserved 21 9493 9525 9557 9589 9621 9653 9685 9717
Reserved 22 9494 9526 9558 9590 9622 9654 9686 9718
Reserved 23 9495 9527 9559 9591 9623 9655 9687 9719
Reserved 24 9496 9528 9560 9592 9624 9656 9688 9720
Reserved 25 9497 9529 9561 9593 9625 9657 9689 9721
Drive Faulted 26 9498 9530 9562 9594 9626 9658 9690 9722
Bridge Hardware Fault 27 9499 9531 9563 9595 9627 9659 9691 9723
Bridge Temperature Fault 28 9500 9532 9564 9596 9628 9660 9692 9724
Drive Over-voltage Fault 29 9501 9533 9565 9597 9629 9661 9693 9725
Drive Under-voltage Fault 30 9502 9534 9566 9598 9630 9662 9694 9726
Bridge Foldback Warning 31 9503 9535 9567 9599 9631 9663 9695 9727
ACR7xV Status 2 Flags
All eight axes have their status parameters in a row rather than offset by increments of 256.
Parameter Name Mask | 0xO0l 0x02 0x04 0x08 | 0x010 | 0x20 | 0x40 | 0x80
Flag Parameter P4408 P4409 P4410 P4411 | P4412 | P4413 | P4414 | P4415
Code=0x10; Index=0x04
Axis Number
Status Flags Bit 0 I 2 3 4 5 6 7
Index
Power Regeneration Fault 0 9984 10016 10048 10080 | 10112 | 10144 | 10176 | 10208
Reserved I 9985 10017 10049 10081 | 10113 | 10145 | 10177 | 10209
Drive Temperature Fault 2 9986 10018 10050 10082 | 10114 | 10146 | 10178 | 10210
Motor Thermal Model Fault 3 9987 10019 10051 10083 | 10115 | 10147 | 10179 | 10211
Motor Temperature Fault 4 9988 10020 10052 10084 | 10116 | 10148 | 10180 | 10212
Bad Hall State 5 9989 10021 10053 10085 | 10117 | 10149 | 10181 | 10213

340 ACR Programmer’s Guide

APPENDIX H: ACR7000 BITS AND PARAMETERS

Feedback Failure 6 9990 10022 10054 10086 | 10118 | 10150 | 10182 | 10214
Drive Disabled 7 9991 10023 10055 10087 | 10119 | 10151 | 10183 | 10215
Over Current Fault 8 9992 10024 10056 10088 | 10120 | 10152 | 10184 | 10216
Power Regeneration Warning | 9 9993 10025 10057 10089 | 10121 10153 | 10185 | 10217
Shaft Power Limited Warning | 10 9994 10026 10058 10090 | 10122 | 10154 | 10186 | 10218
Reserved I 9995 10027 10059 10091 | 10123 | 10155 | 10187 | 10219
Reserved 12 9996 10028 10060 10092 | 10124 | 10156 | 10188 | 10220
Reserved 13 9997 10029 10061 10093 | 10125 | 10157 | 10189 | 10221
VQ exceed bus voltage 14 9998 10030 10062 10094 | 10126 | 10158 | 10190 | 10222
Low Voltage at Enable I5 9999 10031 10063 10095 | 10127 | 10159 | 10191 | 10223
Control Power Active (IPA) 6 10000 10032 10064 10096 | 10128 | 10160 | 10192 | 10224
Alignment Error 17 10001 10033 10065 10097 | 10129 | 10161 | 10193 | 10225
Hardware Error 18 10002 10034 10066 10098 | 10130 | 10162 | 10194 | 10226
Internal Error 19 10003 10035 10067 10099 | 10131 10163 | 10195 | 10227
Encoder Read Fault 20 10004 10036 10068 10100 | 10132 | 10164 | 10196 | 10228
Reserved 21 10005 10037 10069 10101 | 10133 | 10165 | 10197 | 10229
Encoder Loss Fault 22 10006 10038 10070 10102 | 10134 | 10166 | 10198 | 10230
Reserved 23 10007 10039 10071 10103 | 10135 | 10167 | 10199 | 10231
Drive Param Error 24 10008 10040 10072 10104 | 10136 | 10168 | 10200 | 10232
Torque Enable Fault (IPA) 25 10009 10041 10073 10105 | 10137 | 10169 | 10201 | 10233
Torque Enable Open (IPA) 26 10010 10042 10074 10106 | 10138 | 10170 | 10202 | 10234
Torque Enable Health Event 27 10011 10043 10075 10107 | 10139 | 10171 | 10203 | 10235
(IPA)

Reserved 28 10012 10044 10076 10108 | 10140 | 10172 | 10204 | 10236
Reserved 29 10013 10045 10077 10109 | 10141 10173 | 10205 | 10237
Reserved 30 10014 10046 10078 10110 | 10142 | 10174 | 10206 | 10238
Reserved 31 10015 10047 10079 [O111 | 10143 | 10175 | 10207 | 10239

ACR Programmer’s Guide 341

	User Information
	Important Safety Information
	Contents
	Change Summary
	Revision E Changes

	Before We Begin
	Assumptions of Technical Experience
	Before You Begin

	CHAPTER 1 Parker Motion Manager
	Parker Motion Manager
	Getting Started with PMM
	Connection
	Uploading a Project from the Controller to PMM
	Procedure

	Downloading a Project from PMM to the Controller
	Procedure
	Reference

	Parker Motion Manager Parts
	Menu
	Toolbar
	Explorer
	Message Window
	Watch Windows

	Configuration Wizard
	Axes
	Master (Units)
	Drive/Motor
	Drive/Motor (ACR7xT Stepper)
	Motor Settings
	Drive Settings

	Drive/Motor (ACR7xV Servo or IPA)
	Drive/Motor (ACR7xC)
	Feedback
	Scaling
	Specify Transmission
	Specify Reducer(s)
	Enter Scaling Factor

	Fault
	Hardware Limit Detection
	Assign Digital Inputs for Specific Functions
	Software Limit Detection
	Maximum Position Error Detection
	Position Maintenance Settings

	Memory
	Finish and System Code

	Program Editor
	Terminal Emulator
	Prompts
	Basic Terminal Operations
	User Buttons

	Tools
	Servo Tuner
	Channels
	Position Loop Gains
	Move Configuration
	Timebase
	Display
	Status Axis(0)
	The Scope

	Jog/Home/Limits
	Communications
	Drive
	Hardware Limits
	Software Limits
	Position Error
	LED Legend

	OS Update

	Status Panels
	Motion Status Panel (ACR7000 Family)
	Axis Status Bits
	Programs
	Axis Position
	Master
	Online Status
	Motion Enable Input

	Drive Status Panel (ACR7xV and ACR7xT)
	Control Status
	Drive Faults
	Controller Information

	Common Status Panel (IPA)
	Status
	Buttons
	Control Status and Drive Faults
	Controller Information
	Programs

	Numeric Status
	Bit Status
	Ethernet/IP Status Panel
	Failure Status
	Scanner Parameters
	Operation Error Code Descriptions

	Scanner Parameter Status
	EtherNet/IP Node Data
	Controls

	Servo Loop Status

	Scopes
	Common Tools
	Channels
	Timebase
	Controls
	Display
	The Scope

	Oscilloscope
	Strip Chart
	XY Plot

	CHAPTER 2 ACR Basics
	ACR Basics
	Delimiter
	Remarks
	Program Labels
	Move—Default Motion
	Axis Names
	Stopping Motion
	Program Flow
	Wait for Bit or Parameter
	Selection
	IF/THEN
	IF/ELSE/ENDIF
	ELSE IF Condition
	GOSUB/RETURN
	Example

	GOTO

	GOTO and GOSUB Sample Program
	Repetition
	FOR/TO/STEP/NEXT
	WHILE/WEND

	Bits, Parameters and Variables
	User Bits and Parameters

	Using Parameters and Bits
	Setting Binary Bits
	Clearing Binary Bits
	Printing the Current Value
	A Word on Aliases

	Programming Example
	Local Variables
	Defines
	Starting, Pausing, and Halting Programs
	Running a Program
	Running a Program at Power Up
	Listening to a Program
	Viewing a Running Program
	Halting a Program
	Pausing a Program
	Resuming a Paused Program
	Affecting Multiple Programs
	Restart Controller
	Running Startup Programs

	Parametric Evaluation
	Parentheses and Operational Order
	Nested Parentheses
	Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Example Code Conventions

	ACR System
	ACR Architecture
	Program Execution Timing
	ACR7xV/ACR7xT/IPA Hardware Architecture
	ACR7xC Hardware Architecture

	Ethernet
	Ethernet TCP/IP
	EtherNet/IP Scanner
	EtherNet/IP Node
	Ethernet/IP Peer-to-Peer
	ACR EtherNet/IP Architecture Examples

	Command Syntax
	Description of Format
	Arguments and Syntax
	Example 1
	Example 2
	Example 3
	Example 4

	Variable Substitution Syntax
	Example 5
	Example 6

	Nested Commands Syntax
	Commands Lists
	Axis Limits
	Character I/O
	Drive Control
	Feedback Control
	Global Objects
	Interpolation
	Logic Function
	Memory Control
	Non-Volatile
	Operating System
	Program Control
	Program Flow
	Servo Control
	Setpoint Control
	Transformation
	Velocity Profile

	Startup Programs
	Example

	Resetting the Controller
	Memory
	Return to Factory Default
	Configuration
	What is Configuration Code?
	The Code

	Resources Reserved for Generated Code
	Flash Memory

	CHAPTER 3 Making Motion
	Making Motion
	Four Basic Categories of Motion
	Move Types
	Absolute Motion
	Example 1
	Example 2
	Example 3

	Incremental Motion
	Example 1
	Example 2

	Comparing Absolute and Incremental Motion
	Example—Absolute Motion
	Example—Incremental Motion
	Example—Absolute and Relative

	Combining Types of Motion
	Example

	Immediate Mode
	Example

	Differences Between FOV and VEL
	What are Motion Profiles?
	Example

	Interaction Between Motion Profilers
	Primary Setpoint
	Example

	Velocity Profile Commands
	Velocity Profile Setup
	Feedback Control Commands
	REN Details
	Calculations for the REN Command

	RES Details
	Register Values for RES X 10

	Coordinated Moves Profiler
	Example 1
	Example 2

	Jog Profiler
	Example 1
	X Axis Velocity and Position Profiles
	Y Axis Velocity and Position Profiles
	X and Y Velocity Motion Profiles
	X and Y Position Motion Profiles
	Example 2
	Change in JOG VEL Value “On the Fly”
	Example 3
	Velocity Profile of Sequential Jog Moves

	JOG VEL Details
	JOG VEL Command and Bit Profiles

	JOG Commands
	JOG REN Details
	JOG REN Clears Coordinated Moves Profiler (JOG REN X)
	JOG REN Preloads the Coordinated Moves Profiler (JOG REN X2)

	JOG RES Details
	JOG RES Clears the Jog Profiler (JOG RES X)
	JOG RES Preloads the Jog Profiler (JOG RES X2)

	Gear Profiler
	Simple Gear Example—Gearing to an Axis
	Gearing Example—Start Gearing on High-Speed Input

	Cam Profiler
	Cam Example Program—CAM X to Y Axis

	Homing
	Example

	Homing Subroutines
	Basic Homing (Homing Backup Disabled)
	Figure A
	Figure B

	Positive Homing (Homing Backup Enabled)
	Figure C
	Figure D
	Figure E
	Figure F

	Negative Homing (Homing Backup Enabled)
	Figure G
	Figure H
	Figure I
	Figure J

	Limit Detection
	Dedicated I/O for Homing

	Stopping Motion and Moves
	Kill All Moves versus Kill All Motion Request
	Example

	Flag Comparison
	Bit Status Window Comparison
	Example:

	Contoured (Tiered) Profiles
	Terminal Emulator Sample:
	Terminal Emulator Sample:

	Blended (Tiered) Interpolated Moves
	Example:

	High-speed Position Capture (INTCAP)
	ACR7xV Capture Modes
	Example Encoder Reference Trigger
	ACR7xC Example Capture—Two Axis Positions with One Trigger Input

	Lock
	Example

	Rotary Axis
	Example

	External Time Base
	Example

	Servo Loop Fundamentals
	Primary Setpoint Summation

	Setpoint Compensation
	Secondary Setpoint Summation

	Viewing the Setpoint Calculations
	Following Error
	Following Error

	Ballscrew Compensation
	BSC with PPU
	Encoder Accuracy
	Slope Correction
	BSC Using Slope Correction Value
	BSC Using Error Data Points From Laser Report

	Inverse Kinematics
	Programming the Inverse Kinematics
	Example

	CHAPTER 4 Writing AcroBASIC Programs
	Writing AcroBasic Programs
	Application Examples
	Sample Motion Program
	Enable Drives Subroutine
	Absolute Interpolated Motion Subroutine
	Incremental Interpolated Motion Subroutine
	Basic Absolute and Incremental Motion Subroutine
	Absolute Jog Moves Subroutine
	Incremental Jog Moves Subroutine
	Absolute and Incremental Jog Moves Subroutine
	Homing Subroutine
	Advanced Homing
	Homing for XYZ System
	Open Sample
	Teach Array
	Programmable Limit Switch
	EIP Scanner–Wago 750
	Joystick
	Capture Data
	Peer-to-Peer
	ACR7xT Status
	ACR7xT Home to Hard Stop
	Time Subroutine
	Error Recovery (IPA)
	Add-On Instructions (AOIs) for IPA
	Xpress HMI with ACR7000
	Xpress HMI with IPA

	Testing Programs
	Program Not Running?
	Axis Motion Status?
	Graphing with Oscilloscopes
	Sampling

	Adding Lines of Code to Programs
	Trace a Program

	CHAPTER 5 Binary Host Interface
	Binary Host Interface
	Binary Data Transfer
	Control Character Prefixing
	Transmitting
	Receiving
	High Bit Stripping
	Transmitting
	Receiving

	Binary Data Packets
	Packet Request
	Group Code and Index
	Isolation Mask
	Parameter Access
	Packet Header
	Packet Data
	Usage Example

	Binary Parameter Access
	Packet ID Codes
	Usage Example
	Binary Get Long
	Transmit Packet
	Receive Packet

	Binary Set Long
	Transmit Packet
	Receive Packet

	Binary Get IEEE
	Transmit Packet
	Receive Packet

	Binary Set IEEE
	Transmit Packet
	Receive Packet

	Binary Peek Command
	Transmit Packet
	Receive Packet
	Conversion Codes
	Usage Example

	Binary Poke Command
	Transmit Packet
	Receive Packet
	Conversion Codes
	Usage Example

	Binary Address Command
	Transmit Packet
	Receive Packet
	Parameter Codes
	Usage Example

	Binary Parameter Address Command
	Transmit Packet
	Receive Packet
	Usage Example

	Binary Mask Command
	Transmit Packet
	Receive Packet
	Usage Example

	Binary Parameter Mask Command
	Transmit Packet
	Receive Packet
	Usage Example

	Binary Move Command
	Binary Move Packet
	Header Code 0
	Enable Rapid Move Modes Flag Disabled—Default Cleared Value:
	Enable Rapid Move Modes Flag Enabled—Set Value:
	Header Code 1
	Header Code 2
	Header Code 3
	Header Code 4
	Header Code 5
	Header Code 6
	Header Code 7

	Move Modes
	Example 1
	Example 2
	Example 3
	Example 4

	Linear Moves
	Arc Moves
	NURB or SPLINE Moves

	Binary SET and CLR
	Binary SET
	Binary CLR
	Usage Example

	Binary FOV Command
	Binary Format
	Header Bit Mask
	16 Master Header Bit Mask, Part 1
	16 Master Header Bit Mask, Part 2
	Usage Example

	Binary ROV Command
	Binary Format
	Header Bit Mask
	16 Master Header Bit Mask, Part 1
	16 Master Header Bit Mask, Part 2
	Usage Example

	Application: Binary Global Parameter Access
	Description
	Hardware Dependent System Pointer Address

	Reading Global Variables
	Setting Global Variables

	CHAPTER 6 Troubleshooting
	Troubleshooting
	Problem Isolation
	Information Collection
	Troubleshooting Table
	Common Problems and Their Solutions

	APPENDIX A Connecting to the Controller
	Connecting to the Controller
	Default IP Address
	Setting the IP Address and Subnet Mask—PC
	Verifying the IP Address
	Troubleshooting
	Lost the ACR’s IP Address?
	Finding an ACR with the Scan Tool
	Finding an ACR Using WireShark
	Resetting the ACR74T via Hardware

	APPENDIX B Ethernet Basics
	Ethernet Basics
	IP Addresses, Subnets and Subnet Masks
	IP Addresses
	Subnets
	Subnet IDs
	Subnet Masks

	APPENDIX C Servo PID Tuning
	Servo PID Tuning
	Purpose of Tuning
	Test Simple Motion First
	Basic Tuning Process
	Explanation of Tuning Gains
	Proportional Gain (PGAIN)
	Derivative Gain (DGAIN)
	Integral Gain (IGAIN)
	Integral Limit (ILIMIT)
	Integral Delay (IDELAY)
	Torque Limit (TLM)

	Tips and Tricks
	Can’t reach speed?
	Can’t accelerate?
	Derivative Smoothing
	Example

	Advanced Tuning Gains
	FF Velocity (FFVEL)
	FF Acceleration (FFACC)
	Derivative Width (DWIDTH)
	Feedback Velocity (FBVEL)
	Lowpass Filter (LOPASS)
	Notch Filter (NOTCH)

	APPENDIX D PMM Improvements Over ACR-View
	PMM Improvements Over ACR-View
	APPENDIX E ACR7xC/ACR9000 Comparison
	ACR7xC/ACR9000 Comparison
	APPENDIX F ACR7xV/IPA Differences
	ACR7xV/IPA Differences
	APPENDIX G 6K to ACR Command Reference
	6K to ACR Command Reference
	6K to ACR Command Crossover Table

	APPENDIX H ACR7000 Bits and Parameters
	ACR7000 Bits and Parameters
	ACR7xT Control and Status Bits
	ACR7xT Latched Fault and Warning Bits
	ACR7xT Control and Status Parameters
	ACR7xV Configuration Bits and Parameters
	ACR7xV Status Parameters
	ACR7xV Status 1 Flags
	ACR7xV Status 2 Flags

