ricom

&

DBL"™

Application Programming Interface

Version 3.1.6.52817

October 4, 2019

All information contained in this document is proprietary to CSP, Inc. and may not be repro-
duced, distributed, or disseminated, in whole or in part, without the written permission of an
authorized representative of CSP, Inc.

All specifications presented in this document are subject to change at any time, and without
prior notice.

Myricom® and Myrinet® are registered trademarks of CSP, Inc. DBL™ is a trademark of
CSP, Inc. Other trademarks appearing in this document are those of their respective owners.
©2008-2014, CSP, Inc.

Contents

1 DBL

1.1 Introduction
Terms and Concepts

1.1.2 Example Pseudo-Code
1.2 Interaction with Sockets

1.1.1

1.3 Receive Data Buffering L

2 Module Index

2.1 API Reference . . .

3 Namespace Index

3.1 Namespace List . .

4 Data Structure Index

4.1 Data Structures . .

5 Module Documentation

5.1 APIReference.
5.1.1 Detailed Description e e
5.1.2 APIReference e e e
5.1.3 Macro Definition Documentation e

5.1.3.1 DBL_VERSION_API e
5.14 Enumeration Type Documentation
5.1.4.1 dbl_filter_mode e
5.1.42 dbl_recvmode e
5.1.5 Function Documentation e e e e e e
5.1.5.1 dblLbind e e e
5.1.5.2 dblbind_addr
5.1.53 dbl_close e
5.1.54 dbl_device_enable e e
5.1.5.5 dbl_device_get_attrso e e
5.1.5.6 dbl device handle
5.1.5.7 dbl_device_set_attrs e e e e e e e e
5.1.5.8 dbl_getaddress L.
5.1.59 dbl_getticks e
5.1.5.10 dblinit. o . e e e e e e e e e e
5.1.5.11 dbl_mcast_block_source e
5.1.5.12 dbl_mcast_join
5.1.5.13 dbl_mcast_join_SOUrce o v v v v it e e e
5.1.5.14 dbl_mcast_leave L e

W W = =

W

MJ ri com Myricom DBL™
5.1.5.15 dbl_mecast_leave_SOUICE i e e e e e 19

5.1.5.16 dbl_mcast_unblock_source 19

51517 dblopen e 20

5.1.5.18 dbl_open_if 20

5.1.5.19 dbl_recvfrom e 21

5.1.520 dbl_send e e e e 21

5.1.521 dbl_send_connect e e e e e 22

5.1.522 dbl_send_disconnect. e e e e e e e e 23

5.1.523 dbl_sendto e e e e e e 23

5.1.5.24 dbl_set_filter_mode e e 23

5.1.5.25 dbl_shutdown 23

5.1.526 dblunbind 24

5.2 Flagsused fordbl_open() 25
5.2.1 Detailed Description L. e e e 25

5.2.2 Macro Definition Documentation 25
522.1 DBL_OPEN_DISABLED it 25

5.2.2.2 DBL_OPEN_HW_TIMESTAMPING 25

5223 DBL_OPEN_THREADSAFE. 25

5.3 Flagsused fordbl_bind() e 26
5.3.1 Detailed Description e 26

5.3.2 Macro Definition Documentation e 26
5.3.2.1 DBL_BIND_BROADCAST i e e 26

5.32.2 DBL_BIND_DUP_TO_KERNEL 26

5.32.3 DBL_BIND_NO_UNICAST e e e e 26

5.3.24 DBL_BIND_REUSEADDR 26

5.4 Flagsfordbl_send(). e e e 27
5.4.1 Detailed Descriptiono e e e e e e e 27

5.4.2 Macro Definition Documentation 27
5.4.2.1 DBL_NONBLOCK ittt e e 27

5.5 EXEnSIONS i e e e e e e e 28
5.5.1 Detailed Description e e 28

5.5.2 Introduction to eXtensions i e 29

5.5.3 Function Documentation 29
5.5.3.1 dblext_accept e e e 29

5.53.2 dbl_ext_channel_type 29

5.53.3 dbl_ext_getchopt 29

5.53.4 dblext_listen e e e e e e e e 30

5.5.3.5 dbl_ext_poll 30

553.6 dblext_recv e e e 31

5.53.7 dblext_recvimsg e e e e e e 31

5.53.8 dbl ext send 32

5.5.3.9 dblext_setchopt. e 32

6 Namespace Documentation 33
6.1 dbl Namespace Reference e 33
6.1.1 Detailed Description L e e e e 33

7 Data Structure Documentation 35
7.1 dbl_device_attrs Struct Reference 35
7.1.1 Detailed Description e e e e 35

7.1.2 Field Documentation i e e e 35

Version 3.1.6.52817

ii

ii

Myr icom Myricom DBL™

©

7.1.2.1 hw_timestamping 35

7.1.2.2 recvg_filter_mode 35

7123 TeCVO_SIZE « o v v v o e e e e e e e 35

7.2 dbl_recv_info Struct Reference 36
7.2.1 Detailed Descriptiono e e e e e e e e 36

7.2.2 Field Documentation e e e e e e e e e e 36
7221 chan e e e e 36

7222 chan_Context v v e e e e 36

7.22.3 in_buffer e e 36

7224 msg len ... e e e e e 36

7.22.5 sin_from ... L e e e e e e e e 36

T22.6 SIN_TO . . . v vt e e e e e 37

72277 HMEStAMP e e e e e e 37

7.3 dbl_ticks_ Struct Reference e 37
Index 38

Version 3.1.6.52817 iii iii

Chapter 1

DBL

1.1 Introduction

DBL provides a very low-latency interface for sending and receiving UDP datagrams or TCP packets as part of the
DBL extensions. The DBL library communicates directly with the firmware on the NIC to send and receive packets,
removing the overhead associated with kernel calls and the TCP/UDP stack.

1.1.1 Terms and Concepts

The DBL API uses 3 different entities: "devices", "channels", and "send handles".

A device is the abstraction of a NIC, and there will generally be one device per NIC in a given process. A device is
created by calling dbl_open(). Several channels can attach to a device.

A channel is roughly the equivalent of a socket opened on a device, with a port number specified. A channel is created
by calling dbl_bind() on a particular device. When calling dbl_bind the type of the channel (e.g TCP or UDP) must be
specified.

A send handle is a handle associated with a specific destination that is used to very efficiently send packets to that
destination, Send handles are not necessary for sending. A send handle is created by calling dbl_send_connect().

Demultiplexing of incoming data on a device is done by the user code in order to reduce overhead in the library. There
is a single call, dbl_recvfrom() that will return the next packet available from a given device. A buffer is passed into
this function, and any received data will be placed into the buffer upon return. The received packet may be intended
for any channel associated with the specified device. A device allows for the mix of UDP or TCP channels.

1.1.2 Example Pseudo-Code
Example use cases:
A device is opened via a call to dbl_open(). An interface is specified to dbl_open via its first argument which is a struct

in_addr. The DBL interface whose IP address matches this address will be opened and a device handle returned.

\hyperlink{group__DBL_gab9aed304b284dec7143£f£83809a2d6fc} {dbl_init} ();
\hyperlink{group__DBL_gacdc677ef602d20£994ad45ca28373768}{dbl_open} (interface, flags, &dev);

Myr _im Myricom DBL™

The following pseudo-code demonstrates typical multi-port receiver. For each port on which the program wished to
receive data, a

dbl_bind() is used to bind a port to a channel. In this example, two different ports are bound, each with a different
context value. The context is returned in the dbl_receive_info structure filled in by dbl_recvfrom() and can be used to
demultiplex based on the receiving channel.

\hyperlink{group__DBL_gab%aed304b284dec7143f£f83809a2d6fc}{dbl_init} ();

\hyperlink{group__DBL_gacdc677ef602d20£994ad45ca28373768}{dbl_open} (interface, flags, &dev);

\hyperlink{group__DBL_gaaccc222ec7efcldc2ed62f599ce3f0d7}{dbl_bind} (dev, portl, flags, contextl, &chanl);

\hyperlink{group__DBL_gaaccc222ec7/efcldc2ed62f599ce3£f0d7}{dbl_bind} (dev, port2, flags, context2, &chan2);

\textcolor{keywordflow}{while} (!done) \{
\hyperlink{group__DBL_ga7c8fd37a2calld7707688cb8b6a95bce}{dbl_recvfrom} (dev, mode, buf, maxlen, &info);
user_packet_handler (buf, info.msg_len, info.chan_context);

\}

The basic send function is dbl_sendto(). The following pseudo-code demonstrates sending a packet to a destination
specified by the address parameter. address is a sockaddr_in as used by socket sendto();

\hyperlink{group__DBL_gab9aed304b284dec7143£f£83809a2d6fc} {dbl_init} ();

\hyperlink{group__ DBL_gacdc677ef6b2d20£994ad45ca28373768}{dbl_open} (interface, flags, &dev);
\hyperlink{group__DBIL_gaaccc222ec7/efcldc2ed62f599ce3f0d7}{dbl_bind} (dev, portl, flags, contextl, &chanl);
\hyperlink{group_ DBL_gad645185577f2a2fc01278a6d29602733}{dbl_sendto} (chanl, address, buf, buflen, flags);

An alternate and slightly faster way to send can be used when you have a known set of destinations to which you
are sending. A "send handle" is first created using dbl_send_connect() A send handle is used internally to save
precomputed information for sending to that particular destination.

\hyperlink{group__DBL_gab%aed304b284dec7143f£f83809a2d6fc}{dbl_init} ();
\hyperlink{group__DBL_gacdc677ef602d20£994ad45ca28373768} {dbl_open} (interface, flags, &dev);
\hyperlink{group__DBL_gaaccc222ec7efcldc2ed62f599ce3f0d7}{dbl_bind} (dev, portl, flags, contextl, &chanl);

\hyperlink{group__DBL_gabldf9a3bd4bc9alfbb2e8a8fl66f6cc31}{dbl_send_connect} (chanl, address, flags, ttl, &send_

\hyperlink{group__DBL_gafl69475824a50f2663f5b6£82e084c06}{dbl_send} (send_handle, buf, buflen, flags);

To receive multicast packets, a channel joins the multicast group via dbl_mcast_join().

\hyperlink{group__DBL_gab9aed304b284dec7143£f£83809a2d6fc} {dbl_init} ();
\hyperlink{group__DBL_gacdc677ef602d20£994ad45ca28373768}{dbl_open} (interface, flags, &dev);
\hyperlink{group__DBL_gaaccc222ec7efcldc2ed62f599ce3f0d7}{dbl_bind} (dev, portl, flags, contextl, &chanl);
\hyperlink{group__DBL_gadfd63607d172bcdd1380904b2b673244} {dbl_mcast_join} (chanl, mcast_addr, NULL);
\hyperlink{group__DBL_ga7c8fd37a2calld7707688cb8b6a95bce}{dbl_recvfrom} (dev, mode, buf, maxlen, &info);
user_packet_handler (buf, info.msg_len, info.chan_context);

Each channel may join many multicast groups. The example below will receive packets sent to mcast_addrl:portl,
mcast_addr2:portl, mcast_addr1:port2, and mcast_addr3:port2. The packets sent to portl will have context = contextl
and those to port2 will have context = context2.

\hyperlink{group__DBL_gab9aed304b284dec7143£f£83809a2d6fc}{dbl_init} ();
\hyperlink{group__DBL_gacdc677ef6b2d20£994ad45ca28373768}{dbl_open} (interface, flags, &dev);
\hyperlink{group__DBL_gaaccc222ec/efcldc2ed62f599ce3£f0d7}{dbl_bind} (dev, portl, flags, contextl, &chanl);
\hyperlink{group__DBL_gaaccc222ec7efcldc2ed62f599ce3f0d7}{dbl_bind} (dev, port2, flags, context2, &chan2);
\hyperlink{group__DBIL_gadfd63607d172bcdd1380904b2b673244}{dbl_mcast_join} (chanl, mcast_addrl, NULL);
\hyperlink{group__DBL_gadfd63607d172bcdd1380904b2b673244}{dbl_mcast_join} (chanl, mcast_addr2, NULL);
\hyperlink{group__DBL_gadfd63607d172bcdd1380904b2b673244}{dbl_mcast_join} (chan2, mcast_addrl, NULL);
\hyperlink{group__DBL_gadfd63607d172bcdd1380904b2b673244}{dbl_mcast_join} (chan2, mcast_addr3, NULL);
\hyperlink{group__DBL_ga7c8fd37a2call47707688cb8b6a95bce} {dbl_recvfrom} (dev, mode, buf, maxlen, &info);
user_packet_handler (buf, info.msg_len, info.chan_context);

Version 3.1.6.52817 2 2

M—yr i com Myricom DBL™

S

1.2 Interaction with Sockets

Since DBL packets move straight from the NIC to the user-level library, there is generally no opportunity for these
packets to be shared with other processes using the socket interface. Thus, under default conditions, if a process using
the DBL API and one using the socket API both open and bind to the same address (using appropritate REUSEADD-
R-style flags), only the DBL process will actually receive the packets. This is because the packets are never delivered
to the kernel and the DBL process has no way to know that another process is listening for the packets.

In order to allow sockets-based processes to receive packets that are being received by DBL processes, the DBL
process must not only specify the DBL._BIND_REUSE_ADDR flag to dbl_bind(), it must also specify the DBL_B-
IND_DUP_TO_KERNEL flag which will cause the firmware on the NIC to duplcate each packet to the kernel UDP
stack for possible delivery to any sockets-based processes wishing to receive them. Note that this duplication will
happen for every packet delivered to the socket address (IP and port number) specified in the call to dbl_bind with the
DUP_TO_KERNEL flag, regardless of whether there is a socket application bound to the address or not.

Specifying DBL_BIND_DUP_TO_KERNEL will add 1.8 us or less to each packet whose destination is the address
specified in the dbl_bind() call.

1.3 Receive Data Buffering

There are two different places that packets are buffered in DBL. The first level of buffering is a 48k buffer onboard on
the NIC. This buffer is used directly by the hardware on the NIC and is serviced independently of activity on the host.

The second level of buffering is in host memory, and is on a per-device basis, since dbl_recvfrom reads from a dbl-
_device_t. This is a circular buffer which defaults to 128Mb on Linux (the size of the buffer can be changed, see
recvq_size in dbl_device_attrs and dbl_device_set_attrs). The NIC asynchronously moves data into this buffer, and
the only involvement required from the host is to drain data from this buffer.

On the host buffer, each packet has its length rounded up to a multiple of 64 bytes. Since ethernet packets are a
minimum of 64 bytes on lengths and there is bookkeeping data included with the packet, each packet occupies a
minimum of 128 bytes of buffer space. This translates to a worst-case capacity of one million packets, or 64 megabytes
of data, or roughly 64 milliseconds worth of minimum-sized packets.

There are two different counters that indicate when packets are dropped due to lack of buffering. The first counter,
"Net overflow drop" indicates that packets are arriving faster than the NIC can process them. The second counter,
"Receive Queue full," indicates that the user application is not draining packets from the host queue quickly enough.

Version 3.1.6.52817 3 3

Myricom Myricom DBL™

Version 3.1.6.52817 4 4

Chapter 2

Module Index

2.1 APl Reference

Here is a list of all modules:

API Reference

.. 11
Flagsused fordbl_open() e 25
Flagsused fordbl_bind() e e e 26
Flags fordbl_send(). e e e e 27

EXtensions e e e e e e e e 28

Myricom Myricom DBL™

Version 3.1.6.52817 6 6

Chapter 3

Namespace Index

3.1 Namespace List

Here is a list of all documented namespaces with brief descriptions:

dbl

Myricom Myricom DBL™

Version 3.1.6.52817 8 8

Chapter 4

Data Structure Index

4.1 Data Structures

Here are the data structures with brief descriptions:

dbl_device_attrs
dbl_recv_info

Information about the packetreceived L Lo
dbl_tiCKS . . . s

Myricom Myricom DBL™

Version 3.1.6.52817 10 10

Chapter 5

Module Documentation

5.1 API Reference

API Reference for DBL.

Data Structures

e struct dbl_device_attrs
e struct dbl_recv_info

Information about the packet received.

Modules

* Flags used for dbl_open()
* Flags used for dbl_bind()
* Flags for dbl_send().

Macros

* #define DBL_VERSION_API 0x0004

Enumerations

e enum dbl_filter_ mode { DBL_RECV_FILTER_NORMAL = 0, DBL_RECV_FILTER_ALLMULTI =1,
DBL_RECV_FILTER_RAW =2 }

¢ enum dbl_recvmode {
DBL_RECV_DEFAULT =0, DBL_RECV_NONBLOCK =1, DBL_RECV_BLOCK =2, DBL_RECV_PEE-
K =3,
DBL_RECV_PEEK_MSG =4}

11

Myr M Myricom DBL™

Functions

¢ dbl_init (uint16_t api_version)
Initializes the dbl library.
» dbl_open (const struct in_addr *interface_addr, int flags, dbl_device_t «dev_out)
Creates an instance of a dbl_device.
» dbl_open_if (const char xifname, int flags, dbl_device_t *dev_out)
Creates an instance of a dbl_device.
* dbl_device_get_attrs (dbl_device_t dev, struct dbl_device_attrs *attr)
e dbl_device_set_attrs (dbl_device_t dev, const struct dbl_device_attrs *attr)
¢ dbl_device_enable (dbl_device_t dev)
¢ dbl_set_filter_mode (dbl_device_t dep, enum dbl_filter_mode mode)
¢ dbl_device_handle (dbl_device_t dev)
Returns a descriptor for use with poll() or select().
¢ dbl_close (dbl_device_t dev)
Close a dbl device.
» dbl_bind (dbl_device_t dev, int flags, int port, void *context, dbl_channel_t xhandle_out)

Create a channel on dbl device.
¢ dbl_bind_addr (dbl_device_t dev, const struct in_addr xipaddr, int flags, int port, void *context, dbl_channel_t
xhandle_out)
Creates a channel, using specified ip address.
¢ dbl_unbind (dbl_channel_t handle)
Destroys a channel.
* dbl_getaddress (dbl_channel_t ch, struct sockaddr_in *sin)
Returns the address to which a channel is bound.
* dbl_getticks (dbl_device_t dev, dbl_ticks_t «ticks)
Returns the current NIC time. It reports both values, NIC ticks and time in usec since epoch.
* dbl_mcast_join (dbl_channel_t ch, const struct in_addr xmcast_addr, void xunused)
Join a multicast group.
¢ dbl_mcast_leave (dbl_channel_t ch, const struct in_addr *mcast_addr)
Leave a multicast group.
¢ dbl_mcast_join_source (dbl_channel_t ch, const struct in_addr *mcast_addr, const struct in_addr *src)
Join a multicast group on a given source address.
¢ dbl_mcast_leave_source (dbl_channel_t ch, const struct in_addr xmcast_addr, const struct in_addr *src)
Leave a multicast group.
* dbl_mcast_block_source (dbl_channel_t ch, const struct in_addr *join_addr, const struct in_addr xblock_addr)
block sender.
¢ dbl_mcast_unblock_source (dbl_channel_t ch, const struct in_addr *join_addr, const struct in_addr «block_-
addr)
unblock sender.
¢ dbl_shutdown (dbl_device_t dev, int how)
Unblock dbl_recvfrom/dbl_ext_recvmsg.
¢ dbl_recvfrom (dbl_device_t dev, enum dbl_recvmode mode, void xbuf, size_t len, struct dbl_recv_info xinfo)

Receive data.

Version 3.1.6.52817 12 12

M—yr i com Myricom DBL™

S

dbl_send_connect (dbl_channel_t chan, const struct sockaddr_in xdest_sin, int flags, int ttl, dbl_send_t xhsend)

Create a send_handle for faster sending.
dbl_send (dbl_send_t sendh, const void xbuf, size_t len, int flags)

Send a packet using a send handle.
dbl_send_disconnect (dbl_send_t hsend)
Release a send handle.
dbl_sendto (dbl_channel_t ch, const struct sockaddr_in xsin, const void xbuf, size_t len, int flags)

Send a packet.

5.1.1 Detailed Description

API Reference for DBL.

5.1.2 API Reference

5.1.3 Macro Definition Documentation
5.1.3.1 #define DBL_VERSION_API 0x0004

DBL API version number (16 bits) Least significant byte increases for minor backwards compatible changes in the
API. Most significant byte increases for incompatible changes in the API

0x0002: Added timestamp to dbl_recv_info 0x0003: Added buflen to dbl_recv_info

5.1.4 Enumeration Type Documentation
5.1.4.1 enumdbl_filter mode
Filtering modes (advanced functionality).

Remarks

Selecting anything bu the NORMAL filter causes all other DBL devices to be deprived of data. The ALLMULTI
and RAW modes cause all matching data from the underlying port to be delivered to the one endpoint.
The OS-setting of dup to kernel is honored with all filtering modes, albeit with the same performance constraints.

5.1.4.2 enumdbl_recvmode
Specifies behavior of the dbl_recvfrom call

Enumerator
DBL _RECV_DEFAULT Busy poll forever until a packet is received.
DBL_RECV_NONBLOCK Return a packet if available, else return EAGAIN.
DBL_RECV_BLOCK Block until a packet is available, sleep until interrupt if necessary.

Version 3.1.6.52817 13 13

Myr i com Myricom DBL™

-

DBL_RECV_PEEK Check for a packet one time, return info, or EAGAIN if no packet.

DBL_RECV_PEEK_MSG Peek but also copy data, return info, or EAGAIN if no packet. Unsupported in the
DBL TCP extensions

5.1.5 Function Documentation
5.1.5.1 dbl_bind (dbl_device_t dey, int flags, int port, void x context, dbl_channel_t x handle_out)

Create a channel on dbl device.

Creates a channel on a specified device through which UDP datagrams or TCP streams (if using the DBL TCP ex-
tensions), may be sent and received. Any packets sent through this channel will have "port" as their source port and
packets arriving on the interface addressed to "port" will be received on this channel. By default, only unicast packets,
not broadcast or multicast, will be received on the channel.

Parameters

dev | A DBL device handle returned by a call to dbl_open().
flags | See Flags used for dbl_bind().
port | The port to send/receive on.
context | The value of context is returned on future receives on this channel.
handle_out | The handle to the created channel.

Return values

0 | Success
EINVAL | Error in arguments
EEXIST | port already in use
? | Other values indicate various OS failures in the bind process

If dbl_bind() on UDP is called multiple times on the same port on a single device, unicast packets will only be delivered
to the oldest channel currently bound to the port. dbl_bind() on TCP can only be used exclusively per port.

Remarks

This function can be used in the context of DBL TCP API, with some restriction. The DBL_BIND_DUP_TO_K-
ERNEL and DBL_BIND_NO_UNICAST options are not supported.

5.1.5.2 dbl_bind_addr (dbl_device_t dey, const struct in_addr x ipaddr, int flags, int port, void x context, dbl_channel_t x
handle_out)
Creates a channel, using specified ip address.

Creates a channel on a specified device, just like dbl_bind, except that it associates the channel with the specified
address instead of the one specified in the dbl_open call.

The address used must correspond to an OS-level interface that maps to the same underlying Ethernet port as the
interface specified in dbl_open. For example, this can be a VLAN interface.

Parameters

Version 3.1.6.52817 14 14

Myricom DBL™

dev | A DBL device handle returned by a call to dbl_open().
ipaddr | Specifies the IP address of the interface with which the channel created will be associated. This
must be on the same underlying interface as the one used in the dbl_open call.
flags | See Flags used for dbl_bind().
port | The port to send/receive on.
context | The value of context is returned on future receives on this channel.
handle_out | The handle to the created channel.

Return values

0 | Success
EINVAL | Error in arguments. Specifying an address that is not on the same underlying inter-
face as that specified with dbl_open will return EINVAL.
EEXIST | port already in use
? | Other values indicate various OS failures in the bind process

Remarks

DBL TCP supported

5.1.5.3 dbl_close (dbl_device_t dev)

Close a dbl device.

Terminate usage of a device returned by dbl_open() and free all resources associated with it.

Parameters

\ dev | The device handle returned from dbl_open(). \

Return values

‘ 0 ‘ Success ‘

5.1.5.4 dbl_device_enable (dbl_device_t dev)
Function to enable a device if opened with DBL_OPEN_DISABLED

Remarks

If this call fails, the user is still responsible for calling dbl_close() on the underlying device to free resources

5.1.5.5 dbl_device_get_attrs (dbl_device_t dey, struct dbl_device_attrs x attr)

Function to retrieve device attributes.

Parameters
dev | The device handle returned from dbl_open()
) 77— | Device attributes will be copied out. [
Version-3:-1.6 52@17 2 15 1

Myr icom Myricom DBL™

©

Remarks

Can be used before and after calls that open and enable DBL devices.

5.1.5.6 dbl_device_handle (dbl_device_t dev)

Returns a descriptor for use with poll() or select().
Returns an OS-specific file descriptor which can be passed to poll() or select() to block on receive data available. For
UNIX systems. this is a file descriptor, on Windows it is a HANDLE.

Parameters
\ dev | The DBL device whose OS handle is needed.

Returns

OS-specific handle for device

5.1.5.7 dbl_device_set_attrs (dbl_device_t dey, const struct dbl_device_attrs x attr)
Function to set device attributes before a device is enabled

Parameters

dev | The device handle returned from dbl_open() with flag DBL_OPEN_DISABLED.
attr | Device attributes that will be set on the device.

Remarks

Can’t be called without having the contents of attr previously filled out by a call to dbl_device_get_attrs.
The implementation can change the size of requests to accomodate internal alignment and sizing requirements. If
these sizes are changed, the new sizes are reflected during a subsequent call to dbl_device_get_attrs.

5.1.5.8 dbl_getaddress (dbl_channel_t ch, struct sockaddr_in x sin)

Returns the address to which a channel is bound.

Returns the address to which a channel is bound.

Parameters

ch | Specifes the channel whose bind information is required.
sin | sockaddr_in to which the address will be copied out.

Return values

0 | Sucess
EINVAL | Bad channel specified

Version 3.1.6.52817 16 16

Myricom

. Myricom DBL™

Remarks

DBL TCP supported

5.1.5.9 dbl_getticks (dbl_device_t dey, dbl_ticks_t « ticks)

Returns the current NIC time. It reports both values, NIC ticks and time in usec since epoch.

Returns the current NIC time.

Parameters

dev | Specifes the dev channel from dbl_open
ticks | Specifies the dbl_ticks_t structure holding the timing information

Return values

0 | Sucess
EINVAL | Bad dev specified

Remarks

DBL TCP supported
Under TA , a ioclt/WSAloctl socket call can use cmd SIO_GETNICTIME

5.1.5.10 dbl_init (uint16_t api_version)

Initializes the dbl library.
Initializes the dbl library.

Parameters

api_version | Must always be DBL_VERSION_API. This is used to ensure compatability between the ap-
plication binary and the DBL library.

Return values

0 | Success
EINVAL | Bad/incompatible version passed.

Remarks

dbl_init() must be called once at the start of any application that uses DBL.

5.1.5.11 dbl_mcast_block_source (dbl_channel_t ch, const struct in_addr x join_addr, const struct in_addr block_addr)

block sender.

Indicates that the specified channel wishes to stop receiving packets from a given source and therefore block that
sender Prerequisites : prior call to dbl_mcast_join on same multicast address.

Version 3.1.6.52817 17 17

Myr icom Myricom DBL™

©

Parameters

ch | Handle for the channel to leave the specified multicast group.
join_addr | Address of the multicast group to join.
block_addr | Address to block. The multicast packets will not be received from the blocked source

Return values

0 | Success
EINVAL | Argument error, such as address not multicast group.
EADDRNOTAVAIL | Not currently joined to group "address"
EAGAIN | internal resources temorarily unavailable, try again.
? | Other non-zero codes indicate various OS failures in the leave process

5.1.5.12 dbl_mcast_join (dbl_channel_t ch, const struct in_addr « mcast_addr, void x unused)

Join a multicast group.

Indicates that the specified channel wishes to receive packets addressed to the multicast address specified.

Parameters

ch | Handle for the channel to add to the specified multicast group.
mcast_addr | Address of the multicast group to join.
unused | A temporary unused pointer to maintain binary compability.

Return values

0 | Success
EINVAL | Argument error, such as address is not a multicast group.
? | Other values indicate various OS specific failures in the join process.

5.1.5.13 dbl_mcast_join_source (dbl_channel_t ch, const struct in_addr x mcast_addr, const struct in_addr x src)

Join a multicast group on a given source address.

Indicates that the specified channel wishes to receive packets addressed to the multicast address specified from a
specific source. For multiple sources, call this function again with the desired sources to receive from.

Parameters

ch | Handle for the channel to add to the specified multicast group.
mcast_addr | Address of the multicast group to join.
src | Address of source to receive multicast from

Return values

0 | Success
EINVAL | Argument error, such as address is not a multicast group.
? | Other values indicate various OS specific failures in the join process.

Version 3.1.6.52817 18 18

Myr icom Myricom DBL™

©

5.1.5.14 dbl_mcast_leave (dbl_channel_t ch, const struct in_addr « mcast_addr)

Leave a multicast group.

Indicates that the specified channel wishes to stop receiving packets addressed to the multicast address specified.

Parameters

ch | Handle for the channel to leave the specified multicast group.
mcast_addr | Address of the multicast group to leave.

Return values

0 | Success
EINVAL | Argument error, such as address not multicast group.
EADDRNOTAVAIL | Not currently joined to group "address"
EAGAIN | internal resources temorarily unavailable, try again.
? | Other non-zero codes indicate various OS failures in the leave process

5.1.5.15 dbl_mcast_leave_source (dbl_channel_t ch, const struct in_addr x mcast_addr, const struct in_addr * src)

Leave a multicast group.

Indicates that the specified channel wishes to stop receiving packets addressed to the multicast address specified.

Parameters

ch | Handle for the channel to leave the specified multicast group.
mcast_addr | Address of the multicast group to leave.
src | Address of the source to drop

Return values

0 | Success
EINVAL | Argument error, such as address not multicast group.
EADDRNOTAVAIL | Not currently joined to group "address"
EAGAIN | internal resources temporarily unavailable, try again.
? | Other non-zero codes indicate various OS failures in the leave process

5.1.5.16 dbl_mcast_unblock_source (dbl_channel_t ch, const struct in_addr join_addr, const struct in_addr « block_addr)

unblock sender.

Indicates that the specified channel wishes to unblock a sender. Receiving packets will commence from the unblocked
sender Prerequisites : prior call to dbl_mcast_join on same multicast address. Prior call to dbl_mcast_block_source.

Parameters

ch | Handle for the channel to leave the specified multicast group.
join_addr | Address of the multicast group to join.
block_addr | Address to unblock. The multicast packets will again be received from the unblocked source

Version 3.1.6.52817 19 19

Myr icom Myricom DBL™

©

Return values

0 | Success
EINVAL | Argument error, such as address not multicast group.
EADDRNOTAVAIL | Not currently joined to group "address"
EAGAIN | internal resources temorarily unavailable, try again.
? | Other non-zero codes indicate various OS failures in the leave process

5.1.5.17 dbl_open (const struct in_addr interface_addr, int flags, dbl_device_t x dev_out)

Creates an instance of a dbl_device.

Creates an instance of a dbl device which can be used to subsequently open channels via dbl_bind().

Parameters

interface_addr | Specifies the IP address of the interface with which channels created using dbl_bind() will be
associated.

flags | A bitmask of flags to alter open behavior. See Flags used for dbl_open()
dev_out | On successful return, this is where the handle for the newly opened device will be placed.

Return values

0 | Success
EINVAL | bad usage. includes dbl_init not called first and bad interface_addr.
ENODEYV | no matching IP address found on DBL-enabled NIC
EAGAIN | internal resources temorarily unavailable, try again.

Remarks

Unlike traditional sockets, a DBL channel cannot be associated with multiple network interfaces.
Using the TCP extensions, dbl_open opens an endpoint on which several channels of type UDP and TCP can be
demultiplexed

5.1.5.18 dbl_open_if (const char x ifname, int flags, dbl_device_t + dev_out)

Creates an instance of a dbl_device.

Like dbl_open () except it takes an interface name instead of an ip address.

Parameters

ifname | Specifies the name of the interface with which channels created using dbl_bind() will be asso-
ciated.

flags | A bitmask of flags to alter open behavior. See Flags used for dbl_open()
dev_out | On successful return, this is where the handle for the newly opened device will be placed.

Return values

0 | Success
EINVAL | bad usage. includes dbl_init not called first and bad interface_addr.
EAGAIN | internal resources temorarily unavailable, try again.

Version 3.1.6.52817 20 20

Myr icom Myricom DBL™

©

Remarks

Unlike traditional sockets, a DBL channel cannot be associated with multiple network interfaces.

5.1.5.19 dbl_recvfrom (dbl_device_t dey, enum dbl_recvmode mode, void x buf, size_t len, struct dbl_recv_info x info)

Receive data.

Used to check for and read data from the channels associated with a particular dbl_device.

Parameters

dev | The underlying device via dbl_open
mode | See dbl_recvmode
buf | Buffer in which to place received data.
len | Maximum number of bytes to write into buf.
info | See dbl_recv_info.

Return values

0 | Success
EAGAIN | Returned if using mode DBL_RECV_NONBLOCK or DBL_RECV_PEEK when
no packet is available.
EINTR | in case dbl_shutdown() was called
? | Other codes indicate various OS failures.

Remarks

dbl_recvfrom() will, by default, busy-poll checking for data available on the device. This consumes 100% of the
CPU available to this single thread, but also guarantees the lowest possible latency for packet delivery. A blocking
mode of operation may be speficied through the recv_mode parameter, reducing CPU load at the expense of a few
microseconds of message latency.

DBL TCP supported. Receiving a return value of 0 with a msg_len of 0 means the channel is disconnected.

On endpoints with mixed channels e.g DBL and DBL extension (TCP) channels the DBL channels are prioritized
to avoid packet drops

5.1.5.20 dbl_send (dbl_send_t sendh, const void x buf, size_t len, int flags)

Send a packet using a send handle.

Sends a packet to the address associated with the specified send handle. The send_handle must have been previously
created by a call to dbl_send_connect(). If internal resources are unvailable to execute the send immediately, the send
call will block until resources are available to proceed.

Parameters

sendh | Send handle specifying destination for packe.
buf | The data to send.
len | The number of bytes to send.

flags | See Flags for dbl_send()..

Version 3.1.6.52817 21 21

Myricom

. Myricom DBL™

Return values

0 | Success
EAGAIN | DBL_NONBLOCK specified and no resources available.
? | Other codes indicate various OS failures in the send process.

Remarks

DBL TCP supported with no special flags. The function will block until all data has been transferred. For
advanced handling use dbl_ext_send for TCP channels

5.1.5.21 dbl_send_connect (dbl_channel_t chan, const struct sockaddr_in x dest_sin, int flags, int tt], dbl_send_t x hsend)

Create a send_handle for faster sending.

Used to create a send handle for fast sending to a remote destination.

Parameters

chan | The channel to be associated with this send handle.
dest_sin | Destination address of packets sent using this handle.
flags | Bitmask of flags to modify default send_connect operation Currently no flags are supported.
ttl | The value to put in the TTL field of the IP header.
hsend | The send_handle to be used in future calls to dbl_send() is returned here.

Return values

0 | Sucess
EINVAL | Errors in arguments
? | Other codes indicate various OS failures in the send process.

Remarks

The returned send handle is a reference to a set of precomputed data that is needed to send a packet to a particular
destination. This precomputed data is saved and cached by DBL as a matter of course through the dbl_sendto()
function, but holding a send_handle avoids the need for a hash lookup to find the necessary information. This can
take 100-200 ns off the time required to do a send.

Since dbl_send_connect will re-use a cached send handle to the same destination, the ttl parameter, if non-zero,
will overwrite the ttl value in the cached sendhandle. This means that any future dbl_sendto operations to the same
destination will use the new ttl value. This also means that if there is a need to use dbl_sendto with a different ttl
than the default, it is possible to use a call to dbl_send_connect to change the ttl.

DBL TCP supported. One can use the dbl semantics (reuse the exact same call, besides the ttl value) to retrieve a
send handle, or one can specify a NULL value for dest_sin to retrieve a new send handle which could be clearer
in the code than keeping the dest_sin value.

Return values
\ EISCONN \ channel already connected

Version 3.1.6.52817 22 22

Myricom

©

Myricom DBL™

5.1.5.22 dbl_send_disconnect (dbl_send_t hsend)

Release a send handle.

Release the resources associated with a send handle.

Parameters

‘ hsend | The send handle.

Return values

\ 0 | Success

Remarks

DBL TCP supported - in this case the connected peer will receive an EOF which will show up with a msg of len
0. The local channel is re-transitioned into the unconnected state and can be used again in dbl_send_connect

5.1.5.23 dbl_sendto (dbl_channel_t ch, const struct sockaddr_in x sin, const void x buf, size_t len, int flags)

Send a packet.

Send a packet to the address specified.

Parameters

ch | Handle for the channel to send over.

sin | The destination address

buf | The data to send.

len | The lenght of the data to send.

flags | See Flags for dbl_send().

Return values

0 | Success

EAGAIN | DBL_NONBLOCK specified and no resources available.

? | Other codes indicate various OS failures in the send process.

5.1.5.24 dbl_set filter_mode (dbl_device_t dep, enum dbl_filter_mode mode)

Function to control per-port DBL filtering modes (advanced functionality).

5.1.5.25 dbl_shutdown (dbl_device_t dey, int how)

Unblock dbl_recvfrom/dbl_ext_recvmsg.

Used to unblock a blocking dbl_recvfrom/dbl_ext_recvmsg.

Parameters

Version 3.1.6.52817 23

23

Myricom

©

Myricom DBL™

dev | The underlying device via dbl_open

how | Unused for now

Remarks

DBL UDP and TCP

5.1.5.26 dbl_unbind (dbl_channel_t handle)

Destroys a channel.

Destroys a channel and releases all the resources associated with it.

Parameters

\ handle | The handle of the channel to unbind.

Return values

\ 0 | Success

Remarks

DBL TCP supported

Version 3.1.6.52817 24

24

M—yr i com Myricom DBL™

S

5.2 Flags used for dbl_open()

Macros

* #define DBL_OPEN_THREADSAFE 0x1
* #define DBL_OPEN_DISABLED 0x2
* #define DBL_OPEN_HW_TIMESTAMPING 0x4

5.2.1 Detailed Description

5.2.2 Macro Definition Documentation
5.2.2.1 #define DBL_OPEN_DISABLED 0x2

A device can be opened but separately enabled through dbl_device_enable. This allows users to change the size of
buffers or other properties before it is enabled and ready to receive packets. By setting this flag, users are required to
separately call dbl_device_enable after, perhaps, having changed device attributes using dbl_device_get_attrs followed
by dbl_device_set_attrs.

5.2.2.2 #define DBL_OPEN_HW_TIMESTAMPING 0x4

Request that incoming packets provide a hardware timestamp to indicate when the packet was received by the NIC.
The timestamp provided is a conversion from raw NIC nanoseconds to host nanoseconds as would be returned by
gettimeofday(). Unless HW timestmaping is requested, packets will return a timestamp of 0.

Alternatively, users can enable/disable the HW timestamping once the device is opened by using dbl_device_get_attrs
followed by dbl_device_set_attrs.

5.2.2.3 i#define DBL_OPEN_THREADSAFE 0x1

Used to indicate that multiple threads will be using this device, and that locking should be used internally to serialize
access. Thread safety is off by default in order to improve performance for the single-threaded case.

Version 3.1.6.52817 25 25

Myricom

S

Myricom DBL™

5.3 Flags used for dbl_bind()

Macros

#define DBL_BIND_REUSEADDR 0x02
#define DBL_BIND_DUP_TO_KERNEL 0x04
#define DBL_BIND_NO_UNICAST 0x08
#define DBL_BIND_BROADCAST 0x10

5.3.1 Detailed Description

5.3.2 Macro Definition Documentation
5.3.2.1 #define DBL_BIND_BROADCAST 0x10

Allows this channel to receive broadcast packets.

5.3.2.2 idefine DBL_BIND_DUP_TO_KERNEL 0x04

Allows packets to be shared with sockets. (See Interaction with Sockets)

5.3.2.3 f#define DBL_BIND_NO_UNICAST 0x08

Instructs this channel not to receive packets addressed to the unicast address.

5.3.2.4 #define DBL_BIND_REUSEADDR 0x02

Allows other dbl_bind() and bind() calls on the same port to succeed.

Version 3.1.6.52817

26

26

Myricom

Myricom DBL™

5.4 Flags for dbl_send().

Macros

e #define DBL_NONBLOCK 0x4

5.4.1 Detailed Description

5.4.2 Macro Definition Documentation
5.4.2.1 #define DBL_LNONBLOCK 0x4

Return EAGAIN if send request would block for resources

Version 3.1.6.52817 27

27

Myr i com Myricom DBL™

-

5.5 Extensions

API extensions for DBL.

Macros

* #define DBL_FUNC(type) type

* #define DBL_VAR(type) type

¢ #define DBL_PROTO_IS_MTCP(flags) ((flags & (1 << 7)) !=0)

* #define DBL_TYPE_IS_TCP(flags) ((flags & (1 << 8)) !=0)

o #define DBL_INITFLAGS(type, proto) (type << 8 | proto << 7)

¢ #define DBL_TCP 1

¢ #define DBL_UDP 0

¢ #define DBL_BSD 1 /x use the BSD stack */

¢ #define DBL_MYRI O /x use the DBL_API for UDP «/

¢ #define DBL_CHANNEL_FLAGS(type, proto) DBL_INITFLAGS(type, proto)

Functions

 dbl_ext_send (dbl_channel_t ch, const void xbuf, size_t paylen, int flags, int xnbytes)

send on a channel and report number of bytes sent

 dbl_ext_accept (dbl_channel_t ch, struct sockaddr *sad, int xlen, void xrcontext, dbl_channel_t *rch)

Accept an incoming TCP connection, returns a new channel.

¢ dbl_ext_listen (dbl_channel_t ch)

Allow for incoming connections/channels.
¢ dbl_ext_recv (dbl_channel_t ch, enum dbl_recvmode mode, void *buf, size_t len, struct dbl_recv_info *info)

Receive data from a specific TCP channel.
e dbl_ext_recvmsg (dbl_device_t dev, enum dbl_recvmode recv_mode, struct dbl_recv_info *xinfo, int recv-
max)

Receive data from many channels from a same device.

* dbl_ext_poll (dbl_channel_t *chs, int nchs, int timeout)

Returns number of DBL channels with pending data.
 dbl_ext_getchopt (dbl_channel_t ch, int level, int optname, void *xoptval, socklen_t soptlen)

DBL channels are using the same option semantics than in traditional socket environment.

 dbl_ext_setchopt (dbl_channel_t ch, int level, int optname, const void *xoptval, socklen_t optlen)

DBL channels are using the same option semantics than in traditional socket environment.

* dbl_ext_channel_type (dbl_channel_t ch)
On a given channel TRUE is returned if the channel is TCP.

5.5.1 Detailed Description

API extensions for DBL.

Version 3.1.6.52817 28 28

Myr icom Myricom DBL™

©

5.5.2 Introduction to extensions
5.5.3 Function Documentation
5.5.3.1 dbl_ext_accept (dbl_channel_t ch, struct sockaddr x sad, int x len, void x rcontext, dbl_channel_t x rch)

Accept an incoming TCP connection, returns a new channel.

Accepting incoming TCP channel connection demand.

Parameters

ch | The channel (from dbl_bind()) on which connections are accepted
sad | The argument sad is a pointer to a sockaddr structure. This structure is filled with the address
of the peer socket, as known to the communications layer. When addr is NULL, addrlen is not
used, and should also be NULL.
len | The len argument is a value-result argument: the caller must initialize it to contain the size (in
bytes) of the structure pointed to by sad; on return it will contain the actual size of the peer
address.
rcontext | The value of rcontext is associated with the new channel

rch | The channel which can be used to communicate with the remote peer.

Return values

0 | Success
? | Other codes indicate various OS failures.

5.5.3.2 dbl_ext_channel_type (dbl_channel_t ch)

On a given channel TRUE is returned if the channel is TCP.

This call returns a bool on whether a channel is TCP or not

Parameters
‘ ch | A valid channel

Return values

~

Channel is TCP
0 | Otherwise

5.5.3.3 dbl_ext_getchopt (dbl_channel_t ch, int level, int optname, void * optval, socklen_t x optlen)

DBL channels are using the same option semantics than in traditional socket environment.

This call is used to get information on DBLTCP channel options

Parameters
\ ch | The channel \

Version 3.1.6.52817 29 29

Myricom DBL™

level

Level of the option (IPPROTO_IP...)

optname

Option’s name (IP_TTL...)

optval

The pointer on the value

optlen

The pointer on the option’s length

Return values

0 Success

> | 0 OS return code

Remarks

DBL channel can not be modified or any option read. A EOPNOTSUPP return code is given back to the user in

that case.

5.5.3.4 dbl_ext_listen (dbl_channel_t ch)

Allow for incoming connections/channels.

Used to transition the channel into the listening state

Parameters

‘ ch ‘ The channel (from dbl_bind())

Return values

Success

? | Other codes indicate various OS failures.

5.5.3.5 dbl_ext_poll (dbl_channel_t x chs, int nchs, int timeout)

Returns number of DBL channels with pending data.

Polling function for individual channels, timeout in mseconds

Parameters
chs | An array of channels to query. Updated with 'ready’ channels starting from first entry.
nchs | number of entries in the array
timeout | a timeout in milliseconds, -1 for INFINITE
Remarks

An application has to pass in valid channels. For the benefit of performance, there is no error checking.

Return values

number \ of channels with data. Associated and updated channel array.

Version 3.1.6.52817

30

30

Myricom

. Myricom DBL™

5.5.3.6 dbl_ext_recv (dbl_channel_t ch, enum dbl_recvmode mode, void « buf, size_t len, struct dbl_recv_info * info)

Receive data from a specific TCP channel.

Used to check for and read data from a TCP Channel

Parameters

ch

The channel (from dbl_bind()) on which a packet has been received.

mode

See dbl_recvmode

buf

Buffer in which to place received data.

len

Maximum number of bytes to write into buf.

info

See dbl_recv_info.

Return values

0 | Success

EAGAIN | Returned if using mode DBL,_ RECV_NONBLOCK or DBL_RECV_PEEK when
no packet is available.

? | Other codes indicate various OS failures.

Remarks

Receiving a return value of 0 with a msg_len of 0 means the channel is disconnected.

5.5.3.7 dbl_ext_recvmsg (dbl_device_t dev, enum dbl_recvmode recv_mode, struct dbl_recv_info xx info, int recvmax)

Receive data from many channels from a same device.

Is the extension of a recvfrom, but to load a array of receive information

Parameters
dev | The device
recv_mode | See dbl_recvmode

info | the array which describes in/out parameters. The important parameters are: the void «unused
field used to provide the pointer to the buffer where the data should be copied, the msg_len is
an input-output param, decribing then len of the buffer in input, and returning the len of the
message copied (see dbl_recv_info)

recvmax | the number of message which can be loaded

Return values

>= | 0 number of messages to retrieve in the info array

0 error should be retrieved in errno

Remarks

Receiving a msg_len of 0 in the receive info structure means the channel returned is disconnected.

Version 3.1.6.52817

31 31

Myr icom Myricom DBL™

©

5.5.3.8 dbl_ext_send (dbl_channel_t ch, const void = buf, size_t paylen, int flags, int x nbytes)

send on a channel and report number of bytes sent

send on DBL extension channel

Parameters

ch | The connected channel
buf | pointer to buffer
paylen | size to send See Flags for dbl_send(). return the number of bytes sent

Return values

0 | Success
? | Other codes indicate various OS failures.

5.5.3.9 dbl_ext_setchopt (dbl_channel_t ch, int level, int optname, const void * optval, socklen_t optlen)

DBL channels are using the same option semantics than in traditional socket environment.

This call is used to set information on DBLTCP channel options

Parameters

ch | The channel
level | Level of the option (IPPROTO_IP...)
optname | Option’s name (IP_TTL...)
optval | The pointer on the value
optlen | The option’s type length

Return values

= | 0 Success
> | 0 OS return code

Remarks

DBL channel can not be modified or any option read. A EOPNOTSUPP return code is given back to the user in
that case.

Version 3.1.6.52817 32 32

Chapter 6

Namespace Documentation

6.1 dbl Namespace Reference

6.1.1 Detailed Description

DBL

Author

Myricom, Inc.

33

Myricom Myricom DBL™

Version 3.1.6.52817 34 34

Chapter 7

Data Structure Documentation

7.1 dbl_device_attrs Struct Reference

Data Fields

* uint32_t recvq_filter_mode
e uint32_t recvq_size
e uint32_t hw_timestamping

e uint32_t reserved_1

7.1.1 Detailed Description

Structure for retrieving and setting device attributes when dbl_open is opened with DBL_OPEN_DISABLED.

7.1.2 Field Documentation
7.1.2.1 uint32_t dbl_device_attrs::hw_timestamping

Timestamp field is filled in for dbl_recv_info

7.1.2.2 uint32_t dbl_device_attrs::recvq_filter_mode

DBL receive filter mode, see dbl_filter_mode

7.1.2.3 uint32_t dbl_device_attrs::recvq_size

Host receive queue size for device

35

M—yr i com Myricom DBL™

S

7.2 dbl_recv_info Struct Reference

Information about the packet received.

Data Fields

e dbl_channel_t chan

e void * chan_context

¢ void * in_buffer

e struct sockaddr_in sin_from
¢ struct sockaddr_in sin_to

e uint32_t msg_len

* uint64_t timestamp

7.2.1 Detailed Description

Information about the packet received.

Information about the packet received.

7.2.2 Field Documentation
7.2.2.1 dbl_channel_t dbl_recv_info::chan

The channel (from dbl_bind()) on which a packet has been received

7.2.2.2 voidx dbl_recv_info::chan_context

The context value passed to dbl_bind() when a receiving channel was created.

7.2.2.3 voidx dbl_recv_info::in_buffer

The in_buffer is used in the extension of the DBL API to provide memory references in the dblxrecvmsg() function.

7.2.2.4 uint32_t dbl_recv_info::msg_len
The actual transmitted length of the packet. This may be greater than the number of bytes received if the length

parameter is less than the actual number of bytes in the packet. In the case of the DBL TCP API, msg_len is an in-out
parameter, used to fetch messages and given back to the user to indicate the length of the received packet.

7.2.2.5 struct sockaddr_in dbl_recv_info::sin_from

Source address of the received packet

Version 3.1.6.52817 36 36

M—yr i com Myricom DBL™

S

7.2.2.6 struct sockaddr_in dbl_recv_info::sin_to

Destination address of the received packet. This can be used to differentiate between packets to different multicast
joins on the same channel.

7.2.2.7 uint64_t dbl_recv_info::timestamp

Timestamp in nanosecs when the packet was received by the adapter. Timestamping must have been enabled through
dbl_device_set_attr

7.3 dbl_ticks_ Struct Reference

Data Fields

e uint64_t nic_ticks
¢ uint64_t host_nsecs
 uint64_t host_nsecs_delay

Version 3.1.6.52817 37 37

Index

API Reference
DBL_RECV_BLOCK, 13
DBL_RECV_DEFAULT, 13

DBL_RECV_NONBLOCK, 13

DBL_RECV_PEEK, 13
DBL_RECV_PEEK_MSG, 14
API Reference, 11
DBL_VERSION_API, 13
dbl_bind, 14
dbl_bind_addr, 14
dbl_close, 15
dbl_device_enable, 15
dbl_device_get_attrs, 15
dbl_device_handle, 16
dbl_device_set_attrs, 16
dbl_filter_mode, 13
dbl_getaddress, 16
dbl_getticks, 17
dbl_init, 17
dbl_mcast_block_source, 17
dbl_mcast_join, 18
dbl_mcast_join_source, 18
dbl_mcast_leave, 18
dbl_mcast_leave_source, 19
dbl_mcast_unblock_source, 19
dbl_open, 20
dbl_open_if, 20
dbl_recvfrom, 21
dbl_recvmode, 13
dbl_send, 21
dbl_send_connect, 22
dbl_send_disconnect, 22
dbl_sendto, 23
dbl_set_filter_mode, 23
dbl_shutdown, 23
dbl_unbind, 24

chan
dbl_recv_info, 36
chan_context
dbl_recv_info, 36

DBL_RECV_BLOCK

API Reference, 13
DBL_RECV_DEFAULT

API Reference, 13
DBL_RECV_NONBLOCK

API Reference, 13
DBL_RECV_PEEK

API Reference, 13
DBL_RECV_PEEK_MSG

API Reference, 14
DBL_BIND_BROADCAST

Flags used for dbl_bind(), 26
DBL_BIND_REUSEADDR

Flags used for dbl_bind(), 26
DBL_NONBLOCK

Flags for dbl_send()., 27
DBL_OPEN_DISABLED

Flags used for dbl_open(), 25
DBL_VERSION_API

API Reference, 13
dbl, 33
dbl_bind

API Reference, 14
dbl_bind_addr

API Reference, 14
dbl_close

API Reference, 15
dbl_device_attrs, 35

hw_timestamping, 35

recvq_filter_mode, 35

recvq_size, 35
dbl_device_enable

API Reference, 15
dbl_device_get_attrs

API Reference, 15
dbl_device_handle

API Reference, 16
dbl_device_set_attrs

API Reference, 16
dbl_ext_accept

Extensions, 29

Myricom

 — Myricom DBL™
dbl_ext_channel_type dbl_recvmode
Extensions, 29 API Reference, 13
dbl_ext_getchopt dbl_send
Extensions, 29 API Reference, 21
dbl_ext_listen dbl_send_connect
Extensions, 30 API Reference, 22
dbl_ext_poll dbl_send_disconnect
Extensions, 30 API Reference, 22
dbl_ext_recv dbl_sendto
Extensions, 30 API Reference, 23
dbl_ext_recvmsg dbl_SCt_ﬁlter_mOde
Extensions, 31 API Reference, 23
dbl_ext_send dbl_shutdown
ExtenSIOHS, 31 API Reference, 23
dbl_ext_setchopt db]—tiCk.S—’ 37
Extensions, 32 dbl_unbind
dbl filter mode API Reference, 24
API Ref , 13 .
elerence Extensions, 28
dbl_getaddress
dbl_ext_accept, 29
API Reference, 16
. dbl_ext_channel_type, 29
dbl_getticks
dbl_ext_getchopt, 29
API Reference, 17 .
.. dbl_ext_listen, 30
dbl_init dbl_ext_poll, 30
API Reference, 17 —CXL_POTL
dbl_ext_recv, 30
dbl_mcast_block_source
dbl_ext_recvmsg, 31
API Reference, 17
dbl ioi dbl_ext_send, 31
—mceast_join dbl_ext_setchopt, 32
API Reference, 18
dbl_mcast_join_source Flags for dbl_send()., 27
API Reference, 18 DBL_NONBLOCK, 27
dbl_mcast_leave Flags used for dbl_bind(), 26
API Reference, 18 Flags used for dbl_open(), 25
dbl_mcast_leave_source DBL_OPEN_DISABLED, 25
API Reference, 19
dbl_mcast_unblock_source hw_timestamping
API Reference, 19 dbl_device_attrs, 35
dbl_open .
API Reference, 20 in_buffer .
dbl_open_if dbl_recv_info, 36
API Reference, 20 msg_len
dbl_recv_info, 36 “dbl_recv_info, 36
chan, 36
.chan_context, 36 recvq_filter_mode
in_buffer, 36 dbl_device_attrs, 35
n.lsg_len, 36 recvq_size
sin_from, 36 dbl_device_attrs, 35
sin_to, 36
timestamp, 37 sin_from
dbl_recvfrom dbl_recv_info, 36
API Reference, 21 sin_to
Version 3.1.6.52817 39 39

Myricom

. Myricom DBL™
dbl_recv_info, 36
timestamp
dbl_recv_info, 37
Version 3.1.6.52817 40 40

	DBL
	Introduction
	Terms and Concepts
	Example Pseudo-Code

	Interaction with Sockets
	Receive Data Buffering

	Module Index
	API Reference

	Namespace Index
	Namespace List

	Data Structure Index
	Data Structures

	Module Documentation
	API Reference
	Detailed Description
	API Reference
	Macro Definition Documentation
	DBL_VERSION_API

	Enumeration Type Documentation
	dbl_filter_mode
	dbl_recvmode

	Function Documentation
	dbl_bind
	dbl_bind_addr
	dbl_close
	dbl_device_enable
	dbl_device_get_attrs
	dbl_device_handle
	dbl_device_set_attrs
	dbl_getaddress
	dbl_getticks
	dbl_init
	dbl_mcast_block_source
	dbl_mcast_join
	dbl_mcast_join_source
	dbl_mcast_leave
	dbl_mcast_leave_source
	dbl_mcast_unblock_source
	dbl_open
	dbl_open_if
	dbl_recvfrom
	dbl_send
	dbl_send_connect
	dbl_send_disconnect
	dbl_sendto
	dbl_set_filter_mode
	dbl_shutdown
	dbl_unbind

	Flags used for dbl_open()
	Detailed Description
	Macro Definition Documentation
	DBL_OPEN_DISABLED
	DBL_OPEN_HW_TIMESTAMPING
	DBL_OPEN_THREADSAFE

	Flags used for dbl_bind()
	Detailed Description
	Macro Definition Documentation
	DBL_BIND_BROADCAST
	DBL_BIND_DUP_TO_KERNEL
	DBL_BIND_NO_UNICAST
	DBL_BIND_REUSEADDR

	Flags for dbl_send().
	Detailed Description
	Macro Definition Documentation
	DBL_NONBLOCK

	Extensions
	Detailed Description
	Introduction to extensions
	Function Documentation
	dbl_ext_accept
	dbl_ext_channel_type
	dbl_ext_getchopt
	dbl_ext_listen
	dbl_ext_poll
	dbl_ext_recv
	dbl_ext_recvmsg
	dbl_ext_send
	dbl_ext_setchopt

	Namespace Documentation
	dbl Namespace Reference
	Detailed Description

	Data Structure Documentation
	dbl_device_attrs Struct Reference
	Detailed Description
	Field Documentation
	hw_timestamping
	recvq_filter_mode
	recvq_size

	dbl_recv_info Struct Reference
	Detailed Description
	Field Documentation
	chan
	chan_context
	in_buffer
	msg_len
	sin_from
	sin_to
	timestamp

	dbl_ticks_ Struct Reference

	Index

