Ultra Wideband Transceiver with MAC support Rev. 1.2 — 3 February 2023

DS652611

Product data sheet CONFIDENTIAL

Document information

Information	Content
Keywords	Secure Ranging, Secure Interface, UWB transceiver, IEEE 802.15.4 HPR, IEEE draft 802.15.4z HRP, ARM [®] Cortex [®] -M33, ARM [®] TrustZone
Abstract	The device is a fully integrated single chip Impulse Radio Ultra Wideband (IR-UWB) low-energy transceiver IC compliant to IEEE 802.15.4 HRP UWB PHY and IEEE draft 802.15.4z BPRF/HPRF UWB PHY. It is designed for Secure Ranging applications in an automotive environment. It can be used to determine distance to a precision of up to 10 cm. It supports data transfer rates up to 6.8 Mbps (BPRF) and 7.8 Mbps (HPRF). It features a dedicated MAC firmware to ease UWB ranging set-up and session control.

Ultra Wideband Transceiver with MAC support

1 General information

The device is a fully integrated single chip Impulse Radio Ultra Wideband (IR-UWB) lowenergy low-cost transceiver IC. The device supports frame formats, which are compliant to IEEE 802.15.4 HRP UWB PHY (see [4]) and IEEE draft 802.15.4z BPRF/HPRF UWB PHY (see [5]). It is designed for Secure Ranging applications in an automotive environment. It can be used in 2-way ranging location systems to determine distance to a precision of up to 10 cm. It also supports data transfer rates up to 6.8 Mbps for BPRF and 7.8 Mbps for HPRF. The device features a dedicated MAC firmware to ease UWB ranging set-up and session control.

The main objective of a UWB ranging device is to provide a distance estimate, between an initiator and a responder. The distance estimate is based on a Time of Flight measurement, and is practically immune to relay station attacks. This drastically improves PHY layer security compared to a RSSI or phase based distance measurement, which is susceptible to relay station attacks.

A UWB system can give an accurate distance estimate, when there is a direct lineof-sight (LOS) propagation path between the initiator and the responder. All other propagation paths are caused by reflections, hence have a longer time of flight.

The device is capable of detecting the LOS propagation path, even if a non-line-of-sight (NLOS) path is much stronger. This can happen due to body attenuation for example, which weakens the LOS path. Good first path sensitivity and large first path dynamic range are highly desirable for the application, since they lead to an accurate ranging estimate, even under adverse channel conditions.

The new IEEE draft 802.15.4z BPRF/HPRF UWB PHY (see [5]) draft standard enables secure ranging. It achieves this by adding a Scrambled Timestamp Sequence (STS) to the ranging frame. Figure 1 shows how the STS is included in the frame format. To receive the STS, the receiver needs to have acquired frame timing first. The STS is hence transmitted after the SFD as shown in Figure 1.

It is important that the adversary cannot guess the whole STS sequence by looking at the first part of the sequence. A deterministic random bit generator (DRBG) compliant to NIST SP 800-90A Rev. 1 (see [10] §10.2.1 CTR_DRBG based on AES128) is used to guarantee the randomness of the STS. The DRBG seed and the DRBG advance both have to be agreed upon by initiator and responder upfront on higher protocol level.

Ultra Wideband Transceiver with MAC support

The receiver performs the first path detection by correlating the received STS against the expected sequence and captures the correlation peak as a first path estimate.

NCJ29D5D Product data sheet CONFIDENTIAL

DS652611

Ultra Wideband Transceiver with MAC support

2 Features and benefits

- IEEE 802.15.4 HRP UWB PHY compliant (see [4])
- On-chip MAC firmware to ease UWB ranging set-up and session control
- Supports SHF UWB bands from 6.0 GHz to 8.5 GHz for worldwide use
- Center Frequency from 6.5 GHz to 8.0 GHz
- Programmable transmitter output power of up to 12 dBm peak
- 128 MHz PRF mode doubles available mean TX power compared to IEEE 802.15.4 (see [4])
- Optimized for Short Frame Mode operation
- Fully coherent receiver for maximum range and accuracy
- Integrates all required RF components (i.e. balun, TRX switch)
- Supply voltage 1.8 V to 3.6 V
- Low energy consumption
- Configurable current limiter for applications with coin cell battery supply
- Data rates of 110 kbps (BPRF), 850 kbps (BRRF), 6.8 Mbps (BPRF), 7.8 Mbps (HPRF)
- Supports 2-way ranging
- IEEE draft 802.15.4z BPRF/HPRF UWB PHY (see [5]) to counter distance manipulation by e.g. Cicada and Preamble Injection attacks
- Scrambled Timestamp Sequence (STS) generation compliant to NIST SP 800-90A [10]
- Integrated I/Q phase and amplitude mismatch compensation
- Narrow Band Interference Cancellation (NBIC) for superior co-channel interference rejection
- XO buffer for sharing the XTAL with another device (e.g. UHF or BLE transceiver)
- 6 mm x 6 mm 40-pin QFN package with 0.5 mm lead pitch and wettable flanks
- AEC-Q100 Qualified
- Small number of external components
- ARM[®] Cortex-M33 32 Bit processor 55.2 MHz
- ARM® AHB-Lite bus matrix and dual master NS-DMA for fast data transfer
- 256 kByte Non Volatile Memory
- 40 kByte RAM
- 96 kByte ROM
- ARM® TrustZone technology and S-DMA for security
- Advanced Encryption Standard (AES) with 128 bit key and 256 bit key
- Elliptic curve cryptography (ECC) with 256 bit key, 384 bit key and 512 bit key
- Secure Hash Algorithm 2 with 256 bit (SHA2-256)
- Secure Interface (enables GlobalPlatform protocols (see [11]))
- Coprocessor for Cyclic Redundancy Check (CRC) calculation
- True random number generation (TRNG)
- SPI, UART and LIN compatible interface
- API to simplify custom application development
- Several timers for application development
- Low power wake-up timer
- Watch dog timer
- Support high accuracy external temperature sensor for precise crystal temperature drift compensation
- Integrated temperature sensor for crystal temperature drift compensation
- General purpose ADC 10 Bit

Ultra Wideband Transceiver with MAC support

3 Applications

The IC supports the following system applications:

- Relay Attack Defense for LF based Passive Keyless Entry Systems (PKE)
- Handsfree smart access based on UWB localization
- Secure Ranging Applications in automotive systems (Remote Park Control)
- Comfort functions in automotive systems

Ultra Wideband Transceiver with MAC support

4 Quick reference data

Table 1. Quick reference data Conditions Parameter Min Max Unit Тур **Center Frequency** 6.5 8.0 GHz °C -40 +115 Ambient Temperature Supply Voltage 1.8 3.3 3.6 V Supply Current Hard Power Down State (HPD) at 485 nA 3.3V supply Active State, WFI instruction, CPU 2.07 mΑ subsys. sleep, snapshot unit running on XO (used to recharge energy storage capacitor between ranging frames) Active State, WFI instruction 4.0 mΑ Active State, CPU running 5.1 mΑ Active State, UWB RX, NBIC ON, mΑ Supply Current RX 163 high performance Active State, UWB RX, NBIC OFF, 131 mΑ high performance Active State, UWB RX, NBIC OFF, 114 mΑ ECO Min Supply Current TX Active State, UWB TX, 12dBm 115 mΑ output power Max. input level CW signal, no damage 10 dBm UWB signal, functional -20 dBm Data Rate 0.110 7.8 Mbps Pulse Repetition Rate 124.8 MHz average 15.6 Data Transfer: Payload Sensitivity^[1] IEEE (110 kbps) dBm -108 AWGN dBm IEEE (6.8 Mbps) -95 · 20 Byte Payload HP (7.8 Mbps) dBm no STS -94 • @ 10% FER ECO Std (7.8 Mbps) -94 dBm ECO Min (7.8 Mbps) -93 dBm Secure Ranging: AWGN Sensitivity [1] IEEE -99 dBm AWGN high performance -99 dBm STS ECO Std -96 dBm no Payload • @ 10% FER dBm ECO Min -95 Secure Ranging: First Path Dynamic Range IEEE dB 32 • 2 Tap Channel dB 37 high performance • STS ECO Std 34 dB • Main tap power = nominal First Path Sensitivity + 45dB ECO Min 31 dB

NCJ29D5D Product data sheet CONFIDENTIAL

Ultra Wideband Transceiver with MAC support

Parameter	Conditions	Min	Тур	Max	Unit
Secure Ranging: First Path Sensitivity ^[1]	IEEE		-107		dBm
 2 Tap Channel STS	high performance		-110		dBm
• Main tap power = first tap power + 15dB	ECO Std		-107		dBm
	ECO Min		-102		dBm
Secure Ranging: Energy per RX frame ^[2]	high performance, NBIC ON		38		μJ
 2V supply STS	high performance, NBIC OFF		31		μJ
 no Payload 	ECO Std, NBIC OFF		15		μJ
	ECO Min, NBIC OFF		10		μJ
Secure Ranging: Energy per TX frame ^[2]	high performance		27		μJ
 2V supply 12dBm output power 	ECO Std	0	14		μJ
STSno Payload	ECO Min	96	10		μJ
Secure Ranging: ToA accuracy • AWGN • 95% of results within limit	high performance, ECO Std, ECO Min		+/-10		cm
Double Sided Pulse Band Width	10 dB attenuation	500			MHz
Non Volatile Memory	reserved for customer application and MAC firmware	128		128	kByte
Start-up time	from wake-up or reset release to start of application execution		1.4		ms
Temperature sensor tolerance		-7		+4	°C
ESD HBM	1500 Ω, 100 pF	2			kV
ESD CDM		500			V
Crystal oscillator frequency ^[3]	XTAL		52.0 or 55.2		MHz
Supply current XTAL_OUT mode	DPD, XO running, external clock without load		550		μA

Table 1. Quick reference data...continued

Measured in Channel 9 (see [4], fc=7987.2MHz); Sensitivity is approximately 2dB better in channel 5 (see [4], fc=6489.6MHz) than in channel 9 From the beginning of the frame until the end of the frame (i.e. excluding start-up, TX pre-processing, RX ToA post-processing and shut-down). The use of a 55.2 MHz XTAL is recommended. The use of a 38.4 MHz TCXO is also supported. [1]

[2] [3]

Table 2 defines the performance modes used in Table 1.

Table 2. Performance mode definition

	IEEE 110 kbps ^[1]	IEEE 6.8 Mbps ^[2]	high performance (HP) ^[3]	ECO Std ^[3]	ECO Min ^[4]	unit
Preamble symbol length	508	508	364	364	364	Chips
Preamble symbol type	ternary	ternary	ternary	ternary	ternary	

Ultra Wideband Transceiver with MAC support

	lance mode dem	Introncommueu				
	IEEE 110 kbps ^[1]	IEEE 6.8 Mbps ^[2]	high performance (HP) ^[3]	ECO Std ^[3]	ECO Min ^[4]	unit
Preamble length	1024	64	64	32	32	symbols
SFD length	64	8	8	4	4	symbols
STS AES128 bit	N/A	4096	8192	4096	2048	bit
STS length	N/A	32768 or OFF	32768 or OFF	16384 or OFF	8192 or OFF	Chips
STS type	N/A	binary	binary	binary	binary	
PHR	ON	ON or OFF	ON or OFF	ON or OFF	ON or OFF	
PHR data rate	0.11	0.85	7.8	7.8	7.8	Mbps
Payload	ON	ON or OFF	ON or OFF	ON or OFF	ON or OFF	
Pulse repetition frequency	62.4	62.4	124.8	124.8	124.8	MHz
Payload data rate	0.11	6.8	7.8	7.8	7.8	Mbps
Rx oversampling rate	2x	2x	2x	2x	1x	499.2 MHz

Table 2. Performance mode definition...continued

Compliant to IEEE 802.15.4 HRP UWB PHY (see [4]) Compliant to BPRF mode in IEEE draft 802.15.4z BPRF/HPRF UWB PHY (see [5]). Compliant to the HRP-ERDEV HPRF mode with 124.8 MHz PRF and the optional HRP-ERDEV convolutional encoder (where Reed-Solomon coding is not applied) as defined in IEEE draft 802.15.4z BPRF/HPRF UWB PHY (see [5]) \$16.3.4.3 Table 56). Not compliant to IEEE draft 802.15.4z BPRF/HPRF UWB PHY (see [5]) due to the reduced STS length. [1] [2] [3]

[4]

5 Ordering information

Table 3. Ordering inf	able 3. Ordering information					
Type number	Package	ckage				
	Name	Description	Version			
NCJ29D5DHN	HVQFN40	Ultra Wideband Transceiver with MAC support; Plastic thermal enhanced very thin quad flat package; no leads; 40terminals; body 6 x 6 x 0.85 mm; terminal pitch 0.5 mm; wettable flanks	SOT618-7			

The MAC Layer and a Software Development Kit (SDK) can be downloaded from https:// www.nxp.com/.

NCJ29D5D Product data sheet CONFIDENTIAL

Ultra Wideband Transceiver with MAC support

6 Marking

Table 4. N	ble 4. Marking information					
Line	Example	Description				
A	J29D5x	J29D5 = Type number x = unique identifier				
B1	** xx	* = Diffusion lot number (e.g. 11) x = Assembly ID (e.g. 01)				
B2	sS938*	s = Manufacturer Code GF S = Assembly Centre Kaohsiung yww = Date Code (y = year, w = calendar week) * = Release Status X = customer engineering sample Y = customer qualification sample 0 = released sample				
С	** xxx	* = Mask (e.g. B0) x = ROM code (e.g. 002)				
D	*****	* = Serial ID				

Ultra Wideband Transceiver with MAC support

7 Block diagram

Ultra Wideband Transceiver with MAC support

8 **Pinning information**

The circuit is packaged in a HVQFN40 with wettable flanks.

8.1 Pinning

8.1.1 Pin 1 keep out area

For the purpose of package orientation, so called "pin 1" identification is included. This can either be as an additional small pin / pad as shown in design 1 (left) of <u>Figure 5</u>, or a notch in the die pad as shown in design 2 (right) of <u>Figure 5</u>.

Note that the pin 1 identifier is electrically connected to the ground plate.

Ultra Wideband Transceiver with MAC support

Figure 5. Pin 1 keep out area

8.2 Pin description

Table 5. Pinning description

Symbol	Pin	Description
VDD_LO	1	Power supply for local oscillator generation of the analog receiver and transmitter
GND_LO	2	Ground
VDD_RF	3	Power supply for analog receiver and transmitter
GND_RF	4	Ground
TRX	5	Single-ended, RF receiver input and RF transmitter output, a DC level of 2.1V is used for transmission
GND_RF	6	Ground
PA_CAP_P ^[1]	7	External decoupling capacitor between pin 7 and 8. 100 nF
PA_CAP_N ^[1]	8	External decoupling capacitor between pin 7 and 8. 100 nF
VDD_BUF	9	Internally connected to VBAT_IO (pin 26) via programmable current limiter, supply for global LDO and PA
GND_DIG	10	Ground (digital)
VDD_GLOB	11	Output voltage of the global LDO, 2.1V typical
P10 / CTS / PA_ENBL	12	GPIO CTS - "Clear To Send" in UART operation PA_ENBL - Gating signal for an optional external PA
P11 / RX ^[2]	13	GPIO RX - Data input in LIN/UART operation (e.g. connected to the output of the LIN transceiver)
P12 / TX ^[2]	14	GPIO TX - Data output in LIN/UART operation (e.g. connected to the input of the LIN transceiver)
GND_DIG	15	Ground (digital)
VDD_DIG	16	Power supply for digital domain; Connect to VDD_BUF on PCB
SWCLK	17	Serial Wire Debug (SWD) clock, internal pull-up resistor

NCJ29D5D Product data sheet CONFIDENTIAL

© 2023 NXP B.V. All rights reserved.

Ultra Wideband Transceiver with MAC support

Symbol	Pin	Description
SWDIO	18	Serial Wire Debug (SWD) data, internal pull-up resistor
P13 / CS2_N / RTS ^[2]	19	GPIO CS2_N - Second Chip Select (active low) output in SPI Master operation RTS - "Request To Send" in UART operation
P14 / CS_N ^[2]	20	GPIO CS_N - Chip Select (active low); output in SPI Master operation; input in SPI Slave operation
P21 / SDI ^[2]	21	GPIO SDI - Data input for SPI full duplex operation
P17 / SCLK ^[2]	22	GPIO SCLK - Data clock for SPI operation; output in SPI Master operation; input in SPI Slave operation
P20 / SDIO ^[2]	23	GPIO SDIO - Data I/O for SPI operation; output in full duplex operation; input/output in half duplex operation
BB_N ^[3]	24	External decoupling capacitor between pin 24 and 25. 470 nF
BB_P ^[3]	25	External decoupling capacitor between pin 24 and 25. 470 nF
VBAT_IO	26	Power supply for digital I/Os and power supply for the chip via current limiter; Current limiter connected between pin 26 and pin 9 (VDD_BUF)
GND_DIG	27	Ground (digital)
TEST ^[4]	28	Test pin (must be connected to ground in the application)
P15 / INT_N ^[2]	29	GPIO INT_N - Interrupt output (active low) in 6-wire SPI operation
P16 / RDY_N ^[2]	30	GPIO RDY_N - Ready output (active low) in 6-wire SPI operation
RST_N ^[5]	31	Reset input (active low), internal pull-up resistor. To perform a reset, RST_N shall be active for at least 5 us.
XTAL_OUT ^[6]	32	Clock Reference (typical 27.6MHz) for external IC. XTAL clock output buffer, optionally divided. Trapezoid-wave with configurable slope to guaranty minimum 0.6Vpp at typical 27.6MHz when capacitive load (i.e PCB) is not higher 10pF. This pin can be left OPEN or be connected to GND. It should NOT be pulled to VDD.
VDD_XTAL	33	Power supply for XTAL; Connect to VDD_BUF on PCB
GND_XTAL	34	Ground
XTAL_N	35	External crystal (55.2 MHz typical) connected between pins 35 and 36
XTAL_P	36	External crystal (55.2 MHz typical) connected between pins 35 and 36
GND_BIST	37	Ground
VDD_BIST	38	Power supply for BIST, ADC, DAC, system clock generation
IFIOBIST_P	39	Pin for supplying an external resistive voltage divider with NTC for temperature sensing. Connect Pins 39 and 40 (IFIOBIST_N respP) to ground in case they are not needed for application.

Table 5. Pinning description...continued

NCJ29D5D Product data sheet CONFIDENTIAL

NXP Semiconductors

NCJ29D5DHN

Ultra Wideband Transceiver with MAC support

Table 5. Pinning description ... continued

Symbol	Pin	Description
IFIOBIST_N	40	Pin for sensing the external temperature sensor voltage with internal ADC. Connect Pins 39 and 40 (IFIOBIST_N respP) to ground in case they are not needed for application.

PA_CAP_P and PA_CAP_N shall not be pulled to high voltages nor to GND. [1] [2] [3] [4] [5] [6]

Unused GPIO pins should be left open.

BB_P and BB_N shall not be pulled to high voltages nor to GND.

Pin TEST must be connected to ground in the application. RST_N shall be connected only with a 4.7 k Ω resistor in series.

The frequency of the crystal clock output signal is not corrected for temperature drift.

Ultra Wideband Transceiver with MAC support

9 Design Information

In this chapter, high level information will be presented about the internal architecture, features, programming options and way of working for several of the core functional units of the device. Detailed information can be found in the User Manual (see [1]).

9.1 UWB Customized Device

The UWB device firmware offers the opportunity to implement a customized application software. Therefore, the UWB device firmware offers the following application programmable interface (API):

- · Software interface to configure and control the device
 - Direct access to hardware peripheral registers (SPI, UART, Timers)
 - Access to persistant memory
 - Optional software libraries for use in customized application to control hardware peripherals (e.g. Timers, SPI)
 - Secure channel protocols
- Software interface to support ranging applications including key management for encryption on the physical channel
- In-the-field software update interface
 - Update UWB device firmware
 - Update customized application software

The software interface abstracts the hardware functions of the device, and extends them to powerful system functions. The application can call and execute these functions to implement a complex ranging protocol. The Programmer's Manual (see [3]) gives guidance on how to program the device, and refers to Compiled HTML Help (CHM) files documenting the API functions available to the customized application. The device also offers powerful debug capabilities for developing a customized application software.

The device offers a Software Update Program (SWUP) method to perform secure in-the-field software updates. The Software update program offers an API for the application to activate the update process. Moreover, it offers an API for custom wired communication interfaces to be used during the update process. Alternatively, an SPI based communication interface is available to interact with SWUP, as described in the SWUP User Manual (see [2]).

<u>Figure 6</u> illustrates the external interfaces of the device and internal software interfaces for the customized application. A host accesses the device via the external SPI or UART interface and interacts with the customized application.

Ultra Wideband Transceiver with MAC support

9.2 RF Subsystem

The RF subsystem is the analog RF frontend of the device. It integrates all RF components required to perform UWB data transfer and ranging operations in the band from 6.0 GHz to 8.5 GHz. A 50 Ω UWB antenna has to be connected via a matching circuit.

The RF RX comprises the following functions:

- LNA
- Mixer
- Automatic Gain Control
- Anti-Aliasing Filter (AAF)
- 8-Bit ADC running at 1GHz sampling rate

The RF TX comprises the following functions:

- 7-Bit DAC running at 2 GHz
- Reconstruction Filter
- Mixer
- PA Gain Control
- PA

The RF subsystem also comprises the following additional functions:

- XO clock and buffer
- Fractional System PLL (SYS-PLL) generating the clock for DAC, ADC, RF-PLL and digital baseband domain
- Fractional RF PLL (RfPII) generating the LO
- Matching network
- Balun
- TRX switch

9.3 Baseband Subsystem

The baseband subsystem implements advanced digital RX algorithms for data transfer and time of arrival (ToA) measurement. Flexible TX encoding and frame generation functions. The Baseband Subsystem is designed to transmit or receive a frame at the time. The scheduling of complete ranging sequences is the task of the CPU.

Figure 7 shows a block diagram of the Baseband Subysystem.

Figure 7. Baseband Subsystem

The digital RX is initialized and configured by the CPU. It is designed to receive one frame at the time and to generate an interrupt to the CPU once it has received a frame. The CPU can then read the decoded payload and timestamp information.

The digital RX comprises the following functions:

- Acquisition of frequency offset and timing offset during the preamble part of the frame (SYNC)
- Detection of the Start of Frame Delimiter (SFD)
- Time of Arrival (ToA) measurement
 - For secure ranging applications the ToA algorithm operates on the STS
 - The expected STS sequence is generated by dedicated HW (Tx / Rx STS Gen)
 - For non-secure ranging applications the STS is not transmitted and the ToA algorithm operates on the SYNC
- · Physical Header (PHR) demodulation
- Payload demodulation
- Viterbi Decoding
- Reed Solomon (RS) Decoding

Ultra Wideband Transceiver with MAC support

- SECDED Decoding
- Narrow Band Interference Cancellation (NBIC) rejects in-band interferer

The digital TX is initialized and configured by the CPU. It is designed to transmit one frame at the time and to generate and interrupt the CPU once it has transmitted a frame.

The digital TX comprises the following functions:

- Convolutional Encoding
- RS Encoding
- SECDED Encoding
- STS sequence generation
- Bit-stream creation (SYNC, SFD, STS, PHR, Payload)
- · Pulse shaping with a programmable FIR filter

The Snapshot Unit implements the ranging timer. The CPU SW has to combine the timestamps captured due to RX and TX events with the ToA estimate generated by the digital RX to calculate the precise timestamp information needed in the ranging protocol.

The Snapshot Unit comprises the following functions:

- Precise trigger for delayed RX (RxStart)
- Precise trigger for delayed TX (TxStart)
- Capture time when a frame was received (RxEvent)
- · Capture time when a frame was transmitted (TxEvent)
- Wake-Up the DSP (WupTrigger)
- Wake-Up the CPU (WupTrigger)

9.4 CPU Subsystem

The digital control of the device is done with an ARM[®] Cortex[®]-M33 processor (see [6]). The 32-bit microcontroller implements the ARM[®] TrustZone extension (see [7]), which is based on ARM[®]v8-M architecture (see [8]). It is designed to provide security for low power and high performance applications.

The CPU has optimized peripherals to facilitate quick and efficient control of the baseband subsystem and the analog RF subsystem. Timers and mathematical units are also implemented in hardware to allow the CPU to concentrate upon the main application level challenges. Dedicated hardware blocks implement strong cypher functions and data movement and thus increase the computing power available for the user application.

9.4.1 Serial Peripheral Interface (SPI)

A single serial peripheral interface (SPI) block is provided. It supports the following key features.

- Master and slave operation
- Data transmissions of 1 to 16 bit supported directly. Larger frames supported by software
- The SPI building block supports separate transmit and receive FIFO buffers with 8 entries each with 16 bit width
- DMA transfers are supported: SPI transmit and receive functions can be operated with the system DMA controller
- Data can be transmitted to a slave without the need to read incoming data
- The device supports wake-up from power saving modes through events on the SPI interface

9.4.2 LIN/UART Serial Interface

A LIN/UART Serial Interface is available for data communications, monitoring, and control. The module features dedicated HW support for LIN operation. But it can also be configured as a universal asynchronous receive / transmit (UART) interface. The supported high level features include

- LIN operation
 - LIN Protocol Handler
 - Master mode
 - Slave mode
 - LIN message buffer
 - Filtering Unit (slave)
 - Re-synchronization (slave)
 - Enhanced error detection
- Standard UART/SCI mode
 - Full duplex
 - **–** 8-bit / 9-bit
 - Even / Odd parity

9.4.3 Clock Generation

All internal clock signals required for RF communication are derived from a quartz crystal oscillator. This includes clocks required for baseband signal processing as well as the RF local oscillator signal, which defines the actual radio carrier frequency.

An external crystal quartz device is required, which defines the basic reference clock signal frequency. Alternatively, a reference signal provided by a temperature compensated crystal oscillator (TCXO) can also be used.

Clock signal management ensures that clock signals not currently used for operation of the device will be disabled in order to conserve power.

9.4.4 General Purpose Timers

Four general purpose timers are provided with level triggered interrupt to the main CPU. They operate at system clock with a prescaler shared among all four timers. The timers can each be programmed for single-shot or free running down counter operation. The general purpose timer registers are each 32 bit wide.

9.4.5 Watchdog Timer

The watchdog timer circuit generates a reset output signal in case it is not properly reset within a pre-programmed time. It uses a clock that is independent from the CPU subsystem. The watchdog timeout period can be specified with a resolution of 100µs.

After the watchdog is configured, the watchdog can be locked to protect against unintended reconfiguration. Once it is locked, the timeout period can no longer be changed. The SW can however still restart the watchdog, before it expires.

As an additional feature, the watchdog timer supports a "timeout pre-emption" function, which causes an interrupt when the watchdog timer counter reaches a pre-defined value just before it expires.

9.4.6 Wake-up Timer

The wake-up timer can be used to wake-up the device from DPD mode after a specified time interval. The wake-up timer uses a crystal calibrated divided low-power FRO as clock source. The wake-up time generation is configurable up to a maximum of 55 minutes. A time counter frequency of 20 kHz or 40 kHz can be selected. The wake-up timer register is 26 bit wide.

9.4.7 Direct Memory Access (DMA)

The direct memory access controller supports fast data transfers without causing any load on the main CPU. It is connected to the internal Advanced High-Performance Bus ("AHB"). The DMA controller is represented as a single slave on the AHB for programming and two masters for data transfers.

A total of eight DMA channels are provided by the DMA controller. Direct memory access can be used as per bus connection.

Besides a generally available Non-Secure DMA controller, there is also a Secure DMA controller, which is not available for general programming and reserved for device firmware internal uses.

9.4.8 Port Control Block

Ten device pins are designated as general purpose input / output pins ("GPIO pins"). The port control block handles their specific configuration options, when used as GPIO pin. The supported configuration options include

- Selection if to be used as input or output pin
- Selection of resistor pull-up, pull-down, or no resistor when programmed as input pin
- Wake-up detection in DPD mode / interrupt option on all GPIO pins with enable registers
- CS_N, RX and TRX provide Wake-up detection in HPD mode
- GPIO configurations are unaffected by DPD and HPD modes

On reset, wake-up from HPD and watchdog expiry, all GPIO pins are configured as input pins with pull-up resistor enabled.

9.4.9 Cryptography Support Block

A dedicated hardware accelerator supports computations used in symmetric key and public key cryptography. It efficiently performs basic arithmetic and logical operations on multi-precision integer numbers. A typical use of this block would be in cryptography using the Advanced Encryption Standard (AES) or the Elliptic Curve Cryptography (ECC) algorithm. Computation of SHA hashes as well as true random number generation are also available.

- Advanced Encryption Standard (AES) with 128 bit key and 256 bit key
- Elliptic Curve Cryptography (ECC) with 256 bit key, 384 bit key, and 512 bit key
- Secure Hash Algorithm 2 with 256 bit (SHA2-256)

The cryptography support block is connected to both, the AHB and APB bus. The secure CPU can access these blocks, data transfers can be executed efficiently via the Secure DMA Controller.

The application can access the hardware accelerator via dedicated secure API ROM functions. The application can use these functions to implement a Secure Interface (e.g. GlobalPlatform SCP11, SCP03 protocols (see [[11]]))

9.4.10 Cyclic Redundancy Check (CRC)

Operations associated with message integrity and cyclic redundancy check parity bits are supported by the CRC building block. The block supports CRC generation as well as CRC verification / checking functionality. The main features include

- Configurable CRC polynomial from CRC1 to CRC32
- Internal 32 bit CRC data register
- Configurable CRC start value
- Parallel CRC calculation for 8 bit input data
- Support for LSBit / MSBit first aligned input data

9.4.11 Temperature measurement

The temperature can be measured in two ways, either with the internal temperature sensor or using an external temperature sensor, connected to the on-chip 10 bit ADC. Access to the temperature measurement subsystem is through software API.

Ultra Wideband Transceiver with MAC support

An external temperature sensor can be used, connected as shown in <u>Figure 8</u>, with connections made to pins IFIOBIST_N and IFIOBIST_P.

9.4.12 Voltage Measurement

The device facilitates the measurement of several voltages. Access to the voltage measurement function is through software API. Dedicated API functions are provided to perform these device internal measurements. No external components are required to perform these measurements. The following voltages can be measured:

- Voltage on pin VBAT_IO This feature is intended to be used to monitor the battery supply voltage.
- Voltage on pin VDD_BUF This feature is intended to be used in Key Fob applications, to monitor the available charge in the energy storage capacitor.
- Voltage on pin VDD_GLOB
- Voltage on pin VDD_DIG

9.4.13 Serial Wire Debug (SWD) Interface

The in-circuit Serial Wire Debug (SWD) interface (see [9]) is intended for non intrusive debug operation during application program development. The interface allows manipulating the embedded peripherals and provides means to initialize the NV. It is implemented as two-wire serial interface using the dedicated pins SWDIO and SWCLK. The NV has a programming granularity of 512 byte.

The SWD Interface is available when the device is set into INIT mode, which is the factory default setting. When performing system tests and field trials, the device shall be set to PROTECTED mode. Latter one disables debug features and the SWD Interface. The device may be forced back into INIT mode by a dedicated command.

Ultra Wideband Transceiver with MAC support

9.5 Power management

9.5.1 Modes of operation

The device supports operation in a 3 V environment supporting the following supply use cases:

- 1. Device and digital interface supplied with regulated 3 V (3.3 V) supply
- Digital signaling between all devices in the system is done at 3 V (3.3 V) level.
- 2. Device and digital interface supplied with a 3 V battery
 - Digital signaling between all devices in the system is done at battery voltage level.
 - An energy storage capacitor is required to deliver the required peak current during frame reception and frame transmission.

Connection diagrams for these different use cases are depicted in Figure 9.

9.5.2 External power supply domains

Several power supply pins are present to provide the required supply isolation between various RF, analog and digital blocks (external power supply domains). The device can either be supplied via a regulator output or a battery.

When the device is supplied via a regulator output, then the 3V power supply pins shall be directly connected to the regulator output. The 2.1V power supply pins shall be connected to VDD GLOB. Note that the Global LDO shall only be used to supply NCJ29D5, it shall not be used to supply another device.

When the device is supplied via a battery, then the current limiter should be employed to limit the battery stress due to high peak currents. Only the VBAT_IO power supply pin has to be directly connected to the battery. The VDD BUF is the output of the current limiter, it supplies both, VDD XTAL and VDD DIG in this case. Note that the current limiter shall only be used for NCJ29D5, it shall not be used to limit the supply current of another device. The 2.1V power supply pins have to be connected to VDD GLOB.

Adequate blocking capacitors have to be connected to the external supply pins. External supply switches are not required.

Power supply pin	Voltage range ^[1]	Description
VBAT_IO, GND_DIG	3 V	Power supply for the I/O port pins, the power-on reset circuit, the power state logic, the I/O port control latches and the wake- up timer.
VDD_BUF	3 V	Main power supply domain of the device; Note that the transition out of DPD STATE and RESET STATE is only completed, when VBAT_IO - VDD_BUF < ~20mV ^[2] (i.e. fob application: wait until energy storage capacitor is fully charged; car application: not relevant as VDD_BUF is connected to VBAT_IO on the PCB; see Figure 9 and Figure 10).
VDD_XTAL, GND_XTAL,	3 V	Power supply for the crystal oscillator.
VDD_DIG; GND_DIG;	3 V	Power supply for the CPU and digital baseband processing.
VDD_GLOB	2.1 V	Regulated power supply output.

Table 6. External power supply domains

Ultra Wideband Transceiver with MAC support

able o. External power suppry domainscommed						
Power supply pin	Voltage range ^[1]	Description				
VDD_LO; GND_LO; VDD_RF, GND_RF; VDD_BIST; GND_BIST	2.1 V	Power supply for the local oscillator (fractional-N PLL), the radio frontend, and the BIST logic.				

Table 6. External power supply domains...continued

[1] Voltage ranges are given here only for information purpose. Please refer to the electrical characteristics for detailed voltage range specification.
 [2] A minimum value of 5mV was established via analog PVT simulations.

The external power supply domains with the associated power supply pins are briefly described in the <u>Table 6</u>.

The package HVQFN has an exposed die pad at the back which is intended as heat sink and additional ground connection.

9.5.3 Recommended external capacitors in the supply domains

The device is supplied by an external supply with 3 V (3.3 V):

- Pin 1 VDD_LO: 10 nF (± 10%) capacitor
- Pin 3 VDD_RF: 10 nF (± 10%) capacitor
- Between Pin 7 PA_CAP_P and Pin 8 PA_CAP_N: 100 nF (± 10%) capacitor (mandatory)
- Pin 9 VDD_BUF:
 - 100 nF (± 10%) when used on car side
 - 100 µF (± 10%) capacitor is typically required when coin cell battery powered
- Pin 11 VDD_GLOB: 100 nF (± 10%) capacitor
- Pin 16 VDD_DIG: 100 nF (± 10%) capacitor
- Between Pin 24 BB_N and Pin 25 BB_P: 470 nF (± 10%) capacitor (mandatory)
- Pin 26 VBAT_IO: 100 nF (± 10%) capacitor
- Pin 33 VDD_XTAL: 100 nF (± 10%) capacitor
- Pin 38 VDD_BIST: 10 nF (± 10%) capacitor

NCJ29D5D

© 2023 NXP B.V. All rights reserved.

Ultra Wideband Transceiver with MAC support

9.5.4 Power supply states

The device supports the following power states:

- RESET state
 - The CPU performs a boot, when ACTIVE state is entered from RESET state.
- ACTIVE state (normal operation)
- DEEP POWER DOWN (DPD) state (wake-up timer active)
 - SW can choose to retain the CPU RAM before entering DPD.
 - SW can choose to retain the BB RAMs and CPU RAMs and keep the ranging timer running before entering DPD.
 - The CPU Subsystem is reset in DPD state.
 - The CPU performs a boot, when ACTIVE state is entered from DPD state.
- HARD POWER DOWN (HPD) state (lowest power consumption)
 - activate RST_N to wake-up the device
 - CS_N, RX and TX pin can be configured to wake-up the device. The device wakes up, when the level is low on any of the pins configured for wake-up.

The state diagram for the functional power supply states is given in <u>Figure 10</u>. Note that the IC contains the power domains AO, NV, CPU_RET, CPU, BB_RET, BB. Each one has a dedicated monitor. The corresponding outputs are called Power-OK signals. A '1' signals that the LDO of the respective domain is turned on and operational.

Ultra Wideband Transceiver with MAC support

9.5.5 Current Limiter

The current limiter is intended for applications with coin cell battery supply, to maximize the lifetime of the battery. It minimizes battery stress by limiting the maximal current drawn by the IC. The current limit is configurable by SW. Figure 9 shows how the current limiter is connected in the application.

The current limiter comprises the following functions:

- · Configurable current limit from 5 mA to 20 mA, in steps of 1 mA
- · Limits the battery current drawn from the IC
 - Except for the GPIOs
 - GPIOs are directly supplied by VDD_BAT, to guarantee that the signaling level matches the battery voltage.
- ON mode
 - Current is limited to the configured maximum
 - Automatically selected in RESET state and ACTIVE state
- OFF mode
 - VDD_BUF is disconnected from VDD_IO
 - Can be selected for HPD state
 - Leakage of the energy storage capacitor does not impact the battery current drawn in HPD mode
 - Note that the power management state machine makes sure that the re-boot is only starting once the energy storage capacitor is fully charged. The transition out of RESET STATE is only completed when the difference between VBAT_IO and VDD_BUF is smaller than ~20mV¹ (i.e. fob application: wait until energy storage capacitor is fully charged; car application: not relevant as VDD_BUF is connected to VBAT_IO on the PCB; see Figure 9 and Figure 10).
- CHARGING/CHARGED mode
 - VDD_BUF is connected to VDD_IO.
 - Can be selected for HPD and DPD state.
 - The HW charges the energy storage capacitor with the current limiter enabled.
 - Once the capacitor is charged (i.e. the difference between VBAT_IO and VDD_BUF is smaller than ~20mV²), the current limiter is bypassed and the current is no longer limited.
 - The energy storage capacitor remains charged to facilitate a fast wake-up time.

¹ A minimum value of 5mV was established via analog PVT simulations.

² A minimum value of 5mV was established via analog PVT simulations.

Ultra Wideband Transceiver with MAC support

9.6 Device modes

The device features the following Device Modes. The Device Modes are maintained and set by SW (see [3]):

- INIT
- PROTECTED
- TAMPERED

The Device Modes affect the overall device behavior, the SWD Interface operation and the user ability to access the NV.

A Device Mode is controlled by a set of configuration bytes, which are located in the NV.

The configuration bytes may not be altered by the user directly, instead, the corresponding command has to be used. Device Mode transitions are protected by a strong cryptographic mechanism.

9.6.1 INIT

When the device is supplied from NXP, it is configured in INIT mode by default.

The INIT mode shall be used during software development only. The SWD Interface is fully operational, enabling the customer to initialize the NV as desired for the application.

9.6.2 PROTECTED

In the moment the device is set into PROTECTED mode, the SWD Interface is disabled. The PROTECTED mode has to be used during system testing and in the final application.

9.6.3 TAMPERED

The TAMPERED mode is entered temporarily during the transition from one device mode to another. If this sequence does not complete successfully, the device remains in TAMPERED mode.

Ultra Wideband Transceiver with MAC support

9.7 System routines

9.7.1 Boot routine

The ROM based boot routine is called immediately after battery insertion, device reset or wake-up from DPD or HPD state.

The boot routine executes a sequence of instructions to evaluate the device mode and configures the device, using device protection and configuration flags and passes control to the application code at the boot vector in the NV.

The reset cause is preserved and reported via an API function.

Ultra Wideband Transceiver with MAC support

10 Characterization Information

10.1 Limiting values

Table 7. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134) - guaranteed by design

Parameter	Condition	Min	Тур Мах	Unit
Moisture Sensitivity Level (MSL)	2a		2	
Junction temperature			125	°C
VBAT_IO; Voltage at any digital I/O pin		-0.3	3.6	V
Voltage at digital I/O pins (3.6 V must not be exceeded)		-0.3	VBAT_IO + (0.3 V
VDD_BUF; VDD_XTAL; VDD_DIG	Must not exceed VBAT_IO	-0.3	3.6	V
VDD_LO; VDD_RF; VDD_BIST	A P	-0.3	2.8	V
VDD_GLOB		-0.3	2.8	V
BB_P	Y J	-0.3	1.25	V
BB_N		-0.3	0.3	V
XTAL_N; XTAL_P	XX.	-0.3	1.25	V
IFIOBIST_N: IFIOBIST_P		-0.3	VDD_RF	V
TRX		-0.3	3.6	V
PA_CAP_P		-0.3	2.4	V
PA_CAP_N		-0.3	0.3	V
XTAL_OUT		-0.3	1.25	V
Maximum input level without damage	CW signal	10		dBm
Maximum input level functional	UWB signal	-20		dBm
NV data retention for the first 1k program/erase (P/E) cycles to a page		15		Years
NV data retention for the first 10k program/erase (P/E) cycles to a page		10		Years
NV endurance	27	10k		P/E cycles
TX on time over lifetime ^[2]		657		h
RX on time over lifetime		6570		h

[1] AEC-Q100-005 measurement method with Ambient mission profile: 6 % @ -40 °C, 20 % @ 25 °C, 65 % @ 85 °C, 5 % @ 105 °C and 4 % @ 115 °C
 [2] The minimum TX on time matches the hourly homologation limit defined by ETSI, accumulated over 15 years lifetime. The highest Duty Cycle for LDC in the ETSI standard (see [[12]] §4.5.3) is 0.5% (i.e. LDC of 18s/h). 18s/h * 24h/d * 365d/y * 15y / 3600s/h = 657h

10.2 Recommended operating conditions

Table 8. Recommended operating conditions

Parameter		Condition	Min	Тур	Max	Unit
Parametric ambient temperature range A ^[1]		All specification parameters fulfilled	-40	25	105	°C
NCJ29D5D	All	information provided in this document is subject to legal disclaimers.		©	2023 NXP B.V. /	All rights reserved.
Product data sheet		Rev. 1.2 — 3 February 2023				
CONFIDENTIAL		DS652611				30 / 75

Ultra Wideband Transceiver with MAC support

Parameter	Condition	Min	Тур		Max	Unit
Parametric ambient temperature range B ^[1]	 Device fully functional Deviating RX and TX characteristics Depending on the thermal resistance of the module, continuous RX operation may not be supported. 	105		£	115	°C
Supply voltage range A	All specification parameters fulfilled	2.4	3.3	U	3.6	V
Supply voltage range B	 Device fully functional TX PA peak power shall not be set higher than 9dBm, to avoid potential regulatory spectral mask violations. Deviating RX and TX characteristics 	1.8	00°		2.4	V

 Table 8. Recommended operating conditions...continued

[1] The maximal junction temperature (Table 7) must not be exceeded. Thermal resistance from die to PCB (Rth_jc) is defined in Table 12.

10.3 Characteristics

10.3.1 General

Table 9. Condition

This table defines conditions used for characterization. They are referred by their ID in the "Note" column in the characteristic tables.

ID	Description
[1]	Tested in production test; -40 °C, 25 °C, 105°C
[2]	Characterized at 1.8 V, 2.4V, 3.3 V, 3.6 V, -40 °C, 25 °C, 105 °C, 115 °C with 32 parts, Crystal type: NX2016SA 55.2MHz EXS00A-CS12398
[3]	Characterized at 1.8 V, 2.4V, 3.3 V, 3.6 V, -40 °C, -20°C, 25 °C, 65°C, 85°C, 105 °C, 115 °C with 32 parts, Crystal type: NX2016SA 55.2MHz EXS00A-CS12398
[4]	Characterized at 3.3 V; -40 °C, 25 °C, 105 °C, 115 °C limited sample size, Crystal type: NX2016SA 55.2MHz EXS00A-CS12398
[5]	Characterized at 3.3 V; -40 °C, 25 °C, 105 °C, 115 °C, ext. clock 55.2MHz
[6]	Guaranteed by design

Table 10. Temperature

This table defines temperatures used for characterization. They are referred by their ID in the "Conditions" column in the characteristic tables.

ID	Description
СТ	-40°C
LT	-20°C
RT	+25°C
KT	+65°C
ХТ	+85°C
MT	+105°C

DS652611

Ultra Wideband Transceiver with MAC support

 Table 10.
 Temperature...continued

This table defines temperatures used for characterization. They are referred by their ID in the "Conditions" column in the characteristic tables.

ID	Description	
HT	+115°C	\wedge

Table 11. Scenario definition

This table defines scenarios used for characterization. They are referred by their name throughout the characteristics section.

	IEEE 110 kbps	IEEE HF 6.8 Mbps 7.8		HP (h 7.8 MI	HP (high perf.) I 7.8 Mbps		ECO Std 7.8 Mbps		/lin ops	
	data	data	ranging	data	ranging	data	ranging	data	ranging]
Preamble sym. length	508	508	·	364		364	C	364		Chips
Preamble symbol	ternary	ternar	ernary te		ternary		у	ternar	у	
Preamble length	1024	64	5	64		32	3	32		symbols
SFD length	64	8	6	8	$\overline{\mathbf{A}}$	4		4		symbols
STS AES128 bit	-	-	4096		8192	-	4096	-	2048	bit
STS length	OFF	OFF	32768	OFF	32768	OFF	16384	OFF	8192	Chips
STS type	-	-	binary		binary	- (binary	-	binary	
PHR	ON	ON	-	ON	- 7	ON	-	ON	-	
PHR data rate	0.11	0.85	-	7.8	-	7.8	-	7.8	-	Mbps
Payload	20	20	- 🔾	20	2	20	-	20	-	Byte
Pulse repetition freq.	62.4		2	124.8			·		-	MHz
Payload data rate	0.11	6.8	5	7.8	- 7	7.8	-	7.8	-	Mbps
Rx oversampling	2x						1x		499.2MHz	
Tx pulse shape	RRC, β=0.5	0.5, minimum phase ^[1]								

IEEE 6.8 Mbps frames were also validated with a linear phase RRC TX pulse shape with β=0.45, for sensitivity and ToA precision. A RX configuration optimized for this pulse shape was used. Only a minor degradation in sensitivity and ToA precision was measured.

Nr.	Description	Conditions	Min	Тур	Max	Unit	Note
1	Frequency of external reference crystal	2		55.2		MHz	[6]
	connected to XIAL_N and XIAL_P			52.0			
2	Frequency of external TCXO connected to XTAL_N (XTAL_P is not connected)			38.4		MHz	[6]
3	Input voltage level at XTAL_N when XO LDO is disabled or not ready	LDO_XO_OK = 0	-0.1		0.1	V	[6]
4	Duty cycle of external clock input signal XTAL_N		45		55	%	[6]
5	Pin capacitance (XTAL_N to XTAL_P)			2.1		pF	[6]

Table 12. Application relevant limits

© 2023 NXP B.V. All rights reserved.

Ultra Wideband Transceiver with MAC support

Table 12. Application relevant limits...continued

Nr.	Description	Conditions	Min	Тур	Max	Unit	Note
6	Thermal resistance from die to PCB (Rth_jc)	soldered exposed die pad		6		K/W	[6]

10.3.2 RX

Table 13. Interferer definition

Short	Description	Modulation	Comment
J.CW	Continuous wave	none	0
J.LTE	LTE signal with 3 Resource Blocks	OFDM	1.62 MHz BW
J.WIFI	WIFI signal	OFDM	160 MHz BW

10.3.2.1 Data Transfer: Payload Sensitivity

 Table 14. Characteristics - Data Transfer: Payload Sensitivity CH9

 Measurement of RX sensitivity level for

- AWGN
- 20 Byte Payload
- no STS
- @ 10% FER

Following characteristics are valid for conditions as follows (unless otherwise specified)

 T_{amb} = -40 °C to 115 °C , VDD = 1.8 V to 3.6 V, $f_{\rm C}$ = 7987.2 MHz, crystal = 55.2 MHz

VDD = VBAT_IO, VDD_DIG, VDD_BUF, VDD_XTAL, GPIO pins in defined, non hi-Z, state

Nr.	Description	Conditions	Min	Тур	Мах	Unit	Note
1	HP 7.8Mbps data frame	CT, RT		-94	-93	dBm	[2]
		MT, HT		-93	-91	dBm	[2]
2	ECO Std 7.8Mbps data frame	CT, RT		-94	-92	dBm	[2]
		MT, HT		-92	-91	dBm	[2]
3	ECO Min 7.8Mbps data frame • Rx oversampling: 1x	CT, RT		-93	-92	dBm	[2]
		MT, HT		-91	-90	dBm	[2]
4	IEEE 6.8Mbps data frame	CT, RT		-95	-94	dBm	[2]
		MT, HT		-93	-92	dBm	[2]
5	IEEE 850kbps data frame	CT, RT		-104	-102	dBm	[2]
		MT, HT		-102	-100	dBm	[2]
6	IEEE 110kbps data frame	CT, RT		-108	-106	dBm	[2]
		MT, HT		-106	-104	dBm	[2]

Ultra Wideband Transceiver with MAC support

 Table 15. Characteristics - Data Transfer: Payload Sensitivity CH5

 Measurement of RX sensitivity level for

- AWGN
- 20 Byte Payload
- no STS
- @ 10% FER

Following characteristics are valid for conditions as follows (unless otherwise specified) $T_{amb} = -40$ °C to 115 °C, VDD = 1.8 V to 3.6 V, $f_C = 6489.6$ MHz, crystal = 55.2 MHz VDD = VBAT_IO, VDD_DIG, VDD_BUF, VDD_XTAL, GPIO pins in defined, non hi-Z, state

Nr.	Description	Conditions	Min	Тур 🔷	Max	Unit	Note
1	HP 7.8Mbps data frame	CT, RT		-96	-95	dBm	[2]
		MT, HT		-95	-93	dBm	[2]
2	ECO Std 7.8Mbps data frame	CT, RT		-95	-94	dBm	[2]
		MT, HT		-94	-92	dBm	[2]
3	ECO Min 7.8Mbps data frame • Rx oversampling: 1x	CT, RT	X	-94	-93	dBm	[2]
		MT, HT	0	-93	-92	dBm	[2]
4	IEEE 6.8Mbps data frame	CT, RT		-97	-95	dBm	[2]
		MT, HT	2	-95	-94	dBm	[2]
5	IEEE 850kbps data frame	CT, RT	K	-105	-104	dBm	[2]
	O'N	MT, HT	1	-103	-102	dBm	[2]
6	IEEE 110kbps data frame	CT, RT		-110	-108	dBm	[2]
	$\langle Q'$	MT, HT		-108	-106	dBm	[2]

10.3.2.2 Secure Ranging: AWGN Sensitivity

Table 16. Characteristics - Secure Ranging: AWGN Sensitivity CH9

Measurement of RX sensitivity level for

- AWGN
- no Payload
- STS
- @ 10% FER

Following characteristics are valid for conditions as follows (unless otherwise specified) $T_{amb} = -40$ °C to 115 °C, VDD = 1.8 V to 3.6 V, $f_{C} = 7987.2$ MHz, crystal = 55.2 MHz

VDD = VBAT_IO, VDD_DIG, VDD_BUF, VDD_XTAL, GPIO pins in defined, non hi-Z, state

Nr.	Description	Conditions	Min	Тур	Max	Unit	Note
1	HP ranging frame	CT, RT		-99	-98	dBm	[2]
		MT, HT		-97	-96	dBm	[2]
2	ECO Std ranging frame	CT, RT		-96	-94	dBm	[2]
		MT, HT		-94	-93	dBm	[2]
3	ECO Min ranging frame	CT, RT		-95	-93	dBm	[2]
	• Rx oversampling: 1x	MT, HT		-93	-92	dBm	[2]
4	IEEE ranging frame	CT, RT		-99	-97	dBm	[2]
		MT, HT		-97	-96	dBm	[2]

Ultra Wideband Transceiver with MAC support

 Table 16. Characteristics - Secure Ranging: AWGN Sensitivity CH9...continued

 Measurement of RX sensitivity level for

- AWGN
- no Payload
- STS
- @ 10% FER

Following characteristics are valid for conditions as follows (unless otherwise specified) $T_{amb} = -40$ °C to 115 °C, VDD = 1.8 V to 3.6 V, $f_C = 7987.2$ MHz, crystal = 55.2 MHz VDD = VBAT_IO, VDD_DIG, VDD_BUF, VDD_XTAL, GPIO pins in defined, non hi-Z, state

Nr.	Description	Conditions	Min	Тур	Max	Unit	Note
5	HP ranging frame • CFO: +/-50ppm	CT, RT		-99	-96	dBm	[2]
		MT, HT		-96	-95	dBm	[2]
6	ECO Std ranging frame • CFO: +/-50ppm	CT, RT		-96	-94	dBm	[2]
		MT, HT		-94	-92	dBm	[2]
7	ECO Min ranging frame • CFO: +/-70ppm • Rx oversampling: 1x	CT, RT	X	-94	-92	dBm	[2]
		MT, HT	19	-92	-90	dBm	[2]
8	IEEE ranging frame • CFO: +/-50ppm	CT, RT		-99	-97	dBm	[2]
		МТ, НТ	3	-97	-95	dBm	[2]

Table 17. Characteristics - Secure Ranging: AWGN Sensitivity CH5

Measurement of RX sensitivity level for

- AWGN
- no Payload
- STS
- @ 10% FER

Following characteristics are valid for conditions as follows (unless otherwise specified)

```
T_{amb} = -40 °C to 115 °C , VDD = 1.8 V to 3.6 V, f_{C} = 6489.6 MHz, crystal = 55.2 MHz
```

VDD = VBAT_IO, VDD_DIG, VDD_BUF, VDD_XTAL, GPIO pins in defined, non hi-Z, state

Nr.	Description	Conditions	Min	Тур	Мах	Unit	Note
1	HP ranging frame	CT, RT		-101	-99	dBm	[2]
		MT, HT		-99	-98	dBm	[2]
2	ECO Std ranging frame	CT, RT		-98	-96	dBm	[2]
		MT, HT		-96	-94	dBm	[2]
3	ECO Min ranging frame • Rx oversampling: 1x	CT, RT		-97	-94	dBm	[2]
		MT, HT		-95	-93	dBm	[2]
4	IEEE ranging frame	CT, RT		-100	-99	dBm	[2]
		MT, HT		-99	-97	dBm	[2]
5	HP ranging frame • CFO: +/-50ppm	CT, RT		-100	-97	dBm	[2]
		MT, HT		-98	-96	dBm	[2]
6	ECO Std ranging frame • CFO: +/-50ppm	CT, RT		-97	-95	dBm	[2]
		MT, HT		-96	-93	dBm	[2]

Ultra Wideband Transceiver with MAC support

 Table 17. Characteristics - Secure Ranging: AWGN Sensitivity CH5...continued

 Measurement of RX sensitivity level for

- AWGN
- no Payload
- *STS*
- @ 10% FER

Following characteristics are valid for conditions as follows (unless otherwise specified) $T_{amb} = -40$ °C to 115 °C, VDD = 1.8 V to 3.6 V, $f_C = 6489.6$ MHz, crystal = 55.2 MHz VDD = VBAT_IO, VDD_DIG, VDD_BUF, VDD_XTAL, GPIO pins in defined, non hi-Z, state

Nr.	Description	Conditions	Min	Тур 🔷	Max	Unit	Note
7	ECO Min ranging frame • CFO: +/-70ppm • Rx oversampling: 1x	CT, RT		-96	-93	dBm	[2]
		MT, HT		-94	-90	dBm	[2]
8	IEEE ranging frame • CFO: +/-50ppm	CT, RT		-100	-99	dBm	[2]
		MT, HT		-99	-97	dBm	[2]

10.3.2.3 Secure Ranging: First Path Dynamic Range

Table 18. Characteristics - Secure Ranging: First Path Dynamic Range

Measurement of RX sensitivity level for

- 2 Tap Channel (first path 12 ns earlier than main path)
- no Payload
- STS
- @ 10% first path FER
- main tap power = nominal First Path Sensitivity level + 45dB
- Security Level = 4

Following characteristics are valid for conditions as follows (unless otherwise specified)

 T_{amb} = -40 °C to 115 °C , VDD = 1.8 V to 3.6 V, f_{C} = 6489.6 MHz or 7987.2 MHz, crystal = 55.2 MHz

```
VDD = VBAT_IO, VDD_DIG, VDD_BUF, VDD_XTAL, GPIO pins in defined, non hi-Z, state
```

Nr.	Description	Conditions	Min	Тур	Max	Unit	Note
1	HP ranging frame	6	35	37		dB	[2]
2	ECO Std ranging frame	0	32	34		dB	[2]
3	ECO Min ranging frame • Rx oversampling: 1x	S	28	31		dB	[2]
4	IEEE ranging frame		29	32		dB	[2]
Ultra Wideband Transceiver with MAC support

10.3.2.4 Secure Ranging: First Path Sensitivity

 Table 19. Characteristics - Secure Ranging: First Path Sensitivity CH9

 Measurement of RX sensitivity level for

• 2 Tap Channel (first path 7 ns earlier than main path)

- no Payload
- *STS*
- @ 10% first path FER
- Main tap power = first tap power + 15dB

• Security Level = 4

Following characteristics are valid for conditions as follows (unless otherwise specified) $T_{amb} = -40$ °C to 115 °C, VDD = 1.8 V to 3.6 V, $f_C = 7987.2$ MHz, crystal = 55.2 MHz VDD = VBAT_IO, VDD_DIG, VDD_BUF, VDD_XTAL, GPIO pins in defined, non hi-Z, state

Nr.	Description	Conditions	Min	Тур	Max	Unit	Note
1	HP ranging frame	CT, RT		-110	-108	dBm	[2]
		MT, HT		-108	-107	dBm	[2]
2	ECO Std ranging frame	CT, RT	0	-107	-105	dBm	[2]
		MT, HT		-105	-104	dBm	[2]
3	ECO Min ranging frame	CT, RT	1	-102	-100	dBm	[2]
	Rx oversampling: 1x	МТ, НТ	0	-100	-99	dBm	[2]
4	IEEE ranging frame	CT, RT)	-107	-105	dBm	[2]
	N R	MT, HT		-105	-104	dBm	[2]

 Table 20. Characteristics - Secure Ranging: First Path Sensitivity CH5

Measurement of RX sensitivity level for

- 2 Tap Channel (first path 7 ns earlier than main path)
- no Payload
- STS
- @ 10% first path FER
- Main tap power = first tap power + 15dB
- Security Level = 4

Following characteristics are valid for conditions as follows (unless otherwise specified)

 T_{amb} = -40 °C to 115 °C , VDD = 1.8 V to 3.6 V, $f_{\rm C}$ = 6489.6 MHz MHz, crystal = 55.2 MHz

Nr.	Description	Conditions	Min	Тур	Max	Unit	Note
1	HP ranging frame	CT, RT		-111	-109	dBm	[2]
		MT, HT		-110	-108	dBm	[2]
2	ECO Std ranging frame	CT, RT		-108	-106	dBm	[2]
		MT, HT		-107	-105	dBm	[2]
3	ECO Min ranging frame • Rx oversampling: 1x	CT, RT		-104	-101	dBm	[2]
		MT, HT		-102	-100	dBm	[2]
4	IEEE ranging frame	CT, RT		-109	-106	dBm	[2]
		MT, HT		-107	-105	dBm	[2]

Ultra Wideband Transceiver with MAC support

10.3.2.5 Co-Channel Rejection

Table 21. Characteristics - RX - Co-Channel Rejection, NBIC disabled Measurement of Interferer power / Wanted power for

• AWGN

• @ 10% FER

Following characteristics are valid for conditions as follows (unless otherwise specified) $T_{amb} = -40$ °C to 115 °C, VDD = 1.8 V to 3.6 V, $f_C = 7987.2$ MHz, crystal = 55.2 MHz VDD = VBAT_IO, VDD_DIG, VDD_BUF, VDD_XTAL, GPIO pins in defined, non hi-Z, state

Nr.	Description	Conditions	Min	Тур	Max	Unit	Note
1	HP 7.8Mbps data frame • NBIC: OFF • Wanted: -88 dBm • Interferer: J.CW @ f _C - 200 MHz		10	14		dB	[2]
2	IEEE 6.8Mbps data frame • NBIC: OFF • Wanted: -89 dBm • Interferer: J.CW @ f _C + 100 MHz	A A	10	13		dB	[2]
3	HP 7.8Mbps data frame • NBIC: OFF • Wanted: -88 dBm • Interferer: J.CW @ f _C + 100 MHz		10	12		dB	[2]

Table 22. Characteristics - RX - Co-Channel Rejection, NBIC enabled

Measurement of Interferer power / Wanted power for

- AWGN
- @ 10% FER

Following characteristics are valid for conditions as follows (unless otherwise specified)

 T_{amb} = -40 °C to 115 °C, VDD = 1.8 V to 3.6 V, f_{C} = 7987.2 MHz, crystal = 55.2 MHz

Nr.	Description	Conditions	Min	Тур	Max	Unit	Note
1	HP 7.8Mbps data frame • NBIC: ON, linear phase filter, 12MHz BW • Wanted: -88 dBm • Interferer: J.CW @ f _C - 200 MHz		35	42		dB	[2]
2	IEEE 6.8Mbps data frame • NBIC: ON, linear phase filter, 12MHz BW • Wanted: -89 dBm • Interferer: J.CW @ f _C + 100 MHz		40	46		dB	[2]
3	HP 7.8Mbps data frame • NBIC: ON, linear phase filter, 12MHz BW • Wanted: -88 dBm • Interferer: J.CW @ f _C + 100 MHz		40	46		dB	[2]

Ultra Wideband Transceiver with MAC support

10.3.2.6 Out-of-Band Blocker Rejection

 Table 23. Characteristics - RX - Out-of-Band Blocker Rejection, NBIC disabled, CH9

 Measurement of Interferer power / Wanted power for

• AWGN

• @ 10% FER

Following characteristics are valid for conditions as follows (unless otherwise specified) $T_{amb} = -40$ °C to 115 °C, VDD = 1.8 V to 3.6 V, $f_C = 7987.2$ MHz, crystal = 55.2 MHz VDD = VBAT_IO, VDD_DIG, VDD_BUF, VDD_XTAL, GPIO pins in defined, non hi-Z, state

Nr.	Description	Conditions	Min	Тур 📐	Max	Unit	Note
1	HP 7.8Mbps data frame • NBIC: OFF • Wanted: -88 dBm • Interferer: J.WIFI @ 5.865 GHz		65	68		dB	[2]
2	HP 7.8Mbps data frame • NBIC: OFF • Wanted: -88 dBm • Interferer: J.LTE @ 2.3 GHz	A D	76	81		dB	[2]
3	IEEE 6.8Mbps data frame • NBIC: OFF • Wanted: -89 dBm • Interferer: J.LTE @ 2.6 GHz		67	70		dB	[2]
4	HP 7.8Mbps data frame • NBIC: OFF • Wanted: -88 dBm • Interferer: J.LTE @ 2.6 GHz	5.23	65	67		dB	[2]

 Table 24. Characteristics - RX - Out-of-Band Blocker Rejection, NBIC disabled, CH5

 Measurement of Interferer power / Wanted power for

• AWGN

• @ 10% FER

Following characteristics are valid for conditions as follows (unless otherwise specified) $T_{amb} = -40$ °C to 115 °C, VDD = 1.8 V to 3.6 V, $f_C = 6489.6$ MHz, crystal = 55.2 MHz

VDD = VBAT_IO, VDD_DIG, VDD_BUF, VDD_XTAL, GPIO pins in defined, non hi-Z, state

Nr.	Description	Conditions	Min	Тур	Max	Unit	Note
1	HP 7.8Mbps data frame • NBIC: OFF • Wanted: -88dBm • Interferer: WIFI @ 5.865GHz		67	70		dB	[2]
2	HP 7.8Mbps data frame • NBIC: OFF • Wanted: -88dBm • Interferer: LTE @ 2.3GHz		76	81		dB	[2]
3	IEEE 6.8Mbps data frame • NBIC: OFF • Wanted: -89dBm • Interferer: LTE @ 2.6GHz		78	80		dB	[2]

© 2023 NXP B.V. All rights reserved

Ultra Wideband Transceiver with MAC support

 Table 24. Characteristics - RX - Out-of-Band Blocker Rejection, NBIC disabled, CH5...continued

 Measurement of Interferer power / Wanted power for

- AWGN
- @ 10% FER

Following characteristics are valid for conditions as follows (unless otherwise specified) $T_{amb} = -40$ °C to 115 °C, VDD = 1.8 V to 3.6 V, $f_C = 6489.6$ MHz, crystal = 55.2 MHz VDD = VBAT_IO, VDD_DIG, VDD_BUF, VDD_XTAL, GPIO pins in defined, non hi-Z, state

Nr.	Description	Conditions	Min	Тур	Max	Unit	Note
4	HP 7.8Mbps data frame NBIC: OFF 		77	80	5	dB	[2]
	Wanted: -89dBm						
	Interferer: LTE @ 2.6GHz FER: 10%						

Table 25. Characteristics - RX - Out-of-Band Blocker Rejection, NBIC enabled, CH9

Measurement of Interferer power / Wanted power for

- AWGN
- @ 10% FER

Following characteristics are valid for conditions as follows (unless otherwise specified)

 T_{amb} = -40 °C to 115 °C, VDD = 1.8 V to 3.6 V, f_{C} = 7987.2 MHz, crystal = 55.2 MHz

VDD = VBAT_IO, VDD_DIG, VDD_BUF, VDD_XTAL, GPIO pins in defined, non hi-Z, state

Nr.	Description	Conditions	Min	Тур	Мах	Unit	Note
1	IEEE 6.8Mbps data frame • NBIC: ON, linear phase filter, 12MHz BW • Wanted: -89dBm • Interferer: J.LTE @ 2.6GHz FER: 10%	92.a.	72	76		dB	[2]
2	HP 7.8Mbps data frame • NBIC: ON, linear phase filter, 12MHz BW • Wanted: -88dBm • Interferer: J.LTE @ 2.6GHz FER: 10%	67-0	70	75		dB	[2]

Table 26. Characteristics - RX - Out-of-Band Blocker Rejection, NBIC enabled, CH5 Measurement of Interferer power / Wanted power for

• AWGN

• @ 10% FER

Following characteristics are valid for conditions as follows (unless otherwise specified) $T_{amb} = -40$ °C to 115 °C, VDD = 1.8 V to 3.6 V, $f_{C} = 6489.6$ MHz, crystal = 55.2 MHz

Nr.	Description	Conditions	Min	Тур	Max	Unit	Note
1	IEEE 6.8Mbps data frame NBIC: ON, minimum phase filter, 12MHz BW Wanted: -89dBm Interferer: LTE @ 2.6GHz FER: 10%		78	80		dB	[2]
2	HP 7.8Mbps data frame NBIC: ON, minimum phase filter, 12MHz BW Wanted: -88dBm Interferer: LTE @ 2.6GHz FER: 10%		77	80		dB	[2]

Ultra Wideband Transceiver with MAC support

10.3.2.7 Spurious emissions

Table 27. Characteristics - RX - Spurious emissions, CH9

Measurement of Spurious emissions for

• HP ranging frame

Following characteristics are valid for conditions as follows (unless otherwise specified) $T_{amb} = -40$ °C to 115 °C , VDD = 1.8 V to 3.6 V, $f_{C} = 7987.2$ MHz, crystal = 55.2 MHz VDD = VDAT 10 VDD DIG VDD DIG VDD XTAL COLORing in defined on the T state

VDD = VBAT_IO, VDD_DIG, VDD_BUF, VDD_XTAL, GPIO pins in defined, non hi-Z, state

Nr.	Description	Conditions	Min	Тур	Max	Unit	Note
1	HP ranging frame, RX in-band: 6GHz to 8.5GHz			-82	-71	dBm/1MHz	[2]
2	HP ranging frame, RX spurious: 170MHz to 222MHz			-105	-104	dBm/1MHz	[2]
3	HP ranging frame, RX spurious: 470MHz to 710MHz			-105	-97	dBm/1MHz	[2]
4	HP ranging frame, RX spurious: 710MHz to 1.6GHz			-102	-87	dBm/1MHz	[2]
5	HP ranging frame, RX spurious: 1.6GHz to 2.7GHz			-88 🔵	-80	dBm/1MHz	[2]
6	HP ranging frame, RX spurious: 2.7GHz to 6GHz	2		-81	-76	dBm/1MHz	[2]
7	HP ranging frame, RX spurious: 6GHz to 7.25GHz			-98	-78	dBm/1MHz	[2]
8	HP ranging frame, RX spurious: 8.5GHz to 10.25GHz		/	-93	-90	dBm/1MHz	[2]
9	HP ranging frame, RX spurious: 10.6GHz to 16GHz	Y	0	-96	-90	dBm/1MHz	[2]

Table 28. Characteristics - RX - Spurious emissions, CH5

Measurement of Spurious emissions for

HP ranging frame

Following characteristics are valid for conditions as follows (unless otherwise specified) $T_{amb} = -40$ °C to 115 °C, VDD = 1.8 V to 3.6 V, $f_C = 6489.6$ MHz, crystal = 55.2 MHz VDD = VBAT_IO, VDD_DIG, VDD_BUF, VDD_XTAL, GPIO pins in defined, non hi-Z, state

Nr.	Description	Conditions	Min	Тур	Max	Unit	Note
1	HP ranging frame, RX in-band: 6GHz to 8.5GHz	6		-87	-80	dBm/1MHz	[2]
2	HP ranging frame, RX spurious: 170MHz to 222MHz	0		-105	-104	dBm/1MHz	[2]
3	HP ranging frame, RX spurious: 470MHz to 710MHz	5		-105	-99	dBm/1MHz	[2]
4	HP ranging frame, RX spurious: 710MHz to 1.6GHz			-102	-95	dBm/1MHz	[2]
5	HP ranging frame, RX spurious: 1.6GHz to 2.7GHz			-87	-79	dBm/1MHz	[2]
6	HP ranging frame, RX spurious: 2.7GHz to 6GHz	/		-81	-76	dBm/1MHz	[2]
7	HP ranging frame, RX spurious: 6GHz to 7.25GHz			-84	-78	dBm/1MHz	[2]
8	HP ranging frame, RX spurious: 8.5GHz to 10.25GHz			-93	-90	dBm/1MHz	[2]
9	HP ranging frame, RX spurious: 10.6GHz to 16GHz			-96	-91	dBm/1MHz	[2]

Ultra Wideband Transceiver with MAC support

10.3.2.8 Secure Ranging: ToA accuracy

Table 29. Characteristics - RX - Secure Ranging: ToA accuracy

Measurement of ToA accuracy for

- AWGN
- 95% of results within limit

Following characteristics are valid for conditions as follows (unless otherwise specified) $T_{amb} = -40$ °C to 115 °C , VDD = 1.8 V to 3.6 V, $f_C = 6489.6$ MHz and 7987.2 MHz, ext. clock = 55.2 MHz

VDD = VBAT_IO, VDD_DIG, VDD_BUF, VDD_XTAL, GPIO pins in defined, non hi-Z, state

Nr.	Description	Conditions	Min	Тур 📐	Max	Unit	Note
1	HP ranging frame			0.28	0.35	ns	[5]
2	ECO Std ranging frame			0.23	0.35	ns	[5]
3	ECO Min ranging frame • Rx oversampling: 1x	4		0.23	0.35	ns	[5]
4	IEEE ranging frame	À		0.23	0.3	ns	[5]

10.3.2.9 Signal Power Measurement

Table 30. Characteristics - RX - Signal Power Measurement

Following characteristics are valid for conditions as follows (unless otherwise specified)

 $T_{amb} = -40$ °C to 115 °C, VDD = 1.8 V to 3.6 V, $f_C = 6489.6$ MHz and 7987.2 MHz, crystal = 55.2 MHz

VDD = VBAT_IO, VDD_DIG, VDD_BUF, VDD_XTAL, GPIO pins in defined, non hi-Z, state

Nr.	Description	Conditions	Min	Тур	Мах	Unit	Note
1	Signal Power Measurement accuracy - from -93dBm to -45dBm - HP ranging frame	CT, RT	-3		4		[2]
		MT, HT	-6		6		[2]
2	Signal Power Measurement accuracy - from -45dBm to	CT, RT	-4		7		[2]
	-20dBm - HP ranging frame	MT, HT	-7		7		[2]

10.3.3 TX

10.3.3.1 10dB Bandwidth

Table 31. Characteristics - TX - 10dB Bandwidth

Following characteristics are valid for conditions as follows (unless otherwise specified) T_{amb} = -40 °C to 115 °C , VDD = 1.8 V to 3.6 V, f_C = 6489.6 MHz or 7987.2 MHz, crystal = 55.2 MHz VDD = VBAT_IO, VDD_DIG, VDD_BUF, VDD_XTAL, GPIO pins in defined, non hi-Z, state

Nr.	Description	Conditions	Min	Тур	Max	Unit	Note
1	HP ranging frame		580	610		MHz	[2]
2	IEEE ranging frame		580	610		MHz	[2]

Ultra Wideband Transceiver with MAC support

10.3.3.2 Power Control

Table 32. Characteristics - TX - Power Control

Following characteristics are valid for conditions as follows (unless otherwise specified) $T_{amb} = -40$ °C to 115 °C, VDD = 1.8 V to 3.6 V, $f_C = 6489.6$ MHz or 7987.2 MHz, crystal = 55.2 MHz VDD = VBAT_IO, VDD_DIG, VDD_BUF, VDD_XTAL, GPIO pins in defined, non hi-Z, state

Nr.	Description	Conditions	Min	Тур	Max	Unit	Note
1	Coarse analog power step size from -12dBm to +12dBm • CW signal			1	2	dB	[2]
2	Fine digital power step size size from 0dB to 0.75dB CW signal			0.25	2	dB	[6]
3	TX power variation over temperature -40°C -> 105°C • IEEE ranging frame • TX power: 12dBm	A		0.5	2	dB	[2]
4	TX power variation over supply Voltage 2.4V - 3.6VIEEE ranging frameTX power: 12dBm	RY	92	0.2	2	dB	[2]
5	TX power variation over temperature -40°C -> 115°C • IEEE ranging frame • TX power: 12dBm	Y a	a-1	0.5	3	dB	[2]
6	TX power variation over temperature -40°C -> 105°C • HP ranging frame • TX power: 12dBm	DC dac		0.5	2	dB	[2]
7	TX power variation over supply Voltage 2.4V - 3.6VHP ranging frameTX power: 12dBm	5		0.2	2	dB	[2]
8	TX power variation over temperature -40°C -> 115°C • HP ranging frame • TX power: 12dBm	St.		0.5	3	dB	[2]

10.3.3.3 Average Power

Table 33. Characteristics - TX - Average Power

Conducted average power measurement. PA configured for +12dBm output power.

Following characteristics are valid for conditions as follows (unless otherwise specified)

 T_{amb} = -40 °C to 115 °C , VDD = 1.8 V to 3.6 V, $f_{\rm C}$ = 6489.6 MHz or 7987.2 MHz, crystal = 55.2 MHz

Nr.	Description	Conditions	Min	Тур	Max	Unit	Note
1	IEEE ranging frame, max PSD value		-39	-36		dBm/1MHz	[2]
2	IEEE ranging frame, integrated PSD over 500 MHz BW		-14	-11		dBm	[2]
3	ECO Min ranging frame, max PSD value		-41	-38		dBm/1MHz	[2]
4	ECO Min ranging frame, integrated PSD over 500 MHz BW		-16	-13		dBm	[2]
5	IEEE 6.8Mbps data frame, max PSD value		-40	-37		dBm/1MHz	[2]
6	IEEE 6.8Mbps data frame, integrated PSD over 500 MHz BW		-15	-12		dBm	[2]

Ultra Wideband Transceiver with MAC support

Table 33. Characteristics - TX - Average Power...continued

Conducted average power measurement. PA configured for +12dBm output power.

Following characteristics are valid for conditions as follows (unless otherwise specified)

 T_{amb} = -40 °C to 115 °C , VDD = 1.8 V to 3.6 V, f_C = 6489.6 MHz or 7987.2 MHz, crystal = 55.2 MHz

VDD = VBAT_IO, VDD_DIG, VDD_BUF, VDD_XTAL, GPIO pins in defined, non hi-Z, state

Nr.	Description	Conditions	Min	Тур	Max	Unit	Note
7	HP ranging frame, max PSD value		-38	-34		dBm/1MHz	[2]
8	HP ranging frame, integrated PSD over 500 MHz BW		-12	-9	0	dBm	[2]
9	HP 7.8Mbps data frame, max PSD value		-40	-37		dBm/1MHz	[2]
10	HP 7.8Mbps data frame, integrated PSD over 500 MHz BW		-15	-12	2	dBm	[2]

10.3.3.4 Peak Power

Table 34. Characteristics - TX - Peak Power

Conducted peak power measurement with 50MHz RBW. PA configured for +12dBm output power. Following characteristics are valid for conditions as follows (unless otherwise specified) $T_{amb} = -40$ °C to 115 °C, VDD = 1.8 V to 3.6 V, $f_C = 6489.6$ MHz or 7987.2 MHz, crystal = 55.2 MHz

VDD = VBAT_IO, VDD_DIG, VDD_BUF, VDD_XTAL, GPIO pins in defined, non hi-Z, state

Nr.	Description	Conditions	Min	Тур	Мах	Unit	Note
1	IEEE ranging frame	C .	-8	-4		dBm/50MHz	[2]
2	ECO Min ranging frame	20	-7	-3.5		dBm/50MHz	[2]
3	IEEE 6.8Mbps data frame		2	5		dBm/50MHz	[2]
4	HP ranging frame		-7	-3		dBm/50MHz	[2]
5	HP 7.8Mbps data frame	5 6	-3	0.5		dBm/50MHz	[2]

10.3.3.5 Spurious Emissions Average Power

Table 35. Characteristics - TX - Spurious Emissions Mean Power Spectral Density CH9

Conducted Mean Power Spectral Density measurement with 1MHz RBW (i.e. without external filter).

Tx power was reduced just enough, such that the regulatory Mean Power Spectral Density limit of -41.3 dBm/1MHz, as well as the Peak Power limit of 0 dBm/50MHz were fulfilled. Note, that in practice the Tx power may need to be reduced further, to account for antenna gain. There is typically a non-linear relationship between the level of a Tx spur and the Tx power (e.g. a Tx power reduction of 2dB could result in a Tx spur level reduction of more than 2dB). An external filter can also reduce the TX spurs.

Following characteristics are valid for conditions as follows (unless otherwise specified)

 T_{amb} = -40 °C to 115 °C , VDD = 3.3 V, f_C = 7987.2 MHz, crystal = 55.2 MHz

Nr.	Description	Conditions	Min	Тур	Max	Unit	Note
1	ECO Min ranging frame: 50MHz - 500MHz			-88	-85	dBm/1MHz	[4]
2	ECO Min ranging frame: 500MHz - 5640MHz			-100 ^[1]		dBm/100kHz	[4]
3	ECO Min ranging frame: 5640MHz - 6340MHz			-82	-78	dBm/1MHz	[4]
4	ECO Min ranging frame: 6340MHz - 7100MHz			-85	-80	dBm/1MHz	[4]
5	ECO Min ranging frame: 7100MHz - 7287MHz			-84	-75	dBm/1MHz	[4]
6	ECO Min ranging frame: 8500MHz - 9000MHz			-81	-74	dBm/1MHz	[4]

Ultra Wideband Transceiver with MAC support

Table 35. Characteristics - TX - Spurious Emissions Mean Power Spectral Density CH9...continued

Conducted Mean Power Spectral Density measurement with 1MHz RBW (i.e. without external filter).

Tx power was reduced just enough, such that the regulatory Mean Power Spectral Density limit of -41.3 dBm/1MHz, as well as the Peak Power limit of 0 dBm/50MHz were fulfilled. Note, that in practice the Tx power may need to be reduced further, to account for antenna gain. There is typically a non-linear relationship between the level of a Tx spur and the Tx power (e.g. a Tx power reduction of 2dB could result in a Tx spur level reduction of more than 2dB). An external filter can also reduce the TX spurs.

Following characteristics are valid for conditions as follows (unless otherwise specified)

 $T_{amb} = -40 \text{ °C to } 115 \text{ °C}$, VDD = 3.3 V, $f_{C} = 7987.2 \text{ MHz}$, crystal = 55.2 MHz

VDD = VBAT_IO, VDD_DIG, VDD_BUF, VDD_XTAL, GPIO pins in defined, non hi-Z, state

Nr.	Description	Conditions	Min	Тур	Max	Unit	Note
7	ECO Min ranging frame: 9000MHz - 9634MHz			-87	-81	dBm/1MHz	[4]
8	ECO Min ranging frame: 9634MHz - 10334MHz			-81	-77	dBm/1MHz	[4]
9	ECO Min ranging frame: 10334MHz - 10600MHz			-88	-86	dBm/1MHz	[4]
10	ECO Min ranging frame: 10600MHz - 15474MHz			-100 ^[1]		dBm/100kHz	[4]
11	ECO Min ranging frame: 15474MHz - 16474MHz			-73	-67	dBm/1MHz	[4]
12	ECO Min ranging frame: 16474MHz - 26000MHz			-95 ^[1]		dBm/100kHz	[4]
13	IEEE 6.8Mbps data frame: 50MHz - 500MHz	(-89	-87	dBm/1MHz	[4]
14	IEEE 6.8Mbps data frame: 500MHz - 5640MHz			-99 ^[1]		dBm/100kHz	[4]
15	IEEE 6.8Mbps data frame: 5640MHz - 6340MHz		0	-83	-79	dBm/1MHz	[4]
16	IEEE 6.8Mbps data frame: 6340MHz - 7100MHz	0	T	-85	-80	dBm/1MHz	[4]
17	IEEE 6.8Mbps data frame: 7100MHz - 7287MHz	5	5	-84	-80	dBm/1MHz	[4]
18	IEEE 6.8Mbps data frame: 8500MHz - 9000MHz	$\Gamma \sim$		-83	-77	dBm/1MHz	[4]
19	IEEE 6.8Mbps data frame: 9000MHz - 9634MHz	9		-88	-84	dBm/1MHz	[4]
20	IEEE 6.8Mbps data frame: 9634MHz - 10334MHz	9		-82	-80	dBm/1MHz	[4]
21	IEEE 6.8Mbps data frame: 10334MHz - 10600MHz			-88	-87	dBm/1MHz	[4]
22	IEEE 6.8Mbps data frame: 10600MHz - 15474MHz	6		-100 ^[1]		dBm/100kHz	[4]
23	IEEE 6.8Mbps data frame: 15474MHz - 16474MHz			-78	-73	dBm/1MHz	[4]
24	IEEE 6.8Mbps data frame: 16474MHz - 26000MHz	b'		-95 ^[1]		dBm/100kHz	[4]

[1] noise floor of spectrum analyzer

Table 36. Characteristics - TX - Spurious Emissions Mean Power Spectral Density CH5

Conducted Mean Power Spectral Density measurement with 1 MHz RBW (i.e. without external filter).

Tx power was reduced just enough, such that the regulatory Mean Power Spectral Density limit of -41.3 dBm/1MHz, as well as the Peak Power limit of 0 dBm/50MHz were fulfilled. Note, that in practice the Tx power may need to be reduced further, to account for antenna gain. There is typically a non-linear relationship between the level of a Tx spur and the Tx power (e.g. a Tx power reduction of 2dB could result in a Tx spur level reduction of more than 2dB). An external filter can also reduce the TX spurs.

Following characteristics are valid for conditions as follows (unless otherwise specified)

 $T_{amb} = -40 \text{ °C to } 115 \text{ °C}$, VDD = 3.3 V, $f_{C} = 6489.6 \text{ MHz}$, crystal = 55.2 MHz

VDD = VBAT_IO, VDD_DIG, VDD_BUF, VDD_XTAL, GPIO pins in defined, non hi-Z, state

Nr.	Description	Conditions	Min	Тур	Max	Unit	Note
1	ECO Min ranging frame: 50MHz - 500MHz			-88	-82	dBm/1MHz	[4]
NCJ29D5D All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rice						ahts reserved.	

© 2023 NXP B.V. All rights reserved All information provided in this document is subject to legal disclaimers

Ultra Wideband Transceiver with MAC support

 Table 36. Characteristics - TX - Spurious Emissions Mean Power Spectral Density CH5...continued

Conducted Mean Power Spectral Density measurement with 1 MHz RBW (i.e. without external filter).

Tx power was reduced just enough, such that the regulatory Mean Power Spectral Density limit of -41.3 dBm/1MHz, as well as the Peak Power limit of 0 dBm/50MHz were fulfilled. Note, that in practice the Tx power may need to be reduced further, to account for antenna gain. There is typically a non-linear relationship between the level of a Tx spur and the Tx power (e.g. a Tx power reduction of 2dB could result in a Tx spur level reduction of more than 2dB). An external filter can also reduce the TX spurs.

Following characteristics are valid for conditions as follows (unless otherwise specified)

 T_{amb} = -40 °C to 115 °C , VDD = 3.3 V, f_C = 6489.6 MHz, crystal = 55.2 MHz

VDD = VBAT_IO, VDD_DIG, VDD_BUF, VDD_XTAL, GPIO pins in defined, non hi-Z, state

Nr.	Description	Conditions	Min	Тур	Max	Unit	Note
2	ECO Min ranging frame: 500MHz - 4142MHz			-97 ^[1]	2	dBm/100kHz	[4]
3	ECO Min ranging frame: 4142.80 - 4842MHz			-86	-84	dBm/1MHz	[4]
4	ECO Min ranging frame: 4842MHz - 5789MHz	,		-86	-79	dBm/1MHz	[4]
5	ECO Min ranging frame: 5789MHz - 6000MHz			-80	-70	dBm/1MHz	[4]
6	ECO Min ranging frame: 7189MHz - 8163MHz			-86	-75	dBm/1MHz	[4]
7	ECO Min ranging frame: 8163MHz - 8836MHz			-81	-79	dBm/1MHz	[4]
8	ECO Min ranging frame: 8836MHz - 12479MHZ	Y		-96 ^[1]		dBm/100kHz	[4]
9	ECO Min ranging frame: 12479MHz - 13479MHz		6	-69	-62	dBm/1MHz	[4]
10	ECO Min ranging frame: 13479MHz - 25000MHz		0	-90 ^[1]		dBm/100kHz	[4]
11	IEEE 6.8Mbps data frame: 50MHz - 500MHz		3	-89	-88	dBm/1MHz	[4]
12	IEEE 6.8Mbps data frame: 500MHz - 4142MHz	4	D	-97 ^[1]		dBm/100kHz	[4]
13	IEEE 6.8Mbps data frame: 4142.80 - 4842MHz			-87	-84	dBm/1MHz	[4]
14	IEEE 6.8Mbps data frame: 4842MHz - 5789MHz	0		-87	-83	dBm/1MHz	[4]
15	IEEE 6.8Mbps data frame: 5789MHz - 6000MHz	9		-84	-72	dBm/1MHz	[4]
16	IEEE 6.8Mbps data frame: 7189MHz - 8163MHz			-88	-76	dBm/1MHz	[4]
17	IEEE 6.8Mbps data frame: 8163MHz - 8836MHz			-84	-76	dBm/1MHz	[4]
18	IEEE 6.8Mbps data frame: 8836MHz - 12479MHZ			-97 ^[1]		dBm/100kHz	[4]
19	IEEE 6.8Mbps data frame: 12479MHz - 13479MHz			-75	-62	dBm/1MHz	[4]
20	IEEE 6.8Mbps data frame: 13479MHz - 25000MHz			-95 ^[1]		dBm/100kHz	[4]

[1] noise floor of spectrum analyzer

Ultra Wideband Transceiver with MAC support

10.3.3.6 Spurious Emissions Peak Power

Table 37. Characteristics - TX - Spurious Emissions Peak Power CH9

Conducted peak power measurement with 1 MHz RBW (i.e. without external filter).

Tx power was reduced just enough, such that the regulatory Mean Power Spectral Density limit of -41.3 dBm/1MHz, as well as the Peak Power limit of 0 dBm/50MHz were fulfilled. Note, that in practice the Tx power may need to be reduced further, to account for antenna gain. There is typically a non-linear relationship between the level of a Tx spur and the Tx power (e.g. a Tx power reduction of 2dB could result in a Tx spur level reduction of more than 2dB). An external filter can also reduce the TX spurs.

Following characteristics are valid for conditions as follows (unless otherwise specified)

 T_{amb} = -40 °C to 115 °C , VDD = 3.3 V, f_{C} = 7987.2 MHz, crystal = 55.2 MHz

VDD = VBAT_IO, VDD_DIG, VDD_BUF, VDD_XTAL, GPIO pins in defined, non hi-Z, state

Nr.	Description	Conditions	Min	Тур	Max	Unit	Note
1	ECO Min ranging frame: 50MHz - 500MHz			-75	-68	dBm/1MHz	[4]
2	ECO Min ranging frame: 500MHz - 5640MHz	A		-89 ^[1]	P	dBm/100kHz	[4]
3	ECO Min ranging frame: 5640MHz - 6340MHz			-60	-55	dBm/1MHz	[4]
4	ECO Min ranging frame: 6340MHz - 7100MHz	K		-67	-58	dBm/1MHz	[4]
5	ECO Min ranging frame: 7100MHz - 7287MHz	-/		-64	-54	dBm/1MHz	[4]
6	ECO Min ranging frame: 8500MHz - 9000MHz			-60	-52	dBm/1MHz	[4]
7	ECO Min ranging frame: 9000MHz - 9634MHz		G	-68	-60	dBm/100kHz	[4]
8	ECO Min ranging frame: 9634MHz - 10250MHz		2	-59	-55	dBm/1MHz	[4]
9	ECO Min ranging frame: 10250MHz - 10600MHz	2		-70	-65	dBm/1MHz	[4]
10	ECO Min ranging frame: 10600MHz - 15474MHz			-89 ^[1]		dBm/100kHz	[4]
11	ECO Min ranging frame: 15474MHz - 16474MHz			-59	-53	dBm/1MHz	[4]
12	ECO Min ranging frame: 16474MHz - 26000MHz			-84 ^[1]		dBm/100kHz	[4]
13	IEEE 6.8Mbps data frame: 50MHz - 500MHz			-80	-78	dBm/1MHz	[4]
14	IEEE 6.8Mbps data frame: 500MHz - 5640MHz			-89 ^[1]		dBm/100kHz	[4]
15	IEEE 6.8Mbps data frame: 5640MHz - 6340MHz	0		-63	-59	dBm/1MHz	[4]
16	IEEE 6.8Mbps data frame: 6340MHz - 7100MHz	2		-71	-64	dBm/100kHz	[4]
17	IEEE 6.8Mbps data frame: 7100MHz - 7287MHz			-67	-62	dBm/100kHz	[4]
18	IEEE 6.8Mbps data frame: 8500MHz - 9000MHz			-66	-61	dBm/1MHz	[4]
19	IEEE 6.8Mbps data frame: 9000MHz - 9634MHz			-73	-68	dBm/100kHz	[4]
20	IEEE 6.8Mbps data frame: 9634MHz - 10250MHz			-63	-60	dBm/1MHz	[4]
21	IEEE 6.8Mbps data frame: 10250MHz - 10600MHz			-74	-70	dBm/1MHz	[4]
22	IEEE 6.8Mbps data frame: 10600MHz - 15474MHz			-89 ^[1]		dBm/100kHz	[4]
23	IEEE 6.8Mbps data frame: 15474MHz - 16474MHz			-64	-59	dBm/1MHz	[4]
24	IEEE 6.8Mbps data frame: 16474MHz - 26000MHz			-83 ^[1]		dBm/100kHz	[4]

[1] noise floor of spectrum analyzer

Ultra Wideband Transceiver with MAC support

10.3.4 Current and Energy consumption

Table 38. Power State default configuration

The following power state configurations are valid for the characteristics in this section, unless otherwise specified.

	ACTIVE STATE	DPD STATE	HPD STATE
CurrLim	ON	CHARGING/CHARGED	CHARGING/CHARGED
VddCpu	ON	OFF	OFF
VddCpuRet	ON	OFF	OFF
VddBb	OFF	OFF	OFF
VddBbRet	OFF	OFF	OFF
AO CIk	1.2 MHz FRO	1.2 MHz FRO	OFF
CPU Clk	38.4 MHz FRO	OFF	OFF
BB Clk	OFF	OFF	OFF
Snapshot Clk	OFF	OFF	OFF
XTAL_OUT	OFF	OFF	OFF
WUP Timer	ON	ON	OFF
Port Logic	ON	ON	OFF

10.3.4.1 Current

Table 39. Characteristics - Current consumption - Power States

Following characteristics are valid for conditions as follows (unless otherwise specified)

 T_{amb} = -40 °C to 115 °C , VDD = 1.8 V to 3.6 V, $f_{\rm C}$ = 6489.6 MHz or 7987.2 MHz, crystal = 55.2 MHz

Nr.	Description	Conditions	Min	Тур	Мах	Unit	Note
1	ACTIVE STATE, CPU running	CT, LT, RT		5.1	5.5	mA	[3]
	VddBbRet: ON	кт		5.6	6.4	mA	[3]
		ХТ		6.3	7.6	mA	[3]
		MT, HT		8.1	11	mA	[3]
2	ACTIVE STATE, WFI instruction	CT, LT, RT		4	4.3	mA	[3]
		кт		4.2	4.6	mA	[3]
		ХТ		4.5	5.1	mA	[3]
	5 7 7 P	MT, HT		5.3	6.8	mA [3] mA [3]	[3]
3	ACTIVE STATE between ranging frames, SysPli	CT, LT, RT		2.07	2.3	mA	[3]
	disabled, WFI instruction CPU Subsystem Sleep	кт		2.62	3.3	mA	[3]
	UART/LIN block clock gated	ХТ		3.3	4.5	mA	[3]
	 CPU Clk: XO divided by 8 VddBbRet: ON Snapshot Clk: XO 	MT, HT		5.2	7.8	mA	[3]

Ultra Wideband Transceiver with MAC support

 Table 39. Characteristics - Current consumption - Power States...continued

Following characteristics are valid for conditions as follows (unless otherwise specified)

 T_{amb} = -40 °C to 115 °C , VDD = 1.8 V to 3.6 V, f_{C} = 6489.6 MHz or 7987.2 MHz, crystal = 55.2 MHz

VDD = VBAT_IO, VDD_DIG, VDD_BUF, VDD_XTAL, GPIO pins in defined, non hi-Z, state

Nr.	Description	Conditions	Min	Тур	Max	Unit	Note
4	ACTIVE STATE between ranging frames, SysPII	CT, LT, RT		22.5	23.5	mA	[3]
	enabled • VddBbRet: ON	КТ		23.5	26	mA	[3]
	CPU Clk: XO	ХТ		25	29	mA	[3]
	Snapshot Clk: SysPll	MT, HT		29.8	37	mA	[3]
5	DPD STATE AO CIk: 32kHz FRO	CT, LT, RT		2.2	2.7	uA	[3]
	• phscaAppHal_EnterPowerMode command (see [13])	КТ		4	5.5	uA	[3]
		ХТ		8	11	uA	[3]
	A	MT, HT		24.5	33	uA	[3]
6	DPD STATE with CPU-RAM retention	CT, LT, RT		556	650	uA	[3]
	VddCpuRet: ON	КТ		588	680	uA	[3]
		ХТ		628	740	uA	[3]
		MT, HT	n'	760	940	uA	[3]
7	DPD STATE with CPU- and BB-RAM retention	CT, LT, RT	1	650	850	uA	[3]
	VddCpuRet: ON	кт		965	1400	uA	[3]
		ХТ		1350	2100	uA	[3]
		MT, HT		2500	4100	uA	[3]
8	DPD STATE between ranging frames	CT, LT, RT		1010	1200	uA	[3]
	VddCpuRet: ON	кт		1340	1800	uA	[3]
	Snapshot Clk: XO	ХТ		1750	2500	uA	[3]
		MT, HT		2900	4500	uA	[3]
9	DPD STATE, shared XO with other device	CT, LT, RT, KT		0.55	0.65	mA	[3]
	• XTAL_OUT: ON	MT, HT		0.6	0.7	mA	[3]
10	DPD STATE, shared XO with other device	CT, LT, RT		1.11	1.2	mA	[3]
	VddCpuRet: ON	КТ		1.15	1.25	mA	[3]
	• XIAL_OUT. ON	ХТ		1.21	1.32	mA	[3]
	2 7 7 P	MT, HT		1.34	1.52	mA	[3]
11	HPD STATE	CT, LT, RT - 3.3V		485	600	nA	[3]
	CurrLim: CHARGING/CHARGED	КТ		1950	2600	nA	[3]
	a C C c	ХТ		4750	6200	nA	[3]
		MT, HT		19800	25000	nA	[3]

[1] When parameter aoVoutBoostDisable = 0x0 is used, the current consumption is ~40uA higher. This is a legacy mode, which has no advantage for the application.

Ultra Wideband Transceiver with MAC support

Table 40. Characteristics - Current consumption - RX operation

Measurement of current, when RX enabled and no frame provided

Following characteristics are valid for conditions as follows (unless otherwise specified)

 T_{amb} = -40 °C to 115 °C , VDD = 1.8 V to 3.6 V, f_C = 6489.6 MHz or 7987.2 MHz, crystal = 55.2 MHz

VDD = VBAT_IO, VDD_DIG, VDD_BUF, VDD_XTAL, GPIO pins in defined, non hi-Z, state

ACTIVE STATE: VddBb: ON; VddBbRet: ON; CPU Clk: XO; BB Clk: SysPll; Snapshot Clk: SysPll; NBIC: OFF

Nr.	Description	Conditions	Min	Тур	Max	Unit	Note
1	HP ranging frame	CT, LT, RT		163	172	mA	[3]
	NBIC: ON, linear phase filter	КТ		168	176	mA	[3]
		ХТ		171	180	mA	[3]
		MT, HT		179	190	mA mA	[3]
2	HP ranging frame	CT, LT, RT		152	160	mA	[3]
	NBIC: ON, minimum phase filter	КТ		157	166	mA	[3]
		ХТ		160	172	mA	[3]
	5	MT, HT	0	168	185	mA	[3]
3	HP ranging frame	CT, LT, RT		131	136	mA	[3]
	A 0	кт	1	135	142	mA	[3]
	The former of the second secon	ХТ		139	148	mA	[3]
		МТ, НТ	0	145	156	mA	[3]
4	ECO Std ranging frame	CT, LT, RT		130	136	mA	[3]
		КТ		134	142	mA	[3]
		ХТ		138	148	mA mA <td>[3]</td>	[3]
		MT, HT		145	156	mA	[3]
5	ECO Min ranging frame	CT, LT, RT		114	120	mA	[3]
	• ADC: 500MHz	КТ		119	126	mA	[3]
		ХТ		122	132	mA	[3]
		MT, HT		129	140	WA mA mA	[3]
6	IEEE ranging frame	CT, LT, RT		165	172	mA	[3]
	NBIC: ON, linear phase filter	КТ		170	180	mA	[3]
		ХТ		173	184	mA	[3]
		MT, HT		180	192	mA	[3]
7	IEEE ranging frame	CT, LT, RT		154	162	mA	[3]
	NBIC: ON, minimum phase filter	КТ		159	166	mA	[3]
	• Interferer: CW	ХТ		162	172	mA	[3]
		MT, HT		170	184	mA	[3]
8	IEEE ranging frame	CT, LT, RT		132	138	mA	[3]
		КТ		137	144	mA	[3]
		ХТ		141	148	mA	[3]
		MT, HT		147	158	mA	[3]

Ultra Wideband Transceiver with MAC support

Table 41. Characteristics - Current consumption - TX operation

Measurement of average current during transmission of a frame

Following characteristics are valid for conditions as follows (unless otherwise specified)

 T_{amb} = -40 °C to 115 °C , VDD = 1.8 V to 3.6 V, f_{C} = 6489.6 MHz or 7987.2 MHz, crystal = 55.2 MHz

VDD = VBAT_IO, VDD_DIG, VDD_BUF, VDD_XTAL, GPIO pins in defined, non hi-Z, state

ACTIVE STATE: VddBb: ON; VddBbRet: ON; CPU Clk: XO; BB Clk: SysPll; Snapshot Clk: SysPll;

Nr.	Description	Conditions	Min	Тур	Max	Unit	Note
1	HP ranging frame	CT, LT, RT		115	120	mA	[3]
		КТ		119 🛌	126	mA	[3]
		ХТ		122	130	mA	[3]
		MT, HT		129	138	mA	[3]
2	ECO Std ranging frame	CT, LT, RT		115	120	mA	[3]
		кт		119	126	mA	[3]
		ХТ		122	130	mA	[3]
		MT, HT	0	126	138	mA	[3]
3	ECO Min ranging frame	CT, LT, RT		114	120	mA	[3]
	O A	кт	1	119	126	mA	[3]
	V Lo	ХТ	10	122	130	mA	[3]
		MT, HT	0	126	138	mA	[3]
4	IEEE ranging frame	CT, LT, RT		110	115	mA	[3]
		кт		115	121	mA	[3]
		ХТ		118	125	mA	[3]
		MT, HT		124	133	mA	[3]

10.3.4.2 Energy

Table 42. Characteristics - Energy consumption - RX operation

Measurement of electric charge consumed, during the reception of a valid ranging frame, from the beginning of the frame until the end of the frame (i.e. excluding start-up, RX ToA post-processing and shut-down). The charge is multiplied by 2V, to give an energy value.

Following characteristics are valid for conditions as follows (unless otherwise specified)

T_{amb} = -40 °C to 115 °C , VDD = 1.8 V to 3.6 V, f_C = 6489.6 MHz or 7987.2 MHz, crystal = 55.2 MHz

VDD = VBAT_IO, VDD_DIG, VDD_BUF, VDD_XTAL, GPIO pins in defined, non hi-Z, state

ACTIVE STATE: VddBb: ON; VddBbRet: ON; CPU Clk: XO; BB Clk: SysPll; Snapshot Clk: SysPll; NBIC: OFF

Nr.	Description	Conditions	Min	Тур	Max	Unit	Note
1	HP ranging frame	CT, LT, RT		38	45	uJ	[3]
	NBIC: ON, linear phase filter	кт		39	44	uJ	[3]
		ХТ		40	47	uJ	[3]
	Y AV	MT, HT		41	48	uJ	[3]
2	HP ranging frame	CT, LT, RT		36	39	uJ	[3]
	NBIC: ON, minimum phase filter	кт		37	39	uJ	[3]
		ХТ		38	40	uJ	[3]

Ultra Wideband Transceiver with MAC support

Table 42. Characteristics - Energy consumption - RX operation ... continued

Measurement of electric charge consumed, during the reception of a valid ranging frame, from the beginning of the frame until the end of the frame (i.e. excluding start-up, RX ToA post-processing and shut-down). The charge is multiplied by 2V, to give an energy value.

Following characteristics are valid for conditions as follows (unless otherwise specified)

 T_{amb} = -40 °C to 115 °C , VDD = 1.8 V to 3.6 V, f_{C} = 6489.6 MHz or 7987.2 MHz, crystal = 55.2 MHz

VDD = VBAT_IO, VDD_DIG, VDD_BUF, VDD_XTAL, GPIO pins in defined, non hi-Z, state

ACTIVE STATE: VddBb: ON; VddBbRet: ON; CPU Clk: XO; BB Clk: SysPll; Snapshot Clk: SysPll; NBIC: OFF

Nr.	Description	Conditions	Min	Тур	Max	Unit	Note
		MT, HT		39	43	uJ	[3]
3	HP ranging frame	CT, LT, RT		31	33	uJ	[3]
		КТ		32	34	uJ	[3]
		XT		33	35	uJ	[3]
		MT, HT		34	38	uJ	[3]
4	ECO Std ranging frame	CT, LT, RT	X	15	17	uJ	[3]
	2.	КТ	0	16	18	uJ	[3]
	10	ХТ		17	18	uJ	[3]
		MT, HT		17	19	uJ	[3]
5	ECO Min ranging frame	CT, LT, RT	X	10	11	uJ	[3]
	ADC: 500MHz	кт	1	10	11	uJ	[3]
		XT		10	11	uJ	[3]
		MT, HT		11	12	LU UU UU UU UU UU UU UU UU UU UU UU UU U	[3]
6	IEEE ranging frame	CT, LT, RT		44	53	uJ	[3]
	NBIC: ON, linear phase filter	кт		45	55	uJ	[3]
		ХТ		47	54	uJ	[3]
		MT, HT		49	57	uJ	[3]
7	IEEE ranging frame	CT, LT, RT		41	44	uJ	[3]
	NBIC: ON, minimum phase filter	КТ		43	45	uJ	[3]
		ХТ		43	46	uJ	[3]
		MT, HT		45	48	uJ	[3]
8	IEEE ranging frame	CT, LT, RT		36	38	uJ	[3]
	a 2 2 a	КТ		37	40	uJ	[3]
	20052	XT		38	41	LU UJ UJ UJ UJ UJ UJ UJ UJ UJ UJ	[3]
		MT, HT		40	43	Lu Lu Lu Lu Lu Lu Lu Lu Lu Lu Lu	[3]

Ultra Wideband Transceiver with MAC support

Table 43. Characteristics - Energy consumption - TX operation

Measurement of electric charge consumed, during the reception of a valid ranging frame, from the beginning of the frame until the end of the frame (i.e. excluding start-up, TX pre-processing and shut-down). The charge is multiplied by 2V, to give an energy value.

Following characteristics are valid for conditions as follows (unless otherwise specified)

 T_{amb} = -40 °C to 115 °C , VDD = 1.8 V to 3.6 V, f_C = 6489.6 MHz or 7987.2 MHz, crystal = 55.2 MHz

VDD = VBAT_IO, VDD_DIG, VDD_BUF, VDD_XTAL, GPIO pins in defined, non hi-Z, state

ACTIVE STATE: VddBb: ON; VddBbRet: ON; CPU Clk: XO; BB Clk: SysPll; Snapshot Clk: SysPll;

Nr.	Description	Conditions	Min	Тур	Max	Unit	Note
1	HP ranging frame	CT, LT, RT		27	29	uJ	[3]
		кт		29	32	uJ	[3]
		ХТ		30	31	uJ	[3]
		MT, HT		31	33	uJ	[3]
2	ECO Std ranging frame	CT, LT, RT		14	15	uJ	[3]
	A	кт	X	14.5	16	uJ	[3]
	2.	ХТ	9	15	17	uJ	[3]
		MT, HT		16	17	uJ	[3]
3	ECO Min ranging frame	CT, LT, RT	Ŕ	10	11	uJ	[3]
		кт	~	10.5	12	uJ	[3]
	\circ	XT ()	1	11	13	uJ	[3]
		MT, HT		11.5	13	uJ	[3]
4	IEEE ranging frame	CT, LT, RT		30	34	uJ	[3]
		кт		32	36	uJ	[3]
		хт		33	36	uJ	[3]
		MT, HT		35	38	uJ	[3]

10.3.5 Timings

Table 44. Characteristics - Timings - Analog Startup

Following characteristics are valid for conditions as follows (unless otherwise specified)

 T_{amb} = -40 °C to 115 °C , VDD = 1.8 V to 3.6 V, f_{C} = 6489.6 MHz or 7987.2 MHz, crystal = 55.2 MHz

Nr.	Description	Conditions	Min	Тур	Max	Unit	Note
1	Analog calibration time: time duration to calibrate SysPll, RfPll and ADC (XO is already running)			255	300	us	[2]
2	Analog SysPII startup time: time duration to startup SysPII, such that TX or RX can be started (XO is already running)			112	155	us	[2]
3	Analog TX startup time: time duration to startup RfPII, LO, DAC and PA, such that TX can start (SysPII is already running).			45	50	us	[2]
4	Analog RX startup time: time duration to startup RfPll, LO and ADC, such that RX can start (SysPll is already running).			67	74	us	[2]

Ultra Wideband Transceiver with MAC support

Table 45. Characteristics - Timings - Transition Times

Following characteristics are valid for conditions as follows (unless otherwise specified) T_{amb} = -40 °C to 115 °C , VDD = 1.8 V to 3.6 V, f_C = 6489.6 MHz or 7987.2 MHz, crystal = 55.2 MHz VDD = VBAT_IO, VDD_DIG, VDD_BUF, VDD_XTAL, GPIO pins in defined, non hi-Z, state

Nr.	Description	Conditions	Min	Тур	Max	Unit	Note
1	Cold Boot Time: Supply Voltage stable to ACTIVE STATE			2.2	2.55	ms	[2]
2	Boot Time: RST_N de-asserted to ACTIVE STATE			1.7	1.85	ms	[2]
3	DPD Boot Time (w/o fast-boot): Wake-up event to ACTIVE STATE			1.39	1.47	ms	[2]
4	HPD Boot Time: Wake-up event to ACTIVE STATE			1.7	1.85	ms	[2]
5	RX to TX turnaround time			105	110	us	[2]
6	TX to RX turnaround time	A	C	134	140	us	[2]

Table 46. Characteristics - Timings - XO Startup

Following characteristics are valid for conditions as follows (unless otherwise specified)

 T_{amb} = -40 °C to 115 °C , VDD = 1.8 V to 3.6 V, f crystal = 55.2 MHz

VDD = VBAT_IO, VDD_DIG, VDD_BUF, VDD_XTAL, GPIO pins in defined, non hi-Z, state

Nr.	Description	Conditions	Min	Тур	Max	Unit	Note
2	LDO_XO_ENBL to XO_OK and stable within +/-10ppm			277	340	us	[2]

Table 47. Characteristics - Timings - SPI

Following characteristics are valid for conditions as follows (unless otherwise specified)

 $T_{amb} = -40 \text{ °C to } 115 \text{ °C}$, VDD = 1.8 V to 3.6 V

Nr.	Description	Conditions	Min	Тур	Max	Unit	Note
1	SPI data rate	6			10	MHz	[6]
2	Master Mode, propagation time (t1) of data output (SDIO) with respect to SCLK edge	Ĉ			20	ns	[6]
3	Master Mode, setup time (t2) for data input (SDI) with respect to SCLK edge)			28	ns	[6]
4	Slave Mode, propagation time (t3) of data output (SDIO) with respect to CS_N edge				31	ns	[6]
5	Slave Mode, propagation time (t4) of data output (SDIO) with respect to SCLK edge				31	ns	[6]
6	Slave Mode, setup time (t5) for data input (SDI) with respect to SCLK edge				16	ns	[6]

Ultra Wideband Transceiver with MAC support

10.3.6 Auxiliary functions

Table 48. Characteristics - Auxiliary functions - Internal temperature sensorFollowing characteristics are valid for conditions as follows (unless otherwise specified) T_{amb} = -40 °C to 115 °C , VDD = 1.8 V to 3.6 V, f_C = 6489.6 MHz or 7987.2 MHz, crystal = 55.2 MHzVDD = VBAT_IO, VDD_DIG, VDD_BUF, VDD_XTAL, GPIO pins in defined, non hi-Z, state

Nr.	Description	Conditions	Min	Тур	Мах	Unit	Note
1	Internal temperature sensor accuracy	CT, RT	-5		4	°C	[2]
	7,7,0	MT, HT	-7		1	°C	[2]

Table 49. Characteristics - Auxiliary functions - Current Limiter

Following characteristics are valid for conditions as follows (unless otherwise specified)

 T_{amb} = -40 °C to 115 °C , VDD = 1.8 V to 3.6 V, f_C = 6489.6 MHz or 7987.2 MHz, crystal = 55.2 MHz

VDD = VBAT_IO, VDD_DIG, VDD_BUF, VDD_XTAL, GPIO pins in defined, non hi-Z, state

Nr.	Description	Conditions	Min	Тур	Max	Unit	Note
1	Current Limiter range: difference between highest (20mA) and lowest (5mA) setting ^[1]		13	15		mA	[2]
2	Current Limiter accuracy			1	1.3	mA	[2]

[1] Note that the current limiter should not be set below 8mA in the application, to ensure that the average current required for SW execution can be delivered.

Ultra Wideband Transceiver with MAC support

 Table 50. Characteristics - Auxiliary functions - Voltage Measurement

Following characteristics are valid for conditions as follows (unless otherwise specified)

 T_{amb} = -40 °C to 115 °C , VDD = 1.8 V to 3.6 V, f_{C} = 6489.6 MHz or 7987.2 MHz, crystal = 55.2 MHz

VDD = VBAT_IO, VDD_DIG, VDD_BUF, VDD_XTAL, GPIO pins in defined, non hi-Z, state

Nr.	Description	Conditions	Min	Тур	Max	Unit	Note
1	VBAT_IO Voltage measurement errorVBAT_IO set to 1.8V, 2.4V, 3.3V, 3.6VVBAT_IO measured on chip via API function			30	120	mV	[2]
2	VDD_BUF Voltage measurement errorVDD_BUF set to 1.8V, 2.4V, 3.3V, 3.6VVDD_BUF measured on chip via API function			30	120	mV	[2]
3	VDD_GLOB Voltage measurement errorVDD_GLOB set to 1.8V, 2.1VVDD_GLOB measured on chip via API function	4		30	120	mV	[2]
4	 VDD_DIG Voltage measurement error VDD_DIG set to 1.8V, 2.4V, 3.3V, 3.6V VDD_DIG measured on chip via API function 	1 de	92	30	120	mV	[2]

10.3.7 Pins

Table 51. Characteristics for ESD

Nr.	Description	Conditions	Min	Тур	Max	Unit	Note
1	ESD HBM Electrostatic Discharge (Human Body Model) ^[1]	1500 Ω, 100 pF, All pins	2			kV	[6]
2	ESD CDM Electrostatic Discharge (Charged Device Model) ^[2]	All pins	500			V	[6]

[1] JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

[2] JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Table 52. Static Characteristics I/O Ports

Following characteristics are valid for conditions as follows (unless otherwise specified) $T_{amb} = -40$ °C to 115 °C , VBAT_IO = 1.8 V to 3.6 V

Nr.	Description	Conditions	Min	Тур	Мах	Unit	Note
1	High level input voltage		0.7 × VBAT_IO		VBAT_IO	V	[1]
2	Low level input voltage		0		0.3 × VBAT_IO	V	[1]
3	Input hysteresis voltage	0	0.1 × VBAT_IO			V	[6]
4	Output high current	At VOH =VDDE - 0.4V	2			mA	[1]
5	Output low current	At VOL =0.4V	2			mA	[1]
6	Pull-up resistor	VI = 0	40	50	62	kΩ	[1]
7	Pull-down resistor	VI = VDDE	40	50	62	kΩ	[1]

Ultra Wideband Transceiver with MAC support

Table 53. Dynamic Characteristics I/O Ports

Following characteristics are valid for conditions as follows (unless otherwise specified) $T_{amb} = -40$ °C to 115 °C , VBAT_IO = 1.8 V to 3.6 V

Nr.	Description	Conditions	Min	Тур	Мах	Unit	Note
1	Output rise time	10 pF load	1.2		4.6	ns	[6]
2	Output fall time	10 pF load	1.2		4.6	ns	[6]

Ultra Wideband Transceiver with MAC support

11 Typical Performance

11.1 RX Frame Error Rate (FER) vs Input Level

- conducted
- Signal Generator to device

Ultra Wideband Transceiver with MAC support

11.2 RX Co-Channel Rejection

- conducted
- Signal Generator + CW to device

Ultra Wideband Transceiver with MAC support

11.3 TX Mean Power Spectral Density

- conducted
- device to Spectrum Analyzer
- Tx PA power setting: 12dBm (Note that the power level can be decreased in 0.25dB steps to meet the -41.3 dBm/MHz regulation limit.)

NXP Semiconductors

NCJ29D5DHN

Ultra Wideband Transceiver with MAC support

Figure 16. IEEE 6.8 Mbps ranging frame, 12 dBm PA power: TX Mean Power Spectral Density

NXP Semiconductors

NCJ29D5DHN

Ultra Wideband Transceiver with MAC support

Figure 17. ECO Min 7.8 Mbps ranging frame, 12 dBm PA power: TX Mean Power Spectral Density

11.4 Histogram Double-Sided Two-Way Ranging

- conducted
- · device to device
- Rx power level: -60 dBm

NXP Semiconductors

NCJ29D5DHN

Ultra Wideband Transceiver with MAC support

11.5 Current Profile Double-Sided Two-Way Ranging

<u>Figure 20</u> shows the current and voltage trace of a ranging exchange in a RSD application, for the initiator side (i.e. key-fob). ECO Min 7.8Mbps ranging frames are

© 2023 NXP B.V. All rights reserved.		© 2023	NXP	B.V.	All	rights	reserved.
--------------------------------------	--	--------	-----	------	-----	--------	-----------

NCJ29D5D		
Product data sheet		
CONFIDENTIAL		

Ultra Wideband Transceiver with MAC support

used. The current limiter is set to 10mA. The supply Voltage is 2.05V (i.e. modeling a CR2032 battery at the end of life). The inter frame timing is adjusted such that the average current is 10mA. It can be seen that the current drawn from the battery is almost constant at ~10mA. The peak current required for frame reception and frame transmission is delivered by an energy storage capacitor (2x47uF Ceramic Capacitors were used). The Voltage on the energy storage capacitor rises between the frames when it is charged and drops during the frame when it is discharged. Between the frames the device stays in ACTIVE STATE executing the WFI instruction, with the Snapshot Unit running on the XO (i.e. SysPII disabled).

NCJ29D5D Product data sheet CONFIDENTIAL

Ultra Wideband Transceiver with MAC support

12 Mechanical information

HVQFN40: plastic thermal enhanced very thin quad flat package; no leads; 40 terminals; body 6 x 6 x 0.85 mm SOT618-7 в Α terminal 1 index area detail X e1 - 1/2 e C + v M C A B е h Ду // y1 C ♦ wM C 20 <u></u> IJ T 10 e е C ⊃ 7 G e₂ 7 1/2 e 30 hnnnlnnnd terminal 1 40 31 index area 1. D۲ 2.5 5 mm Dimensions scale Unit A(1) A₁ b D(1) D_h E(1) Eh L ۷ с е e₁ w e2 у У1 4.75 4.60 4.45 6.1 6.0 5.9 1.00 0.05 0.30 4.75 6.1 0.5 max 0.21 0.18 0.2 6.0 5.9 4.60 4.45 0.5 4.5 4.5 0.1 0.05 0.05 0.1 mm nom 0.85 0.02 0.4 0.80 0.00 min Note 1. Plastic or metal protrusions of 0.075 mm maximum per side are not included. sot618-7_pc References Outline version European projection Issue date IEC JEDEC JEITA 10 11 01 10-11-05 SOT618-7 MO-220 . . . $\bigcirc \bigcirc$

12.1 Package outline

Figure 21. Package outline HVQFN40

Ultra Wideband Transceiver with MAC support

Ultra Wideband Transceiver with MAC support

13 Glossary

AC	Alternating Current
ADC	Analog to Digital Converter
AES	Advanced Encryption Standard
AFC	Automatic Frequency Calibration
AGC	Automatic Gain Control
API	Application Programming Interface
Balun	Balanced to Unbalanced
BIST	Built-in Self Test
BF	Bit Field
BW	BandWidth
СР	Charge Pump
CPU	Central Processing Unit
CRC	Cyclic Redundancy Check
cw	Continuous Wave
DAC	Digital to Analog Converter
DC	Direct Current
DMA	Direct Memory Access
DPD	Deep Power Down
DRBG	Deterministic Random Bit Generator
ECC	Elliptic Curve Cryptography
ESD	ElectroStatic Discharge
EDLC	Early Detect Late Commit
FAR	False Alarm Rate
FER	Frame Error Rate
FRO	Free-Running Oscillator
FSM	Finite State Machine
НВМ	Human Body Model
HPD	Hard Power Down
ISR	Interrupt Service Routine
ISM	Industrial, Scientific and Medical
IR-UWB	Impulse Radio Ultra Wideband
	Local Interconnect Network
	Low Noise Amplifier
LO	Local Oscillator
LOS	Line-Of-Sight
LPF	Low-Pass Filter
MUX	Multiplexer
NBIC	Narrow Band Interference Cancellation
NC	Not Connected
NLOS	Non-Line-Of-Sight
NV	Non Volatile Memory
NS-DMA	Non Secure DMA
PLL	Phase Locked Loop

Ultra Wideband Transceiver with MAC support

POR	Power-On-Reset
POK	Power OK
PKE	Passive Keyless Entry
PRN	Pseudo-Random Number
PRNG	Pseudo-Random Number Generator
PVT	Process, Voltage and Temperature
RF	Radio Frequency
RFU	Reserved for Future Use
RS	Reed Solomon
RSSI	Received Signal Strength Indicator
RX	Receiver
S-DMA	Secure DMA
SFD	Start of Frame Delimiter
SECDED	Single Error Correction, Double Error Detection
SHA	Secure Hash Algorithm
SHF	Super High Frequency
SPI	Serial Peripheral Interface
STS	Scrambled Timestamp Sequence
SWD	Serial Wire Debug
TDOA	Time Difference Of Arrival
ΤΙΑ	Trans-Impedance Amplifier
TX	Transmitter
TRX	Transmitter Receiver
UART	Universal Asynchronous Receiver and Transmitter
UHF	Ultra High Frequency
UWB	Ultra Wideband
VCO	Voltage Controlled Oscillator
WUP	Wake-UP
XTAL	Crystal
xo	Crystal Oscillator

Ultra Wideband Transceiver with MAC support

14 References

- [1] NCJ29D5 User Manual
- [2] NCJ29D5 SWUP User Manual NCJ29D5 Software Update Program User Manual, UM11383
- [3] NCJ29D5 Programmer's Manual NCJ29D5 Software, UM11218
- [4] IEEE Std 802.15.4[™]-2015 (Revision of IEEE Std 802.15.4-2011) IEEE Standard for Local and metropolitan area networks – Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs). IEEE Computer Society Sponsored by the LAN/MAN Standards Committee. http://standards.ieee.org
- [5] IEEE Std 802.15.4z[™]-D08 (Draft Revision of IEEE Std 802.15.4-2015) Amendment: Enhanced Ultra Wide-4 Band (UWB) Physical Layers (PHYs) and Associated Ranging Techniques <u>https://www.techstreet.com/ieee/standards/ieee-p802-15-4z?</u> gateway_code=ieee&vendor_id=7291&product_id=2087572
- [6] <u>ARM® Cortex®-M33 Processor Technical Reference Manual</u> Rev. r0p2
- [7] <u>ARM® TrustZone</u>
- [8] <u>ARM[®]v8-M Architecture Reference Manual</u>
- [9] <u>ARM[®] Serial Wire Debug (SWD)</u>
- [10] <u>NIST Special Publication 800-90A Revision 1 2015. Recommendation for Random</u> <u>Number Generation Using Deterministic Random Bit Generators</u>
- [11] GlobalPlatform® https://www.globalplatform.org/
- [12] ETSI EN 302 065-3 V2.1.1 (2016-11) Short Range Devices (SRD) using Ultra Wide Band technology (UWB);Harmonised Standard covering the essential requirements of article 3.2 of the Directive 2014/53/EU; Part 3: Requirements for UWB devices for ground based vehicular applications <u>http://www.etsi.org/standards-search</u>
- [13] APP HAL API NCJ29D5_AppHAL.chm

NCJ29D5D

Ultra Wideband Transceiver with MAC support

15 Revision history

Table 54. Revision history

Document Version	Release date	Modifications
Rev. 1.2	2023-02-03	MAC related information has been moved, to another document. Updated pin description. Replaced device nickname by NCJ29D5.
Rev. 1.1	2022-01-31	Updated pin description
Rev. 1.0	2020-11-27	Initial version

Ultra Wideband Transceiver with MAC support

16 Legal information

16.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

Please consult the most recently issued document before initiating or completing a design. [1]

The term 'short data sheet' is explained in section "Definitions". [2]

The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple [3] devices. The latest product status information is available on the Internet at URL <u>http://www.nxp.com</u>.

16.2 Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification - The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Ultra Wideband Transceiver with MAC support

Suitability for use in automotive applications - This NXP product has been qualified for use in automotive applications. If this product is used by customer in the development of, or for incorporation into, products or services (a) used in safety critical applications or (b) in which failure could lead to death, personal injury, or severe physical or environmental damage (such products and services hereinafter referred to as "Critical Applications"), then customer makes the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, safety, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. As such, customer assumes all risk related to use of any products in Critical Applications and NXP and its suppliers shall not be liable for any such use by customer. Accordingly, customer will indemnify and hold NXP harmless from any claims, liabilities, damages and associated costs and expenses (including attorneys' fees) that NXP may incur related to customer's incorporation of any product in a Critical Application.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at <u>PSIRT@nxp.com</u>) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

16.4 Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners. **NXP** — wordmark and logo are trademarks of NXP B.V.

NCJ29D5D
NCJ29D5DHN

Ultra Wideband Transceiver with MAC support

Tables

Tab. 1.	Quick reference data	6
Tab. 2.	Performance mode definition	7
Tab. 3.	Ordering information	9
Tab. 4.	Marking information	10
Tab. 5.	Pinning description	13
Tab. 6.	External power supply domains	24
Tab. 7.	Limiting values	30
Tab. 8.	Recommended operating conditions	30
Tab. 9.	Condition	31
Tab. 10.	Temperature	31
Tab. 11.	Scenario definition	32
Tab. 12.	Application relevant limits	32
Tab. 13.	Interferer definition	33
Tab. 14.	Characteristics - Data Transfer: Payload	
	Sensitivity CH9	33
Tab. 15.	Characteristics - Data Transfer: Payload	
	Sensitivity CH5	34
Tab. 16.	Characteristics - Secure Ranging: AWGN	
	Sensitivity CH9	34
Tab. 17.	Characteristics - Secure Ranging: AWGN	
	Sensitivity CH5	35
Tab. 18.	Characteristics - Secure Ranging: First	
	Path Dynamic Range	36
Tab. 19.	Characteristics - Secure Ranging: First	
	Path Sensitivity CH9	37
Tab. 20.	Characteristics - Secure Ranging: First	
	Path Sensitivity CH5	37
Tab. 21.	Characteristics - RX - Co-Channel	7
	Rejection, NBIC disabled	38
lab. 22.	Characteristics - RX - Co-Channel	
T 1 00	Rejection, NBIC enabled	38
Tab. 23.	Characteristics - RX - Out-of-Band Blocker	
T 1 0 4	Rejection, NBIC disabled, CH9	39
Tab. 24.	Characteristics - RX - Out-of-Band Blocker	-
T 1 05	Rejection, NBIC disabled, CH5	39
Tab. 25.	Characteristics - RX - Out-ot-Band Blocker	40
T-6 00	Rejection, NBIC enabled, CH9	40
iad. 26.	Characteristics - KX - Out-ot-Band Blocker	40
T-1 07	Rejection, NBIC enabled, CH5	40
IAD. 27.	Characteristics - KX - Spurious emissions,	4.4
	СНУ	41

Tab. 28.	Characteristics - RX - Spurious emissions,	
T 1 00	CH5	41
Tab. 29.	Characteristics - RX - Secure Ranging: ToA	12
Tab 30	Characteristics PX Signal Dowor	42
Tab. 50.	Mooguromont	10
Tab 21	Characteristics TV 10dB Bandwidth	4Z
Tab. 31.	Characteristics - TX - Toub Bandwidth	4Z
Tab. 32.	Characteristics - TX - Power Control	43
Tab. 33.	Characteristics - TX - Average Power	43
Tab. 34.	Characteristics - TX - Peak Power	44
Tab. 35.	Characteristics - IX - Spurious Emissions	
T 1 00	Mean Power Spectral Density CH9	44
Tab. 36.	Characteristics - TX - Spurious Emissions	
	Mean Power Spectral Density CH5	45
lab. 37.	Characteristics - TX - Spurious Emissions	
	Peak Power CH9	47
Tab. 38.	Power State default configuration	48
Tab. 39.	Characteristics - Current consumption -	
	Power States	48
Tab. 40.	Characteristics - Current consumption - RX	
	operation	50
Tab. 41.	Characteristics - Current consumption - TX	
	operation	51
Tab. 42.	Characteristics - Energy consumption - RX	
	operation	51
Tab. 43.	Characteristics - Energy consumption - TX	
	operation	53
Tab. 44.	Characteristics - Timings - Analog Startup	53
Tab. 45.	Characteristics - Timings - Transition Times	54
Tab. 46.	Characteristics - Timings - XO Startup	54
Tab. 47.	Characteristics - Timings - SPI	54
Tab. 48.	Characteristics - Auxiliary functions -	
	Internal temperature sensor	55
Tab. 49.	Characteristics - Auxiliary functions -	
	Current Limiter	55
Tab. 50.	Characteristics - Auxiliary functions -	
	Voltage Measurement	56
Tab. 51.	Characteristics for ESD	56
Tab. 52.	Static Characteristics I/O Ports	56
Tab. 53.	Dynamic Characteristics I/O Ports	. 57
Tab. 54.	Revision history	70

NCJ29D5DHN

Ultra Wideband Transceiver with MAC support

Figures

Fig. 1.	Ranging Frame2
Fig. 2.	Key Fob and Car Module application5
Fig. 3.	Block diagram 11
Fig. 4.	Pinout HVQFN40 12
Fig. 5.	Pin 1 keep out area 13
Fig. 6.	Customized system diagram17
Fig. 7.	Baseband Subsystem 18
Fig. 8.	External temperature sensor measurement 23
Fig. 9.	Connection of external power supply
	domains25
Fig. 10.	Power supply state diagram26
Fig. 11.	SPI Timing Master Mode55
Fig. 12.	SPI Timing Slave Mode 55
Fig. 13.	IEEE 6.8 Mbps data frame: RX FER vs
	Input Level in CH9 for different carrier
	frequency offsets
Fig. 14.	ECO Min 7.8 Mbps data frame: RX FER
	vs Input Level in CH9 for different carrier
	frequency offsets59

Fig. 15.	IEEE 6.8 Mbps data frame: RX Co-Channel Rejection Interferer/Signal-Ratio vs CW	
	Interferer Sweep CH9	60
Fig. 16.	IEEE 6.8 Mbps ranging frame, 12 dBm PA	
	power: TX Mean Power Spectral Density	61
Fig. 17.	ECO Min 7.8 Mbps ranging frame, 12	
	dBm PA power: TX Mean Power Spectral	
	Density	62
Fig. 18.	IEEE 6.8 Mbps ranging frame: Histogram	
	Double-Sided Two-Way Ranging (1000	
	trials)	63
Fig. 19.	ECO Std 7.8 Mbps ranging frame:	
	Histogram Double-Sided Two-Way Ranging	
	(1000 trials)	63
Fig. 20.	ECO Min 7.8 Mbps ranging frame: Current	
	Profile Double-Sided Two-Way Ranging Tx	
	$\rightarrow Rx \rightarrow TX$	64
Fig. 21.	Package outline HVQFN40	65
Fig. 22.	Package detail wettable flanks	66

NCJ29D5DHN

Ultra Wideband Transceiver with MAC support

Contents

1	General information2
2	Features and benefits4
3	Applications5
4	Quick reference data
5	Ordering information9
6	Marking
7	Block diagram
8	Pinning information 12
81	Pinning 12
811	Pin 1 keep out area 12
8.2	Pin description 13
9.2 9	Design Information 16
J 0 1	LIWR Customized Device
9.1 0.2	DVVD Customilized Device
9.2	RF Subsystem 17
9.5	CDLL Subsystem
9.4	CPU Subsystem
9.4.1	Serial Peripheral Interface (SPI)
9.4.2	LIN/UART Serial Interface
9.4.3	
9.4.4	General Purpose Timers21
9.4.5	Watchdog Timer
9.4.6	Wake-up Timer
9.4.7	Direct Memory Access (DMA)
9.4.8	Port Control Block 22
9.4.9	Cryptography Support Block
9.4.10	Cyclic Redundancy Check (CRC)22
9.4.11	Temperature measurement
9.4.12	Voltage Measurement23
9.4.13	Serial Wire Debug (SWD) Interface23
9.5	Power management24
9.5.1	Modes of operation
9.5.2	External power supply domains
9.5.3	Recommended external capacitors in the
	supply domains25
9.5.4	Power supply states
9.5.5	Current Limiter 27
9.6	Device modes 28
961	INIT 28
962	PROTECTED 28
063	TAMPERED 28
0.0.0 0.7	System routines 20
071	Boot routine 20
3.7.1 10	Characterization Information 30
10 1	Limiting values
10.1	Becommonded operating conditions 20
10.2	Characteristics
10.3	Conorol
10.3.1	
10.3.2	RA
10.3.2.1	Data Transfer: Payload Sensitivity
10.3.2.2	Secure Ranging: AWGN Sensitivity
10.3.2.3	Secure Ranging: First Path Dynamic Range 36
10.3.2.4	Secure Ranging: First Path Sensitivity
10.3.2.5	Co-Channel Rejection

10.3.2.	6 Out-of-Band Blocker Rejection	39
10.3.2.	7 Spurious emissions	41
10.3.2.	8 Secure Ranging: ToA accuracy	42
10.3.2.	9 Signal Power Measurement	42
10.3.3	ТХ	42
10.3.3.	1 10dB Bandwidth	42
10.3.3.	2 Power Control	43
10.3.3.	3 Average Power	43
10.3.3.4	4 Peak Power	44
10.3.3.	5 Spurious Emissions Average Power	44
10.3.3.	5 Spurious Emissions Peak Power	47
10.3.4	Current and Energy consumption	48
10.3.4.	1 Current	48
10.3.4.	2 Energy	51
10.3.5	limings	53
10.3.6		55
10.3.7	Pins	56
11	Iypical Performance	58
11.1	RX Frame Error Rate (FER) vs input Level	58
11.2	TX Meen Dewer Spectral Depaity	59
11.3	Histogram Double Sided Two Way Banging	00
11.4	Ristogram Double-Sided Two-Way Ranging .	02
11.5	Panging	62
12	Machanical information	03
12 1	Package outline	05 65
12.1	Glossary	05 67
14	Poforoncos	٬۵… ۵۵
15	Revision history	03 70
16	Legal information	70 71

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© 2023 NXP B.V.

For more information, please visit: http://www.nxp.com

Date of release: 3 February 2023 Document identifier: NCJ29D5D Document number: DS652611