

High Power Laser Engine

Version 1.1 rev 07 July 2022

User Guide

Covers models HLE-700

© Andor Technology Ltd. 2022

andor.oxinst.com

Table of Contents

Se	ctio	n 1: Introduction	
1.1		Technical Support	17
1.2		Disclaimer	18
1.3		Copyright and Protective Notices	18
1.4		Trademarks and Patent Information	
1.5		Supplied Components	19
	1.5.1	Optional Components	
Se	ectio	n 2: Product Overview	
2.1		HLE Front Panel	21
	2.1.1	HLE-FL1 Switch	
	2.1.2	2 Output Couplers	
	2.1.3	Laser Power Key Switch	
	2.1.4	System Power and Emission Enabled Indicator LEDs	
	2.1.5	Power Monitor Cover	23
	2.1.6	Optical Input (Blanked)	23
2.2		HLE Rear Panel	24
	2.2.1	USB/RS-232	
	2.2.2	Programmable TTL Input/Output	25
	2.2.3	Remote Interlock	25
	2.2.4	TTL Control Port	25
	2.2.5	12 V Power Input	
	2.2.6	Mains Inlet	
2.3		Beam Conditioning Unit (BCU)	27
	2.3.1	Emission LEDs	27
	2.3.2	On/Off Switch	27
	2.3.3	Power Input	
	2.3.4	Fibre Lock	
	2.3.5	Fibre Input	
2.4		System Overview	29
	2.4.1	Power Connections	
	2.4.2	Optical Connections	
	2.4.3	Interlock Connections	
	2.4.4	Laser Blanking Connections	

2.5	Lo	asers	34			
2.	.5.1	Primary Shutter	34			
2.	.5.2	Laser Intensity Control	34			
2.	.5.3	Laser On/Off Control	34			
2.	.5.4	Laser Blanking	34			
Sec	tion	3: Installation	35			
3.1	Lo	ocation and Mounting	35			
3.2	Ve	entilation	35			
3.3	A	ssembly	35			
Sec	tion	4: Operation	. 36			
4.1	E	mergency Mains Disconnection	36			
4.2	Po	ower-up Sequence (HLE-700)	36			
4.3	Po	ower-down Sequence (HLE-700)	36			
4.4	Ri	isk Mitigation	37			
4.	.4.1	Mechanical Housings	37			
4.	.4.2	Hazards Due to Moisture or Liquids	37			
4.5	U	sing the HLE	38			
4.	.5.1	Pulse Width Modulation (PWM) Laser Control	38			
Sec	tion	5: Maintenance	. 39			
5.1	С	leaning and Decontamination	39			
5.2	R	eplacing/Cleaning the Air Filter	39			
5.3	R	egular Checks	39			
5.4	A	nnual Electrical Safety Checks	40			
5.5	R	eplacing the Fuse	40			
Sec	tion	6: Troubleshooting	41			
Арр	end	lix A: Technical Specifications	. 42			
Арр	Appendix B: Mechanical Drawings					
Арр	Appendix C: Other Information					
Арр	end	lix D: HLE China RoHS Hazardous Substances Declaration	53			

3

Revision History

Version	Released	Description
1.0	25 February 2022	Initial release.
1.1	07 July 2022	Updated China RoHS table. Updated laser module order codes. Updated Laser Powers. Updated access panel labels. Added BCU power supply information.

Updates to the Manual

Changes are periodically made to the product, and these will be incorporated into new editions of the manual. Please check for new releases of the manual at: <u>andor.oxinst.com/downloads</u>. If you find an issue in this manual, please contact your customer support representative (Section 1.1) with a description of the issue.

CAUTION – USE OF CONTROLS OR ADJUSTMENTS OR PERFORMANCE OF PROCEDURES OTHER THAN THOSE SPECIFIED HEREIN MAY RESULT IN HAZARDOUS RADIATION EXPO-SURE.

- 1. If the equipment is used in a manner not specified by Andor, the protection provided by the equipment may be impaired.
- 2. WARNING: The BCU must be switched on when the HLE is emitting, otherwise serious damage will occur to the BCU due to the power of the HLE laser radiation. It is important that the BCU interlock connector is wired into the interlock system correctly as this will stop the HLE emitting to protect the BCU.
- 3. Do not position this product so that it is difficult to operate the mains disconnecting device. See SECTION 4.1, "Emergency Mains Disconnection".
- 4. Before using the product, please follow and adhere to all warnings, and safety, manual handling, and operating instructions located either on the product, or in this manual.
- 5. If used in a Dragonfly system, refer to the Dragonfly hardware guide.
- 6. Keep this manual in a safe place for future reference.
- 7. Users must be authorised and trained personnel only; otherwise, this may result in personal injury, and/ or equipment damage and impaired system performance.
- 8. There are no user-serviceable parts inside the product and the enclosure must not be opened. Only authorised service personnel may service this equipment.
- 9. IEC Technical Document IEC TR 60825-14 recommends the presence of a Laser Safety Officer (LSO); however, national guidelines should be referred to.
- 10. Do not attempt to bypass any safety interlocks. They are provided to comply with the safety requirements of various regulatory agencies and must be employed to protect the operator.
- 11. Protective earth is an integral part of the protection against electric shock in this product and is provided via the earth pin of the external power supply. Ensure that this is plugged into the building earth system via the mains socket. Do not tamper with any of the earthing measures.
- 12. Any AC/DC Power Supply used with this product must meet the requirements specified in "HLE-FL1 External AC/DC Power Supply Requirements" on page 48 and 49.
- 13. No parts should be replaced by the customer, except for the mains cables, which must be of the same type and rating as that supplied (and as specified in "Electrical Power Specifications" on page 47) and certified in accordance with your region's safety regulations.
- 14. Make sure the power supply cord is located so that it will not be subject to damage.
- 15. While running an experiment, keep room temperature as stable as possible.
- 16. Performance of the system may be adversely affected by rapidly changing environmental conditions or operation outside of the operating conditions specified in "Appendix A: Technical Specifications"
- 17. Medical Diagnosis: This equipment has not been designed and manufactured for the medical diagnosis of patients.
- 18. Electromagnetic Compatibility (EMC) Caution: This product was designed for and tested using the IEC/EN 61326-1 EMC standard for Class A emissions and a Basic immunity environment. Class A means that it is not designed for a domestic or residential environment, and Basic immunity refers to the fact that it is not designed for a typical industrial environment. This equipment is not intended for use in residential environments and may not provide adequate protection to radio reception in such environments.

- 19. Electromagnetic Compatibility: As required by IEC/EN 61326-1, we must inform you that electromagnetic emissions in excess of that required by this EMC standard for the emissions class of this product can in theory occur due to its connection to other equipment.
- 20. Electromagnetic Compatibility: This product has been designed and tested to perform successfully in a normal (basic) electromagnetic environment, e.g. a typical life science test laboratory, as per the EU EMC Directive. It is not designed to operate in a harsh electromagnetic environment, e.g. close to the following equipment: EMI/RFI generators, electrostatic field generators, electromagnetic or radioactive devices, plasma sources, arc welders, x-ray instruments, intense pulsed sources, or other similar sources of high energy fields whose emissions are not within the normal range expected under the EU EMC Directive.
- 21. Ionising Radiation: Please note that this product is not designed to provide protection from ionising radiation. Any customer using this product in such an application should provide their own protection.
- 22. This product is a precision scientific instrument containing fragile components. Always handle it with care.
- 23. Heavy Product: Take care when lifting and follow the instructions regarding a "Multi-person Lift" on page 15.
- 24. Optical Fibres: It is important that you read "Working with Optical Fibres" on page 13
- 25. Do not wet or spill liquids on the product, and do not store or place liquids on the product.
- 26. If spillage occurs on the product, switch off power immediately, and wipe off with a dry, lint-free cloth.
- 27. If any ingress of liquids has occurred or is suspected, unplug the mains cables and do not use. Contact customer support.
- 28. See "5.1 Cleaning and Decontamination" on page 39.
- 29. Do not expose the product to open flames.
- 30. Do not allow objects to fall on the product.

Laser Safety

READ AND DO NOT IGNORE! CAUTION – USE OF CONTROLS OR ADJUSTMENTS OR PERFORMANCE OF PROCEDURES OTHER THAN THOSE SPECIFIED HEREIN MAY RESULT IN HAZARDOUS RADIATION EXPOSURE

- This product contains lasers, so you must be aware of the hazards associated with the use of the powerful laser radiation that can be emitted by this product.
- Laser radiation is emitted by this product when the Emission Indicator LEDs are illuminated.
- DANGER: As defined in IEC 60825-1, this product is Class 4, which means that it is hazardous to the eyes and skin, the diffuse reflections may not be safe, and it potentially could cause a fire if the radiation is concentrated sufficiently.
- Extreme caution must thus be taken with the laser radiation emitted from this product.
- Be conscious of the path taken by the beam emitted by this product or any attached product.
- Do not expose any part of your body to the laser radiation emitted by this product or any attached product.
- Skin damage or deeper injury can be caused by lasers, but the eye is especially susceptible as laser light can be collimated into a narrow beam that can enter the eye and permanently damage the retina with life-changing consequences.
- The following labels summarise the same information and are located on the front panel of the main unit:

LASER DE CLASSE 4

400 - 700nm CW 4000mW max.

CLASSIFICATION IEC 60825 - 1: 2014

Figure 1: HLE Class 4 Labels.

Figure 2: Dual-HLE BCU Class 4 Labels, location on the top of the BCU. These labels are not provided for a BCU driven by a single HLE as the label on the HLE is sufficient to cover it. However, in a dual-HLE configuration the output of the BCU is a combination of HLE outputs and so the combined power must be given.

- The power indicated on this product would be very tame if it was a light bulb, but this should not deceive you as laser radiation is quite different.
- Laser radiation differs from ordinary light primarily because its optical power can be concentrated into a narrow, low-divergence beam, whereas, for example, a standard light bulb diffuses its light in all directions and thus spreads out its power. It's a bit like the difference between walking outside on a sunny day versus having the sun's light concentrated on your skin using a magnifying glass.
- Laser safety for this type of product is about reducing risk, rather than being able to eliminate it because access is usually required for the applications that it is typically purchased for, so it is not completely safe.
- Be aware that visible laser light is dangerous as well as invisible.
- Be aware that this product may emit invisible laser radiation outside the visible spectrum of 400 nm
 700 nm, which has the added danger that it cannot be seen. If you have such lasers, we advise that you purchase fluorescent cards that assist with observing the presence of the wavelength(s) of invisible laser radiation emitted by this product and that you use them safely.
- All lasers in this product are CW (Continuous Wave), are generated using laser diodes, are confined to a very narrow bandwidth and may have very narrow, low-divergence beams, depending on the application.
- It is important to remember to beware reflections from objects such as tools or clips placed close to the laser beam emitted from the microscope objective.
- One of the primary means of protection is protective housing, which as IEC 60825-1 says, "prevents human access to [hazardous] laser radiation (including errant laser radiation) except when human access is necessary for the performance of the function(s) of the product."
- As a user of a product that allows considerable access to hazardous laser radiation to enable it to be used in a wide number of different applications, it is important that you ask yourself how much access to the laser radiation do you need to perform the functions that you require and take any additional precautions that would be wise.
- We strongly recommend that all facilities have an established system for the safe use of lasers as per their national regulations and occupational health and safety legislation. IEC TR 60285-14 Safety of laser products Part 14: A user's guide and the American National Standard for the Safe Use of Lasers (ANSI Z136.1) are standard references for best practice.
- We also strongly recommend that all facilities have an occupational laser safety officer (LSO) as advised in the aforementioned guidelines, and that the LSO also has a copy of IEC 60285-1 Safety of laser products Part 1: Equipment classification and requirements
- You may consider purchasing laser safety goggles as part of your occupational laser safety protection measures.
- Read the labels on the product and all of the following information on lasers and ensure that you know the power and wavelengths of the laser radiation emitted by your particular configuration of laser modules and understand the implications of this for you.

- Ensure that the safety interlock system is in good condition and that you test it every day by opening and closing the various interlocked items and checking that the laser emission LEDs operate as expected.
- Ensure that all users of this product have read the laser safety material in this user guide and that they have received adequate training in the general safe use of laser products and specifically in the use of this product.

Laser Product Safety Standards

- This has been designed and manufactured to comply with the international laser product safety standard IEC 60825-1 and the U.S. CDRH Regulation 21CFR § 1040.10 to reduce risk as far as is reasonably practicable.
- In most instances our Customer Support Team install the system according to the same standards, but if there has been an agreement that you should install all or part of the laser product system, then you take responsibility to install this according to the same standards.

Laser Safety Protection Measures

The following protection measures are used in the product to reduce, but not eliminate, the risk of exposure to hazardous laser radiation in accordance with the international product laser safety standard IEC 60825-1 and U.S. CDRH Regulations 21 CFR 1040.10 and 1040.11:

Emission LEDs

See "System Power and Emission Enabled Indicator LEDs" on page 23.

Key Switch

See "Laser Power Key Switch" on page 22.

Protective Housing

- Except at the identified laser apertures at the optical fibre output couplers, or at the ends of the attached optical fibres, or at the microscope stage, or other locations identified as a laser aperture in an attached laser product, the laser radiation within this product has been housed within an aluminium enclosure or inside optical fibre for your safety.
- Therefore, do not attempt to disassemble this product, including removing optical fibres, or try to gain access to its laser radiation, otherwise you endanger yourself and possibly others.

Safety Interlocks

- Safety interlocks are automatic devices, such as switches or sensors, that are used to prevent human access to laser radiation by stopping the laser product emitting (or in some instances reducing the power to a safe level, but not in this product).
- This product does not have safety interlocks built into the enclosure as it requires tools to gain access to the laser radiation within it.
- However, it is almost certain that external safety interlocks are attached to the Remote Interlock Connector of this product, e.g. for the eyepiece of a microscope.
- Understand how the interlock system works and do not disconnect or seek to defeat the interlocks as they are there for your protection.
- The HLE comes with an external interlock box called a Laser-Lock. Read the user guide for this accessory product as it is part of the safety design of this product. Do not disconnect or seek to defeat this accessory.

Laser Safety Labelling

Another important protective measure is labelling, which is described in the following sections, and you must understand what these mean.

Laser Aperture Locations

- A laser aperture label indicates where laser radiation is emitted as a warning.
- If the point where laser is emitted from your system does not have such a label, then contact your occupational laser safety department and/or our Customer Support Team to arrange for a label to be affixed.
- The following label is located on each of the optical fibre output couplers on the unit and on the optical fibres provided with this product by Andor.
- These labels indicate that during installation laser radiation may be emitted from these locations when the optical fibres are disconnected.
- When properly installed, no laser radiation will be emitted from these locations during use.

Figure 3: Standard laser aperture label.

• In the most common uses of this product, it will be connected to a larger system that includes a microscope. In such instances, the following label will be fitted beside the microscope objective, or, in the absence of an objective, the socket where the objective is attached.

Figure 4: Andor laser aperture label for a microscope stage.

• The system integrator MUST ensure that the final system's laser aperture is suitably labelled e.g. the microscope's objective is identified by a label on the microscope's stage top.

Access Panels

The following labels are located on panels that should only be opened by our Customer Support Team and which are not interlocked as they are tool-accessible:

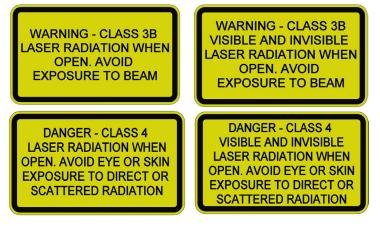


Figure 5: Access panel labels.

Laser Product Classification Labels with Explanatory Text

- Copies of these labels can be found at the beginning of the Laser Safety Special Warnings section.
- The power values on these labels are intended as maximum values for classification purposes based on IEC 60825-1 Condition 3 (using a 7 mm limiting aperture to simulate the eye's pupil at a distance of 100 mm from the laser aperture) taking into account future versions of this product and possible failure scenarios. Normally the HLE unit only allows 1 or 2 lasers on at any one time, but in theory a fault could allow all 7 lasers to be turned on by the user, or in the case of the Dual HLE configuration, this could be up to 10 lasers between two units. The wavelength range covers all of the possible wavelengths that can be installed in this unit.
- The actual values of power and wavelength for each of the modules in your version of the product can be found in the documentation accompanying your unit. See also "HLE Laser Output Power Specifications" on page 45.
- Additional classification labels should be affixed to connected products that use laser radiation from this product. If these do not exist, then contact your occupational laser safety department and/or our customer support team to arrange for appropriate labels to be affixed.

CDRH Certification Label

The rear panel label includes the words "Complies with 21 CFR 1040.10 and 1040.11 except for conformance with IEC 60825-1 Ed. 3., as described in Laser Notice No. 56, dated May 8, 2019". This means that it complies with the U.S. Federal Regulations for laser products as overseen by the Center for Devices and Radiological Health (CDRH), which is part of the Food and Drug Administration (FDA), by means of IEC 60825-1 Edition 3 as allowed by CDRH Laser Notice No. 56, except for some additional requirements as described in that Notice.

Figure 6: Rear panel label.

Working with Optical Fibres

- This was installed by our Customer Support Team. For your safety only they should remove or inspect optical fibres.
- The laser radiation passing through fibres is potentially hazardous, so great care should be taken to avoid exposure to this radiation.
- Optical fibres can be easily damaged by bending or general mishandling, and are especially prone to damage by bending close to the connector.
- Ensure that the minimum bend diameter or radius is never exceeded when handled or coiled.
- The bend diameter is the diameter of the circle created by coiling the fibre, and the bend radius is half of this and created by the "corners" in your fibre layout.
- <u>The FOA state</u> that the minimum bend diameter is 40 times the outer diameter (OD) of the cable when under tension or 20 times when not under tension.
- The HLE output fibres are all 3 mm OD, so the minimum bend diameter is 120 mm under tension. We recommend that you aim to have a bend diameter of 150 mm or preferably more.
- The BCU output fibre is 5 mm OD, so the minimum bend diameter is 200 mm under tension. We recommend that you aim to have a bend diameter of 250 mm or preferably more.
- The coupler is not designed to withstand pulling of the fibre. If the fibre is pulled the system performance could be compromised, the system may fail, or you may even be exposed to hazardous laser radiation.

Symbols on Product

	Laser radiation hazard
	General warning symbol
<u>\$</u>	Lift must be performed by more than one person (See "Multi-person Lift" on page 15)
CE	EU CE Mark by which we indicate that this product meets the requirements all the relevant EU Product Directives that require this mark, including the Low Voltage Directive for safety (as this product in manufactured in Northern Ireland, it does not require the UKCA Mark)
TÜVIbaleland c us	Certified for product safety in the United States and Canada
	EU WEEE (Waste Electrical and Electronic Equipment) Mark which indicates that this should not be disposed of in domestic waste but at a suitable recycling site
	Fuse symbol to denote that there is a fuse in the mains inlet connector that can be replaced with text adjacent to the symbol indicating its requirements (see "5.5 Replacing the Fuse" on page 40)
	D.C. voltage symbol

Multi-person Lift

This product is heavy (see "Mechanical Specifications" on page 43) and therefore requires careful lifting and handling. Two people must lift it at all times, as shown in the warning label in Figure 7, using the two handles highlighted in Figure 8.

Figure 7: Multi-person lift required label.

Figure 8: HLE handle positions on front and rear of unit highlighted.

Section 1: Introduction

This manual provides an overview of the High Power Laser Engine (HLE). This product is intended for professional scientific research applications, especially bio-imaging, photo-stimulation and spectroscopy. The HLE is a laser combiner system that utilises modern lasers. These are more efficient and smaller than previous generations. Thus, the HLE is designed as a fully integrated instrument with only an a.c. mains cable required to provide electrical power and a USB or serial cable to provide command and control communications. A USB 2.0 interface is provided that allows communication with the HLE and controls each laser channel via software. A primary shutter is also included to block any output when required. The HLE also supports interfaces for direct control of lasers: TTL for fast switching.

The HLE is constructed from a robust, rigid aluminium structure with the individual lasers mounted internally. Internal stabilization ensures that a reasonable variation in ambient temperature will not affect the system performance.

Inside HLE, the laser beams are individually focused onto a fibre output coupler. If the HLE has a dual output configuration, a second fibre output coupler is serviced by an optical switch mechanism. If the HLE has a triple output configuration, a third fibre output coupler is serviced by an optical switch mechanism that directs the laser outputs to any one of the outputs.

The HLE includes two external units: the Laser-Lock box and the Beam Conditioning Unit (BCU). The Laser-Lock box is needed for Class 4 lasers to provide manual reset functionality, which is required by the laser safety standards and regulations. HLE also supports interfaces for direct hardware control of lasers, i.e. TTL for fast switching.

1.1 Technical Support

If you have any questions regarding the use of this equipment, please contact the representative* from whom your system was purchased, or:

Europe

Andor Technology Ltd. 7 Millennium Way Springvale Business Park Belfast BT12 7AL Northern Ireland Tel. +44 (0) 28 9023 7126 Fax. +44 (0) 28 9031 0792

USA

Andor Technology 300 Baker Avenue Suite # 150 Concord MA 01742 USA Tel. +1 (860) 290-9211 Fax. +1 (860) 290-9566

Asia-Pacific

Andor Technology (Japan) 5F IS Building 3-32-42 Higashi-Shinagawa Tokyo 140-0002 Japan Tel: +81 3 6732 8968 Fax: +81 3 6732 8939

China

Andor Technology (China) Haitong Times Business Center, Building B2 West, No.11 West Third Ring North Road, Haidian District, Beijing, 100089 China Tel: +86 (0) 10 5884 7900 Fax. +86 (0) 10 5884 7901

* The latest contact details for your local representative can be found on the Contact and Support page of our website.

1.2 Disclaimer

THE INFORMATION CONTAINED HEREIN IS PROVIDED "AS IS" WITHOUT WARRANTY, CON-DITION OR REPRESENTATION OF ANY KIND, EITHER EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING BUT NOT LIMITED TO, ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL ANDOR BE LIABLE FOR ANY LOSS OR DAMAGE, WHETHER DIRECT, INDIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR OTHERWISE HOWSOEVER CAUSED WHETHER ARISING IN CONTRACT TORT OR OTHERWISE, ARISING OUT OF OR IN CONNEC-TION WITH THE USE OF THE INFORMATION PROVIDED HEREIN.

1.3 Copyright and Protective Notices

The copyright in this document and the associated drawings are the property of Andor Technology and all rights are reserved. This document and the associated drawings are issued on condition that they are not copied, reprinted or reproduced, nor their contents disclosed.

The publication of information in this documentation does not imply freedom from any patent or proprietary right of Andor Technology or any third party.

1.4 Trademarks and Patent Information

Andor and the Andor logo are trademarks of Andor Technology. Andor Technology is an Oxford Instruments company. All other marks are property of their owners

Manufacturers Information

Andor Technology Ltd., Belfast, BT12 7AL, UK.

1.5 Supplied Components

Description	Quantity
High Power Light Engine (HLE) Model as ordered	1

	Keys for HLE laser power switch	1		Country specific power cable	1
	Fibre optic cable (2 metre)	1		USB cable	1
Test Report	Test report	1	6	RS-232 communication cable	1
	User guide (in electronic format)	1		Triggering and Interlock cables (BNC)	-
	Power supply unit	1			

Please see individual sales order for complete list of supplied components.

-0

1.5.1 Optional Components

The standard HLE system may be configured with up to 7 laser sources and delivered into multimode fibre. The HLE can further be equipped with one or two additional fast switched fibre outputs, thereby supporting multiple illumination methods, as is possible for example by Andor Dragonfly systems.

-0

•

Section 2: Product Overview

This section provides an overview of HLE-700 models.

2.1 HLE Front Panel

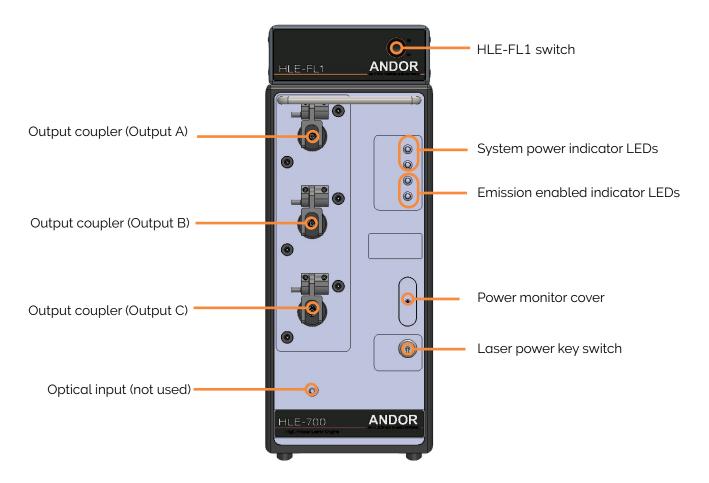


Figure 9: HLE front panel.

2.1.1 HLE-FL1 Switch

The HLE-FL1 controller switch turns OFF the electrical power to the HLE-FL1 fibre laser (LM-HLE-560-1000). This laser will run continuously when the power is on, so it is advisable to turn it off when not in use.

2.1.2 Output Couplers

Laser is emitted from the unit via the output couplers. A single output is standard but dual output and triple outputs are available. They couple the internal laser outputs into MM fibre(s) attached depending on the requirements for the specific system configuration. A locking mechanism is provided for each of the outputs. This protects each fibre from disconnection from its output coupler.

NEVER REMOVE THE FIBRE LOCK WHEN IN OPERATION. THE CABLE SHOULD ONLY BE DISCONNECTED BY QUALIFIED SERVICE PERSONNEL. A TOOL IS REQUIRED TO OPEN THE LOCKING MECHANISM ONCE CLOSED.

2.1.3 Laser Power Key Switch

The Laser Power Key Switch on the front panel of the HLE disconnects electrical power to all the lasers via a control circuit if it is in the OFF position, except for the HLE-FL1 fibre laser (if present) which has its own switch ("2.1.1 HLE-FL1 Switch" on page 22).

The Laser Power Key Switch does not turn off the temperature control of the lasers to allow them to remain stable, except for OBIS lasers (LM-HLE-561-150/ LM-HLE-594-100).

Also, if the Laser Power Key Switch is in the OFF position the HLE primary shutter is closed, which blocks all laser emission from the HLE unit, which means that even if the HLE-FL1 laser is turned-on it cannot emit from the HLE unit.

The key cannot be removed when the switch is in the ON position, but it can be removed when the switch is in the OFF position.

2.1.4 System Power and Emission Enabled Indicator LEDs

The upper green system power indicator LEDs light when the rear panel mains rocker switch is turned ON. The internal AC/DC power supply is receiving power from the mains power supply.

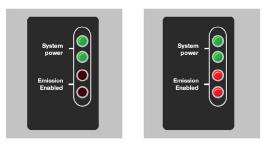


Figure 10: System power indicator LEDs and emission enabled indicator LEDs.

The upper red LED is turned ON a few moments after the Laser Power Key Switch is turned on. The lower red LED is turned ON when the primary shutter is opened a few seconds after the laser power is turned on. This indicates that laser emission is possible and could be imminent. Both red LEDs are turned off if the interlock is open (See "2.2.3 Remote Interlock" on page 25). Note that there are two LEDs for redundancy, in case one fails. If one LED fails, notify Andor Service.

2.1.5 Power Monitor Cover

The power monitor is only accessible to service personnel and not accessible to users.

2.1.6 Optical Input (Blanked)

Not used on HLE.

2.2 HLE Rear Panel

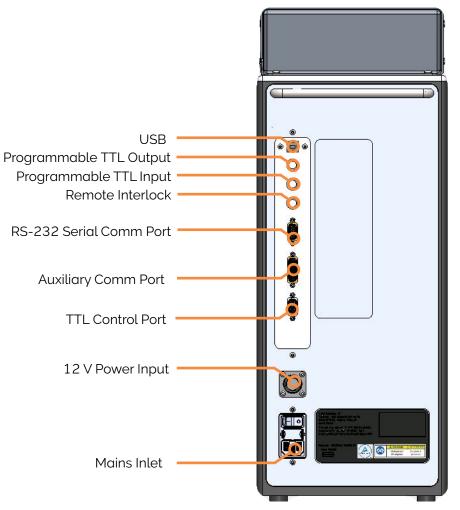


Figure 11: HLE rear panel.

Table 1: Rear panel connector types.

Connection	Description
USB	USB 2.0 Standard Series B Receptacle
Programmable TTL Output	BNC socket
Programmable TTL Input	BNC socket
Remote Interlock	BNC socket
RS-232 Serial Comm Port	Standard 9-pin D-sub (DE-9) female socket
Auxiliary Comm Port	Reserved (not available to the user)
TTL Control Port	High-density 15-pin D-sub (DE-15) female socket
12 V DC Input	2 POS circular connector plug, female
Mains Inlet	Mains inlet connector type (IEC 60320-1 C14)

2.2.1 USB/RS-232

Either of the USB or the RS-232 connections may be used to communicate with the HLE to control and monitor the lasers and other functions. The RS-232 uses the following settings: 19200 bps, 8 data bits, 1 stop bit, no parity, no hardware flow control. The USB connection uses the human interface device (HID) protocol and is automatically detected by compatible software programs. The USB can be connected to any USB port on the PC.

2.2.2 Programmable TTL Input/Output

Two BNC connectors are provided on the rear panel to allow the user to synchronize external equipment with the HLE. Any common type of coaxial cable may be connected to the BNC connector including 50Ω and 75Ω types. Wire leads may also be used with an appropriate BNC coaxial to wire adapter. The Programmable TTL Input is by default configured to provide synchronization to an external camera fire signal. A high TTL level turns on any selected lasers and a low-level blanks the HLE output. Synchronization is initiated by turning on the desired laser through the HLE software interface, and then the selected lines will automatically be blanked when the TTL signal goes low and restored when the signal goes high. The TTL input is capable of driving lasers with less than one microsecond response time although the exact response time may be limited by the laser (see "TTL Input/ Output Specifications" on page 49).

2.2.3 Remote Interlock

A BNC connector is provided so that the user can interlock the HLE lasers using external switches or sensors present on microscopes, doors, etc. The contacts must be shorted for the lasers to operate. Please see "2.4.3 Interlock Connections" on page 31 for more information.

2.2.4 TTL Control Port

The HD15 D-sub connector provides the user with the capability of controlling the lasers via TTL control. The pinouts for this connector are provided below.

TTL in 4 is the ON/OFF control for the HLE-FL1 fibre laser, TTL in 1-3 and 5-7 are the ON/OFF controls for the other lasers in order of wavelength from lowest to highest. Refer also to "2.5 Lasers" on page 34.

Pin	Function	Pin	Function	Pin	Function
1	+5 V Output ¹	6	TTL in 7 ²	11	TTL in 4 ²
2	Dual output switch ²	7	Control Input ² (for triple output system)	12	Reserved
3	Ground	8	TTL in 1 ²	13	Reserved
4	TTL in 5 ²	9	TTL in 2 ²	14	Reserved
5	TTL in 6 ²	10	TTL in 3 ²	15	Reserved

Table 2: TTL pin out information

¹ 150 mA output maximum

 2 TTL logic, (0-0.8 V low, 2.0-5.0 V high) 5.5 V max, 100 k $_{\Omega}$ pull-down

2.2.5 12 V Power Input

Connection for PS-13 when optional HLE-FL1 laser present.

2.2.6 Mains Inlet

A power switch is located above the power input socket (IEC 60320 C14 mains inlet) on the rear panel of the HLE.

.

-

2.3 Beam Conditioning Unit (BCU)

THE BCU MUST BE SWITCHED ON WHEN THE HLE IS EMITTING, OTHERWISE SERIOUS DAMAGE WILL OCCUR TO THE BCU DUE TO THE POWER OF THE HLE LASER RADIATION. IT IS IMPORTANT THAT THE BCU INTERLOCK CONNECTOR IS WIRED INTO THE INTERLOCK SYSTEM CORRECTLY AS THIS WILL STOP THE HLE EMITTING TO PROTECT THE BCU.

The BCU homogenizes the laser beam output from the laser engine multimode (MM) fibre to provide uniform illumination of the sample. It is coupled to the laser source through a MM fibre with fibre optic couplings (FC/APC). The output fibre (FC/APC) is of the armoured type and not removable and connects to the HLE. The MM output fibre has a square core cross section which is ideal for use with square format cameras e.g. iXon Ultra 897 or Zyla 4.2.

Figure 12: The beam conditioning unit (BCU).

2.3.1 Emission LEDs

Emission LEDs on the front panel of the BCU show the status of the unit. When these are lit, laser emission is possible. Please note there are two LEDs to provide redundancy for the laser emission status.

2.3.2 On/Off Switch

A toggle switch is located on the front panel of the BCU. This controls the power to the unit.

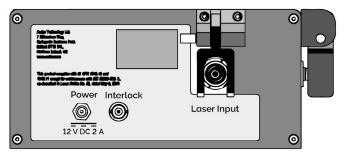


Figure 13: Rear panel of the BCU.

2.3.3 Power Input

A 2.1 mm input connector is used to provide DC power from the power supply unit to the BCU. Do not use any other power supply than the one supplied. See "BCU External AC/DC Power Supply Requirements" on page 49.

2.3.4 Fibre Lock

A locking mechanism is provided on the rear panel of the BCU that closes over the input MM fibre coming from the laser source. This fibre lock must be put in place at time of installation by the installer.

NEVER REMOVE THE FIBRE LOCK WHEN IN OPERATION.

The cable should only be disconnected by qualified service personnel. A tool is required to open the locking mechanism once closed.

2.3.5 Fibre Input

A MM fibre is provided to connect the laser source to the BCU. This connection is made to the fibre input connection on the rear panel of the BCU using the FC connector provided and locked in place with the fibre lock (see Fibre Lock description above).

2.4 System Overview

2.4.1 Power Connections

Power connections for the HLE and the BCU are identified in the diagrams provided in "Figure 11: HLE rear panel." on page 24 and "Figure 13: Rear panel of the BCU." on page 27.

As shown in Figure 14, the BCU is connected via the PS-11and the HLE is connected from the mains slot via the IEC 60320 C14. The PS-13 is also connected to the 12 V DC inlet when the optional HLE-FL1 laser is present on the HLE.

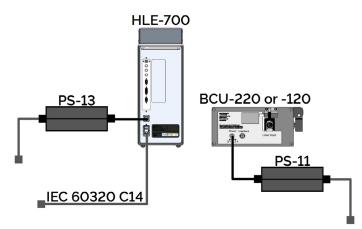


Figure 14: Power connections for HLE and BCU configuration diagram.

Please see "Electrical Power Specifications" on page 47, "HLE-FL1 External AC/DC Power Supply Requirements" on page 48 and "BCU External AC/DC Power Supply Requirements" on page 49 for further information.

2.4.2 Optical Connections

System overviews are provided below for both a single and dual HLE-700 system set up. A system overview is provided below for a typical triple output HLE connected to a Mosaic, Micropoint and Dragonfly (via the BCU) in Figure 15. A typical system overview for a dual HLE-700 is provided in Figure 16. For models with multiple output couplers Mosaic is always connected to the top output coupler. If the HLE contains a single output coupler this connects to the BCU.

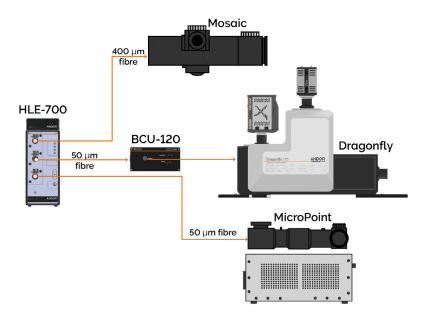


Figure 15: Overview of standard single HLE-700 as part of an overall system, with three output couplers.

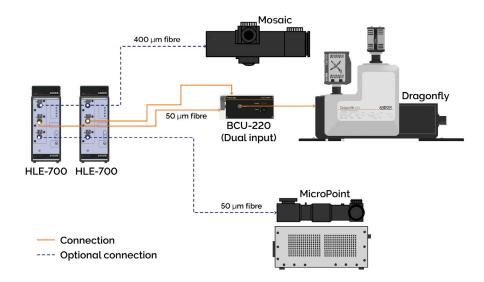


Figure 16: Overview of standard dual HLE-700 as part of an overall system, with three output couplers.

2.4.3 Interlock Connections

A BNC connector is provided so that the user can interlock the HLE lasers using external switches or sensors present on microscopes, doors, etc. The contacts must be shorted for the lasers to operate. When the interlock contacts are open, the primary shutter closes, and all the lasers are disabled. The system is sold with a Class 4 Laser-Lock that has two types of interlock inputs: 1) standard interlock for microscope components and 2) remote interlock, typically for the lab door.

The output of the Laser-Lock is connected to a BNC interlock input on the back of the HLE. The contacts on both inputs must be shorted for the lasers to operate.

When the interlock contacts are open, the primary shutter closes, and all the lasers are disabled.

- 1. When the microscope interlock is opened, the user must close the interlock and the laser configuration will be re-established.
- 2. When the remote interlock is opened the user must close the interlock and then push the button on the Laser-Lock.

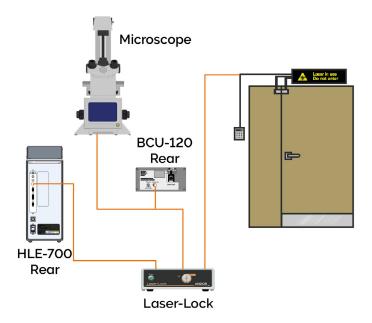


Figure 17: Interlock connection schematic for single HLE.

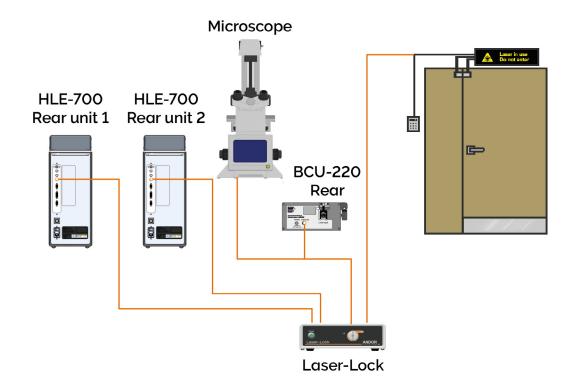


Figure 18: Interlock connection schematic for dual HLE.

The Laser-Lock port connections for the single and dual HLE system set up are provided in the Table 3.

Table 3: Laser-Lock rear panel connections for single and dual HLE configurations.

Port	Single HLE system	Dual HLE system
Laser device 1	HLE unit 1	HLE unit 1
Laser device 2	-	HLE unit 2
Laser device 3	-	
Laser device 4		
Microscope interlock sensor	Microscop	e and BCU
Remote interlock sensor	Remote interla	ocks, e.g. door

Please see the separate user guide for the Laser-Lock box available at <u>andor.oxinst.com/downloads</u> for further information on its functionality.

2.4.4 Laser Blanking Connections

These connections will be set up by your installation engineer. If you require further assistance please contact Andor customer support.

•

•

2.5 Lasers

Refer to "HLE Laser Output Power Specifications" on page 45 and the laser safety sections in the preface of this manual for further information.

2.5.1 Primary Shutter

As part of the laser safety system, a primary shutter is incorporated that interrupts the output beam prior to the output coupler(s). This mechanism blocks the beam when the Interlock circuit is opened or when the key is in the off position. The primary shutter opens to allow the combined laser beam to be emitted when the interlock circuit is restored as described in "Remote Interlock" on page 25.

2.5.2 Laser Intensity Control

The laser output power is controlled from software via the USB or RS-232 serial communications interfaces.

2.5.3 Laser On/Off Control

Only 1 or 2 wavelengths are allowed by software to be on at any one time for any HLE unit. In dual-HLE configuration, this means that up to 4 lasers can be on.

The lasers can be turned on and off from software over the USB or RS-232 serial communications interfaces, and in addition can be quickly turned on and off via signals on the TTL Interfaces (Programmable TTL Input BNC and TTL Control Port D-sub connectors). The Programmable TTL Input BNC is used for Laser Blanking (see below), whereas the TTL Control Port has on/off control for individual lasers. The response times are shown in Table 4:

Table 4: On/off speed restrictions for a range of laser types.	
I I I I I I I I I I I I I I I I I I I	

Laser	Description
Most HLE Lasers	≤ 20 µs rise/fall times
LM-HLE-561-150 LM-HLE-594-100	≤ 10 µs rise/fall times
HLE-FL1 Fibre Lasers (LM-HLE-560-1000, LM-HLE-594-1000 & LM-HLE-642-1000)	Maximum recommended shutters speed 10 Hz continuous operation, 20 Hz for operation up to 10 minutes.

Only the HLE-FL1 Fibre Lasers are at risk of damage if driven faster than the recommended speed above; the other lasers will be fine.

2.5.4 Laser Blanking

The standard configuration of the HLE allows the lasers to be blanked (turned off) in response to a "Fire" signal from one or more cameras, or other devices. This is to allow the lasers to only be on when required, esp. to avoid specimen damage or fluorophore bleaching.

Laser blanking uses the Programmable TTL Input BNC (2.2.2 on page 25), which functions as follows:

- The blanking input requires the camera "Fire" signal to be a TTL high when the camera is exposing and a TTL low during readout (not exposing).
- The HLE will turn on all lasers enabled in software when the input is high and blank the laser outputs when the signal is low.
- The BNC input is internally pulled high in the absence of a signal input so that the HLE will always be in expose mode if no camera fire signal is connected.

Section 3: Installation

WARNINGS:

THE HLE MUST BE INSTALLED BY AN AUTHORIZED INSTALLATION ENGINEER ACCORD-ING TO THE INFORMATION PROVIDED BY ANDOR ANY INSTALLATION STEPS INVOLVING LASERS MUST BE PERFORMED BY QUALIFIED PERSONNEL USING PERTINENT LASER SAFETY PROTOCOLS SETUP AND OPERATION OF OTHER SYSTEM COMPONENTS ARE DESCRIBED IN THEIR RESPECTIVE GUIDES. PLEASE READ AND FOLLOW THE INSTRUCTIONS REGARDING A "MULTI-PERSON LIFT" ON PAGE 15

3.1 Location and Mounting

- Temperature and humidity must meet the specifications defined in "Environmental Specifications" on page 43.
- Operational vibrations should be reduced as much as possible for stability of the imaging train.
- Power cabling and control cables should be routed to prevent accidents, damage and accidental unplugging while avoiding bend radii of less than 30 mm.
- Read "Working with Optical Fibres" on page 13.

3.2 Ventilation

Do not cover equipment during operation- allow 100 mm space around the HLE for ventilation.

3.3 Assembly

This product requires no assembly, as it must installed by an authorised service engineer.

Section 4: Operation

WARNINGS:

IF THE EQUIPMENT IS USED IN A MANNER NOT SPECIFIED BY ANDOR SYSTEM DISTRIB-UTORS, THE PROTECTION PROVIDED BY THE EQUIPMENT MAY BE IMPAIRED. READ THE USER GUIDES SUPPLIED WITH YOUR SYSTEM COMPONENTS PRIOR TO USE.

4.1 Emergency Mains Disconnection

In case of emergency, the disconnecting point of the equipment is the mains power cord connected to the external power supply, or the mains socket switch.

WARNING: SWITCH OFF THE POWER AT THE MAINS SOCKET AND REMOVE THE MAINS LEAD FROM THE EXTERNAL POWER SUPPLY.

4.2 Power-up Sequence (HLE-700)

Once all system components are connected, it may be turned on as follows:

- 1. Turn ON the Laser-Lock box using the key switch.
- 2. Turn ON the BCU using the power switch located at the front of the unit.
- 3. Turn ON the rocker switch on the rear panel of the HLE. The green power indicators on the HLE front panel will light.
- 4. Turn ON the primary key switch on the HLE front panel. The red emission enabled indicators on the HLE front panel light after a few seconds (HLE initializing).
- 5. Press the 'Reset' button on top of the Laser-Lock box.
- 6. Allow the temperature within the HLE to stabilize for 30 minutes for optimum stability. The lasers will generally, be operational within 1 minute.
- 7. Use the appropriate applications program on the control computer to configure the HLE as required.

4.3 Power-down Sequence (HLE-700)

In order to turn the system off, proceed as follows:

- 1. Close the control software (iQ/Fusion).
- 2. Turn the laser power key switch to OFF on the HLE front panel. Leave the rocker switch on the rear panel of the HLE turned ON for continued temperature control of the unit.
- 3. Only turn OFF the BCU using the switch on the front of the instrument, when the HLE is OFF.
- 4. The Laser-Lock system can remain on if the system will be used in the near future.
- 5. If the system is to be unused for a long period of time, turn OFF the rocker switch on the rear panel of the HLE. Then disconnect the Laser-Lock, BCU and HLE from the power.

4.4 Risk Mitigation

4.4.1 Mechanical Housings

Once installed, the HLE and other system components including Borealis, CSU and the microscope form the protective housings of the product. No components, panels, connections or linkages should be loosened or removed to avoid exposure to hazardous radiation.

4.4.2 Hazards Due to Moisture or Liquids

Please do not put components including power cables or external power supply in places with high moisture or near water.

4.5 Using the HLE

Please refer to your software guide supplied with the control software, e.g. iQ, for a full description on the functionality available.

4.5.1 Pulse Width Modulation (PWM) Laser Control

Pulse Width Modulation (PWM) can be selectively enabled to support lower power levels and finer control than is possible by direct modulation alone. When active, PWM typically delivers power settings from 5% down to 0.01% in 0.01% increments and provides significant benefit to TIRF and localization microscopy using photo-activation. Spinning disk microscopy will operate at higher power levels (typically ≥10%) and does not benefit from PWM. It is recommended to deactivate the PWM feature for spinning disk microscopy.

The PWM control on the HLE applies a high frequency digital modulation to a laser in the HLE. When this mode is activated, the laser is pulsed on and off so that the average laser power from the HLE is reduced. Typically, the laser is pulsed on for 250 ns, and then turned off for a period of time that determines the intensity reduction.

Note: PWM control functionality is software dependant. The software may automatically apply PWM control as appropriate, or it may be implemented when specifically activated by the user. Refer to your control software for further information.

For example, the intensity of a laser in the HLE may be controlled by a slider and/or a numeric control which sets the intensity from 0 to 100% (The appearance will vary depending on your control software). The HLE commands let the laser intensity be set in 0.1% increments. When the PWM control is available an additional drop down is displayed beside the slider that lets the user select the PWM intensity value. The PWM drop down menu allows the user to select the order of magnitude of the PWM intensity control at the following intensity levels: 100%, 10%, 1% and 0.01% intensity.

This allows the user to select the order of magnitude of the maximum laser power. Power within each order of magnitude can then be precisely controlled- an example is shown below:

Figure 19: An example of control of laser intensity through the PWM function.

Notes:

- Do not use PWM mode with Spinning Disk Confocal.
- It is not recommended to reduce the PWM option to lower than 0.01%.

Section 5: Maintenance

WARNINGS:

- THE SYSTEM SHOULD BE POWERED DOWN PRIOR TO USER PERFORMING ANY MAINTENANCE PROCEDURES.
- DO NOT USE EQUIPMENT THAT IS DAMAGED.
- CONTACT YOUR ANDOR REPRESENTATIVE IF THERE ARE ANY QUERIES OR ISSUES WITH YOUR HLE.

5.1 Cleaning and Decontamination

The most critical aspect of maintenance by the user is to ensure that the system is in a clean environment that is suitable for sensitive electro-optical equipment. The laboratory should be free of dust, fumes and other materials that could affect the system.

- To clean the product, only use a damp, lint-free cloth on the external housing of the unit. Do not wet the connectors.
- Use water only- do not use solvents, cleaning agents, or aerosols.

5.2 Replacing/Cleaning the Air Filter

Check the air filter on the HLE monthly to ensure that it is clean.

The air filter can be removed as follows:

- 1. Snap off the cover to access the filter.
- 2. The filter is reusable- it can be easily cleaned by vacuuming or washing with a mild detergent.
- 3. Ensure the filter is dry before reinstalling it in the HLE.
- 4. Replace the cover.

5.3 Regular Checks

The state of the product should be checked regularly, especially the integrity of the enclosure, the optical fibres and the mains cable.

On a Daily Basis:

- Visually inspect the system.
- Perform any maintenance activities suggested by the microscope and camera manufacturer(s).

On a Weekly Basis:

- Ensure that all power cables are firmly in place.
- Check the optical cables and connections to ensure that the locks are in place and no damage has occurred to the optical fibres connecting the various elements of the system.

5.4 Annual Electrical Safety Checks

It is advisable to check the integrity of the insulation and protective earth of the product on an annual basis, e.g. U.K. PAT testing.

5.5 Replacing the Fuse

A fuse is located in the power inlet on the rear of the HLE (see Section 2.2.6). If this requires replacement, replace with fuse of same type and rating: T4H25OV 5 x 20 mm, 250 V 4 A slow blow/time delay Littlfuse 0215004. MXP or equivalent.

Section 6: Troubleshooting

Fault	Possible cause	Action
Green power LEDs do not light	Unit not receiving power	Check the power cables are connected and power switched on. Check that fuse is not blown. Replace fuse if necessary, with same type and rating.
No laser output	Interlock contacts open	All laser safety interlocks must be closed for lasers to operate. Check the interlock system is connected. Confirm that Red LED Emission indicators light. The lower red LED is ON when the Laser Power Key Switch is turned on. The upper red LED is ON when the Primary Shutter is open a few seconds after the laser power is turned on. Note that for Class 4 systems, it might be necessary to turn the key switch off then on again.

•

Appendix A: Technical Specifications

Model Specifications	HLE-700
Max number of lasers	7
Output mode	Multimode only
Wavelength range (nm)	405-785
Multiport switch outputs	Up to 3
Multiport switch time (ms)	<7
Blank/TTL modulation (diode) MHz	1
Blank/TTL modulation (Fibre) kHz	0.1
Blank/TTL modulation (OPSL) kHz	50
Computer control interface	RS-232 or USB 2.0
TTL control interface	Ext TTL only (no analogue)
Non-linearity (% Full scale)	<5%

Mechanical Specifications

	HLE
Dimensions	See "Appendix B: Mechanical Drawings" on page 50
Weight (HLE only*)	35 kg
Weight (external power supply)	1 kg
	BCU
Dimensions	See "BCU Mechanical Drawings" on page 51
Weight (BCU only*)	7 kg

* The weight is the head only with no cables.

Environmental Specifications

	HLE
Location to be used	Indoor
Altitude	up to 2000 m
Operating temperature	18°C to 28°C ambient
Storage temperature	-20°C to 50°C
Operating relative humidity	<70% (non-condensing)
Pollution degree	Pollution Degree 2. Normally only non-conductive pollution occurs. Occasionally, however, a temporary conductivity caused by condensation must be expected.
Cooling vent clearance	Do not cover during operation - allow 100 mm clearance for air flow at inlet and outlet

•

HLE Laser Specifications

Output Specifications				
Single HLE maximum output power	Up to 4 W	Maximum of 2 lasers can be turned on at once under Fusion control. This is an IEC 60825-1 classification value and is far greater than in normal use. See the 'specifications for the individual lasers on the following pages and more information in 'Laser Product Classification Labels with Explanatory Text' on p. 12.		
Dual-HLE BCU maximum output power	Up to 5 W	Maximum of 4 lasers can be turned on at once under Fusion control. See previous note.		
Operating wavelength range	400 to 800 nm			
	Output Fibre			
Fibre type	Multimode (MM)			
Connector type	FC/APC			
Neutral Density Filter Wheel Specifications				
Attenuation	0-99%			
Max. time to scan full range	<2 s			

Beam Divergence				
Beam divergence at internal module output	0.5-3 mrad (full angle)	The divergence depends on the properties of the		
Beam divergence at HLE coupler output	0.025-0.13 NA (3-15 degrees full angle)	laser inside the HLE.		
Beam divergence at HLE 50 µm fibre output	≤0.12 NA (14 degrees full angle)			
Beam divergence at HLE 400 µm fibre output	≤0.22 NA (25 degrees full angle)			
Beam divergence at BCU fibre output	≤0.14 NA (16 degrees full angle)			
Beam Diameter				
Beam diameter at internal module output	0.3 - 3 mm	The diameter depends on the properties of the laser		
Beam diameter at HLE coupler output	20 - 100 µm	inside the HLE.		
Beam diameter at HLE 50 µm fibre output	50 µm			
Beam diameter at HLE 400 µm fibre output	400 µm			
Beam size at BCU fibre output	175 x 175 μm	Fibre has square profile, so beam is square at fibre output		

44

•

.

HLE Laser Output Power Specifications

			ernal module It, mW		upler output, W) µm, 1.2 NA, put, mW
Order code	Laser wavelength, nm	Typical	Maximum	Typical	Maximum	Typical	Maximum
LM-405-488-DUAL-MM	405	530	630	460	540	390	510
LM-445-515-DUAL-MM	448	2290	2560	1860	2110	1600	1880
LM-405-488-DUAL-MM	488	1470	1670	1270	1490	1140	1350
LM-445-515-DUAL-MM	515	510	600	410	490	380	440
LM-HLE-560-1000	560	900	1000	820	970	710	840
LM-HLE-561-150	561	140	160	130	140	110	130
LM-HLE-592-1000	592	900	1050	820	970	710	840
LM-594-100SL	594	100	110	90	100	80	90
LM-HLE-640-600-MM or LM-640-730-DUAL-MM	638	570	640	430	540	350	480
CSR	642	900	1000	820	970	710	840
LM-685-780-DUAL-MM	685	250	310	200	240	160	190
LM-HLE-730-600-MM or LM-640-730-DUAL-MM	730	590	670	370	470	280	380
LM-780-800-MM	780	580	720	460	560	370	450

Wavelength tolerances: 560, 592 & 642 ±0.5 nm; 561, 594 ±2 nm; 685±3 nm; 405, 515, 638 & 730 ±5 nm; 448 +5/-2 nm; 780 ±3 nm

BCU Laser Output Power Specifications

		Power at fibre output for B(CU-120 and BCU-220, mW
Order code	Laser wavelength, nm	Typical	Maximum
LM-405-488-DUAL-MM	405	230	310
LM-445-515-DUAL-MM	448	990	1160
LM-405-488-DUAL-MM	488	770	910
LM-445-515-DUAL-MM	515	240	280
LM-HLE-560-1000	560	510	600
LM-HLE-561-150	561	80	90
CSR	592	510	610
LM-HLE-594-100	594	60	70
LM-HLE-640-600-MM or LM-640-730-DUAL-MM	638	250	340
CSR	642	510	600
LM-685-780-DUAL-MM	685	100	120
LM-HLE-730-600-MM or LM-640-730-DUAL-MM	730	190	260
LM-780-800-MM	780	240	290

Wavelength tolerances: 560, 592 & 642 ±0.5 nm; 561, 594 ±2 nm; 685±3 nm; 405, 515, 638 & 730 ±5 nm; 448 +5/-2 nm; 780 ±3 nm

Electrical Power Specifications

	HLE
Mains input for main HLE unit	100 – 240 VAC, 50 – 60 Hz
Current rating for main HLE unit*	3 A
Mains overvoltage category	CAT II An overvoltage category of CAT II means that the equipment is designed to cope with transient voltages above the rated supply that would be experienced by any product connected to a standard single-phase mains socket in a building.

*Current rating includes what HLE main unit is capable of for future purposes. This will therefore give a power consumption figure which is greater than what the current laser configurations will consume.

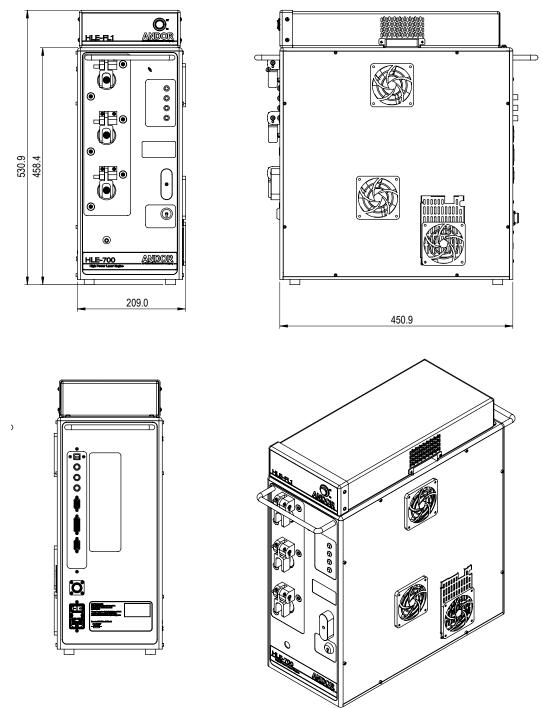
Configuration	Power Consumption, W
HLE with 2 diode lasers on and 560 laser on	70 Typical/140 Max.
HLE chassis	
HLE key switch off (heaters stay on) HLE on (fans off), lasers off HLE on (fans on), lasers off	23 Typ. 25 Typ. 44 Typ.
HLE lasers/modules	
LM-405-488-DUAL-MM LM-445-515-DUAL-MM	21 Typ. 25 Typ.
LM-640-730-DUAL-MM	11 Typ.
LM-HLE-560-1000 (HLE-FL1) HLE-FL1 External Power Supply (PS-13)	25 Typ. (excluding PS-13) 10 Typ. 8 Typ./13 Max.
LM-HLE-561-150/ LM-HLE-594-100 (OBIS LS)	о тур./ 13 Мах.
BCU Power Consumption	BCU + External Power Supply: 1 W typical BCU Only: 1.5 W typical

HLE-FL1 External AC/DC Power Supply Requirements

	HLE-FL1 (PS-13)
Mains input	85 – 264 VAC, 47 – 63 Hz
Low voltage supply	12 V +/- 5%
Low voltage supply current (rated)	11.5 A
Low voltage supply cable plug	Hirose JR13WCC-6(72) Black connector cable clamp M16x0.75 Hirose RM15WTPZ-2S(71) 2POS circular connector plug, female
Low voltage supply cable plug Insertion view	
Low voltage supply pin connections	Pin 1 +12 V, Pin 2 GND
Low voltage supply product socket	Hirose RM15WTRZB-2P(71) 2-pin power connector
Low voltage supply product socket Insertion view	
Ripple	80 mV peak-to-peak
Safety	Certified to an appropriate IEC standard, e.g. IEC 62368-1, and meet the reinforced insulation from mains requirement of IEC 61010-1
Environmental	Ensure that the EPS meets the environmental specification of the overall product

BCU External AC/DC Power Supply Requirements

	BCU (PS-11)
Mains input	100 – 240 VAC, 50 – 60 Hz
Low voltage supply	12 V
Low voltage supply current	3.34 A
	Standard DC coaxial connector with 2.1 mm inner diameter and 5.5 mm outer diameter (a.k.a. P1J)
Low voltage supply cable plug	5.5 2.1
	Outside Inside
Low voltage supply product socket	CUI Devices, PJ-005A, power barrel connector jack 2.00 mm ID (0.079"), 5.50 mm OD (0.217") panel mount, through hole
Low voltage supply product socket Insertion view	Front view PIN 2 [GND]
Ripple	100 mV peak to peak
Safety	Certified to an appropriate IEC standard, e.g. IEC 62368-1, and meet the reinforced insulation from mains requirement of IEC 61010-1
Environmental	Ensure that the EPS meets the environmental specification of the overall product

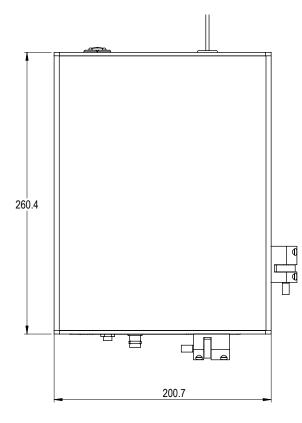

TTL Input/Output Specifications

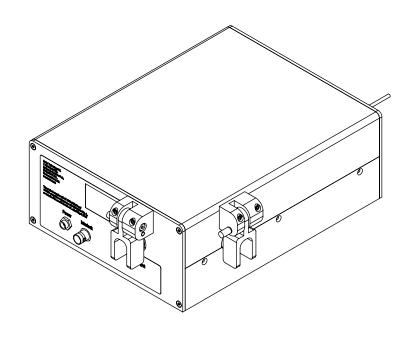
TTL Signal	Description				
Input	Low: 0-0.8 V High: 2.0-5.0 V 100 kΩ internal pull up resistor to 5 V so that the lasers will operate when no cable is attached.				
Output	+/-4 mA up to 5 V				

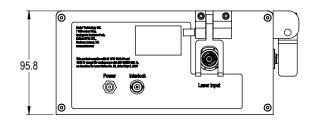
Appendix B: Mechanical Drawings

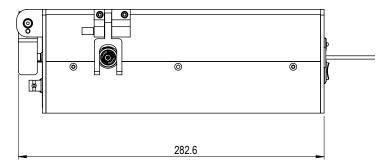
HLE Mechanical Drawings

HLE dimensions: mm




If you did not buy a Fibre Laser, e.g. LM-HLE-560-1000, then you will not have the HLE-FL1 Controller on top of the main unit as shown.


50


BCU Mechanical Drawings

BCU dimensions: mm

Appendix C: Other Information

C.1 Terms and Conditions of Sale and Warranty Information

The terms and conditions of sale, including warranty conditions, will have been made available during the ordering process. The current version for the US is <u>available here</u>, for all other regions (except Japan) please <u>click</u> <u>here</u>.

C.2 EU/UK REACH Regulation Statement

Andor's EU/UK REACH Regulation statement is available <u>here</u>.

C.3 Waste Electronic and Electrical Equipment

The company's statement on the disposal of WEEE can be found in the Terms and Conditions.

Appendix D: HLE China RoHS Hazardous Substances Declaration

Name and Content of Hazardous Substances in the Product 产品中有害物质的名称及含量 产品中有害物质的名称及含量 This table is applicable for the High Power Laser Engine (HLE). 下表适用于高能激光器相关操作

Hazardous Substance: 有害物质						
Component Name 部件名称	Lead (Pb) 铅	Mercury (Hg) 汞	Cadmium (Cd) 镉		Polybrominated Biphenyls (PBB) 多溴化联苯	Polybrominated Diphenyl Ethers (PBDE) 多溴联苯醚
HLE-FL1 Laser HLE-FL1激光器	Х	0	0	0	0	0
Hex Stand-offs 六角隔撑	Х	0	0	0	0	0
Screw locks 螺丝弹簧垫圈	Х	0	0	0	0	0
Fibre receptacle cap 光纤头保护帽	×	0	0	0	0	0
Key Switch 钥匙开关	Х	0	0	0	0	0
Optical Fibre 50 µm FC/FC 50 µm芯径FC/FC接口光纤	Х	0	0	0	0	0
Optical Fibre 50 µm FC/SMA 50 µm芯径FC/SMA接口光纤	Х	0	0	0	0	0
Optical Fibre 400 µm FC/SMA 400 µm芯径FC/SMA光纤	Х	0	0	0	0	0
Optical Fibre 175 μm 175 μm芯径光纤	Х	0	0	0	0	0
Printed Circuit Board Assemblies (Surface-mount Resistors and Capacitors, and Brass Connectors) 路板组件 电路板组件 (表面贴装电阻器和电容器 · 以及黄铜 连接器)	Х	0	0	0	0	0
PS-10 External Power Supply (Mean Well GST25A12-P1J) PS-10 外接电源 (Mean Well GST25A12-P1J)	×	0	0	0	0	0

53

-

PS-11 External Power Supply (Mean Well GSM40A12-P1J)	Х	0	0	0	0	0
PS-11 外接电源 (Mean Well GSM40A12-P1J)						
PS-13 External Power Supply (Mean Well GST160A12-R7B)	Х	0	0	0	0	0
PS-13 外接电源 (Mean Well GST160A12-R7B)						
All other parts	0	0	0	0	0	0
其余配件						

This table was developed according to the provisions of SJ/T 11364

本表格依据SJ/T 11364 的规定编制

O - The content of such a hazardous substance in all homogeneous materials of such a component is below the limit required by GB/T 26572

O-表示该有害物质在该部件所有均质材料中的含量均在GB/T 26572 规定的限量要求以下

X - The content of such a hazardous substance in a certain homogeneous material of such a component is above the limit required by GB/T 26572

X - 表示该有害物质至少在该部件的某一均质材料中的含量超出GB/T 26572 规定的限量要求

This table shows images for parts within the High Power Laser Engine (HLE).

下表展示了高能激光器相关部件的图片

HLE-FL1 Laser
HLE-FL1激光 器
Hex Stand-offs
六角隔撑
Fibre receptacle cap
光纤头保护帽
Keyswitch
钥匙开关
Optical Fibre
光纤
Screw Locks 螺丝锁定

•

-