HITAG 2 Transponder IC Rev. 3.0 — 26 February 2010 188330

Product data sheet CONFIDENTIAL

1. Introduction

HITAG 2 is part of the universal and powerful product line of NXP Semiconductors 125 kHz HITAG family. The contactless read/write system that works with passive transponders is suitable for various applications. Inductive coupling allows to achieve big reading ranges.

The HITAG product family is used in the proximity area (operating range up to about 200 mm) as well as in the long range area (operating range up to about 1000 mm).

2. General description

HITAG 2 based transponders are highly integrated and do not need any additional components beside the HITAG 2 transponder IC and the external coil. Data are transmitted bidirectionally, in half duplex mode, between read/write device (RWD) and HITAG transponder IC.

To achieve a main stream security, data may be transmitted enciphered.

HTAG 2 transponder IC offer a memory of 256 bit.

Custom specific configuration of the transponder IC is possible by using the configuration page. The configuration page allows the selection of different modes and access possibilities and also the configuration of the memory. The pages of the memory can be protected against read or write access by setting corresponding memory flags.

The HITAG 2 transponder IC provides - besides password and crypto mode - the following three standard read only modes, that can be configured using the configuration byte:

- public-mode-A
- public-mode-B (animal identification, according to ISO 11784 and ISO 11785)
- public-mode-C (PIT compatible mode PCF793x)

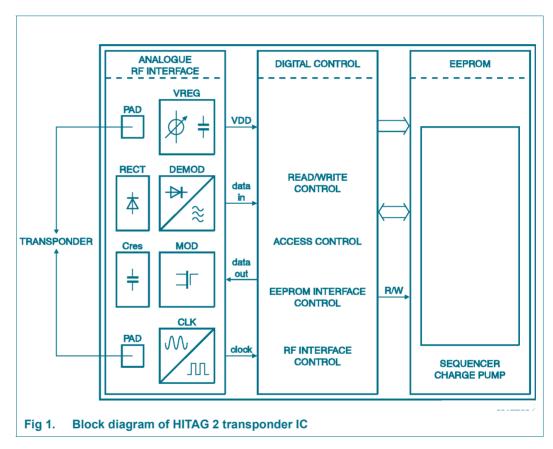
3. Features and benefits

- Identification transponder for use in contactless applications
- Operating frequency 125 kHz
- Data transmission and energy supply via RF link, no internal battery
- Reading distance same as writing distance
- Non-volatile memory of 256 bits (128-bit user data and 128-bit control data/secret memory) organized in 8 pages, 4 bytes each
- 10 years non-volatile data retention
- 100 000 erase/write cycles
- Selective read/write protection of memory content
- Two coding schemes for read operation: Biphase and Manchester coding
- Effective communication protocol with outstanding data integrity check
- Mutual authentication function
- Read/write mode allows:
 - Plain data transmission (password mode)
 - Encrypted data transmission (crypto mode)
- In read/write mode multi-tag operation possible because of special HALT-function
- Emulation of standard industrial read-only transponders:
 - Public Mode A (MIRO and transponders from μEM (H400x))
 - Public Mode B (according to ISO 11784 and ISO 11785 for animal identification)
 - Public Mode C (PIT compatible mode)

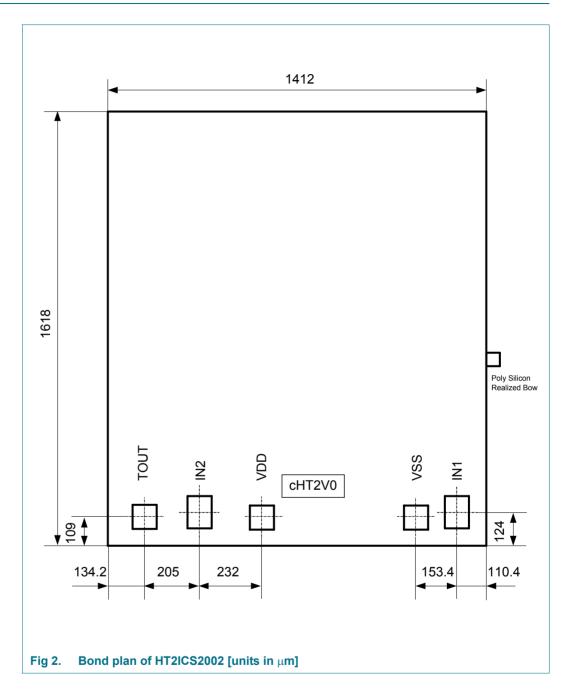
4. Applications

- Logistics
- Livestock tracking
- Asset tracking
- Gas cylinder ID
- Casino gambling
- Industrial automation

5. Ordering information


Table 1.	Ordering information	rdering information

Type number	Package			
	Name	Description	Туре	Version
HT2ICS2002W/V9F	Wafer	sawn wafer on FFC, 150 $\mu\text{m},$ 8 inch, UV, inked and mapped	-	-
HT2MOA2S20/E/3	MOA2	plastic leadless module carrier package; 35 mm wide tape	-	SOT500-2
HT2DC20S20/F	PLLMC	plastic leadless module carrier package	-	SOT385-1


6. Block diagram

The HITAG 2 transponder IC requires no external power supply. The contactless interface generates the power supply and the system clock via the resonant circuitry by inductive coupling to the RWD. The interface also demodulates data transmitted from the RWD to the HITAG 2 transponder IC, and modulates the magnetic field for data transmission from the HITAG 2 transponder IC to the RWD.

Data are stored in a non-volatile memory (EEPROM). The memory has a capacity of 256 bit and is organized in pages.

7. Pinning information

Mechanical specification 8.

8.1 Wafer specification

See Ref. 2 "General specification for 8" wafer on UV-tape".

8.1.1 Wafer

0.1.1	water	
	Designation:	each wafer is scribed with batch number and wafer number
	Diameter:	200 mm (8")
	Thickness:	150 μm ± 15 μm
	Process:	C150EE
	Batch size:	25 wafers
	PGDW:	11091
8.1.2	Wafer backside	
	Material:	Si
	• Treatment:	ground and etched
	Roughness:	R_a max. 0.5 μ m, R_t max. 5 μ m
8.1.3	Chip dimensions	
	• Die size without scribe:	1618 μm x 1412 μm = 2284616 μm
	Scribe line width:	
	X-dimension:	108 μm
	Y-dimension:	102 μm
	Number of pads:	5
8.1.4		
	Passivation on front	
	Passivation on front Type:	single layer
		single layer TEOS 300 nm, Nitride 700nm
8.1.5	• Туре:	• •

- IN1, IN2 120 x 90 μm - TOUT, VSS, VDD 90 x 90 μm AlCu

• Material:

8.1.6 Fail die identification

Every die is 100% electrically tested. Identification of dies which do not confirm with the electrical parameters is done by inking and wafer mapping.

Electronic wafer mapping (SECS II format) covers the electrical test results and additionally the results of mechanical/visual inspection.

See Ref. 2 "General specification for 8" wafer on UV-tape".

8.1.7 Map file distribution

See Ref. 2 "General specification for 8" wafer on UV-tape".

9. Functional description

9.1 Overview of transponder

Table 2. Overview of transponders

Parameter	Description	Unit
carrier frequency	125	kHz
coding read	Manchester/Biphase	-
coding write	Pulse duration	-
modulation	ASK (amplitude shift keying)	-
total memory size	256	bit
user memory read/write	128	bit
read only serial number	32	bit
data retention	10	year
data security	encryption, authentication, passwords	-
data integrity	half-duplex handshake, reverse data transmission	-

9.2 Memory map

The 256 bit memory area of the HITAG 2 transponder IC is divided into 8 pages. Each page has a size of 32 bits.

Depending on the operation mode (Crypto mode/Password mode) the memory is organized as described in the following:

page	content	access
0	Serial number	ro
1	Secret Key Low (32 bit)	r/w or 0
3	Secret Key High (16 bit) reserved Bit (14 bit)	r/w or ro
3	configuration (8 bit) password tag (24 bit)	r/w or ro
4	usable memory page	r/w or ro
5	usable memory page	r/w or ro
6	usable memory page	r/w or ro
7	usable memory page	r/w or ro

Fig 3. Memory map in Crypto Mode

	page	content	access
	0	Serial number	ro
	1	password RWD	r/w or 0
	2	reserved for future use	r/w or 0
	3	configuration (8 bit) password tag (24 bit)	r/w or ro
	4	usable memory page	r/w or ro
	5	usable memory page	r/w or ro
	6	usable memory page	r/w or ro
	7	usable memory page	r/w or ro
Fig 4. Memory	map in Pa	ssword Mode	

9.3 Definition of passwords and keys

Keys are cryptographic codes, which determine data encryption during data transfer between RWD and transponder IC. Keys are used to select a HITAG 2 transponder IC in Crypto Mode. The 16 bit KEY HIGH and 32 bit KEY LOW form one 48 bit key which has to be identical on both the transponder and the RWD.

Passwords are needed to select a HITAG 2 transponder in Password Mode. There is one pair of passwords (Password TAG, Password RWD) which has to be identical both on the transponder and the RWD.

Password TAG:	Password that the transponder sends to the RWD and which may be verified by the latter (depending on the configuration of the RWD).
Password RWD:	Password that the RWD sends to the transponder and which is checked for identity by the latter.

It is important that the following values are in accordance with each other, i.e. the respective data on the RWD and on the transponder have to be identical pairs.

Table 3.	HITAG 2 in password mode
----------	--------------------------

On the RWD	On the transponder		
Password RWD	↔ Password RWD		
as an option (depending on the configuration of the RWD):			
Password TAG	↔ Password TAG		

Table 4.HITAG 2 in crypto mode

On the RWD		On the transponder
KEY LOW	\leftrightarrow	KEY LOW
KEY HIGH	\leftrightarrow	KEY HIGH
as an option (depending on the configu	uration of th	e RWD):
Password TAG	\leftrightarrow	Password TAG

The passwords and keys are predefined by NXP Semiconductors by means of defined transport passwords and a transport key. They can be written to, which means that they can be changed (see also Chapter "Configuration of Delivered HITAG 2 Transponders" <u>Section 9.4.3.3</u>).

ATTENTION: Passwords and Keys only can be changed if their current values are known!

9.4 Operation Modes and Configuration

With the Configuration Byte the operation mode and the access rights to the memory can be selected. During Power-Up of the transponder IC the Configuration Byte is read from the memory.

In case keys or passwords are changed, the transponder should be placed directly (0-distance) on the antenna of the RWD! In order to avoid any errors the transponder must not be moved during this write process. The programming should take place in a safe environment without electrical noise.

9.4.1 Modes of operation

The HITAG 2 can be operated in several modes.

Crypto Mode

Mode for writing or reading the transponder with encrypted data transmission.

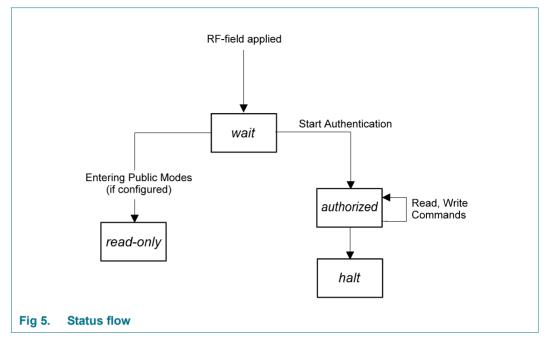
Password Mode

Mode for writing or reading the transponder with plain data transmission after password check.

Public Mode A (Manchester)

Read only mode. The 64 bits of the User Pages 4 and 5 are cyclically transmitted to the RWD.

Public Mode B (Biphase)


Read only mode according to ISO standards 11784 and 11785 for animal identification. The 128 bits of the User Pages 4 to 7 are cyclically transmitted to the RWD.

Public Mode C (Biphase)

Read only mode emulating the read operation of the PCF793X (with a slightly different Program Mode Check).

In the Public Mode C the 128 bits of the User Pages 4 to 7 are cyclically transmitted to the RWD.

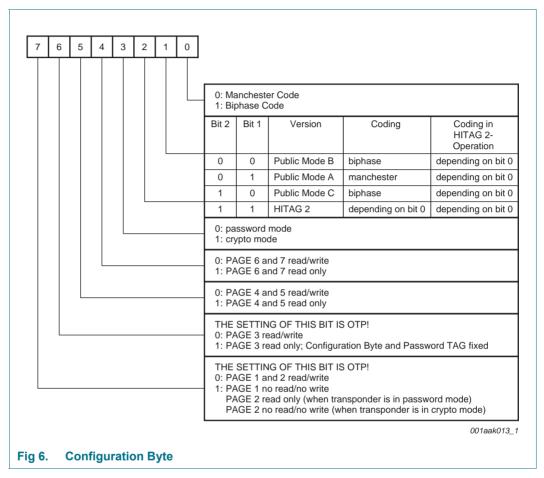
9.4.2 Status flow

After entering the RF-field the transponder enters the Wait Mode and waits for a command to start the authentication.

After issuing this command the mutual authentication takes place, followed by read- and write commands.

In password mode the data transfer occurs plain, in crypto mode data are encrypted.

The Halt Mode can be entered for muting a transponder.


If the transponder is configured in one of the public modes, these modes are entered automatically after a certain waiting time and data pages are sent cyclically to the RWD.

By issuing the command to start the authentication during the waiting time also public mode transponders can be brought into the authorized state.

9.4.3 Organization of the Configuration Byte

The Configuration Byte is represented by the first 8 bits of Page 3 of the transponder IC memory.

9.4.3.1 Configuration Byte

Configuration Byte/Bit 6:

Bit 6 = '0': Page 3 is read/write.

Bit 6 = '1': Page 3 can only be read. This process is irreversible!

ATTENTION: Do not set Bit 6 of the Configuration Byte to '1' before having written the final data into Page 3 (including the Configuration Byte and Password TAG) of the transponder.

Configuration Byte/Bit 7:

Bit 7 = '0': Pages 1 and 2 are read/write.

Bit 7 = '1': Pages 1 and 2 are locked against writing. This process is irreversible!

ATTENTION: Do not set Bit 7 of the Configuration Byte to '1' before having written the final data into Pages 1 and 2 of the transponder.

9.4.3.2 Standard values of the Configuration Byte

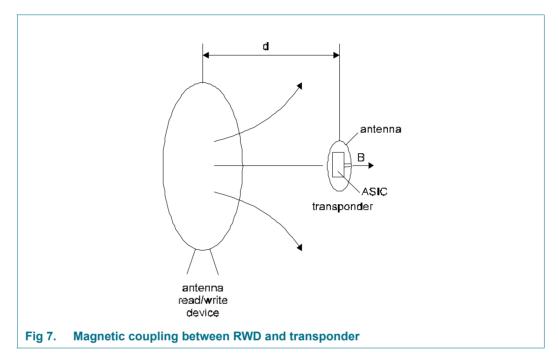
Table 5.	Standard values for the Configuration Byte	
Mode		Value
Password	d Mode	06h
Crypto M	ode	0Eh
Public Mo	ode A	02h
Public Mo	ode B	00h
Public Mo	ode C	04h

9.4.3.3 Delivery configuration of HITAG 2 transponder IC

HITAG 2 transponder ICs are delivered with the following configuration by NXP Semiconductors:

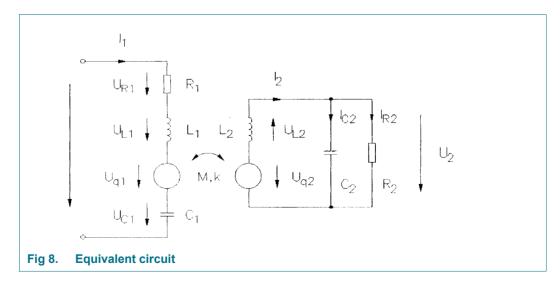
Table 6.Delivery configuration

Unique serial number		
Serial number	read only	fixed
Configuration byte		
06h	Password Mode (Manchester Code)	can be changed
	Page 6 and 7 read/write	can be changed
	Page 4 and 5 read/write	can be changed
	Page 3 read/write	can be changed
	Page 1 and 2 read/write	can be changed
Values for transport pas	sswords, transport keys	
Password RWD	4D 49 4B 52h (= "MIKR")	
Password TAG	AA 48 54h	
Key Low	4D 49 4B 52h (= "MIKR")	
Key High	4F 4Eh (= "ON")	


Recommendation:

Before delivering transponders to end users, Pages 1 to 3 should be locked (set Configuration Byte/Bit 6 to '1' for Page 3 and set Configuration Byte/Bit 7 to '1' for pages 1 and 2).

9.5 Electromagnetic characteristics


9.5.1 Magnetic flux densities

Since magnetic coupling is used for the data transmission between transponder and RWD the magnetic field is the most important attribute. Figure 7 shows the direction of the magnetic field lines with the transponder placed in the antenna field.

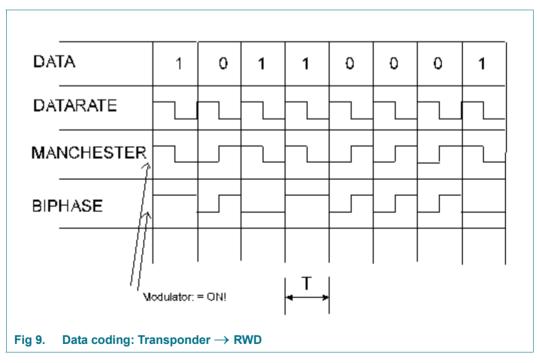
9.5.2 Equivalent circuit for data and energy transfer

Figure 8 shows the model for the transmission channel realized as an inductive coupled circuit. The primary side (L1) represents the RWD antenna and the secondary side (L2) the antenna of the transponder.

188330

9.6 Data transmission: transponder \rightarrow RWD

9.6.1 Coding

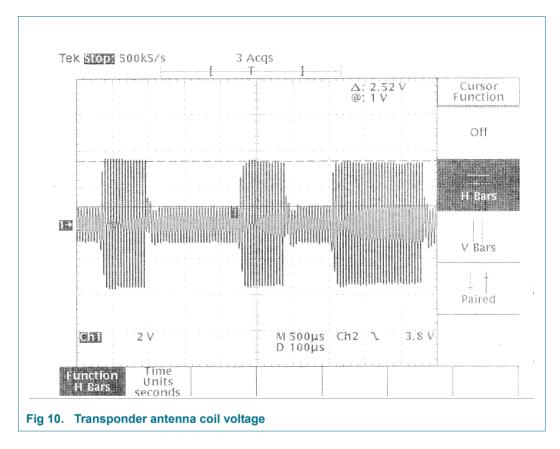

Load modulation is used, when sending data to the RWD. To force the absorption of the magnetic field, the transponder in principle turns on/off an internal resistor. With the resistor turned on, the physical state is named modulator ON (loaded) otherwise modulator OFF (unloaded).

Two different codes are used for the transmission of data to the read/write device:

Table 7. Obding a	ind Dit length		
Mode	Coding	Bit length T	Bit rate
Crypto	Biphase/Manchester	32 T ₀	4 KBit/s
Password	Biphase/Manchester	32 T ₀	4 KBit/s
Public Mode A	Manchester	64 T ₀	2 KBit/s
Public Mode B	Biphase	32 T ₀	4 KBit/s
PCF793X (PIT)	Biphase	64 T ₀	2 KBit/s

Table 7.Coding and Bit length

[1] T_0 ... Carrier period time ($^{1}/_{125}$ kHz = 8 µsec nominal)



The first bit of the transmitted data always starts with the Modulator ON (loaded) state.

9.6.2 Modulation

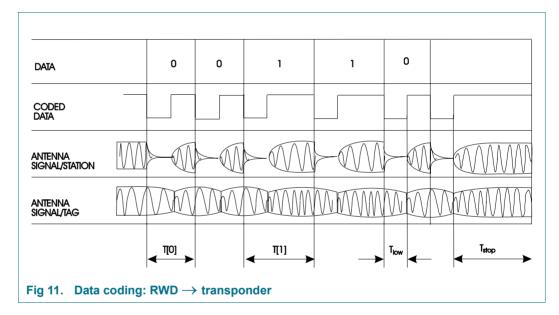
Figure 10 shows the voltage at the antenna coil of the transponder. Measurement was done with an additional coil fixed at the transponder.

The minimum modulation ratio depends on the coupling factor of the configuration (RWD antenna, tag antenna size).

9.7 Data transmission: RWD \rightarrow transponder

9.7.1 Coding

Data are transmitted to the transponder by switching on/off the current through the antenna. When the current is switched off, the physical state is named low field, otherwise high field.


Binary puls length modulation (BPLM) is used to encode the data stream.

All coded data bits and the stop condition start with a low field of length t_{low} .

Afterwards the field is switched on again.

- '0' and '1' can be distinguished by the duration of T[0] and T[1].
- The end of the data transmission is characterized by a stop condition.

Figure 11 shows the data transmission from the RWD to the transponder.

Table 8.Timing values

Symbol	Description	Duration	Unit ^[2]
t _{low}	low field time	4 to 10	T ₀ [1]
T[0]	logic 0 pulse length	18 to 22	T ₀
T[1]	logic 1 pulse length	26 to 32	T ₀
t _{stop}	high field for stop condition	> 36	T ₀

[1] This application specific value will be within this frame, but has to be optimized for each application depending on antenna current and quality factor!

[2] T_0 Carrier period time ($\frac{1}{125}$ kHz = 8 µsec nominal)

The average Bit rate from the RWD to transponder therefore is:

$$Bitrate = \frac{2}{T \lceil 0 \rceil + T \lceil 1 \rceil} = \ddot{5}, 2kB/s$$
(1)

Remark: The end of each data sequence from RWD to transponder has to be a stop condition.

Depending on transient and decay times caused by different RWDs the timing for T[0], T[1] and t_{low} has to be adapted.

The following two examples show the timing for two RWDs.

Used timing values with a Proximity Reader Module are:

Table 9. Timing values with a Proximity Reader Module	Table 9.	Timing values	s with a	Proximity	Reader Module
---	----------	---------------	----------	------------------	---------------

Symbol	Description	Duration	Unit ^[1]
t _{low}	low field time	6	T ₀
T[0]	logic 0 pulse length	22	T ₀
T[1}	logic 1 pulse length	28	T ₀

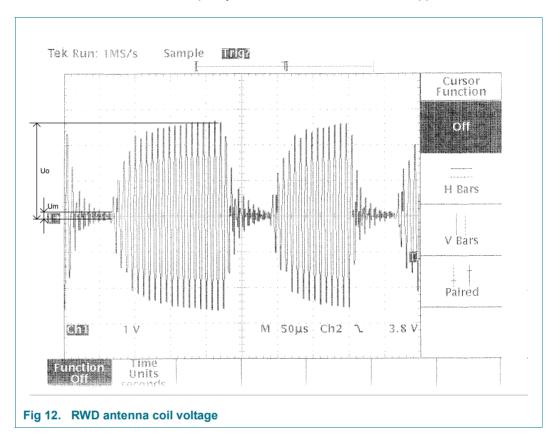
[1] T_0 Carrier period time ($\frac{1}{125}$ kHz = 8 µsec nominal)

Used timing values with a Long Range Reader Module are:

Table 10. Timing values with a Long Reader Module

Symbol	Description	Duration	Unit ^[1]
t _{low}	low field time	8	T ₀
T[0]	logic 0 pulse length	22	T ₀
T[1}	logic 1 pulse length	28	T ₀

[1] T_0 Carrier period time ($\frac{1}{125}$ kHz = 8 µsec nominal)


Remark: This application specific values have to be optimized for each application!

9.7.2 Modulation

The following figure shows the antenna voltage of the RWD.

The minimum modulation depends on the quality factor of the antennas (transponder and RWD).

A recommended value for the quality factor of the RWD antenna is approx. 40.

9.8 Switching the transmission direction

When switching between receiving and sending, the RWD has to consider time frames, in which transmission of data is not allowed:

- t_{WAIT1}: When receiving the last bit from the RWD, the transponder waits before answering.
- t_{WAIT2}: After receiving the last bit from the transponder, the RWD has to wait before sending data. Data transmitted to the transponder within twait, will not be recognized by the transponder.

Table 11. t_{WAIT} times

Symbol	Description	Duratio	Duration		
		Min	Max		
t _{WAIT1}	transponder switching from receive to transmit, wait time after end of data	199	206	T ₀	
t _{WAIT2}	transponder switching from transmit to receive, wait time after end of data	90 <mark>[1]</mark>	-	T ₀	

[1] t_{WAIT2} must not exceed 5000 T₀!

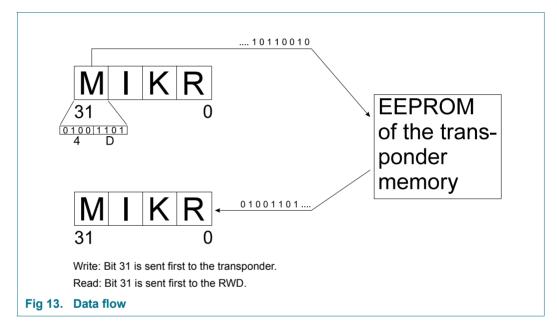
[2] T_0 Carrier period time ($\frac{1}{125}$ kHz = 8 µsec nominal)

9.8.1 Data integrity using the HITAG 2

For data transmission between RWD and transponders the HITAG 2 transponder IC supports special commands to increase data integrity.

Using additional inverted data transmission for commands, addresses as well as read data, utmost data integrity is achieved.

For write transmissions read after write is recommended. See also <u>Section 10 "Command</u> set and timing"


10. Command set and timing

There are two types of instructions

- 1. Instruction for the start of the communication (START_AUTH)
- 2. Instructions for the communication itself

10.1 Data flow: RWD ↔ transponder

Please note that the transponder IC memory works like a FIFO (First-In-First-Out) memory. Therefore the order of the bits transferred is as described in the example below:

10.2 START_AUTH-Instruction

CM1 CM0 ADDR4 ADDR3 ADDR2 1 1 0 0 0	Table 12.	START_AUTH				
1 1 0 0 0	CM1	CM0	ADDR4	ADDR3	ADDR2	
	1	1	0	0	0	

 T_0 Carrier period time ($\frac{1}{125}$ kHz = 8 µsec nominal)

10.2.1 Crypto Mode

After an instruction START_AUTH from the RWD all transponders in the field respond with a start sequence (5 bits '1') followed by their 32 bit serial number (SN).

RWD	11000	\rightarrow					
Transponder		←	11111	SN31		SN0	
	↑ first in		start sequence	32 Bit se	erial nı	umber	
RWD	32 bit PF	RN 3	32 bit secret	data	\rightarrow		
Transponder	first in				←	11111	Config. Byte / Password TAG
					-		32 Bit

The instruction START_AUTH cannot be repeated, because at the same time the crypto unit is initialized. A second START_AUTH resets the state machine. Therefore the transponder only responds to every second START_AUTH.

After the transponder has sent the serial number, the RWD sends a 32 bit Pseudo Random Number (PRN) and a 32 bit secret datastream to the transponder. If the secret datastream corresponds with the secret datastream on the transponder, Page 3 of the transponder (8 bit configuration, 24 bit password transponder) is transmitted after the 5 bit header.

With the transponder password in the configuration page the mutual authentication takes place. Access to the transponder is only possible after this mutual authentication and password checking routine. Transmission of the password and the following communication takes place encrypted.

As the information about the configuration of the transponder (password or crypto) is transmitted with the configuration page, the RWD must know which type of transponder has to be handled. In one application either crypto transponders or password transponders are to be handled.

The write instructions are interrupted by the transponder, when the memory supply is too low during the write operation.

Timing:

RWD Transponder	11000	ID number	PRN/P	SW	Config Byte/Password TAG
t _{PowerUp}	t _{START_AUTH}	t _{WAIT1} t _{SN}	t _{WAIT2} t _{PZZ/S}	SDS t _{WAIT1}	t _{CONFIG}
	Table 13. Timi	ng in crypto mode			
	Symbol	Min	Тур	Мах	Unit ^[1]
	t _{PowerUp}	-	312.5	-	T ₀
	t _{START_AUTH}	-	116	-	T ₀
	t _{WAIT1}	199	-	206	T ₀
	t _{SN}	-	1184 <mark>[2]</mark>	-	T ₀
	t _{WAIT2}	90	-	-	T ₀
	t _{PZZ/SDS}	1280	1536	1792	T ₀
	t _{CONFIG}	-	1184 <mark>[2]</mark>	-	T ₀
	Total	-	4630	-	ТО

[1] T_0 Carrier period time ($\frac{1}{125}$ kHz = 8 µsec nominal)

[2] Timing defined by digital design and therefore fixed

After a following t_{WAIT2} the first read or write instruction can be sent by the RWD. The authentication time in crypto mode is about 4630 T₀.

10.2.2 Password Mode

After an instruction START_AUTH from the RWD all transponders in the field respond with a start sequence (5 bits '1') followed by their 32 bit serial number.

RWD	11000 →				
Transponder		\leftarrow	11111	SN31SN0	
	↑ first in		start	32 Bit serial number	
	first in		sequence		
RWD	32 bit PSW		\rightarrow		
Transponder	first in		\leftarrow	11111 Config. Byte / I	Password TAG
				32 Bit	

The instruction START_AUTH cannot be repeated. A second START_AUTH resets the state-machine. Therefore the transponder only responds to every second START_AUTH.

After the transponder has sent the serial number, the RWD sends a 32 bit password. If the password corresponds with the password on the transponder, Page 3 of the transponder (8 bit configuration, 24 bit password transponder) is transmitted after the 5 bit header.

With the transponder password in the Configuration Page the mutual authentication takes place.

Access to the transponder is only possible after this mutual authentication and password checking routine.

As the information about the configuration of the transponder (password or crypto) is transmitted with the Configuration Page, the RWD must know which type of transponder has to be handled. In one application either crypto transponders or password transponders are to be handled.

The read and write instructions are interrupted by the transponder, when the memory supply is too low during read or write.

As the transponder is selected by the password, each transponder must have a unique password, that can have a connection with the serial number.

Timing:

RWD Transponder	11000	ID nur		SW	Config Byte/Password TAG
	t _{PowerRUp} t _{START_AU}	· · ·	I I	t _{PSW} t _{WAIT1}	t _{CONFIG}
	Table 14.	Fiming in passwore	d mode		
	Symbol	Min	Тур	Max	Unit ^[1]
	t _{PowerUp}	-	312.5	-	T ₀
	tstart_auth	-	116	-	T ₀

t _{WAIT1}	199	-	206	T ₀	
t _{SN}	-	1184 <mark>[2]</mark>	-	T ₀	
t _{WAIT2}	90	-	-	T ₀	
t _{PZZ/SDS}	640	768	896	T ₀	
t _{CONFIG}	-	1184 <mark>[2]</mark>	-	T ₀	
Total	-	3860	-	T0	

[1] T_0 Carrier period time ($\frac{1}{125}$ kHz = 8 µsec nominal)

[2] Timing defined by digital design and therefore fixed

After t_{WAIT2} the first read or write instruction can be sent by the RWD. The authentication time in password mode is about 3860 T₀.

10.2.3 Public Modes A and B

After the Configuration Byte is stored in the logic during power up, and after the synchronization phase of the state machine, the transponder waits for the instruction START_AUTH. If the RWD does not send the instruction START_AUTH within t_{WAIT} START_AUTH after the Power_Up (312.5 T₀ after the RF-field is applied) the transponder begins to send the data in one of the public modes (depending on the configuration).

Table 15. Timings

Symbol	Description	Duration	Unit ^[2]
t _{PowerUp}	internal power_up time	312.5	T ₀
twait start_auth	waiting time to receive the START_AUTH command	max. 232.5 ^[1]	T ₀

[1] If the waiting time $t_{WAIT START_AUTH}$ exceeds 232.5 T₀ the transponder enters the *read-only* state.

[2] T_0 Carrier period time ($\frac{1}{125}$ kHz = 8 µsec nominal)

Product data sheet

CONFIDENTIAL

Public Mode A

In this standard read-only mode the transponder cyclically transmits page 4 and page 5 in plain mode to the RWD without a start sequence as long as the transponder is in the field of the RWD. The data are transmitted in Manchester Code with a baudrate of 2 KBit/s.

	Power Up and Synchronization	Wait for START_AUTH						
	312.5 T ₀	232.5 T ₀						
Transponder			Page 4	Page 5	Page 4	Page 5	Page 4	

Remark: As the RWD has to be synchronized to the data, the first 9 bits of page 4 are '1' (header of the transponder in Public Mode A).

Timing:

Transponder			PAGE4, PAGE5	PAGE4, PAGE5	
					-
	t _{PowerUp}	twaitstart auth	t _{PAGE4PAGE5}	t _{PAGE4PAGE5}	

twaitstart_auth t_{PowerUp}

Table 16. Timing in Public Mode A

Symbol	Min	Тур	Max	Unit ^[1]
t _{PowerUp}	-	312.5	-	T ₀
twaitstart_auth	-	-	232.5	T ₀
t _{PAGE4PAGE5}	-	4096[2]	-	T ₀
Total	-	4640	-	ТО

[1] T_0 Carrier period time ($\frac{1}{125}$ kHz = 8 µsec nominal)

[2] Timing defined by digital design and therefore fixed

If the RWD sends the instruction START AUTH within the 232.5 T₀ after the power up the transponder behaves like a normal HITAG 2 transponder IC. Depending on bit 3 of the Configuration Byte, the communication is plain or encrypted.

Public Mode B

Public Mode B accords to the ISO standards 11784 and 11785 for animal identification.

In this mode the transponder cyclically transmits page 4 to page 7 in plain mode to the RWD without a start sequence as long as the transponder is in the field of the RWD. The data are transmitted in Biphase Code with a baudrate of 4 KBit/s.

	Power Up and Synchronization	Wait for START_AUTH						
	312.5 T ₀	232.5 T ₀						
onder			Page 4	Page 5	Page 6	Page 7	Page 4	

Transponder

If the RWD sends the instruction START_AUTH within the 232.5 T_0 after the power up the transponder behaves like a normal HITAG 2 transponder IC. Depending on bit 3 of the Configuration Byte, the communication is plain or encrypted.

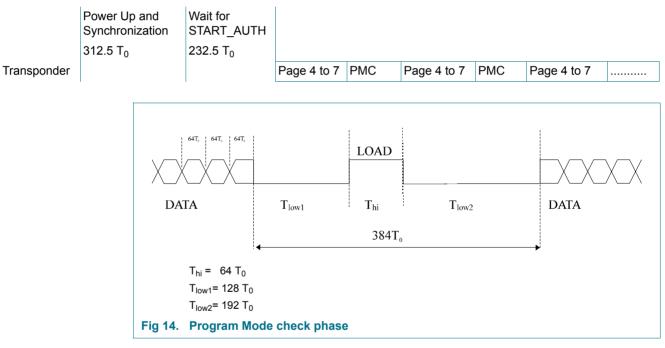
Timing:

Transponder			PAGE4 PAGE5]
	t _{PowerUp}	twaitstart_auth	t _{PAGE47}	

Table 17. Timing in Public Mode B

Symbol	Min	Тур	Max	Unit ^[1]
t _{PowerUp}	-	312.5	-	T ₀
twaitstart_auth	-	-	232.5	T ₀
t _{PAGE47}	-	4096[2]	-	T ₀
Total	-	4640	-	ТО

[1] T_0 Carrier period time ($\frac{1}{125}$ kHz = 8 µsec nominal)


[2] Timing defined by digital design and therefore fixed

Public Mode C

With this additional feature a HITAG 2 transponder IC that is configured in Public Mode C is compatible to the PCF793X (PIT).

After the configuration byte is stored in the logic during power up, and after the synchronization phase of the state machine, the transponder waits for the instruction START_AUTH. If the RWD does not send the instruction START_AUTH within 232.5 T0 after power up the transponder begins to send the data in PCF793X mode.

In this mode the transponder cyclically transmits page 4 to page 7 in plain mode to the RWD without a start sequence as long as the transponder is in the field of the RWD. The data are transmitted in Biphase Code with a baudrate of 2 KBit/s. Between the 128 bit data blocks there is a Program Mode Check phase (PMC).

If the RWD sends the instruction START_AUTH within the 232.5 T_0 after the power up the transponder behaves like a normal HITAG 2 transponder IC. Depending on bit 3 of the Configuration Byte, the communication is plain or encrypted.

Remark: Only the READ MODE of the PCF793X is emulated (with a different PMC).

Timing:

Transponder			PAGE4 - 7	PMC	PAGE4 - 7]	
	t _{PowerUp}	twaitstart_auth	t _{PAGE4-7}	t _{PMC}	t _{PAGE4-7}		
Table 18. Timing in Public Mode C							
Symbol	Min	Тур		Max	Unit ^[1]		
t _{PowerUp}	-	312.5	5	-	T ₀		
twaitstart_au	JTH -	-		232.5	T ₀		
t _{PAGE47}	-	8192	2]	-	T ₀		
t _{PMC}	-	384[2	<u>l</u>	-	T ₀		
Total	-	9120		-	ТО		

[1] T_0 Carrier period time ($\frac{1}{125}$ kHz = 8 µsec nominal)

[2] Timing defined by digital design and therefore fixed

10.3 Communication instructions

Before starting a read or write operation the transponder has to be selected by the START_AUTH command.

Table 19.	Communication	instructions
-----------	---------------	--------------

CM1	CM0	ADDR4	ADDR3	ADDR2	Command
1	1	х	х	х	READ PAGE
0	1	х	х	Х	READ PAGE INVERTED
1	0	х	х	Х	WRITE PAGE
0	0	Х	х	Х	HALT

Times for communication instructions depend on the protection of data in the protocol from RWD to the transponder.

10.3.1 READ PAGE

first out

The instruction READ PAGE (2 bits) and the page address (3 bits) are transmitted to the transponder in normal mode and in inverted mode to secure the data channel from RWD to transponder. To achieve a higher confidence level, this protocol can be repeated several times. The logic on the transponder checks if there is a failure in the sequence. The READ PAGE instruction therefore is 10, 15, 20, bits long. If there is a failure in the transmission of the sequence the transponder receives no more data and there was no failure in the transmission of the sequence, the transponder receives with the 5 bit header and the 32 bit data of the addressed page.

Timing:

RWD	Command			
Transponder			Data	
	t _{KOMM}	t _{WAIT1}	t _{DATA}	t _{WAIT2}

Table 20. Timing of READ PAGE instruction

Symbol	Min	Тур	Max	Unit ^[1]
t _{KOMM}	-	240	-	T ₀
t _{WAIT1}	199	-	206	T ₀
t _{DATA}	-	1184 <mark>[2]</mark>	-	T ₀
t _{WAIT2}	90	-	-	T ₀
Total	-	1750	-	Т0

[1] T_0 Carrier period time ($^{1}/_{125}$ kHz = 8 µsec nominal)

[2] Timing defined by digital design and therefore fixed

After t_{WAIT2} the next instruction can be accepted by the transponder.

A typical READ PAGE (10 bit command) time therefore is: 1750 T_0

HITAG 2 Transponder IC

10.3.2 READ PAGE INVERTED

first out

The instruction READ PAGE INVERTED (2 bits) and the page address (3 bits) are transmitted to the transponder in normal mode and in inverted mode to secure the data channel from RWD to transponder. To achieve a higher confidence level, this protocol can be repeated several times. The logic on the transponder checks if there is a failure in the sequence. The READ PAGE INVERTED instruction therefore is 10, 15, 20, bits long. If there is a failure in the transmission of the sequence the transponder is reset and the communication has to be started again with START_AUTH. If the transponder receives no more data and there was no failure in the transmission of the addressed page. The data are transmitted inverted to the RWD.

By alternating transmission of the instructions READ PAGE and READ PAGE INVERTED the data from the transponder to the RWD can be secured at a level that can be chosen by the user. Additionally check data can be stored in the transponder IC memory with the data.

Timing:

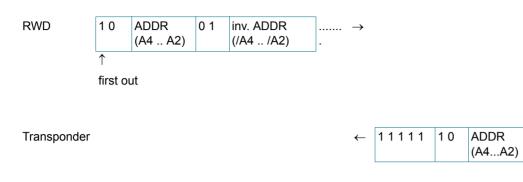
Table 21. Timing of READ PAGE INVERTED instruction

Symbol	Min	Тур	Мах	Unit ^[1]
t _{KOMM}	-	240	-	T ₀
t _{WAIT1}	199	-	206	T ₀
t _{DATA}	-	1184 <mark>[2]</mark>	-	T ₀
t _{WAIT2}	90	-	-	T ₀
Total	-	1750	-	Т0

[1] T_0 Carrier period time ($\frac{1}{125}$ kHz = 8 µsec nominal)

[2] Timing defined by digital design and therefore fixed

After t_{WAIT2} the next instruction can be accepted by the transponder.


A typical READ PAGE INVERTED (10 bit command) time therefore is: 1750 T₀

01

inv. ADDR

(/A4 .. /A2)

10.3.3 WRITE PAGE

RWD 32 Bit Data

The instruction WRITE PAGE (2 bits) and the page address (3 bits) are transmitted to the transponder in normal mode and in inverted mode to secure the data channel from RWD to the transponder. To achieve a higher confidence level, this protocol can be repeated several times. The logic on the transponder checks if there is a failure in the sequence. The WRITE PAGE instruction therefore is 10, 15, 20, bits long. If there is a failure in the transmission of the sequence the transponder is reset and the communication has to be started again with START_AUTH. If the transponder receives no more data and there was no failure in the transmission of the sequence, the transponder answers with the 5 bit header and an acknowledgement. This acknowledgement consists of the WRITE PAGE instruction and the page address in normal and inverted mode.

With this procedure the RWD knows, that the data are written to the correct address.

After the address sent from transponder to RWD has been checked, the RWD transmits 32 bit data to the transponder. There is no acknowledgement from the transponder concerning the success of data programming. This can only be tested by read-after-write.

The READ PAGE command for a read-after-write has to be executed immediately following the WRITE PAGE command. If the memory supply was too low during programming (insufficiently programmed cell, data retention not ensured) the read command is not executed by the transponder (control function!). In this case the transponder is reset and the user has to start again with a START AUTH command.

Timing:

Table 22. Timing WRITE PAGE instruction

Symbol	Min	Тур	Max	Unit ^[1]
t _{KOMM}	-	240	-	T ₀
t _{WAIT1}	199	-	206	T ₀
t _{QUIT}	-	480 <mark>[2]</mark>	-	T ₀
t _{WAIT2}	90	-	-	T ₀
t _{DATA}	640	768	896	T ₀
t _{PROG}	-	614 <mark>[2]</mark>	-	T ₀
t _{WAIT2}	90		-	T ₀
Total	-	2500	-	ТО

[1] T_0 Carrier period time ($\frac{1}{125}$ kHz = 8 µsec nominal)

[2] Timing defined by digital design and therefore fixed

After t_{WAIT2} the next instruction can be accepted by the transponder.

A typical WRITE PAGE (10 bit command) time therefore is: 2500 T_0

10.3.4 HALT

With the HALT instruction a selected transponder can be set to the HALT Mode. In this mode the transponder is muted and does not respond to a START_AUTH from the RWD. If the transponder is set to HALT Mode after the communication, other transponders within the field of the antenna can be handled.

If the transponder is in HALT Mode, only a Power-on-reset (POR) enables the transponder to communicate with the RWD again. This means that the transponder has to leave the field of the antenna or the field has to be switched off (Reset).

RWD	00	ADDR (A4 A2)	inv. ADDR (/A4 /A2)	 \rightarrow
	1			

first out

Transponder

←	11111	00	ADDR	11	inv. ADDR
			(A4A2)		(/A4 /A2)

The instruction HALT (2 bits) and the page address (3 bits) are transmitted to the transponder in normal mode and in inverted mode to secure the data channel from RWD to the transponder. To achieve a higher confidence level, this protocol can be repeated several times. The logic on the transponder checks if there is a failure in the sequence. The HALT instruction therefore is 10, 15, 20, bits long. If there is a failure in the transmission of the sequence the transponder receives no more data and there was no failure in the transmission of the sequence, the transponder receives no more data and there was no failure in the transmission of the sequence. This acknowledgement consists of the HALT instruction and the page address in normal and inverted mode. The address that is transmitted with the HALT instruction can be any of the possible addresses.

Timing:

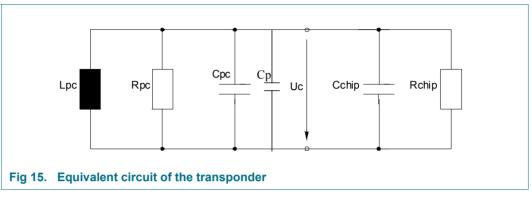
RWD	Command			
Transponder			Acknow.	
	t _{комм}	t _{WAIT1}	t _{QUIT}	

Table 23. Timing of HALT instruction

Symbol	Min	Тур	Max	Unit ^[1]
t _{KOMM}	-	240	-	T ₀
t _{WAIT1}	199	-	1648	T ₀
t _{QUIT}	-	480[2]	-	T ₀
Total	-	1000	-	Т0

[1] T_0 Carrier period time ($\frac{1}{125}$ kHz = 8 µsec nominal)

[2] Timing defined by digital design and therefore fixed


A typical HALT (10 bit command) therefore is 1000 T_0 .

Product data sheet

CONFIDENTIAL

10.4 Transponder coil specification - HT2MOA2S20

The HITAG 2 chip module has to be connected to a coil whose parameters are briefly described in the following.

$$f_{res} = \frac{1}{2\pi \sqrt{(C_{chip} + C_{pc} + C_p)L_{pc}}} = 125kHz \rightarrow L_{pc} = \frac{1}{(2\pi f_{res})^2 (C_{chip} + C_{pc} + C_p)}$$
(2)

	Description
Uc	voltage at the connection pads
f _{res}	resonant frequency of the transponder
L _{pc}	parallel inductivity of the coil (f = 125 kHz)
R _{pc}	parallel resistance of the coil (f = 125 kHz)
Cp	parasitic capacitance of the package
C _{chip}	210 pF ± 10 %
f _{resc}	self resonant frequency of the coil
R _{chip}	resistance of the chip
R _{pc}	> 45 k Ω to increase Q_{coil}
Q _{coil}	> 7.5 quality factor of transponder coil at 125 kHz
C _{pc}	parasitic capacitance of the coil

C _{pc}	parasitic capacitance of the coll
C _{chip}	capacitance of the chip ($U_c > 4 Vpp$)
L _{pc}	> 6.5 mH to ensure resonant frequency near 125 kHz

Remark: The parasitic capacitance of the package (C_p) must be considered.

Typical values for C_p molded tags: C_p = 6.0 pF

For a rough estimation (\pm 10 %) of the number of coil windings following formula can be used. It is assumed that the winding is done in circular form.

$$N = \frac{L}{2U \ln\left(\frac{u}{d}\right)}$$
(3)

Table 24.Abbreviations

	Description
Ν	number of windings
L	inductance [nH]
U	average coil circumference [cm]
d	copper diameter [mm]
u	average coil circumference [mm]

For fine tuning a measurement of the inductance and an according adjustment of the number of windings is necessary. This process always needs some iterations.

11. Limiting values

Table 25. Limiting values - HT2IC2002^[1]

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DD}	supply voltage		-0.5	+6.5	V
V_{ESD}	electrostatic discharge voltage	MIL-STD 883D, Method 3015.7, Human Body	2	-	kV
l _{lu}	latch-up current	MIL-STD 883D, Method 3023	100		mA
I _{i(max)}	maximum input current	IN1-IN2	-	30	mA _{peak}
Tj	junction temperature		-55	+140	°C

[1] Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any conditions other than those described in the Operating Conditions and Electrical Characteristics section of this specification is not implied.

Table 26. Limiting values -HT2DC20S20 (SOT385-1)/ HT2MOA2S20 (SOT500-2)[1]

Symbol	Parameter	Conditions	Min	Max	Unit
T _{stg}	storage temperature		-55	+125	°C
	Magnetic flux density		-	0.2	Т

[1] Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any conditions other than those described in the Operating Conditions and Electrical Characteristics section of this specification is not implied.

Product data sheet

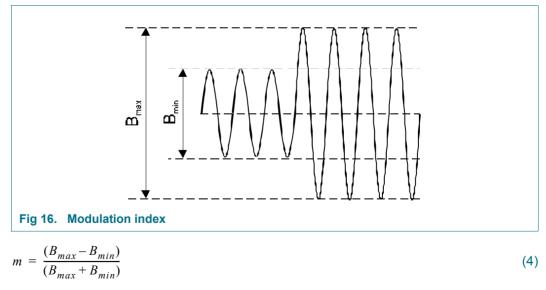
CONFIDENTIAL

12. Characteristics

Symbol Pa	arameter	Conditions	Min	Max	Unit
Operating ran	ge				
T _A Te	emperature	$R_{ThJunctionAmbient} \le 30K/W$ @ I _{IN} =30mA	-40	85	°C
VDD S	upply Voltage		2.8	5.5	V
Power consum	nption				
I _{VDDQ} Q	uiescent Current	VDD=3.5V, Limiter off	-	4	μA
l _{VDDI} Id	le Current	VDD=3.5V, V _{IN} =100mV @ 125 kHz, Limiter off	-	7	μA
Clock recover	у				
V _{CLK} Se	ensitivity	VDD=3.5V	-	100	mV
f _{CLK} Fi	requency	V _{IN} =100mV, VDD=3.5V	-	250	kHz
Demodulator					
V _{DEMOD} So	ensitivity	V _{INHigh} - V _{INLow} @ V _{INHigh} =5Vp, T₀=8µs, T _{MOD} =6*T₀	-	2	V
T _{DEMOD} R	esponse Time	V _{INHigh} =5V, V _{INLow} =2.5V, T₀=8µs, T _{MOD} =6*T₀	4	24	μS
Modulator					
R _{IN1L} R	IN1 linear	VDD=3.5V, V _{IN1} =0.5V, V _{IN2} =0V	1.6	3.0	kΩ
R _{IN1NL} R	IN1 nonlinear	VDD=3.5V, V _{IN1} =1.5V, V _{IN2} =0V	480	1.46	kΩ
R _{IN2L} R	IN2 linear	VDD=3.5V, V _{IN1} =0V, V _{IN2} =0.5V	3.4	6.4	kΩ
Voltage limiter	·				
V _{LimitMin} M	inimum Voltage	VDD @ Ι _{IN} ±10 μΑ	2.7	-	V
V _{LimitMax} M	aximum Voltage	VDD @ $I_{IN} \pm 30 \ \mu A$	-	5.5	V
Resonance ca	pacitor				
C _{ResInit}		VDD=3.5V	189	231	pF
Power on rese	ət				
	atic Power on Reset Level		1.3	2.3	V
VDD capacitor					
	DD Capacitor Value	VDD=3.5V	0.9	2.0	nF
EEPROM char					
W	rite current	VDD=2.8V	-	20	μA
re	ad current	VDD=2.8V	-	7	μA
	tention time	@ 55 °C	10	-	year
N _{endu(W)} w	rite endurance		100000) -	cycle

[1] In normal operation supply voltage is generated by on chip rectification and limitation of the AC voltage applied via antenna to pins IN1 and IN2, and can be measured at pins VDD and VSS.

[2] Pins VDD and VSS are not connected for normal operation but can be used for forcing supply voltages during test.


188330

Symbol	Parameter	Conditions	Min	Мах	Unit
T _A	ambient temperature	RThJunctionAm bient ≤ 30 K/W @ IINpeak = 30 mA	-25	85	°C
f _{RES}	resonance frequency		121	129	kHz
B _W	bandwidth		2.3	-	kHz
B _{thr}	magnetic flux density, data transmission from transponder to base station	f ₀ = 125 kHz	35	400 <u>[1</u>]	μT _{pp}
B _{prog}	magnetic flux density for programming the EEPROM	m = 0.95 $f_0 = 125 \text{ kHz}$ $t_{\text{low}} = 8T_0$	35	400 <u>[1</u>]	μT _{pp}
B _{auth}	magnetic flux density for mutual authentication	m = 0.95 $f_0 = 125 \text{ kHz}$ tlow = 8T ₀	35	400 <mark>[1</mark>]	μT _{pp}
B _{read}	field absorption due to the modulation of the transponder	f_0 = 125 kHz B _{field} = 35 µT _{pp}	8	-	μT_{pp}
Mi _{PRG}	modulation index (m) of the base station for programming and authentication	B_{field} = 35 μT_{pp} f ₀ = 125 kHz	95	100	%
		$t_{low} = 8T_0$			

Table 28. Electrical characteristics - HT2DC20S20 (SOT385-1)

[1] Maximum available field strength of the test equipment. Transponder limit has not been characterized.

All parameters are characterized with the Scemtec test equipment (STM-1), available from SCEMTEC, Reichshof-Wenrath, Germany.

$$B_{read} = \left| B_{max} - B_{min} \right| \tag{5}$$

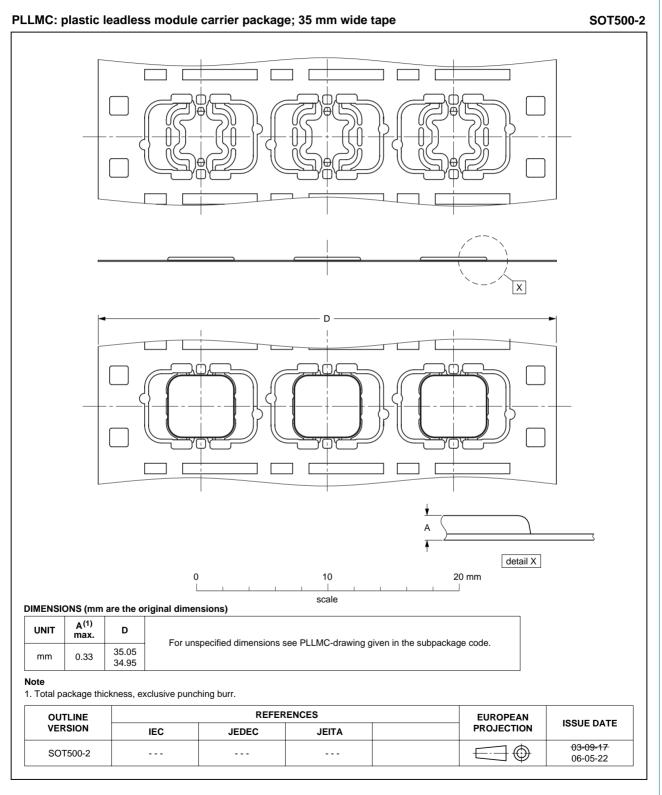
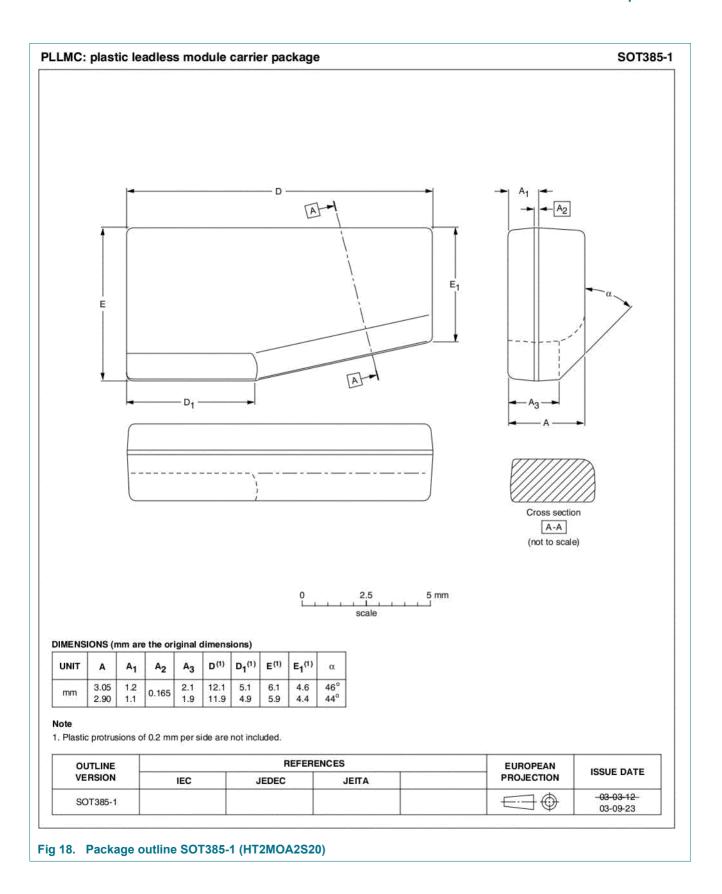

Table 29.	Electrical characteristics - HT2MOA2S20 (SOT500-2)				
Symbol	Parameter	Conditions	Min	Мах	Unit
Operating	g range				
T _A	ambient temperature	$R_{ThJunctionAmbient} \le 30$ K/W @ I_{INpeak} = 30 mA	-25	85	°C
V _{IN, TH}	input threshold voltage	start modulation after SETCC	-	3.9	Vp
V _{IN, RD}	input read voltage	read EEPROM	-	4.5	Vp
V _{IN, WR}	input write voltage	write EEPROM	-	4.7	Vp
Modulato	r				
R _{MODL}	R_MOD linear	$V_{INLow} \le 2.0 V_p$	-	4.0	kΩ
R _{MODNL}	R_MOD linear	$V_{INLow} \le 2.0 V_p$	-	3.6	kΩ
Resonan	ce capacitor				
	C _{RESInit}	$V_{IN} = 4.0 V_p$	189	231	pF

Table 29. Electrical characteristics - HT2MOA2S20 (SOT500-2)

13. Mechanical characteristics


Parameter	Value	Unit
Mechanical dimensions	12 x 6 x 3	mm
Protection class	IP67	
Casting material	epoxy resin	
Housing color	black	
Vibration	20	g
• 20 to 200 Hz		
• 3-axis		
 IEC 68-2-6, Test Fc 		

14. Package outline

Fig 17. Package outline SOT500-2 (HT2DCS20)

HITAG 2 Transponder IC

CONFIDENTIAL

15. Abbreviations

Table 31. Abbreviations			
Abbreviation	Definition		
AC	Anticollision Code		
BPLM	Binary Pulse Length Modulation		
CRC	Cyclic Redundancy Check		
EEPROM	Electrically Erasable Programmable Memory		
IC	Integrated Circuit		
RO	Read Only		
R/W	Read/Write		
RWD	Read Write Device		
SN	Serial Number		
WO	Write Only		

16. References

- [1] Application note AN10214, HITAG Coil Design Guide, Transponder IC BL-ID Doc.No.: 0814**1
- [2] General specification for 8" wafer on UV-tape Delivery type description, BL-ID Doc.No.: 1005**1

188330

^{1. ** ...} document version number

17. Revision history

Table 32. Revision history					
Document ID	Release date	Data sheet status	Change notice	Supersedes	
188330	20100226	Product data sheet	-	-	

18. Legal information

18.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

18.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

18.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on a weakness or default in the customer application/use or the application/use of customer's third party customer(s) (hereinafter both referred to as "Application"). It is customer's sole responsibility to check whether the NXP Semiconductors product is suitable and fit for the Application planned. Customer has to do all necessary testing for the Application in order to avoid a default of the Application and the product. NXP Semiconductors does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Non-automotive qualified products — Unless the data sheet of an NXP Semiconductors product expressly states that the product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

188330

All information provided in this document is subject to legal disclaimers.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

18.4 Licenses

ICs with HITAG functionality

NXP Semiconductors owns a worldwide perpetual license for the patents US 5214409, US 5499017, US 5235326 and for any foreign counterparts or equivalents of these patents. The license is granted for the Field-of-Use covering: (a) all non-animal applications, and (b) any application for animals raised for human consumption (including but not limited to dairy animals), including without limitation livestock and fish.

Please note that the license does not include rights outside the specified Field-of-Use, and that NXP Semiconductors does not provide indemnity for the foregoing patents outside the Field-of-Use.

18.5 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

HITAG — is a trademark of NXP B.V.

19. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

20. Tables

Table 1.	Ordering information2
Table 2.	Overview of transponders
Table 3.	HITAG 2 in password mode
Table 4.	HITAG 2 in crypto mode
Table 5.	Standard values for the Configuration Byte12
Table 6.	Delivery configuration
Table 7.	Coding and Bit length14
Table 8.	Timing values
Table 9.	Timing values with a Proximity Reader Module 17
Table 10.	Timing values with a Long Reader Module17
Table 11.	tWAIT times
Table 12.	START_AUTH
	Timing in crypto mode
	Timing in password mode24
Table 15.	Timings
Table 16.	Timing in Public Mode A26
Table 17.	Timing in Public Mode B27
Table 18.	Timing in Public Mode C29

21. Figures

Fig 1.	Block diagram of HITAG 2 transponder IC3
Fig 2.	Bond plan of HT2ICS2002 [units in mm] 4
Fig 3.	Memory map in Crypto Mode
Fig 4.	Memory map in Password Mode
Fig 5.	Status flow
Fig 6.	Configuration Byte
Fig 7.	Magnetic coupling between RWD and
	transponder
Fig 8.	Equivalent circuit
Fig 9.	Data coding: Transponder \rightarrow RWD
Fig 10.	Transponder antenna coil voltage15
Fig 11.	Data coding: RWD \rightarrow transponder
Fig 12.	RWD antenna coil voltage
Fig 13.	Data flow
Fig 14.	Program Mode check phase
Fig 15.	Equivalent circuit of the transponder
Fig 16.	Modulation index41
Fig 17.	Package outline SOT500-2 (HT2DCS20)43
Fig 18.	Package outline SOT385-1 (HT2MOA2S20)44

Table 19.	Communication instructions	30
	Timing of READ PAGE instruction	
Table 21.	Timing of READ PAGE INVERTED instruction	32
	Timing WRITE PAGE instruction	
	Timing of HALT instruction	
Table 24.	Abbreviations	38
	Limiting values - HT2IC2002 ^[1]	39
Table 26.	Limiting values -HT2DC20S20 (SOT385-1)/	
	HT2MOA2S20 (SOT500-2) ^[1]	39
Table 27.	Electrical characteristics - HT2IC2002 ^{[1][2]}	40
Table 28.	Electrical characteristics -	
	HT2DC20S20 (SOT385-1)	41
Table 29.	Electrical characteristics - HT2MOA2S20	
	(SOT500-2)	42
Table 30.	Mechanical characteristics HT2DC20S20	
	(SOT385-1)	
	Abbreviations	
Table 32.	Revision history	47

22. Contents

1	Introduction 1
2	General description 1
3	Features and benefits 2
4	Applications 2
5	Ordering information 2
6	Block diagram 3
7	Pinning information 4
8	Mechanical specification 5
8.1	Wafer specification
8.1.1	Wafer 5
8.1.2	Wafer backside 5
8.1.3	Chip dimensions
8.1.4	Passivation on front 5
8.1.5	Bondpads
8.1.6	Fail die identification 6
8.1.7	Map file distribution 6
9	Functional description 6
9.1	Overview of transponder 6
9.2	Memory map7
9.3	Definition of passwords and keys 8
9.4	Operation Modes and Configuration
9.4.1	Modes of operation
	Crypto Mode9
	Password Mode9
	Public Mode A (Manchester)
	Public Mode B (Biphase)
	Public Mode C (Biphase)9
9.4.2	Status flow 10
9.4.3	Organization of the Configuration Byte 11
9.4.3.1	Configuration Byte 11
	Configuration Byte/Bit 6:11
	Configuration Byte/Bit 7:11
9.4.3.2	Standard values of the Configuration Byte 12
9.4.3.3	Delivery configuration of HITAG 2
	transponder IC 12
	Recommendation:
9.5	Electromagnetic characteristics
9.5.1	Magnetic flux densities
9.5.2	Equivalent circuit for data and energy transfer 13
9.6	Data transmission: transponder \rightarrow RWD 14
9.6.1	Coding 14
9.6.2	Modulation 15
9.7	Data transmission: RWD \rightarrow transponder 16
9.7.1	Coding 16
9.7.2	Modulation 18
9.8	Switching the transmission direction 19

9.8.1	Data integrity using the HITAG 2	19
10	Command set and timing	20
10.1	Data flow: RWD \leftrightarrow transponder	
10.2	START_AUTH-Instruction	
10.2.1	Crypto Mode	
	Timing:	
10.2.2	Password Mode	
	Timing:	. 24
10.2.3	Public Modes A and B	
	Public Mode A	
	Timing:	
	Public Mode B	
	Timing:	
	Public Mode C	
	Timing:	
10.3	Communication instructions	
10.3.1	READ PAGE	31
	Timing:	
10.3.2	READ PAGE INVERTED	
	Timing:	
10.3.3		
	Timing:	
10.3.4	HALT	
	Timing:	. 36
10.4	Transponder coil specification - HT2MOA2S20	37
11	Limiting values	39
12	Characteristics	40
12	Mechanical characteristics	40
14	Package outline	43
15	Abbreviations	45
16	References	46
17	Revision history	47
18	Legal information	48
18.1	Data sheet status	48
18.2	Definitions	48
18.3	Disclaimers	48
18.4	Licenses	49
18.5	Trademarks	49
19	Contact information	49
20	Tables	50
21	Figures	50
22	Contents	51
	•••••••••••••••••••••••••••••••••••••••	51

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2010.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 26 February 2010 188330

All rights reserved.