S32K344 White Board Rev. 1.0 — 11 April 2023

User manual COMPANY PUBLIC

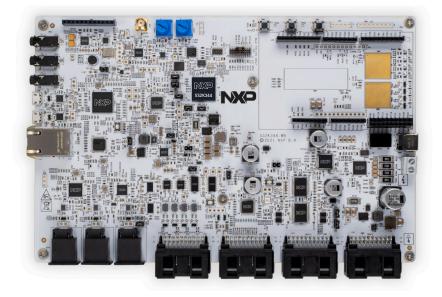
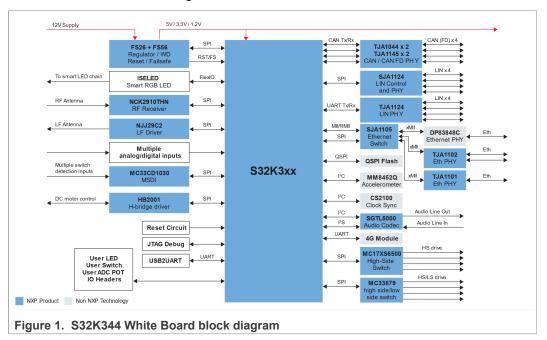


Table 1. Revision history

Revision Number	Date	Changes
Draft 0.6	Dec 2 nd , 2020	Initial Version
Draft 0.7	Jan 6 th , 2021	Added J86, J87, J88, J89, J90 and SBC debug description based on SCH-47478 rev B.
Draft 0.8	Feb 1 st , 2021	Updated the new board picture of rev B PCB. Added power on requirement. Added a few new jumpers and a power switch.
Draft 0.9	Mar 18 th , 2021	Updated some detailed descriptions of key features.
1.0	April 7 th , 2023	Updated the new BD, deleted the FS26 power up note.



1 Introduction

This document introduces the key features of S32K344 White Board, which can be used for various applications evaluation, including Domain Controller, BCM, Gateway, T-box and so on. The block diagram for S32K344 White Board is shown in below Figure 1 "S32K344 White Board block diagram".

This document illustrates the power supply architecture of the White Board. It also lists the jumpers configuration, connectors/interfaces, and some MCU PINs assignment on the board.

Users can read this manual together with the White Board schematics to better understand the hardware design.

2 Features overview

The following figure shows the features of S32K344 White Board. Key features include the following:

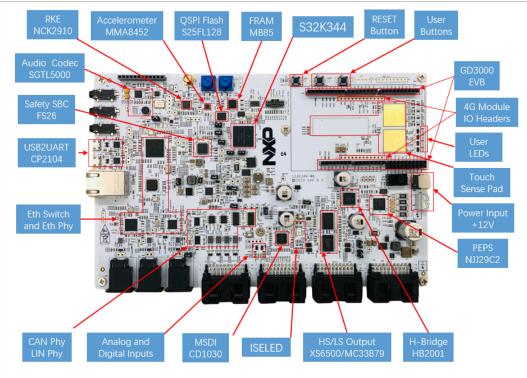



Figure 2. S32K344 White Board features overview

- S32K344 BGA257 secured sample.
- Safety SBC FS26 supplies MCU with 5V, 3.3V, 1.5V and monitors MCU status.
- Ethernet switch SJA1105 and Ethernet phy TJA1101/TJA1102/DP83848C provide 3 channels of automotive ethernet (100BASE-T1) and 1 channel of industrial ethernet (100BASE-TX).
- CAN/CANFD transceivers TJA1044 and TJA1145 provide 4 channels CAN/CANFD.
- LIN controller SJA1124 and LIN transceiver TJA1124 provide 8 channels of LIN.
- QSPI Flash 128Mb.
- I2C FRAM (fast EEPROM) 256 Kb.
- LF driver and RF receiver for car access applications.
- 4 channels high side driver and 8 channels low side driver outputs.
- 2 channels USB-to-UART interfaces.
- 4 channels general purpose analog and digital inputs.
- 12 channels switch-detection inputs through CD1030.
- HB2001 for H-bridge driver.
- Audio Codec SGTL5000 connected to MCU via I2S.
- Accelerometer sensor MMA8452 with I2C interface.
- 10 pin SWD debug interface and 20pin JTAG debug interface with TRACE capability.
- IO Headers for external GD3000 EVB to evaluate motor control use cases.
- 7 User LEDs, 2 user buttons and 2 ADC potentiometers.
- Touch sense pads.

3 Connectors and interfaces

The following figure shows the connectors and interfaces of the White Board:

- Four 20-pin connectors J31, J32, J33 and J36 include most general-purpose inputs/ outputs and CAN/LIN interfaces.
- Three automotive ethernet interfaces (100BASE-T1);
- One RJ45 can be connected to PC;
- Two USB-to-UART interfaces are used for printing some debug information in MCU;
- ARDUINO shield connectors can be used for compatible EVB installation (such as GD3000 EVB);

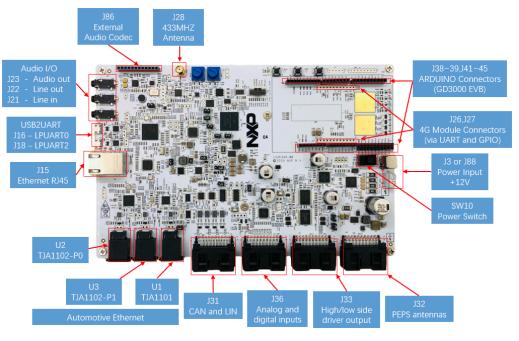


Figure 3. S32K344 White Board connectors and interfaces

The signals definitions of J32 are listed in the following table:

 Table 2. Signals definitions of J32

	PIN	Label	Function	PIN	Label	Function
	J32-10	PEPS_TXN5	PEPS antenna	J32-20	PEPS_TXN9	PEPS antenna
	J32-9	PEPS_TXP5	PEPS antenna	J32-19	PEPS_TXP9	PEPS antenna
	J32-8	PEPS_TXN3	PEPS antenna	J32-18	PEPS_TXN7	PEPS antenna
	J32-7	PEPS_TXP3	PEPS antenna	J32-17	PEPS_TXP7	PEPS antenna
	J32-6	VBAT2	12V power	J32-16	NC	NC
	J32-5	VBAT2	12V power	J32-15	NC	NC
	J32-4	PEPS_TXN1	PEPS antenna	J32-14	GND	GND
	J32-3	PEPS_TXP1	PEPS antenna	J32-13	GND	GND
2	J32-2	D_IN_4	PEPS wake up	J32-12	HB_OUT1	HB2001 out

	J32-2	1 D_IN_3	PEPS wake up	J32-11	HB_OUT2	HB2001 out
ole 3. Signa	Th [.] Is definition	-	s of J33 are listed in	the followin	g table:	
	PIN	Label	Function	PIN	Label	Function
	J33-10	GND	GND	J33-20	VBAT1	12V power
	J33-9	GND	GND	J33-19	VBAT1	12V power
	J33-8	NC	NC	J33-18	LS_DRV_OUT_ 8	Low side output
	J33-7	NC	NC	J33-17	LS_DRV_OUT_ 7	Low side output
	J33-6	VBAT3	12V power	J33-16	LS_DRV_OUT_ 6	Low side output
	J33-5	VBAT3	12V power	J33-15	LS_DRV_OUT_ 5	Low side output
	J33-4	HS_DRV_OUT4	High side output	J33-14	LS_DRV_OUT_ 4	Low side output
	J33-3	HS_DRV_OUT3	High side output	J33-13	LS_DRV_OUT_ 3	Low side output
	J33-2	HS_DRV_OUT2	High side output	J33-12	LS_DRV_OUT_ 2	Low side output
	J33-1	HS_DRV_OUT1	High side output	J33-11	LS_DRV_OUT_ 1	Low side output

 Table 2. Signals definitions of J32...continued

The signals definitions of J36 are listed in the following table:

Table 4. Signals definitions of J36

	PIN	Label	Function	PIN	Label	Function
	J36-10	GND	GND	J36-20	+5V_OUT2	+5V power
0	J36-9	ISELED_P	ISELED Interface	J36-19	ISELED_N	ISELED Interface
	J36-8	MSDI_SP5	Switch input	J36-18	MSDI_SG5	Switch input
	J36-7	MSDI_SP4	Switch input	J36-17	MSDI_SG4	Switch input
	J36-6	MSDI_SP3	Switch input	J36-16	MSDI_SG3	Switch input
	J36-5	MSDI_SP2	Switch input	J36-15	MSDI_SG2	Switch input
	J36-4	MSDI_SP1	Switch input	J36-14	MSDI_SG1	Switch input
	J36-3	MSDI_SP0	Switch input	J36-13	MSDI_SG0	Switch input
	J36-2	A_IN_2	ADC input	J36-12	D_IN_2	Digital input
	J36-1	A_IN_1	ADC input	J36-11	D_IN_1	Digital input

The signals definitions of J31 are listed in the following table:

Table 5.	Signals	definitions	of J31
----------	---------	-------------	--------

	PIN	Label	Function	PIN	Label	Function
	J31-10	LIN8	LIN interface	J31-20	NC	NC
· ····	J31-9	LIN7	LIN interface	J31-19	NC	NC
	J31-8	LIN6	LIN interface	J31-18	CANL_3	TJA1145 CANL
	J31-7	LIN5	LIN interface	J31-17	CANH_3	TJA1145 CANH
	J31-6	LIN4	LIN interface	J31-16	CANL_2	TJA1145 CANL
	J31-5	LIN3	LIN interface	J31-15	CANH_2	TJA1145 CANH
	J31-4	LIN2	LIN interface	J31-14	CANL_1	TJA1044 CANL
	J31-3	LIN1	LIN interface	J31-13	CANH_1	TJA1044 CANH
V	J31-2	GND	GND	J31-12	CANL_0	TJA1044 CANL
	J31-1	KL15_WAKE	SBC wake input	J31-11	CANH_0	TJA1044 CANH

4 MCU pins assignments and board resources mapping

The hardware configurations and MCU PINs assignments are listed in below table.

Interface	Reference/ Signals	Configuration	Description
Power Input	VBAT1/2/3	12V	12V power supply input for this board
MCU Power Supply	VCC1_5V0 (VDD_HV_A)	5.0V	Some MCU pins are in VDD_HV_A domain
	VCC1_3V3 (VDD_HV_B)	3.3V	Some MCU pins are in VDD_HV_B domain
	VREFH_MCU	5.0V	ADC reference voltage
	VCC_1V5	1.5V	MCU Core is supplied by 1.5V from SBC
	V11_MCU	1.1V	MCU generated 1.1V
	V25_MCU	2.5V	MCU generated 2.5V
Other Power Supplies	BUCK_5V0	5.0V	5V to supply some circuits on the board
	BUCK_3V3	3.3V	3.3V to supply ethernet related circuits
	LDO_1V2	1.2V	1.2V LDO to supply ethernet switch core
Ethernet	MCU MAC	Enabled	MCU MAC is connected to ethernet switch SJA1105 MII_0 in RMII mode
	TJA1101	Enabled	SJA1105 MII_1
	DP83848C	Enabled	SJA1105 MII_2
	TJA1102	Enabled	SJA1105 MII_3 and MII_4
SPI	LPSPI_0	PCS0	NCK2910 (RF Receiver)
		PCS2	CD1030(MSDI)
		PCS3	XS6500(High Side Driver)
		PCS4	MC33879 (Low Side Driver)
		PCS5	HB2001(H-Bridge Driver)
	LPSPI_1	PCS0	FS26 (Safety SBC)
	LPSPI_2 (3.3V)	PCS0	SJA1105 (Ethernet Switch)
	LPSPI_3	PCS0	SJA1124 (LIN Ctrl and Phy)
		PCS1	TJA1145 (CAN Phy)
		PCS3	TJA1145 (CAN Phy)
	LPSPI_4	PCS0	IO Header
		PCS1	NJJ29C2 (LF Driver)
	LPSPI_5	PCS0	IO Header
QSPI	QSPI_A	Enabled	QSPI Flash 128Mb

Table 6. White Board resources mapping

12C	LPI2C0 (3.3V)	Enabled	MMA8452 (Accel Sensor, address 0x1D)		
			SGTL5000 (Audio Codec, address 0x0A)		
			CS2100 (Clock Multiplier, address 0x4F)		
			FRAM (Fast EEPROM, address 0x57)		
CAN	CAN_0	TJA1044_1	PTA7_CAN0_TX, PTA6_CAN0_RX		
	CAN_1	TJA1044_2	PTA23_CAN1_TX, PTA22_CAN1_F		
	CAN_2	TJA1145_1	PTD18_CAN2_TX, PTD19_CAN2_R		
	CAN_3	TJA1145_2	PTE28_CAN3_TX, PTE29_CAN3_R>		
	CAN_4	IO Header	PTG8_CAN4_TX, PTG9_CAN4_RX		
LIN	LIN1	SJA1124_LIN1	LIN Controller and Phy controlled by		
	LIN2	SJA1124_LIN2	LPSPI3 with PCS0.		
	LIN3	SJA1124_LIN3			
	LIN4	SJA1124_LIN4			
	LIN5	TJA1124_LIN1	PTF2_LPUART6_TX, PTF3_LPUART6_RX		
	LIN6	TJA1124_LIN2	PTF18_LPUART7_TX, PTF19_LPUART7_RX		
	LIN7	TJA1124_LIN3	PTF23_LPUART9_TX, PTF24_LPUART9_RX		
	LIN8	TJA1124_LIN4	PTF16_LPUART12_TX, PTF17_LPUART12_RX		
UART	LPUART0	CP2104 USB2 UART	PTA27_LPUART0_TX, PTA28_LPUART0_RX		
	LPUART2		PTE12_LPUART2_TX, PTD17_LPUART2_RX		
	LPUART1	Ext 4G Module	PTB22_LPUART1_TX, PTB23_LPUART1_RX		
Audio	SAI0	Enabled	SGTL5000 Audio Codec		
User	Push Buttons	SW2	PTC20 (high active)		
Peripherals		SW3	PTC21 (high active)		
	ADC POT	POT1	PTB13 (ADC0_S8)		
		POT2	PTB14 (ADC0_S9)		
	User LEDs	LED D28	PTF8 (high active)		
		LED D29	PTF9 (high active)		
		LED D30	PTF10 (high active)		
		LED D31	PTF11 (high active)		
		LED D44	PTG0 (low active)		

 Table 6. White Board resources mapping...continued

UM11919 User manual COMPANY PUBLIC

		LED D45	PTG1 (low active)
		LED D46	PTG2 (low active)
	Touch Sense Pad	SW4	PTC23, PTE10
		SW5	PTC24, PTE15
		Slider	PTD23, PTA11, PTD24, PTA14
General	Analog Inputs	A_IN_1 (0~12V)	PTE21_ADC2_P3
Purpose Inputs		A_IN_2 (0~12V)	PTE22_ADC2_P4
	Digital Inputs	D_IN_1 (0~12V)	PTC26_ADC0_S21
		D_IN_2 (0~12V)	PTE13_ADC1_S19
General	High Side Output	HS_D1	PTG18_EMIOS2_CH18
Purpose Outputs		HS_D2	PTG19_EMIOS2_CH19
		HS_D3	PTG20_EMIOS2_CH20
		HS_D4	PTG21_EMIOS2_CH21
	Low Side Output	LS_DRV_OUT1	Controlled by LPSPI0 with PCS4
		LS_DRV_OUT2	Controlled by LPSPI0 with PCS4
		LS_DRV_OUT3	Controlled by LPSPI0 with PCS4
		LS_DRV_OUT4	Controlled by LPSPI0 with PCS4
		LS_DRV_OUT5	PTE20_EMIOS1_CH0
		LS_DRV_OUT6	PTE27_EMIOS1_CH7
		LS_DRV_OUT7	Controlled by LPSPI0 with PCS4
		LS_DRV_OUT8	Controlled by LPSPI0 with PCS4
Debug Interface	JTAG	JTAG_TMS	PTA4
		JTAG_TCLK	PTC4
		JTAG_TDO	PTA10
		JTAG_TDI	PTC5
		RESET	PTA5
	TRACE	TRACE_CLKOUT	PTG6
		TRACE_D0	PTG7
		TRACE_D1	PTG15
		TRACE_D2	PTG16
		TRACE_D3	PTF31

 Table 6. White Board resources mapping...continued

5 White Board startup

Make sure the jumper J5 is closed and J87 is open so the SBC FS26 can power up in debug mode. Apply 12V to the power supply input. Turn on the switch SW10. Connect debugger to the SWD interface and refer to the White Board quick start guide to start the software development.

The following figure shows the LED indicators for various power supplies on the board.

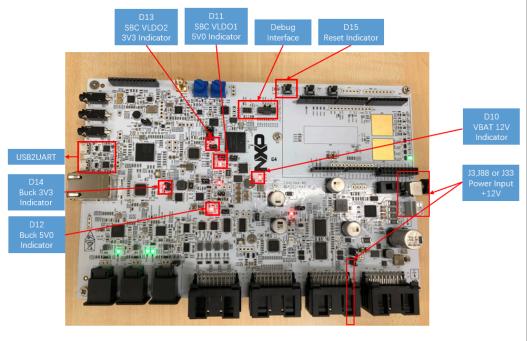
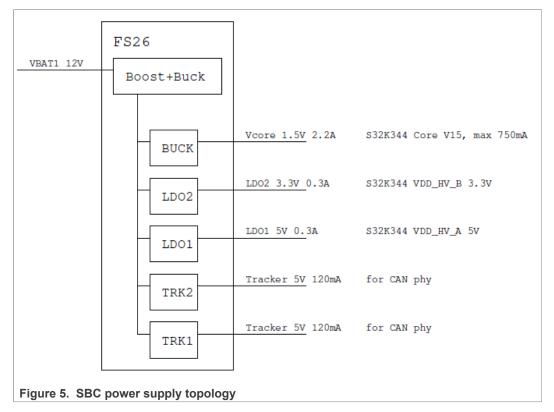


Figure 4. S32K344 White Board features

The 12V can be applied either through the power jack J3, connector J88 or the connector pins J33-9,10(GND)/J33-19,20(VBAT). The LEDs indicate the presence of power supply as following:

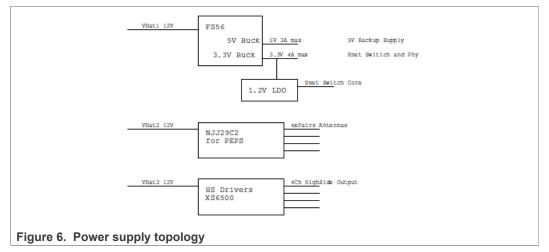
- LED D10 indicates that the 12V is connected to the board correctly;
- LED D11 indicates that the 5V supply from SBC is ON;
- LED D12 indicates that the 5V supply from the standalone DC/DC is ON;
- LED D13 indicates that the 3.3V supply from SBC is ON;
- LED D14 indicates that the 3.3V supply from standalone DC/DC is ON;
- LED D15 indicates that the MCU RESET pin is low (MCU in reset status);

The above figure also shows the basic elements to start the White Board:


- 12V power input
- 10-pin Cortex Debug Connector (SWD/JTAG debug interface)
- 20-pin Debug + ETM connector (Debug with trace capability)
- RESET push button and RESET LED indicator
- USB2UART interface

6 Power supply

The White Board requires an external power supply of 12V/1A, which is fed to the following devices on the board.


- SBC FS26 it powers the MCU with 5V (MCU VDD_HV_A domain), 3.3V (MCU VDD_HV_B domain) and 1.5V (MCU core). See following figure for SBC power supply topology.
 - SBC generates 5V(Tracker1 and Tracker2) to power the CAN phys (optional). The CAN phys are powered by VCC1_5V0 by default.
- 5V buck circuit it is used as a backup 5V power supply.
- 3.3V buck circuit it powers the ethernet switch and ethernet phy circuits.
 The 3.3V is supplied to the standalone 1.2V LDO, which powers the ethernet switch core.
- High side driver (XS6500) it requires 12V to operate correctly.
- LF driver (NJJ29C2) it requires 12V to operate correctly.

Power supply topology of this board is shown in the following two figures.

S32K344

White Board

The MCU has two power domains - VDD_HV_A and VDD_HV_B. On the white board, VDD_HV_A is supplied with 5V and VDD_HV_B is supplied with 3.3V and this configuration is fixed on the board. All 5V signals on the MCU are powered by VDD_HV_A and all 3.3V signals on MCU are powered by VDD_HV_B, so that the use of voltage level shifters is unnecessary.

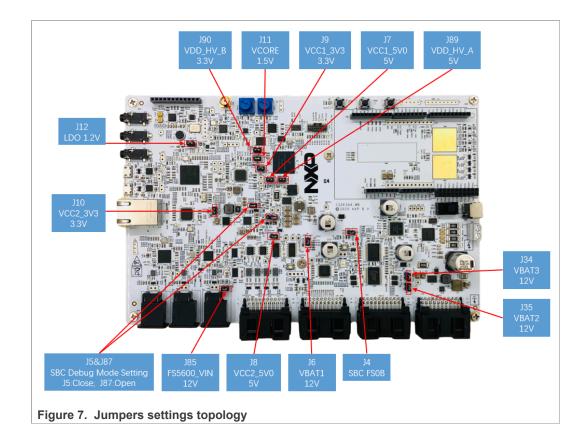
7 Jumper settings

The following jumpers on the board are used for measuring the current consumption of the corresponding power supply:

Reference	Position	Description
J6	1-2 Default Closed	12V power input after reverse protection diode
J7	1-2 Default Closed	FS26 LDO1 (5V) output current
J89	1-2 Default Closed	MCU VDD_HV_A current consumption
J8	1-2 Default Closed	Buck 5V output current
J9	1-2 Default Closed	FS26 LDO2 (3.3V) output current
J90	1-2 Default Closed	MCU VDD_HV_B current consumption
J10	1-2 Default Closed	Buck 3.V output current
J11	1-2 Default Closed	1.5V for MCU core
J12	1-2 Default Closed	1.2V for SJA1105 core
J34	1-2 Default Closed	12V power input for high side driver XS6500
J35	1-2 Default Closed	12V power input for LF driver NJJ29C2
J85	1-2 Default Closed	12V power input for FS5600

Table 7. Jumpers for current measurement

Other jumpers on the board are shown in below table:

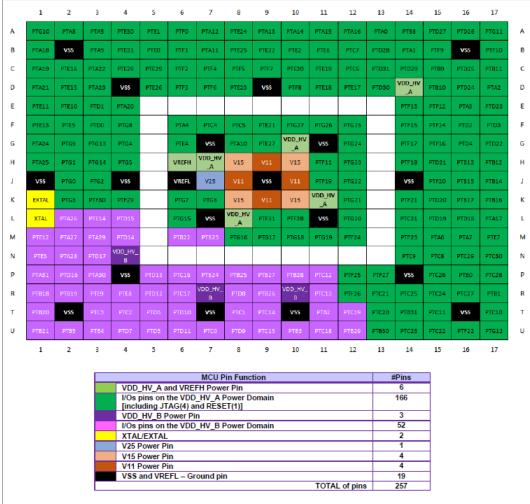

Table 8.	Jumpers	for VBAT	power	supply	source
----------	---------	----------	-------	--------	--------

	······································				
Reference	Position	Description			
J5 J87	1-2 Default Closed 1-2 Default Open	Enable SBC debug mode, thus watchdog refreshing from SPI is not needed. J5 should be closed and J87 should be open for FS26 entering debug mode.			
J4	1-2 Default Closed	Allow SBC FS0B to disable high/low side driver outputs.			

The following figure shows the locations of these jumpers on the White Board.

S32K344

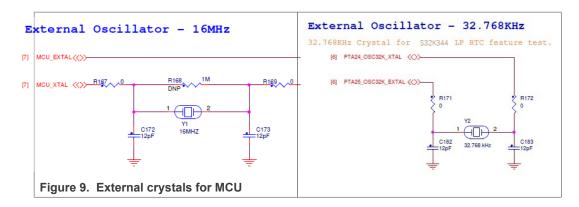
White Board



8 General functional description

8.1 MCU HW configuration

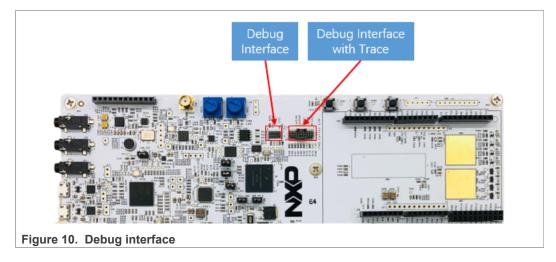
8.1.1 MCU power supply configuration


S32K344 has two power domains – VDD_HV_A and VDD_HV_B. They can be supplied with either 5V or 3.3V. See below figure for PINs distribution for the two domains. The white board optimizes the PINs assignment to minimize the usage of voltage level shifters. VDD_HV_A is supplied with 5V and PINs in VDD_HV_A domain are mostly used for 5V circuits on the board. VDD_HV_B is supplied with 3.3V and PINs in VDD_HV_B domain are mostly used for 3.3V circuits on the board.

8.1.2 MCU clock settings

MCU can generate 320MHz PLL clock based on 16MHz external crystal. And in low-power modes, it can use external 32KHz crystal to minimize the power consumption.

8.1.3 MCU reset control


The MCU RESET pin is bidirectional. When acting as input, MCU can be reset either by push button "SW1" on the board or SBC RESET signal. When acting as output, some MCU internal failures (such as watchdog timeout) will pull RESET pin low and SBC can sense the MCU reset event and react accordingly.

8.1.4 MCU debug interface

The White Board provides two types of debug interface 10-pin connector (SWD/JTAG) and 20-pin connector (JTAG with ETM). The pins used are listed in below table. JTAG pins are necessary for debugging the MCU and the TRACE pins are optional.

JTAG	JTAG_TMS	PTA4
	JTAG_TCLK	PTC4
	JTAG_TDO	PTA10
	JTAG_TDI	PTC5
	RESET	PTA5
TRACE	TRACE_CLKOUT	PTG6
	TRACE_D0	PTG7
	TRACE_D1	PTG15
	TRACE_D2	PTG16
	TRACE_D3	PTF31

8.2 SBC features

8.2.1 SBC and MCU connections

The SBC and MCU on the White Board are shown in below figure.

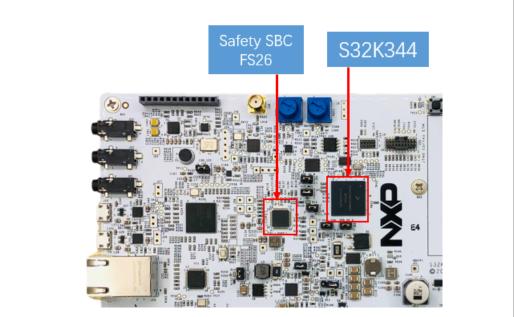


Figure 11. SBC and MCU on the White Board

Connections between SBC and MCU are listed in below table.

Table '	10.	SBC	and	MCU	connections	

SBC	MCU
VLDO1 5V	VDD_HV_A
VLDO2 3.3V irrelevant	VDD_HV_B
VCORE 1.5V	V15
SPI (MOSI, MISO, SCLK, CS)	LPSPI_1 (SOUT, SIN, SCK, PCS0)

Table 10. SBC and MCU connections...continued

VDDIO	VDD_HV_A		
RST	PTA5_MCU_RESETB		
INT	Interrupt input (PTG3)		
FCCU1/FCCU2	FCCU_ERR0 / FCCU_ERR1 (PTF16/PTF14)		
MUX-OUT	ADC2_P7 input (PTE25)		

8.2.2 SBC wakeup function

- Wakeup input by external key-on signal (0V to 12V transition on WAKE1).
 - Push button SW7 on the board can generate such transitions.
- · Wakeup input by LIN phy.
- Wakeup input by CAN phy or Ethernet phy.

8.2.3 SBC fail-safe outputs

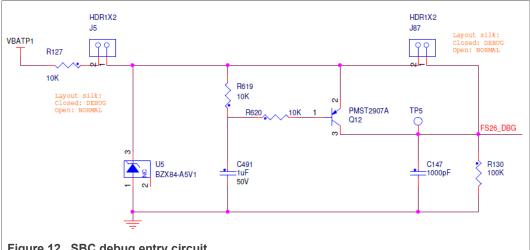
SBC will pull FS0B and FS1B low when it detects certain failures, without MCU intervene.

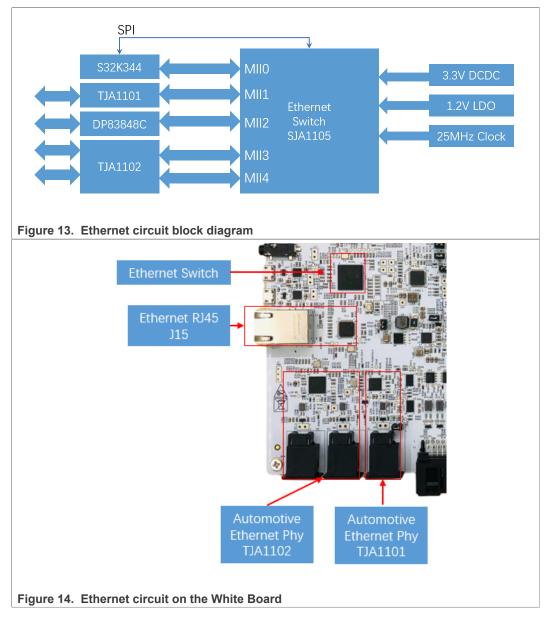
- FS0B disable high driver outputs (XS6500).
- FS1B it's left float and can be routed to customer desired circuit.

FS0B or FS1B assertion is indicated by LED D8 or LED D9 on the White Board. These two signals can be released by special sequence of SPI commands. Refer to FS26 datasheet for details.

8.2.4 SBC debug mode

Jumper J5 needs to be closed and J87 to be open for the FS26 debug mode when powering up. In this way the FS26 doesn't need the watchdog refreshing from the MCU by SPI.



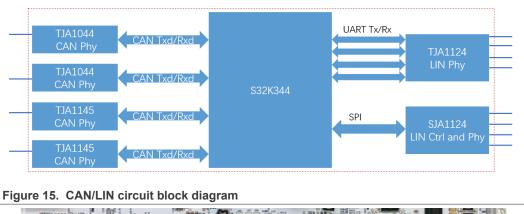

Figure 12. SBC debug entry circuit

According to FS26 datasheet, the FS26 debug mode is entered if ~4V is detected on FS26 DEBUG pin when FS26 is powered up. Then the FS26 starts to supply the MCU when DEBUG pin back to GND. So a 4V pulse is seen during power-up on FS26 DEBUG pin to enter debug mode.

8.3 Communication interfaces

8.3.1 Ethernet interfaces

The ethernet switch SJA1105 is used and 4 ethernet interfaces are available on the board. One of them is 100BASE-TX which can be connected to PC for diagnostics and test. The other three interfaces are automotive ethernet (100BASE-T1). To meet SJA1105 current consumption requirements, a 3.3V buck circuit from FS56 and a 1.2V LDO is used to supply this device.



8.3.2 CAN and LIN interfaces

There are 4 CAN interfaces on this board. The CAN phy TJA1145 is powered from VBAT 12V and can work in sleep mode with only VBAT kept on. External specified CAN

messages can wake up TJA1145. MCU configures TJA1145 operation modes by sending proper SPI commands.

The device SJA1124 is a LIN controller and transceiver. MCU can use one SPI to access this device and generate 4 channels LIN interfaces. The other 4 LINs are linked to 4 LPUART modules on MCU.

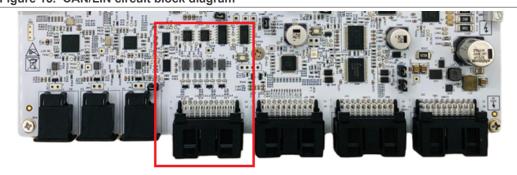
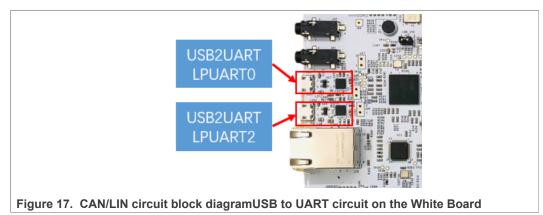
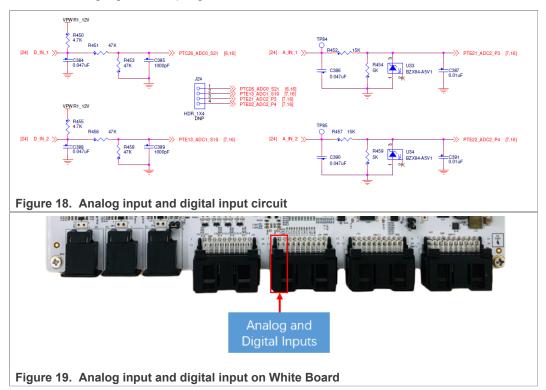
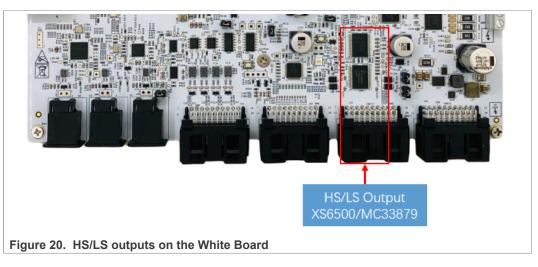



Figure 16. CAN and LIN transceivers on White Board

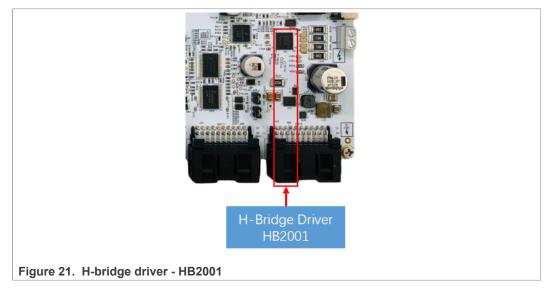
8.3.3 USB to UART interface


Two USB2UART devices CP2104 are included on the board so that debug message can be easily transmitted to PC. LPUART0 and LPUART2 of MCU are connected to the USB2UART interfaces.

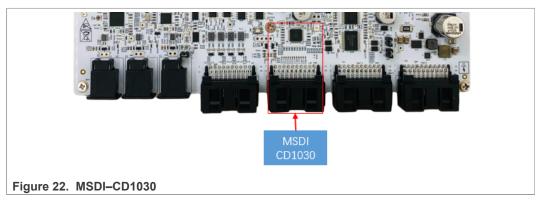
8.4 General purpose inputs and outputs


8.4.1 Analog and digital inputs

There are 2 general purpose digital inputs and 2 analog inputs on the White Board. Detailed PINs information can be found in <u>Table 6</u>. The analog input voltage can range from 0V~20V. The digital input voltage can range from 0V~20V and they can also be used for analog signals sampling.


8.4.2 High side and low side driver outputs

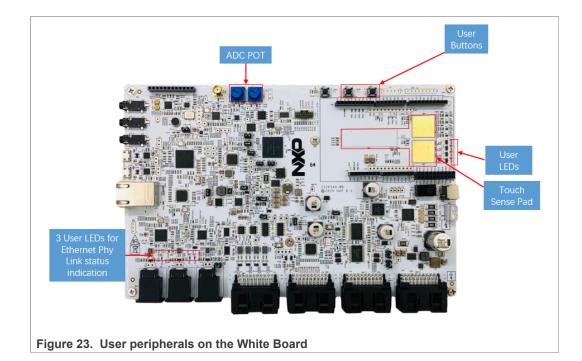
There are 4 channels high side outputs driven by XS6500. They can be controlled by 4 MCU GPIO/PWM PINs or by MCU SPI commands sent to XS6500. There are 8 channels low side outputs through MC33879 and they are controlled by MCU SPI commands. Related MCU PINs details are listed in <u>Table 6</u>.


8.5 H-bridge driver

There is an H-Bridge driver on this board which is controlled by MCU SPI interface. It can be used for brushed DC motor control.

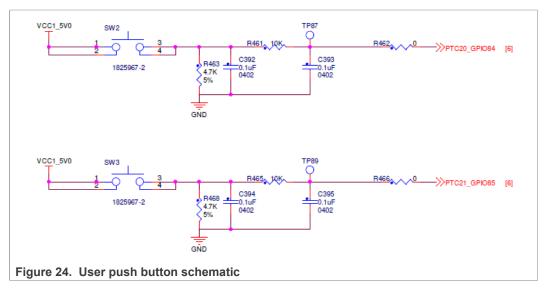
8.6 Switch inputs detection

The MSDI device CD1030 includes 21 switch-to-ground inputs and 12 programmable inputs (switch to battery or ground). There are 6 channels SG (Switch-to-Ground inputs) pins and 6 channels SP (Switch to Programmable input) pins which are implemented on the White Board. The switch status, either open or closed, can be read by MCU through an SPI interface. Two push buttons – SW8 and SW9 – are used to trigger the switch status transition for test purpose.



8.7 User peripherals

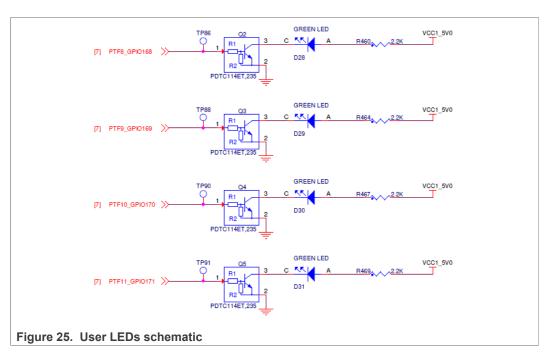
The user buttons, user LEDs, ADC POTs and touch sense pads on the White Board are shown in below figure. The related MCU PINs information are listed in <u>Table 6</u>.


S32K344

White Board

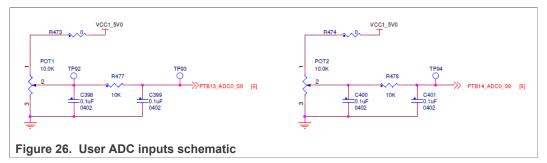
8.7.1 User buttons

MCU PTC20 and PTC21 are used to monitor the user push buttons state. See the following figure for schematics of related circuits.



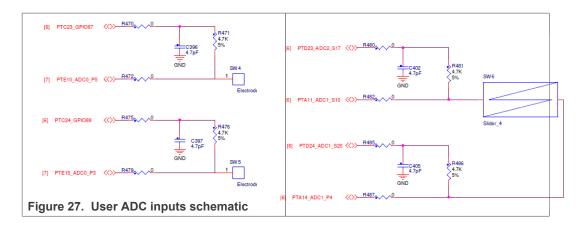
8.7.2 User LEDs

MCU GPIO PTF8, PTF9, PTF10, PTF11 are used to drive the 4 user LEDs, and they are high-active. There are another 3 user LEDs driven by PTG0/PTG1/PTG2 which can be used to indicate the ethernet PHY link status.


S32K344

White Board

8.7.3 ADC rotary potentiometers


The two ADC POTs are linked to MCU PINs PTB13 and PTB14. See following figure for the schematic.

8.7.4 Touch sense pads

There are two touch sense buttons and one touch sense slider on the White Board. See following figure for the schematic.

S32K344 White Board

8.8 IO headers for extension board

There are some IO Headers that can be used for external modules or EVB. See the following figure for these interfaces on the White Board.

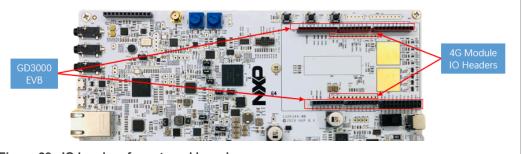


Figure 28. IO headers for external board

8.8.1 GD3000 EVB

The IO Headers J38, J39, J41, J42, J43, J44, J45J can be used as ARDUINO shield connectors. It's compatible with GD3000 EVB. Install the GD3000 EVB onto these headers and the White Board can drive a 3-phase PMSM motor. Key signals connections can be found in the White Board schematics.

8.8.2 4G module extension

The IO Headers J26 and J27 are used for external 4G Module. The part number is "USR-LTE-7S4".

8.9 Car access

The RF receiver NCK2910 and the LF driver NJJ29C2 are used in car access applications. External antennas are required for them to communicate with the KEYs. MCU can control these two devices via SPI interfaces. See below figure for block diagram. NCK2910 and NJJ29C2 are under NDA control. Please contact NXP sales representative and sign NDA if you need details about the two devices.

S32K344

White Board

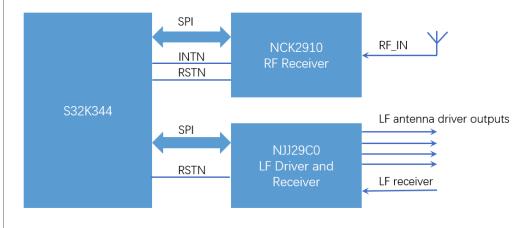


Figure 29. RF and LF circuit block diagram

The RF circuit and LF circuit on the White Board are shown in the following figure.

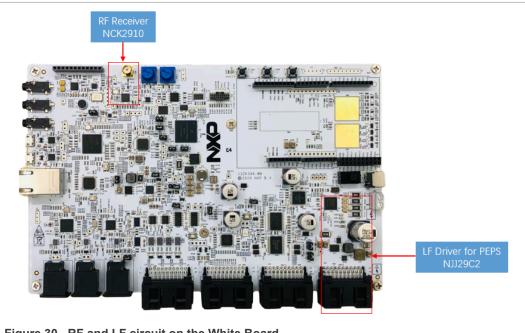
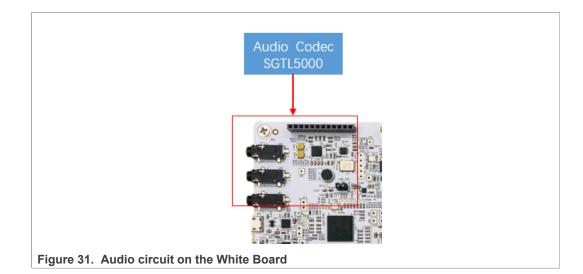



Figure 30. RF and LF circuit on the White Board

8.10 Audio

The audio codec SGTL5000 can be used together with ethernet circuits to evaluate AVB application. The device CS2100CP is used to synchronize the clock between MCU and SGTL5000. MCU transmits/receives audio data with SGTL5000 via SAI_0 interface and configures the audio codec via LPI2C_0 interface. We provide a 12-pin header for connecting external multiple-channel audio codec.

8.11 Others

The QSPI Flash (S25FL128L, 128Mbit) on the White Board can be used to store the firmware for S32K344 and other controllers connected to the vehicle network.

The FRAM (MB85RC256VPF, 256Mbit) is used to store some NVM data in case quick write is needed during power down.

The MMA8452Q is a smart, low-power, three-axis, capacitive, micromachined accelerometer with 12 bits of resolution. The device can be configured to generate inertial wakeup interrupt signals from any combination of the configurable embedded functions allowing the MMA8452Q to monitor events while staying in low power mode.

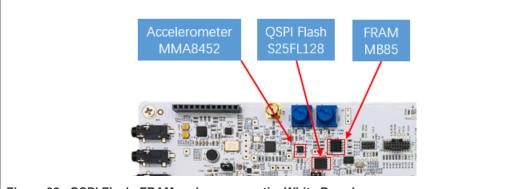


Figure 32. QSPI Flash, FRAM and sensor on the White Board

9 Abbreviations used in the document

Table 11. Abbreviations			
WB	White Board		
BCM	Body Control Module		
DCU	Domain Control Unit		
GW	Gateway		
AVB	Audio Video Bridging		
PHY	Physical Layer Transceiver		
SBC	System Basis Chip		
LF	Low Frequency		
MSDI	Multiple Switch Detection Input		
HS	High Side Driver		
LS	Low Side Driver		

10 Legal information

10.1 Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

10.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at <u>PSIRT@nxp.com</u>) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

10.3 Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

Tables

Tab. 1.	Revision history1	
Tab. 2.	Signals definitions of J324	
Tab. 3.	Signals definitions of J335	
Tab. 4.	Signals definitions of J365	
Tab. 5.	Signals definitions of J316	
Tab. 6.	White Board resources mapping7	

Tab. 7.	Jumpers for current measurement
Tab. 8.	Jumpers for VBAT power supply source 13
Tab. 9.	Debug interface pins16
Tab. 10.	SBC and MCU connections 17
Tab. 11.	Abbreviations

Figures

Fig. 1. Fig. 2. Fig. 3.	S32K344 White Board block diagram
	interfaces4
Fig. 4.	S32K344 White Board features10
Fig. 5.	SBC power supply topology11
Fig. 6.	Power supply topology12
Fig. 7.	Jumpers settings topology 14
Fig. 8.	Pins distribution for different power
	domains15
Fig. 9.	External crystals for MCU16
Fig. 10.	Debug interface17
Fig. 11.	SBC and MCU on the White Board17
Fig. 12.	SBC debug entry circuit18
Fig. 13.	Ethernet circuit block diagram19
Fig. 14.	Ethernet circuit on the White Board 19
Fig. 15.	CAN/LIN circuit block diagram20
Fig. 16.	CAN and LIN transceivers on White Board 20

Fig. 17.	CAN/LIN circuit block diagramUSB to	
	UART circuit on the White Board	
Fig. 18.	Analog input and digital input circuit	21
Fig. 19.	Analog input and digital input on White	
	Board	21
Fig. 20.	HS/LS outputs on the White Board	21
Fig. 21.	H-bridge driver - HB2001	
Fig. 22.	MSDI-CD1030	
Fig. 23.	User peripherals on the White Board	
Fig. 24.	User push button schematic	23
Fig. 25.	User LEDs schematic	24
Fig. 26.	User ADC inputs schematic	
Fig. 27.	User ADC inputs schematic	
Fig. 28.	IO headers for external board	
Fig. 29.	RF and LF circuit block diagram	
Fig. 30.	RF and LF circuit on the White Board	
Fig. 31.	Audio circuit on the White Board	
Fig. 32.	QSPI Flash, FRAM and sensor on the	
J	White Board	

Contents

1	Introduction	2
2	Features overview	3
3	Connectors and interfaces	4
4	MCU pins assignments and board	
	resources mapping	7
5	White Board startup	
6	Power supply	11
7	Jumper settings	13
8	General functional description	15
8.1	MCU HW configuration	15
8.1.1	MCU power supply configuration	15
8.1.2	MCU clock settings	
8.1.3	MCU reset control	16
8.1.4	MCU debug interface	16
8.2	SBC features	
8.2.1	SBC and MCU connections	17
8.2.2	SBC wakeup function	
8.2.3	SBC fail-safe outputs	18
8.2.4	SBC debug mode	18
8.3	Communication interfaces	19
8.3.1	Ethernet interfaces	19
8.3.2	CAN and LIN interfaces	19
8.3.3	USB to UART interface	20
8.4	General purpose inputs and outputs	20
8.4.1	Analog and digital inputs	
8.4.2	High side and low side driver outputs	
8.5	H-bridge driver	22
8.6	Switch inputs detection	22
8.7	User peripherals	22
8.7.1	User buttons	23
8.7.2	User LEDs	
8.7.3	ADC rotary potentiometers	24
8.7.4	Touch sense pads	24
8.8	IO headers for extension board	25
8.8.1	GD3000 EVB	25
8.8.2	4G module extension	
8.9	Car access	25
8.10	Audio	26
8.11	Others	
9	Abbreviations used in the document	
10	Legal information	29

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© 2023 NXP B.V.

All rights reserved.

For more information, please visit: http://www.nxp.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NXP: S32K344-WB