
Freescale Semiconductor
User’s Guide

Document Number: VKSPRXUG
Rev. 0, 06/2008

Contents
Introduction . 1
VKSP Overview . 1

2.1 Associating a Transmitter with a Receiver 3
VKSP Receiver Driver Overview 4
Configuration of the VKSP Receiver Driver. 5
VKSP Receiver Application Program Interface 6

5.1 API. 6
5.2 VKSP Core Interfaces . 9
5.3 Memory Interface. 11
5.4 Encryption Interface. 13
VKSP Receiver Driver Implementation 14

6.1 RKE Receiver Overview . 14
6.2 Components Used. 15
6.3 Memory Interface Implementation. 17
6.4 Encryption Interface Implementation 19
Step by Step Setup Guide of a VKSP Receiver
Application . 20

Freescale Variable Key Security
Protocol
Receiver User’s Guide
by: Ioseph Martínez and Christian Michel

Applications Engineering - RTAC Americas
1 Introduction
The software explained in this document allows
implementation of a complete remote keyless entry
(RKE) system. The variable key security protocol
(VKSP) implements secure communication using
one-way authentication with 128 bits of encryption. The
VKSP software library is divided into two main blocks,
transmitter and receiver. This document focuses only on
the receiver part.

2 VKSP Overview
VKSP is a protocol intended mainly for RKE systems. It
sends commands rather than information. The
commands sent through the communications link are
visible for any device monitoring the communications
channel. VKSP carries two main tasks: the generation of
authentic messages and the verification of received
messages. These tasks are abstracted from the
application layer.

1
2

3
4
5

6

7

© Freescale Semiconductor, Inc., 2008. All rights reserved.

VKSP Overview
A transmission frame is generated with every command that is sent. The transmission frame has two main
parts: the data section and the message authentication code (MAC) section.

The data section is sent un-encrypted to the receiver and has the following information:

• Transmitter ID: This is a three-byte identifier of the transmitter device.

• Command: This is the one-byte command that indicates to the receiver what action to perform.

• Variable Key: This is a 4-byte value incremented with time and ensures that the messages received
were not previously sent.

• Message authentication code: This 8-byte code is used to authenticate messages on the receiver
side.

The message authentication code ensures that the data information is authentic. The MAC is generated
automatically by the VKSP transmitter driver. To generate a MAC, the drivers use local keys generated
internally and that cannot be accessed from external functions for security reasons. Figure 1 depicts how
the transmission frame is generated.

Figure 1. Transmission Frame Generation

The steps taken to verify the validity of a message are:

1. The ID data from the incoming message is extracted. The ID is looked-up in the receiver database.
If the ID is found in the receiver database, a local key and a variable key associated with that ID
are fetched.

2. The received variable key must be greater than the stored variable key. This step ensures that any
re-transmitted frame (a frame that was already sent before) is not accepted.

3. The authentication is performed. A message authentication code (MAC) is generated from the
received data, local data, and local keys. This generated MAC is compared to the received MAC
from the received message. If these two MACs are equal the command is accepted.

The authentication process is illustrated in Figure 2.

Encryption
Block

128 bits data

128 bits key
Out

VK and local keys

ID,CMD,VK, part of local key
MAC

64 bits

Truncated

to 64 bits

ID, Command, Variable Key 64 bits MAC 64 bits

Transmission Frame
Freescale Variable Key Security Protocol Receiver User’s Guide, Rev. 0

Freescale Semiconductor2

http://www.freescale.com

VKSP Overview
Figure 2. Normal Transmission Validation

2.1 Associating a Transmitter with a Receiver
A learning sequence is a process that must be performed each time a new transmitter is registered in the
receiver system. For example, if a user of a garage door opener acquires a new transmitter key fob, it is
necessary to register that key fob into the database of the receiver system. This is done by performing a
learning sequence. When the receiver system receives the learning sequence, it will store the ID and local
keys that pertain to that specific transmitter. Before accepting new learning sequences, the receiver system
requires having a secure environment activated. The definition of a secure environment is defined by the
user. A typical example of entering a secure environment is to have the final user press a button or a switch
on the side of the receiver. A secure environment is set by changing the state of some input in the receiver,
like a switch or a button.

Below is how a learning sequence is performed. These steps are also explained in Figure 3.

• The VKSP transmitter has a source of data from pseudo random number generator (PRNG) which
is used to generate the local keys.

• Inside the integrated encoder, this pseudo random data is scrambled and two frames are generated.
This information is called agreement info. The frames are depicted in Figure 4.

— Learning Frame 1: Contains a 3-byte header with ID information and a 1-byte field identifying
the frame as a learning frame. Value 0xFE in this field indicates that this is learning frame
number 1. The rest of the frame has agreement information, which is used in both the receiver

Incoming
Transmission

Transmitter
Data Base

ID
Exists?

Obtain Local Keys and
stored Variable Key

Transmitter ID
Found

is Greater than

VK from TX

stored VK

Go to MAC
validation

yes

Ignore command

Encryption

128 bits data

128 bits key
Out

Variable Key and Local Keys

ID, CMD, VK and local keys
yes

Acce

MAC
From TX

MAC
64 bits

MAC
64 bits =

1

2

3

Ignore command

yes

Truncated
to 64 bits
Freescale Variable Key Security Protocol Receiver User’s Guide, Rev. 0

Freescale Semiconductor 3

VKSP Receiver Driver Overview
and transmitter to generate a common local key for that specific ID. The length of the learning
frame body is 12 bytes.

— Learning Frame 2: Contains a 3-byte header with ID information and a 1-byte field with value
0xFF identifying the frame as learning frame number 2. The rest of the frame has agreement
information (four bytes) and an 8-byte MAC.

• First, the receiver checks if there is a secure environment activated. This means the receiver must
be in a mode that allows learning processes. For security reasons it is not possible to perform the
learning process in the receiver unless it is in the proper mode.

• The integrated decoder receives the two frames. If the OEM key (the manufacturer key that must
be shared by all authentic devices) is the same on the transmitter and receiver, the information is
saved on a transmitter database for future use.

Figure 3. Learning Sequence

Figure 4. Learning Frames

3 VKSP Receiver Driver Overview
The VKSP receiver driver manages the VKSP frame validation. The routines are provided as state
machines and can validate, configure, and retrieve information on processing results.

The driver is developed for the S08 family.

This library does not use any microcontroller hardware peripherals directly. The final application may use
any drivers for encryption and nonvolatile memory access.

Figure 5 depicts the library interface and the communication with other modules.

Tx Rx

Safe environment
Communication

Transmitter specific key

Integrated
Encoder

Transmitters database

Integrated
Decoder

Transmitter ID
Learning data
Transmission

Block

Learning data
Transmission

Block

PRNG

OEM code Key 128 bits (from factory)
OEM code Key 128 bits (from factory)

Key 128

data 128 out 128

data 128 out 128

Key 128

Secure
Environment

Activator

$FEID 24 bits
127-32 bits of
Agreement info

Learning Frame 1

$FFID 24 bits
31-0 bits of

Agreement info
MACLearning Frame 2
Freescale Variable Key Security Protocol Receiver User’s Guide, Rev. 0

Freescale Semiconductor4

Configuration of the VKSP Receiver Driver
Figure 5. VKSP Receiver Block Interaction Diagram

The main block in Figure 5 is the VKSP Library block. The VKSP block interacts with other layers
through an interface. These interfaces offer flexibility and allow the user to select different customized
drivers.

• Ciphering Interface: used to encrypt data. Allows use of any encryption algorithm that complies
with VKSP requirements.

• Nonvolatile Memory Interface: used to save nonvolatile data in memories such as flash or
EEPROM.

The details about the requirements of each driver are explained in Section 5, “VKSP Receiver Application
Program Interface.”

The VKSP API allows the user application to initialize, validate any type of VKSP messages, and retrieve
information about the received messages. The VKSP driver was designed as a state machine. It is
recommended that interfaces implemented by the user be state machines as well, or at least non-blocking
routines. It is possible to include blocking code in the interfaces, but it will stop the execution of the system
until the routine is terminated.

4 Configuration of the VKSP Receiver Driver
There are two elements that are configurable by the user, which are presented in Table 1.

VKSP
Library

Ciphering Interface

N
V

 M
e

m
o

ry In
te

rfa
ce

C
iphe

rin
g In

te
rfa

ce

VKSP API

Application Layer

Encryption
Driver

Memory
Driver
Freescale Variable Key Security Protocol Receiver User’s Guide, Rev. 0

Freescale Semiconductor 5

VKSP Receiver Application Program Interface
5 VKSP Receiver Application Program Interface
Once the driver is configured and compiled, the user may use the application program interface (API)
provided to integrate it in the user application. The following section details the VKSP API and the VKSP
functions used to interface with the nonvolatile memory block and the encryption block.

5.1 Application Program Interface (API)

5.1.1 VkspRx_Init

Table 1. Configuration Parameters

VKSPRX_MAX_KEYFOBS Defines the maximum number of transmitters for the current system. The
maximum possible depends on the memory interface and how it is
implemented. For example: if a 512-byte memory sector is used and 19
bytes are required per transmitter, the maximum possible for that
implementation is 25.

Example of usage:

#define VKSPRX_MAX_KEYFOBS 8

VKSPRX_OEM_KEY This is the 16-byte manufacturer key which must be the same in all the
devices which are intended to be used together. If a transmitter and a
receiver have different OEM keys it is not possible to execute a successful
learning sequence.

Example of usage:

#define VKSPRX_OEM_KEY
{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}

Service Name: VkspRx_Init

Syntax: void VkspRx_Init
(
 const VkspRx_ConfigType *CfgPtr
)

Parameters in: CfgPtr:
Pointer to the selected structure. This structure contains the necessary data to initialize
the VKSP module. Data is taken from the configuration parameters.

Parameters out: None

Return value: Returns VKSPRX_STD_OFF if one of the parameters is out of range, VKSPRX_STD_ON
if the initialization was successful.

Description: This function initializes the VKSP module. The user can define the values of the structure
fields by modifying the configuration parameters found in Vksp_rx_cfg.h.
Freescale Variable Key Security Protocol Receiver User’s Guide, Rev. 0

Freescale Semiconductor6

VKSP Receiver Application Program Interface
5.1.2 VkspRx_StartProcessing

5.1.3 VkspRx_ProcessMessage

Service Name: VkspRx_StartProcessing

Syntax: void VkspRx_StartProcessing
(
 VkspRx_MessageType *Message
)

Parameters in: Message:
16-byte message received from the transmitting device.

Parameters out: None

Return value: None

Description: This function starts the processing of a VKSP message. It will set the state of the driver to
VKSPRX_BUSY and prepare the information so it can be processed by the VKSP receiver
state machine.

Service Name: VkspRx_ProcessMessage

Syntax: void VkspRx_ProcessMessage
(
 void
)

Parameters in: None

Parameters out: None

Return value: None

Description: This function implements the VKSP receiver state machine. It will process any incoming
message triggered by the VkspRx_StartProcessing service, and it must be called
cyclically by a higher level entity like a scheduler. This function will call the required
interfaces to save data on nonvolatile memory and encrypt data for authentication
purposes. It also terminates the job by calling VkspRx_JobEndNotification. Figure 6 and
Figure 7 depict the state machine for this function.
Freescale Variable Key Security Protocol Receiver User’s Guide, Rev. 0

Freescale Semiconductor 7

VKSP Receiver Application Program Interface
Figure 6. VkspRx_ProcessMessage State Machine (Normal Validation)

Figure 7. VkspRx_ProcessMessage State Machine (Learning Sequence Validation)

Process
Normal

Zero

Start

No new
frame

E. is not
ready

Idle
New

Frame

Wait
Encryption

Zero

Process
Normal

One

Wait
Memory

Zero

M. is not
ready

M. ready

E. ready

E. = Encryption Machine

M. = Memory Machine

Normal
Frame

Validation
Failed

Process
LS

Zero

Start

No new
frame

Idle
New

Frame

Process
LS

One

Wait
Memory

One

M. is not
ready

M. ready

E. = Encryption Machine

M. = Memory Machine

LS = Learning Sequence

LS
Frame

Wait
Encryption

One
Wait

Encryption
Two

Process
LS

Three

Wait
Memory

Two

M. ready

M. is not
ready

Validation
Failed

E. ready E. ready

E. is not
ready

E. is not
ready
Freescale Variable Key Security Protocol Receiver User’s Guide, Rev. 0

Freescale Semiconductor8

VKSP Receiver Application Program Interface
5.1.4 VkspRx_GetCommand

5.1.5 VkspRx_GetJobResult

Service Name: VkspRx_GetCommand

Syntax: VkspRx_CommandType VkspRx_GetCommand
(
 void
)

Parameters in: None

Parameters out: None

Return value: Returns the received command.

Description: This function returns the value of the last received command.

Service Name: VkspRx_GetJobResult

Syntax: VkspRx_JobResultType VkspRx_GetJobResult
(
 void
)

Parameters in: None

Parameters out: None

Return value: Indicates the result of the last processed job.

Description: This function returns the result of the last processed message.
The possible results are:

VKSPRX_MSG_OK 0x00 The message received is valid.

VKSPRX_MSG_LS1 0x01
The message received is the first
frame of a learning sequence.

VKSPRX_MSG_LS_OK 0x02
The two received frames from the
learning sequence are valid.

VKSPRX_MSG_LS_MAC_FAILED 0x03
The learning sequence frames are not
valid.

VKSPRX_MSG_NML_MAC_FAILED 0x04 The message received is not valid.

VKSPRX_MSG_INSECURE_ENVMT 0x05
There is not a secure environment to
perform a learning sequence.

VKSPRX_MSG_INVALID_CNT 0x06 The Variable Key is not valid.

VKSPRX_MSG_INVALID_ID 0x07
The ID received is not registered in the
memory.

VKSPRX_MSG_MEM_FULL 0x08
The memory is full; no more
transmitters can be registered.

VKSPRX_MSG_MEMORYFAIL 0x0A
The VKSP core memory task was
interrupted and could not be
performed.
Freescale Variable Key Security Protocol Receiver User’s Guide, Rev. 0

Freescale Semiconductor 9

VKSP Receiver Application Program Interface
5.2 VKSP Core Interfaces
The VKSP core interfaces are used by the VKSP state machine. These functions must be implemented by
the user. The description for each function represents the features that the user has to implement.

5.2.1 VkspRx_SecureEnvironment

5.2.2 VkspRx_JobEndNotification

Service Name: VkspRx_SecureEnvironment

Syntax: VkspRx_SecureEnvironment
(
 void
)

Parameters in: None

Parameters out: None

Return value: Returns VKSPRX_STD_OFF if there is not a secure environment. VKSPRX_STD_ON if
there is a secure environment.

Description: This function tells the VKSP driver if there is a secure environment or not. (The
implementation of this function is left open for the user to meet the needs of his
application.) The return result tells the VKSP state machine how to proceed. If the result
is positive, it is possible to perform a learning sequence; otherwise it is not. A common
implementation would be to check the state of a pin.

Service Name: VkspRx_JobEndNotification

Syntax: VkspRx_JobEndNotification
(
 void
)

Parameters in: None

Parameters out: None

Return value: None

Description: This function is called after the termination of a processing job by the service
VkspRx_ProcessMessage. The user should insert the action to be performed inside the
body of this function.
Freescale Variable Key Security Protocol Receiver User’s Guide, Rev. 0

Freescale Semiconductor10

VKSP Receiver Application Program Interface
5.2.3 VkspRx_NotificationVar

5.3 Memory Interface
The VKSP memory interface functions are called by the VKSP state machine. They are located in the
MemIF.c file with the example code provided. This code can be changed to fit the requirements of the final
application. The description for each function represents the features that the user has to implement.

5.3.1 VkspRx_SaveLcode

Service Name: VkspRx_NotificationVar

Syntax: VkspRx_NotificationVarType VkspRx_NotificationVar;

Parameters in: N/A

Parameters out: N/A

Return value: N/A

Description: This is an interface variable. When an encryption or a memory job is about to be processed
the value of this variable is set to VKSPRX_NOTIFICATION_BUSY by the VKSP state
machine.

User must make sure that in the implementation of the interface, this variable is set to
VKSPRX_NOTIFICATION_DONE when the current encryption or memory job is finished.

A memory job can be cancelled by changing this variable to
VKSPRX_NOTIFICATION_CANCEL value while the VKSP state machine is waiting for the
done notification.

This variable is monitored by the VKSP state machine after calling the following services:
VkspRx_SaveLcode, VkspRx_SaveCounter and VkspRx_StartEncryption.

Service Name: VkspRx_SaveLcode

Syntax: VkspRx_LCodeId VkspRx_SaveLcode
(
 VkspRx_DataType *Source
)

Parameters in: Source:
Pointer to a 19-byte array to be saved in memory.

Parameters out: None

Return value: None

Description: This is the interface function to back up nonvolatile values. There are several possible
implementations and they are up to the user, depending on the memory driver used. This
function must return the index of the register used to save the learning code. The index is
used later with the interface function VkspRx_ReadLcode as argument to retrieve a
specific learning code. The leraning code is saved as shown in Figure 8.
Freescale Variable Key Security Protocol Receiver User’s Guide, Rev. 0

Freescale Semiconductor 11

VKSP Receiver Application Program Interface
Figure 8. Learning Code Format

5.3.2 VkspRx_ReadLcode

5.3.3 VkspRx_SaveCounter

Service Name: VkspRx_ReadLcode

Syntax: void VkspRx_ReadLcode
(
 VkspRx_LCodeId LcodeId,
 VkspRx_DataType **Target
)

Parameters in: LCodeId:
Index of learning code to be read. This value is usually obtained by calling
VkspRx_SaveLcode or VkspRx_SearchID.
Target:
Address of the 19-byte array where the data should be stored.

Parameters out: None

Return value: None

Description: This is the interface function to read backed-up nonvolatile values of the learning codes. It
should be non-blocking and implemented by the user. The most common approach would
be to read directly from RAM or EEPROM.

Service Name: VkspRx_SaveCounter

Syntax: void VkspRx_SaveCounter
(
 VkspRx_CounterId CounterId,
 VkspRx_DataType *Source
)

Parameters in: CounterId:
Index of counter to be saved. This is the same index used for the learning codes. This
value is usually obtained by calling VkspRx_SaveLcode or VkspRx_SearchID.
Source:
Pointer to a 4-byte array to save to memory.

Parameters out: None

Return value: None

Description: This is the interface function to back up nonvolatile values. There are several possible
implementations and they are up to the user, depending on the used memory driver. This
function must overwrite the old value for the specific CounterId used and replace it with the
received Source parameter.

16-byte Local Key 3-byte ID

Lcode Format
Freescale Variable Key Security Protocol Receiver User’s Guide, Rev. 0

Freescale Semiconductor12

VKSP Receiver Application Program Interface
5.3.4 VkspRx_ReadCounter

5.3.5 VkspRx_SearchID

5.4 Encryption Interface
The VKSP encryption interface functions are called by the VKSP state machine. They are located in the
CipherIF.c file with the example code provided. This code can be changed to fit the requirements of the
final application. The description for each function represents the features that the user has to implement.

Service Name: VkspRx_ReadCounter

Syntax: void VkspRx_ReadCounter
(
 VkspRx_CounterId CounterId,
 VkspRx_DataType *Source
)

Parameters in: CounterId:
Index of the counter to be read. It is the same index used for the learning codes. This value
is usually obtained by using VkspRx_SaveLcode or VkspRx_SearchID.
Source:
This is the address of the 4-byte array where the data should be read.

Parameters out: None

Return value: None

Description: This is the interface function to read backed-up nonvolatile values of the counters. It should
be non-blocking and implemented by the user. The most common approach would be to
read directly from RAM or EEPROM.

Service Name: VkspRx_SearchID

Syntax: VkspRx_LCodeId VkspRx_SearchID
(
 VkspRx_DataType *ID
)

Parameters in: ID:
Pointer to a 3-byte array that indicates what VKSP ID to search for.

Parameters out: None

Return value: Returns the index of the register which corresponds to the input ID.

Description: This function will be used to search for the Transmitter ID in the memory database. If the
ID is not found it must return MEMIF_BLANK. The function must return the newest
learning code that matches with the input ID. For example: if two learning sequences are
received from the same transmitter ID, the last one received is the one that must be used.
Freescale Variable Key Security Protocol Receiver User’s Guide, Rev. 0

Freescale Semiconductor 13

VKSP Receiver Driver Implementation
5.4.1 VkspRx_StartEncryption

5.4.2 VkspRx_Encrypt

6 VKSP Receiver Driver Implementation
The following sections explain how to set up an RKE receiver application from the beginning. The
application is designed in a layered approach that facilitates migration to different microcontrollers.

6.1 RKE Receiver Overview
To build an RKE receiver application, it is necessary to implement other modules aside from the VKSP
receiver core. It is important to understand what functionalities are handled by the VKSP receiver core and
what functionalities are not.

Service Name: VkspRx_StartEncryption

Syntax: VkspRx_StdType VkspRx_StartEncryption
(
 VkspRx_DataType *Data,
 VkspRx_DataType *Key,
 VkspRx_DataType *Result
)

Parameters in: Data:
16-byte array containing the data to be encrypted.
Key:
16-byte array containing the key to be used for encryption.

Parameters out: Result:
16-byte array that will hold the result of the encryption.

Return value: Indicates if the encryption module is ready to perform an encryption job.

Description: This is the interface function that starts the encryption job for the VKSP core state
machine. Depending on the implementation of the encryption state machine, it could be
designed to be shared with different devices. If that is the case, the interface must indicate
to the VKSP core state machine if the encryption machine is ready to accept an encryption
job.

Service Name: VkspRx_Encrypt

Syntax: void VkspRx_Encrypt
(
 void
)

Parameters in: None

Parameters out: None

Return value: None

Description: This interface function is called cyclically to verify if the encryption job is finished. When
the current job is terminated this interface function must set VkspRx_NotificationVar to
VKSPRX_ENCRYPTION_DONE. This flag will be monitored by the VKSP core state
machine.
Freescale Variable Key Security Protocol Receiver User’s Guide, Rev. 0

Freescale Semiconductor14

VKSP Receiver Driver Implementation
What the VKSP receiver core driver does:

• Validate ID, variable key, and MAC from incoming messages.

• Provide results of the processing jobs.

• Request access to the memory and to the encryption driver.

What the VKSP receiver core driver does not do:

• Encrypt.

• Use MCU resources directly.

• Determine how the messages are received by the physical layer.

• Write into nonvolatile memory

The present VKSP receiver driver and the RKE application were designed using a software architecture
with the purpose of having a layered software design and easing the migration to different platforms.

The software architecture used divides software into different layers. From a high level perspective, the
software can be described as follows:

• Hardware Abstraction Layer: Provides drivers to control MCU peripherals needed for the RKE
application, such as timers, GPIO control, and SPI.

• Hardware Independent Layer: Provides drivers dependent on the electronic module used but
independent of the hardware used. Examples of these drivers are: The echo receiver driver, the
signal abstraction driver and the VKSP driver.

• Services Layer: Drivers contained in this layer are often used by other layers. Examples: scheduler,
MCU configuration, etc.

• Application Layer: This layer implements the application, then initializes and integrates the rest of
the drivers.

Figure 9. RKE Receiver Layer Structure

6.2 Components Used
The receiver device provides the following functionality:

• Waits for messages that are received through the RF link

• Validates messages

• Proivides results from received messages

• Performs actions based on the received messages

HIL

HAL

VKSP
Library

Flash
Driver

Memory
Admin.

Encryption
Drv.

Echo Msg.
Handler

GPIOSPI

Signal
Control

Services

Scheduler

Vectors

Call Back

MCU

Real
Time

SCI

COM
Freescale Variable Key Security Protocol Receiver User’s Guide, Rev. 0

Freescale Semiconductor 15

VKSP Receiver Driver Implementation
Below is a brief description of the software components and their functionality.

6.2.1 HAL Drivers
• Real Time: This driver configures the Real Time Clock or Real Time Interrupt peripheral,

depending on the MCU used. It implements a callback and an interrupt flag.

• Timer: This driver implements the software to control the TPM peripheral. It implements a
callback and an interrupt flag. It is also possible to set the interrupt frequency based on the BUS
frequency.

• Flash Driver: This driver implements control functions to write and erase flash memory. The
functions are copied and executed from RAM.

• GPIO: Abstracts the microcontroller pins to virtual ports. It also implements a function to set the
ports into low power modes.

• SPI: Implements simple control for the SPI peripheral. This driver implements interrupts with
callbacks when working as a slave device.

• SCI: Configures the SCI peripheral. The baud rate is selectable in the configuration parameters.

6.2.2 HIL Drivers
• Signals: Abstracts the virtual ports to named signals from the electronic module. For example, it

allows access to signals as buttons or LEDs. It uses the GPIO driver.

• EchoMsgHandler: This handler uses the signals and the SPI modules to control the echo
transceiver. It is specifically done to receive fixed length messages. Length is configurable by the
user.

• COM: This driver allows the application layer to access the SCI driver.

• AesSt: Implements the AES encryption module using state machines. This driver does not use any
of the HAL drivers.

• VKSP Receiver: Driver that implements the VKSP for the receiver. Requires some files to
interface with other modules, like the flash and the encryption module. It implements state
machines.

6.2.3 Services Drivers
• Common: Contains declarations of common types used by all other modules.

• MCU: Implements miscellaneous routines and macros like initialization, access to assembler
instructions, and public parameters such as the bus frequency.

• Scheduler: Implements the usage of timer drivers, allowing the division of processing power into
time slices. Inside those slices different application tasks can be added.

• Vectors: Defines the interrupt locations in program memory.

6.2.4 Application

This layer integrates the HIL and services drivers implementing the following features:
Freescale Variable Key Security Protocol Receiver User’s Guide, Rev. 0

Freescale Semiconductor16

VKSP Receiver Driver Implementation
• Initializes the MCU, Signals, Memory, VKSP, EchoMsgHandler, Communications and Scheduler
drivers.

• Enables/disables the interrupts.

• Services the state machines for VKSP and encryption drivers.

• Checks for messages ready in the EchoMsgHandler.

• Outputs results from processed jobs.

6.2.5 Linker Parameters

The VKSP library requires saving nonvolatile data. This storage space must be reserved. This is done by
creating a specific section for this purpose in the linker parameter file. The memory interface is open and
implementation is up to the user, so the user must ensure that this storage space is reserved and not used
for program code.

6.3 Memory Interface Implementation
Memory interface for VKSP is open and flexible so it can be adapted to user needs.

Each VKSP transmitter used in the application requires space to store two variables in the receiver system:

• Learning code (19 bytes)

• Variable key (4 bytes)

The learning code (Lcode) is a variable that includes information about the ID and local keys of the device.
Each Lcode is related to a variable key, in the same way that relational databases have related tables with
an index field.

Depending on the nonvolatile memory capabilities, different strategies may be used to save into
nonvolatile space. If the receiver microcontroller has internal EEPROM it is possible to reserve space for
each variable; when the variable key needs to be updated, the memory location is erased and programmed
individually.

If the microcontroller only has flash memory as a nonvolatile resource, the strategy to follow is quite more
complex. In this case, the memory driver associates index numbers to each copy of the variable key and
learning code in order to keep track of the newest values.

These two approaches are explained in the following sections.

6.3.1 EEPROM Memory Model

The following section explains how to implement a method to save the values of the Lcodes and the
variable keys on EEPROM memory. This method is reliable and simple. The drawback is that it has a
limited lifetime, because every time the values are updated an erase action must be performed. This
method can be used as well with EEPROM emulation in order to have increased memory endurance.

The size of the memory sector used in this example is four bytes. For each variable it is necessary to
allocate a space that is a multiple of the sector size. For each learning code a 5-sector space is reserved,
but for each counter one sector is enough. There is a parameter in the VKSP configuration file called
Freescale Variable Key Security Protocol Receiver User’s Guide, Rev. 0

Freescale Semiconductor 17

VKSP Receiver Driver Implementation
VKSPRX_MAXKEYFOBS that indicates the maximum number of transmitters for the application. Use
that parameter to calculate the size for the storage of the learning codes and the variables keys.

Figure 10 describes the allocation of variables in EEPROM memory. To save or retrieve information, an
index is used to locate the address in memory that must be erased and written over.

Figure 10. EEPROM Memory Model

6.3.2 Flash Memory Model

The following section explains how to implement a method to save the values of the learning codes and
the variable keys in flash memory. This method provides endurance but requires more processing.

The size of the memory sector used in this example is 512 bytes, a typical value for a flash sector. In this
case, one sector of memory is used for the storage of learning codes and two sectors are used for the
variable keys. Also, for each learning code and variable key, a 1-byte index is added. This index makes it
possible to identify them in the flash database. This is useful for recovering the latest values after a
power-up event.

The index must be administered by the user code in the memory interface. For example, each time a
successful learning sequence is received, the function VkspRx_SaveLcode will be called. This function
will receive the Lcode as an argument, and the code within the function must store it in memory and assign
a new index for that Lcode. If the memory is full, depending on the implementation, the function
VkspRx_SaveLcode can return the value indicating that memory is full or can replace the oldest Lcode
with the newest one and continue operating normally.

The learning codes are saved into memory and assigned an index in a sequential manner, as new
transmitters are registered into the database. Each time a successful normal transmission is received, a
variable key with the transmitter index number is stored in a new location in the variable key memory
sector.

This is depicted in Figure 11. If there are several variable keys with the same index, the last inserted is the
valid one. When one variable key sector gets full, the other one is filled with the last received values and
marked as the active sector. Once this task is done, it is possible to erase the sector that is full.

Lcodes Allocation

Lcode 2 (5 Sectors)

Lcode N (5 Sectors)

…

Lcode 0 (5 Sectors)

Lcode 1 (5 Sectors)

Counter 0 (1 Sectors)

Counter 1 (1 Sectors)

Counter 2 (1 Sectors)

…

Counter N (1 Sectors)

Variable Key
Allocation
Freescale Variable Key Security Protocol Receiver User’s Guide, Rev. 0

Freescale Semiconductor18

VKSP Receiver Driver Implementation
Figure 11. Flash Memory Model

There are several variations in this implementation to improve code size or execution time. For example,
it is possible to keep a local copy of the most recent variable key counter in RAM for faster access, instead
of looking for the values in the database.

6.4 Encryption Interface Implementation
VKSP allows the user to choose an encryption protocol for the generation of MACs. The call to the
encryption driver must be located in the encryption interface. The interface requires the usage of a 128-bit
block size encryption algorithm with a 128-bit key. Some encryption algorithms that do not comply with
this requirement can be adapted so they can be used. Figure 12 depicts the adaptation of a hypothetical
algorithm.

Figure 12. Encryption Adaptation to VKSP Requirements

In the application provided, the Advanced Encryption Standard (AES) was chosen because it complies
directly with the input/output requirements.

Lcode 19 bytes1

Lcode 19 bytes2

Lcode 19 bytes3

Lcode 19 bytes4

Lcode 19 bytes5

…....

void

void

Counter 5 bytes1

Counter 5 bytes2

Counter 5 bytes2

Counter 5 bytes5

Counter 5 bytes5

…....

Counter 5 bytes1

Counter 5 bytes3

Counter 5 bytes1

Counter 5 bytes2

Counter 5 bytes3

Counter 5 bytes5

void

…....

void

void

Lcodes Sector 0
Max: 25 rows

Variable Key Sector 1
Max: 102 rows

Variable Key Sector 2
Max: 102 rows

Encryption

128 bits data

128 bits key

128 bits Out

Is equivalent to

Output Ciphertext

Input Data

Input Key

Encryption

128 bits data

64 bits key

128 bits Out

Input Data

Input Key Half 1

Encryption

128 bits data

64 bits key

128 bits Out

Input Key Half 2

Output Ciphertext
Freescale Variable Key Security Protocol Receiver User’s Guide, Rev. 0

Freescale Semiconductor 19

Step-by-Step Setup Guide of a VKSP Receiver Application
7 Step-by-Step Setup Guide of a VKSP Receiver
Application

This section indicates how to set up a receiver application. Before implementing the steps below you must
have:

• A driver to save and read values into nonvolatile memory

• An encryption driver

• A scheduler.

In the following steps the term “if required” is used, this means it is possible to change the code provided
in the sample application if the user requires it.

1. Add the following files to your project: the vksp_rx.obj core file, the VKSP configuration files
(vksp_rx_cfg.h, vksp_rx_cfg.c) and the interface files (MemIf.c, CipherIf.c).

2. Modify the configuration parameters as needed. (Refer to Section 4, “Configuration of the VKSP
Receiver Driver.”)

3. Modify code in the encryption interface if required. In VkspRx_StartEncryption add the code that
prepares the data to be encrypted. In VkspRx_Encrypt insert the call to the encryption state
machine used. When the task is done the code must set the notification variable to
VKSPRX_NOTIFICATION_DONE.

4. Modify code in the memory interface, if required. When a save task is finished, the user must
ensure that the notification variable is set to VKSPRX_NOTIFICATION_DONE.

a) VkspRx_SaveCounter: The user must write code to save the 4-byte counter or variable key in
memory.

b) VkspRx_SaveLcode: The user must write code to save the 19-byte Lcode in memory.

c) VkspRx_ReadCounter: Insert code that returns the address of the first byte where the requested
counter is located.

d) VkspRx_ReadLcode: Insert code that returns the address of the first byte where the requested
Lcode is located.

e) VkspRx_SearchID: Insert code to search for a match with the received 3-byte ID within the
database. The ID in the learning code array is located at byte number 16, 17, and 18. If there is
more than one match, the newest register must be returned.

5. Implement the function VkspRx_SecureEnvironment. This function will be called by the VKSP
receiver core if a learning sequence arrives. The user code will tell the VKSP receiver core if there
is a secure environment or not.

6. Implement the function VkspRx_JobEndNotification. This function will be called by the VKSP
receiver core after processing a VKSP frame. It is expected you will have code here that will react
to the received commands when they are authentic.

7. In the main application: Initialize nonvolatile memory.

8. Initialize the VKSP driver by calling VkspRx_Init.

9. Make sure VkspRx_ProcessMessage and VkspRx_Encrypt are called periodically by the
scheduler. VkspRx_Encrypt must be called at a higher rate than VkspRx_ProcessMessage because
the encryption is used by the VKSP driver.
Freescale Variable Key Security Protocol Receiver User’s Guide, Rev. 0

Freescale Semiconductor20

Step-by-Step Setup Guide of a VKSP Receiver Application
10. Every time a frame is received by the RF link, trigger the start of the processing by calling
VkspRx_StartProcessing.
Freescale Variable Key Security Protocol Receiver User’s Guide, Rev. 0

Freescale Semiconductor 21

Document Number: VKSPRXUG
Rev. 0
06/2008

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2008. All rights reserved.

http://www.freescale.com
http://www.freescale.com/epp

	1 Introduction
	2 VKSP Overview
	2.1 Associating a Transmitter with a Receiver

	3 VKSP Receiver Driver Overview
	4 Configuration of the VKSP Receiver Driver
	5 VKSP Receiver Application Program Interface
	5.1 Application Program Interface (API)
	5.1.1 VkspRx_Init
	5.1.2 VkspRx_StartProcessing
	5.1.3 VkspRx_ProcessMessage
	5.1.4 VkspRx_GetCommand
	5.1.5 VkspRx_GetJobResult

	5.2 VKSP Core Interfaces
	5.2.1 VkspRx_SecureEnvironment
	5.2.2 VkspRx_JobEndNotification
	5.2.3 VkspRx_NotificationVar

	5.3 Memory Interface
	5.3.1 VkspRx_SaveLcode
	5.3.2 VkspRx_ReadLcode
	5.3.3 VkspRx_SaveCounter
	5.3.4 VkspRx_ReadCounter
	5.3.5 VkspRx_SearchID

	5.4 Encryption Interface
	5.4.1 VkspRx_StartEncryption
	5.4.2 VkspRx_Encrypt

	6 VKSP Receiver Driver Implementation
	6.1 RKE Receiver Overview
	6.2 Components Used
	6.2.1 HAL Drivers
	6.2.2 HIL Drivers
	6.2.3 Services Drivers
	6.2.4 Application
	6.2.5 Linker Parameters

	6.3 Memory Interface Implementation
	6.3.1 EEPROM Memory Model
	6.3.2 Flash Memory Model

	6.4 Encryption Interface Implementation

	7 Step-by-Step Setup Guide of a VKSP Receiver Application

