RRRRRRRRRRRRRR
K-Basic
Program Description

Contents

B Contents

CHAPTER 1 INTRODUCTION

1-1 What is an Operation PrOgram?uciiieiiiiiiiiiiee e e eiiiiite et e e e e e sttt e e e e e s sstbaaaeaaeessasbtbaeaaeessasbesaeaeessanssneees 1-2
1-2 Objects to be Described in Operation ProgramsS..........c.uuviiiieeiiiiiiiiiiee ettt e e e e s e e e e e e eiasrae e e e snraees 1-3
1-2-1 Operation Programs fOF PANtS.........c.cceiiiiiiiiirie e e e s e r e e e e s r e e e s e s st aereaeesssnstbeeeeesanes 1-3
1-2-2 Operation Programs fOF SCIEENScciiiiiuiiiiiie et eeitite et e e e e e erree e e e e e s s st e e e e essstbaeraaeeessnstbaneeesannes 1-3

2-1 Creating a Part for DiSplaying NUMEIICSciiiiiiiiiiiie e eeciitit e e ettt e e e e e et e e e e e s e treeeeaesesaereeaeeasannes 2-2
2-1-1 AITanQiNg CONTIOIS.....coiiiiiiiii e e ettt e e e et e e e e s st e e e e e e s e tb b e e e e aeeesaassaaaeeeeasnsranaaaeeas 2-4
b2 N OFo o [1aTo =W o] fo o [= 12 ORI 2-6
2-1-3 Drawing @ figUre iN @ PaArt........ccoiiiiuiiiiiie ettt e e e s e e e e e s st ae e e e e e e s satbea e e e e e e sanraaraaeeas 2-7
b S Y o To I W ol (Y= L (=T N o - U SO USSR 2-8
2-1-5 USING @ CTEALEA PAITeviiiiiiii e ettt e e et e e e e s st e e e e e e s et bt a e e e e e e e saassaareeeeasnstaaneaeeas 2-9
2-1-6 Explanation for coded program CONENTciiiiiiiiiiiiiee e e e e s e e e e s e e e e e s saaereeaas 2-12
b2 A |V (o To 113/ [[0 I W =1 (=0 [= S USRS 2-15

2-2 Creating a Part to be LinKed t0 @ PLC DEBVICEuuiiiiiiiiiiiiiiie e ettt e e ettt a e e e s itvaaa e e e e e s saiaeeaeeannnes 2-20
2-2-1 NUMETAl ISPIAYS ...ccciiiiiiiiiiiee ettt e e et e e e e e et b e e e e e e s e s atbreeeeesnntaeaaaeean 2-20
b N (o [o= 1 (o] g = 1 1] USRS 2-24
2-2-3 SWIICNES ...ttt 2-26
2-2-4 INAICALOT SWILCNESviiiiiiiiiiie et eb et sb et 2-28

2-3 Creating a Part to be Linked to an EXternal DEVICEc..uvviiiieiiiiiiiiiii ettt e et e e e e e e sivaae e e 2-30
2-3-1 Display fOr NOSt COMPULETc.cciiiiiiiiiee e e e e e e e e e s e et e e e e e s satreaaaeean 2-30

Contents

2-6

Creating a Part for Controlling OthErsSc.eeiiiiiii e 2-32
2-4-1 Part for calling others from toUCh PANEL...........coiiiiiiiiiii e 2-32
2-4-2 Part for sending/receiving numerics to/from Otherscccoiiiiee i 2-34
Creating @ Part fOr USING @ TIMEIcoiiiiiiiieie ettt e et e e e nneeas 2-38
2-5-1 Part fOr COUNTING UP ...ueeeiiiiiieiiieie sttt ettt ettt e e st e e e st e e s e e e st beesnne e e nnnees 2-38
Editing a Program for @ DiSplayed Partcooiiiieiiiiieeiie ettt 2-42

CHAPTER 3 CODING RULES

3-1 USADIE CRAIACTEIS. ... teee ettt ettt e e et e e e e sttt e et e e ek et e e n bt e s et e e e b e e e e e 3-2
3-2 SPECIAI CRATACTIEIS ...ttt ettt e e ek e e e sttt e et e e ek et e e et e e s b e e e e et b e e e e nn e e e s nnes 3-3
B3 CONSEANES L.t R £kttt e bttt ettt ettt nnnnnen 3-4
B B A @0 151 ¢= 1 Al D= Tod - T 1 o] o PSPPI URPRRR 3-5
B R T - T4 T- 1] [EROUPPRPRN 3-6
3-5-1 Classification Of VariableS ... 3-6
3-5-2 TYPES OF VAIADIES.ceiiiiiie et 3-7
3-5-3 Checking variable types and variable interpretation in compilation.............c.ccceeiiiieeiniiiieinnen. 3-8
3-5-4 INItANIZING VAINADIESooiiiiiiei e 3-9
3-6 EXPresSions and OPEIALIONSeeeiiiriieeiiiite ittt ettt e e sttt e st e e et e e st et e s asee e e e s b e e e e ab b e e e nanbeesnnneeeaanreeenne 3-10
B A Y, o - @o] 1YY €1 o o H PP PP TSP UP PP PPPPPPPPRPON 3-13
B T I o 1= £ PRSPPI 3-14
3-0 SUDBIOULINES ...ttt ettt e e e e ettt e e e e e e st b et eeeeeeaansb b et e eaeeeeasnstseeeasannbbeeeaaeeesnnsbsneeaaeannn 3-15
3-10 USEr-AefiN@d FUNCLIONS......cii ittt e et e e e e e s sttt e e e e e e e aastb e e e eeaeeeaanneaeaaeeesansnsseaaaeanns 3-16
3-10-1 Definition of user-defined FUNCONSooiiiiiiii e 3-16
3-10-2 Definition positions of user-defined functions and ranges of referencing..........ccccccocveeeviiienne 3-17
3-10-3 How to call user-defined fUNCHIONS..........uviiiiiiii e 3-17
3-10-4 Variable declaration in user-defined functions and referencing external variables 3-17

Contents

3-11 Program OPEIALIONeeeiitiieeiieeee st iee e ettt e sttt e st e e st e e e aaste e e e aane e e e e b b et e aakbe e e e sane e e e et b et anreeesanneeeaabreeenans 3-18
3-12 MESSAGE FOMMAL.......eeiieiiiee ettt e e e e e e e e e e e e e et r e et e e e e e s e r e e e e e e eanrr e et e e e s e snnnneeeeeens 3-20
3-13 PrOQram BIOCKSooiitiiieiitiie ettt ettt e ket e s bt e e ea b et e ek e e e e na et e e et e e e e e s nr e e e et e e e e 3-22
3-14 DeVvices and COMMUINICALIONoeiiiurreeiiirie ittt ettt e et e sttt e rtne e e e s bb e e e s abbe e e e saneeeeaabb e e e aasbeesnaneeeaanreeenan 3-24
3-15 MEMOIY TADIES ...ttt e e ettt e ek e e e e s et e e ek e e s b e e e e s nr e e e e b e e e e 3-25
3-15-1 Describing MemMOTY taDIEcooiiiiiiiie e nre e 3-25
3-15-2 Reading and Writing ONE EIEMIENL..........cuuiiiiiiiie ittt e e 3-25
3-15-3 Reading and writing tWo OF MOTE ElEMENTScoocuiiiiiiiiie it 3-25
B I PP UUTTP P PPPPPRPT File Systems3-26
3-16-1 Precautions for file SYSIEMSii i 3-26
3-16-2 SPECITYING 8 FllE....ee i 3-27

CHAPTER 4 INSTRUCTION REFERENCE

g R [a1 ({0 e o] T R Loy (=T (=] (o = O 4-2

4-2 INAEXES DY FUNCLONSceiiiiiieiitet ettt ekt e ettt e s e e e st e e et et r e e snbb e e e ensneeennnee 4-5

How This Manual |s Organized

How This Manual |s Organized

This manual, Chapter 1 through 4, includes structures of data to be displayed on the OIP and operationsin
detail for you to use the OIP.

Chapter 1 Fundamentalsin Creating Screens
Outlines general ideas and organizations of data to be displayed on the OIP. Y ou should read
through this chapter before referencing the other chapters.

Chapter 2 Installation for Screen Creator 5
Covers the environment in operation and installation of Screen Creator 5.

Chapter 3 Basic Operations for Screen Creator 5
Describes each function name of Screen Creator 5 and operations for the keyboard and mouse.

Chapter 4 Menu Reference
Thoroughly discusses each menu of Screen Creator 5.

Y ou are recommended to reference the following manuals for using Screen Creator 5.

Vol.1 Screen Creator 5 Manual Introduction
Introduces fundamental operations of Screen Creator 5.

Vol.2 Screen Creator 5 Manual Operations
Describes operations of Screen Creator 5 in details.

Vol.3 Screen Creator 5 Manual PLC/External Equipment Connection
Covers the communi cations procedures with a host computer and connections to periphera
devices.

Vol.4 Screen Creator 5 Manua Standard Component Catal og
Y ou can get to know the standard components and their functions the maker. offers.

Vol.5 Screen Creator 5 Manua Control Reference
Describes what are controls and how to use controls for creating components.

Vol.6 Screen Creator 5 Manua K-Basic Programming
Offersinformation on how to write action programs for creating screens and how to use
functions.

Vol.7 Screen Creator 5 Manua Trouble Shooting and Error Codes
Coversrestrictions on creating screens with Screen Creator 5, how to cope with trouble, and error
codes.

Safety Precautions

Safety Precautions

Be sure to follow the safety precautions listed below in order to use the OIP safely. Koyo Electronics
Industries Co,Ltd.. cannot be held liable for any damages incurred if these safety precautions are not
followed.

A WARNING

Design your system so that there are sufficient countermeasures for personnel
accidents and major equipment accidents. The system should have an external
protection and safety circuit, so that even if the OIP should malfunction or even if
there is a defect in the program the safety of the system is assured.

Do not use the touch panel of the OIP to make switches that are related to safety or
people or major damages (emergency safety switches, etc.). Be sure that the
system is designed so that it can cope with any errors or malfunctions in the touch
panel.

Be sure that type 3 grounding is used for the protective-grounding terminal. There
is a possibility of electrical shock if the unit is not grounded.

If the OIP should malfunction, immediately turn off the poser and leave it alone.

If there is direct output to external output device such as PLCs, direct output will be
driven regardless of the ladder circuit interlock. Output may be used to drive
motors and the like, so avoid using direct output because it is dangerous.

A CAUTION

Use and store the OIP in the environment described in the specifications (regarding
vibration, shock, temperature, humidity, etc.).

Do not use the OIP where it is subjected to inflammable or explosive gas, or steam.

Before turning on the power, be sure that the power voltage rating of the OIP and
the voltage rating power supply match. Using a mistaken power supply can damage
the unit.

Do not disassemble or modify the OIP. Doing so can cause malfunctions and lead
to other problems.

The OIP touch panel is made of glass. Striking it with hard objects or pressing hard
on it may break the glass.

Do not push down on the OIP touch panel with mechanical pencils, screwdrivers, or
other sharp objects. Doing so can damage the touch panel or cause malfunctions.

Notations Used In This Manual

Notations Used In This Manual

This manual uses the following symbol marks for you to use this system comfortably.

Q Describes a peril that may cause operator's death or seriousinjury in
WARNING neglecting the WARNING item(s).

Q . Describes a peril that may cause bodily injury or serious device damage in
Caution neglecting the CAUTION items(s).

Describes general note(s) in use.

Note) Explanations and supplements.

Glossaries used in this manual are as follows.

oIP Stands for Operator Interfase Panel.
PLC Stands for programmable controller. It is aso called a sequence controller.
Link unit A link unit is a communication equipment which connects this equipment

and the PLC. The nomenclature of the communication equipment is
different from each manufacture and the equipment is called alink unit in
general.

Device A deviceis such equipment that an input/output relay, internal relay,
timer, counter, or resister in the PLC.

Vi

Notice

Notice

We have used our best efforts in preparing this manual. We make no warranties with respect to the
accuracy, or completeness of the contents of this manual and purpose. We shall not be liable any loss
of profit or any other commercial damages, applying this manual directly and indirectly.

1)

2)

3)

4)

5)

6)

All rights reserved. No part of this book may be reproduced in any form or by any means, without
permission n in writing from Koyo Electronics Industries Co,Ltd..

Contents of this manual shall be subject to change without notice.

While every precaution has been taken in the preparation of this manual, if the reader notice any
errors or has any advice on the contents of this manual, please contact our customer support in
Sales Division of Koyo Electronics Industries Co,Ltd..

We shall have no liability to any loss or damage caused or alleged to be caused directly or
indirectly by the statements contained in this manual or by the computer software and hardware
products described in it.

Koyo Electronics Industries Co,Ltd.. may have patens or pending patent applications, copyrights,
or other intellectual property rights covering subject matter in this manual. The furnishing of this
manual does not give you any license to these patents or other intellectual property rights. And
we do not have any responsibility on troubles involved in the patents and other intellectual rights
caused by the use of this manual.

Contact us at the following place concerning other unclear points in this manual.

Overseas Division
Koyo Electronics Industries Co.,Ltd.

Address: 1-171 Tenjin-cho, Kodaira, Tokyo 187-0004 Japan
Telephone: 81-42-341-7711

Facsimile: 81-42-342-6871

Mail: OSD@koyoele.co.jp

Vil

mailto:OSD@koyoele.co.jp

Version Up

Version Up

Koyo Electronics Industries Co,Ltd.. has upgraded Screen Creator 5 for adding new functions,
operationability and so forth.
Below will be introduced the updated functions.

1. Version2.10
® Supporting middle size systems (GC53) of GC5x Series
® Adding the uploading editing function

To make this function effective, attach all screen data and K-Basic programs used in the project
and download them to the panel. Then download the uploaded entities from the panel and
restorethem. Then you can edit the data and programs. Note that the data with the project
attached increase their size.

® Thefollowing PLCs have been added.

Omron SYSMAC a

Fuji Dennki FLEX-PC NJ-T/NST
Fuji Dennki Computer-link protocol
Fuji Dennki L oader command protocol
Toyota Koki PC1

Toyota Koki PC3

Matsushita Electric Industry ~ Panadac 7000

® Standard components, centered on the parts used for middle size systems (GC53) in the GC5x
Series have drastically been added.

viii

CHAPTER 1

INTRODUCTION

1-1

1-1 What is an Operation Program?

1-1 What is an Operation Program?

You must code an operation program to display data such as numerical values and characters in a
part or to make a switch operate when you press it on the touch panel.

A dedicated language K-Basic is used to code the specific operation of each part.

i i AinT
Prograwill Fdwi[) TeokDd Wesdkes A0 PropoiPl Felpddi
I_ | REEEL I L] ﬂ
[|7 &1=| oo =) I
I'J | - Dizplay syetem error accurred while the Adares [ntelligent Farel iz 2 : ?
g ' Errar of time or data e
' - Errar of low battery voltase = [z
' = Errar of seral commnication |_ I
- Swatem errors other than the abowe (error code 4000 to 4489.5000=,ar |= =
: " - lpdk can be mat to hide error displav. Meen T17 iz zet for operation g o =
=it E L]
- string strramd *® 100 1 |l
: =4 rirg ne=zef 4 6 ol 2l
din ne(5] * 50 L g
L
2 cHE1) = CHL T =
. chgiz) = o = (L
iy d(3) = T T |
IZ erfl1) = Parity Error” + chrflahid) —
e el “Themr B Fremre” & AeBiiBL0AT 1=
- |
[Fropmet Dol A [comeintion wec %]
I‘-.‘]q Fetdl A5 1oy =] F] |
Finarty [| 1145 i I

1-2 CHAPTER1 INTRODUCTION

1-2 Objectsto be Described in Operation Programs

1-2 Objects to be Described in Operation Programs

1-2-1 Operation programs for parts

You can code an operation program individually for each part.

1-2-2 Operation programs for screens

You can also code an operation program for each screen just like for a part.

Screen
10245 Error Operation program for screen
conf
00023 occurrence global send_id@
open .B000. ,1
00127 close .BOOI.
Confirm end conf
10315 evnt
end evnt
Next
/ screen
e
Z— /
Parts
Operation program for part
conf
cyclic [station number]~[connected device address]
end conf
evnt
input ty%, id@ dat%
if ty% = 16
numdsp .. num, dat%
end if
end evnt

1-3

1-3 Terms

1-3 Terms

1-3-1 Screens

A screen consists of a figure (screen background) and some parts.

\

Figure

Parts

e

Processing data regsiration

(Process 3[| /R13

Origin " 14216
_{‘é‘ﬁ{’,{‘”m 11548
Offset 1 |* 265
Offset2 [.(344
Offset3 ["%25056

A\

Parts

SN

|NEXT

1-3-2 Figures (backgrounds)

You can draw a figure on a screen or a part by plotting elements such as lines, rectangles,

circles, and characters.

1-4 CHAPTER1 INTRODUCTION

1-3 Terms

1-3-3 Parts

A part is a combination of a figure (part background) and same controls such as displays and

touch switches.

Part

The operation of such a part is coded as an operation program.

Part

background

.

Basic function elements
such as data display and
touch switch

1-3-4 Controls

A control is used to display the value of a part or a meter value or to activate a switch.

Plotting elements such as
a straight line, a square,
and a cicle

Operation program
(K-Basic)

Program for handling
controls

designation "primitive" has been used for GCSGP3, instead of control.)

It is possible to overlay several controls on a single part.

all

- Control
(Meter)

T

S

Control
(Number indicator)

(The

1-5

1-3 Terms

1-3-5 Messages

A message is a trigger for activating an operation program. A part starts its operation when it
receives a message. Switches and external devices such as a PLC can issue messages.

Each message contains a sender ID (PLC device name, part name, etc.), data and so on.

Part to be used

Operation program

Switch External device

Message
1 ex) Data from PLC

1-6 CHAPTER1 INTRODUCTION

CHAPTER 2

EXAMPLES OF PROGRAMMING

2-1

2-1 Creating a Part for Displayi ng Numerics

2-1 Creating a Part for Displaying Numerics

Let’s create the part that displays 1234 on the screen.

In this section, try to create a part which displays a numeric value on the OIP, for example.
First, create a project on Screen Creator 5. To create a project, select "Project" on the Screen
Creator 5 menu, then select "New".

T e Wl B =

Eﬁ-ﬂ;
I3 —
- Fiag e (B
I gt

Now, the "Create new property of project" dialog box opens. Select "test" in the "Project
Name" field and a model to be used in the "Panel" field, then press the OK button.

Project deiinibon | Ciorracd rewhinery |
Huzt b mpuied
P s meama (Rl tazt
Gommnt {5k [
Fanal[Ex oo GeL e E4ltcka] TFT 16 co bl ?;T;:___
Haftione: ook (HE -E " Werical
[T Cowprets biiman when buidE)
Chumapa whwm barg meedead
e s
(ol poreen ik |;.,.| FAL =2 Projss okl
Librgry Fuls I} |p_'|_|Ep|_E =3 Libegry Folder
Fistin R4 [Edrs =5 Livsy fakder
Tael il ||.,.=|:_,||.|— =3 P bekier
Fieguter fiaif: e FEE =2 Prowcl dekiee
[3 | #vidn |

2-2 CHAPTER2 EXAMPLESOF PROGRAMMING

2-1 Creating a Part for Displayi ng Numerics

Then, select "Library" on the Screen Creator 5 menu. Select "New", then select "Part". Now,
the part creation window opens.

0|

Then, set the environmental conditions for creating a part. Select "Tool" on the Screen Creator
5 menu, then select "Option”. The option setting dialog box opens. (Hereinafter, figures
showing on-menu selection are not shown.)

Corwnniyl Crasiel BdnlEl Lbesnyll)
] 1~) N [~ a2

In this dialog box, check off the "Name automatically” check box and "Compile when saving
screen" check box. Keep these boxes checked off.

SR | Thik daladla
F Enakdia) Fr i e botines il bs 1
Mldﬁl‘m P Coasials vhos b @ s dm
L I 3 I? Crpatwd varwer 008 o g i)
O
Espdonw dimpiay
™ Gk shaplis S pewi b uEEETERTE
I B il by marrll} Fooml O CoRE O oooM oDOM
P ot soninE T e iy b T rawen

CRR N1 . T8 1|

2-3

2-1 Creating a Part for Displaying Numerics

2-1-1 Arranging controls

This section describes how to arrange a number indicator for displaying numeric values in the
part creation window. In this example, use the number indicator control. For details of the
controls, refer to the Control Reference Manual. To arrange the number indicator control,
select "Create” on the menu, select "Control", then select "number indicator". The number

indicator setting dialog box appears. Leave the default properties unchanged. Do not forget
that the control name is "NUMOO0OQ".

Arwkaiia |.n.1-n|.-|.r-|nl wnd calor | Opsration parsmeaie |

Kama{ o

Ackaon o Mamad (C Baw 0 Bl 7 Flish
Dacimad pia i = Frapd Fleaza 1 Fosd?
Pasion ot penti®r - 3

Fiani i HaH i Full

Cardingl maniber DN CoDT R uEe COHE
Raam Fis)

| AST B e I el |

Then, click on the "Arrangement and color" tab in the dialog box as shown below. Try to
change the number of digits of values displayed on the number indicator control. Change the

value in the "Length and Interval” field into 4. Now, the number indicator control has been set.
Press the Arrangement button.

At Srangemand snd ol | Sperstion pesmate |

e R I TRAT

Blawe print G Xp— = YB3
Larggih ared inrisss K [4 ot [—] ot
L % T =T =l
Rgtation IE? m

Mondar ook el busch grosand

Hurar i -

D[] Feed S S]
bragallt [ocoonco

2-4 CHAPTER2 EXAMPLESOF PROGRAMMING

2-1 Creating a Part for Displayi ng Numerics

The dialog box is closed, and the mouse cursor changes into the mouse. In this condition,
move the cursor to a window where the control is to be arranged (i.e., part creation window),
and click the left mouse button. The mouse cursor changes into a rectangle frame, which
shows the size of the number indicator control. Click the left mouse button at any position, and
the number indicator control is arranged at that position.

@

Then, try to change the size of this number indicator control. There are light blue squares on
the frame of the control. These are called handles. When you brings the mouse pointer close
to a handle, the pointer shape changes. In this condition, drag the handle, and you can
change the control size as you like. In the example shown below, the control is enlarged four
times as large as the original control size vertically and horizontally by dragging the lower right
handle.

1
1
1
=
1
1
|
3 -

T

2-5

2-1 Creating a Part for Displaying Numerics

2-1-2 Coding a program

In this section, try to code a program for the part being created. Select "Edit" on the menu,
then select "Edit Part Programs”. The program editor window opens as shown below.

a4 1 (T

Type the following program on this screen.

init
numdsp ..NUM000, 1234
end init

conf
end conf

evnt
end evnt

The program contents will be explained later. First of all, type the following program. The
program editor screen will change as follows:

wee-___________________________________MhiO
e iz i .3 [

2-6 CHAPTER2 EXAMPLESOF PROGRAMMING

2-1 Creating a Part for Displayi ng Numerics

To save this program, select "Program” on the menu, then select "Save". Then, select
"Program" on the menu and select "Close" in order to close the program editor window. Now,
the program editor window is closed and the part editor window is re- displayed.

2-1-3 Drawing afigure in a part

Then, try to add a pattern to the part. In this example, enclose the number indicator control in
a rectangle.

Select "Create" on the menu, select "Rectangle”, and drag the rectangle along the diagonal line
of the number indicator control. Now, the number indicator control is enclosed in a rectangle.
The rectangular frame should be slightly larger than the control.

While drawing the rectangle, the dialog box for inputting the rectangle properties is open. It is
possible to make changes in the rectangle shape, color, etc. in this dialog box. However, no
properties are changed in this example.

Even after a rectangle has been drawn, the rectangle drawing mode is still active. To cancel
this mode, click the right mouse button.

[F]

r--——-r--""r--"r---°

0

2-7

2-1 Creating a Part for Displaying Numerics

2-1-4 Saving a created part

Select "Window" on the menu, then select "Adjust to Object Size" in order to reduce the screen
size to the current size of the part. The part must be displayed all over the OIP screen. Since
such a part is too large, reduce the area to a size enough to accommodate the created numeral
display enclosed in the rectangle. Look at the screen periphery, and you may see that the
screen is enclosed in dotted lines. These dotted lines indicate the size of the part. Each side
of the dotted rectangle has a red mark at the center. The red mark is a handle for changing
the part area. Move the mouse pointer to one of the handles. The mouse pointer shape

changes. Then, drag the handle to change the area size. The following shows an example of
reducing the area.

Then, save this part. Select "Library" on the menu, then select "Save". The dialog box shown
below opens. The Class List field on the left shows the groups of the parts in the library. This
example assumes that the part is saved in "User Parts". Thus, click on "User Parts". Input
"test" in the "Name" field and "test part" in the "Comment" field. Click on the "Save" button to
save the part. Then, select "Close" on the "Library” menu to close the part creation window.

i Bt T P ke bV
Hormrme vete et V. s ey §
H i
N rdcaic i
1] R - ™
M mimen i chrn
Bl irwmie wa
-:, .
s R FT— 4
--T.|_"'_ rum chmg pmie ey it
i R w0
.;E_.... il e _3
ErEres o
;‘ b Pl rgmai Pl
[St pschs ek e
(J LI T |
B eetrn i mgaem o 1
B St i i N ey |
-2l Hea A B ekt LT FELELE
i - CTE U S e i BB e (|
™ Sigin dugindTs [B il o I et |

Now, part creation procedures are completed.

2-8 CHAPTER2 EXAMPLESOF PROGRAMMING

2-1 Creating a Part for Displayi ng Numerics

2-1-5 Using a created part

"New" to create a new screen. The screen creation window opens as shown below.

Arrange the part created above on this screen. Select "Create" on the menu, select "Parts",
then select "User Parts". The part selection dialog box opens. Click on "test" created above.

Claim T e g

-I'J'. e Bl bl

k=1

The "Arranged Part Properties" dialog box opens. In this dialog box, only press the OK
(Arrange) button without changing any items.

2-9

2-1 Creating a Part for Displaying Numerics

IZe-pm s e e
Hammilf |. Camamdi] | |
Fama pada
" ewwl T g ™ Hebiors I Cioms 7 Deaueakiniji
Btk el
L] e okt 11 e |
D ol e -
Fopage gm iF I B | e J

The dialog box closes, and the mouse cursor changes into the mouse. In this condition, move
the cursor to a screen where the part should be arranged, then click the left mouse button.
The mouse cursor changes into a rectangular frame, which shows the size of the part. Click
the left mouse button at an intended position on the screen, and the part is arranged at that
position on the screen as shown below.

Then, save this screen. Select "Screen" on the menu, then select "Save". Input "gamenl" in
the "Name" field, "test screen” in the "Comment" field, and "1" in the "Registration No." field in
the "Save Screen" dialog box, then press the "Save" button. Now, the screen with the created
part is saved.

2-10 CHAPTER2 EXAMPLESOF PROGRAMMING

2-1 Creati ng a Part for Displayi ng Numerics

Then, try to download this screen and display it. Connect the downloading cable between the
OIP and the personal computer on which Screen Creator 5 is running, and bring the OIP into
the download condition. Select "Project” on the menu, and select "Download". The download
dialog box appears. Select "Build Transmit" in the download dialog box. When data to be
downloaded is created and it is downloaded properly, bring the OIP into the user mode. A
character string "1234" enclosed in a rectangular frame should be displayed on the OIP.

If an error occurs while creating data, check carefully if the input program is correct. If an error
occurs while downloading data, read carefully the description about downloading in the
Operation Manual and check the serial port channel, baud rate, etc.

2-11

2-1 Creating a Part for Displaying Numerics

2-1-6 Explanation for coded program content

The following program was used.

init
numdsp ..NUM0OOO, 1234

init init

conf
end conf

evnt
end evnt
The operation program for this part will be explained in detail below.
(1) init-end init
This portion is called a Configuration Block, and is first executed in this program, which is
generally used for declaring variable or initializing them,
(2) numdsp ..NUMO000,1234
The “numdsp” instruction displays a numerical value in a number indicator control. Write

the name of the number indicator control for displaying data and the data to be displayed
following the instruction. "..NUMOO0Q" shows the name of the control.

The following rules apply to this naming.

@ Control names and naming rules

Screen: GAMEN..

Part on GAMEN: GAMEN.TEST.

Control in BUHIN on GAMEN: GAMEN.TEST.NUMOOO
Current part on the current screen: .. (Omitted)

Control in the current part on the current screen: ..NUM00O
Note: Be sure to specify the names only with alphabetical and numerical characters.

Just like the part in this example, if a control is set in the same place as that of a programmed
part, you can omit the screen name and the part name to specify the control.

2-12 CHAPTER2 EXAMPLESOF PROGRAMMING

2-1 Creating a Part for Displayi ng Numerics

System name (TEST)

Use screen

Control name
(NUMO0OQO0)

Part name

(TEST) \
\

Part

Screen name
(GAMENL1)

AN

\
Screen

The program in part TEST is supposed to indicate control NUMOOO.

GAMEN.TEST .NUMOOO

or

..NUMOO0O

The other parameter is the numerical value to be displayed. You can change the display value
by changing this parameter.

1 3|4 [T~ Number indicator control

\ (NUMOOQ0)
Drawing

On screen

init

numdsp .. NUM0O0O, 1234
end init control name

conf

end conf

Displayed data

Program in part

Correlation of this part

This sample program displays a character string "1234" on the number indicator control, which
is the only control for the part.

2-13

2-1 Creating a Part for Displaying Numerics

(3) confto end conf

This block is called a configuration block, which executes a program between "conf" and
"end conf" only when a part is displayed on the screen (i.e., a part is opened or the screen
is displayed or, to be accurate, immediately before the screen is displayed).

configuration block in this sample program causes no processing.

(4) evnttoend evnt

This portion is called Event Block. The program between these statements is executed
only when a message is transmitted to this portion.

processed.

Note: A K-Basic program always requires the “conf”, “end conf”, “evnt”, “end evnt”

statements.

Messages arrive at a part from several devices and parts.

actually in the following section and see what messages come.

External
device

External devices such as a PLC, a host

Operation
program

Form inside the part
such as a switch

In this example, no program is

For details, try to use the part

Other
parts

\From inside the part such as a switch

Switch

Part to which messages are to be issued

Message issuance

2-14 CHAPTER2 EXAMPLESOF PROGRAMMING

2-1 Creati ng a Part for Displayi ng Numerics

Modifying a created part

-

Press this display section. The numeric value changes.

Modify the created part so that a numerical value may change when the
display section is pressed.

__

First, read "test" which has been created above. Select "Library", select "Open", then select
"Parts". The "Open Parts" dialog box appears. Select "User Parts" and open "test".

Screanf@l Crestah EAHE Lbrardld Toall[l Windowi] Prosci@) Heg

Dc{|| 1) - plelnlslnl@l mmlsl

25l =]

Al o |0]m)0 Lz]

In this example, try to add a switch control to this part in order to use the touch panel. Select
"Create" on the menu, select "Control", then select "Switch". The switch control setting dialog
box is displayed. Press the OK (Arrange) button, since the default setting is not changed in
this example. The mouse cursor changes into the mouse. Click on the part editor window of
the part "test". The mouse cursor changes into a square switch control. Put this in the upper
left of the part area. Since the switch control is a switch of the touch panel (20 dots x 20 dots),
it moves in 20-dot steps.

Note: This switch is a momentary switch. Itis turned on when you press it and turned
off when you release the finger.

2-15

2-1 Creating a Part for Displaying Numerics

Then, try to change the size of the switch control. To change the size, drag a handle around
the switch control with the mouse. Drag the lower right handle of the switch control, since the
area should be expanded to the lower right. By the way, the part was created above without
taking the switch size into consideration, and the size of the enlarged switch may not fit the size
of the part. In such a case, drag the lower right of the part editor window to enlarge the
window sufficiently. Then, enlarge the switch to a size enough to cover the part. Then,
expand the part area identically to the switch size. As a result, the number indicator control
shifts from the center of the part area. Select and move it to a proper position. In addition,
drag the handle to enlarge the rectangular outer frame so that it shows the switch area. The
part shown below is now created.

Then, select "Edit" on the menu, and select "Edit Part Programs" in order to edit the programs.
The program editor window opens. Add programs to the initialization block and event block as
shown below.

2-16 CHAPTER2 EXAMPLESOF PROGRAMMING

2-1 Creating a Part for Displayi ng Numerics

init
local type%, id@, data% | Line to be
numdsp . .NUMO000O, 1234 — added
end init
conf
end conf
evnt
input type%,id@,data% —
if type%=3 and id@=..SWT000 and data%=1 then)
4 NUM000, 5678 Line to be
numdsp .. , added
end if

end evnt

Try to explain where the program has modified.

The program added to the initialized block is a statement of declaring the variable used in the
Event Block.

The “input” statement added in the Event Block enables to receive messages from the Switch
control. You can know the message sender’'s type, message sender’'s ID, and data. If the
condition is satisfied in the “if” and “end if” statements, the display of the Number indicator
control changes.

First, the “input” instruction will be explained.

The “input” instruction can read various information from messages. The standard usage of
the “input” instruction is given below.

input type%,id@,data%

2-17

2-1 Creating a Part for Displaying Numerics

In this example, the statement reads the type and ID of sender and data as explained below.

type%: The number indicating sender’s type. For example, if the message is send by a switch,
itissetto 3. Ifitissend by a PLC, itis setto 16. (For details, refer to 3-2, “Message
format” reference.)

id@: The identification (ID) of sender. For example, if the message is send by a switch, it is
set to the name of the switch. The ID is written in order of the screen name, the part
name and the control name, delimiting each by a period(.).

Example: GAMEN.BUHIN.NUMOOO

This ID is called an ID-type constant; it is specific to K-Basic. You can also handle the
ID as a variable by adding a “@” after the variable just like “id@".

Note: A message contains sender’s type, ID and data in order.

data%: Data written by sender. For example, if the switch is ON, itis setto 1. If the switch is
OFF, itis setto 0.

Next line is “if” and “end if” statements.
if type%=3 and id@=..SWT000 and data%=1 then
end if

Condition “type%=3" following “if’ means a message from a Switch control. “id@=..SWT000"
means the ID of the Switch control. “data%=1" means that the switch is ON. Inserting “and”
between these three conditions enables the instruction of the next line executed if all the
conditions are satisfied. If the “if” statement consists only of “type%=3 and id@=..SWT000",
this condition is satisfied twice, when the switch is pressed and when it is released. In this
example, the operation is restricted to be executed only when the switch is pressed after
“data%=1" is added.

Pressing the switch Releasing the switch
generates an event. generates an event.
Switch Switch
Presshere Releae
Contents of message Contents of message
input type%. idQ. data% input type%. idQ. data$%
3..SWT000 1 3..SWT000 O

Note: If the switch type is set to “Momentary”, it generates two messages “when it is
pressed and when it is released”.

2-18 CHAPTER2 EXAMPLESOF PROGRAMMING

2-1 Creating a Part for Displayi ng Numerics

These programs are so modified to execute the numdsp instruction and display "5678" on the
number indicator control when the if statement is satisfied.

The part is almost completed now. Save the programs in the same manner as described in
2-1-2. Also save the part as described in 2-1-4. Though a warning message is given since
the part "test” has already been registered, overwrite it to replace the old part with the new part.
Now, use this part actually. Open "gamenl" created above again, and replace the old part
with the new "test". To replace the old part, click on it, select "Edit" on the menu, then select
"Delete". From now on, arrange the new part, create the screen data, and download it to the
OIP in the same manner as described in 2-1-5. When the screen appears, "1234" must be
displayed on the screen as previously. Press a point inside the frame, and you can see that
"1234" changes into "5678".

In_K-Basic, an “input”’ statement is used to receive_messages and “if and “end if” statements
used to judge various messages and execute operations.

For how to receive messages of other events, see the examples introduced in subsequent
chapters.

2-19

2-2 Creating a Part to be Linked to a PLC Device

2-2 Creating a Part to be Linked to a PLC Device

All the programs in this examples are for Mitsubishi PLCs. If you use a PLC of other maker,
change the station number and device name of those programs and select the PLC type to be
used in setting a connecting device setting.

2-2-1 Numeral displays

Display of D10 value

100| D10

Control to use

One Number indicator control (NUMOOO)

Exterior view of the part

Figure

oo

Number indicator control
(NUMOO0O0)

2-20 CHAPTER2 EXAMPLESOF PROGRAMMING

2-2 Creating a Part to be Linked to a PLC Device

An example of the program is given below.

init
local type%, 1d@, data%
cyclic 00~D10

end init

conf
end conf

evnt
input type%,id@,data%
if type%=16 and i1d@=00~D10 then
numdsp ..NUM00O,data%
end if

end evnt

® Configuration Block

cyclic 007D10 The “cyclic” instruction reads the value of a device “D10” of
the PLC whose station number is set to “00".

The “cyclic” instruction is used to keep observing of PLC device values.

The “cyclic” instruction reads PLC device values periodically. When a PLC device value
changes, the “cyclic” instruction transmits a messages to the Event Block. Type the station
number and device name to be read after “cyclic’. K-BASIC rules require you to link the

station number and the device name by a tilde “™”

This instruction transmits a message when ever the screen changes.

® Configuration Block
Noting is processed.

® Event Block
input type%,id@,data%

The “input” instruction reads the messages transmitted to the part. The format of the
messages are in order of “type%” (16), id@ (00~D10) and data% (PLC value: 00~D10).

if type%=16 and id@=00"D10 then

end if
A condition “type%=16" put after “if’ means a message from the PLC. *“id@=00~D10"
means that the ID of the device that has issued this message is 00~D10. Inserting “and”

between these two items enables the subsequent programs to be executed only when both
the conditions are satisfied.

2-21

2-2 Creating a Part to be Linked to a PLC Device

numdsp ..NUM00O,data%

The “numdsp” instruction displays data specified as a variable “data%” in the number
indicator control specified as “..NUMO0Q”. The variable “data%” in the “numdsp” instruction
has the same value as that of “data%” of the “input” instruction (PLC device). This displays
the PLC device value on the screen.

The flow of this program is as follows: The PLC device value is observed because the “cyclic”
instruction is used in the Initialization Block. If the PLC device value changes, a message is
issued to this part and the newest PLC device value is displayed on the screen by “numdsp”
instruction.

Try to change the numerical value of the device used in this program from the PLC. You can
see the numerical value on the screen changes simultaneously.

® How to make the part easier to use

If you want to observe plural PLC devices on one screen, you must rewrite and arrange two
or more parts accordingly, each of which has a different device name. This will make you
troublesome. The “Parameter” function will make this operation easier.

cyclic [station-number]"[num connected-device-address]

A character string enclosed in a pair of brackets, [], as shown above is called a template. (A
maximum of 32 half-size characters can be written in [].) Since a character string written in
brackets is displayed in the template of the corresponding part, the part can be used like a
standard part. A a result, you only have to rewrite an operation parameter to change any
device name without the need of changing the program.

A program example using templates is shown below.

init
local type%, 1d@, data%
cyclic [station number]~[num connected-device address]

end init

conf
end conf

evnt
input type%,id@,data%
if type%=16 and ide=[station number]~[num connected-device name]
then
numdsp ..NUM00O,data%
end if

end evnt

2-22 CHAPTER2 EXAMPLESOF PROGRAMMING

2-2 Creating a Part to be Linked to a PLC Device

The "station number" and "num connected device address" templates are displayed in the
"Property of arranged part" dialog box of the part having this operation program as shown below.
It is possible to input values for these templates of each arranged part.

L r— Commarii |
Pty yiwin
= Sgwal T Frome i~ oo " Chan [Pl n g
Babguaae
Tl [e | cebm S
Jpw ol om pEwTaiw

al me rnard

U PR T

— | i |

2-23

2-2 Creating a Part to be Linked to a PLC Device

2-2-2 Indicator lamps

Display of MO bit status

Goes on when the bit is turned on.
Goes out when the bit is turned off.

Control to use

One Lamp control (LAM0OO)
Exterior view of part
Figure

Lamp control

Note: The Lamp control has a function to change the OFF color of its area to the ON
color if it is set to ON. So, the figure of the Lamp area must be painted with the
OFF color.

2-24 CHAPTER2 EXAMPLESOF PROGRAMMING

2-2 Creating a Part to be Linked to a PLC Device

A program of a indicator lamp to be linked to a PLC device is given below.

init
local type%, 1d@, data%
cyclic [station-number] [lamp connected-device-address]

end init

conf
end conf

evnt
input type%,i1d@,data%
if type%=16 and id@= [station-number][lamp connected-device-address]

then
lampdsp ..LAM0O0O,data%
end if

end if
cont

cyclic [station-number] [connected-device-address]
end conf
evnt

input type%,id@,data%

if type%=16 and id@=[station-number]’[connected-device-address] then
lampdsp ..LAM0O0O,data%

end if

end if

® |[nitialization Block

As explained above, a “cyclic” instruction is written in this block.
Configuration Block

Noting is processed.
® Event Block

The “input” and “if” instructions are the same as that given in 2-2-1.

lampdsp ..LAM0O0O,data%

The “lampdsp” instruction displays the ON or OFF color in the Lamp control. When the
“data%” value is 0, the instruction displays the OFF color. When it is 1, the instruction displays
the ON color.

The lanm displayed part has been created. Try to set and reset the PLC device bit specified in
the program from the PLC. You can see the lamp color changes.

2-25

2-2 Creating a Part to be Linked to a PLC Device

2-2-3 Switches

Set the MO bitto 1 or O.

bit to 1; releasing this switch sets
the MO bit to O. i |

Pressing this switch sets the MO

Control to use

One Switch control (SWTO000)

Exterior view of part

Figure

~

Switch control
A program of a switch to be linked a PLC device is given below.

init
local type%, 1d@, data%
end init

conf
end conf

evnt
input type%,id@,data%
if type%=3 and id@=..SWT000 and data%=1 then
[station-number] [connected-device-address]=1
else if type%$=3 and id@=..SWT000 and data%=0 then
[station-number][connected-device-address]=0
end if

2-26 CHAPTER2 EXAMPLESOF PROGRAMMING

2-2 Creating a Part to be Linked to a PLC Device

end evnt

® |nitialization Block

You don't have to use any “cyclic” instruction in this example because a value is only written
to the PLC.

® Configuration Block
Nothing is processed.

® Event Block
input type%, id@, data%

The “input” instruction reads messages from the switch. Messages are read in order of
“type%=3", “id@=...SWT000.”, and data%" =ON/OFF (1 or 0) of switch.

if type%=3 and id@=..SWT000 and data%=1 then

else i:f:t;/p;%;i% ‘ar‘ld. ic;l@;. SWTOO :and data%=0 then

end if -
“type%=3" means the message from the switch. “id@=..SWT000" means the ID of the
switch control. “data%=1" means that the switch is pressed and “data%=0" means that the

switch is released. The following instruction is executed when these three conditions are
satisfied simultaneously.

[station-number] [connected-device-address]=1

In this statement, 1 is written in the PLC device. 0 may be written in the same manner.

The "if" statement of this program detects the moment the switch is pressed and writes 1 in the
PLC device. The "else if" statement detects the moment the switch is released and writes 0 in
the PLC device.

2-27

2-2 Creating a Part to be Linked to a PLC Device

2-2-4 Indicator switches

Set the MO bitto 1 or O.

bit to 1 and at the same time
displays the result in the lamp. i |

Create the part that writes values 1 and 0 to the PLC and

i Pressing this switch sets the MO i
i displays the result in the lamp. i

Control to use

One Switch control (SWTO000) and one Lamp control (LAMOOO)

Exterior view of part

Figure
~ Lamp control

~

Switch control

These two contorls are placed, overlapping each other.

A program of an indicator lamp switch is given below.

init
local type%, 1id@, data%
cyclic[station-number] [connected-device-address]

end init
conf
cyclic[station-number][connected-device-address]

end conf

evnt

2-28 CHAPTER2 EXAMPLESOF PROGRAMMING

2-2 Creating a Part to be Linked to a PLC Device

input type%,id@,data%

if type%=3 and id@=..SWT000 and data%=1 then
[station-number] [connected-device-address]=1

else if type%=3 and id@=..SWT000 and data%=0 then
[station-number] [connected-device-address]=1

else if type%=16 and id@=[station-number][connected-device-address] then
lampdsp ..NUMO0O,data%

end if

end evnt
This program consists of a lamp part and a switch part.

® |nitialization Block

In this example, you can use a “cyclic” instruction to observe the PLC bit device that turns
on/off the indicator lamp according to the device value.

® Configuration
Nothing is processed.

® Event Block
input type@,id@,data%
The “input” instruction reads messages from the switch and the PLC. If the message is
from the switch, “type%” is set to 3, “id@" is set to ..SWT000, and “data%"” is set to switch

ON/OFF status (1 or 0). If the message is from the PLC, “type%” is set to 16, “id@" is set
to the device ID (station number and device name), and “data%” is set to device value.

if type%=3 and id@=..SWTO00 and data%=1 then
else if type%=3 and id@=..SWT000 and data%=0 then
else if type%=16 and id@=[station-number][connected-device-address]

end if

In this portion, the message from the switch writes a value in PLC devices and the message
from PLC turns on/off of the lamp.

2-29

2-3 Creating a Part to be Linked to an External Device

2-3 Creating a Part to be Linked to an External
Device

2-3-1 Display for host computer

Connection to the host

/ — i

: Create the part that displays the value transmitted from the host
+ on the screen.

Control to use

One Number indicator control (NUMOOO)

Exterior view of part

Figure

oo

Number indicator control
(NUMOO0O0)

A program of a numeral display used for the host computer is given below

init
local type%, 1d@, data%
opencom HST

end init

conf
end conf

conf
opencom HST

2-30 CHAPTER2 EXAMPLESOF PROGRAMMING

2-3 Creating a Part to be Linked to an External Device

end conf

evnt
input type%,id@,data%
if type%=22 then
numdsp ..NUM0O0O,data%
end if

end evnt

® Initialization Block

The “opencom” instruction is written in the Configuration Block.

opencom HST

The “opencom” instruction declares receiving of messages from external devices. Specify
the following external device names after the “opencom” instruction.

HST: Host computer
BCR: Bar-code reader
TKY: Ten-key pad

@ Configuration Block
Nothin is processed.

® Event Block
input type%,id@,data%
The “input” instruction reads messages from the host computer.
if type%=22 then
end if
The condition “type%=22" put after “if” means a message from the host computer. If the

message is transmitted from the host computer, the statement following “then” will be
executed.

numdsp ..NUM0O0O,data%

This block displays data on the numeral display. A numeric value from the host is input in
"data%" in this block. This program ends here. The configuration block of this program
receives a message from the host, and the event block displays the numerical data in the
message from the host.

Note: For how to send data from the host computer, refer to the “Communication
Manual”.

2-31

2-4 Creating a Part for Controlling Others

2-4 Creating a Part for Controlling Others

2-4-1 Part for calling others from touch panel

Press

This part is opened.
here.

Create part open switch.

Control to use

One Switch control (SWTO000)

Exterior view of part

Figure
~| Lamp control

~

Switch control
(SWTO000)

A program of a part for calling other parts from the touch panel is given below.

init
local type%, 1d@, data%
end init

conf
end conf

evnt
input type%,id@,data%
if type%=3 and id@=..SWT000 and data%=1 then

2-32 CHAPTER2 EXAMPLESOF PROGRAMMING

2-4 Creating a Part for Controlling Others

open .[name-of-part-to-be-opened]., 1
end if

end evnt

® |[nitialization Block
Nothing is processed except that the block declares local variables.

® Configuration Block
Nothing is processed.

® Event Block
input type%,id@,data%
The “input” instruction reads messages from the switch control.
if type%=3 and id@=..SWT000 and data%=1 then

end if

The portion indicates that the program between the “if” and “end if’ statements is executed
when the switch is pressed.

open . [name-of-part-to-be-opened]. , 1
The “open” instruction changes the part state specified by ID from close to open. If the
numerical value following the part name is 1, the Configuration Block of the opened part is
executed when the part opens. If the value is 0, the Configuration Block is not executed.

This block uses an operation parameter for allowing a called part to be changed easily.

This program ends here. The configuration block of the part specified in the operation
parameter is executed and the part is opened when the switch is pressed.

Note: Close the part specified for [name-of-part-to-open] on the screen.

2-33

2-4 Creating a Part for Controlling Others

2-4-2 Part for sending/receiving numerics to/from others

Transmission of
numeric data

— [25]

Reception of

numeric data

Press
here.

Create a part that transmits numeric data and a part
that receives numeric data.

First, create a part that transmits numerical data.

Control to be use

One Number indicator control (NUMOOO) and one Switch control (SWTO000)

Exterior view of part

Figure

25 FNSwitch control (SWT000)

Number indicator control
(NUMOO0O0)

These two controls overlap each other.

A program of a part for sending numerical data is given below.

init

local type%, 1d@, data%
conf

numdsp ..NUMOOO, [numeric-value-to-be-displayed]
end init

conf
end conf

2-34 CHAPTER2 EXAMPLESOF PROGRAMMING

2-4 Creating a Part for Controlling Others

evnt
input type%,id@,data%
if type%=3 and id@=..SWT000 and data%=1 then
print [numeric-value-to-be-displayed]
send .[remote-destination-part-name].
end if

end evnt

® |nitialization Block

numdsp ..NUMOOO, [numeric-value-to-be-displayed]

The “numdsp” instruction in the Configuration Block is necessary to display a numerical
value from the beginning.

® Configuration Block
Nothing is processed.

® Event Block
input type%,id@,data%
The “input” instruction reads messages from the switch control.

if type%=3 and id@=..SWT000 and data%=1 then
print [numeric-value-to-be-displayed]
send .[remote-destination-part-name].

end if

This portion executes “print” and “send” instructions when the switch is pressed.

print [numeric-value-to-be-displayed]
The “print” instruction transmits messages to other parts. A message comprises a type, an
ID, and a “display value” described here. If you want to transmit two or more numeral
values, you can chain them by delimiting each value by a comma ().

Example print 123,456,789

In this case, the “input” instruction set for the part receiving data is divided into three as
shown below.

Example input type%,id@,datal%,data2%,data3%

In this example, “datal%” is read to 123, “data2$” is read to 456, and “data3%" is read to
789.

send .[remote-destination-part-name].

2-35

2-4 Creating a Part for Controlling Others

The “send” instruction transmits a message generated by the “print” instruction to the
specified part ([remote-destination-part-name]). Be sure to use print” and “send”
instructions in combination.

When [numeric-value-to-be-displayed] is 25

Part (BUHIN% Contents of print
message

g
2,TEST.BUHIN1.,25

Part (BUHIN2)

Press this SWiN I:I
Transmission

(send)

Screen (TEST)

Print ——= Message creation
send ———=> Message transmission to the specified part

The program of this part ends here. This program sends a message containing a [display
value] to the [remote destination part] specified in the operation parameter when the switch is

pressed.
In the next place, create a part that receives numerical data.
Control to use

One Number indicator control (NUMOOO)

Exterior view of part

Figure

2.5 T~
Number indicator control
(NUMOO0O0)

A program of a part that receives numerical data is given below.

init
local type%, 1d@, data%
end init

conf
end conf

evnt
input type%,id@,data%
if type%=2 then
numdsp ..NUM00O,data%
end if

2-36 CHAPTER2 EXAMPLESOF PROGRAMMING

2-4 Creating a Part for Controlling Others

end evnt

® |[nitialization Block
Nothing is processed except that this block defines local variables.

® Configuration Block
Nothing is processed.

® Event Block
input type%,id@,data%
The “input” instruction reads messages from the specified part.

if type%=2 then
numdsp ..NUM0O0O,data%
end if

The condition “type%=2" means receiving of a message from the part. The message is set in
“data%” and displayed by the “numdsp” instruction.

The program of this part ends here. When another part sends numerical data to this part, this
program displays the numerical data.

Next, try to paste two parts on the screen and use them actually. The operation parameter
[destination-part-name] must coincide with the name of the part to receive the data. If you
press the switch of the part that transmits numerical data, the same value will be displayed in
the part that receives data.

2-37

2-5 Creating a Part for Usi nga Timer

2-5 Creating a Part for Using a Timer

2-5-1 Part for counting up

The numeric value is incremented

When the switch i d, th i
en the switch Is presse € per second like 4, 5, 6.

timer start operation. When
pressed again, it stops.

Create a timer function part.

Control to use

One Number indicator Control (NUMOOO) and one Switch Control (SWT000)

Exterior view of part

Figure

3 NSwitch control (SWT000)

Number indicator control
(NUMOO0O0)

These two controls overlap each other.

A program of a part that increments a numerical value is given below.

init
local type%, 1d@, data%
static timeid@
static flag$
static number$
flag%=0
numdsp ..NUMO0O0O, O

end init

conf
end conf

2-38 CHAPTER2 EXAMPLESOF PROGRAMMING

2-5 Creating a Part for Usi nga Timer

evnt
input type%,id@,data%
if type%=3 and id@=..SWT000 and data%=1 then
if flag%=0 then
timeid@=opentim ()
settim timeid@, 10,1
starttim timeid@
flag%=1
else if flag%=1 then
stoptim timeid@
closetim timeid@
flag%=0
end if
else if type%=4 then
number%$=number%+1
numdsp ..NUMOOO, number$%
end if
end evnt

® |nitialization Block

The definitions of the local variables and static variables are written.

static timeid@
static flag$
static number$%

You can use the “static” instruction to retain the contents of variables during a program
execution. In this example, these instructions are used to retain the value of the timer ID,

the timer ON/OFF flag, and the display value. Some “static” instructions can also be written

as a group. The list of parameters also can be chained, delimiting each parameter by a
comma in this case.

Example: static timeid@, flag$%$, number%
flag%=0

The statement “flag%=0" initializes the flag variable which indicates the timer ON/OFF state.
numdsp ..NUM0OO0O,O

The “numdsp” instruction displays “0” first at starting.

Configuration Block
Nothing is processed.

Event Block

input type%,id@,data%

2-39

2-5 Creating a Part for Usi nga Timer

The “input” instruction reads messages from the Switch control and the timer.

if type%=3 and id@=..SWT000 and data%=1 then
HEE A - < When the switch is pressed
else if type%=4 then
I < When messages from the timer are read
end if

An operation to be performed when the switch is pressed and an operation to be performed
when a message is received from a timer are described after “then”. A message is
received from the timer each time the displayed value is counted. (A message is
transmitted every second.)

If the switch is pressed, the following program is executed:

if type%=3 and id@=..SWTO000 and data%=1 then

if flag%=0 then
timeid@=opentime ()
settim timeid@, 10,1
starttim timeid@
flag%=1

else if flag%=1 then
stoptim timeid@
closetim timeid@
flag%=0

end if

When the timer stops (flag%=0), the program following the “if flag%=0 then” statement is
executed.

timeid@=opentim ()

This function acquires the ID of the timer to be used. The ID is assigned for a variable
“timeid@".

settim timeid@,10,1

This instruction sets the time limit of the timer to generate events. You can set the time limit
in units of 100 milliseconds. Parameter “1” following “10” means that the timer generates
events repeatedly. If itis setto “0”, the timer generate only an event.

starttim timeid@

This instruction starts the timer.

You must use these three instructions as a set to operate the timer.

flag%=1

2-40 CHAPTER2 EXAMPLESOF PROGRAMMING

2-5 Creating a Part for Usi nga Timer

In this example, the variable “flag%” is used to indicate and retain the timer state. “flag%=1"
means that the timer is in operation.

The statements following “else if” stop the timer in operation (flag%=1).
stoptim timeid@
This instruction cancels counting up the timer.
closetim timeid@
This instruction cancels the use of the timer obtained with “opentim” and returns the timer to

the system.

You can use up to 16 times. Unnecessary timers must be returned to the system.
flag%=0
flag%=0 indicates that the flag is set to 0 because the timer stopped.

When a message is transmitted from the timer, the following program is executed.

else if type%=4 then
number$=number%+1
numdsp ..NUMO0O, number%
end if

Each time a message is transmitted from the timer, the numerical value to be displayed
(variable “number%) is incremented by “1” and displayed in the Number indicator control.

The program ends here. The initialization block of this program declares the variable and
displays the default value of 0. The event block processes a message from the switch or timer.
As a result, this program alternates two conditions. Every time the switch is pressed, a
displayed value increased by one in one condition or such increase stops in the other condition.

2-41

2:6 Editing a Program for a Displayed Part

2-6 Editing a Program for a Displayed Part

To edit the program of a part arranged on the screen, double-click on that part in the screen
creation window. The "Property of arrangement part" window opens. Select "Program” in the

window.
Hemmlfd Tec il |
P s
O 1 P ™ Hafwes [Ol [g
Barsap e
TesralTh T g | ki)
s Wl
[T—
B e mms e e wen sk ess
|
|
e | |

The program editor window opens.

liﬂll‘ljl H|:-.:ﬂ E|!||_|_-|
I - Digplay svslen arror otourrsd while The Advres [abel) g
; - Error of time or dais
Error of lom batd=ry woltans
Error of cenal comwnicat o
" o P] e tha sbesss (arrar cods A0 §a 44
- Waek e be sl bo kide arrar dissles, Wen 717 i= ==k Tor
et
ot rirg strrasf 2 100
gt rirg e & B
fim 351 % G0
o3 | CH1 =
| i Dumdey v ot e nans e e |

2-42 CHAPTER2 EXAMPLESOF PROGRAMMING

CHAPTER 3

CODING RULES

3-1

3-1 Usable Characters

3-1 Usable Characters

Half-size alphanumeric characters (0x20 to Ox7f ASCII codes), half-size Kana characters (0xa0
to Oxdf ASCII codes), and full-size characters (2-byte codes) can be used to write programs.
As for the full-size characters, character strings enclosed in double quotation marks, " " , are
valid. As for the Kana characters, device names and character strings enclosed in double
quotation marks, " " , are valid. Alphabetic characters can be written in either capital letters or
small letters. However, capital alphabetic letters and small alphabetic letters are discriminated
from each other when they are used in character strings.

What uppercase and lowercase letters are not identified means that variable, function, and
subroutine names used in K-Basic are handled as follows:

Label means the same as LABEL.
variable means the same as Variable.

3-2 CHAPTER3 CODING RULES

3-2 Special Characters

3-2 Special Characters

Some characters in OIP K-Basic have special meanings. These characters are called special
characters. The following special characters are used in OIP K-Basic.

Period “.”

&, &0, &H

%, %!, @

Tilde * ™~

“[7 %]

W

Apostrophe

Used to delimit screen, part, and control. Also used to represent a
decimal point.
Example of using periods to delimit screen, part, and a control
GAMEN.BUHIN.PRIM
BUHIN.
Example of using periods to represent decimal points
1.23,0.01

& and &0 are used to represent an octal number.

&H is used to represent a hexadecimal number.

&7 (octal notation) represents 7 in decimal notation.

&10 and &010 (octal notation) represent 8 in decimal notation.
&H20 (hexadecimal notation) represents 32 in decimal notation.

Used to represent the types of variables or functions. These special
characters are added to the ends of variable names or function names.

%: Represents an integer-type variable. (VAR%)

$: Represents a character-type variable. (MOJI$)

I Represents a floating-point-type variable. (FLOAT!)

@: Represents an ID-type variable. (ID@)

Used to delimit a station number and a PLC device name.
00°D100: 00 is a station number and D100 is a PLC device address.

Used when operation parameters are written.
conf
cyclic [station-number][connected-device-address]

end conf

Symbol for indicating the start of a comment. The portion from this symbol
to the end of a line is treated as a comment. An apostrophe is used as
follows:

conf
global var(3,2) " This is the declaration of a variable.

end conf

Used to delimit a label. A label is used as a GOTO jump destination or a
subroutine name.

evnt
if var% = 0 then goto LABEL
aa% = bb% + 1

LABEL: aa% = 10

end evnt

3-3

3-3 Constants

3-3 Constants

OIP K-Basic uses character constants, integer-type constants, floating-point-type constants,

and ID-type constants.

Character constant

Integer-type constant

Floating-point-type

ID-type constant

A character string enclosed in double quotation marks (") is called a
character constant. Character strings of up to 80 bytes can be
enclosed in double quotation marks.
“ABCDEF” and “1234", etc., are character constants.
Integer-type constants can be represented in the octal, decimal, and
hexadecimal formats.
&123,&66 (octal notation) & or &0 is added to the beginning of
numbers 0 to 7.
100,322 (decimal notation) Values from -2147483648 to
2147483647 can be assigned.
&H123,&HFF &H is added to the beginning of
(hexadecimal notation) characters O to F.
Floating-point-type constants can consist of values from
1.70141E+38 to constant +1.70141E+38. The number of significant
digits is 6 digits.
A floating-point-type constant can be written like 1.23,0.001,-2,3E-4.
E-4 indicates the -4 power of 10.
Screen names, part hames, primitive names, logical device names,
graphic names, text names, and PLC device names can be written
as ID-type constants.
e Screen name, part name, and primitive name
A screen name can be written like SCREEN.. and a part hame
can be written as SCREEN.PART. A primitive name can be
written like SCREEN.PART.PRIM.
¢ Logical device name
In OIP BASIC, HST (host computer), PRN (printer), BCR (bar
code reader), MCR (magnetic card reader), TKY (ten-key pad),
ICC (memory card), and SIO (serial port) can be written as
logical device names. Logical devices are connected to the
OIP.
« For figures and texts, the names assigned to register them can
be written as they are.
e PLC device names are written as 00"D100 and 00"M10, etc.

3-4 CHAPTER3 CODING RULES

3-4 Constant Declaration

Constant Declaration

In Screen Creator 5, it is possible to declare constants. Declaring constants means giving
constant names to constants in frequent use and using such constant names, instead of
constant values, in programs. The character constants, integer constants, and real number
constants can be declared. It is impossible to declare ID constants. Constant declaration
allows the user to change the values of constants in programs at a time. It also makes
programs easy to read.

Declare a constant as shown below.

const constant name = constant value

A constant name is a character string which is created in the same manner as creating a
variable name and enclosed in a pair of # symbols. The constant value is as described in 3-3
above.

Example: const #pai# = 3.1415

When the "pai" constant is declared as shown above, all "pai” constants in the programs are
replaced with the value of 3.1415.

Constants can be declared in portions other than the screen operation programs on a global
screen. If a constant is declared in a screen operation program on a global screen, a
compilation error occurs.

3-5

3-5 Variables

3-5 Variables

Alphanumeric characters and an underscore “_” can be used as variable names. (Uppercase

and lowercase letters of variable names are not identified.) A variable name cannot begin with
a number. Write each variable name with up to 20 characters (bytes).

Add one of the type declaration characters $, %, ! and @ in order to the end of a constant name

to express the type of the constant. The real number constant is the only exception. No type
declaration character is added to the end of the real number constant.

3-5-1 Classification of variables

Character-type variable Variable that stores characters. A variable ending with “$” is a
character-type variable. For the default, up to 20 characters
(bytes) can be stored in a character-type variable. Use the
STRING command to increase the number of characters.

Integer-type variable Variable that stores an integer. A variable ending with “%” is
an integer-type variable.

Floating-point-type Variable that stores a floating-point number. A variable ending
variable with “I” is a floating-point-type variable. Variables that
do not end with ! are also treated as floating-point-type
variables.

ID-type variable Variable that stores ID-type values such as a screen name, a
part name, a primitive name, and a logical device name. A
variable ending with “@” is an ID-type variable.

Array-type variable A character-, integer-, floating-point-, or ID-type variable
followed by the element(s) enclosed in parentheses is an
array-type variable. Array-type variables can be used by
declaring their arrays in the DIM command. They are usually
written as follows:

GLOBAL VAR$(2,3), VAR1%(10)
An array element can be usually referenced by specifying the
subscript value in the parentheses. The subscript starts at 0.
That is, VAR1%(10) is an integer-type array having 11
elements. Array-type variables can handle two-, three-, and
ten-dimensional arrays.

Note: Variables followed by different symbols (I, @, %, and $) are handled as different
variables although their names are the same. Variables are also handled as different
variables, depending on whether they have an array.

VAR!, VAR@, VAR%, VAR$, VAR!(5), VAR@(5), VAR%(5), VAR$(5) are all
different variables.

3-6 CHAPTER3 CODING RULES

3-5 Variables

3-5-2 Types of Variables

The variables may be classified according to the storage method and difference between the
ranges of the program to which can be referred in addition to the types.

Global variables

Static variables

Backup variables

Variables defined in the global declaration. Global variables
are the common variables that can be referenced by all the
global-declared BASIC programs.
This variable can be referenced in a program where the variable
is declared, as far as it is declared as a global variable.
When the OIP is started, global variables are initialized only
once. Integer- and floating-point-type global variables are
initialized to 0. Character- and ID-type global variables are
placed in the status in which nothing is written. A global
variable is declared as follows:

GLOBAL VAR%
When this declaration is made in two or more programs, they
reference the same variable.

Variables defined in the static declaration. Static variables can
be referenced only in the declared program. When the OIP is
started, static variables are initialized only once. Integer- and
floating-point-type static variables are are initialized to O.
Character- and ID-type static variables are placed in the status
in which nothing is written. A static variable is declared as
follows.
STATIC VAR%

Backup variables have almost the same characteristics as
global variables except that their contents are retained even if
the OIP power is turned off. Backup variables are not
initialized even if the power is turned on again.
However, a backup variable which hasn't been initialized is
initialized to 0 when new screen data is down-loaded.
A backup variable is declared as follows:

BACKUP VAR%
When this declaration is made in two or more programs, they
reference the same variable.

Backup variables can be used for only OIP units with
built-in backup memory. The backup memory stores data
in it even when the OIP is turned off. If backup variables
are used for an OIP with no backup memory, they cause
the same functions as global variables. In other words,
the values of backup variables are lost when the OIP is
turned off and are initialized to 0's when the OIP is turned
on again.

An OIP with backup memory uses the backup memory for
backup variables and RAM files (MS-DOS file systems or
memory files). Thus, the sum of the memory size used
for backup variables and the memory size used for RAM
files must be less than the total size of the backup
memory. The memory size used for RAM files is

3-7

3-5 Variables

specified in "RAM File Setup"” of "System Setup" on the
OIP system screen.

Models Backup memory sizes Backup variable operations
GC56LC2 256KB Can be backed up.
GC55EM2 256KB Can be backed up.
GC53LC3 256KB Can be backed up.
GC53LM3 256KB Can be backed up.

Local variables

Auto variables

Local variables denote variables defined by local declarations
(LOCAL) and undeclared variables used in portions other than
the screen programs on global screens. Local declaration is
not allowed in the screen programs on global screens.
Use LOCAL for local declaration as far as possible in Screen
Creator 5, though it is possible to use DIM for local declaration
of arrangement variables and STRING for local declaration of
character string variables for compatibility with K-Basic of
GCSGP3. Local variables are initialized every time programs
are executed.
Each integer variable or real number variable is initialized to O.
Each character variable or ID variable is initialized to a blank.
A local variable is declared as shown below:

LOCAL VAR%

Auto variables denote variables defined by auto declarations
(AUTO).
Auto variables can be defined and referred to in functions only.
Auto variables are initialized every time functions are executed.
Each integer variable or real number variable is initialized to O.
Each character variable or ID variable is initialized to a blank.
An auto variable is declared as shown below:

AUTO VAR%

3-5-3 Checking variable types and variable interpretation

in compilation

When screen data is created, the compiler executes syntactic analysis and processing of the
program. If the program contains global declaration, static declaration or other distinctive
declaration, processing is executed according to such declaration. In some cases, the type is
interpreted and processing is done tacitly. If you do not keep such tacit interpretation in mind
as a rule of writing programs, programs may not function as you expect. This section
describes which types are interpreted tacitly.

1) Variables contained in screen programs on global screens not defined by global
declaration, static declaration or backup declaration are interpreted as global variables
tacitly, and variables are created automatically.

2) Variables contained in screen programs on screen other than global screens and variables
contained in all part programs not defined by global declaration, static declaration, backup
declaration, local declaration or auto declaration are interpreted as local variables tacitly,
and variables are created automatically.

3-8 CHAPTER3 CODING RULES

3-5 Variables

Tacit variable generation as shown above is one of the features of general BASIC languages.
However, such a feature may not be desirable for some programmers. For example, if an
incorrect variable name is written in a program, a local variable or global variable is generated
automatically, while the programmer does not realize it. It is quite difficult to find such an error,
since compilation of the program cannot find it.

To avoid such a trouble, Screen Creator 5 is capable of giving an error when it finds a variable
with no declaration while it compiles a program. Normally, Screen Creator 5 goes not give an
error. When a LOCAL CHECK statement is written in a program, Screen Creator 5 gives an
error when it finds a variable with no declaration. For details of using the LOCAL CHECK
statement, see Chapter 4 "Instruction Reference". To make programs as easy to read as
possible and to minimize errors, it is recommended that the "LOCAL CHECK 1" statement be
written at the beginning of a program to validate the error check function and all variables be
declared.

3-5-4 |Initializing variables

Screen Creator 5 can initialize a variable when it is declared. To initialize a variable, write an
assignment statement behind declaration of the variable as shown below.

Example: STATIC VAR% = 12

In the case of an arrangement variable, the initialization data is complicated. Use "{" and "}" to
list the initialization data. In the case of one-dimensional arrangement, write elements having
subscripts which begin with 0.

Example: GLOBAL ARRAY%(5) = {0, 1, 2, 3, 4, 5}

In the case of multi-dimensional arrangement, write elements so that the subscripts increase
from the right.

Example: GLOBAL ARRAY%(2, 3) = {{0, 1, 2, 3, 4}, {4, 5, 6, 7}, {8, 9, 10, 11}}
GLOBAL ARRAY%(1, 2, 3) = {{{0, 1, 2, 3, 4}, {4, 5, 6, 7}, {8, 9, 10, 11}},
{12, 13, 14, 15}, {16, 17, 18, 19}, {20, 21, 22, 23}}}

If the type of the initialization data is different from the type of the variable, the data is initialized
in the variable type.

It is impossible to initialize ID variables. Other types of variables can be initialized.
Initialization applies to all types of variables. Note that, however, if initialization of backup
variables is specified, backup variables are initialized every time the OIP is turned on and
accordingly the purpose of using backup variables, i.e., storing values even after turning off the
power, is not achieved.

It is also possible to initialize variables into backup variables. Note that, however, backup
variables are initialized every time the OIP is activated and the purpose of using backup
variables such as memorizing variable values is is not fulfilled in this case.

Global variables, static variables and backup variables are initialized before all blocks in all
programs are executed.

The position of initializing a variable depends on the variable type and where declaration is
done. Global variables, static variables and backup variables are initialized before the
program blocks are executed. Local variables are initialized when the block where the local
variables are declared are executed. Therefore, note that, if local variables are declared in
configuration blocks or event blocks, the variables are initialized every time these blocks are
executed. Auto variables are initialized when the functions for which the auto variables are
declared are called and executed.

3-9

3-6 Expressions and Operations

3-6 Expressions and Operations

This section explains operations performed between variables and constants.

® Arithmetic operators

A (exponent operation)

- (minus sign)

* (multiplication)
/ (division)

¥ (division)

+ (addition)
- (subtraction)

MOD (remainder of integers)

® Relational operators

Exponent operation is written like X Y. This represents
the Y power of X.

-100,-VAR! Integer- and floating-point-type numeric
values are converted to minus values.

VAR1*VAR2 VAR1 is multiplied by VAR2.
VAR1/VAR2 VAR1 is divided by VAR2.

VAR1¥VAR2 VARLl is divided by VAR2. The quotient
becomes an integer-type value.

VAR1+VAR2 VARZ2 is added to VARL1.
VAR1-VAR2 VARZ2 is subtracted from VARL1.

VAR1 MOD VAR2 The remainder is obtained by dividing
VAR1 by VAR2.

Relational operators are used to compare two numeric values. The comparison result is

true (-1) or false (0).

= (equal to)

<> (not equal to)

< (less than)

> (greater than)

<= (less than or equal to)

>= (greater than or equal to)

= is used like VAR1=VAR2. When two values (VAR1 and
VAR?2) are equal, the result becomes true.

<> is used like VAR1<>VAR2. When two values (VAR1
and VAR2) are not equal, the result becomes true.

< is used like VAR1<VAR2. When VARL1 is less than
VARZ2, the result becomes true.

> is used like VAR1>VAR2. When VARL1 is greater than
VARZ2, the result becomes true.

<=is used like VAR1<=VAR2. When VAR1 is less than or
equal to VAR2, the result becomes true.

>= is used like VAR1>=VAR2. When VARL is greater
than or equal to VARZ2, the result becomes true.

3-10 CHAPTER3 CODING RULES

3-6 Expressions and Operations

® |ogical operators

NOT

AND

OR

XOR

NOT is used like NOT VAR%. Logical negation applies to the
numerical expression (variable or constant) following NOT.

AND is used like VAR1% AND VAR2%. VAR1% and VAR2%
are ANDed for each bit.

OR is used like VAR1% OR VAR2%. VAR1% and VAR2%
are ORed for each bit.

XOR is used like VAR1% XOR VAR2%. VAR1% and
VAR2% are XORed for each bit.

Logical operators are used to operate two numeric values for each bit. For NOT, however,
inversion is applied for each bit.

® Character operations

- Character connection

+

+ is used like VAR1$+VAR2$. That is, + is used to connect
two characters. For VAR$=VAR1$+VAR2$, the connected
characters are assigned to VARS.

- Character string comparison
Two character strings are compared. The comparison result is true (-1) or false (0).

<>

= is used like VAR1$=VAR2$. ltis used to judge whether two
character strings (VAR1$ and VAR2$) are equal.

<> is used like VAR1$<>VAR2$. It is used to judge whether
two character strings are not equal.

< is used like VAR1$<VAR2$. When VAR1S$ is less than
VAR2%, the result becomes true.

> is used like VAR1$>VAR2$. When VAR1S$ is greater than
VAR2%, the result becomes true.

<= is used like VAR1$<=VAR2$. When VARL1S$ is less than
or equal to VAR2$, the result becomes true.

>= is used like VAR1$>=VAR2$. When VAR1$ is greater
than or equal to VAR2$, the result becomes true.

Two character strings are compared from the beginning for each byte. When two different
characters are found, whether one character is greater than or less than the other is judged.
When one character string becomes shorter than the other during comparison, the shorter

string becomes small.

3-11

3-6 Expressions and Operations

® Priorities of operators
Operators are written according to priorities below.

Expressions Expression enclosed in parentheses

Functions System-defined function and user-defined function
- Minus sign

n Exponent operator

* [, ¥ Multiplication and division

+, - Addition and subtraction

MOD Remainder of integer

=, <> Relational operators

NOT Logical negation

AND, OR, XOR Conjunction, disjunction, and exclusive

Note: ID-type variables and constants can be applied only to the comparison

between two items using relational operator .

3-12 CHAPTER3 CODING RULES

3-7 Type Conversion

3-7

Type Conversion

If logical operation is performed for different types when integer- and floating-point-type values
are assigned to variables of different types, type conversion occurs.

® Assignment
The following is an example of assigning floating-point-type data to integer-type data.

VAR1% = 2.45
VAR2% = 2.56

In this case, 2 is assigned to VAR1% and 3 assigned to VAR2%.

A real number is rounded off when it is converted to an integer. The value obtained as a
result of this rounding-off becomes an integer type.

® Logical operation
For logical operation, floating-point-type data is converted to integer-type data and operated.

VAR% = 23
FLOAT!=12.35
VAR% AND FLOAT!

The result of this calculation is like 23 AND 12.

® Others
When an integer-type value is converted to a floating-point-type value, which in turn is
converted to an integer-type value again, loss of significant digits may occur. In the OIP,
the number of significant digits is 6 digits.

VAR% = 99999999
FLOAT! = VAR%
VAR% = FLOAT!

As a result of executing the above, 100000000 is set in VAR%Y.

3-13

3-8 Labels

3-8 Labels

Labels indicate a program jump destination and a subroutine name, etc. Labels are assigned
names like variables. They are delimited by a colon (:). An example of a program that use
labels is given below.

evnt
input ty%,id@,dat%
if dat% = 1 then goto LABEL1l
gosub SUBNAME

LABELl: dat% = 20

end evnt

SUBNAME :
dat%$ = 10

return

3-14 CHAPTER3 CODING RULES

3-9 Subroutines

3-9

Subroutines

Subroutines are written as a subroutine block outside the event block. Description of a
subroutine begins with a label name and ends with RETURN. No K-BASIC command can be
written in the line where a label name is written. Two or more subroutines can be written in
one program.

conf

Description of configuration block
gosub SUB1

end conf

evnt

Description of event block
gosub SUB10

end evnt
SUB1:
Subroutine body
RETURN
SUB10:
Subroutine body
RETURN

Subroutines are classified into two types: local and global.

® Global subroutine
Global subroutines are the subroutines written on the global screen. Global subroutines
can be called from all screen and part programs. Variables to be used by global
subroutines are global and static variables. When a global subroutine is called from a
screen (local screen) other than the global screen, only the variables for which “global” or
“static” was declared on that screen can be used as global subroutine variables.

® Local subroutine
Subroutines written on screens other than the global screen are called local subroutines.
Local subroutines can be used only in the program where they are written.

If the name of a written local subroutine is also contained in the global subroutine, the global
subroutine is executed when the local subroutine is called. It is possible to give a warning
indicating that the local subroutine name and global subroutine name are duplicated when
creating download data by writing a LOCAL CHECK statement in such a program. For details
of using the LOCAL CHECK statement, see Chapter 4, "Instruction Reference".

3-15

3-10 User-defined Functions

3-10 User-defined Functions

Screen Creator 5 supports user-defined functions. Several arguments are input by a caller,
the user-defined functions are executed, and return values are sent to the caller.

3-10-1 Definition of user-defined functions

A user-defined function is defined in the format as shown below:

function function name [type declaration character] (argument 1, argument 2,)
Program of the function

end function

The block between "function" and "end function" is called a function block. It is one of the
program elements like the initialization block, configuration block, event block and subroutine
block. Itis impossible to write a function block in any other block.

The function name consists of a character string written in the same manner as writing a
variable name. One of the type declaration characters $, %, ! and @, which indicate the type
of a return value, should be added to the function name. The real number function name is the
only exception. It needs no type declaration character.

Argument 1, argument 2 and so forth enclosed in parentheses are given by the caller to the
function. The type of the arguments is declared by the type declaration character. If no type
declaration character is written, arguments are regarded as real numbers. The function caller
can use variables, constants and calculation expressions as arguments.

If variables are specified as arguments, the function may substitute values for the arguments
and, as a result, the arguments may be changed. In such a case, the variables of the caller
are also changed. In other words, the function uses such arguments as the original variables,
though they are called arguments, not variables.

If constants or calculation expressions are specified as arguments, the values are substituted
for the arguments and the function is executed. If values are substituted for the arguments,
the values of the arguments are changed, while no influences are placed upon the caller. In
other words, the function regards such arguments as variables having default values (i.e., auto
variables).

When a value is substituted for the function name with a type declaration character, a return
value for the function is decided. The function caller can use the function name in an
expression as a variable or an argument of another function.

The program of the function ends when processing reaches "end function" and processing is
handed over to the caller. Use "exit function" to terminate processing of a function in the
middle of a function program.

The following shows an example of user-defined function declaration:

function my div$%(a%, b%)
if b% = 0 then
if a% < 0 then

my divs = -217483648
else

my divs = 217483647
end if

exit function
end if

my div% = a% / b%
end function

3-16 CHAPTER3 CODING RULES

3-10 User-defined Functions

3-10-2 Definition positions of user-defined functions and
ranges of referencing

The types of programs which can refer to user-defined functions and the ranges of referencing
differ with the positions where the functions are defined. The user-defined functions are
classified into three types as shown below:

® Global functions
A global function has its function block written in the global screen program. A global
function can be read from any screen or part program.

® Local functions
A local function has its function block written a program for a screen other than the global
screen. A local function can only be called by the program in which it is defined.

® Library functions

A library function has its function block written in a function library under the control of
Screen Creator 5. A library function can be read by any program.

3-10-3 How to call user-defined functions

To call a user-defined function, the user should declare the type of the function (i.e., prototype
declaration) before all blocks of the program (i.e., initialization block, configuration block, event
block, subroutine block and function block). The following format is used to declare a function.
declare function name [type declaration character] (argument 1, argument 2, ...)

The type of the function shown in 3-10-1 "Definition of user-defined functions" is declared as
shown below:

declare my_div% (a%, b%)
Functions to be actually referenced are selected in the order of the library functions, global
functions, and local functions. If there are several types of functions having the same function
name, these functions are referenced in the order shown above. By writing a LOCAL CHECK
statement at the beginning of the program (before function declaration), it is possible to give an
error indicating that function names are duplicate when compiling the program. For details of
using the LOCAL CHECK statement, see Chapter 4, "Instruction Reference".

3-10-4 Variable declaration in user-defined functions and
referencing external variables

It is possible to use auto variables in function blocks by declaring them. It is impossible to
declare other types of variables.

Global variables and local variables contained in operation programs can be referenced,
provided they can be referenced in the programs. In other words, it is possible to reference
global variables, static variables and backup variables if they are declared in the programs. It
is also possible to reference local variables which are declared or not declared in programs.

No library functions can be referenced, except auto variables declared in programs.

3-17

3-11 Program Operation

3-11 Program Operation

Operation of an OIP program is started when a message is issued to the part or screen written
in the program. GCSGP3 provides the following types of messages:

® Part and screen messages
e Part and screen programs can execute the SEND instruction to issue messages to a part
or screen.

® Switch messages
« A message is issued when the switch primitive placed on a part is set to ON or OFF.
« A message is also issued by touching the switch primitive.

® Internal timer messages
« A message is issued when the specified time has elapsed.
» The internal timer in the program must be operated to receive messages from the timer.
(See “OPENTIM.")

® Alarm messages
« A message is issued when the specified time is reached.
« For how to operate alarms, see “SETALARM Command.”

® PIO messages
« A message is issued when the parallel input status changes.
« To receive messages from the parallel input, which PIO bit is to be used must be declared
in the program in advance. (See “OPENPARALLEL.”)

® Non-procedual communication messages
« A non-procedual communication message is issued when non-procedual communication
data reception is completed.

® Sampling messages
» A sampling message is issued when the primitive that is performing sampling reads data.

® PLC messages

« PLC device values are transmitted as a message. A PLC message is transmitted when
the device contents change during communication between the OIP and PLC.

« If the values of several PLC devices change, the changes are detected after the OIP
communicates with the PLC. Therefore, messages may not been issued in the order of
the changes in the device values.

» To receive messages from the PLC, what PLC device is to be used must be declared in
the program in advance. (See “CYCLIC command.”)

® Bar code/ten-key pad messages
« A message is issued when a bar code reader or ten-key pad starts communication with a
part or screen. The contents of a message are the data itself transmitted from the bar
code reader or ten-key pad.
» The program must be coded in advance so that messages can be received from the bar
code reader and ten-key pad. See “OPENCOM.”
® Host messages
< A message is issued when the host computer starts communication with a part or screen.
The contents of a message are the data itself transmitted from the host computer.

3-18 CHAPTER3 CODING RULES

3-11 Program Operation

» The program must be coded in advance so that messages can be received from the host
computer. See “OPENCOM.”

Messages are processed in the order they are issued (execution of the program that received
messages).

Messages can also be issued to the undisplayed screen (rear screen). The operation program
that received messages on the rear screen also operates.

3-19

3-12 Message Format

3-12 Message Format

A message is a trigger for operating an OIP program. Each message consists of an issuer, an
issuer ID, and issued data. By the way, each message can have one or more data.
Three types are as shown below:

1 Value indicating the type of the message issuer (integer type)
2 Value indicating the ID of the message issuer (ID type)
3 Data itself (type of data to be issued)

Use the INPUT instruction to read messages into a program. Suppose, for example, that
numeric data 10 was transmitted from the program whose screen name is SCREEN and whose
part name is PART. In this case, the INPUT statement that reads messages is written as
follows:

INPUT TYPE% , IDQ@ , DATA%
TYPE%: Value 2 indicating that messages were transmitted from the part is set in
TYPE%.
IDQ: GAME.BUHIN. indicating the ID of the transmitted part is set in ID@.
DATA%: Dataitself. 10 in this case.

The message format is as follows:

® Screens

Type of the message issuer: 1

ID of the message issuer: Screen name

Data: Data written in the PRINT statement
® Parts

Type of the message issuer: 2

ID of the message issuer: Part name

Data: Data written in the PRINT statement
® Switches

Type of the message issuer: 3

ID of the message issuer: Switch name

Data (single switch): 1 (when ON), 0 (when OFF)

Data (multi-switches): Switch number 1 (when ON), O (when OFF)

Data (selector switch): Switch number

The switch number of a selector switch indicates the number of an activated switch when the
number is 1 or more. Ifitis O, it indicates that all switches are deactivated.

® Timers
Type of the message issuer: 4
ID of the message issuer: ID of the timer opened by OPENTIM
Data: 1 (fixed)

® Alarms
Type of the message issuer: 5
ID of the message issuer: ID of the timer opened by SETALARM
Data: 1 (fixed)

3-20 CHAPTER3 CODING RULES

3-12 Message Format

PIO

Type of the message issuer: 6

ID of the message issuer: ID representing the parallel port

Data: First: Bit number matching the condition set by OPENPARALLEL.

Second: Bitstatus (1: ON, 0: OFF)
Third: PIO channel number (0 to 3)
Non-procedual communication
Type of the message issuer: 7
ID of the message issuer: -
Data: First: Port number
Second: Status
Third: Number of received bytes

Sampling

Type of the message issuer: 9

ID of the message issuer: ID of the primitive that is performing sampling
Data: Sampled value

PLC and memory link

Type of the message issuer: 16

ID of the message issuer: Device name or memory table name
Data: Device value or memory table value

Bar codes

Type of the message issuer: 18

ID of the message issuer: Logical name “BCR”

Data: Character string read from bar code reader

Ten-key pad

Type of the message issuer: 20

ID of the message issuer: Logical name “TKY”

Data: Characters read from the ten-key pad

Host computer (command communication)

Type of the message issuer: 22

ID of the message issuer: Logical name “HST”

Data: Data transmitted from the host computer

Use the INPUT instruction to read messages into a program. Suppose, for example, that
numeric data 10 was transmitted from the program whose screen name is SCREEN and whose
part name is PART. In this case, the INPUT statement that reads messages is written as
follows:

INPUT TYPES% , ID@ , DATA%

TYPE%: Value 2 indicating that messages were transmitted from the part is set in
TYPE%.

ID@: GAME.BUHIN. indicating the ID of the transmitted part is set in
D@.

DATA%: Data itself. 10 in this case.

3-21

3-13 Program Blocks

3-13 Program Blocks

An OIP K-Basic program consists of THE blocks: INITIALIZATION (INIT to END INIT),
configuration (CONF to END CONF), event (EVNT to END EVNT), subroutine (label name: -
RETURN), AND FUNCTION (FUNCTION to END FUNCTION).

This section describes the initialization block, configuration block and event block. For details
of the subroutine block, see 3-9 "Subroutines” above. For details of the function block, see
3-10, "User-defined functions" above.

The following shows an example of a program using these blocks:

declare func%(a%, b%) 'Function-type declaration
init "Initialization block
static varl% = 10

global var2% = 20

end init

conf '‘Configuration block
var2% = 30

end conf

evnt ‘Event block

input type% , id@ , data%
if type% = 3 then

varl%s = func%(data, wvar2l%)
endif
end evnt
SUB1: '‘Subroution block
RETURN
function func% (a%, b%) 'Function block

end function

@ |[nitialization block (INIT © END INIT)
« An initialization block written in a screen or part program is executed only once when the
configuration block or event block of that program is executed for the first time.
An initialization block is used to declare or initialize variables needed in a configuration
block or event block.

® Configuration block (CONF ™ END CONF)

* The configuration block where screens and parts are written is executed only once when a
screen is displayed. This block is not executed while a screen is being displayed. It is
executed only once again when another screen is redisplayed.

* The configuration block for global screens and parts is executed only once when the
system is started.

» The configuration block is used to write processing such as initialization.

« Only the closed part’s configuration block is not executed even if a screen is displayed; it is
executed when a part is opened. (See “OPEN Instruction.”)

3-22 CHAPTER3 CODING RULES

3-13 Program Blocks

® Event block (EVNT END ™ EVNT)

« The event block is a program block that starts its operation when a message is received.
The contents to be executed when a switch is pressed are written in this block.
« The event block cannot be written in the global screen program.

Note: A configuration block is not executed if a message is sent to a screen not
displayed and an event block is executed (by the timer or a host command).

Thus, initialization written in the configuration block is not executed. Write
necessary initialization in an initialization block.

3-23

3-14 Devices and Communication

3-14 Devices and Communication

To reference and modify PLC devices, device names are written in K-Basic as follows: A
station number and a device name are delimited by “™.

VAR%=00"D100: The contents of the device whose device name is D100 and whose
station number is 00 are read.

00°"D200=40: 40 is written into the device whose device name is D200 and whose
station number is 00.

Communication is used to read and write the contents of a device. Screen Creator 5 provides
the following two communication methods:

® Cyclic communication
» The OIP always communicates with the PLC to read the contents of the device to be used.
A message is issued when the contents of the device to be used are modified.
» Cyclic communication can be performed even if a K-Basic program is not executed.
« Cyclic communication is enabled by declaring CYCLIC.
* Cyclic write is inapplicable.

® Event communication
< Event communication is performed when the contents of a device are read or modified.
< Event communication is executed by a K-BASIC program.
< Event communication can also be used to write data to a device.

In the OIP, a global screen and a local screen are displayed, overlapping each other. In
this case, communication between the global and local screens is performed as follows:

® Global screen communication
» Cyclic communication in a global screen is always executed irrespective of the local
screen to be used.

® | ocal screen communication

« Only the cycle communication declared in the current screen can be used.

« Event communication is performed when the contents of a device are read or written
during execution of the program being displayed on the current screen.

« If a program of a screen not displayed currently is activated and device reading or writing
is executed, data may be read or written from/into a device not specified in the program.
To avoid such a trouble, write a program so that device reading or writing will never be
executed in a program of a screen not displayed. For example, messages are sent to
programs of non- displayed programs in timer, alarm or graph sampling. Thus, device
reading or writing should be prevented in programs containing event blocks which process
these messages. If device reading or writing is necessary for message processing,
execute it in a global screen program.

3-24 CHAPTER3 CODING RULES

3-15 Memory Tables

3-15 Memory Tables

A memory table is used for communication between the host computer and memory link. This
table is of word type (2 bytes). There are 2048 configuration elements (address O to address
2047).

The following explain how to access the memory table in K-Basic.

3-15-1

Describing memory table

00"MTBL(0): Memory table of Oth element
00"MTBL(2047): Memory table of 2047th element
00"MTBL(NO%): Memory table of element indicated by NO%

3-15-2

Reading and writing One element

3-15-3

ABC=00"MTBL (100)
The contents of the 100th memory table are read into variable ABC.

00"MTBL (200) = 23
Data 23 is written to the 200th memory table.

00"MTBL (ABC) = XYZ
The contents of variable XYZ are written to the memory table indicated by variable ABC.

Reading and writing two or more elements

BREAD 00"MTBL (100), 20, ABCD (XY)

BREAD 00"MTBL (START), NUMS, ABCD (XY)

In the first example, 20 configuration elements are read into the XY location of array variable
ABCD, starting at address 100 of the memory table. In the second example, NUMS
configuration elements are read into the XY location of array variable ABCD, starting at the
address indicated by START of the memory table.

BWRITE 00"MTBL (100), 20, ABCD (XY)

BWRITE 00"MTBL (START), NUMS, ABCD (XY)

In the first example, 20 data is written from the XY location of array variable ABCD to the
memory table beginning with address 100.

In the second example, NUMS data is written from the XY location of array variable ABCD to
the memory table beginning with the address indicated by START.

3-25

3-16 File Systems

3-16 File Systems

This section describes the features of the file systems and the commands for accessing the file
systems.

In the OIP, the backup memory and external memory cards can be used as
MS-DOS-compatible file systems. These are called "MSDOS file systems".

Specify a drive name.

Drive name Description

Drive A: A part of the backup memory is used as the MS-DOS file system.
Drive E: Memory card drive. Use a serially connected memory card.

In addition, "memory files" are available. In memory files, memory images are read and written
from/into the system memory. To access a memory file, use the file name "MEMORY™".

File systems or memory files created in the backup memory are also called RAM files. Only
OIP units with built-in backup memory can use RAM files. The backup memory stores data in
it even when the OIP is turned off. A model with no backup memory cannot use file systems or
memory files in the backup memory.

Models Backup memory sizes RAM files
KDP5648CA 63KB Available.
KDP5640EHA 63KB Available.
KDP5320CA None Not available.
KDP5320LA None Not available.

None: Not available.

3-16-1 Precautions for file systems

® Memory
Memory files are managed not in the form of file systems. Since the same system memory
is used, it is impossible to use the drive A and MEMORY simultaneously.

® Precautions for using backup memory for RAM files
To use the backup memory for RAM files (i.e., files in drive A or MEMORY files), it is
necessary to specify the capacity to be assigned to the RAM files on the system mode
screen of the OIP. Use "RAM File Setup" of "System Setup” on the system screen.
A model with backup memory uses the backup memory for backup variables and RAM files.
Therefore, the sum of the memory size used for backup variables and the memory size used
for RAM files must be less than the total size of the built-in backup memory.

® Making backup
Data in drive A and memory file is backed up and stored even after the power is turned off.
However, the backup data is cleared to zero if the memory size is changed on the system
mode screen.

® Formatting files
Before using a file system, it is necessary to format the file. Use the K-Basic "FORMAT"
command to format a file.

® Formatting memory card drive
The OIP's memory card drive creates files in the MS-DOScompatible format, and data in the
memory card can be read and written by the MS-DOS system running on a personal
computer, etc. However, make a directory so that the sum of a file path name and a file
name does not exceed 128 characters.

3-26 CHAPTER3 CODING RULES

3-16 File Systems

The OIP's memory card drive does not support long file names, which are supported by
Windows 95, etc. Be careful not to give long names to files which are to be used on
Windows 95, etc.

3-16-2 Specifying a file

The character A or E followed by a colon, : , indicates a drive.
Example: A:, E:

To show a directory, type ¥ or / as shown below.
Example: A:¥ABC, A:/ABC/DEF

Each file name consists of a file name (in eight characters) and an extension (in three
characters). ASCII codes and Kanji codes can be used.
Example: ABCDE.DOC

3-27

3-16 File Systems

3-17 Notes

Note the following points when writing K-Basic.

® Color and tiling numbers
In K-Basic, numeric values (0 to 15) are used to change the display colors and tile figures of
graphs and displays. These numbers are assigned like 0, 1, 2, starting at the left of the
pallet color displayed by the tool and tile figures.

® Note 1 on screen transition
When one OIP screen is switched to another, the momentary switch is forcibly turned OFF if
itis ON. This is done irrespective of the mode (Input Enabled, Input Disabled, or Half Tone)
of the switch. When the OFF message is issued, the BASIC program is also activated.

® Note 2 on screen transition
When the screen for cyclic communication is displayed, messages are issued from all the
devices that are performing cyclic communication.

® If a message is issued to a part of the undisplayed screen, the program is executed in
background. If an attempt is made to execute an unexecutable instruction in background,
however, an error occurs.

® If an infinite loop is created in a program, switching and communication cannot be
performed.

® Parts on which switches are installed can be moved only in grid units.

3-28 CHAPTER3 CODING RULES

CHAPTER 4

INSTRUCTION REFERENCE

4-1

4-1 Instruction References

4-1 Instruction Reference

ABS .. 4-10
ADDCYC ...t 4-11
ADDCYC2....oiiieeee e 4-12
ADDCYCID ...ooiieiiiieeereeeee e 4-13
ASC . 4-14
ATN e 4-15
AUTO e 4-16
BACKUP....ccieee e 4-17
BARCOLOR ..ottt 4-18
BARDSP ... 4-20
BARSET ...t 4-21
BARSHIFT ... 4-22
BCD2BIN ..o 4-23
BEEP ... 4-24
BINZBCD ..ot 4-25
BITSET ..o 4-26
BITTEST ..o 4-27
BLCTL it 4-28
BLSTAT . 4-29
BLTCOLOR......ccciitirieeitieeee et 4-30
BLTDSP....oiiiiieeee e 4-31
BLTSET .o 4-32
BREADooiiiieee e 4-33
BWRITE.....ccoi e 4-34
CHDIR ...ttt 4-35
CHKTIM i, 4-36
CHRS ...t 4-37
CINT o, 4-38
CIRCOLOR......cecvririiniinee e 4-39
CIRDSP......ooctiiiii e, 4-40
CIRSET ..ot 4-41
CLEAR ..., 4-42
CLOSE ..., 4-43
CLOSECOMoociiiiiiiinecc e 4-44
CLOSEPARALLEL ..o, 4-45
CLOSESIO......coiiiiriici e, 4-46
CLOSETIM ..ot 4-47
COLOR ...ttt 4-48
CONF ... END CONF........cccviiriniiiinen, 4-49
CONST ..., 4-50
CONTTIM .ot 4-51
COPY .o 4-52
COS. ... 4-53
CURDIR ..ottt 4-54
CVB ..o 4-55
CVF o, 4-56
CVI 4-57
CVID i, 4-58

CVW e s 4-59
CYCLIC. e 4-60
CYCLICZ...ieeee e 4-62
DATES.....ciieerereerie e 4-63
DECLARE ...t 4-64
DEVRD. ..ottt 4-65
DEVWR.....ooiiietee e 4-66
DIM e 4-67
DIR e 4-69
DINV Lo 4-71
DOT e 4-72
DSPMODEooiiiieieeeeeeee e 4-73
EOF ... 4-74
ERRCTL ..oviiiicic e 4-75
ERRSTAT ..o 4-76
EVENTWR ..o 4-77
EVNT ... END EVNT ..ot 4-78
EXECPRCODEccoviiiiccnecne 4-79
EXIT FUNCTION ..ot 4-80
EXP e 4-81
FCLOSE......o e 4-82
FGET oo 4-83
FIELD ... END FIELD.....cccooviieiiiiiecenne 4-84
FIGCOLORoeiiiieeeere e 4-86
FIGDSP......ooiieeieeee e 4-87
FIGFORMoooiiiieieeeee e 4-88
FINPUT .o 4-89
FLUSH ..o 4-90
FOPEN ... 4-91
FOR ... TO ... NEXT ..o 4-92
FORMAT ... 4-93
FPRINT ..o 4-94
FPUT e 4-95
FRECOLOR.......ocoi e 4-96
FREDSP.....oooiieeeieeeeeeee e 4-98
FSEEK ..o 4-99
FSUM ..o 4-100
FUNCTION ... END FUNCTION............... 4-101
FWRITE......o e 4-103
GETBLIGHT ..ot 4-104
GETDATE ... 4-105
GETGID....ccieeeeceeeeeee e 4-106
GETGNO ..ot 4-107
GETID oo 4-108
GETOFFSET ..ot 4-109
GETTIME ..o 4-110

4-2 CHAPTER 4 INSTRUCTION REFERENCE

4-1 Instruction Reference

GLOBAL ...t 4-111
GOSUB ..ot 4-112 NUMGCOLOR ..ot eie e eeae e 4-162
GOTO i 4-113 NUMDSDP. ...t ees 4-163

NUMFORM......ccoovviiiiiiici 4-164
HEXS....oo e 4-114

OCTS ..ot 4-165
IF...THEN ... ELSE.....ccoooiiiiii 4-115 ONFERR........cooiiiiiir e 4-166
INIT .. END INIT oo 4-116 OPEN ... 4-167
INP o 4-117 OPENCOMooiiiiiiiiiri e 4-168
INPBIT ..o 4-118 OPENPARALLEL......ccooiiiiie 4-169
INPUT . 4-119 OPENSIO ... 4-170
INSTR oo 4-122 OPENTIM...cooiiiiiiii e 4-171
INT oo 4-123 OPENTIMZ.....ooiiiiiiii e 4-172
INTERLOCK ..o, 4-124 OPENTIMS.....ooiiiiiirr e 4-173
TOCTL s 4-125 OUT s 4-174
[OCTLZ .o 4-127 OUTBIT ..o 4-175
[OSTAT . 4-128 OUTBITSTAT ..o 4-176

OUTSTAT ..o 4-177
JUMP ... 4-129

PIPCOLOR......ooiierireereee e 4-178
KILL o 4-130 PIPDSP ..o 4-179

PLTCOLOR......cceiieririieeiee s 4-180
LAMPCOLOR oo 4-131 PLTDSP....ccii 4-181
LAMPD P oo oo 4-132 PMODE ... 4-182
LEFTS oo 4-133 PRDSP ..o 4-183
LEN woooeeeeeeee et 4-134 PREVIUMP ..o 4-184
LINE oo sessesessns e 4-135 PRINT oo 4-185
LINPUT oo 4-136 PRMCTL oo 4-186
LNECOLOR. ..o 4-137 PRMSTAT ... 4-193
LNEDSP. .o 4-138 PSTAT .o 4-203
LNESET ..o 4-139
LNESHIFT ..o 4-140 RANGE........ccoiieeeeeeee e 4-204
LNESHIFT 2. 4-141 READTIM oo 4-205
LOCAL....coiiir s 4-142 RENAME ..o, 4-206
LOCALCHECK ... 4-143 REOPENCOMcccoiiiiieiienirniecie e 4-207
LOF ot 4-145 REOPENPARALLEL ..o, 4-208
LOG....iiiiriiiiieesinsisessie e, 4-146 RESETALARM ..o 4-209

RETURNoooiiiiiiieeeeees 4-210
Y T = O 4-147 RIGHTS ..., 4-211
MEDIACHK oo 4-148 RMDIR ..o 4-212
MEDIASIZE oo 4-149 ROTATE.....co i 4-213
MIDS ... 4-150 RSTAT e 4-214
MDD oo, 4-149 RUN ..o, 4-215
MKB ..o 4-152
MKDIR....oiiiiiii 4-153 SELECT CASE ... END SELECT............... 4-216
MK ettt ettt 4-154 SEND ..ot 4-217
MK o 4-155 SETALARM......couvininninniniisssinisisins 4-218
MKID ..o 4-156 SETBEEP ... 4-219
MKS e 4-157 SETBLIGHT......cosvinninininssisissisinsisisens 4-220
MKW .ottt 4-158 SETDATE......ccconnmnimniinssiisssissisisins 4-221
MOVE.....coi 4-159 SETLNEPLOT ..o, 4-222
MTRCOLOR.......ccociiriinn 4-160 SETSIO....ci, 4-223
MTRDSP.....ocoeeeeeeeeeeeeeeeeeeee e 4-161 SETTIM .o 4-224

4-1 Instruction References

= I LY [4-225
S 1= S 4-226
I T 4-227
S D) D1 =T 4-228
0 =S 4-229
'] = 4-230
STARTTIM covoooeeeeeeeeeeeeeeeeeeseeeseee e 4-231
STATIC eeeeeeeeeeeeeeeeeeeeeeeeeeeseeeseee s 4-232
1) =S 4-233
1K) =1 Y 4-234
STRS..veoreeeeeeeeeeeeeeseeeeseseseseseeseeesseeeesseseees 4-235
STRCOLOR ..covreeeveeeeeeeeeeeeseesseeesesseseees 4-236
STRDSP ..evveeeeeeeeeeeeeeeseeeesseesseees e 4-237
LR =0 =Y [4-238
STRING v eeeeeeseee e seeesesseseees 4-239
SV = [T 4-240
SWMODE ..oveooeeeveeeeeeeeeeeeeeeeeeseeees e 4-241
STTI=TY o S 4-242
SWREV .oeeveeeeeeeeeeeeeeeseeeesseesseeeseeseseees 4-243
SWWRITE oovvooeeeeeeeeeeeeeseeeeeseeeseeeesesseenees 4-244
TAN e eree e 4-246
TIMES oo eeeseeeeeeseeeeseee s 4-247
TIMID oo 4-248
TIMINT oo eeseeseeens 4-249
VALNALZ. ccoooeovveereeeeeeeeeeseeeeeeeeseessessens 4-250
WHILE ... WEND ..oooeveveeeeeeeeeeeeesseseneeons 4-251
WRITESIO/WRITESIOB ...ecvvveeeeereerennn, 4-252

4-4 CHAPTER 4 INSTRUCTION REFERENCE

4-2 Indexes by Functions

4-2 Indexes by Functions

Control structure Arithmetic operation
ABS ..o 4-10
ATN e 4-15
BITSET ..o 4-26
BITTEST ..o 4-27
(O S 4-38
COS ... 4-53
EXPe s 4-81
INT o e 4-122
LOG .. i 4-145
SHIFT oo 4-225
SIN s 4-226
SQR e 4-229
TAN i 4-245
Variable declaration
AUTO e 4-16 — Character string manipulation
BACKUP.....ooieeeecnesee e 4-17
CONST ..t 4-50 ASC ..ot 4-14
DIM L 4-67 CHRS ... 4-37
GLOBAL ..ot 4-111 CVB o 4-55
LOCAL ot 4-141 CVF e 4-56
STATIC e 4-231 @3 SR 4-57
STRING ..ottt 4-238 CVID i 4-58
CVW e 4-59
HEXS .o 4-114
Messages INSTR ..o 4-121
LERTS . 4-132
INPUT s 4-119 LEN cooooeeeeveeeeeeeeseeseeseeessssssssses s 4-133
PRINT e 4-184 MCPY oo 4-146
RUN e 4-214 MID$ (FUNCEON) ... e eeeeeeeseeeseeeeenes 4-150
SEND oo 4-216 MID$ (SLAEMENL) ... 4-149
MEKB .o 4-151
MEKF .o 4-153
MK e 4-154
MEKID ..ottt 4-155
MEKS.. e 4-156
MKW Lo 4-157
(@O I 4-164
RIGHTS i 4-210
STRSP...ooeeeeeee s 4-234
VAL oo 4-249

4-2 Indexes by Functions

Type conversion ——— ———Graphic displays
BCD2BINooiiiiieeeeeeeeee e 4-23 FIGCOLORocoiivieeieerir e 4-86
BINZ2BCD ..ot 4-25 FIGDSP......ciiiieeeeeeeee e 4-87
GETGID ..ot 4-106 FIGFORMooiiiiiiiii et 4-88
GETGNO......coiiieieeeee e 4-107 ROTATE....cciiiiiiiiiiis 4-212
GETID ..ot 4-108
GETOFFSET ...t 4-109
TIMID oot 4-247 Plot displays
TIMINT oo 4-248
PLTCOLOR......oceirieirieirieenieeeieesieeene 4-179
PLTDSP....cccceiiiiiiiiiicieicses e, 4-180

CLOSE ... 4-43 —— Bar graph displays

JUMP L.t 4-128

MOVE ...oooveeeeeeeieseesseseeseeeesenesesenseeeeee 4-158 BARCOLOR ..o, 4-18
(0] = N I 4-166 BARDSP....omi 4-20
PMODE ..o 4-181 BARSET ... 4-21
PREVIUMP-. oo 4-183 BARSHIFT ...t 4-22
PST AT e 4-202

RSTAT et 4-213

Line chart displays

. LNECOLOR.........comermrrrvoressrereissssseessinnnns 4-136
Switch control

LNEDSPooovoooeeresneeesssssssssssseeessssssssonns 4-137

SWFIG oo 4-239 LNESET oo 4-138

SWMODE ..o 4-240 LNESHIFT s 4-139

STIVL21=T2Y 0 J S 4-241 LNESHIFTZ oo 4-140

SWREV ..o 4-242 SETLNEPLOT..ooooovvvveessssenneesseneee 4-221

—— 100 percent bar chart displays

Numeric displays

BLTCOLOR ..o 4-30
NUMGCOLOR oo 4-161 BLTDSP ..o 4-31
NUMDSP oo 4-162 BLTSETccooeiiiiiiiiee it csiieee e 4-32

NUMFORMcocoeaiiiiiiiiiiiiiiicenee, 4-163

Pie chart displays

Character string displays

CIRCOLOR ...ttt 4-39
STRCOLOR oo 4-235 CIRDSP ... 4-40
STRDSP ..o 4-236 CIRSET ..tiiiiiiiiiiiiiiiiiiiiiiiieiaresessseresesesernnnees 4-41

4-6 CHAPTER 4 INSTRUCTION REFERENCE

4-2 Indexes by Functions

Free graph displays

Serial control

CLOSECOMociiiiiieeerierieee e 4-44
CLOSESIO ...t 4-46
FLUSH. ..ot 4-90
OPENCOM ..ot 4-167
OPENSIO ...t 4-169
REOPENCOM.......ccoeiiiiee e 4-206
SETSIO...c it 4-222
WRITESIO.......cccoviiiiiiiciice 4-251

FRECOLOR......cocieeeeeteetese e 4-96
FREDSP......oiiiiieiiistce e 4-98
Slide displays
SLDDSP....cooiiiiieiiieieeseseseeeeeeeeiea 4-227
Meter displays
MTRCOLOR.......cocoeereriirienenie e 4-159
MTRDSP.....ccoiieieiiiiis s 4-160
Lamp displays
LAMPCOLOR ..ot 4-130
LAMPDSP ..o 4-131
Pipe displays
PIPCOLOR.......coooeeeirenie e 4-177
PIPDSP.......c.cccoviiiiiiiiceseeeee e 4-178
Control control
CLEAR. ...ttt 4-42
DSPMODE.......ccoiiierinenese e 4-73
EXECPRCODE........ccocoiiiiiiiecerieieieeeiens 4-79
PRDSP......ooieeeeeerese e 4-182
PRMCTL oo 4-185
PRMSTAT e 4-192
RANGE ..o 4-203

CLOSEPARALLEL ...ccovveeveeeeeeeeeeveeie, 4-45
INP et 4-117
TN T =] I R 4-118
OPENPARALLELovoeeveeeieeeee e, 4-168
O 1 4-173
(@ 10 I =] I I 4-174
OUTBITSTAT ..o 4-175
OUTSTAT et 4-176
REOPENPARALLELcooveevveeeeeeeeee, 4-207
Timers/alarms
CHKTIM oo 4-36
CLOSETIM ...t 4-47
(00]\ I I 1 4-51
OPENTIM .o 4-170
OPENTIM2 ..o 4-171
OPENTIMS3 ... 4-172
READTIM ..o 4-204
RESETALARM.....ccoviiieeece e 4-208
SETALARMooiiee e 4-217
SETTIM it 4-223
STARTTIM oo 4-230
STOPTIM oo 4-233

4-7

4-2 Indexes by Functions

—— PLC/memory link communication Time/date

ADDCYC .. 4-11 DATES ...ttt 4-63

ADDCYC2.eeeeeeeeeee e 4-12 GETDATE ... 4-105

ADDCYCID oo 4-13 GETTIME......o o 4-110

BREAD ... 4-33 SETDATE.....o oo 4-220

BWRITE.......ccco, 4-34 SETTIME .o 4-224

CYCLIC e 4-60 TIMES....couoiiiiieiieieeeeeeeie s 4-246
CYCLICZ ... 4-62
DEVRD ... 4-65

DEVWR ...t 4-66 File control

EVENTWR .o 4-77

LOUE] | 4-54

DIR oo 4-69

Hardcopy 0] 3 4-74

FCLOSE ... 4-82

COPY et 4-52 € 4-83

FIELD oo, 4-84

FINPUT ..o 4-89

Drawing FOPEN ..o 4-91

FORMAT ... 4-93

COLOR oo 4-48 FPRINT .o esneeeees 4-94

DINV et 4-71 FPUT oo 4-95

D10 1 4-72 ESEEK oo 4-99

I L 4-134 PWRITE oo 4-103

KILL oo, 4-129

LINPUT ..o 4-135

Back light control 1) =R 4-144

MEDIACHK ..ot 4-147

5] I O 4-28 MEDIASIZE.. 4-148

BLST AT e 4-29 MKDIR ... 4-152

GETBLIGHT oo 4-104 ONFERR.......cooieeecteteeeeeeeeeee e, 4-165

SETBLIGHT oo 4219 1 | RENAME oo 4-205

RMDIR oo, 4-211

O | 4-228

Buzzer control SUM oo 4-100

4-8 CHAPTER 4 INSTRUCTION REFERENCE

4-2 Indexes by Functions

System control

ERRCTL .o 4-75
ERRSTAT ..o 4-76
INTERLOCKocviiiieiiiieeeieeee e 4-123
[OCTL oo 4-124
[OCTL2..iieeeee e 4-126
IOSTAT ..o 4-127

Function control

DECLARE ... 4-64
EXIT FUNCTION.....ccoiiiiee e 4-80
FUNCTION ... END FUNCTION 4-101

Compiler control

LOCALCHECKoccoiiiiiiiciciccecscie, 4-142

4-9

ABS

ABS

Function

B Function The ABS function calculates an absolute value.

B Format ABS (numerical-expression)

B Example of Use AA = ABS (-50)

AA = ABS (Var)

B Description The ABS function calculates the absolute value of the numerical
expression (numeric constant, integer-type variable, or
floating-point-type variable) enclosed in parentheses.

Bl Related Item None

B Example of Program

evnt
input type% , id@ , data$%
if data% < 0 then data% = abs(data%)
numdsp ..num000 , data%

end evnt

4-10 CHAPTER 4 INSTRUCTION REFERENCE

ADDCYC

ADDCYC

Statement

B Function

B Format
B Example of Use

B Description

B Related Item

B Example of Program

The ADDCY C statement enables even BASIC of a part to read the device
declared in control-name.

ADDCY C control-name

ADDCYC ..NUMO000

When a control in a part is used to validate an operation parameter, the
ADDCYC statement enables even a part program to cyclicaly
communicate with the PLC device/memory table set in the part
operation parameter specification.

The number of devices must match that of devices to be used by the
control. (The devices placed in consecutive stages are used only the
number of elements.)

control-name must be the primitive in the local part.

If the specified control is not using the PLC device/memory table, an
error occurs.

When the control is specified in a numeric display in a doubleword,
the ADDCY C statement also reads it in a doubleword.

CYCLIC, CYCLIC2, ADDCYCID

cont
ADDCYC ..NUMOOO " Uses 2X2 as a consecutive-stage display.
end conf
evnt
input type% , 1id@ , data% ' Displays data on the corresponding display.
idl@ = addcycid (..NUMO00O) ' IndicatesthelD of the device being used.
i% = getoffset (idl@, id@)+1 ’ Indicatesthe deviceto be used relative to the first
device.
idl@ = getid(..NUMOOO, i%) " Obtains the ID of the corresponding display.
numdsp idl@, data% ' Displaysthe ID on the display.

end evnt

4-11

ADDCYC2

ADDCYC2

Statement

B Function

B Format
B Example of Use

B Description

B Related Item

B Example of Program

The ADDCYC2 statement enables even BASIC of a part to read the
device declared in primitive-name.

ADDCY C2 primitive-name
ADDCYC2 ..NUMO000

» The ADDCYC2 statement is amost equivalent to the ADDCYC
statement.

» The only difference between these two statements is that the PLC
device declared in the ADDCYC2 statement can communicate to
obtain data even if the screen showing the declared part is not being
displayed (when another screen is being displayed). Usually, the
declared PLC device communicates to obtain data only when the
screen showing the declared part is being displayed.

ADDCYC, ADDCYCID

cont
ADDCYC2 ..NUMOOO " Uses 2X2 as a consecutive-stage display.
end conf
evnt
input type% , 1id@ , data% ' Displays data on the corresponding display.
idl@ addcycid (..NUMOO0O) ' IndicatesthelD of the device being used.
i% = getoffset (idl@, id@)+1 ’ Indicatesthe deviceto be used relative to the first
device.
idla getid(..NUM0OO0OO, i%) " Obtains the ID of the corresponding display.
numdsp idl@, data% " Displaysthe ID on the display.

end evnt

4-12 CHAPTER 4 INSTRUCTION REFERENCE

ADDCYCID

ADDCYCID

Function

B Function

B Format

B Example of Use

The ADDCY CID function obtains the ID of the device that was declared
in control-name and enabled to be read by even part programs.

ADDCY CID (control-name)

ID@ =ADDCYCID (..NUMO000)

B Description » The ADDCYCID function obtains the ID of the device being used by
the control enabled to be read by even part programs and returns the
ID type. To enable this operation, however, the operation parameters
of the control in the part must be set to “effective” and the PLC device
must be set in the associated operation parameter in advance.

» control-name must be the primitive in the local part.

« |If the specified primitive is not using the PLC device/memory table,

B Related Item

an error occurs.

ADDCYC, ADDCYC2

Example of Program

conf
addcyc ..NUMOOO

end conf

evnt
input type% , 1dQ@ , data%
idl@ = ADDCYCID (..NUMOOO)

i% = getoffset (idl@, 1id@)+1

device.
idl@ = getid(..NUMOOO, 1i%)
numdsp idl@, data%

end evnt

" Uses 2X2 as a consecutive-stage display.

' Displays data on the corresponding display.
" Indicates the ID of the device being used.
" Indicates the device to be used relative to the first

" Obtains the ID of the corresponding display.
" Displaysthe ID on the display.

4-13

ASC

ASC

Function

B Function
B Format
B Example of Use

B Description

B Related Item
B Example of Program

evnt

The ASC function specifies the first 1-byte character code of a character
string.
ASC (character-string)

AA =ASC (“AABCD")
AA = ASC (MOJ$)

» The ASC function specifies the first character code of the character
expression (character string constant or variable) enclosed in
parentheses with a decimal number.

» The ASC function specifies only the initial 1-byte code of a character
expression which begins with a Kanji character.

CHR$

input type, 1id@R, datas$

num =
numdsp
end evnt

ASC (data$)
. .NUMOOO, num

4-14 CHAPTER 4 INSTRUCTION REFERENCE

ATN

ATN

Function

B Function The ATN function calculates the inverse tangent for the numerical
expression.

B Format ATN (numerical-expression)

B Example of Use ANGLE = ATN (X/Y)

B Description The ATN function calculates the inverse tangent value for the numerical
expression. The result must be a value from -n/2 to ©/2. The unit is
radian.

Bl Related Item TAN

B Example of Program

pi = 3.141592
angle% = atn(pi/4)
numdsp ..num000 , angle%

end evnt

4-15

AUTO

AUTO

Statement

B Function The AUTO statement declares an auto variable.
B Format AUTO variable name [, variable name ...]

B Example of Use AUTO VAR, XYZ(2,3), MOJ$* 20

B Description

B Related Item

B Example of Program

function userfunc% (a%, b%)
AUTO c%
c% = a% + b%
userfunc% = c% / 2

end function

The AUTO statement declares that the variable
is an auto variable. An auto variable can be
declared and referenced in a function only.

The value of an auto variable stays valid only
while the function of that variable is called and
executed.

The value of an auto variable isinitialized when
the function is called and execution starts.

A variable name can be specified in a normal
variable, arrangement variable or character
string variable.

DIM declaration or STRING declaration is not
needed to declare an arrangement variable or
character variable.

The auto variable type is one of the new features
of Screen Creator 5.

4-16 CHAPTER 4 INSTRUCTION REFERENCE

BACKUP

BACKUP

Statement
B Function The BACKUP statement declares a backup variable.
B Format BACKUP variable-name [,variable-name ...]
B Example of Use BACKUP VAR, XYZ(2,3), MOJI$*20
B Description » The BACKUP statement declares a backup variable. Besides the
characteristics of aglobal variable, a backup variable has a function to
retain its value even if the power supply is turned off.
* A normal variable, an array variable, or a character string variable can
be specified in variable-name.
* In order to declare arrays and character string type, no DIM and
STRING declarations are required.
B Related Item AUTO, DIM, GLOBAL, LOCAL, STATIC, STRING

B Example of Program

conf
BACKUP a , x(2,3) , moji$ * 40

end conf

4-17

BARCOLOR

BARCOLOR

Statement

B Function

B Format

B Example of Use

B Description

B Related Item

The BARCOLOR statement changes the bar color and figure of the bar
graph display.

BARCOLOR display-name, bar-number, tile-1, display-color-1,
background-color-1, tile-2, display-color-2, background-color-2

BARCOLOR ..BARO0QO, 2, 3, 1, 4,5,2,1

» The BARCOLOR statement changes the bar tiles and colors of the bar
graph display and the background tiles and colors of the entire
display. -1 indicates that the color and tile for which -1 was
specified remain unchanged.

e control-name is the name of a bar graph or the ID-type variable
indicating the graph.

» The value indicating the bar number in the bar graph to be changed
is set in bar-number. The bar number can be specified with a
constant or variable. The bar number starts at 1.

« tile-1 indicates the tiling figure of the bar. Specify this tiling figure
with anumeric value from 0 to 15.

» display-color-1 is a humeric value indicating the color number of the
tile display section. Specify this color number with a numeric value
from O to 15.

» background-color-1 is a humeric value indicating the color number
of the tile background section. Specify this color number with a
numeric value from O to 15.

* tile-2 indicates the background tiling figure of the bar graph.
Specify thistiling figure with a numeric value from O to 15.

» display-color-2 is a humeric value indicating the color number of the
tile display section of the background. Specify this color number
with anumeric value from O to 15.

» background-color-2 is a humeric value indicating the color number
of the tile background section of the background. Specify this color
number with a numeric value from O to 15.

BARDSP, BARSHIFT

4-18 CHAPTER 4 INSTRUCTION REFERENCE

BARCOLOR

Example of Program

cont
static name@
name@ = ..BAR0O0OO
end conf
evnt
input type%, 1d@, data%
if type% = 3 then
barcolor name@, 2, 2, 3, 1, 4, 5, 2
end if

end evnt

4-19

BARDSP

BARDSP

Statement
B Function The BARDSP statement displays datain the bar graph display.
B Format BARDSP control-name, bar-number, display-value
B Example of Use BARDSP ..BARO0OOQ, 1, 30
B Description * The BARDSP statement displays bar datain the bar graph display.
» control-name is the name of a bar graph or the ID-type variable
indicating the graph.
» The value indicating the bar number in the bar graph to be displayed
issetin bar-number. The bar number startsat 1.
* display-value isthe numeric dataindicating the size of the bar graph.
« display-value cannot be changed even if this statement is issued to the
display for which operation parameters are set to “effective” in the
control.
B Related Item BARCOLOR, BARSHIFT

B Example of Program

conf
static name(@
name@ = ..BARO0O0O
end conf
evnt
input type%, 1d@, data%
bardsp name@, 2, data$%
end evnt

4-20 CHAPTER 4 INSTRUCTION REFERENCE

BARSET

BARSET

Statement
B Function The BARSET statement sets datain the bar graph display.
B Format BARSET, control-name, bar-number, display-data
B Example of Use BARSET .BUHIN.GRAPH, 2, 30.0
B Description » The BARSET statement sets the data to be displayed in the bar graph
display. The speed of executing the PRDSP (display) statement after
setting data in each bar is faster than that of modifying all bar values
after executing the BARDSP statement.
» control-name is the name of the bar graph display name or the
I D-type variable indicating the bar graph display.
* bar-number indicates which bar data is to be modified when two or
more bars are displayed in one bar graph display. The bar number is
integer value data starting at 1.
+ display-data is the numeric data indicating the size of the bar graph.
B Related Item BARDSP, PRDSP

B Example of Program

evnt
BARSET .buhin.gpaph , 3 , 20.1
var@ = .buhin.graph
no = 4
value = 23

barset wvar@ , no , value
prdsp var(@
end evnt

4-21

BARSHIFT

BARSHIFT

Function

Bl Function The BARSHIFT function shifts bar graph data left or right and displays
it.

B Format DATA% = BARSHIFT (control-name, shift-direction, display-data)
B Example of Use DATA% = BARSHIFT (..BAROQO, 1, 30)

B Description * When two or more bars are being displayed in one bar graph display,
the BARSHIFT statement shifts the bars constituting the graph left or
right by one bar and displays the bars.

« When the BARSHIFT function is executed, the values of the bars
purged from the graph are returned as a result of the shifting.

» Thevariable indicating the graph name or ID is set in control-name.

» When shift-direction is 1, bar graph data is shifted left and above.
When shift-direction is-1, bar graph datais shifted right and below.

+ display-data indicates the data to be displayed in the vacant area
produced as aresult of the shifting.

B Related Item BARDSP, BARCOLOR

B Example of Program

evnt
input type%, 1dQ, data%
if data% > 0 then

abc% = barshift (..BAR00O, 1, 0)
else
abc% = barshift (..BAR00O, -1, 100)
endif
end evnt

4-22 CHAPTER 4 INSTRUCTION REFERENCE

BCD2BIN

BCD2BIN

Function

B Function
B Format
B Example of Use

B Description

The BCD2BIN function converts BCD datato binary data.
BCD2BIN (numerical-expression)
BINDATA% = BCD2BIN (BCDDATA%)

The BCD2BIN function converts the entered BCD data to binary data.

B Related Iltem BIN2BCD
B Example of Program
conf
cyclic 00°D10
end conf
evnt

input type%, 1d@, data%
if type% = 16 then
data%$ = BCD2BIN (data%)
numdsp ..NUM00O, data%
endif

end evnt

4-23

BEEP

BEEP

Statement
B Function The BEEP statement performs buzzer ON/OFF control.
B Format BEEP command-value
B Example of Use BEEP 1
B Description » The BEEP statement is a command that sounds and stops the buzzer.
* When command-value is 1, the buzzer sounds; when 0, the buzzer
stops.
» The SETBEEP statement can be used to set the buzzer ON/OFF time.
B Related Item SETBEEP

B Example of Program

conf
SETBEEP 50,20,3
end conf
evnt
input type%, 1d@, data%
if id@ = ..SWTO00O0 then
BEEP 1
else
BEEP O
endif
end evnt

4-24 CHAPTER 4 INSTRUCTION REFERENCE

BIN2BCD

BIN2BCD

Function

B Function

B Format

B Example of Use

B Description

B Related Item

B Example of Program

evnt

The BIN2BCD function converts binary datato BCD data.

BIN2BCD (numerical-expression)

BCDDATA% = BIN2BCD (BINDATA%)

» The BIN2BCD function converts binary datato BCD data.

* If the binary data to converted to BCD data is greater than 99999999,

itisfixed at 99999999.

BCD2BIN

input type%, 1d@, data%

data%
00~D10

end evnt

BIN2BCD (data%)

data$%

4-25

BITSET

BITSET

Statement
M Function The BITSET statement sets the specified bit of avariableto ON or OFF.
M Format BITSET variable-name, set-position, ON/OFF-value
B Example of Use BITSET VARIABLE%, 10, 1
Bl Description » The BITSET statement sets the specified bit of the specified variable
toOor 1
 variable-name specifies the name of the variable where the specified
bit is set to 0 or 1; it must be an integer- or floating-point-type
variable.
» set-position specifies where in the variable the specified bit is to be
set with avalue from 0 to 31; it must be a variable or constant.
* When 1is set in the variable, ON/OFF-value also specifies1. When
0 is set, ON/OFF-value also specifies 0. It must be a variable or
constant.
B Related Item BITTEST

B Example of Program

conft
end conf
evnt
input type% , 1d@ , data%
numdsp ..NUMO0OO , data%
if bittest (data% , 31) = 1 then
bitset data% , 31 , O
else
bitset data% , 31 , 1
endif
numdsp ..NUM0O0O , data%

end evnt

4-26 CHAPTER 4 INSTRUCTION REFERENCE

BITTEST

BITTEST

Function

M Function
M Format
B Example of Use

M Description

M Related Item

The BITTEST function tests the specified bit of avariable.
BITTEST (variable-name, test-position)
ONOFF% = BITTEST (VARIABLE%, 10)

» The BITTEST function tests whether the value of the specified bit in
the specified variableis1 or 0. When the value of the specified bit is
1 as aresult of the test, the function returns 1. When the value is O,
the function returns 0.

» variable-name specifies the name of the variable where the value of
the specified bit is to be tested; it must be an integer- or
floating-point-type variable.

* test-position specifies where in the variable the specified bit is to be
tested with avalue from 0 to 31; it must be avariable or constant.

BITSET

B Example of Program

conf

end conf

evnt
input type% , id@ , data%
if bittest (data% , 0)

strdsp ..STR0O0OO ,
else

strdsp ..STR0O0OO ,
endif

end evnt

= 1 then

‘‘bit is ON’’

‘‘bit is OFF’’

4-27

BITSET

BLCTL

Statement
B Function The BLCTL statement performs back light ON/OFF control.
B Format BLCTL status
B Example of Use BLCTL 1
B Description » The BLCTL statement performs back light ON/OFF control.
 status indicates whether to turn on or off the back light with the
following numeric values:

0: The back light is turned off.

1: The back light isturned on.
B Related Iltem BLSTAT

B Example of Program

evnt

ret =blstat ()

if ret = 0 then BLCTL 1
end evnt

4-28 CHAPTER 4 INSTRUCTION REFERENCE

BLSTAT

BLSTAT

Function
B Function The BLSTAT function reads the back light status.
B Format BLSTAT ()

B Example of Use

B Description The BLSTAT function reads the current back light status (ON/OFF).
The return values of this function are as follows:
0: Theback light is off.
1. Theback lightison.
Bl Related Item BLCTL

B Example of Program

conf

ret = BLSTAT ()

if ret = 0 then blctl 1
end conf

4-29

BLTCOLOR

BLTCOLOR

Statement

B Function

B Format

B Example of Use

B Description

B Related Item
B Example of Program

evnt

The BLTCOLOR statement changes the tile and color of a belt graph
display.

BLTCOLOR control-name, zone-position, tile, display-color,
background-color

BLTCOLOR ..BLTO000, 2,1, 2,3

» The BLTCOLOR statement changes the tile and color of the specified
zone of a belt graph display. -1 indicates that the color and tile for
which -1 was specified remain unchanged.

» control-name is the bar graph name or the ID-type variable
indicating the bar graph.

* The value indicating the zone number to be changed is set in
zone-position. The zone position can be specified with a constant
or variable. The zone position starts at 1.

« tile indicates the tiling figure of the zone. Specify this tiling figure
with anumeric value from O to 15.

« display-color is a numeric value indicating the color number of the
tile display section. Specify this color number with a numeric value
from O to 15.

» background-color is a numeric value indicating the color number of
the tile background section. Specify this color number with a
numeric value from O to 15.

BLTDSP

input type$%, i1d@, zone%, tile%

BLTCOLOR
end evnt

..BLT000, zone%, tile%, -1, -1

4-30 CHAPTER 4 INSTRUCTION REFERENCE

BLTDSP

BLTDSP

Statement

B Function

B Format

B Example of Use

B Description

B Related Item

B Example of Program

conf

The BLTDSP statement displays data on a belt graph display.
BLTDSP control-name, zone-number, display-value

BLTDSP..BLTOO00, 1, 30

The BLTDSP statement displays data in the specified zone of a belt
graph display.

control-name isthe name of the graph or the I D-type variable.

The value indicating the zone number in the 100 percent bar chart to
be displayed is set in zone-position. The zone position can be
specified with a constant or variable. The zone position starts at 1.
display-value is the numeric data indicating the size of the data to be
displayed in the 100 percent bar chart.

display-value cannot be changed even if this statement is issued to the
display for which operation parameters are set to “effective” in the
control.

BLTCOLOR

static name@

name(@
end conf

evnt

. .BLTO0O0O

input type%, 1d@, =zone%, data%

BLTDSP
end evnt

..BLT000, zone%, data%

4-31

BLTSET

BLTSET

Statement
B Function The BLTSET statement sets datain a belt graph display.
B Format BLTSET control-name, zone-number, display-data
B Example of Use BLTSET .BUHIN.GRAPH, 2, 30.0
B Description * The BLESET statement sets the data to be displayed in the 100
percent bar chart display. The speed of executing the PRDSP
(display) statement after setting data in each zone is faster than that of
modifying all zone values after executing the BLTDSP statement.
» control-name is the name of the belt graph display or the ID-type
variable.
» zone-number indicates which zone data is to be modified. The zone
number is integer value data starting at 1.
» display-data is the numeric data indicating the size of each zone in
the 100 percent bar chart.
B Related Item BLTDSP, PRDSP
B Example of Program
evnt
BLTSET .buhin.gpaph , 3 , 20.1
var@ = .buhin.graph
no = 4
value = 23
BLTSET wvar@ , no , value
prdsp var(@

end evnt

4-32 CHAPTER 4 INSTRUCTION REFERENCE

BREAD

BREAD

Function

B Function

B Format

B Example of use

B Description

B Related Item

B Example of Program

conf

The BREAD function reads the contents of the specified device or
memory table in blocks.

BREAD device-name, data-read-count, array-variable-to-which-read-
data-is-written

BREAD memory-table-name, data-read-count, array-variable-to-which-
read-data-is-written

BREAD 00°D0001, 10, VARI(2)
BREAD 00"MTBL(5), NUMS, VARI(X)

The BREAD function reads the contents of the specified device or
memory table in blocks.

This function collectively reads data from the specified device by the
specified data read count.

device-name indicates the name of the device to be read (device
name indicating the read start address).

data-read-count specifies the number of data to be continuously read
from the specified device.

The data read from the specified device is set in
array-variable-to-which-read-data-is-written. This variable must
be a one-dimensiona array-type variable. The data read from the
specified device is continuously written, starting from the location
specified by thisvariable.

When the array variable is smaller than the data read count, the data
that cannot be written to the array is discarded.

The number of data that can be read depends on the type of PLC.
(Refer to “ Serial Communication Manual.”)

For memory link, a variable can be used as a table number.

BWRITE

cyclic 007MO1
static PARAMS% (10)

end conf

evnt

input type%, id@, data%
if id@ = 00"MO01 and data% = 1 then
BREAD 00°D10, 5, PAARAMS% (3)

endif

end evnt

4-33

BWRITE

BWRITE

Function

B Function The BWRITE function writes data to the specified device or memory
table in blocks.

B Format BWRITE device-name, data-write-count, write-data-variable
BWRITE memory-table-name, data-write-count, write-data-variable

B Example of use BWRITE 00"D0001, 10, VAR%(1)

BWRITE 00"MTBL(20), NUM, VAA(1)

B Description » The BWRITE function writes data to the specified device or memory
table in blocks.

» This function collectively write data to the specified device by the
specified data write count.

» device-name indicates the name of the device to be written (device
name indicating the write start address).

» data-write-count specifies the number of data to be continuously
written to the specified device.

» write-data-variable is the variable containing the value to be written
to the specified device. This variable must be a one-dimensional
array-type variable. Data is continuously written to the specified
device, starting from the location specified by this variable.

* When the array variable is smaler than the data write count, O is
written to the remaining area. When the array variable is greater
than the data write count, the larger part isignored.

» The number of data that can be written depends on the type of PLC.
(Refer to “ Serial Communication Manual.”)

» For memory link, avariable can be used as a table number.

B Related Item BREAD

B Example of Program

conf
cyclic 007MO1
static PARAMS (10)
end conf

evnt
input type%, 1d@, data%
if id@ = 00"MO1 and data% = 1 then
BWRITE 00°D10, 5, PAARAMS (3)
endif
end evnt

4-34 CHAPTER 4 INSTRUCTION REFERENCE

CHDIR

CHDIR

Statement
B Function The CHDIR statement changes a directory and/or adrive.
B Format CHDIR directory-name
B Example of Use CHDIR “C.TEST”
B Description * The CHDIR statement is an instruction that changes the current
directory and adrive.
» Specify the directory to be changed with a character string constant or
variable.
* directory-name can be specified, starting from a drive name.
B Related Item MKDIR, RMDIR

B Example of Program

conf
end conf
evnt
CHDIR “‘C:’' " Changes the drive.
CHDIR ‘TEST’' " Changes the directory.
CHDIR “‘E:ABC'’ " Changes both the drive and directory.

end evnt

4-35

CHKTIM

CHKTIM

Function
B Function The CHKTIM function checks the status of the specified timer.
B Format RET = CHKTIM (timer-number)
B Example of Use RET = CHKTIM (14)
B Description * The CHKTIM function checks whether the specified timer is being
used (opened).
* timer-number indicates the number of the timer to be checked; it
must be an integer-type value from O to 15.
* Asaresult of executing this function, any of the following values is
returned:
0: Thetimer isnot being used.
1. Thetimer isbeing used by the local program.
2: Thetimer is being used by a remote program.
Bl Related Item CLOSETIM, STARTTIM, STOPTIM, CONTTIM, SETTIM, READTIM,

OPENTIM, OPENTIM2

B Example of Program

evnt
for i = 0 to 15
ret = CHKTIM (1)
if ret = 0 then i = 15
next
end evnt

4-36 CHAPTER 4 INSTRUCTION REFERENCE

CHRS$

CHR$

Function
B Function The CHRS$ function assigns the character corresponding to the specified
numeric value (character code).
B Format CHRS$ (character-code)
B Example of Use MOJI$ = CHR$(&H30)
B Description « The CHR$ function assigns the character (1-byte character)
corresponding to the character specified by character-code.
» character-code must be an integer from 1 to 255.
* Asaresult of executing this function, the character corresponding to
character-code isreturned.
B Related Item ASC

B Example of Program

evnt
input type%, 1d@ data$%
moji$ = CHRS (data%)
strdsp ..STR0O00, mojis$
end evnt

4-37

CINT

CINT

Function
B Function The CINT function rounds off areal number and convertsit to an integer.
B Format CINT (numerical-expression)
B Example of Use A% = CINT (FLOAT)
B Description e The CINT function rounds off the vaue indicated by
numerical-expression and convertsit to an integer.
» The conversion result range becomes the integer range.
B Related Item INT

B Example of Program

evnt
input type%, 1d@, data
intvar% = CINT (data)
numdsp ..NUM0O00O, intvar$
end evnt

4-38 CHAPTER 4 INSTRUCTION REFERENCE

CIRCOLOR

CIRCOLOR

Statement

B Function

B Format

B Example of Use

B Description

B Related Item
B Example of Program

evnt

The CIRCOLOR statement changes the tile and colors of the pie chart
display.

CIRCOLOR control-name, zone-position, tile, display-color,
background-color

CIRCOLOR ..CIR000, 2,1, 2, 3

» The CIRCOLOR statement changes the tile and colors of the the pie
chart display. -1 indicates that the color and tile for which -1 was
specified remain unchanged.

» control-name is the pie chart name or the ID-type variable indicating
the pie chart.

» The vaue indicating the number of the zone in the pie chart to be
changed is set in zone-position. The zone position starts at 1.

* tile indicates the tiling figure of the zone. Specify this tiling figure
with a numeric value from O to 15.

« display-color is a numeric value indicating the color number of the
tile display section. Specify this color number with a numeric value
from O to 15.

» background-color is a numeric value indicating the color number of
the tile background section. Specify this color number with a
numeric value from 0 to 15.

CIRDSP

input type$%, 1d@, zone%, tile%

CIRCOLOR

end evnt

..CIR000, zone%, tile%, -1, -1

4-39

CIRDSP

CIRDSP

Statement

B Function

B Format
B Example of Use

B Description

B Related Item

B Example of Program

conf

The CIRDSP statement displays data in the zone where the pie chart

display was specified.
CIRDSP control-name, zone-number, display-value

CIRDSP ..CIR000, 1, 30

The CIRDSP statement displays data in the zone where the pie chart
display was specified.

control-name is the pie chart name or the ID-type variable indicating
the pie chart.

The value indicating the zone number in the pie chart to be displayed
is set in zone-number. The zone number can be specified with a
constant or variable. The zone number startsat 1.

display-value is the numeric data indicating the size of the pie chart
to be displayed.

display-value cannot be changed even if this statement is issued to the
display for which operation parameters are set to “effective” in the
control.

CIRCOLOR

static name@

name(@
end conf

evnt

. .CIR0OOO

input type$%, 1d@, zone%, data%

CIRDSP

end evnt

..CIR000, =zone%, data$%

4-40 CHAPTER 4 INSTRUCTION REFERENCE

CIRSET

CIRSET

Statement
B Function The CIRSET statement sets datain the pie chart display.
B Format CIRSET control-name, zone-number, display-data
B Example of Use CIRSET .BUHIN.GRAPH, 2, 30.0
B Description » The CIRSET statement sets the data to be displayed in the pie chart
display. The speed of executing the PRDSP (display) statement after
setting data in each zone is faster than that of modifying al zone
values after executing the CIRDSP statement.
» control-name is the name of the pie chart display or the ID-type
variable indicating the pie chart display.
» zone-number indicates which zone data is to be modified. The zone
number is integer value data starting at 1.
 display-data is the numeric data indicating the size of each zone of
the pie chart.
B Related Item CIRDSP, PRDSP
B Example of Program
evnt
CIRSET .buhin.gpaph , 3 , 20.1
var@ = .buhin.graph
no = 4
value = 23
CIRSET wvar@ , no , value
prdsp var(@

end evnt

4-41

CLEAR

CLEAR

Statement
B Function The CLEAR statement clears the display of the specified display.
B Format CLEAR control-name
B Example of Use CLEAR ..NUMOOO
B Description » The CLEAR statement clears the display of the specified display,
leaving only the background color.
» When the dide display is specified, the CLEAR statement clears the
pointer graphic.
* When the meter display is specified, the CLEAR statement clears the
needle.
* When the clock display is specified, the CLEAR statement clears
nothing.
» control-name isthe graph name or the ID-type variable indicating the
graph. display-name.
Bl Related Item NUMDSP, STRDSP, FIGDSP, SLDDSP, MTRDSP, FREDSP, PLTDSP,

BARDSP, BLTDSP, CIRDSP, LNEDSP

B Example of Program

evnt
input type%, 1d@, data%
if data% = 1 then
CLEAR . .NUMOOO
end if
end evnt

4-42 CHAPTER 4 INSTRUCTION REFERENCE

CLOSE

CLOSE

Statement

B Function

B Format

B Example of Use

B Description

B Related Item
B Example of Program

evnt

The CLOSE statement closes the specified part.
CLOSE part-name
CLOSE .B000.

» The CLOSE statement closes the part displayed on the screen. The
undisplayed statusis called the close status.

» Nothing is performed even if the CLOSE statement is executed for the
closed part.

» The program is started if the closed part receives a message.

e part-name isthe name or ID of the part to be closed.

OPEN

input type% , 1d@ , data%
if pstat(..) = 0 then

close
endif
end evnt

4-43

CLOSECOM

CLOSECOM

Statement

B Function

B Format

B Example of Use

B Description

B Related Item
B Example of Program

conf

The CLOSECOM statement temporarily stops the use of a serial line.
CLOSECOM device-name
CLOSECOM HST

» The CLOSECOM statement is a command that temporarily inhibits a
program from receiving data from an external connecting device using
the OPENCOM instruction.

» HST (host computer), BCR (bar code reader), or TKY (ten-key pad)
can be specified in device-name.

OPENCOM

OPENCOM HST

end conf
evnt

input type$% ,
if type%

id@ , data$%

= 3 and data% = 1 then

CLOSECOM HST

else if type$ =

3 and data% = 0 then

REOPENCOM HST

endif

end evnt

4-44 CHAPTER 4

INSTRUCTION REFERENCE

CLOSEPARALLEL

CLOSEPARALLEL

Statement
B Function The CLOSEPARALLEL statement temporarily stops data input from a
parallel port.
B Format CLOSEPARALLEL input-bit
B Example of Use CLOSEPARALLEL 3
B Description * The CLOSEPARALLEL statement is an instruction that temporarily
inhibits a program from receiving data as a message from the parallel
port specification bit using the OPENPARALLEL instruction.
* input-bit specifies the bit for inhibiting data reception.
Bl Related Item OPENPARALLEL, REOPENPARALLEL

B Example of Program

conf
OPENPARALLEL 3
end conf
evnt
input type% , 1dQ@ , data$%
if type% = 3 and data%$ = 1 then
CLOSEPARALLEL 3
else if type% = 3 and data% = 0 then
REOPENPARALLEL 3
endif

end evnt

4-45

CLOSESO

CLOSESIO

Statement
W Function The CLOSESI O statement closes a non-procedua communication port.
B Format CLOSESIO port-number
B Example of Use CLOSESIO 2
B Description » The CLOSESIO statement closes the port for stopping non-procedual
communication.
e port-number specifies a channel for stopping non-procedual
communication. CH1 to CH3 correspond to 1 to 3, respectively.
» The port to be closed must be opened in advance by the OPENSIO
statement to be explained later.
M Related Item OPENSIO, SETSIO, WRITESIO, WRITWSIOB, FLUSH

H Example of Program

conf
global buf$ * 200
opensio 2 , 1 , buf$
setsio 2 , &HD

end conf

evnt
strdsp ..STRO0O , bufs$
CLOSESIO 2

end evnt

4-46 CHAPTER 4 INSTRUCTION REFERENCE

CLOSETIM

CLOSETIM

Statement

B Function
B Format

B Example of Use

B Description

B Related Item

B Example of Program

conf

The CLOSETIM statement stops the user of the specified timer.
CLOSETIM timer-number

CLOSETIM TIMID@
CLOSETIM VAR

» The CLOSETIM statement returns the timer alocated by the

OPENTIM, OPENTIMZ2, or OPENTIM3 function to the system.

* The system can use up to 16 timers. The timers not to be used must

be returned to the system. |If allocating more than 16 timers is
attempted, an error occurs.

 timer-number indicates the number of the timer to be stopped and

returned to the system. Whether the timer number is an ID- or
integer-type value depends on how the timer is opened. (See
“OPENTIM”, “OPENTIM2", and “OPENTIM3.”)

OPENTIM, OPENTIM2, OPENTIM3, STARTTIM, STOPTIM, CONTTIM,
SETTIM, READTIM

static timid@

timide

opentim()

setim timid@, 20, O
starttim timid@

end conf

evnt

input type% , 1dQ@ , data%

if type%

3 and id@ = ..SWTO000 then

stoptim timid@
else 1if id@ = ..SWTO001l then
closetim timid@

end if

end evnt

4-47

COLOR

COLOR

Statement

B Function

B Format
B Example of Use

B Description

B Related Item
B Example of Program

conf

color 1
end conf
evnt

The COLOR statement sets the color, type, and size of a straight line or a
dot.

COLOR display-calor, line-type, line-thickness or dot-size

COLOR 1,0, 2

14

» The COLOR statement sets the colors, types, and sizes of a straight

line and a dot. The values specified in the LINE and DOT
statements have priority over those to be specified in this statement.
display-color indicates the display color of the straight line or dot.
Specify this display color with a numeric value from O to 15. The
specified display color becomes the color pallet number of the tool.
line-type indicates the type of line to be drawn (for example, solid
line and dotted line). Specify this line type with a numeric value
from O to 3. For the types of line, see “Plotting” to “Straight Line”
of the tool.

line-thickness indicates the thickness of the line. dot-size indicates
the size of the dot. Specify both the line thickness and dot size with
anumeric valuefrom 0 to 2.

LINE, DOT

0o, 3

dot 100,200
dot 100,300

color 1

’

0, 0

line 100,200,100,300

end evnt

4-48 CHAPTER 4 INSTRUCTION REFERENCE

CONF ... END CONF

CONF ... END CONF

Statement
B Function The CONF ... END CONF statements declare the configuration block
area.
B Format CONF
END CONF
B Example of Use CONF
static VAR%
END CONF
B Description » The configuration block written in a screen and a part is executed only
once when the screen is displayed. This block is not executed when
the screen is being displayed. It is executed once again when the
screen is redisplayed after another screen has been displayed.

» The configuration block for global screens and parts is executed only
once when the system is started.

 Initiadlization blocks (INIT) are used to write processing such as
initialization.

» Only the configuration block for closed parts is not executed even if a
screenisdisplayed. This configuration block is executed when a part
isopened. (See“OPEN Instruction.”)

Bl Related Item EVNT ... END EVNT, INIT ... END INIT

B Example of Program

CONF

static mojis

END CONF
evnt

input ty$%,
end evnt

id@, dats$

4-49

CONST

CONST

Statement

B Function The CONST statement declares a constant.

B Format CONST constant name = constant

B Example of Use CONST #MAX#=10

B Description » The constant name should be enclosed in a pair of # marks according

to the variable name generation rule.

» |f aconstant is declared in a program, the constant name is replaced
with a declared constant value.

* The CONST statement cannot be used in a global screen program.

» Constant declaration is one of the new features of Screen Creator 5.

B Related Item
B Example of Program

conf
global L%
const #MAXLENGTH#=100
if L > #MAXLENGTH# then
L = #MAXLENGTH#
end if
end conf

4-50 CHAPTER 4 INSTRUCTION REFERENCE

CONTTIM

CONTTIM

Statement

B Function
B Format

B Example of Use

B Description

The CONTTIM statement restarts the stopped timer.
CONTTIM timer-number

CONTTIM TIMID@
CONTIM 4

» The CONTTIM statement restarts the timer stopped by the STOPTIM
instruction. The internal counter in the timer is continued from the

timer stop status.

 timer-number indicates the number of the timer to be restarted.
Whether the timer number is an ID- or integer-type value depends on
how the timer is opened. (See “OPENTIM”, “OPENTIM?2", and

“OPENTIM3.")
Bl Related Item OPENTIM, OPENTIM2, OPENTIM3, STARTTIM, STOPTIM,
CLOSETIM,
SETTIM, READTIM
B Example of Program
cont
static timid@
opentim2 (3)
settim 3, 20, O
starttim 3
end conf
evnt
input type% , 1d@ , data%
if type% = 3 and id@ = ..SWTO00O0 then
stoptim 3
else if id@ = ..SWT001l then

conttim 3
end if
end evnt

4-51

COPY

COPY

Statement

B Function The COPY statement makes a hardcopy of a screen.

B Format COPY color-number

B Example of use COPY 5

B Description * The COPY statement makes a hard copy of a displayed screen. In

the "Color Number" field, a color specified on the color palette of
Screen Creator 5 is printed black.

» If color paette number 16 is specified, in addition to color palette
numbers from 0 and 15, colors of even color palette numbers are
printed black. If 17 is selected, the print colors of number 16 are
inversed, i.e., colors of odd color palette numbers are printed black.

» If an even color paette number is specified in monochrome printing,
the print color is the same as in the case where color palette number 2
is selected. If an odd color palette number is specified, the print color
isthe same as in the case where color palette number 1 is selected.

* The "Color Number" can be specified only when "Select Color” is
selected in "Screen Print Mode" of "Printer Setup” of "System Setup”
on the OIP system screen.

B Related Item
B Example of Program

evnt

input ty%,ida@

if id@ = ..SWT000 then COPY 8
end evnt

4-52 CHAPTER 4 INSTRUCTION REFERENCE

COS

COS

Function

B Function The COS function calculates a cosine for the specified numerical
expression.

B Format COS (numerical-expression)

B Example of Use X =COS (ANGLE)

B Description The COS function calculates a cosine value for the specified numerical
expression. The unit for the numerical expression is radian.

Bl Related Item ATN, SIN, TAN

B Example of Program

evnt
angle = 3.141592/3
x = COS (angle)
end evnt

4-53

CURDIR

CURDIR

Statement
B Function The CURDIR statement makes a character string indicating the current
directory path name into a character string variable.

B Format CURDIR character string variable
B Example of Use CURDIR PATH$
B Description A full path name including a drive name should be written.
B Related Item DIR,CHDIR,MKDIR,RMDIR
B Example of Program

cont

strdsp ..str, "curdir"
end conf
evnt

input type%, id@, data%
if data% = 1 then
curdir path$
strdsp .dsp.str, path$
end if
end evnt

4-54 CHAPTER 4 INSTRUCTION REFERENCE

CVBS

CVvB

Function

B Function

B Format
B Example of Use

B Description

Bl Related Item
B Example of Program
cont

end conf
evnt

orgs$ =

data$%

numdsp

end evnt

The CVB function allocates data from any position of a character string
variable.

CVB (character-string-variable-name, allocation-position)
VAR% = CVB (MOJ$, 5)

» The CVB function alocates data one byte from the specified
allocation- position of the specified character variable name.
The alocated datais regarded as an integer value.

+ allocation-position must be an integer- or floating-point-type variable
or constant. 1 specifies the beginning of the character string
variable.

MKS, MKB, MKW, MKI, MKF, MKID, CVW, CVI, CVF, CVID

‘1123456777
= CVB
. .NUMOOO,

(org$, 3)

data% " Displays51(&H33).

4-55

CVF

CVF

Function

B Function The CVF function allocates data from any position of a character string
variable.

B Format CVF (character-string-variable-name, allocation-position)

B Example of Use VAR =CVF (MOJ$, 5)

B Description

B Related Item

» The CVF function alocates data four bytes from the specified
allocation- position of the specified character variable name.
The alocated datais regarded as areal value.

+ allocation-position must be an integer- or floating-point-type variable
or constant. 1 specifies the beginning of the character string
variable.

» The CVF function returns areal number.

A cut-out value is converted into a 86 series boundary.

MKS, MKB, MKW, MKI, MKF, MKID, CVB, CVW, CVI, CVID

B Example of Program

conf

end conf

evnt

org$ = ''1234567"7

strdsp ..STR0O00, orgs$

mkf org$, 2, 1.23

strdsp ..STR0O01, orgs$ ' The character string will not be displayed correctly.
data% = CVF (org$, 2)

numdsp ..NUMO0O, data% ' Displays1.23.

end evnt

4-56 CHAPTER 4

INSTRUCTION REFERENCE

CVI

CVI

Function

B Function

B Format
B Example of Use

B Description

Bl Related Item
B Example of Program
conf

end conf

evnt

orgs$ =

data%

numdsp

end evnt

The CVI function allocates data from any position of a character string
variable.

CVI (character-string-variable-name, all ocation-position)
VAR% = CVI (MOJI$, 5)

 The CVI function allocates data four bytes from the specified
allocation- position of the specified character variable name.
The alocated datais regarded as an integer value.

+ allocation-position must be an integer- or floating-point-type variable
or constant. 1 specifies the beginning of the character string
variable.

» A cut-out valueis converted into a 86 series boundary.

MKS, MKB, MKW, MKI, MKF, MKID, CVB, CVW, CVF, CVID

V12345677
CVI (org$, 3)
. .NUMO0O0O,

data$%

’ Displays & H36353433.

4-57

CVID

CVID

Function

B Function

B Format
B Example of Use

B Description

B Related Item

B Example of Program

conf

end conf

evnt

org$ =
datal
end evnt

The CVID function allocates data from any position of a character string
variable.

CVID (character-string-variable-name, allocation-position)
VAR@ = CVID (MOJ$, 5)

» The CVID function alocates data six bytes from the specified
allocation- position of the specified character variable name.
The alocated dataisregarded as an ID value.

+ allocation-position must be an integer- or floating-point-type variable
or constant. 1 specifies the beginning of the character string
variable.

* The CVID function returns an ID-type value.

* A cut-out valueis converted into a 86 series boundary (by 2 bytes).

MKS, MKB, MKW, MKI, MKF, MKID, CVB, CVW, CVI, CVIF

VV12345677
CVID (org$, 1)

4-58 CHAPTER 4 INSTRUCTION REFERENCE

Cvw

CVW

Function

B Function The CVW function allocates data from any position of a character string

variable.

B Format CVW (character-string-variable-name, allocation-position)

B Example of Use VAR% = CVW (MOJI$, 5)

B Description » The CVW function allocates data two bytes from the specified
allocation-position of the specified character variable name. The
alocated datais regarded as an integer value.

+ allocation-position must be an integer- or floating-point-type variable
or constant. 1 specifies the beginning of the character string
variable.

» A cut-out valueis converted into a 86 series boundary.

B Related Item MKS, MKB, MKW, MKI, MKF, MKID, CVB, CVI, CVF, CVID

B Example of Program
conf

end conf
evnt

org$ = ‘'1234567"'

data% = CVW (org$, 3)

numdsp ..NUM000, data% " Digplays & H3433.
end evnt

4-59

CYCLIC

CYCLIC

Statement

B Function

B Format

B Example of Use

B Description

B Related Item

The CY CLIC statement declares that the contents of the specified device
or memory table are periodically read.

CYCLIC device-name, device-name, device-name, *number CYCLIC
memory-table-name, memory-table-name, memory-table-name, * number

CYCLIC00°DO01, 00D10* 5
CYCLIC 00"MTBL(100), 00'MTBL(200) * 10

» The CYCLIC statement periodically reads the contents of the declared
PL C device through communication. If the previously read contents
do not match the contents read by this statement (change of contents),
a messages is transmitted to the declaring operation program. This
statement never operates during execution of the operation program
because it makes a declaration.

* This declaration must be made before the device is used in the
program.

» Communication occurs when data is read from the device (example:
A=00"D0001) for which CYCLIC is not declared.

» To declare CYCLIC for the memory table, the table number must be
specified with an integer value.

* Inthe cyclic operation of the memory table, a message is issued when
data is written from the host computer or operation program to the
memory table. (This message is issued even if the contents do not
change.)

» Specifying “*number” following device-name or memory-table-name
enables CY CLIC to be continuously declared.

» When the screen is switched, a message is issued to all the parts for
which CYCLIC is declared.

INPUT

4-60 CHAPTER 4 INSTRUCTION REFERENCE

CYCLIC

Example of Program

cont

cyclic 00°d01 , 007d4 * 3

cyclic 00 mtbl(20), 00 mtbl (100)
end conf
evnt

input ty%,i1d@,dat%

if id@ = 00 mtbl (20) then

numdsp ..num , dat$
end if

end evnt

4-61

CYCLIC2

CYCLIC2

Statement

B Function

B Format
B Example of Use

B Description

B Related Item
B Example of Program

cont
cyclic?

end conf

evnt

The CYCLIC2 statement declares that the contents of the specified device
are periodically read as a doubleword.

CY CLIC2 device-name, device-name, device-name, * number
CYCLIC200°D01, 00°'D10* 5

» The CYCLIC2 statement is the same as the CY CLIC statement except
that the contents of the device are read as a doubleword.

» Theword having alarger device number is the high-order word.

* No memory table can be declared.

» When the screen is switched, a message is issued to al the parts for
which CYCLIC2 is declared.

INPUT, CYCLIC

00~d01 , 00~d7 * 3

input ty%,i1d@,dat%
if id@ = 007d01 then

numdsp
end if

..num , dat%

4-62 CHAPTER 4 INSTRUCTION REFERENCE

DATE$

DATES$

Function

B Function The DATES function reads the current date.

B Format DATES$

B Example of Use MOQOJI$ = DATES$

B Description * The year, month, and day of the current date to be read are each
represented in two digitslike YY/MM/DD.

» The DATES function cannot be used to set a date.

* Once date is set using the SETDATE command in a model with a
battery backup calendar 1IC (GC56LC or GCB5EM), the date is
updated even while the power is off. If amodel with no calendar IC
(GCB3LC or GC53LM) is turned off, the date is initialized to
98-01-01 and the time to 00:00:00 when it is turned on again. The
date and time are updated while the power ison.

B Related Item GETDATE,GETTIME,SETDATE,SETTIME,TIME$

B Example of Program

conf

mojis$ = DATES

strdsp ..STR0O00 , mojis$
end conf

4-63

DECLARE

DECLARE

Statement

B Function The DECLARE statement declares a function.

B Format DECLARE function name [type declaration character](variable
declaration[, variable declaration] ...)

B Example of Use DECLARE ADD\%(A\%,B\%)

B Description » The DECLARE statement declares a type of a function used in a

program. (Such declaration is called prototype declaration.)

* A function itself is declared in one of the three manners as shown
below:
- Local function: Defined in a program other than a global screen

program.

- Global function: Defined in aglobal screen program.
- Library function: Defined in alibrary.

» The declared type of afunction (in the prototype declaration) must be
the same as the type of the function itself.

» Thisisone of the new features of Screen Creator 5.

B Related Item FUNCTION, FUNCTIONCHECK

B Example of Program

DECLARE my add(a%,b%)
conf

global x%,vy%

local sum%

sum% = my add(x%,y%)
end conf

4-64 CHAPTER 4 INSTRUCTION REFERENCE

DEVRD

DEVRD

Statement

B Function The DEVRD statement reads the contents of the specified device.

B Format DEVRD device-name, offset-value, variable-name

B Example of Use DEVRD 00°D10, 10, VALUE%

B Description » The DEVRD statement reads data from the device that is offset-value
away from the device specified in device-name.

» offset-value specifies the distance from the device specified in
device-name. The DEVRD statement reads data from the device
corresponding to the specified distance. offset-value must be an
integer- or floating-point-type variable or constant.

 variable-name specifies the variable that stores the read data; it must
be an integer- or floating-point-type variable.

» The DEVRD statement is used for the device (e.g., CYCLIC 00'D10 *
10) where “continuous cycle” is declared in the CYCLIC or
CYCLIC2 statement.

e |f the device from which data is to be read does not exist, an error
OCCUrs.

» Besureto use this command in an event block. ThevaueQissetin
the variable, since an initialization block or configuration block is
executed before reading device data.

B Related Item CYCLIC, EVENTWR, DEVWR
B Example of Program

conf
cyclic 00°D10 * 5 " Declares that data is read from the device that is5
end conf " away from D10.
evnt
input type% , 1dQ@ , data% " Reads and displays the continu-
if id@ = ..SWTO000 and data% = 1 then ’ousdevicevauewhen aswitch
for i% = 0 to 4 " is pressedfor the continuous-
id@ = getid (..NUMOOO, 1i%+1) ' stage numeric display.
DEVRD 00°D10, 1% , data%
numdsp ..NUM0O0O, data%
next
endif
end evnt

4-65

DEVWR

DEVWR

Statement

B Function
B Format
B Example of Use

B Description

B Related Item
B Example of Program

conf

eventwr
end conf
evnt

The DEVWR statement writes data to the specified device.
DEVWR device-name, offset-value, write-value

DEVWR 00D10, 10, 5

The DEVWR statement writes data to the device that is offset-value
away from the device specified in device-name.

offset-value specifies the distance from the device specified in
device-name. The DEVWR statement writes data to the device
corresponding to the specified distance. offset-value must be an
integer- or floating-point-type variable or constant.

write-value specifies the data to be written to the specified device; it
must be an integer- or floating-point-type variable or constant.

The DEVWR statement is used for the device (e.g., EVENTWR 00”
D10 * 10) where “continuous write” is declared in the EVENTWR
statement.

If the device to which data is to be written does not exist, an error
OCCUrS.

CYCLIC, EVENTWR, DEVRD

00~"D10 * 5 ' Declares that data is to be written to the device that is

" 5 away from D10.

input type% , 1dQ@ , data% ' Writes 10 to the

device whose

DEVWR 00~D10, data% , 10 ’ offset valueis

data%b.

end evnt

4-66 CHAPTER 4 INSTRUCTION REFERENCE

DIM

DIM

Statement

B Function

B Format

B Example of Use

B Description

B Related Item

The DIM statement defines an array.

DIM variable-name (maximum-subscript-value [,
maximum-subscript-value] ...)

DIM ABC$(20), XY Z%(4,4,3), LOC!

* The DIM statement defines the variable defined in variable-name as
an local variable.

» A local variable can be read and written only in a program where it is
declared. The compiler gives a warning if an undefined local
variable is used. Each local variable is initialized every time the
block is executed.

» If avariable has a subscript enclosed in parentheses, an arrangement
variable is declared.

» The number of maximum subscript values in parentheses indicates
that of array dimensions. In arrays of two dimensions or higher,
subscripts are specified, delimited by acommal (,).

* maximum-subscript-value indicates the maximum value of subscript
that can be specified. The subscript starts at O.

» A variable can be used as an array variable even if it is not declared in
the DIM statement. In this case, the maximum value of the subscript
is 10.

» When acharacter variable is declared in an array, the element size can
be declared.

» Defining many arrays makes it impossible to display many screens
because the OIP work area becomes small.

» Screen Creator 5 has a new function for declaring local variables other
than arrangement variables distinctively.

* The DIM statement is provided to maintain the compatibility with
GCSGP3. UseLOCAL, instead of DIM, to declare alocal variable.

* When a DIM statement is used to declare an arrangement variable,
compatibility with GCSGP3 is maintained.

AUTO, BACKUP, GLOBAL, LOCAL, STATIC, STRING

4-67

DIM

B Example of Program

conf
DIM FLOAT (10),ID@(5),MOJIS (10) * 40
for i%$ = 1 to 5
FLOAT (1i%) = 1*3
next
end conf

4-68 CHAPTER 4 INSTRUCTION REFERENCE

DIR

DIR

Function

B Function

B Format

B Example of Use

B Description

B Related Item

The DIR function makes a list of directory or file data into character
string variables and returns the number of created data (i.e., the number
of entriesin the directory or file).

DIR (directory name, file attribute value, offset value, and character
string variable)

NUM% = DIR("A:SUBDIR", &H20, 6, LIST$)

» A directory name can be specified in a full path name including a
drive name or in an abbreviated name beginning with a current
directory name.

Example: A:\\SUBDIR1\SUBDIR2 SUBDIR2\SUBDIR3

» A file name, instead of a directory name, should be specified to create
dataof asinglefile.

» A file attribute value for selecting data to be created should be
specified in alogical OR of the flags shown below:

&HO01: Read-only file
&HO02: Hidden file
&HO04: System file
&HO08: Volume label
&H10: Sub-directory
&H20: Standard file

* An offset value is specified in order to exclude the first "n" data from
data to be created.

» Each created data consists of a 40-byte record of the fixed length. It
isfollowed by detailed data as shown below:

. ! Day of Time of

Name Extension Size updating updating
DISK 1 . <VOL> 87-01-15 15:25
SAMPLE .EXE 98765 92-11-03 9:12
ABCDEFG . 123456 94-03-21 11:34
TEST2 .C 256 93-05-05 12:07
DOWNLOAD .OIP <DIR> 87-02-14 21:13
KBASIC . <DIR> 93-12-24 8.:25
DATA_007 . 32 89-10-10 10:42

In this example, seven data are created in character strings of 280
bytesinall. Thelabel isshown for convenience only.

The number of data to be created depends on the size of the character
string variable. Asmuch data as possibleis created.

DIR,CHDIR,MKDIR,RMDIR

4-69

DIM

B Example of Program

cont
global dname$ (13), pnamel$ (13), pname2$(13)
global dsel%, plsel$%, p2sel%
static 1ist$*2000
strdsp ..str, "dir"
end conf
evnt
input type%, 1d@, data%
if data% = 1 then
path$ = dname$ (dsel%) + pnamel$ (plsel%) + pname2s$ (p2sel%)
strdsp .dsp.str, path$
num% = dir(path$, &H3F, 0, 1list$)
strdsp .dsp.str, list$
numdsp ..num000, num%
end if

end evnt

4-70 CHAPTER 4 INSTRUCTION REFERENCE

DIR

DINV

Statement
B Function Inverses the color in a specified screen area.
B Format DINV upper-left-X-coordinate, upper-left-Y -coordinate,
lower-right-X-coordinate, lower-right-Y -coordinate
B Example of Use DINV 10, 10, 30, 30
B Description * Inverses the color in a rectangular area having opposite points of
specified coordinates.

» The upper left corner of the panel has the coordinates (0, 0). The
horizontal direction (toward the right) corresponds to the X axis, and
the vertical direction (toward below) correspondsto the Y axis.

» Colorisinversed as shown below.

In color display, the palette values (O to 15) are inversed. In other
words, 0 is changed into 15, 1 is changed into 14, 7 is changed into 8,
and so forth.

In monochrome display, activated color is changed into deactivated
color, deactivated color is changed into activated color, and
transparent color is changed into activated color.

e |If this is used in an initialization block or configuration block,
drawing is executed after executing this block and accordingly color is
not inversed.

Be sure to use thisin an event block.
B Related Item None

B Example of Program

evnt
input ty,i1d@,dat
if ty = 3 and id@
DINV 0,0,639,399
endif

..SWTO00 then

end evnt

4-71

DOT

DOT

Statement

B Function
B Format
B Example of Use

B Description

B Related Item
B Example of Program

conf
color 1
end conf

evnt

The DOT statement displays dots on a screen.

DOT X1,Y1

DOT 20,300

14

The DOT satement displays a dot in the specified coordinate
(X1,Y1).

X1 must be a numeric value from 0 to 639. Y1 must be a numeric
value from 0 to 399 (GC55EM) or 0 to 479 (GC56L C).

Dots are directly displayed as the background of a screen. When a
part is opened or closed in the area where dots are displayed or when a
control is displayed, the dots may be cleared. The cleared dots are
not redisplayed.

The size and color of adot are specified by the COLOR statement.

If this is used in an initialization block or configuration block,
drawing is executed after executing this block and accordingly points
are not plotted.

Be sure to use thisin an event block.

COLOR

0, 3

dot 100,200
dot 100,300

color 1

’

0, 0

line 100,200,100,300

end evnt

4-72 CHAPTER 4 INSTRUCTION REFERENCE

DSPMODE

DSPMODE

Statement
B Function The DSPMODE statement changes the display mode of the control.
B Format DSPMODE control-name, display-mode
B Example of Use DSPMODE ..NUMO0QO, 2
B Description » The DSPMODE statement is a command that changes the display
mode of the control.
» control-name is the control name or the ID-type variable indicating
control name.
» control-mode specifies the mode in which the control is displayed.
The display mode is specified with any of the following numeric
values:
0: Normal display mode
1: Inverse display mode
2: Blink display mode. (The display color is replaced with the
background color.)
3: On-and-off display mode. (The display status and
nondisplay status are repeatedly displayed.)
Bl Related Item NUMDSP, STRDSP, FIGDSP, SLDDSP, MTRDSP, FREDSP, PLTDSP,

BARDSP, BLTDSP, CIRDSP, LNEDSP

B Example of Program

evnt
input ty,id@,data

if id@ = ..SWTO00O then
DSPMODE ..NUMOOO , 3
endif

end evnt

4-73

EOF

EOF

Function

Function
Format
Example of Use

Description

Related Item
Example of Program

conf

field 5

The EOF function checks whether the end of the file was reached.
EOF (file-number)
AAA = EOF (file-number)

* file-number specifies the number of the file for which whether the
end of the file was reached is to be checked. This file number must
match the number of the file opened by the FOPEN statement.

* Return value 1 indicates that the end of the file was reached. Return
value 0 indicates that the end of the file is not reached.

FOPEN, FIELD, FCLOSE, FPUT, FGET

global no%

global mojils$, moji2$
end field
global sum$%

fopen

end conf
evnt

"CC:TEST'', 2 , 5

while EOF (5) = 0
fget 5, 1
numdsp ..NUM0O0OO, no%
strdsp ..STR0O00, mojils
strdsp ..STR001, moji2s$

wend

fclose

end evnt

(5)

4-74 CHAPTER 4 INSTRUCTION REFERENCE

ERRCTL

ERRCTL

Statement

B Function The ERRCTL statement controls the error number display position.

B Format ERRCTL mode

B Example of Use ERRCTL O

B Description » The ERRCTL statement controls the error number display position.
» Theerror display position conforms with the value specified in mode.

When modeis0: An error number is displayed below a screen.
When modeis1l: A messageisissued to the error display.

When mode is 1, messages of error numbers 4000 to 4499 and
5000 to 5999 are issued to the error display (part ERRPTS on
global screen).

Messages of error numbers 2000 to 2999 are issued only to the
error display.

Following the type and issuer ID of an error, the error code, the
number of the screen where the error occurred, and the number of
the part where the error occurred are issued to the error display.
(If ascreen program error occurs, -1 is set as the part number.)

If part ERRPTS does not exist in the global screen, the error is
displayed in the lowest line of the window screen.

B Related Iltem ERRSTAT

B Example of Program

evnt

input ty%,1d@,dat%
if id@ = ..swl then

if errstat

() = 1 then

errctl O

else

errctl 1

endif
endif

end evnt

4-75

ERRSTAT

ERRSTAT

Function
B Function The ERRSTAT function reads the error display position.
B Format ERRSTAT
B Example of Use ERRSTAT()
B Description * The ERRSTAT function reads the current error display position.
* When this function is executed, any of the following numeric values
indicating the display position is returned:

When 0 isreturned, the error is displayed below the screen.

When 1isreturned, the error is displayed in the error display.
B Related Item ERRCTL

B Example of Program

evnt
input ty%,i1d@,dat%
if id@ = ..swl then
if errstat () = 1 then
errctl O
else
errctl 1
endif
endif

end evnt

4-76 CHAPTER 4 INSTRUCTION REFERENCE

EVENTWR

EVENTWR

Statement

B Function

B Format
B Example of Use

B Description

B Related Item

B Example of Program

The EVENTWR statement declares the device(s) to which data is to be
written.

EVENTWR device-name, device-name, device-name * number,,,
EVENTWR 00°D01, 00°D10 * 5

» The EVENTWR statement declares the device(s) in apart or screen to
which data is to be written. This statement only declares the devices
to which data is to be written; it does not actualy write data to the
devices.

» Specifying *number enables two or more devices to be continuously
declared. This continuous declaration, however, does not mean that
dataiswritten to all the declared devices at atime.

» The DEVWR statement is used to actually write data to the declared
devices.

» The devices to which datais to be written must be declared before the
DEVWR statement is executed.

CYCLIC, DEVRD, DEVWR

conf
EVENTWR 00°D10 * 5 " Declaresthat dataisto be written to
end conf ' five devices from D10.
evnt
input type% , 1id@ , data% " Writes 10 to the device whose offset
devwr 007D10, data% , 10 " valueis data%.

end evnt

4-77

EVNT ... END EVNT

EVNT ... END EVNT

Statement

B Function

B Format

B Example of Use

B Description

B Related Item
B Example of Program

conf

The EVNT...END EVNT statements declares the event block area.

END EVNT

EVNT
input ty,id@,data

END EVNT
» The event block is a program block that operates when it receives a
message. The contents executed when a switch is pressed or a

message is received are written in these statements.

CONF ... END CONF, INIT ... END INIT

static mojis

end conf
evnt

input ty%, 1d@, dats

end evnt

4-78 CHAPTER 4 INSTRUCTION REFERENCE

EXECPRCODE

EXECPRCODE

Statement

B Function The EXECPRCODE statement executes primitive data operation.
B Format EXECPRCODE control-name, type, operation-data, variable-name
B Example of Use EXECPRCODE ..NUMO0QO, 0, 20, VAR%

B Description * When acontrol in apart is used to validate an operation parameter, the
EXECPRCODE statement executes data operation set in the part
operation parameter specification.

» type is usualy 0. When the specified primitive is the plot display
and type is 0, the EXECPRCODE statement executes X data
operation. Whentypeis 1, the statement executes Y data operation.

 control-name must be the control in the local part.

» operation-data specifies the value to be operated; it must be an
integer- or floating-point-type variable or constant.

* variable-name specifies the variable to which the operation result is
to be written; it must be an integer- or floating-point-type variable.

» If no operation code is written in the specified control, the value
specified in operation-data is set in the specified variable.

B Related Item None
B Example of Program

conf

end conf

evnt
input type% , 1d@ , data%
EXECPRCODE ..NUMO0OO, 0, data%, datal%
numdsp ..NUM00O1l, datal%

end evnt

4-79

EXIT FUNCTION

EXIT FUNCTION

Statement
B Function The EXIT FUNCTION statement exits a function forcedly.
B Format EXIT FUNCTION
B Example of Use FUNCTION DIV %(A%,B%)
IF B%=0 THEN EXIT FUNCTION
DIV%=A%/B%
END FUNCTION
B Description The EXIT FUNCTION statement gives an instruction to exit a
function forcedly in a function block where the function itself is
defined and returns the control to the side which called the function.
» This statement is one of the new features of Screen Creator 5.
B Related Item DECLARE, FUNCTION, FUNCTIONCHECK

B Example of Program

declare my div%(a%,b%)
conf
global x%,vy%
local share%
share% = my div(x%,y%)
end conf
function my div$(a%,b%)
if b%=0 then EXIT FUNCTION
my div%=a%/b%
end function

4-80 CHAPTER 4 INSTRUCTION REFERENCE

EXP

EXP

Function

B Function The EXP function calculates the value of an exponentia function for the
base of a natural logarithm.

B Format EXP (numerical-expression)

B Example of Use VAR =EXP (A/2)

B Description The EXP function returns the result of exponent operation for the base
(E) of the natural logarithm.

Bl Related Item LOG

B Example of Program

evnt
input ty,id@,data
if ty = 3 then
numdsp ..NUM0O0O, EXP(10)
else
numdsp ..NUM0O0OO, EXP(5)
endif

end evnt

4-81

FCLOSE

FCLOSE

Statement

B Function

B Format

B Example of Use

B Description

B Related Item
B Example of Program

conf
field 5

The FCLOSE statement closes the specified file.

FCLOSE file-number

FCLOSE 5

» The FCLOSE statement closes the file specified by file-number.

* file-number must match the number of the file opened by the FOPEN
statement to be explained later. If another file number is specified,
an error occurs. Specify file-number directly with a numeric value

from 1 to 16.

FOPEN, FIELD, FPUT, FGET

global no%

global mojils$, moji2$
end field
fopen 'MEMORY'’, 2 , 5

FCLOSE 5
end evnt

4-82 CHAPTER 4 INSTRUCTION REFERENCE

FGET

FGET

Statement
B Function The FGET statement reads data from the specified file.
B Format FGET file-number, record-number
B Example of Use FGET 5,3
B Description » The FGET statement reads the contents of the specified record
(record-number) in the specified file (file-number) into the variable
group declared by FIELD...END FIELD.
 file-number specifies the number of the file to be read. This file
number must match the number of the file opened by the FOPEN
statement.
» record-number specifies which record in the file is to be read first.
In this case, the variable group included in FIELD declared in
file-number is used as one unit. record-number is 1 when data is
read from the beginning of thefile.
Bl Related Item FOPEN, FIELD, FCLOSE, FPUT

B Example of Program

cont
field 5
global no%
global mojil$, moji2$
end field
fopen Y'WEMORY'’, 2 , 5

evnt
FGET 5 , 3
numdsp ..NUMO0OO , no%
strdsp ..STR0O00 , mojils
strdsp ..STR0O01 , moji2$
fclose 5

end evnt

4-83

FIELD ... END FIELD

FIELD ... END FIELD

Statement
B Function FIELD ... END FIELD sets afile read/write unit.
B Format FIELD file-number
variable-list
variable-list
END FIELD
B Example of Use FIELD 5

global abed , xyz%

static dddd(10,10)

backup moji$

END FIELD

B Description FIELD ... END FIELD declares the unit for reading the file by the
FGET statement or that for writing the file by the FPUT statement.

+ file-number specifies the number of the file onto or into which the
variable group in the field is to be written or read. This file number
must match the number of the file opened by the FOPEN statement; it
isavauefrom 1 to 16.

» Thevariable list that can be written between FIELD and END FIELD
must be the GLOBAL, STATIC, or BACKUP variable. The method
for declaring variable lists is the same as that for declaring the
GLOBAL, STATIC, and BACKUP variables.

* The FIELD declared in the program where the FOPEN statement was
executed is the default read/write unit.

* When afile is read or written by a part that differs from the part
opened by the FOPEN statement, the FIELD declared in that part is
used. If thisFIELD isnot declared, the default FIELD is used.

* If two or more FIELDs are declared in the same file-number in one
program, the last declared FIELD isvalid.

 FIELD ... END FIELD cannot be written in the globa screen
program.

B Related ltem FOPEN, FCLOSE, FPUT, FGET

B Example of Program

conf
field 5

global no%

global mojil$, moji2$

end field

fopen “'WEMORY'’, 2 , 5

4-84 CHAPTER 4 INSTRUCTION REFERENCE

FIELD ... END FIELD

mojil$ = ‘‘product-name’’
moji2$ = ‘‘product-number’’
fput 5, 3

end evnt

4-85

FIGCOLOR

FIGCOLOR

Statement

B Function

B Format
B Example of Use

B Description

B Related Item
B Example of Program

evnt

The FIGCOLOR statement changes the tile and colors of the graphic
display.

FIGCOLOR control-name, tile, display-color, background-color
FIGCOLOR .B000.FIG000, 1, 2, 3

» The FIGCOLOR statement changes the tile and colors of the the
graphic display. -1 indicates that the color and tile for which -1 was
specified remain unchanged.

» control-name is the graphic display name or the ID-type variable
indicating the graphic display.

« tile indicates atiling figure. Specify thistiling figure with a numeric
value from O to 15.

» display-color is a numeric value indicating the color number of the
tile display section. Specify this color number with a numeric value
from O to 15.

» background-color is a numeric value indicating the color number of
the tile background section. Specify this color number with a
numeric value from O to 15.

FIGDSP

input type%, 1d@, tile%

FIGCOLOR
end evnt

..FIGO00O, tile%, -1, -1

4-86 CHAPTER 4 INSTRUCTION REFERENCE

FIGDSP

FIGDSP

Statement
B Function The FIGDSP statement texture the graphic specified in the graphic
display.

B Format FIGDSP control-name, texture-name

B Example of Use FIGDSP .B000.FIG000, SWFIG

B Description » The FIGDSP statement displays the texture specified in the texture
display. This texture name must be the one created by the plotting
tool.

» control-name is the graphic display name or the ID-type variable
indicating the graphic display.

 texture-name is the variable indicating the name or ID of the texture
to be displayed in the texture display or the registered graphic number
(integer type).

» display-value cannot be changed even if this statement is issued to the
display for which operation parameters are set to “effective” in the
control.

B Related Item FIGCOLOR, FIGFORM

B Example of Program

evnt
input ty , id@, figno%
FIGDSP ..FIGO0OO , figno%
end evnt

4-87

FIGFORM

FIGFORM

Statement

B Function

B Format
B Example of Use

B Description

Bl Related Item
B Example of Program

evnt

The FIGFORM statement changes the display format of the texture
display.

FIGFORM control-name, resize-specification

FIGFORM ..HYOJKI, 0

* When the size of the texture display differs from that of the texture to
be control in the control, the FIGFORM statement specifies whether
to perform resize (magnification/reduction). Resize is performed to
make the size of the texture to be displayed match that of the texture
display.

» control-name is the graphic display name or the ID-type variable
indicating the graphic display.

» The integer-type value indicating whether to perform resize is set in
resize-specification.

0: Resizeisnot performed.
1. Resizeis performed.

FIGCOLOR, FIGDSP

input ty , id@, data

if ty =

3 and data = 1 then

FIGFORM ..FIGOOO, 1

else

FIGFORM ..FIGOO0OO, 2

endif
figdsp
end evnt

..FIGO00, figno

4-88 CHAPTER 4 INSTRUCTION REFERENCE

FINPUT

FINPUT

Statement

B Function
B Format
B Example of Use

B Description

Bl Related Item
B Example of Program

conf
fopen
end conf

evnt

vars =

The FINPUT statement reads data from the specified file.
FINPUT file-number, variable, variable, ...
FINPUT 12, VAR% , STRING$

» The FINPUT statement reads data from the file specified by
file-number into the specified variable.

» A numeric or character string variable can be specified in variable.

» The following delimiters can be used when data is read into the
specified variable. They are not included in the variable.

— Only comma “,” and carriage return (CR) can be used as
delimiters. Linefeed (LF) following CR isignored.

— When anumeric variable is specified, ablank can also be used as a
delimiter.

— When a character string variable is specified, the character string
between double quotation marks (*) isto be read.

— If the type of data written to the specified file does not match that
of the specified read variable, the contents of the variable are
undefined.

 file-number must match the number of the file opened by the
FOPEN statement.

FOPEN, FCLOSE, FPRINT, FWRITE, LINPUT

‘‘C:TEST'"", 2 , 5

-2

fwrite 5, 123, wvar%, ‘‘ABCD'’, ‘'Xyz''’
fseek (5, 0, 0)
finput 5, VAR1%, VAR2%, VSTR1S, VSTR2S

end evnt

Dataiswritten to the specified file as follows:
123,-2,""ABCD’’,’"XYZ'' CR/LF

When data is read, the variables change as follows:
VAR1% 123 VSTR1S ABCD
VAR2% -2 VSTR2$ XYZ

4-89

FLUSH

FLUSH

Statement

B Function

B Format
B Example of Use

B Description

B Related Item

B Example of Program

conf

The FLUSH statement returns the write position of a non-procedual
communication reception buffer to the beginning of the variable.

FLUSH port-number
FLUSH 2

* The FLUSH statement enables received data to be written from the
beginning of the variable to which the write position of the
non-procedual communication reception buffer was returned.

» port-number specifies the port (CH1 to CH3) to be flushed with a
valuefrom 1to 3.

» Execute the FLUSH statement when a reception completion message
isreceived. Unless the FLUSH statement is executed, the reception
buffer may become full. This statement only returns the write
position of the reception buffer to the beginning of the variable; it
does not clear datain the buffer.

» The port to be flushed must be opened in advance by the OPENSIO
statement to be explained later.

OPENSIO, CLOSESIO, WRITESIO, WRITWSIOB, SETSIO

global bufs * 200
opensio 2 , 1 , buf$
setsio 2 , &HD

end conf

evnt
strdsp ..STRO0O0 , bufs
FLUSH 2
closesio 2

end evnt

4-90 CHAPTER 4 INSTRUCTION REFERENCE

FOPEN

FOPEN

Statement
B Function The FOPEN statement opens the specified file.
B Format FOPEN file-name, mode, file-number
B Example of Use FOPEN “MEMORY”, 2,5
B Description » The FOPEN statement opens the file to be read or written.
+ file-name specifies the name of the file to be opened. The file
having the name enclosed in double quotation marks is to be opened.
Specify the name of the file to be opened with up to eight characters.
When MEMORY is specified in file-name, internal memory is
handled as afile. (Currently, only “MEMORY” can be specified in
file-name.)
* mode specifies the type of the file to be opened with one of the
following numeric values:
0: Read-only file
1. Write-only file
2: Read/writefile
When file-name is “MEMORY”, the read/write file is opened
regardless of what value is specified in mode.
+ file-number is used when afileis read or written or when arecord is
set. Specify file-number directly with a numeric value from 1 to 16;
it cannot be specified by avariable.
» Tohandleinternal memory as afile, the capacity of that memory must
be set on the system mode screen in advance.
» Attempting to execute the FOPEN statement for an unformatted file
causes an error.
Bl Related Item FCLOSE, FIELD, FPUT, FGET, FORMAT

B Example of Program

conf
field 5
global no%
global mojils$, moji2$
end field
FOPEN ‘‘MEMORY’’, 2 , 5

evnt

4-91

FLUSH

FOR ... TO ... NEXT

Statement
B Function The instructions between the FOR statement and NEXT statements are
repeatedly executed by the specified count.
B Format FOR variable-name = start-value TO end-value [STEP increment] ...
NEXT
B Example of Use FORI=1TO10
A(h=3
NEXT
B Description + variable-name after the FOR statement specifies the variable used to
count how many times the FOR to NEXT loop is repested.
variable-name must be an integer- or floating-point-type variable.
 start-value indicates the initial value. The value of the variable
increases by the value specified in increment each time the FOR to
NEXT loop is repeated. (No negative value can be specified in
increment.) When the increased value of the variable is greater
than end-value, the statement following the NEXT statement is
executed.
» One FOR to NEXT loop can be nested.
B Related ltem WHILE ... WEND, SELECT CASE

B Example of Program

conf
static VAR% (10)
for i% = 0 to 10
VARS (1i%) = 1% * 3
next
end conf

4-92 CHAPTER 4 INSTRUCTION REFERENCE

FORMAT

FORMAT

Statement

B Function

B Format

B Example of Use

B Description

B Related Item
B Example of Program

conf

field 5

The FORMAT statement initializes (formats) the specified file.
FORMAT file-name
FORMAT “A:”

« file-name specifies the name of thefile to be initialized.

o« "A","E" or "MEMORY" can be specified as the drive name.

* When “MEMORY” is specified in drive-name, the contents of the
filearefilled with O.

» Besureto execute the FORMAT statement when using the file for the
first time.

FOPEN, FIELD, FCLOSE, FPUT, FGET

global no%

global mojils$, moji2$
end field
global sum%

FORMAT

fopen

\ \MEMORY" ’
“'\MEMORY’’, 2 , 5

‘'‘product-name’’
‘‘Yproduct-number’’
3

4-93

FPRINT

FPRINT

Statement

B Function

B Format

B Example of Use

B Description

B Related Item

B Example of Program

The FPRINT statement writes data to the specified file.
FPRINT file-number, expression, expression, ...

FPRINT 12, 100, “ABCD”, VAR%, STRING$

The FPRINT statement writes the numeric value, variable or character
defined in expression to the file specified by file-number.

A numeric value, a character, or anumeric or character variable can be
specified in expression.

A numeric expression is converted to a numeric string and written to
the specified file. When the data to be written is positive, a blank is
written before it. When the data is negative, a minus sign (-) is
written before it. A blank is also written after the written numeric
string.

When a character string iswritten, no delimiter isinserted.
file-number must match the number of the file opened by the
FOPEN statement.

FOPEN, FCLOSE, FPUT, WRITE

conf

fopen “‘C:TEST'’, 2 , 5
end conf
evnt

vars = -2

fprint 5, 123, 45, wvar%, ‘‘ABCD’’, ‘'XYz'’
end evnt

Dataiswritten to the specified file as follows:

A123AN45A-2/AABCDXYZ (A indicates a blank.)

4-94 CHAPTER 4 INSTRUCTION REFERENCE

FPUT

FPUT

Statement

B Function

B Format

B Example of Use

B Description

B Related Item
B Example of Program

conf

field 5

The FPUT statement writes data to the specified file.

FPUT file-number, record-number

FPUT 5, 3

» The FPUT statement writes the contents of the variable group declared
by FIELD...END FIELD to the specified record (record-number) in

the specified file (file-number).

« file-number specifies the number of the file to be written. This file
number must match the number of the file opened by the FOPEN

statement.

» record-number specifies the record in the file to which the contents

of the declared variable group is to be written.
variable group included in FIELD

In this case, the
is used as one unit.

record-number is 1 when data is written to the beginning of thefile.

FOPEN, FIELD, FCLOSE, FGET

global no%
global mojil$, moji2$
end field

fopen

“'\MEMORY’’, 2 , 5

‘'‘product-name’’
‘‘Yproduct-number’’
3

4-95

FRECOLOR

FRECOLOR

Statement

B Function

B Format

B Example of Use

B Description

B Related Item

The FRECOLOR statement changes the tiles and colors of the free graph
display.

FRECOLOR cotrol-name, tile-1, display-color-1, background-color-1,
tile-2, display-color-2, background-color-2

FRECOLOR ..FREOQQO, 2, 1, 4,5, 2, 1

» The FRECOLOR statement changes the tiles and colors of the free
graph display and the background tiles and colors of the entire
display. tile-1l indicates that the color and tile for which 1 was
specified remain unchanged.

» control-name is the free graph name or the ID-type indicating the
free graph name.

* tile-1 indicates the tiling figure of the tile display section. Specify
thistiling figure with a numeric value from 0 to 15.

« display-color-1 is a numeric value indicating the color number of the
tile display section. Specify this color number with a numeric value
from O to 15.

» background-color-1 is a numeric value indicating the color number
of the tile background section. Specify this color number with a
numeric value from O to 15.

* tile-2 indicates the background tiling figure of the free graph.
Specify thistiling figure with a numeric value from O to 15.

« display-color-2 is a humeric value indicating the color number of the
tile display section of the background. Specify this color number
with anumeric value from O to 15.

* background-color-2 is a numeric value indicating the color number
of the tile background section of the background. Specify this color
number with anumeric value from O to 15.

FREDSP

4-96 CHAPTER 4 INSTRUCTION REFERENCE

FRECOLOR

Example of Program

conf
static name@
name@ = ..FRE0OO
end conf
evnt
input type%, id@, data%
if type% = 3 then
FRECOLOR name@, 2, 3, 1, 4, 5, 2
endif

end evnt

4-97

FREDSP

FREDSP

Statement

B Function

B Format
B Example of Use

B Description

B Related Item

B Example of Program

conf

The FREDSP statement specifies the value to be displayed in the free
graph display.

FREDSP control-name, display-value
FREDSP .B000.FRE000, 50

» The FREDSP statement specifies the value to be displayed in the free
graph.

» control-name is the name of the free graph display or the ID-type
variable indicating the free graph display.

+ display-value is the value specifying the filling range in the free
graph display.

« display-value cannot be changed even if this statement isissued to the
display for which operation parameters are set to “effective’ in the
primitive.

FRECOLOR

static name@

name(@
end conf

evnt

. .FREQOO

input type%, 1d@, data%
FREDSP name@, data$%

end evnt

4-98 CHAPTER 4 INSTRUCTION REFERENCE

FSEEK

FSEEK

Function

B Function

B Format

B Example of Use

B Description

B Related Item

B Example of Program

The FSEEK function changes the read/write position of afile.
FSEEK (file-number, reference-position, offset)

AAA% = FSEEK (12, 0, 0)

The FSEEK function moves the read/write position of the file by the
value specified by offset, starting from reference-position.
file-number specifies the number of the file opened by the FOPEN
Statement.

0, 1, and 2 can be specified in reference-position. When 0 is
specified, the FSEEK function moves the read/write position, starting
from the beginning of the file. When 1 is specified, the function
moves the read/write position, starting from the current position.
When 2 is specified, it moves the read/write position, starting from the
end of thefile.

Specify offset in bytes. Specify a positive value in offset when
moving the read/write position to the end of thefile.

The read/write position obtained as a result of executing the FSEEK
function is returned.

FOPEN, FCLOSE, FPRINT, FWRITE, FINPUT

conf
fopen ‘“'C:TEST'’, 2 , 5
end conf
evnt
AAAS = ‘'12345'7
fwrite 5, AAAS, ‘‘ABCD’’
fseek (5, 0, 0)
finput 5, VSTRS
end evnt

4-99

FSUM

FSUM

Function

B Function

B Format
B Example of Use

B Description

B Related Item

The FSUM function calculates the sum of the variable group in the
specified field.

FSUM (file-number)
SUM =FSUM (5)

» The FSUM function calculates the sum (eight low-order bits) of the
variable group included in the FIELD specified by file-number by
incrementing the contents of the group for each byte. The function
calculates the area where no character code is defined in the character
string variable as 0.

» The FSUM function returns the calculation result as an integer-type
value within the range from 0 to 255.

 |f the FIELD specified by file-number does not exist, an error occurs.

FOPEN, FIELD, FCLOSE, FPUT, FGET

B Example of Program

conf

field 5

global no%
global mojils$, moji2$

end field
global sum$%
fopen “'WEMORY'’, 2 , 5

fget 5 , 3
if sum% = FSUM(5) then

numdsp ..NUMO0OO , no%
strdsp ..STR0O00 , mojils
strdsp ..STR0O01 , moji2s$

else

strdsp ..STR002 , ‘‘SUM-error’’

fclose 5

end evnt

4-100 CHAPTER 4

INSTRUCTION REFERENCE

FUNCTION ... END FUNCTION

FUNCTION ... END FUNCTION

Statement

B Function

B Format

B Example of Use

B Description

B Related Item

The FUNCTION ... END FUNCTION statement declares a function
block.

FUNCTION function name [type declaration character](variable
declaration[, variable declaration] ...)

END FUNCTION

FUNCTION ADD%(A%,B%)
ADD%=A%+B%
END FUNCTION

The FUNCTION ... END FUNCTION statement declares a function

block where the function itself is defined.

A defined function can be referenced in three ways as shown below

according to the position where it is declared:

- Local function: Defined in a program other than a global screen
program.

- Global function: Defined in a global screen program.

- Library function: Defined in alibrary.

The declared type of afunction (in the prototype declaration) must be

the same as the defined type of the function itself.

Like a variable, a function has a return value of a type determined by

the type declaration character ($, % or !).

A function with no type declaration character is a real number

function.

The return value of a function depends on a value substituted for the

function name including the type declaration character.

Variable declaration is an argument of afunction.

A variable with no argument declaring a variable type is regarded as a

real number variable.

An argument of afunction is given when referenced. Therefore, if a

value is changed by substituting it for an argument in the function or

the like, the variable itself given as the argument by the caler is aso

changed.

Type declaration using DECLARE is needed to call a function

declared in afunction block.

To exit a function in a function block forcedly, use EXIT

FUNCTION.

Thisis one of the new features of Screen Creator 5.

DECLARE, EXIT FUNCTION, FUNCTIONCHECK

4-101

FUNCTION ... END FUNCTION

B Example of Program

declare my add%(a%,b%)
conf
global x%,vy%
local sum%
sum$ = my add(x%,y%)
end conf
FUNCTION my add% (a%,b%)
my add%=a%+b%
END FUNCTION

4-102 CHAPTER 4 INSTRUCTION REFERENCE

FWRITE

FWRITE

Statement

B Function

B Format

B Example of Use

B Description

B Related Item

B Example of Program

The FWRITE statement writes data to the specified file.
FWRITE file-number, expression, expression, ...

FWRITE 12, 100, “ABCD”, VAR%, STRING$

The FWRITE statement writes the numeric value or character defined
in expression to the file specified by file-number.

A numeric value, a character, or anumeric or character variable can be
specified in expression.

When writing two or more expressions to the file, delimit them with a
comma (,). Add the code indicating carriage return (CR) or line feed
(LF) to the end of expression description.

A numeric expression is converted to a numeric string and written to
the specified file. When the numeric string is negative, a minus sign
(-) isinserted before it.

When writing a character string, enclose it in double quotation marks
).

file-number must match the number of the file opened by the
FOPEN statement.

FOPEN, FCLOSE, FPUT, FPRINT

conf

fopen ‘“'C:TEST'’, 2 , 5
end conf
evnt

vars = -2

fwrite 5, 123, wvar%, ‘‘ABCD’’, ‘‘XYz’’
end evnt

Datais written to the specified file as follows:
123,-2,""ABCD’’,’"XYZ'' CR/LF

4-103

GETBLIGHT

GETBLIGHT

Statement

B Function The GETBLIGHT statement reads the time that lasts till the back light is
turned off.

B Format GETBLIGHT variable-name

B Example of Use GETBLIGHT VAR

B Description variable-name specifies the variable used to write the time that lasts till
the back light is turned off. The unit for the read values is minute.
When 0 is specified, the back light is not turned off.

B Related Item SETBLIGHT

B Example of Program

conf
GETBLIGHT wvar
var = var*?2

setblight var
end conf

4-104 CHAPTER 4 INSTRUCTION REFERENCE

GETDATE

GETDATE

Statement

B Function

B Format

B Example of Use

B Description

B Related Item
B Example of Program

conf

The GETDATE statement obtains the data representing a date.

GETDATE year-read-variable, month-read-variable, day-read-variable,
day-of -week-read-variable

GETDATE YEAR%, MONTH%, DATE%, DAY %

» The GETDATE statement writes the current date value to
year-read-variable, month-read-variable, day-read-variable, and
day-of-week-read-variable.

* Year isthe low-order two digits of A.D. Month is a numeric value
from1to 12. Day isanumeric value from 1to 31. The day of the
week isanumeric value from 0 to 6 (Sunday to Saturday).

» Read variables must be integer-type variables.

» Once date is set using the SETDATE command in a model with a
battery backup calendar IC (GC56LC or GCB5EM), the date is
updated even while the power is off. |If amodel with no calendar IC
(GC53LC or GC53LM) isturned off, the date is initialized to January
1, 1998 (Thursday) and the time to 00:00:00 when it is turned on
again. The date and time are updated while the power is on.

DATES$, GETTIME, SETDATE, SETTIME, TIMES$

GETDATE yr%, mt%, d%, dd$

numdsp
numdsp
numdsp
end conf

. .NUMO0O0O, yr%
..NUM0OO01l, mt%
..NUMO002, d%

4-105

GETGID

GETGID

Function

B Function The GETGID function obtains the ID of the local screen currently being
displayed.

B Format GETGID()

B Example of Use VAR@ = GETGID()

B Description » The GETGID function obtains the ID of the local screen currently

being displayed.

» Thisfunction cannot be used to obtain the ID of aglobal screen.

Bl Related Item GETGNO

B Example of Program

evnt
input type%, id@, data%
if type% = 3 then
VAR@ = GETGID()
NO% = GETGNO (VARQ)
00"D100 = NO%
end if

end evnt

4-106 CHAPTER 4 INSTRUCTION REFERENCE

GETGNO

GETGNO

Function

B Function The GETGNO function obtains the registration number of the screen
currently being displayed.

B Format GETGNO (screen-1D)

B Example of Use NO = GETGNO (ID@)

B Description » The GETGNO function obtains the registration number of the screen

specified in screen-ID.

» screen-ID specifies a screen name or an ID-type variable.

Bl Related Item GETGID

B Example of Program

evnt
input type%, id@, data%
if type% = 3 then
VAR@ = GETGID()
NO% = GETGNO (VARQ)
00"D100 = NO%
end if

end evnt

4-107

GETID

GETID

Function
B Function The GETID function obtains the value of the ID separate from the
reference ID by offset.
B Format GETID (object-indicated-by-reference-ID, offset-value)
B Example of Use ID@ = GETID (VARID@, 10)
B Description » The GETID function obtains the ID-type value separate from the
reference | D-type value by the specified offset value.

» object-indicated-by-reference-ID specifies an ID-type variable
name, a screen name, a part name, a registration character
string/graphic name, or a device name.

 offset-value isthe integer or real value indicating the offset from the
reference ID to the ID to be obtained. When 0 is specified in
offset-value, the reference ID value is obtained.

* When 1 is specified in offset-value, the ID of the first element of a
continuous-stage-type control is obtained.

Bl Related Item GETOFFSET

B Example of Program

conf
cyclic 007d0001 * 30
end conf
evnt
input ty%,i1d@,dat%
offset = getoffset (007d0001,id@)

Error processing corresponding to the offset value, etc.
id@ = getid (007d0001,offset)

end evnt

4-108 CHAPTER 4 INSTRUCTION REFERENCE

GETOFFSET

GETOFFSET

Function
B Function The GETOFFSET function calculates the offset between the reference ID
and specified ID.
B Format GETOFFSET (reference-1D, | D-to-be-specified)
B Example of Use OFFSET% = GETOFFSET (00"D0001, ID@)
B Description » The GETOFFSET function calculates the offset indicating how long
the specified ID is separate from the reference ID.

» reference-ID specifies the ID-type variable, screen name, part name,
registration character string/graphic name, or device name used as the
reference offset.

» |ID-to-be-specified specifies the ID-type variable, screen name, part
name, registration character string/graphic name, or device name used
to calculate the offset.

* When the GETOFFSET function applies to the device declared in
CYCLIC2, the offset value isamultiple of 2.

B Related Item GETID

B Example of Program

conf
cyclic 00740001 * 30
end conf
evnt
input ty%,i1d@,dat%
offset = GETOFFSET (00740001, id@)

Error processing corresponding to the offset value, etc.
id@ = getid (007d0001,offset)

end evnt

4-109

GETTIME

GETTIME

Statement

B Function

B Format

B Example of Use

B Description

B Related Item

B Example of Program

conf

The GETTIME statement obtains the data indicating time.

GETTIME hour-read-variable, minute-read-variable, second-read-
variable

GETTIME HOUR%, MIN%, SEC%

» The GETTIME statement writes the current value (time) to
hour-read-variable, minute-read-variable, and second-read-variable.

* Hour is a numeric value from 0 to 23. Minute is a numeric value
from0to59. Secondisanumeric value from O to 59.

* Read variables must be integer-type variables.

e Once date is set using the SETDATE command in a model with a
battery backup caendar IC (GC56LC or GC55EM), the date is
updated even while the power is off. If amodel with no calendar IC
(GCB3LC or GC53LM) isturned off, the date is initialized to January
1, 1998 (Thursday) and the time to 00:00:00 when it is turned on
again. The date and time are updated while the power is on.

DATES$, GETDATE, SETDATE, SETTIME, TIME$

GETTIME H%,M$%,S%

numdsp
numdsp
numdsp

end conf

. .NUM0OOO, HS%
. .NUM0OO1, M%
. .NUM002, S%

4-110 CHAPTER 4 INSTRUCTION REFERENCE

GLOBAL

GLOBAL

Statement

B Function

B Format

B Example of Use

B Description

Bl Related Item
B Example of Program

conf

The GLOBAL statement declares that global variables are to be used.
GLOBAL variable-name [, variable-name ...]

GLOBAL VAR, XYZ(2,3), MOJ$* 20

The GLOBAL statement declares that global variables are to be used.
Global variables can be read and written from al programs. Global
variables must be declared before they are used in a program. These
variables are initialized once when the power supply is turned on.
The values of global variables used after the power supply has been
turned on are retained.

A normal variable, an array variable, or a character string variable can
be written in variable-name.

When an array or character variable is declared, the DIM and
STRING statements need not be declared.

Use the DIM or STRING statement to specify a non-global array and
a character string type.

AUTO, BACKUP, DIM, LOCAL, STATIC, STRING

GLOBAL var%, float
GLOBAL moji$ * 50
GLOBAL xyz@(10,10)

end conf

4-111

GOSUB

GOSUB

Statement
B Function The GOSUB statement executes the specified subroutine.
B Format GOSUB subroutine-name
B Example of Use GOSUB SUB001
B Description » Control is transferred to the subroutine specified after the GOSUB
statement.
e Subroutine names written in the global screen and those in the
program containing the GOSUB statement can be specified. Use the
RETURN statement to return control.
 |f the same name exists both in the global and local subroutines, the
global subroutineis called.
B Related Item RETURN

B Example of Program

evnt
X =10
GOSUB SUB001
numdsp ..NUM0O0OO, X
end evnt
SUBOO1:
ab = X+3
RETURN

4-112 CHAPTER 4 INSTRUCTION REFERENCE

GOTO

GOTO

Statement

B Function

B Format

B Example of Use

B Description
[

Related Item

B Example of Program

evnt

if a =

a =3
Ll:

end evnt

numdsp

The GOTO statement unconditionally moves control to the specified line.

GOTO label-name

GOTO LABEL1

The GOTO statement unconditionally moves control to the line specified

by label-name.
was moved.

None

1 then goto L1

Execution is continued from the line to which control

. .NUMOOO , a

4-113

INIT... END INIT

HEX$

Function
B Function The HEX$ function converts a decimal character string to a hexadecimal
character string.
B Format HEX$ (numerical-expression)
B Example of Use HEX$ (123)
B Description e The HEX$ function converts a decima character string to a
hexadecimal character string.

* When a floating-point type is specified in numerical-expression, the
decimal character string (numeric value) is converted to an integer
type, then converted to a hexadecimal character string.

» Specify the decimal character string (numeric value) within the range
from -2147483648 to 2147483647.

B Related Item OCTS$, VAL

B Example of Program

evnt
input type , id@ , data
moji$ = HEXS (data)
strdsp ..STR0O00, mojis$
end evnt

4-114 CHAPTER 4 INSTRUCTION REFERENCE

IF ... THEN ... ELSE

IF ... THEN ... ELSE

Statement
B Function Condition judgment is performed to select the next program to be
executed.
B Format IF conditional expression THEN statement [EL SE statement]
IF conditional-expression THEN
statement-list
[EL SEIF conditional-expression THEN
statement-list]
[ELSE
statement-list]
END IF
B Example of Use IFTYPE% =1THEN VALUE =10
B Description » conditional-expression is the relational operation expression
obtained when the operation result is true (other than 0) or false (0).
» When the operation result is true as a result of executing a conditional
expression, the THEN and subsequent statements are executed.
When the operation result is false, the ELSE and subsequent
statements are executed.
» The ELSE, EL SEIF and subsequent statements can also be omitted.
» Upto 50 ELSEIF statements can be used in IF THEN...END IF.
B Related Item None

B Example of Program

evnt
if a = 2 then x = 3
if x = 5 then

a =1

elseif x = 6 then
a = 2

else
a =3

end if

end evnt

4-115

INIT... END INIT

INIT ... END INIT

Statement
B Function The INIT ... END INIT statement declares an area of an initiaization
block.
B Format INIT
END INIT
B Example of Use INIT
static VAR\%
END INIT
B Description » Aninitialization block written in a screen program or part program is
executed first only once when the program including the block is
executed.
» Write processing which should be executed first only once such as
initialization or the like.
B Related Item CONF END CONF,EVNT END EVNT

B Example of Program

INIT
global mojis$
mojis$="linitial value"
END INIT

4-116 CHAPTER 4 INSTRUCTION REFERENCE

INP

INP

Function

B Function The INP function reads 2-byte data from the specified parallel 1/0O port.
B Format INP (port-number)

B Example of Use VAR =INP(0)

B Description » The INP function reads data from the specified parallel 1/0 port.

» The port-number to be specified depends on the option board
inserted into the option bus. A numeric value from 0 to 3 can be
specified in port-number.

B Related Item ouT

B Example of Program

evnt
var% = inp (0)
if (var% and 1) = 1 then var% = 0

ouT 0,var$%
end evnt

4-117

INPBIT

INPBIT

Function
B Function The INPBIT function reads the specified BIT number from the specified
input port.
B Format INPBIT (port-number, BIT-number)
B Example of Use DATA% = INPBIT (0,10)
B Description * The INPBIT function reads the specified BIT number from the
specified input port.

» Specify port-number and BIT-number with an integer value relative to
0.

» The lowest-order bit number of the paralel 10 is 0 and the next
lowest-order bit number is1. That is, the BIT number is sequentially
incremented.

* |f an unexisting port or BIT number is specified, O is returned.

Bl Related Item INP, OUT, OUTBIT, OUTBITSTAT, OUTSTAT

B Example of Program

evnt
data%$ = INPBIT (0, 3)
if data% = 0 then
outbit 0,3,1
endif

end evnt

4-118 CHAPTER 4 INSTRUCTION REFERENCE

INPUT

INPUT

Statement

B Function

B Format
B Example of Use

B Description

The INPUT statement reads the data transmitted to a screen or part into
the specified variable(s).

INPUT variable-name [, variable-name]
INPUT V1, ID@, DATA

» TheINPUT statement reads the data transmitted to a screen or part.

» The integer value indicating the type of the sender that transmitted
datais set in the first variable-name. The value indicating the ID of
the sender is set in the second variable-name, which is followed by
data.

Sender Type | ID Contents of data

Screen 1 Optional | Item written inthe PRINT
statement

Part 2 Item written in the PRINT
statement

Switch (single) | 1 1 when ON, 0 when OFF

Switch (multi) Switch number: 1 when ON,
0 when OFF

Selector switch Number of activated switch

Timer 4 Value indicating the ON (1)
or OFF (0) status

Alarm 5 Value indicating the ON (1)
status

Parallel port 6 BIT number, BIT value, or
channel number satisfying
the condition

Non-procedual | 7 The port number, status, and
number of received bytes are
set in this order.

Sampling 9 Control Sampled data

PLC 16 Integer value indicating the
device value

Bar code 18 Bar code value

reader

Magnetic card | 19

Ten-key pad 20 Code of pressed key

Memory card | 21

Host 22 Optional datato be
determined by the user

4-119

INPUT

4-120 CHAPTER 4 INSTRUCTION REFERENCE

INPUT

bytes written to the reception buffer). For the text mode, a
terminator code isaso read. (When the statusis 1 or -1, the number
of received dataisread.)

* The numbers of multi-switches and selector switches are counted as 1,
2, 3 and so forth from the upper left switch. When all switches are
counted in the X direction, the switches on the lower Y line are
counted in the sameway. They are integers.

Related Item PRINT, CYCLIC, OPENPARALLEL, OPENCOM, OPENSIO

Example of Program

conf
global buffers
opensio 2 , 0, buffer$
setsio 2, 10
end conf
evnt
input type, 1d@, port%, status$%, bytes$
if type = 7 then
moji$ = left (buffer$, bytess - 1)
strdsp ..STRO00 , moji$
end if

end evnt

4-121

INPUT

INSTR

Function

B Function The INSTR function retrieves character strings to find the specified
character string. When the specified character string is found, the
function notifies the system of the start position of the character string.

B Format INSTR (start-position, character-strings-to-be-retrieved,
character-string-to-be-found)

B Example of Use A

= INSTR (10. MOJI1$, MOJI2$)

B Description * The INSTR function retrieves the character strings specified in

character-strings-to-be-retrieved to find the character string
specified in character-string-to-be-found. This retrieval starts at
the start position specified in start-position. When the specified
character string is found, the function notifies the system of the
position in a number of bytes relative to the beginning of the character
strings to be retrieved. If the specified character string is not found,
Oisset.

start-position is 1 when retrieval starts at the beginning of character
strings.

Character string variables, direct character strings, registration
character string names, and registration character string numbers can
be specified in character-strings-to-be-retrieved.

B Related Item None

B Example of Program

evnt

a$ = “this is oip.”

p = instr (1, a$, “company”) " When acharacter string variableis
specified

p = instr (1, num,”ab”) " When aregistration character
string number

end evnt

is specified

4-122 CHAPTER 4 INSTRUCTION REFERENCE

INSTR

INT

Function
B Function The INT function omits the fraction of the vaue specified in
numerical-expression to create an integer.
B Format INT (numerical-expression)
B Example of Use A =INT (30.1)
B Description » The INT function omits the fraction of the numerical-expression
enclosed in parentheses in the negative direction.

* The INT function calculates the maximum integer that does not
exceed the value specified in numerical-expression when omitting the
decimal point.

» When the value specified in numerical-expression is negative, the INT
function omits the figures below the decimal point as follows:

INT (14) — 1
INT (-1.4) — -2
B Related Item CINT

B Example of Program

evnt
input type%, 1d@, data
intvar% = INT (data)
numdsp ..NUM0O0O, intvar$

end evnt

4-123

INT

INTERLOCK

Statement

B Function The INTERLOCK statement controls transition to the system mode
screen.

B Format INTERLOCK mode
B Example of Use INTERLOCK 1

B Description * When modeis 1, the INTERLOCK statement sets the interlock to ON.
When 0, the INTERLOCK statement sets the interlock to OFF.

* When the interlock is ON, the system mode screen is not displayed

even if two dots on a diagonal line are pressed. When power is ON,

the system mode screen is not displayed even if the upper left edge on
the screen is pressed.

* When lock is activated, it must be reset by a program. Make a
program so that it resets lock securely.

* A mode specified using the INTERLOCK command in amodel with a
battery backup calendar IC (GC56LC or GC55EM) is maintained
even while the power is off. A mode specified using the
INTERLOCK command in a model with no calendar IC (GC53LC or
GC53LM) is lost when the power is turned off. Therefore, a mode
must be specified in a program which is aways executed when the
power isturned on.

Bl Related Item None
B Example of Program

conft
INTERCLOCK 1
end conf
evnt
input tp%,id@,dat%
if id@ = ..sw the interlock 0

end evnt

4-124 CHAPTER 4 INSTRUCTION REFERENCE

IOCTL

|OCTL

Statement

B Function

B Format

B Example of Use

B Description

B Related Item

The |OCTL statement controls the 1/O device connected to the OIP.
IOCTL I/O-type, mode
IOCTL O, 0

» Write the integer value indicating the I/O device to be controlled in

I/O-type. Currently, the type of 1/0O device that can be controlled are

the PLC, switch, and non-procedure transmission buffer.

mode isthe integer value indicating how the I/O device is controlled.

When controlling the PLC, specify one of the following values

indicating how the PLC is controlled in mode. The value used to

determine the IO type isO.
0: The PLC iswrite- and read-enabled.
1: The PLC iswrite-inhibited.

— If write is executed when the PLC is write-inhibited, an error will
occur.

Switches are controlled as follows: The value used to determine the

10 type is &H60.

— When switches are simultaneously pressed, the number of switches
to be assumed ON can be controlled.

— Specify the number of switches that can be simultaneously
recognized in mode with a numeric value from O to 640.

— Specifying 0 inhibits switch input. The switch cannot be used in
thiscase. Thus, be sure to make a program in another way so that
it resets prohibition of turning on the switch.

— The number of switches specified using this command in a model
with a battery backup calendar IC (GC56LC or GC55EM) is
maintained even while the power is off. The number of switches
specified using this command in a model with no calendar 1C
(GCB3LC or GC53LM) is lost when the power is turned off.
Therefore, the number of switches must be specified in a program
which is aways executed when the power isturned on.

» A non-procedure type send buffer is cleared as shown below. The

value for deciding the I/O typeis & H41.
- Specify a port (CH1 to CH3) for clearing the send buffer in
"mode”. Input a number between 1 and 3.

IOSTAT

4-125

IOCTL

B Example of Program

evnt
input ty%,1d@,dat%

if id@ = ..swl and dat% = 1 then
ioctl 0,0
else
ioctl 0,1
endif
end evnt

4-126 CHAPTER 4 INSTRUCTION REFERENCE

I0CTL2

|IOCTL2

Statement

B Function The IOCTL2 statement controls PLC cyclic communication.

B Format IOCTL2 device-name, code, data

B Example of Use IOCTL200°D10, 0,0

B Description » Executing the IOCTL2 statement executes the cyclic communication
specified by device-name. The cyclic communication to be
specified by device-name must be declared in the CYCLIC or
CYCLIC2 statement in advance.

* Set 0incode and data.
B Related Item None

B Example of Program

conf
cyclic 00°D10
end conf
evnt
input ty%,1d@,dat%

if id@ = ..swl then
00°D11 =1
ioctl2 00~-D10 ,0 ,O0
endif

end evnt

4-127

IOSTAT

|IOSTAT

Function
B Function The IOSTAT function reads the status of the I/O device connected to the
OIP.

B Format IOSTAT (l1/O-type)

B Example of Use IOSTAT (0)

B Description » Write the integer value indicating the 1/0 device whose status is to be
read in I/O-type. Currently, the type of 1/O device that can be
controlled are the PLC and switch.

» Toread the PLC status, specify 0in I/O-type.
0: The PLC iswrite- and read-enabled.
1. The PLC iswrite-inhibited.
» To read the switch status, specify &H60 in I/O-type.
— The number of switches that can be recognized when they are
pressed simultaneously is returned (O to 640).
B Related Item IOCTL

B Example of Program

evnt
input ty%,i1d@,dat%
if id@ = ..swl then
if iostat (0) then
ioctl 0,0
else
ioctl 0,1
end if
endif
end evnt

4-128 CHAPTER 4 INSTRUCTION REFERENCE

JUMP

JUMP

Statement

B Function

B Format

B Example of Use

B Description

B Related Iltem

The JUMP statement displays the specified screen.
JUMP screen-name
JUMP 10

» The JUMP statement displays the screen specified in screen-name.

» screen-name isthe name of the screen to be displayed or the ID-type
variable indicating the screen to be displayed. Alternatively,
screen-name specifies the screen number stored in screen registration.

* When this statement is executed, the subsequently coded program is
not executed.

 |f anon-extant screen is specified, a system error occurs.

None

B Example of Program

evnt

input type , 1d@
if type = 3 and id@

JUMP GAMEN. .
end if
end evnt

data

= ..SWTO000 then

4-129

KILL

KILL

Statement

B Function The KILL statement del etes the specified file.

B Format KILL file-name

B Example of Use KILL “C:ABC.DOC”

B Description » TheKILL statement deletes the file specified by file-name.

» A wild card (*) can be specified in file-name.
B Related Item

B Example of Program

conf
end conf

KILL ‘‘ABC.*'"’

end evnt

4-130 CHAPTER 4 INSTRUCTION REFERENCE

LAMPCOLOR

LAMPCOLOR

Statement
B Function The LAMPCOLOR statement changes the ON display color of the lamp
display.
B Format LAMPCOLOR display-name, color-number
B Example of Use LAMPCOLOR .BUHIN.GRAPH, 5
B Description The LAMPCOLOR statement changes the ON display color of the lamp
display.
« display-name is the name of lamp display or the ID-type variable
indicating the lamp display.
* color-number indicates the color displayed when the lamp display is
ON. Specify this color number with a numeric value from 0 to 15.
B Related Iltem LAMPDSP

B Example of Program

cont
lampdsp .buhin.gpaph , 0
LAMPCOLOR .buhin.gpaph , 7
lampdsp .buhin.gpaph , 1
end conf

4-131

LAMPDSP

LAMPDSP

Statement
B Function The LAMPDSP statement indicates whether the lamp display is ON or
OFF.
B Format LAMPDSP control-name, lamp-mode
B Example of Use LAMPDSP .BUHIN.GRAPH, 1
B Description The LAMPDSP statement indicates whether the lamp display is ON or
OFF.
e control-name is the name of lamp display or the ID-type variable
indicating the lamp display.
* lamp-mode indicates whether the lamp display is ON or OFF.
When lamp-mode is 0, the lamp display is OFF. When 1, the lamp
display is ON.
 display-value cannot be changed even if this statement is issued to
the control for which operation parameters are set to “effective’ in
the control.
B Related Item LAMPCOLOR

B Example of Program

evnt
input type,i1d@,data
var@ = .buhin.graph
LAMPDSP var@ , data
end evnt

4-132 CHAPTER 4 INSTRUCTION REFERENCE

LEFTS

LEFTS$

Function

B Function

B Format

B Example of Use

B Description

B Related Item

The LEFT$ function returns a character string the specified number of

characters, starting from the left of the specified character string.

LEFTS$ (character-string, number-of-characters)
LEFTS$ (registered-character-string-number, number-of-characters)
LEFTS$ (registered-character-string-name, number-of-characters)

A$ = LEFT$ (MOJ$, 5)
A$ = LEFT$ (4, 10)
A$ = LEFT$ (TOROKU, 8)

The LEFT$ function returns a character string the number of bytes
specified in number-of-characters, starting from the left of the
specified character string.

number-of-characters specifies the number of bytes of the character
string to be fetched with a numeric value from 0 to 255. When
number-of-charactersis 0, anull character string is returned.
character-string is a direct character string or a character string
variable.

registered-character-string-number is the numerical expression
indicating the number registered by GCSGP3.
registered-character-string-name is the name of the character
string created by GCSGP3 or the | D-type variable indicating the name

of the character string.

MID$, RIGHT$

B Example of Program

evnt
bs
as
c$
c$

“12345678"
LEFTS (b$S , 3)
LEFTS (no , 3)
LEFTS (ide , 4)

end evnt

4-133

LEN

LEN

Function

B Function

B Format

B Example of Use

B Description

The LEN function returns the length of the specified character string in a
number of bytes.

LEN (character-string)
LEN (registered-character-string-number)
LEN (registered-character-string-name)

A =LEN (B$)
A =LEN (MOJ))

» The LEN function returns the length of the character string specified
by character-string, registered-character-string-number, or
registered-character-string-name in a number of bytes.

» character-string is a direct character string or a character string
variable.

* registered-character-string-number is the numerical expression
indicating the number registered by GCSGP3.

» registered-character-string-name is the name of the character
string created by GCSGP3 or the | D-type variable indicating the name
of the character string.

B Related Item None
B Example of Program
conf
a = len (b$S)
a = len (“abcdefg”)
a = len (toroku)
a = le (1)
end conf
4-134 CHAPTER 4 INSTRUCTION REFERENCE

LINE

LINE

Statement

B Function
B Format
B Example of Use

B Description

B Related Item
B Example of Program

conf

color 1
end conf
evnt

’

The LINE statement draws a straight line on a screen.
LINE X1,Y1, X2,Y2
LINE 20,30,100,200

The LINE statement draws a straight line between the specified two

coordinates ((X1,Y 1) and (X2,Y 2)).

e X1 and X2 must be a numeric value from 0 to 639. Y1 and Y2
must be a numeric value from 0 to 399 (GC55EM) or O to 479
(GC56LC).

» A straight line is directly displayed as the background of a screen.
When a part is opened or closed in the area where a straight line was
displayed or when a primitive is displayed, the straight line may be
cleared. The cleared straight lineis not redisplayed.

* Thetype and color of the straight line are specified by COLOR.

e |If this is used in an initialization block or configuration block,
drawing is executed after executing this block and accordingly lines
are not drawn.

Be sure to use thisin an event block.

COLOR

0o, 3

dot 100,200
dot 100,300

color 1

’

0, 0

line 100,200,100,300

end evnt

4-135

LINPUT

LINPUT

Statement

B Function

B Format

B Example of Use

B Description

B Related Item

B Example of Program

conf

The LINPUT statement reads data from the specified file.

LINPUT file-number, character-string-variable

LINPUT 12, STRING$

 The LINPUT statement reads data from the file specified by

file-number into the character
character-string-variable.

» The data between the current file position and carriage return (CR) or
line feed (LF) is assigned to character-string-variable.

LF, however, are not assigned.)

 file-number must match the number of the file opened by the

FOPEN statement.

FOPEN, FCLOSE, FPRINT, FWRITE, FINPUT

fopen ‘C:TEST'’, 2 , 5
end conf
evnt
ARAAS = Y'12345'/
fwrite 5, AAAS, ‘‘ABCD'’
fseek (5, 0, 0)
linput 5, VSTRS
end evnt

Thefileiswritten as follows:
VV12345'7 ,7"ABCD’’ CR/LF

When datais read, the variables change as follows:
VSTRS ‘'12345’',’"ABCD’’

4-136 CHAPTER 4 INSTRUCTION REFERENCE

LNECOLOR

LNECOLOR

Statement
B Function The LNECOLOR statement changes the line colors and figure of the line
chart display.
B Format LNECOLOR control-name, line-number, line-type, line-color, tile,
display-color, background-color
B Example of Use LNECOLOR ..LNEOQO, 1, 2, 1, 4,5, 2
B Description » The LNECOLOR statement changes the line colors and figure of the
line chart display and the background tile and color of the entire
display.
» control-name is the name of a line chart or the ID-type variable
indicating the chart.
 line-number is the integer value indicating the number of the line to
be changed. The line number starts at 1.
 line-type is the numeric value indicating the type of the line.
Specify this line type with anumeric value from 0 to 3.
« tile indicates the tiling figure of the bar. Specify this tiling figure
with anumeric value from 0 to 15.
+ display-color is the numeric value indicating the color number of the
tile display section. Specify this color number with a numeric value
from O to 15.
» background-color is the numeric value indicating the color number
of the tile background section. Specify this color number with a
numeric value from O to 15.
B Related Item LNEDSP, LNESHIFT

B Example of Program

conft
static name@
name@ = ..LNEOOO
end conf
evnt
input type%, 1d@, data%
if type% = 3 then
LNECOLOR name@, 2, 3, 1, 4, 5, 2
endif

end evnt

4-137

LNEDSP

LNEDSP

Statement

B Function

B Format

B Example of Use

B Description

B Related Item

B Example of Program

conf

The LNEDSP statement displays datain the line chart display.
LNEDSP control-name, line-number, point-number, display-data

LNEDSP .BUHIN.GRAPH, 2, 2, 30.0

The LNEDSP statement displays line datain the line chart display.
control-name is the name of a line chart or the ID-type variable
indicating the chart.

line-number is the value indicating the line number in the line chart
tobedisplayed. Theline number startsat 1.

point-number specifies the data point to be changed in the line chart;
it is the integer-type value starting at 1. The maximum point value
depends on what line chart is placed.

display-value is the numeric data indicating the size of the specified
line chart paint.

display-value cannot be changed even if this statement is issued to the
display for which operation parameters are set to “effective” in the
control.

LNECOLOR, LNESHIFT

static name@

name(@
end conf

evnt

. .LNEOOO

input type%, 1d@, data%

lnedsp name@, 2, 2, data$%

end evnt

4-138 CHAPTER 4

INSTRUCTION REFERENCE

LNESET

LNESET

Statement

B Function

B Format

B Example of Use

B Description

B Related item

B Example of Program

evnt

lneset
var(@

no

value
point

The LNESET statement sets datain the line chart display.
LNESET control-name, line-number, point-number, display-data
LNESET .BUHIN.GRAPH 2, 4, 30.0

» The LNESET statement sets the data to be displayed in the line chart
display. The speed of executing the PRDSP (display) statement after
setting data in two or more points is faster than that of modifying all
the line point values after executing the LNEDSP statement.

» control-name is the name of the line chart display or the ID-type
variable indicating the line chart display.

* line-number specifies which line data is to be displayed when two or
more lines are displayed in one line chart display. This line number
isthe integer value data starting at 1.

* point-number specifies which point value on the specified line is to
be changed. This point number isthe integer value data starting at 1.

 display-data isthe numeric dataindicating the size of the line chart.

LNEDSP, PRDSP

.pbuhin.graph , 3 , 8 , 20.1
.buhin.graph

23
4

LNESET wvar@ , no , point, value

prdsp var(@

end evnt

4-139

LNESHIFT

LNESHIFT

Statement

B Function

B Format
B Example of Use

B Description

B Related Item
B Example of Program

evnt

The LNESHIFT statement shifts the display data of a line chart left or
right.

LNESHIFT (cotrol-name, line-number, shift-direction, display-data)

A = LNESHIFT (..LNEOOO, 1, 1, 30)

The LNESHIFT statement is a function that shifts each of the points
constituting the line chart in the line chart display left or right by one
point and displays the points.

When this statement is executed, the values of the points purged from
the line chart are returned as aresult of the shifting.

control-name isthe line chart name or the ID-type variable indicating
the line chart.

line-number is the value indicating which line in the line chart
display isto be shifted. Thisline number starts at 1.

When shift-direction is 1, line chart data is shifted left and above.
When shift-direction is -1, line chart datais shifted right and below.
display-data indicates the data to be displayed in the vacant area
produced as aresult of the shifting.

LNEDSP, LNECOLOR, LNESHIFT2

input type%, 1d@, data%
if data% > 0 then

abc%
else
abc%
endif
end evnt

lneshift (..LNEOOO, 1, 1, 0)

lneshift (..LNEOOO, 1, -1, 100)

4-140 CHAPTER 4 INSTRUCTION REFERENCE

LNESHIFT2

LNESHIFT?2

Statement

B Function

B Format
B Example of Use

B Description

B Related Item
B Example of Program

evnt

The LNESHIFT2 statement shifts the display data of a line chart Ieft or
right.

LNESHIFT2 (control-name, line-number, shift-direction, display-data)
A = LNESHIFT2 (..LNEOOO, 1, 1, 30)

 Different from the LNESHIFT statement, the LNESHIFT2 statement
shifts line chart data but does not display it. To display line chart
data, execute the PRDSP statement.

» The LINESHIFT2 statement is a function that shifts each of the points
constituting the line chart in the line chart display left or right by one
point.

* When this statement is executed, the values of the points purged from
the line chart are returned as a result of the shifting.

 control-name isthe line chart name or the ID-type variable indicating
the line chart.

* line-number is the vaue indicating which line in the line chart
display isto be shifted. Thisline number starts at 1.

* When shift-direction is 1, line chart data is shifted left and above.
When shift-direction is-1, line chart datais shifted right and below.

» display-data indicates the data to be displayed in the vacant area
produced as aresult of the shifting.

LNEDSP, LNECOLOR, LNESHIFT, PRDSP

input type%, 1d@ data$%
if data% > 0 then

abc$

else

abc%

endif
prdsp
end evnt

= lneshift2 (..LNEOOO, 1, 1, 0)
= lneshift2 (..LNEOOO, 1, -1, 100)
..LNEOOO

4-141

LOCAL

LOCAL

Statement

B Function

B Format

B Example of Use

B Description

B Related Item

B Example of Program

conf

The LOCAL statement defines alocal variable.
LOCAL variable name [, variable name ...]

LOCAL VAR, XYZ(2,3), MOJI$* 20

The LOCAL statement defines a variable defined in "variable name"
asalocal variable.

A local variable can be read and written only in a program where it is
declared. The compiler gives a warning if an undefined local
variable is used. Each local variable is initialized every time the
block is executed.

A variable name can be specified in a normal variable, arrangement
variable or character string variable.

DIM declaration or STRING declaration is not needed to declare an
arrangement variable or character variable.

The LOCAL statement is one of the new features of Screen Creator 5
added for distinctive declaration of local variables.

DIM can substitute for LOCAL. However, use LOCAL as far as
possible in Screen Creator 5.

STRING can be used, instead of LOCAL, to specify a size of a
character string variable. However, use LOCAL as far as possiblein
Screen Cregtor 5.

AUTO,BACKUP,DIM,FUNCTION,GLOBAL,STATIC,STRING

global float (5)

LOCAL i%

for i% = 0 to 5
float (1i%) = 1%*3

next

end conf

4-142 CHAPTER 4 INSTRUCTION REFERENCE

LOCALCHECK

LOCALCHECK

Statement

B Function

B Format
B Example of Use

B Description

B Related Item

The LOCALCHECK statement controls the level of warning messages
output by the compiler.

LOCALCHECK warning level
LOCALCHECK 1

» The LOCALCHECK statement specifies whether or not to output a
warning if local and global variables, functions and/or subroutines are
used vaguely in a program.

» Two warning levels are available as shown below:

1. A warning is output.
0: No warning is output.
» Threetypes of warnings are available as shown below:

(1) If avariable not declared isused in a program
In this case, the compiler regards such a variable as a local
variable. It regards such a variable as a globa variable in a
global screen program.

(2) If globa and local variable names or subroutine names are
duplicate
In this case, such variables or subroutines are regarded as global
variables or subroutines.

(3) If two or more global, local and/or library function names are
duplicate
In this case, the priority is given to alibrary function, if any. If
no library functions are used, the functions are regarded as global
functions.

» The warning level is set to 0 unless the LOCALCHECK statement is
written.

e The warning level is changed from the position where the
LOCALCHECK statement iswritten in the program.

» The LOCALCHECK statement is one of the new features of Screen
Creator 5.

BACKUP,DECLARE,DIM,FUNCTION,GLOBAL,LOCAL

4-143

LOCALCHECK

B Example of Program

conf
local newvar3$

newvarl$ = "nowarning"

LOCALCHECK 1

newvar2$ = "warningisgiven!"

newvar3$ = "nowarning"
end conf

4-144 CHAPTER 4 INSTRUCTION REFERENCE

LOF

LOF

Function

B Function

B Format

B Example of Use

B Description

Bl Related Item
B Example of Program

conf

The LOF function calculates the size of the specified file.

LOF (file-number)

AAA = LOF (file-number)

* file-number specifies the number of the file whose size is to be
calculated. This file number must match the number of the file
opened by the FOPEN statement.

» Thesize of the specified fileis calculated in bytes.

FOPEN, FIELD, FCLOSE, FPUT, FGET, EOF

field 5
global no%
global mojil$, moji2$
end field
global sum%
fopen “'MEMORY'’, 2 , 5

end conf

evnt
nos =1
mojil$ = Y‘product-name’’
mojiz2s$ = ‘‘product-number’’
fput 5 , 3
if LOF(5) > 100 then

fclose 5

end if

end evnt

4-145

LOG

LOG

Function

B Function The LOG function caculates the natural logarithm specified in
numerical-expression.

B Format LOG (numerical-expression)

B Example of Use A =LOG (B*C)

B Description * numerical-expression must be a numeric value greater than 0.

B Related Item EXP

B Example of Program

conf

la = log (10)

b = log (a * b)
end conf

4-146 CHAPTER 4 INSTRUCTION REFERENCE

MCPY

MCPY

Statement

B Function

B Format

B Example of Use

B Description

B Related Item

B Example of Program

conf

The MCPY statement copies the contents of a field to a character string
variable.

1:MCPY file-number, character-string-variable
2:MCPY character-string-variable, file-number

MCPY 5, moji$

» The MCPY statement copies the contents of the variable group in a
field to a character string variable or the contents of a character string
variable to the variable group in a field. That is, the MCPY
statement in the first example (1:MCPY) copies the contents of the
character string variable to the variable group in the field specified by
filenumber. The MCPY statement in the second example
(2:2MCPY) copies the contents of the variable group in the specified
field to the character string variable.

 file-number specifies the file number defined in the FIELD
declaration.

* When the contents of the variable group or character string variable
are copied, the sizeis used, whichever is smaller.

FOPEN, FIELD, FCLOSE, FPUT, FGET, EOF, SOF

field 5

global no%

global mojils$, moji2s$
end field
global buff$ * 50
opensio 1 , 0 , buffs$
fopen “'MEMORY'’, 2 , 5

end conf

evnt
nos =1
mojils$ = ‘‘product-name’’
moji2$ = Y‘product-number’’
size% = sof (5)

MCPY 5 , buffs$
writesiob 1 , size% , buffs$

end evnt

4-147

MEDIACHK

MEDIACHK

Function
B Function The MEDIACHK function checks whether a medium exists in the drive
and returns the check result.
B Format MEDIACHK (drive name)
B Example of Use STATUS\% = MEDIACHK("E:")
B Description » Thereturn valueis as shown below:
0: No medium
1: Medium exists.
B Related Item MEDIASIZE

B Example of Program

conf
global dnames$ (13)
global dsel%
strdsp ..str, "mediachk"
end conf
evnt
input type%, 1d@, data%
if data% = 1 then
strdsp .dsp.str, dname$ (dsel%)
num$ = mediachk (dname$ (dsel%))

if num% = 1 then
strdsp ..str, "vaid"
else
strdsp ..str, "invaid"
end if
end if

end evnt

4-148 CHAPTER 4 INSTRUCTION REFERENCE

MEDIAS ZE

MEDIASIZE

Function
B Function The MEDIASIZE function checks the size of a medium in the drive and
returns the number of bytes.
B Format MEDIASIZE (drive name, calculation method)
B Example of Use SIZE% = MEDIASIZE("E:", 0)
B Description » The calculation method is as shown below:
0: Full space
1. Free space
When the full space is specified, the medium size is calculated from
the number of al clusters.
When the free space is specified, free clusters are checked and the
medium size is calculated from the total number of free clusters.
Bl Related Item MEDIACHK

B Example of Program

conf
global dname$ (13)
global dsel%
static mode%

mode%s = 0
strdsp ..str, "mediasize"
numdsp ..num001, mode%
end conf
evnt

input type%, id@, data%
if data% = 1 then
if mode$%$ = 1 then

mode%s = 0
else
mode%s = 1
end if
numdsp ..num001, mode%

strdsp .dsp.str, dname$ (dsel%)

num% = mediasize (dname$ (dsel%) ,mode%)
numdsp ..num000, num$
end if

end evnt

4-149

MID$

MID$

Statement

B Function

B Format

B Example of Use

B Description

B Related Item

B Example of Program

conf

The MID$ statement replaces part of a character string with another

character string.

MID$ (character-string-variable, start-position, number-of-characters) =

replacing-character-string

MIDS$ (x$, 1, 1) = “A”

The MID$ statement replaces the character string specified in
character-string-variable with the character string specified in
replacing-character-string the specified number-of-characters
(bytes), starting from the specified start-position.

If the specified number-of-characters is greater than the specified
character-string-variable, the character string is replaced only by the
size of the variable. For this reason, the size of the character string
variable remains unchanged even if the character string is replaced.
The start position of the character string to be replaced starts at 1.
When number-of-characters is negative and start-position is 0 or
negative, an error occurs.

LEFTS$, RIGHTS$, MID$

static mojis
moji$ ="ABCDEFG”

end conf

evnt

input type, 1id@R, datas$
mid$ (mojis$, 4, 3) = datas$

end evnt

4-150 CHAPTER 4

INSTRUCTION REFERENCE

MID$

MID$

Function

B Function

B Format

B Example of Use

B Description

Bl Related Item
B Example of Program

evnt

The MID$ function returns a character string the specified number of
characters.

MIDS$ (character-string, start-position, number-of-character)

MID$

(registered-character-string-number, start-position, number-of-characters)
MID$

(registered-character-string-name, start-position, number-of-characters)

A$=MID$ (X$, 2, 3)
A$=MID$ (10, 2, 3)
A$ = MID$ (NAME, 2, 3)

* The MID$ function fetches the specified number-of-characters
(bytes) from the specified character-string, starting from the position
specified in start-position.

» character-string is a direct character string or a character string
variable.

* registered-character-string-number is the numerical expression
indicating the number registered by GCSGP3.

* registered-character-string-name is the name of the character
string created by GCSGP3 or the ID-type variable indicating the name
of the character string.

* When number-of-characters is 0 or when start-position is greater
than the number of bytes of the specified character string, a null
character string is returned.

LEFTS$, RIGHTS

input type,id@,datas
a$ = mid$ (datas$, 3 , 3)

strdsp
end evnt

..STR0O00,a$

4-151

MKB

MKB

Statement

B Function The MKB statement stores data in any position of a character string
variable.

B Format MKB character-string-variable-name, storage-position, integer-value
B Example of Use MKB MOJI$, 5, VAR

B Description » The MKB statement stores one low-order byte of integer-value in the
position specified by storage-position, starting from the beginning of
the specified character-string-variable-name.

» storage-position must be ainteger- or floating-point-type variable or
constant. 1 specifies the beginning of the character string variable.

* integer-value specifies an overwriting value; it must be an integer- or
floating-point-type variable or constant. When specified in
integer-val ue, a floating-point-type variable or constant is converted to
aninteger. One low-order byte of this value overwrites the specified
character-string-variable-name.

B Related Item MKS, MKW, MKI, MKF, MKID, CVB, CVW, CVI, CVF, CVID

B Example of Program
conft

end conf

evnt
org$ = ‘‘1234567""
strdsp ..STR0O00, org$
MKB org$, 2, &H39
strdsp ..STR001, org$

end evnt

4-152 CHAPTER 4 INSTRUCTION REFERENCE

MKDIR

MKDIR

Statement
B Function The MKDIR statement creates a directory.
B Format MKDIR directory-name
B Example of Use MKDIR “TEST”
B Description » The MKDIR statement is an instruction for creating a subdirectory.
» Specify the directory to be created with a character string constant or
variable.
» The directory to be created can be specified in directory-name
together with adrive name.
B Related Item RMDIR, CHDIR, DIR

B Example of Program

conf
end conf
evnt

4-153

MKF

MKF

Statement
B Function The MKF statement stores data in any position of a character string
variable.
B Format MKF character-string-variable-name, storage-position, real-value
B Example of Use MKF MOQJ$, 5, VAR
B Description » The MKF statement stores fours bytes of real-value in the position
specified by storage-position, starting from the beginning of the
specified character-string-variable-name.
» storage-position must be ainteger- or floating-point-type variable or
constant. 1 specifies the beginning of the character string variable.
 red-value specifies an overwriting value; it must be an integer- or
floating-point-type variable or constant. When specified in
real-value, an integer-type variable or constant is converted to a rea
number. This value overwrites the specified
character-string-variable-name.
» Thevalueis converted into a 86 series boundary and saved.
B Related Item MKS, MKB, MKW, MKI, MKID, CVB, CVW, CVI, CVF, CVID

B Example of Program
conf

end conf
evnt

org$ = ‘'1234567"'

strdsp ..STR0O00, org$

MKF org$, 2, 1.23

strdsp ..STR001, org$ " The character string will not be displayed
end evnt * correctly.

4-154 CHAPTER 4 INSTRUCTION REFERENCE

MKI

MKI

Statement

B Function The MKI statement stores data in any position of a character string
variable.

B Format MKI character-string-variable-name, storage-position, integer-value
B Example of Use MKI MOJ$, 5 VAR

B Description » The MKI statement stores four bytes of integer-value in the position
specified by storage-position, starting from the beginning of the
specified character-string-variable-name.

» storage-position must be ainteger- or floating-point-type variable or
constant. 1 specifies the beginning of the character string variable.

* integer-value specifies an overwriting value; it must be an integer- or
floating-point-type variable or constant. When specified in
integer-val ue, a floating-point-type variable or constant is converted to
an integer. This value overwrites the specified
character-string-variable-name.

» Thevalueis converted into a 86 series boundary and saved.

B Related Item MKS, MKB, MKW, MKF, MKID, CVB, CVW, CVI, CVF, CVID

B Example of Program
conf

end conf

evnt
org$ = ‘'1234567""
strdsp ..STR0O00, org$
MKI org$, 2, &H39404142
strdsp ..STR001, org$

end evnt

4-155

MKID

MKID

Statement
B Function The MKID statement stores data in any position of a character string
variable.

B Format MKID character-string-variable-name, storage-position, ID-value

B Example of Use MKID MQOJ$, 5, VAR

B Description » The MKID statement stores six bytes of ID-value in the position
specified by storage-position, starting from the beginning of the
specified character-string-variable-name.

» storage-position must be ainteger- or floating-point-type variable or
constant. 1 specifies the beginning of the character string variable.

» |ID-value specifies an overwriting value; it must be an ID-type
variable or constant. If an integer or constant of non-ID type is
specified, an error occurs. This value overwrites the specified
character-string-variable- name.

» Thevaueis converted into a 86 series boundary (by 2 bytes) and then
saved.

B Related Item MKS, MKB, MKW, MKI, MKF, CVB, CVW, CVI, CVF, CVID

B Example of Program
conf

end conf
evnt

input type%, 1d@, data%

org$ = ‘'1234567"'

strdsp ..STRO00, orgs$

MKF org$, 2, 1de@

strdsp ..STR001, org$ " The character string will not be displayed
end evnt " correctly.

4-156 CHAPTER 4 INSTRUCTION REFERENCE

MKS

MKS

Statement

B Function The MKS statement stores data in any position of a character string

variable.

B Format MKS character-string-variable-name, storage-position, character-string

B Example of Use MKSMOJS$, 5, “ABCD”

B Description » The MKS statement stores a character string (character-string) in the
position specified by storage-position, starting from the beginning of
the specified character-string-variable-name.

» storage-position must be ainteger- or floating-point-type variable or
constant. 1 specifies the beginning of the character string variable.

» character-string specifies an overwriting character string; it must be
avariable or constant.

B Related Item MKB, MKW, MKI, MKF, MKID, CVB, CVW, CVI, CVF, CVID

B Example of Program
conf

end conf

evnt
org$ = 1234567 ""
strdsp ..STR0O00, org$
MKS org$, 2, ~76543"!
strdsp ..STR001, orgs$

end evnt

4-157

MKW

MKW

Statement

B Function

B Format
B Example of Use

B Description

B Related Item

B Example of Program

conf

end conf

evnt

orgs$ =
strdsp
MKW org$,
strdsp
end evnt

The MKW statement stores data in any position of a character string
variable.

MKW character-string-variable-name, storage-position, integer-value

MKW MOJI$, 5 VAR

The MKW statement stores two bytes of integer-value in the position
specified by storage-position, starting from the beginning of the
specified character-string-variable-name.

storage-position must be an integer- or floating-point-type variable
or constant. 1 specifies the beginning of the character string
variable.

integer-value specifies an overwriting value; it must be an integer- or
floating-point-type variable or constant. =~ When specified in
integer-value, a floating-point-type variable or constant is converted to
an integer. The two low-order bytes of this value overwrites the
specified character-string-variable- name.

The valueis converted into a 86 series boundary and saved.

MKS, MKB, MKI, MKF, MKID, CVB, CVW, CVI, CVF, CVID

‘1123456771
..STR000, org$
2, &H3940
..STR001, org$s

4-158 CHAPTER 4

INSTRUCTION REFERENCE

MKW

MOVE

Statement

B Function

B Format

B Example of Use

B Description

B Related Item
B Example of Program

evnt

The MOVE statement moves the specified part.

MOVE part-name, X-direction-move-quantity,
Y -direction-move-quantity, move-method

MOVE .BUHIN,, 100, 20, 0

* part-name isthe name of the part to be moved or the ID-type variable
indicating the part to be moved.

» X-direction-move-quantity and Y-direction-move-quantity are the
values indicating the distance in which the part is moved. When the
upper left end on the display screen is (0,0), the coordinates in the
right direction are X coordinates and those in the downward direction
are Y coordinates. The move unit is specified in dots. X must be a
numeric value from 0 to 639. 'Y must be a numeric value from 0 to
399 (GC55EM) or 0 to 479 (GC56L C).

» For absolute move, move-method is 0. For relative move,
move-method is1. Absolute move is referenced to the upper left end
on the display screen. Relative move is referenced to the position of
the current part.

None

input type,i1d@,data

if type = 3 then
buhin@ = .buhinZ2.
MOVE buhin@ , 10 , 10 , O

endif

end evnt

4-159

MTRCOLOR

MTRCOLOR

Statement
B Function The MTRCOLOR statement changes the needle color of the meter
display.
B Format MTRCOLOR display-name, color-number
B Example of Use MTRCOLOR ..MTRO00O, 1
B Description » The MTRCOLOR statement changes the needle color of the meter
display.
« control-name is the meter display name or the ID-type variable
indicating the meter display.
» color-number is the number indicating the needle color. Specify
this color number with a numeric value from 0 to 15.
Bl Related Item MTRDSP

B Example of Program

evnt
input type%, i1d@, mcolor%
MTRCOLOR ..MTR0O00O, mcolor%

end evnt

4-160 CHAPTER 4 INSTRUCTION REFERENCE

MTRDSP

MTRDSP

Statement

B Function

B Format

B Example of Use

B Description

Bl Related Item
B Example of Program

conf

The MTRDSP statement displays data in the meter display.
MTRDSP control-name, display-data

MTRDSP .BUHIN.GRAPH, 30.0

» The MTRDSP statement displays data (value) in the meter display.
» control-name is the meter display name or the ID-type variable

indicating the meter display.

 display-data is the numeric data to be displayed in the meter display.
* display-value cannot be changed even if this statement is issued to the
display for which operation parameters are set to “effective” in the

primitive.

MTRCOLOR

static name@

name(@

end conf

evnt

. .MTROOO

input type%, 1d@, data%
MTRDSP name@, data%

end evnt

4-161

NUMCOLOR

NUMCOLOR

Statement

B Function

B Format

B Example of Use

B Description

B Related Item

The NUMCOLOR statement changes the colors and background figure of
the numeric display.

NUMCOLOR control-name, numeric-value-display-color, tile,
display-color, background-color

NUMCOLOR ..GRAPH, 1, 2, 5, 2

» The NUMCOLOR statement changes the display and background
colors and tile in the numeric display. -1 indicates that the color and
tile for which -1 was specified remain unchanged.

» control-name is the numeric display name or the ID-type variable
indicating the numeric display.

* numeric-value-display-color is the numeric value indicating the
color number of the numeric value display section. Specify this
color number with a numeric value from O to 15.

« tile indicates the tiling figure. Specify this tiling figure with a
numeric value from O to 15.

« display-color is the numeric value indicating the color number of the
tile display section. Specify this color number with a numeric value
from O to 15.

» background-color is the numeric value indicating the color number
of the tile background section. Specify this color number with a
numeric value from O to 15.

NUMDSP, NUMFORM

B Example of Program

conf

static name@
name@ = ..NUMO0OOO
end conf

evnt

input type%, 1d@, data%

if

type% = 3 then
NUMCOLOR name@, 2, -1,-1,-1

endif

end evnt

4-162 CHAPTER 4 INSTRUCTION REFERENCE

NUMDSP

NUMDSP

Statement

B Function

B Format

B Example of Use

B Description

B Related Item

B Example of Program

conf

The NUMDSP statement displays datain the numeric display.
NUMDSP control-name, display-data

NUMDSP .BUHIN.GRAPH, 30.0

The NUMDSP statement displays data (value) in the numeric display.

control-name is the numeric display name or the ID-type variable
indicating the numeric display.

display-data is the numeric data to be displayed in the numeric
display.

Specifying a primitive name in display-name when the numeric
display is of continuous stage type enables the same data to be
displayed for al the elements. When setting a value for each
element, use the GETID function to obtain the control 1D and specify
this ID in control-name.

display-value cannot be changed even if this statement is issued to the
display for which operation parameters are set to “effective” in the
control.

NUMCOLOR, NUMFORM

static name@

name(@
end conf

evnt

. .NUMOOO

input type%, 1d@, data%
NUMDSP name@, data%

end evnt

4-163

NUMFORM

NUMFORM

Statement

B Function

B Format
B Example of Use

B Description

B Related Item
B Example of Program

evnt

The NUMFORM statement changes the display format of the numeric
display.

NUMFORM control-name, display-method, decimal-point-position
NUMFORM ..HYOQOJIKI, 0,0

» The NUMFORM statement changes the display method of the
numeric display. This statement can also specify a display method
and a decimal-point display position.

» control-name is the numeric display name or the ID-type variable
indicating the numeric display.

« display-method is the numeric value indicating any of the following
seven display methods:

0: Floating-point display method 4: Binary representation

1. Integer display method 5: Octal representation

2: Fixed-point display method 6: Hexadecimal representation
3. Binary fixed-point representation

» decimal-point-position specifies where the decima point is
displayed when display-method is 2 (fixed-point display method).
To display the decimal point in the first position from the right,
specify 1. To display it in the second position from the right, specify
2.

» Binary fixed-point representation is the method for writing a decimal
point in the specified integer data position.

* Be sure to execute the NUMDSP statement after executing this
statement. Otherwise, display may be disordered.

NUMCOLOR, NUMDSP

input type , 1d@,data

var@ =

.buhin.gamen

NUMFORM var@ , data , 2

numdsp
end evnt

var@ , 30.1

4-164 CHAPTER 4 INSTRUCTION REFERENCE

OCT$

OCT$

Function
B Function The OCT$ function converts a decima character string to an octal
character string.
B Format OCT$ (numerical-expression)
B Example of Use OCT$ (134)
B Description e The OCT$ function converts a decimal character string to an octal
character string.

* When a floating-point type is specified in numerical-expression, the
decimal character string (numeric value) is converted to an integer
type, then converted to an octal character string.

» Specify the decimal character string (numeric value) within the range
from -2147483648 to 2147483647.

B Related Item HEXS$, VAL

B Example of Program

evnt
input type , id@ , data
moji$ = OCTS (data)
strdsp ..STR0O00, mojis$
end evnt

4-165

OCT$

ONFERR

Statement
B Function The ONFERR statement specifies the destination to which error messages
are to be transmitted.
B Format ONFERR destination
B Example of Use ONFERR .B000.
B Description * The ONFERR statement specifies the destination to which file
operation function error messages are to be transmitted.

» destination is ascreen or part name or the ID-type variable indicating
the screen or part name.

* When data is received by INPUT, the screen or part to which afile
operation function error message was transmitted can receive
information such as atype (8) and data (error number).

B Related Item FOPEN, FCLOSE, FPRINT, FWRITE, FINPUT

B Example of Program

conf
ONFERR ..
end conf
evnt
input ty%, 1d@, datl%

When an error occurs, 8 is set in ty% and an error code (number) is set in dat1%.

4-166 CHAPTER 4 INSTRUCTION REFERENCE

OPEN

OPEN

Statement
B Function The OPEN statement opens (displays) the specified part.
B Format OPEN part-name, mode
B Example of Use OPEN .BUHIN., 1
B Description » The OPEN statement opens (displays) the closed part on the screen.
» part-name is the name of the part to be opened or the variable
indicating the ID of the part to be opened.
* mode specifies whether to execute the configuration block of the
program attached to the part when the part is opened.
0: The configuration block is not executed.
1: The configuration block is executed.
B Related Item CLOSE

B Example of Program

evnt

input type% , id@ , data%

if pstat (.BUHIN.) = 3 then
OPEN .BUHIN., O
endif

end evnt

4-167

OPENCOM

OPENCOM

Statement
B Function The OPENCOM statement declares that the program receives data from a
serial line.
B Format OPENCOM logical-device-name
B Example of Use OPENCOM HST
B Description » The OPENCOM statement declares that the program receives data
from the specified external connecting device. (When the host
computer transmits data, this statement need not be declared.)
* logical-device-name specifies any of the following external
connecting devices:
HST: Host computer
BCR: Bar code reader
TKY: Ten-key pad
B Related Item CLOSE COM, REOPENCOM

B Example of Program

conf
OPENCOM HST
end conf
evnt
input type% , 1dQ@ , data%
if type% = 3 and data%$ = 1 then
CLOSECOM HST
else if type% = 3 and data% = 0 then
REOPENCOM HST
endif

end evnt

4-168 CHAPTER 4 INSTRUCTION REFERENCE

OPENPARALLEL

OPENPARALLEL

Statement
B Function The OPENPARALLEL statement declares that the program receives data
from aparalle port.
B Format OPENPARALLEL input-bit, mode
B Example of Use OPENPARALLEL 3,1
B Description » The OPENPARALLEL statement declares that the program receives
data when the bit for specifying a parallel input port changes.
 input-bit indicates the bit used to transmit data when the value
changes. Specify thisinput bit with a numeric value from 0 to 15.
* mode specifies the time when data is transmitted. The time when
datais transmitted depends on how the bit changes.
1. Dataistransmitted when the bit goes High.
2: Dataistransmitted when the bit goes Low.
3: Dataistransmitted when the bit goes High or Low.
Bl Related Item CLOSEPARALLEL, REOPENPARALLEL

B Example of Program

cont
OPENPARALLEL 3
end conf
evnt
input type% , id@ , data$%
if type% = 3 and data% = 1 then
CLOSEPARALLEL 3
else if type% = 3 and data% = 0 then
REOPENPARALLEL 3
endif

end evnt

4-169

OPENTIM

OPENSIO

Statement

B Function

B Format

B Example of Use

B Description

B Related Item

B Example of Program

conf

The OPENSIO statement opens a non-protocol communication port.
OPENSIO port-number, mode, reception-buffer

OPENSIO 1, 1, moji$

The OPENSIO statement opens a port for starting non-procedual

communication.

port-number specifies a channel that performs non-procedua

communication. CH1 to CH3 correspond to 1 to 3, respectively.

mode specifies the type of non-procedual communication. Specify

0 (binary mode) or 1 (text mode).

reception-buffer specifies the name of the variable to which the data

to be received from an external device is to be written. The variable

to be specified must be a global or static character string variable.

When the condition is satisfied after data has been received from a

connecting device, a reception completion message is issued to the

part or screen that executed this statement. Two or more parts cannot
execute the OPENSI O statement for the same port.

Binary mode: In the binary mode, all codes from 0 to OFFh can be
transmitted and received. In this mode, read and write
are also enabled by specifying the length of received
data.

Textmode: In the text mode, codes from 1 to OFFh can be
transmitted and received. In this mode, the end codes
of texts are also set and used. The end codes are used
to judge the data to be received.

CLOSESIO, SETSIO, WRITESIO, WRITWSIOB, FLUSH, IOCTL

global bufs * 200
OPENSIO 2 , 1 , bufs$
setsio 2 , &HD

end conf

evnt
strdsp ..STRO0O0 , bufs$
closesio 2

end evnt

4-170 CHAPTER 4 INSTRUCTION REFERENCE

OPENTIM

OPENTIM

Function

B Function The OPENTIM function allocates timer resources.

B Format OPENTIM ()

B Example of Use VAR@ = OPENTIM ()

B Description » The OPENTIM function allocates the resources necessary to use a
timer.

 The OPENTIM function must be an ID-type variable because it
returns the ID of the timer to be used.

» Thealocated ID can be used to set the timer.

» The system can use up to 16 timers. The timers not to be used must
be returned to the system. (See“CLOSETIM.")

* The OPENTIM function can be used by the screen or part program
being displayed. (If this function is executed on an undisplayed rear
Screen, an error occurs.)

» The allocated timer is not deallocated even if one screen changes to
another. If the timer is being used by the event type, a message is
also issued to the rear screen.

Bl Related Item CLOSETIM, STARTTIM, STOPTIM, CONTTIM, WRITETIM, READTIM

B Example of Program

conf
static timid@
timid@ = OPENTIM ()
settim timid@, 20, O
starttim timid@
end conf
evnt
input type% , 1d@ , data%

if type% = 3 and id@ = ..SWTO00O0 then
stoptim timid@
else if id@ = ..SWT001l then

closetim timid@
end if
end evnt

4-171

OPENTIM2

OPENTIM2

Function

B Function The OPENTIM2 function allocates (opens) the timer to be used.

B Format RET = OPENTIM2 (timer-number)

B Example of Use RET = OPENTIM2 (14)

B Description » The OPENTIM2 function opens the timer specified in timer-number.

* timer-number specifies the number of the timer to be used. Specify
this timer number with an integer-type value from 0 to 15.

* When the OPENTIM2 function is executed, any of the following
valueis returned:

0: Thetimer could be opened.
1: Thetimer could not be opened.

» The OPENTIM2 function can be used by the screen or part program
being displayed. (If this function is executed on an undisplayed rear
screen, an error occurs.)

» The allocated timer is not deallocated even if one screen changes to
another. If the timer is being used by the event type, a message is
also issued to the rear screen.

Bl Related Item CLOSETIM, STARTTIM, STOPTIM, CONTTIM, SETTIM, READTIM,

OPENTIM

B Example of Program

conf
static timid@
ret=0PENTIM2 (5)
setim 5, 20, O
starttim 5
end conf
evnt
input type% , 1d@ , data%

if type% = 3 and id@ = ..SWTO00O0 then
stoptim 5
else 1if id@ = ..SWT001l then

closetim 5
end if
end evnt

4-172 CHAPTER 4 INSTRUCTION REFERENCE

OPENTIM3

OPENTIM3

Function

B Function The OPENTIMS3 function allocates (opens) the timer to be used.

B Format RET = OPENTIM 3 (timer-number)

B Example of Use RET = OPENTIM3 (14)

B Description .

The OPENTIMS3 function opens the timer specified in timer-number.
timer-number specifies the number of the timer to be used. Specify
this timer number with an integer-type value from 0 to 15.
When the OPENTIM2 function is executed, any of the following
valueis returned:

0: Thetimer could be opened.

1: Thetimer could not be opened.
When the screen for which “open” was declared changes to ancther,
the opened timer is automatically closed.
The OPENTIM3 function can be used by the screen or part program
being displayed. (If this function is executed on an undisplayed rear
screen, an error occurs.)

B Related Item CLOSETIM, STARTTIM, STOPTIM, CONTTIM, SETTIM, READTIM,
OPENTIM

B Example of Program

conf

ret = opentim3 (3)

settim 3 ,

stoptim 3

closetim 3
end conf

20, 1

4-173

ouT

OuT

Statement
B Function The OUT statement writes 2-byte data to an 1/O port.
B Format OUT port-number, output-data
B Example of Use OUT 0, &H20
B Description * Currently, data can be written only to paralel I/O ports.
» port-number specifies the number of the 1/O port inserted into the
option bus. (For the color/plasma, this port number isfixed at 0.)
Bl Related Item INP

B Example of Program

evnt
input type,1d@,data
out 0, data

end evnt

4-174 CHAPTER 4 INSTRUCTION REFERENCE

OUTBIT

OUTBIT

Statement
B Function The OUTBIT satement rewrites the specified BIT number of the
specified output port.
B Format OUTBIT port-number, BIT-number, write-data
B Example of Use OUTBITO, 10,1
B Description * The OUTBIT statement rewrites the specified BIT number of the
specified output port.

» Specify port-number and BIT-number with an integer value relative to
0.

* When write-datais O, the output is set to OFF. When 1, the output is
set to ON.

* The lowest-order bit number of the paralel 10 is 0 and the next
lowest-order bit number is1. That is, the BIT number is sequentially
incremented.

* |f an unexisting port or BIT number is specified, an error occurs.

B Related Item INP, OUT, INPBIT, OUTBITSTAT, OUTSTAT

B Example of Program

evnt
DATAS = INPBIT (O, 3)
if data% = 0 then
outbit 0,3,1
endif

end evnt

4-175

OUTBITSTAT

OUTBITSTAT

Function
B Function The OUTBITSTAT function reads the specified BIT number of the
specified output port.
B Format OUTBITSTAT (port-number, BIT-number)
B Example of Use DATA% = OUTBITSTAT (0,10)
B Description » The OUTBITSTAT function reads the specified BIT number of the
specified output port.

» Specify port-number and BIT-number with an integer value relative to
0.

» The lowest-order bit number of the paralel 10 is 0 and the next
lowest-order bit number is1. That is, the BIT number is sequentially
incremented.

* |f an unexisting port or BIT number is specified, O is returned.

Bl Related Item INP, OUT, INPBIT, OUTBIT, OUTSTAT

B Example of Program

evnt
data%$ = outbitstat (0, 3)
if data% = 0 then
outbit 0,3,1
endif

end evnt

4-176 CHAPTER 4 INSTRUCTION REFERENCE

OUTSTAT

OUTSTAT

Function

Function
Format
Example of Use

Description

Related Item
Example of Program
evnt

data$%$ =
if data$%

out O,

endif

end evnt

The OUTSTAT function reads the value of the specified output port.
OUTSTAT (port-number)

DATA% = OUTSTAT (0)

» The OUTSTAT function reads the value of the specified output port.
» Specify port-number with an integer valuerelative to 0.

« |f an unexisting port number is specified, O is returned.

INP, OUT, INPBIT, OUTBIT, OUTBITSTAT

outstat (0)

= 0 then
Shffff

4-177

PIPCOLOR

PIPCOLOR

Statement
B Function The PIPCOLOR statement changes the OFF, ON1, and ON2 colors of
the pipe display.
B Format LAMPCOLOR display-name, ON-OFF-number, color-number
B Example of Use LAMPCOLOR .BUHIN.GRAPH, 5
B Description The PIPCOLOR statement changes the OFF, ON1, and ON2 colors of
the pipe display.
« display-name is the name of the pipe display or the variable
indicating the ID of the pipe display.
¢ ON-OFF-number specifies 0, 1, or 2 for OFF, ON1, or ON2.
» color-number specifies the color to be displayed when the lamp
display is on with a numeric value from O to 15.
B Related Item PIPDSP

B Example of Program

conf
pipdsp .buhin.graph , 0
PIPCOLOR .buhin.graph ,1 ,7
lampdsp .buhin.graph , 1
end conf

4-178 CHAPTER 4 INSTRUCTION REFERENCE

PIPDSP

PIPDSP

Statement
B Function The PIPDSP statement displays data in the pipe display.
B Format PIPDSP control-name, pipe-mode
B Example of Use PIPDSP .BUHIN.GRAPH, 1
B Description The PIPDSP statement sets the pipe display to OFF, ON1, or ON2 for
data display.
e control-name is the name of the pipe display or the variable
indicating the ID of the pipe display.
* pipe-mode sets the pipe display to OFF, ON1, or ONZ2; it specifies 0,
1, or 2 for OFF, ON1, or ON2.
» Display cannot be changed even if the PIPDSP statement is issued to
the display for which the operation parameters of the control are set to
“effective.”
B Related Item PIPCOLOR

B Example of Program

conf
pipdsp .buhin.pip , O
PIPCOLOR .buhin.pip ,1 ,7
pipdsp .buhin.pip , 1

end conf

4-179

PLTCOLOR

PLTCOLOR

Statement

B Function The PLTCOLOR statement changes the colors and background figure of
the plot display.

B Format PLTCOLOR control-name, plot-color, tile, display-color,
background-color

B Example of Use PLTCOLOR ..GRAPH,1,1,2,1

B Description » The PLTCOLOR statement changes the background tile and colors of
the plot display. -1 indicates that the color and tile for which -1 was
specified remain unchanged.

e control-name is the plot display name or the ID-type variable
indicating the plot display.

 plot-color indicates the display color of adot. Specify this plot color
with anumeric value from O to 15.

* tile indicates the background tiling figure of the graph.

» Specify thistiling figure with a numeric value from 0 to 15.

« display-color is the numeric value indicating the color number of the
tile display section. Specify this color number with a numeric value
from O to 15.

» background-color is the numeric value indicating the color number

of the tile background section. Specify this color number with a
numeric value from 0 to 15.

B Related Iltem PLTDSP

B Example of Program

conf
static name(@
name@ = ..PLTO000
end conf
evnt
input type%, 1d@, data%
if type% = 3 then
PLTCOLOR name@, 2, 3, 1, 4
endif

end evnt

4-180 CHAPTER 4 INSTRUCTION REFERENCE

PLTDSP

PLTDSP

Statement

B Function

B Format

B Example of Use

B Description

B Related Item

The PLTDSP statement displays datain the plot display.
PLTDSP control-name, display-coordinate-X, display-coordinate-Y
PLTDSP .BUHIN.GRAPH, 15, 30

* The PLTDSP statement displays datain the plot display.

» display-name is the plot display name or the ID-type variable
indicating the plot display.

 display-coordinate-X and display-coordinate-Y are the numeric
data indicating the coordinates to be displayed in the plot display.

» display-value cannot be changed even if this statement is issued to the

display for which operation parameters are set to “effective” in the
control.

PLTCOLOR

B Example of Program

conf

static name@
name@ = ..PLTO00O
end conf

evnt

input type%, 1d@, x%,vy%

if

type%s = 3 then
PLTDSP name@, x%, y%

endif

end evnt

4-181

PMODE

PMODE

Statement
B Function The PMODE statement changes the status of the specified part.
B Format PMODE part-name, mode
B Example of Use PMODE .BUHIN., 3
B Description * part-name is the name of the part whose status is to be modified or
the ID-type variable indicating the part.
* mode indicates the status to be modified.

0: Normal status

1: Switch input disable status

2: Half tone status
B Related ltem PSTAT

B Example of Program

evnt
input type% , id@ , data%
if pstat (.BUHIN.) = 0 then
PMODE .BUHIN., 1
endif

end evnt

4-182 CHAPTER 4 INSTRUCTION REFERENCE

PRDSP

PRDSP

Statement

B Function The PRDSP statement redisplays the specified control.

B Format PRDSP control-name

B Example of Use PRDSP .BUHIN.PRIM

B Description » control-name is the name of the control to be redisplayed or the
I D-type variable indicating the control.

B Related Item BARSET, CIRSET, BLTSET, LNESET

B Example of Program

evnt
lneset .buhin.graph , 3 , 8 , 20.1
lneset .buhin.graph , 3 , 8 , 20.1
PRDSP .buhin.graph

end evnt

4-183

PREVJUMP

PREVJUMP

Statement

B Function
B Format
B Example of Use

B Description

Bl Related Item
B Example of Program
conf

end conf
evnt

The PREV JUMP statement jumps to the immediately preceding screen.

PREVJUMP

PREVJUMP

* The PREVJUMP statement jumps to the screen displayed before the
current screen according to the recorded screen transition path.

» Up to 30 screens can be recorded. The PREJUMP statement cannot

jump to a screen before the recorded 30 screens.

JUMP

input type% , id@ , data%

if ide =

end evnt

..SWTO000 then PREVJUMP

4-184 CHAPTER 4 INSTRUCTION REFERENCE

PRINT

PRINT

Statement
B Function The PRINT statement writes messages.
B Format PRINT expression [, expression]
B Example of Use PRINT 23, “ABCD”, XYZ, MOJ'$
B Description » The PRINT statement writes the messages to be output the screen,
part, seria port, or paralle port.
» When two or more messages are written, delimit them in commas (,).
» Messages are not output when the PRINT statement is executed; they
are output for the first time when the SEND command is executed.
* When messages are output to the host computer, commas (,) are
inserted to delimit data.
Bl Related Item INPUT, SEND

B Example of Program

evnt
input type% , 1dQ@ , data%
if type% = 3 then
PRINT “ABCD”, data%
send .B00O.
endif

end evnt

4-185

PRMCTL

PRMCTL

Statement

B Function The PRMCTL statement changes the attributes of the specified primitive.

B Format PRMCTL1 control-name, request-code, control-value-1
PRMCTL2 control-name, request-code, type-1, control-value-1
PRMCTL3 control-name, request-code, type-1, control-value-2
PRMCTL4 control-name, request-code, type-1, type-2, control-value-1

B Example of Use PRMCTL1.NUMOQO, PD_STAT,3
PRMCTL2..NUMO0O, PD DCOLOR, 3, 4
PRMCTL3..LNEOOO, PD_RANGE, 0, 2.5
PRMCTL4 ..BAR000O, PD PTRN, 1,0, 12

B Description .

The PRMCTL statement changes the attributes of the specified
control. This statement is classified into four types. PRMCTLL,
PRMCTL2, PRMCTL3, and PRMCTLA4.

control-name is the constant indicating the control to be changed or
the ID-type variable indicating the 1D of the control.

request-code specifies what attribute changes is to be performed.
The types of request codes are shown on the next and subsequent
pages.

type-1 and type-2 depend on the request code to be specified.
control-value-1 specifies the value corresponding to the specified
request code; it must be an integer-type constant or variable.
control-value-2 specifies the value corresponding to the specified
reguest code; it must be a floating-point constant or variable.

Bl Related Item PRMCTL1, PRMCTL2, PRMCTL3, PRMCTL4, PRMSTAT1, PRMSTAT2,
PRMSTAT3, PRMSTAT4

B Example of Program

conf
end conf
evnt
status% =
if status$%
PRMCTL1
endif

end evnt

prmstatl (..NUMO0O, PD STAT)
= 0 then
..NUM000, _PD STAT, 2

4-186 CHAPTER 4 INSTRUCTION REFERENCE

PRMCTL

» Thetypes and usage of the request codes that can be used by PRMCTL 1 are explained below.

1. PD_STAT
Function:

Range:

Control-value:

2. PD_DSPFMT
Function:
Range:

Control-value:

3. PD_PTPOS
Function:
Range:

Control-value:

4. PD_ZSPRS
Function:
Range:

Control-value:

5. PD_FIGMD
Function:

Range:

Control-value:

_PD_STAT changes the display format (normal/reversa
video/blinking/on-and-off) of acontrol.
_PD_STAT isapplicableto al controls.
Set one of the following numeric values indicating the display format:
0: Normal display
Reversal video display
Blinking
On-and-off display

_PD _DSPFMT changes the display format of a control.

_PD_DSPFMT is applicable to numeric and character displays.

The control value depends on whether the numeric or character display
is used.

_PD_PTPOS changes the position of a decimal point.

_PD_PTPOS is applicable only to numeric displays.

Set a value indicating the position of a decimal point. If a negative
valueis set, PRMCTL1 forcibly changesit to O.

_PD_ZSPRS sets zero suppression operation.

_PD_ZSPRS s applicable only to numeric displays.

When not perform zero suppression, set 0. When performing zero
suppression, set 1.

_PD_FIGMD sets whether to match the size of the graphic to be
displayed on a graphic display with that of the display.

_PD_FIGMD is applicable only to graphic displays.

When not matching the size of the graphic with that of the graphic
display, set 0. When matching the size of the graphic with that of the

graphic display, set 1.

4-187

PRMCTL

6. PD_WSIZ
Function:
Range:

Control-value:

7. PD_PIPSTAT
Function:
Range:

Control-value:

8. PL_FIRST
Function:

Range:

Control-value:

9. PL_SMPMSG
Function:

Range:

Control-value:

10. PL_SMPCTL
Function:
Range:

Control-value:

11. PL_SMPTME
Function:
Range:

Control-value:

_PD_WSIZ changes the dot size or line width of adisplay.

_PD_WSIZ is applicable to plot, meter, and pipe displays.

For a plot display, set the dot size (small to large) with a numeric value
from 0 to 2. For a meter display, set the line width (narrow to wide)
with a numeric value from 0 to 2. For a pipe display, set the thickness
(1, 3, 5, or 7) with anumeric value from O to 3.

_PD_PIPSTAT changes the ON or OFF status of alamp or pipe display.
_PD_PIPSTAT isapplicable to lamp and pipe displays.
Set the ON and OFF statuses of the lamp and pipe displays as follows:

_PL_FIRST changes the start registration number of the registration
graphic or character string to be displayed.

_PL_FIRST is applicable to character and graphic displays.

Set the value you want to use as the start registration number.

_PL_SMPMSG specifies whether to issue messages to the part on which
the control is placed when sampling is performed by the control.
_PL_SMPMSG is applicable to plot, bar graph, and line chart displays.
When issuing messages to the part, set 1. When not issuing messages,
set 0.

_PL_SMPCTL controlssampling. (“Stop”, “start”, and “reset”)
_PL_SMPCTL isapplicableto plot, bar graph, and line chart displays.
“Stop” stops sampling. “Start” starts sampling from the stop status.
“Reset” clears display and starts sampling from the beginning.

0: Sampling is stopped.

1. Sampling is started.

2: Sampling isreset.

_PL_SMPTME changes a sampling time.

_PL_SMPTME is applicable to plot, bar graph, and line chart displays.
Set a value indicating the sampling time (setting value* 0.5 second).
When the sampling time is changed, sampling is started after it has been
reset (see“_PL_SMPCLT”).

4-188 CHAPTER 4 INSTRUCTION REFERENCE

PRMCTL

12. PL_DIRECT
Function:
Range:

Control-value:

13. SW_RACT
Function:

Range:

Control-value:

14, SW_BZER
Function:
Range:

Control-value:

15. SW_STAT
Function:

Range:

Control-value:

16._SW_BMODE
Function:
Range:

Control-value:

17. SW_ONCOLOR
Function:
Range:

Control-value:

_PL_DIRECT changes the display direction of aline chart.
_PLI_DIRECT isapplicable only to line chart displays.

When changing the display direction of the line chart from right to left,
set 0. When changing the display direction from left to right, set 1.
This direction change is meaningless if sampling is not performed.
When the display direction is changed, sampling is started after it has
been reset (see“_PL_SMPCLT").

_SW_RACT sets whether to perform reverse operation when a switch is
ON.

_SW_RACT isapplicable to switches and selector switches.

To perform reverse operation when a switch is ON, set 1. Not to
perform reverse operation, set 0.

_SW_BZER sets whether to sound the buzzer when a switch is ON.
_SW_BZER is applicable to switches and selector switches.

To sound the buzzer when a switch is pressed, set 1. Not to sound the
buzzer, set 0.

_SW_STAT changes the status (normal
disable/halftone) of a switch.
_SW_STAT isapplicable to switches and selector switches.
Set one of the following numeric values indicating the switch status:
0: Normal operation status
1. Input disable status
2: Halftone status

operation/ input

_SW_BMODE changes the switch background color display method.
_SW_BMODE is applicable to switches and selector switches.

When changing the switch background color display method to “direct
display”, set 0. When changing the display method to “replacement
display”, set 1.

_SW_ONCOLOR sets aswitch-ON background color.
_SW_ONCOLOR is applicable to switches and selector switches.

Set the number of the switch-ON background color to be used with a
numeric value from O to 15.

4-189

PRMCTL

18. SW_OFFCOLOR
Function:
Range:
Control-value:

19. SW_ONOFF
Function:

Range:
Control-value:

_SW_OFFCOLOR sets a switch-OFF background color.
_SW_OFFCOLOR is applicable to switches and selector switches.

Set the number of the switch-OFF background color to be used with a
numeric value from O to 15.

_SW_ONOFF changes the ON/OFF status of a switch. (Executing
_SW_ONOFF for the switch for synchronous operation causes an error.)
_SW_ONOFF is applicable to switches and selector switches.

When changing a switch to the OFF status, set 0. When changing a
switch to the ON status, set 1. When changing al selector switches to
the OFF status, set 0. When changing one of the selector switches to
the ON status, set the corresponding element number.

» Thetypes and usage of the request codes that can be used by PRMCTL 2 are explained below.

1. _PD_DCOLOR
Function:
Range:

Type:

Control-value:

2. _PD_BCOLOR
Function:
Range:

Type:

Control-value:

3. _PD_PIPCOLOR
Function:
Range:
Type:

Control-value:

_PD_COLOR changesthe display color of adisplay.
_PD_DCOLOR is applicable to the ON color specification of numeric,
character, clock, plot, free graph, meter, and lamp displays.
Specify one of the following:

0: Figure change

1. Forecolor change

2: Back color change

3. Display color change
Set the number of the display color to be changed with a numeric value
from O to 15.

_PD_BCOLOR changes the background color of a control.
_PD BCOLOR is applicable to numeric, character, clock, plot, bar
graph, line chart, and free graph displays.
Specify one of the following:

0: Figure change

1. Forecolor change

2: Back color change
Set the number of the background color to be changed with a numeric
value from O to 15.

_PD_PIPCOLOR changestheinternal color of apipe or lamp display.
_PD_PIPCOLOR is applicable to pipe and lamp displays.
Specify one of the following:
0: Change of OFF display color (valid for pipe and lamp displays)
1. Changeof ON1 display color (valid for pipe and lamp displays)
2: Change of ON2 display color (valid for pipe displays)
Set the number of the internal color to be changed with a numeric value
from O to 15.

4-190 CHAPTER 4

INSTRUCTION REFERENCE

PRMCTL

4.

5.

6.

7.

_PD_BSLNE
Function:
Range:
Type:

Control-value:

_PD BSCOLOR
Function:
Range:
Type:

Control-value:

_SW_ONFIG
Function:
Range:
Type:

Control-value:
_SW_OFFFIG
Function:

Range:
Type:

Control-value:

_PD_BSL NE changes the type of abase line or areferenceline.
_PD_BSLNE isapplicable to bar graphs and line charts.
Specify one of the following:

0: Change of base linetype

1: Change of referenceline 1 type

2: Change of referenceline 2 type
Set the number of the line type to be changed with a numeric value from
Oto 3.

_PD_BSCOLOR changes the color of abase line or areferenceline.
_PD BSCOLOR is applicable to bar graphs and line charts.
Specify one of the following:

0: Change of base line color

1. Change of referenceline 1 color

2. Change of reference line 2 color
Set the number of the line color to be changed with a numeric value
from O to 15.

_SW_ONFIG changes a switch-ON display graphic.

_SW_ONFIG is applicable to switches and selector switches.

For a switch, specify 1. For a selector switch, specify the element
number of the switch whose ON graphic is to be changed. The
element number starts at 1.

Specify the registration graphic number displayed when a switch is ON.

_SW_OFFFIG changes a switch-OFF display graphic.

_SW_OFFFIG is applicable to switches and selector switches.

For a switch, specify 1. For a selector switch, specify the element
number of the switch whose OFF graphic is to be changed. The
element number startsat 1.

Specify the registration graphic number displayed when a switch is
OFF.

4-191

PRMCTL

» Thetypes and usage of the request codes that can be used by PRMCTL 3 are explained below.

1. PD RANGE
Function:
Range:

Type:

Control-value:

2. PD BSVAL
Function:
Range:
Type:

Control-value:

_PD_RANGE sets the display range of adisplay.

_PD_RANGE is applicable to bar graph, line chart, free graph, dide,
meter, and plot displays.

When the plot display is used, specify O (Xmin change), 1 (Xmax
change), 2 (Ymin change), or 3 (Ymax change). When the bar graph,
line chart, free graph, dide, or meter display is used, specify 2
(minimum change) or 3 (maximum change).

Set the value (display range) to be changed.

_PD BSVAL changes the setting value of a base or referenceline.
_PD_BSVAL isapplicable to bar graph and line chart displays.

Specify 0 (base line change), 1 (change of reference line 1), or 2
(change of reference line 2).

Set the value to be changed.

» Thetypes and usage of the request codes that can be used by PRMCTL4 are explained below.

1. PD_PTRN
Function:
Range:

Type-1:

Type-2:

Control-value:

2. PD_LNE
Function:
Range:
Type-1:
Type-2:

Control-value:

_PD_PTRN changes the display color of a control.
_PD_PTRN is applicable to bar graph, 100 percent bar chart, and pie
chart displays.
Specify the number of the bar or zone whose display color is to be
changed.
Specify one of the following:

0: Figure change

1. Forecolor change

2: Back color change
Set the number of the display color to be changed with a numeric value
from O to 15.

_PD_LNE changes the display color of aline chart.
_PD_LNE isapplicable only to line charts.
Specify the number of the line whose display color is to be changed.
Specify one of the following:

0: Linetype change

1. Linecolor change
Set the number of the display color to be changed with a numeric value
from O to 15.

4-192 CHAPTER 4 INSTRUCTION REFERENCE

PRMSTAT

PRMSTAT

Function

B Function The PRMSTAT function reads the attributes of the specified primitive.

B Format return-value-1 = PRMSTAT1 (control-name, request-code)
return-value-1 = PRMSTAT2 (control-name, request-code, type-1)
return-value-2 = PRMSTATS3 (control-name, request-code, type-1)
return-value-1 = PRMSTATA4 (control-name, request-code, type-1, type-2)

B Example of Use VAL% = PRMSTAT1 (.NUMO00O, PD_STAT)
VAL% = PRMSTAT2 (.NUMO00O, PD_DCOLOR, 3)
VALF! = PRMSTAT3 (..LNE00O, PD_RANGE, 0)
VAL% = PRMSTAT4 (.BAR000, PD_PTRN, 1, 0)

B Description « The PRMSTAT function reads the attributes of the specified
primitive. Thisfunction is classified into four types:. PRMSTATL,
PRMSTAT2, PRMSTAT3, and PRMSTAT4.

» control-name is the constant indicating the primitive to be read or the
ID-type variable indicating the ID of the control.

» request-code specifies the attributes to be read. The types of
request codes are shown on the next and subsequent pages.

» type-1 and type-2 depend on the request code to be specified.

 return-value-1 isthe return value of the function corresponding to the
specified request code; it must be an integer-type constant or variable.

* return-value-2 isthe return value of the function corresponding to the
specified request code; it must be a floating-point constant or variable.

B Related Item PRMCTL1, PRMCTL2, PRMCTLS3, PRMCTL4, PRMSTAT1, PRMSTAT2,
PRMSTATS3, PRMSTAT4

B Example of Program

conf
end conf
evnt
status% = prmstatl(..NUMO0O, PD STAT)
if status% = 0 then
PRMCTL1 ..NUMOOO, PD STAT, 2
endif

end evnt

4-193

PRMSTAT

» Thetypes and usage of the request codes that can be used by PRMSTAT1 are explained below.

1. PD_NUMS
Function: _PD_NUMS reads the number of control elements.
Range: _PD_NUMS s applicableto all display controls.

Return-value-1:The value indicating the display format is set. When the display
format is not “continuous-stage type’, 1 is aways set.

2. _PD_ROTATE
Function: _PD _ROTATE reads the rotation direction of a control .
Range: _PD_ROTATE isapplicable to all display controls.
Return-value-1:For O degree, O is returned. For 90 degrees, 1 is returned. For 180
degrees, 2 isreturned. For 270 degrees, 3 isreturned. For pie chart,
meter, lamp, and pipe displays, 0 is aways returned.

3. _PD_STAT
Function: _PD_STAT reads the display format (normal/reverse video
display/blinking/on-and-off display) of a control.
Range: _PD_STAT isapplicableto all controls.

Return-value: One of the following valuesis returned:
0: Normal display
1. Reversevideo display
2: Blinking
3: On-and-off display

4. _PD_DSPFMT

Function: _PD_DSPFMT reads the display format of a control.

Range: _PD_DSPFMT is applicable to numeric and character controls.

Return-value-1:The value to be returned depends on whether the numeric or character
display isused.

5. _PD_DATFMT
Function: _PD _DATFMT reads the display dataformat.
Range: _PD DATFMT isapplicable to al controls except for clock displays.
Return-value: For areal number, O isreturned. For an integer, 1 isreturned. For an
unsigned integer, 2 is returned. For a BCD, 3 is returned. (For the
lamp primitive, 2 is always returned.)

4-194 CHAPTER 4 INSTRUCTION REFERENCE

PRMSTAT

~

©

10.

11.

12.

13.

_PD_FONT

Function:
Range:

Return-value:

_PD_XFSZ

Function:

Range:

Return-value:

_PD_YFSZ

Function:

Range:

Return-value:

_PD_PTPOS

Function:
Range:

Return-value:

_PD_ZSPRS

Function:
Range:

Return-value:

_PD_XNUM

Function:
Range:

Return-value:

_PD_YNUM

Function:
Range:

Return-value:

_PD_DIRECT

Function:
Range:

Return-value:

_PD_FONT reads the type of the font displayed on the control.
_PD_FONT is applicable to numeric and clock displays.

For half-size character display, O is returned. For full-size character
display, 1isreturned.

_PD_XFSZ reads the horizontal-direction size of the font displayed on
the control.

_PD_XFSZ is applicable to numeric, character, and clock displays.

For 1 magnification, O isreturned. For 2 magnifications, 1 is returned.
For 4 magnifications, 2 isreturned. For 8 magnifications, 3 is returned.
For 16 magnifications, 4 is returned.

_PD_YFSZ reads the vertical-direction size of the font displayed on the
control.

_PD_YFSZ is applicable to numeric, character, and clock displays.

For 1 magnification, O isreturned. For 2 magnifications, 1 is returned.
For 4 magnifications, 2 isreturned. For 8 magnifications, 3 is returned.
For 16 magnifications, 4 is returned. For 32 magnifications, 5 is
returned.

_PD_PTPOS reads the position of a decimal point.
_PD_PTPOS is applicable only to numeric displays.
The position of the decimal point is returned.

_PD_ZSPRS reads whether to perform zero suppression.

_PD_ZSPRS s applicable only to numeric displays.
When zero suppression is not performed, O is returned. When zero
suppression is performed, 1 is returned.

_PD_XNUM reads the number of harizontal-direction display digits.
_PD_XNUM is applicable to numeric and character displays.

The number of characters that can be displayed when

horizontal -direction half-size conversion is performed is returned.

_PD_YNUM reads the number of vertical-direction display digits.
_PD_YNUM is applicable only to character displays.

The number of characters that can be displayed in the vertical direction

isreturned.

_PD_DIRECT reads the display direction of acharacter display.
_PD_DIRECT isapplicable only to character displays.

For horizontal writing, O is returned. For columnar writing, 1 is

returned.

4-195

PRMSTAT

14.

15.

16.

17.

18.

19.

_PD_PLTNUM

Function:

Range:

Return-value:

_PD_LNENUM

Function:

Range:

Return-value;:

_PD_ZNNUM

Function:

Range:

Return-value:

_PD_FIGMD

Function:

Range:

Return-value:

_PD_WSIZ

Function:
Range:

Return-value:

_PD_PIPSTAT

Function:
Range:

Return-value:

_PD PLTNUM reads the maximum number of plots that can be
displayed on the control.

_PD_PLTNUM isapplicable to plot and line chart displays.

The maximum number of plots that can be displayed is returned.

_PD_LNENUM reads the number of bars and lines that can be
displayed on the control.

_PD_LNENUM is applicable to plot and line chart displays.

The maximum number of bars and lines that can be displayed is
returned.

_PD_ZNNUM reads the number of zones that can be displayed on the
control.

_PD_ZNNUM is applicable to pie chart and 100 percent bar chart
displays.

The number of zones that can be displayed is returned.

_PD FIGMD reads whether to match the size of the graphic to be
displayed on a graphic display with that of the display.

_PD_FIGMD is applicable only to graphic displays.

When matching the size of the graphic with that of the graphic display,
set 1. When not matching the size of the graphic with that of the

graphic display, set 1.

_PD_WSIZ reads the dot size or line width of a control.

_PD_WSIZ is applicable to plot, meter, and pipe displays.

For a plot display, the numeric value (0O to 2) indicating the dot size
(small to large) is returned. For a meter display, the numeric value (0
to 2) indicating the line width (narrow to wide) is returned. For a pipe
display, the numeric value (0 to 3) indicating the thickness (1, 3, 5, or 7)
is returned.

_PD_PIPSTAT reads the ON or OFF status of alamp or pipe display.
_PD_PIPSTAT isapplicable to lamp and pipe displays.

Any of the following values indicating the ON or OFF status of the
lamp or pipe display is returned:

4-196 CHAPTER 4

INSTRUCTION REFERENCE

PRMSTAT

20.

21.

22.

23.

24,

25.

26.

27.

_PL_NUMS

Function:
Range:

Return-value:

_PL_FIRST

Function:

Range:

Return-value:

_PL_DVTYP

Function:
Range:

Return-value:

_PL_ENDI

Function:
Range:

Return-value:

_PL_SMPMSG

Function:

Range:

Return-value:

_PL_SMPTME

Function:
Range:

Return-value:

_PL_DIRECT

Function:
Range:

Return-value:

_SW_NUMS

Function:
Range:

Return-value:

_PL_NUMS reads the number of devices being used.

_PL_NUMS s applicableto all controls except for clock displays.

The number of devices being used isreturned. (When a doubleword is
specified for anumeric display, the number of devicesis doubled.)

_PL_FIRST reads the start registration number of the registration
graphic or character string to be displayed.
_PL_FIRST isapplicable to character and graphic displays.
The start registration number to be displayed is returned.

_PL_DVTY P reads the type of the device being used by the control.
_PL_DVTYPisapplicable only to numeric displays.
For adoubleword, O isreturned. For asingle word, 1 isreturned.

_PL_ENDI reads the doubleword display method.

_PL_ENDI is applicable only to numeric displays.

When doublewords are displayed from downward to upward, O is
returned. When doublewords are displayed from upward to downward,
lisreturned.

_PL_SMPMSG reads whether to issue messages to the part on which
the control is placed when sampling is performed by the control.

_PL_SMPMSG is applicable to plot, bar graph, and line chart displays.
When messages are issued to the part, 1 isreturned. When no message
isissued, O is returned.

_PL_SMPTME reads a sampling time.

_PL_SMPTME is applicable to plot, bar graph, and line chart displays.
A value indicating the sampling time (read value* 0.5 second) is
returned.

_PL_DIRECT reads the display direction of aline chart.
_PLI_DIRECT isapplicable only to line chart displays.

When line charts are displayed from right to left, O is returned. When

they are displayed from left to right, 1 is returned.

_SW_NUMS reads the number of switch elements.

_SW_NUMS s applicable to switches and selector switches.

For a switch, 1 is aways returned. For a selector switch, the number
of elementsis returned.

4-197

PRMSTAT

28.

29.

30.

31.

32.

33.

34.

_SW_TYPE

Function:
Range:
Return-value:

_SW_ONCOLOR

Function:
Range:
Return-value:

_SW_OFFCOLOR

Function:
Range:
Return-value:

_SW_BMODE

Function:
Range:
Return-value:

_SW_RACT

Function:

Range:
Return-value:

_SW_BZER

Function:
Range:
Return-value:

_SW_STAT

Function:

Range:
Return-value:

_SW_TYPE reads a switch type.

_SW_TYPE is applicable to switches and selector switches.

For the momentary switch, O isreturned. For the alternate switch, 1 is
returned. For the auto-repeat switch, 2 is returned. For a selector
switch, 3isreturned.

_SW_ONCOLOR reads a switch-ON background color.
_SW_ONCOLOR is applicable to switches and selector switches.

The number (0 to 15) of the read switch-ON background color is
returned.

_SW_OFFCOLOR reads a switch-OFF background color.
_SW_OFFCOLOR is applicable to switches and selector switches.

The number (1 to 15) of the read switch-OFF background color is
returned.

_ SW_BMODE reads the switch background color display method.
_SW_BMODE is applicable to switches and selector switches.

When the switch background color display method is “direct display”, O
is returned. When the display method is “replacement display”, 1 is
returned.

_SW_RACT reads whether to perform reverse operation when a switch
isON.

_SW_RACT is applicable to switches and selector switches.

If reverse operation is performed when a switch is ON, 1 is returned.
If reverse operation is not performed, O is returned.

_SW_BZER reads whether to sound the buzzer when a switch is ON.
_SW_BZER is applicable to switches and selector switches.

If the buzzer is sounded when a switch is pressed, 1 is returned.
buzzer is not sounded, O is returned.

If the

_SW_STAT reads the status (normal operation/ input disable/halftone)
of aswitch.

_SW_STAT isapplicable to switches and selector switches.

One of the following numeric values indicating the switch status is
returned:

0: Normal operation status

L Input disable status

4-198 CHAPTER 4

INSTRUCTION REFERENCE

PRMSTAT

35. SW_ONOFF
Function:
Range:

Return-value:

36. SL_SYNC
Function:
Range:

Return-value:

37. _SL_BORW
Function:
Range:

Return-value:

1. PD DCOLOR
Function:
Range:

Type:

Return-value:

2. PD BCOLOR
Function:
Range:

Type:

Return-value:

2 Halftone status

_SW_ONOFF reads the ON/OFF status of a switch.

_SW_ONOFF is applicable to switches and selector switches.

When a switch isin the OFF status, O isreturned. When a switch isin
the ON status, 1 is returned. When all the selector switches are in the
OFF status, 0 is returned. When one of the selector switches is in the
ON status, the corresponding element number is returned.

_SL_SYNC reads the synchronous operation of a switch.

_SL_SYNC isapplicable to switches and selector switches.

When the synchronous operation is not performed, O is returned.
When the synchronous operation is performed, 1 is returned.

_SL._BORW reads the switch device write method.

_SL_BORW is applicable to selector switches.

When the switch device write method is the bit type write method, O is
returned. When it isthe word type write method, 1 isreturned.

» Thetypes and usage of the request codes that can be used by PRMSTAT?2 are explained below.

_PD _COLOR reads the display color of a control.
_PD_DCOLOR is applicable to the ON color specification of numeric,
character, clock, plot, free graph, meter, and lamp displays.
Specify one of the following:
0. Figureread
1: Forecolor read
2: Back color read
3: Display color read
The number (0 to 15) of the read display color is returned.

_PD_BCOLOR reads the background color of a control.
_PD BCOLOR is applicable to numeric, character, clock, plot, bar
graph, line chart, and free graph displays.
Specify one of the following:
0: Figureread
1. Forecolor read
2: Back color read
The number (0 to 15) of the read background color is returned.

4-199

PRMSTAT

3. _PD PIPCOLOR
Function:
Range:
Type:

Return-value:

4, PD BSLNE
Function:
Range:
Type:

Return-value:

5. _PD_BSCOLOR
Function:
Range:
Type:

Return-value;:

6. SW_ONFIG
Function:
Range:
Type:

Return-value:

7. SW_OFFFIG
Function:

Range:
Type:

Return-value:

_PD_PIPCOLOR readstheinternal color of apipe or lamp display.

_PD_PIPCOLOR is applicable to pipe and lamp displays.

Specify one of the following:
0: Read of OFF display color (valid for pipe and lamp displays)
1. Read of ON1 display color (valid for pipe and lamp displays)
2: Read of ON2 display color (valid for pipe displays)

The number (0 to 15) of the read internal color is returned.

_PD_BSLNE reads the type of abase line or areferenceline.
_PD _BSLNE isapplicable to bar graphs and line charts.
Specify one of the following:

0: Read of baselinetype

1. Read of referenceline 1 type

2. Read of referenceline 2 type
The number (0 to 3) of theread line type is returned.

_PD BSCOLOR reads the color of abase line or areferenceline.
_PD_BSCOLOR isapplicable to bar graphs and line charts.
Specify one of the following:

0: Read of baseline color

1: Read of referenceline 1 color

2: Read of reference line 2 color
The number (0 to 15) of the read line color is returned.

_SW_ONFIG reads the graphic number displayed when a switch is ON.

_SW_ONFIG is applicable to switches and selector switches.

For a switch, specify 1. For a selector switch, specify the element
number of the switch whose ON graphic is to be changed. The

element number starts at 1.
The read graphic number is returned.

_SW_OFFFIG reads the graphic number displayed when a switch is

OFF.
_SW_OFFFIG is applicable to switches and selector switches.

For a switch, specify 1. For a selector switch, specify the element
number of the switch whose OFF graphic is to be changed. The

element number starts at 1.
The read graphic number is returned.

4-200 CHAPTER 4

INSTRUCTION REFERENCE

PRMSTAT

8. _SL_ WRITE
Function: _SL_WRITE reads the switch write value.
Range: _SL_WRITE is applicable to switches.
Type: To read the write value when a switch is ON, specify 1. To read the

write value when a switch is OFF, specify 0.
Return-value: Theread write value is returned.

9. _PD_PLOTRNG

Function: PD PLOTRNG writes the start and end points of displaying aline chart.
Range: PD PLOTRNG is applicable to line charts.
Type: Specify one of the following:

0: Indicates reading of the display start point.
1: Indicatesreading of the display end point.

» Thetypes and usage of the request codes that can be used by PRSTAT3 are explained below.

1. PD_RANGE
Function: _PD_RANGE reads the display range of a control.
Range: _PD_RANGE is applicable to bar graph, line chart, free graph, dide,
meter, and plot displays.
Type: When reading Xmin, specify 0. When reading Xmax, specify 1.

When reading Y min, specify 2. When reading Y max, specify 3.
Return-value: A vaueindicating the display rangeis returned.

2. PD BSVAL
Function: _PD_BSVAL readsthe setting value of a base or reference line.
Range: _PD _BSVAL isapplicable to bar graph and line chart displays.
Type: When changing a base line, specify 0. When changing reference line 1,

specify 1. When changing reference line 2, specify 2.
Return-value: A vaueindicating the display rangeis returned.

» Thetypes and usage of the request codes that can be used by PRMSTAT4 are explained below.

1. PD PTRN

Function: _PD_PTRN reads the display color of acontrol.

Range: _PD_PTRN is applicable to bar graph, 100 percent bar chart, and pie
chart displays.

Type-1: Specify the number of the bar or zone whose display color is to be
changed.

Type-2: Specify one of the following:

0. Figureread

1. Forecolor read
2. Back color read
Return-value: The vauesindicating the read figure and color number are returned.

4-201

PRMSTAT

2. _PD_LNE
Function: _PD_LNE readsthe display color of aline chart.
Range: _PD_LNE isapplicableto line charts.
Type-1: Specify the number of the line whose display color isto be changed.
Type-2: Specify one of the following:

0. Linetyperead
1. Linecolor read
Return-value: The vauesindicating the read line type and color are returned.

4-202 CHAPTER 4 INSTRUCTION REFERENCE

PSTAT

PSTAT

Function

B Function The PSTAT function reads the status of the specified part.

B Format PSTAT (part-name)

B Example of Use MODE = PSTAT (.BUHIN.)

B Description The PSTAT function reads the status of the part specified in
part-name.

e part-name is the name of the part whose status is to be read or the
ID-type variable indicating the part.

* The value indicating the mode of the part can be obtained by
executing this function. The following numeric values indicate
modes.

1. Switch input disable status
2: Half tone status
3: Close status

B Related Item PMODE

B Example of Program

evnt

input type% , 1d@ , data%

if PSTAT (.BUHIN.) = 0 then
pmode .BUHIN., 1
endif

end evnt

4-203

RANGE

RANGE

Statement

B Function

B Format
B Example of Use

B Description

B Related Item

The RANGE function modifies the area(s) of the control for which the
maximum and minimum display data values were specified.

RANGE control-name, area-1, area-2, area-3, area-4

RANGE ..GRAPH, 0, 0, 100, 100

» control-name isthe graph name or the I D-type variable indicating the

graph.

¢ The maximum and minimum area values in the control can be set for
each display asfollows:

Areal Area?2 Area3 Area4
Plot display Minimum Maximum Minimum Maximum
horizontal horizontal vertical vertical
value value value value
Bar graph display | Minimum Maximum Base -
value value value
Linechart display | Minimum Maximum - -
value value
Free graph display | Minimum Maximum - -
value value
Slide display Minimum Maximum - -
value value
Meter display Minimum Maximum - -
value value

“-” isignored even if it is specified.

None

B Example of Program

evnt

input type$,

if type% = 3 then

range ..MTR0O0O , min%, max%,0,0

endif

end evnt

id@ , min%,max%

4-204 CHAPTER 4

INSTRUCTION REFERENCE

READTIM

READTIM

Function

B Function
B Format

B Example of Use

B Description

B Related Item

The READTIM function reads the current value of the specified timer.
READTIM (timer-number)

DD = READTIM (TNO@)
DD = READTIM (VAR)

» The READTIM function reads the current elapse time of the operating
timer. Thistimeisread in unitsof 100 milliseconds.

« timer-value isthe ID-type variable indicating the number of the timer
to be read or an integer-type value from O to 15.

OPENTIM, STARTTIM, STOPTIM, CLOSETIM, CONTTIM, WRITETIM

B Example of Program

conf

static timid@

timid@ =

OPENTIM ()

settim timid@, 20, O

starttim
end conf
evnt

timid@

input type% , 1d@ , data%

if type%
tim% =
numdsp

end if

end evnt

= 3 then
READTIM (timid@)
. .NUMOOO, tim%*100

4-205

RENAME

RENAME

Statement

B Function The RENAME statement changes a file name or directory name.

B Format RENAME old file name, new file name

B Example of Use RENAME "A:\SUBDIR\FILE1", "FILE2"

B Description » A file name can be specified in a full path name including a drive
name or in an abbreviated name beginning with a current directory
name.

Example: A:\\SUBDIR\FILE1 FILE1

* A new file name must not contain a path name.

» To change adirectory name, specify a directory name, instead of afile
name.

B Related Item FOPEN,KILL,MKDIR,RMDIR

B Example of Program

conft
global dname$ (13), pnamel$ (13), pname2$(13), pname3$ (13)
global dsel%, plsel%, p2sel%, p3sel$
strdsp ..str, "rename"
end conf
evnt
input type%, 1d@, data%
if data% = 1 then
path$ = dname$ (dsel%) + pnamel$ (plsel%) + pname2$ (p2sel%)
strdsp .dsp.str, paths$
rename path$, pname3$ (p3sel%)
end if

end evnt

4-206 CHAPTER 4 INSTRUCTION REFERENCE

REOPENCOM

REOPENCOM

Statement
B Function The REOPENCOM statement reopens the temporarily closed seria line.
B Format REOPENCOM logical-device-name
B Example of Use REOPENCOM HST
B Description » The REOPENCOM statement permits the program, whose data
reception from an external connecting device was temporarily
inhibited by the CLOSECOM statement, to receive data again.
 logical-device-name specifies any of the following external
connecting devices:
HST: Host computer
BCR: Bar code reader
TKY: Ten-key pad
B Related Item OPENCOM, CLOSECOM

B Example of Program

conf
OPENCOM HST
end conf
evnt
input type% , id@ , data%
if type% = 3 and data% = 1 then
CLOSECOM HST
else 1f type% = 3 and data% = 0 then
REOPENCOM HST
endif

end evnt

4-207

REOPENPARALLEL

REOPENPARALLEL

Statement

B Function

B Format
B Example of Use

B Description

B Related Item
B Example of Program

conf

The REOPENPARALLEL statement permits data re-reception from the
temporarily closed parallel port.

REOPENPARALLEL input-bit
REOPENPARALLEL 3

» The REOPENPARALLEL statement permits the script, whose data
reception from the paralel port was temporarily inhibited by the
CLOSEPARALLEL statement, to re-receive data.

* input-bit is the bit for restarting data reception. This input bit is the
same as the bit specified by the CLOSEPARALLEL statement.

OPENPARALLEL, CLOSEPARALLEL

OPENPARALLEL 3

end conf
evnt

input type% , id@ , data$%

if type%

= 3 and data% = 1 then

CLOSEPARALLEL 3
else if type% = 3 and data% = 0 then
REOPENPARALLEL 3

endif

end evnt

4-208 CHAPTER 4 INSTRUCTION REFERENCE

RESETALARM

RESETALARM

Statement

Function
Format
Example of Use

Description

Related Item
Example of Program

conf

The RESETALARM statement resets the specified alarm.

RESETALARM aarm-number

RESETALARM (NO@)

» alarm-number is the number of the alarm set by the SETALARM

statement; it must be an ID-type variable.

» This statement resets the setting for posting an alarm ON to the

program when a specified timeis reached.

SETALARM

static alid@

alid@

end conf

evnt

setalarm(10,0)

input type% , id@ , data%

if type%

= 3 then

RESETALARM (alid@)

end if

end evnt

4-209

RETURN

RETURN

Statement
B Function The RETURN statement returns control from the subroutine to the
original program.

B Format RETURN

B Example of Use RETURN

B Description » The RETURN statement returns control to the statement following the

statement called by the GOSUB statement.

Bl Related Item GOsuB

B Example of Program

evnt
X =10
GOSUB SUB001
numdsp ..NUM0O0OO, X
end evnt
SUBOO1:
X = X+3
RETURN

4-210 CHAPTER 4 INSTRUCTION REFERENCE

RIGHTS$

RIGHTS$

Function

B Function

B Format

B Example of Use

B Description

B Related Item

The RIGHT$ function returns a character string the specified number of

characters, starting from the left of the specified character string.

RIGHTS$ (character-string, number-of-characters)

RIGHTS$ (registered-character-string-number, number-of-characters)

RIGHTS$ (registered-character-string-name, number-of-characters)

A$ = RIGHT$ (MOJ'$, 5)
A$ = RIGHT$ (4, 10)
A$ = RIGHT$ (TOROKU, 8)

» The RIGHTS$ function returns a character string the specified number

of characters (bytes), starting from the right of the specified
character-string.

number-of-characters specifies the number of bytes of the character
string to be fetched with a numeric value from 0 to 255. When
number-of-charactersis 0, anull character string is returned.
character-string is a direct character string or a character string
variable.

registered-character-string-number is the numerical expression
indicating the number registered by Screen Creator.
registered-character-string-name is the name of the character
string created by Screen Creator or the ID-type variable indicating the

name of the character string.

MID$, LEFT$

B Example of Program

evnt
bs
as
c$
c$

“12345678"
RIGHTS (bs ,
RIGHTS
RIGHTS

3)
3)
4)

(no ,
(ide ,

end evnt

4-211

RMDIR

RMDIR

Statement
B Function The RMDIR statement deletes a directory.
B Format RMDIR directory-name
B Example of Use RMDIR “TEST”
B Description * The RMDIR statement is an instruction for deleting a subdirectory.
» Specify the directory to be deleted with a character string constant or
variable.
e The directory to be deleted can be specified in directory-name
together with a drive name.
B Related Item MKDIR, CHDIR

B Example of Program

conf
end conf
evnt

4-212 CHAPTER 4 INSTRUCTION REFERENCE

ROTATE

ROTATE

Statement

B Function

B Format

B Example of Use

B Description

B Related Item

B Example of Program

evnt

The ROTATE function rotates the figure displayed in the graphic display.

ROTATE control-name, angle-of-rotation

ROTATE ..FIG000, 2

» control-name is the graphic display name or the ID-type variable
indicating the graphic display.

» angle-of-rotation specifies the angle of rotation with one of the
following numeric values:

0:

FIGDSP

input ty , id@,

ROTATE

end evnt

. .FIGOO0O

Rotation of O degree

1. Rotation of 90 degrees
2
3: Rotation of 270 degrees

Rotation of 180 degrees

fig%
, fig%

4-213

RSTAT

RSTAT

Function

B Function The RSTAT function checks the status of registered objects.

B Format RSTAT (registration-name, type, option)

B Example of Use VAR@ = RSTAT (GAMENL.., 0, 1)

B Description » Of registered objects, the RSTAT function obtains the number of the
object that is “number specified by option” away from the specified
registration name.

A variable or constant representing a screen name, registration
character string name, or registration graphic name can be specified in
registration-name.

» Specify 0intype.

* When option is a positive value, the RSTAT function checks the
registered objects in ascending order of their numbers. When option
is a negative value, the RSTAT function checks the objects in
descending order of their numbers.

 If there is no object that is “number specified by option” away from
the specified registration name, the RSTAT function returns - 1.

B Related Item GETGID, GETGNO

B Example of Program

conf
end conf
evnt
id@ = getgid()

no% = RSTAT (ide, 0, 1) " Checks the next registered screen
if no% <> -1 then jump no% " number.
end evnt

4-214 CHAPTER 4 INSTRUCTION REFERENCE

RUN

RUN

Statement

B Function The RUN statement runs the specified program.

B Format RUN execution-part/screen

B Example of Use RUN .BUHIN.

B Description » The RUN statement issues a message to the part/screen specified in
execution-part/screen and runs the part/screen program. (The
message to be issued contains the message type and ID. It, however,
does not contain the issued data.)

» The program to which a command was issued is not run when the
RUN command is issued; it is run when the program that issued the
RUN command terminates.

e execution-part/screen is a screen name, a part name, or an |D-type
variable.

B Related Item INPUT, PRINT, SEND

B Example of Program

evnt

input ty , ide@, fig%

if ty = 3 and id@ = ..SWTOO0O then
RUN .B00O.
endif

end evnt

4-215

SELECT CASE ... END SELECT

SELECT CASE ... END SELECT

Statement

B Function The statements satisfying the specified condition are executed.

B Format SELECT CASE
CASE
statement-list
CASE
statement-list
CASE ELSE
statement-list
END SELECT

B Example of Use See “Example of Program” below.

B Description e The SELECT CASE statement executes the CASE statement list
satisfying the specified conditional expression.
» When CASE, CASE ELSE, and END SELECT appear after the
statements satisfying the specified condition have been executed, the
SELECT CASE statement executes the statement following END
SELECT.
 Condition judgment can be performed up to 50 times.

B Related Item IF ... THEN ... ELSE

B Example of Program

evnt
input ty , 1d@, dat%
select case dat$

case 1 " Whendat%is1
aaa = 1
case 2,3 " Whendat%is2or 3
aaa = 2
case 4 to 10 " Whendat%is4to 10
aaa = 3
case else " When dat% is another value
aaa =4

end select

end evnt

4-216 CHAPTER 4 INSTRUCTION REFERENCE

SEND

SEND

Statement

B Function The SEND statement sends data to the specified screen, part, or logical
connecting device.

B Format SEND send-destination-name
B Example of Use SEND .BUHIN.

B Description » The SEND statement sends the data written by the PRINT statement
to the specified send destination.

» send-destination-name is the name of the screen or part to which
datais to be sent, the ID-type variable indicating the name, or one of
the following logical connecting devices:

HST: Host computer
PRN: Printer

» The screen or part script that received data is not executed when the
SEND command isissued; it is executed when the program that issued
the SEND command terminates.

Bl Related Item RUN, PRINT
B Example of Program

evnt
input ty , 1d@, dat$%

if ty = 3 and id@ = ..SWTO000 then
print “BUHIN1”,dat%
send .B000O.

endif

end evnt

4-217

SETALARM

SETALARM

Statement

B Function

B Format

B Example of Use

B Description

B Related Item
B Example of Program

conf

The SETALARM statement sets an alarm time.
SETALARM (hour, minute)

ID@ = SETALARM (13, 30)

* The SETALARM statement sets an alarm time in the OIP built-in
clock. When the set darm time is reached, the data indicating this
effect is transmitted to the set screen or part program. Up to 16

alarms can be used.

* hour specifies the hour(s) to be set with a numeric value from 0 to 23.
* minute specifies the minute(s) to be set with a numeric value from 0

to 59.

« When the SETALARM function is executed, the alarm number is
returned. The alarm number to be returned is an ID-type variable.
» This function can be used by the screen or part program being

displayed.

RESETALARM

static alid@

alid@
end conf

evnt

input type$% ,
if type%

SETALARM (10, 0)

ida@
= 3 then

, data$%

resetalarm(alid@)

end if

end evnt

4-218 CHAPTER 4

INSTRUCTION REFERENCE

SETBEEP

SETBEEP

Statement

B Function
B Format
B Example of Use

B Description

The SETBEEP statement specifies the tone of a buzzer.
SETBEEP ON-time, OFF-time, sound-count
SETBEEP 10, 5, 3

» The SETBEEP statement sets the tone color of the buzzer to be
sounded by the BEEP command

* ON-time gspecifies the time during which the buzzer continues to
sound in units of 100 milliseconds.

» OFF-time specifies the time during which the buzzer continues not to
sound in units of 100 milliseconds.

» sound-count indicates the number of times the buzzer sounds and
does not sound. It isimpossible to specify 0.

* When OFF-time is 0, the buzzer continues to sound.

B Related Item BEEP
B Example of Program
conf
SETBEEP 50,20, 3
end conf
evnt

input type%, id@, data%
if id@ = ..SWTO000 then
BEEP 1
else
BEEP O
endif

end evnt

4-219

SETBLIGHT

SETBLIGHT

Statement
B Function The SETBLIGHT statement sets the time that lasts till the back light is
turned off.

B Format SETBLIGHT OFF-time

B Example of Use SETBLIGHT 20

B Description * OFF-time indicates the time that lasts till the back light is turned off;
it is an integer-type variable or a numeric value. OFF-timeis set in
minutes. When OFF-timeis 0, the back light is not turned off.

Bl Related Item GETBLIGHT

B Example of Program

conf
getblight wvar
var = var*2
SETBLIGHT wvar
end conf

4-220 CHAPTER 4 INSTRUCTION REFERENCE

SETBLIGHT

SETDATE

Statement

B Function The SETDATE statement sets the date of the built-in clock.
B Format SETDATE year, month, day

B Example of Use SETDATE 92, 12,1

B Description » year isthe low-order two digits of A.D (0to 99).

* month isanumeric value from 1to 12.

e day isanumeric value from 1 to 31.

 If an unexisting year, month, or day is specified, an error occurs.

» The day of the week is automatically set based on preset year, month
and day.

e Once date is set using the SETDATE command in a model with a
battery backup calendar IC (GC56LC or GC55EM), the date is
updated even while the power is off. If amodel with no calendar IC
(GCB3LC or GC53LM) isturned off, the date is initialized to January
1, 1998 (Thursday) and the time to 00:00:00 when it is turned on
again. The date and time are updated while the power is on.

B Related Item DATE\$, GETDATE, GETDATE, SETTIME, TIME\$

B Example of Program

evnt
input type, id@,dat
if type = 3 then

y = 94
m = 12
d=1

setdate y, m, d
endif

end evnt

4-221

SETLNEPLOT

SETLNEPLOT

Statement

B Function The SETLNEPLOT statement sets the display range of aline chart.
B Format SETLNEPLOT display-start-point, display-end-point
B Example of Use SETLNEPLOT 10, 50

B Description » The SETLNEPLOT statement sets the display range of a line chart.
Executing LNEDSP, LNESHIFT, or PRDSP after this display range
has been set displays the line chart within the set range.

o After LNEDSP, LNESHIFT, or PRDSP has been executed, the set
display rangeisreleased and the entire range display statusis set.

» Line charts for which “Blink” or “On-and-Off” is specified are
displayed within the entire range.

» When different ranges are set for two or more line charts within 100
milliseconds, the last set range corresponds to the first line chart to be
displayed. All other line charts are displayed.

B Related Item LNEDSP, LNESHIFT, PRDSP

B Example of Program

evnt

input type,id@,data

SETLNEPLOT 20, 30

lneshift (..lnegraph , 1,1, 40)
end evnt

4-222 CHAPTER 4 INSTRUCTION REFERENCE

SETSO0

SETSIO

Statement

B Function

B Format
B Example of Use

B Description

B Related Item
B Example of Program

conf

The SETSIO statement sets a non-protocol communication reception
method.

SETSIO port-number, value
SETSIO 2, &HD

» The SETSIO statement sets the condition for issuing messages to
BASIC of the part/screen when data is received in the non-procedual
communication mode.

* port-number specifies the port for which the non-procedual
communication mode is to be set.

» When the port specified in port-number is in the binary mode, value
specifies the number of data to be received (in bytes). (0 cannot be
specified.) When the port is in the text mode, value specifies a
terminator code (1 to OFFh) of the received data.

 For the binary mode, specify the number of bytes to be received from
the connecting device. When the specified number of bytes are
received, a message is transmitted to the part/screen.

» For the text mode, when a terminator code is received, a message is
transmitted to the part/screen. A terminator code can be specified
only by one byte.

* The port to be set must be opened by the OPENSIO statement in
advance.

OPENSIO, CLOSESIO, WRITESIO, WRITWSIOB, FLUSH, IOCTL

global bufs$ * 200
opensio 2 , 1 , buf$
SETSIO 2 , &HD

end conf

evnt

strdsp

..STRO00 , bufs$

closesio 2

end evnt

4-223

SETTIM

SETTIM

Statement

B Function
B Format

B Example of Use

B Description

B Related Item
B Example of Program

conf

The SETTIM statement sets the limit time of the specified timer.
SETTIM timer-number, time-limit, timer-type

SETTIM ID@, 100, 0
SETTIM VAR, 200, 1

The SETTIM statement determines the operation of the specified
timer. Thetimer must be stopped when it is set.
timer-number is the ID-type variable indicating the number of the
timer whose operation is to be set or an integer-type value from 0 to
15.
The time specified in time-limit starts to be counted when operation of
the specified timer is started. It is specified in units of 100
milliseconds.
timer-type specifies the type of timer to be set. Timers are classified
into two types. normal and interval. The normal timer stops when
the specified time limit is reached once. The interval timer restarts
counting from O when the specified time limit is reached once.

0: Normal timer

1. Interval timer
If one second or lower is set as the time limit in the interval timer,
messages may be accumulated to cause an error.

OPENTIM, STARTTIM, STOPTIM, CLOSETIM, CONTTIM, READTIM

static timid@

timid@

opentim ()

SETTIM timid@, 20, O
starttim timid@

end conf

evnt

input type% , 1d@ , data%

if type%
tim$%
numdsp

end if

end evnt

3 then

readtim (timidQ@)
. .NUMOO0O, tim%*100

4-224 CHAPTER 4 INSTRUCTION REFERENCE

SETTIME

SETTIME

Statement

B Function

B Format

B Example of Use

B Description

B Related Item

B Example of Program

evnt

input type% , 1id@ , h%, m%, s

The SETTIME statement sets the time of the built-in clock.
SETTIME hour, minute, second
SETTIME 12,0,0

* hourisanumeric value from 0 to 23.

* minute isanumeric value from 0 to 59.

» second isanumeric value from O to 59.

 If an unexisting hour, minute, or second is specified, an error occurs.

* Once time is set using the SETTIME command in a model with a
battery backup calendar IC (GC56LC or GC55EM), time is updated
even while the power is off. If a model with no calendar IC
(GC53LC or GC53LM) isturned off, the date is initialized to January
1, 1998 (Thursday) and the time to 00:00:00 when it is turned on
again. The date and time are updated while the power is on.

DATE\$, GETDATE, GETDATE, SETDATE, TIME\$

o°

settime h%, m%, s%

end evnt

4-225

SHIFT

SHIFT

Statement

B Function

B Format
B Example of Use

B Description

B Related Iltem

B Example of Program

conf

end conf

evnt

The SHIFT statement shifts the contents of the specified variable left or

right.
SHIFT variable-name, shift-amount

SHIFT VARIABLE% , 1

» The SHIFT statement shifts the contents (bit string) of the specified

variable by the specified amount left or right.

» Oissetinthe positions of the bits vacated as aresult of the shifting.
 variable-name specifies the variable name used to shift the bit string;

it must be an integer-type variable.

« shift-amount specifies how much the bit string in the variable is to be
shifted. A numeric value from 31 to -31 can be specified in
shift-amount. When the specified shift amount is positive, the

When it is negative, the

SHIFT statement shifts the bit string left.
SHIFT statement shifts the bit string right.

None

input type% , 1dQ@ , data$%

numdsp

. .NUMOOO , data%

shift data% , 1

numdsp
end evnt

. .NUMOOO , data%

4-226 CHAPTER 4 INSTRUCTION REFERENCE

SN

SIN

Function

Function
Format
Example of Use

Description

Related Item
Example of Program

evnt
angle =
x = SIN
numdsp

end evnt

The SIN function calculates asine for the specified numerical expression.

SIN (numerical-expression)

X =SIN (ANGL

E)

» The SIN function calculates a sine value for the specified numerical

expression.

ATN, COS, TAN

3.141592/3
(angle)

..num000, x

The unit for the numeric expression is radian.

4-227

S_.DDSP

SLDDSP

Statement

B Function The SLDDSP statement displays datain the dlide display.

B Format SLDDSP control-name, display-data

B Example of Use SLDDSP .BUHIN.GRAPH, 30.0

B Description » control-name is the dide display name or the ID-type variable
indicating the slide display.

 display-data is numeric data indicating the display position of the
point graphic to be displayed in the slide display.

* display-value cannot be changed even if this statement is issued to the
display for which operation parameters are set to “effective” in the
control.

B Related Item None

B Example of Program

evnt
input type,1d@,data
SLDDSP ..SLD000, data
end evnt

4-228 CHAPTER 4 INSTRUCTION REFERENCE

SOF

Function

B Function

B Format

B Example of Use

B Description

B Related Item
B Example of Program

conf

field 5

The SOF function calculates the size of afield.

SOF (file-number)

AAA = SOF (file-number)

* file-number is the file number defined in the FIELD declaration.
This size becomes the size of the file to be actually read or written.

» Thesizeiscalculated in bytes.

FOPEN, FIELD, FCLOSE, FPUT, FGET, EOF

global no%

global mojil$, moji2$
end field
global buff$ * 50
opensio 1 , 0 , buffs$

fopen

end conf

evnt

nos =

mojils =
mojizs =

size%

mcpy 5

‘‘C:TEST', 2 , 5

‘‘product-name’’
‘‘Yproduct-number’’

SOF (5)

buffs

writesiob 1 , size% , buffs$

end evnt

4-229

SQR

Function

B Function The SQR function calculates a square.

B Format SQR (numerical-expression)

B Example of Use X =S0R (Y)

B Description * The SQR function calculates a square for the specified numerical
expression. numerical-expression must be a numeric value greater
than or equal to 0.

B Related Item None

B Example of Program

evnt
X = SQR (a”2 + b"2)
numdsp ..NUM00O, X
end evnt

4-230 CHAPTER 4 INSTRUCTION REFERENCE

STARTTIM

STARTTIM

Statement

B Function
B Format

B Example of Use

B Description

B Related Item
B Example of Program

conf

The STARTTIM statement starts the operation of the specified timer.
STARTTIM timer-number

STARTTIM ID@
STARTTIM VAR

» The STARTTIM statement starts the operation of the specified timer.
(The timer starts increment from 0.)

 timer-number is the ID-type variable indicating the number of the
timer that starts increment or an integer-type variable from 0 to 15.

OPENTIM, STOPTIM, CONTTIM, CLOSETIM, SETTIM, READTIM

static timid@

timid@

opentim ()

settim timid@, 20, O
STARTTIM timidQ@

end conf
evnt

input type% , 1d@ , data%

if type%

tim%

= 3 then

= readtim(timidQ@)

numdsp ..NUM0O0O, tim%*100

end if

end evnt

4-231

STATIC

STATIC

Statement
B Function The STATIC statement declares that static variables are to be used.
B Format STATIC variable-name [, variable-name ...]
B Example of Use STATIC VAR, XYZ(2,3), MOJS$* 20
B Description » The STATIC statement declares that static variables are to be used.
Static variables can be used only the declared program. These
variables are initialized once when the power supply is turned on.
The values of static variables used after the power supply has been
turned on are retained.
* A normal variable, an array variable, or a character string variable can
be written in variable-name.
* When an aray or character variable is declared, the DIM and
STRING statements need not be declared.
B Related Item AUTO, BACKUP, DIM, GLOBAL, LOCAL, STRING

B Example of Program

conf
STATIC var%, float
STATIC moji$ * 50, moji2 (10) * 3
STATIC xyz@(10,10)

end conf

4-232 CHAPTER 4 INSTRUCTION REFERENCE

STOP

STOP

Statement

B Function The STOP statement stops the execution of the program.

B Format STOP

B Example of Use STOP

B Description * The STOP statement stops the execution of the program following this
statement.

B Related Item RUN

B Example of Program

evnt
input type , 1d@, data
if type = 3 and data = 0 then STOP
numdsp ..NUM0O0O, data

end evnt

4-233

STOPTIM

STOPTIM

Statement
B Function The STOPTIM statement stops the increment operation of the specified
timer.
B Format STOPTIM timer-number
B Example of Use STOPTIM ID@
STOPTIM VAR
B Description The STOPTIM statement stops the increment operation of the
specified timer.
 timer-number is the ID-type variable indicating the number of the
timer that stopsincrement or an integer-type variable from 0 to 15.
B Related ltem OPENTIM, STARTTIM, CONTTIM, CLOSETIM, SETTIM, READTIM

B Example of Program

conf
static timid@
timid@ = opentim()

settim timid@, 20, O
starttim timida@
end conf
evnt
input type% , id@ , data%
if type% = 3 and data% = 1 then
tim% = readtim(timidQ@)
numdsp ..NUM0OOO, tim%*100
else
STOPTIM timid@
end if

end evnt

4-234 CHAPTER 4 INSTRUCTION REFERENCE

STR$

STR$

Function
B Function The STR$ function converts the specified numeric value to a character
string.
B Format STR$ (numerical-expression)
B Example of Use A% = STR$(123)
B Description * An integer- or floating point-type numerical expression can be
specified in numerical-expression.
» When the numeric value specified in numerical-expression is negative,
“-* is added to the beginning of the character string.
B Related Item VAL

B Example of Program

evnt
input type, 1d@,data
a$ = STRS (data)
strdsp ..hyojiki , a$
end evnt

4-235

STRCOLOR

STRCOLOR

Statement

B Function

B Format

B Example of Use

B Description

B Related Item

The STRCOLOR statement changes the colors and background figure of
the character display.

STRCOLOR control-name, character-display-color, tile, display-color,
background-color

STRCOLOR ..GRAPH, 1, 2,5, 2

» The STRCOLOR statement changes the background tile and colors of
the character display. -1 indicates that the color and tile for which -1
was specified remain unchanged.

» control-name is the character display name or the ID-type variable
indicating the character display.

» character-display-color indicates the color in which characters are
displayed. Specify this character display color with a numeric value
from O to 15.

« tile indicates the background tiling figure of the character display.
Specify thistiling figure with a numeric value from 0 to 15.

« display-color is the numeric value indicating the color number of the
tile display section. Specify this color number with a numeric value
from O to 15.

» background-color is the numeric value indicating the color number
of the tile background section. Specify this color number with a
numeric value from O to 15.

STRDSP, STRFORM

B Example of Program

conf

static name@
name@ = ..STR0OO0O
end conf

evnt

input type%, 1d@, data%

if type% = 3 then

STRCOLOR name@, 2, -1,-1,-1

endif

end evnt

4-236 CHAPTER 4 INSTRUCTION REFERENCE

STRDSP

STRDSP

Statement

B Function

B Format

B Example of Use

B Description

B Related Item
B Example of Program

conf

The STRDSP statement displays data in the character display.
STRDSP control-name, display-data
STRDSP .BUHIN.GRAPH, “ABCDEF’

* The STRDSP statement displays datain the character display.

» control-name is the character display name or the ID-type variable

indicating the character display.

» display-data is character datato be displayed in the character display.
* display-value cannot be changed even if this statement is issued to the
display for which operation parameters are set to “effective” in the

control.

STRCOLOR, STRFORM

static name@
name@ = ..STR0OO0O
end conf
evnt
input type%, 1d@, data$
STRDSP name@, data$
end evnt

4-237

STRFORM

STRFORM

Statement
B Function The STRFORM statement changes the display method of the character
display.
B Format STRFORM control-name, display-method
B Example of Use STRFORM ..HYQJIKI, 0
B Description » The STRFORM statement changes the display method of the character
display.
» control-name is the character display name or the ID-type variable
indicating the character display.
+ display-method is the numeric value indicating any of the following
three display methods:
0: Left-justification method
1: Centering method
2: Right-justification method
B Related Item STRCOLOR, STRDSP

B Example of Program

evnt
input type , 1d@,data
var@ = .buhin.moji
STRFORM var@ , data
strdsp wvar@ , "ABCDEFG"
end evnt

4-238 CHAPTER 4 INSTRUCTION REFERENCE

STRING

STRING

Statement
B Function The STRING statement specifies the size of the character string variable
to be used.
B Format STRING variable-name * size [variable-name * size......]
B Example of Use STRING MOJI$ * 50
B Description » The STRING statement is used to specify a size of a local character
string variable.
» The STRING statement is adopted to maintain the compatibility with
GCSGP3. UseLOCAL, instead of STRING, in Screen Creator 5.
» The default size of the character string variable is 20 bytes. Use the
STRING statement to use a variable whose size is greater than 20
bytes. The character string variable must be declared before it is
used.
* variable-name must end with $.
» Specify size with aninteger value.
» Two or more character string variable can be specified in one line,
delimited by acomma.(,).
B Related Item GLOBAL, STATIC, BACKUP, LOCAL

B Example of Program

conf
string xxx$ * 40
string moji$ * 50
end conf

4-239

SWFIG

SWFIG

Statement

B Function

B Format
B Example of Use

B Description

B Related Item
B Example of Program

conf

The SWFIG statement sets the graphic to be displayed when the status of
the specified switch changes.

SWFIG switch-name, display-graphic, status, sub-1D

SWFIG ..SW1, FIG3, 0,0

The SWFIG statement specifies the graphic to be displayed in the
specified switch when the switch changes from the ON status to the
OFF status. Both the unit switch and selector switch can be used.
When the selector switch is used, its sub-ID must be specified.
switch-name is the name assigned to the switch or the ID-type
variable indicating the name.
display-graphic is the graphic name or the ID-type variable
indicating the name.
status is the integer value indicating whether the graphic is displayed
when the switch statusis ON or OFF.

0: The graphic is displayed when the switch statusis OFF.

1: The graphic is displayed when the switch status is ON.
sub-ID is required when the selector switch is used. Specify the
sub-switch number of the selector switch in sub-ID. The sub-switch
number in the upper left end is assigned 1. The sub-switch numbers
increase in the right direction. They decrease in the downward
direction. (Specify O in sub-ID when the selector switch is not used.)

None

static figid@, subid, onoff

figide

subid
onoff

end conf

evnt

FIGO3

input type,i1d@,data
if type = 3 and id@ = ..SWT000 then
SWEFIG id@ , figid@ , onoff , subid

endif
end evnt

4-240 CHAPTER 4 INSTRUCTION REFERENCE

SWMODE

SWMODE

Statement

B Function
B Format
B Example of Use

B Description

B Related Item

B Example of Program

evnt

The SWMODE statement modifies the status of the specified switch.
SWMODE switch-name, mode
SWMODE ..SW1, 2

» switch-name isthe name of the switch whose status is to be modified
or the ID-type variable indicating the switch.
» mode indicates the status to be modified.
0: Normal status
1: Input disable status
2. Half tone status

None

input type,i1d@,data

if type

= 3 then

SWMODE ..sw2 , 1
SWMODE var@ ,2

end if

end evnt

4-241

SWREAD

SWREAD

Function

B Function
B Format
B Example of Use

B Description

The SWREAD function reads the status of the specified switch.

SWREAD (switch-name)

STATE = SWREAD (..SW1)

The SWREAD function reads the status (ON or OFF) of the specified
switch.

switch-name is the name assigned to the switch or the ID-type
variable indicating the name.

The CONF and part CONF block of the global screen cannot be used
in the switch primitive where operation parameters are valid.

The SWREAD statement cannot read the synchronous switch status of
an undisplayed screen.

As aresult of executing this function, the status of normal switchesis
indicated by the following numeric values:

0: OFF status

1: ON status

As aresult of executing this function, the status of selector switchesis
indicated by the following numeric values:

0: All selector switches are OFF.

Other values. Numbers of the sub-switches that are ON. (The
sub-switch number in the upper left endis1. The
sub-switch numbers increase in the right direction.
They decrease in the downward direction.)

Related Item SWWRITE
Example of Program

evnt
input type,i1d@,data
id@ = ..SW2
state = SWREAD (IDQ@)
if state = 0 then
swwrite 1id@,1
endif

end evnt

4-242 CHAPTER 4 INSTRUCTION REFERENCE

SWREV

SWREV

Statement

B Function

B Format
B Example of Use

B Description

B Related Item

B Example of Program

evnt

The SWREV statement sets whether to reverse the display of the
specified switch when the switch status changes.

SWREV switch-name, operation
SWREV ..SW2,0

 The SWREV statement sets whether to reverse the display of the
specified switch when the switch on the touch panel is pressed or the
statusis changed.
» switch-name is the name assigned to the switch or the ID-type
variable indicating the name.
» The CONF and part CONF block of the global screen cannot be used
in the switch primitive where operation parameters are valid.
» operation indicates whether to reverse the display of the switch with
the following numeric values:
0: Thedisplay of the switch is not reversed.
1. Thedisplay of the switch is reversed.

None

input type,i1d@,data
if type = 3 and id@ = ..SWT000 then

. SW2

SWREV id@,1
endif

end evnt

4-243

SWVRITE

SWWRITE

Statement

B Function

B Format

B Example of Use

B Description

B Related Item

The SWWRITE statement changes the status of the specified switch.
SWWRITE switch-name, status

SWWRITE ..SW1, 1

The SWWRITE statement changes the status (ON or OFF) of the
specified switch even if the switch on the touch panel is not pressed.
When the status is changed, the data indicating the status is
transmitted to the part program on which the switch is placed.
switch-name is the name assigned to the switch or the ID-type
variable indicating the name.

For multi-switches, it is necessary to set switch numbers in the offset
and to get switch IDs using the GETID command.

status indicates that the normal switches are in any of the following
statuses:

0: OFF status

1: ON status

status indicates that the selector switches are in any of the following
statuses:

0: All selector switches are OFF.

Other values. Numbers of the sub-switches that are ON. (The
sub-switch number in the upper left endis1. The
sub-switch numbers increase in the right direction.
They decrease in the downward direction.)

The numbers of multi-switches and selector switches are counted as 1,
2, 3 and so forth from the upper left switch. When all switches are
counted in the X direction, the switches on the lower Y line are
counted in the sameway. They are integers.

When this statement is executed, a message is issued as a switch is
pressed.

Executing the SWWRITE statement for the switch where synchronous
operation isvalid causes an error.

The SWWRITE statement is invalid for the switch of the momentary

type.

GETID,SWREAD

4-244 CHAPTER 4 INSTRUCTION REFERENCE

SWVRITE

Example of Program

evnt
input type,i1d@,data
id@ = ..Sw2
state = swread (IDQ)

if state = 0 then
SWWRITE id@,1
endif

end evnt

4-245

SWVRITE

TAN

Function
B Function The TAN function calculates a tangent for the specified numerical
expression.

B Format TAN (numerical-expression)

B Example of Use X =TAN (ANGLE)

B Description » The TAN function calculates a tangent value for the specified
numerical expression. The unit for the numeric expression is radian.

Bl Related Item ATN, SIN, COS

B Example of Program

evnt
angle = 3.141592/3
x = TAN (angle)
numdsp ..num000, x
end evnt

4-246 CHAPTER 4 INSTRUCTION REFERENCE

TAN

TIME\$

Statement

B Function

B Format

B Example of Use

B Description

B Related Item

B Example of Program

conf

moji$
strdsp
end conf

The TIMES statement reads the current time.
TIMES$
A$=TIMES$

* The TIMES statement reads the current time with a character string of

H:M:S format.

» This statement cannot be used to set the current time.

Once time is set using the SETTIME command in a model with a
battery backup calendar IC (GC56LC or GC55EM), time is updated
even while the power is off. If a model with no calendar IC
(GCB3LC or GC53LM) is turned off, the date is initialized to
98-01-01 and the time to 00:00:00 when it is turned on again. The
date and time are updated while the power ison.

DATE\$, GETDATE, GETTIME, SETDATE, SETTIME

TIMES
..STRO00 , moji$

4-247

TIMES$

TIMID

Function

B Function The TIMID function changes an integer-type timer number to an ID-type
timer number.

B Format TIMID (number)

B Example of Use AA@=TIMID (VAR)

B Description * number is the timer number (integer value) to be changed to an

I D-type timer number.
Bl Related Item TIMINT, OPENTIM?2

B Example of Program

conf
opentim2 (2)
settim 2 , 20, O
starttim 2
end conf
evnt
input type, id@
if id@ = timid(2) then

end evnt

4-248 CHAPTER 4 INSTRUCTION REFERENCE

TIMID

TIMINT

Function

B Function The TIMINT function changes an ID-type timer number to an an
integer-type timer number.

B Format TIMINT (ID-number)

B Example of Use VAR =TIMINT (ID@)

B Description * ID-number is the ID-type timer number to be changed to to an

integer-type timer number.
Bl Related Item TIMID, OPENTIM

B Example of Program

id@=opentim ()
no = TIMINT (id@)
chktim (no)

end evnt

4-249

TIMINT

VAL/VALZ2

Function

B Function The VAL/VAL2 function converts the number specified in
character-string to a numeric value.

B Format VAL (character-string)
VAL2 (character-string)

B Example of Use A =VAL (“123")
A =VAL2 (“123.45")

B Description » When the specified character string begins with a character other than

+,-,0t09, Eand ., the VAL/VALZ function returns O.

* If the specified character string contains an unconvertible character,
the VAL/VALZ2 function converts the characters before it.

* When the VAL function is used to convert the number specified in
character-string to a numeric value, the result becomes real type.

* When the VAL2 function is used to convert the number specified in
character-string to a numeric value, the result becomes integer type.

B Related Item STR$

B Example of Program

cont
var = VAL (“234")
numdsp ..NUM0O00O , wvar
end conf

4-250 CHAPTER 4 INSTRUCTION REFERENCE

WRITESO/WRITES OB

WHILE ... WEND

Statement
B Function The instructions between the WHILE and WEND statements are
executed while the specified conditional expression is true (satisfactory).
B Format WHILE conditional-expression
WEND
B Example of Use WHILE X>0
WEND
B Description * When the specified conditional expression is true, the instructions
between the WHILE and WEND statements are executed. When it
becomes false, the instructions following the WEND statement are
executed.
Bl Related Item IF ... THEN ... ELSE

B Example of Program

conf
static var (10)
WHILE 1% < 10
var (i%) = 1% * 5
WEND
end conf

4-251

WHILE ... WEND

WRITESIO/WRITESIOB

Statement

B Function

B Format

B Example of Use

B Description

B Related Item
B Example of Program

conf

The WRITESIO and WRITESIOB statements write transmission data to

anon-procedual communication transmission buffer.

WRITESIO port-number, variable-name
WRITESIOB port-number, number-of bytes, variable-name

WRITESIO 2, moji$
WRITESIOB 2, 20, moji$

The WRITESIO statement writes transmission data to a
non-procedual communication transmission buffer (serial port) in the
text mode. The WRITESIOB statement writes transmission data to
the same buffer (seria port) in the binary mode.

port-number specifies the channel (CH1 to CH3) to which
transmission datais to be written with a numeric value from 1 to 3.

Of the transmission data written to the variable specified by
variable-name, number-of-bytes specifies the number of bytesto be
transmitted (valid when the binary mode is used).

variable-name specifies the name of the variable to which
transmission datais written.

In the text mode, the written data is transmitted till the code (Oh)
indicating the end of the character string is detected. (That is, data
from 1 to OFFh can be transmitted. No terminator code is
automatically inserted into the end of data.)

In the binary mode, all data (0 to OFFh) can be transmitted.

The port to which transmission data is to be written must be opened
by the OPENSIO statement in advance.

OPENSIO, CLOSESIO, WRITESIO, WRITWSIOB, SETSIO

global bufs * 200
opensio 2 , 1 , buf$
setsio 2 , &HD

end conf

evnt
sendbuf$ ‘‘ABCDEFG' '
WRITESIO 2 , sendbuf$
closesio 2

end evnt

4-252 CHAPTER 4 INSTRUCTION REFERENCE

	Vol.6
	1. INTRODUCTION
	1-1 What is an Operation Program?
	1-2 Objects to be Described in Operation Programs
	1-2-1 Operation programs for parts
	-2-2 Operation programs for screens

	1-3 Terms
	1-3-1 Screens
	1-3-2 Figures (backgrounds)
	1-3-3 Parts
	1-3-4 Controls
	1-3-5 Messages

	2. EXAMPLES OF PROGRAMMING
	2-1 Creating a Part for Displaying Numerics
	2-1-1 Arranging controls
	2-1-2 Coding a program
	2-1-3 Drawing a figure in a part
	2-1-4 Saving a created part
	2-1-5 Using a created part
	2-1-6 Explanation for coded program content
	2-1-7 Modifying a created part

	2-2 Creating a Part to be Linked to a PLC Device
	2-2-1 Numeral displays
	2-2-2 Indicator lamps
	2-2-3 Switches
	2-2-4 Indicator switches

	2-3 Creating a Part to be Linked to an External Device
	2-3-1 Display for host computer

	2-4 Creating a Part for Controlling Others
	2-4-1 Part for calling others from touch panel
	2-4-2 Part for sending/receiving numerics to/from others

	2-5 Creating a Part for Using a Timer
	2-5-1 Part for counting up

	2-6 Editing a Program for a Displayed Part

	3. CODING RULES
	3-1 Usable Characters
	3-2 Special Characters
	3-3 Constants
	3-4 Constant Declaration
	3-5 Variables
	3-5-1 Classification of variables
	3-5-2 Types of Variables
	3-5-3 Checking variable types and variable interpretation in compilation
	3-5-4 Initializing variables

	3-6 Expressions and Operations
	3-7 Type Conversion
	3-8 Labels
	3-9 Subroutines
	3-10 User-defined Functions
	3-10-1 Definition of user-defined functions
	3-10-2 Definition positions of user-defined functions and ranges of referencing
	3-10-3 How to call user-defined functions
	3-10-4 Variable declaration in user-defined functions and referencing external variables

	3-11 Program Operation
	3-12 Message Format
	3-13 Program Blocks
	3-14 Devices and Communication
	3-15 Memory Tables
	3-15-1 Describing memory table
	3-15-2 Reading and writing One element
	3-15-3 Reading and writing two or more elements

	3-16 File Systems
	3-16-1 Precautions for file systems
	3-16-2 Specifying a file

	3-17 Notes

	4. INSTRUCTION REFERENCE
	4-1 Instruction Reference
	4-2 Indexes by Functions
	A
	ABS
	ADDCYC
	ADDCYC2
	ADDCYCID
	ASC
	ATN
	AUTO

	B
	BACKUP
	BARCOLOR
	BARDSP
	BARSET
	BARSHIFT
	BCD2BIN
	BEEP
	BIN2BCD
	BITSET
	BITTEST
	BLCTL
	BLSTAT
	BLTCOLOR
	BLTDSP
	BLTSET
	BREAD
	BWRITE

	C
	CHDIR
	CHKTIM
	CHR$
	CINT
	CIRCOLOR
	CIRDSP
	CIRSET
	CLEAR
	CLOSE
	CLOSECOM
	CLOSEPARALLEL
	CLOSESIO
	CLOSETIM
	COLOR
	CONF ... END CONF
	CONST
	CONTTIM
	COPY
	COS
	CURDIR
	CVB
	CVF
	CVI
	CVID
	CVW
	CYCLIC
	CYCLIC2

	D
	DATE$
	DECLARE
	DEVRD
	DEVWR
	DIM
	DIR
	DINV
	DOT
	DSPMODE

	E
	EOF
	ERRCTL
	ERRSTAT
	EVENTWR
	EVNT ... END EVNT
	EXECPRCODE
	EXIT FUNCTION
	EXP

	F
	FCLOSE
	FGET
	FIELD ... END FIELD
	FIGCOLOR
	FIGDSP
	FIGFORM
	FINPUT
	FLUSH
	FOPEN
	FOR ... TO ... NEXT
	FORMAT
	FPRINT
	FPUT
	FRECOLOR
	FREDSP
	FSEEK
	FSUM
	FUNCTION ... END FUNCTION
	FWRITE

	G
	GETBLIGHT
	GETDATE
	GETGID
	GETGNO
	GETID
	GETOFFSET
	GETTIME
	GLOBAL
	GOSUB
	GOTO

	H
	HEX$

	I
	IF ... THEN ... ELSE
	INIT ... END INIT
	INP
	INPBIT
	INPUT
	INSTR
	INT
	INTERLOCK
	IOCTL
	IOCTL2
	IOSTAT

	J
	JUMP

	K
	KILL

	L
	LAMPCOLOR
	LAMPDSP
	LEFT$
	LEN
	LINE
	LINPUT
	LNECOLOR
	LNEDSP
	LNESET
	LNESHIFT
	LNESHIFT2
	LOCAL
	LOCALCHECK
	LOF
	LOG

	M
	MCPY
	MEDIACHK
	MEDIASIZE
	MID$
	MID$
	MKB
	MKDIR
	MKF
	MKI
	MKID
	MKS
	MKW
	MOVE
	MTRCOLOR
	MTRDSP

	N
	NUMCOLOR
	NUMDSP
	NUMFORM

	O
	OCT$
	ONFERR
	OPEN
	OPENCOM
	OPENPARALLEL
	OPENSIO
	OPENTIM
	OPENTIM2
	OPENTIM3
	OUT
	OUTBIT
	OUTBITSTAT
	OUTSTAT

	P
	PIPCOLOR
	PIPDSP
	PLTCOLOR
	PLTDSP
	PMODE
	PRDSP
	PREVJUMP
	PRINT
	PRMCTL
	PRMSTAT
	PSTAT

	R
	RANGE
	READTIM
	RENAME
	REOPENCOM
	REOPENPARALLEL
	RESETALARM
	RETURN
	RIGHT$
	RMDIR
	ROTATE
	RSTAT
	RUN

	S
	SELECT CASE ... END SELECT
	SEND
	SETALARM
	SETBEEP
	SETBLIGHT
	SETDATE
	SETLNEPLOT
	SETSIO
	SETTIM
	SETTIME
	SHIFT
	SIN
	SLDDSP
	SOF
	SQR
	STARTTIM
	STATIC
	STOP
	STOPTIM
	STR$
	STRCOLOR
	STRDSP
	STRFORM
	STRING
	SWFIG
	SWMODE
	SWREAD
	SWREV
	SWWRITE

	T
	TAN
	TIME\$
	TIMID
	TIMINT

	V
	VAL/VAL2

	W
	WHILE ... WEND
	WRITESIO/WRITESIOB

