
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

for Renesas
H8/300H and H8S Microcomputer Families

CH8-1

COPYRIGHT NOTICE
© Copyright 1996–2006 IAR Systems. All rights reserved.

No part of this document may be reproduced without the prior written consent of IAR
Systems. The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR Systems, From Idea to Target, IAR Embedded Workbench, visualSTATE, IAR
MakeApp and C-SPY are trademarks owned by IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE

First edition: June 2006

Part number: CH8-1

This guide applies to version 2.x of H8 IAR Embedded Workbench®.

Brief contents
Tables .. xv

Preface .. xvii

Part 1. Using the compiler ... 1

Getting started .. 3

Data storage .. 13

Functions ... 25

Placing code and data .. 33

The DLIB runtime environment ... 51

Assembler language interface ... 83

Using C++ .. 103

Efficient coding for embedded applications 117

Part 2. Compiler reference .. 133

Compiler usage .. 135

Compiler options ... 143

Data representation .. 175

Compiler extensions .. 187

Extended keywords ... 199

Pragma directives .. 215

Intrinsic functions ... 227

The preprocessor ... 245

Library functions ... 255
CH8-1

iii

iv
Segment reference ... 263

Implementation-defined behavior .. 283

Index ... 295
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Contents
Tables .. xv

Preface .. xvii

Who should read this guide ...xvii

How to use this guide ..xvii

What this guide contains ..xviii

Other documentation ..xix

Further reading ..xix

Document conventions .. xx

Typographic conventions ... xx

Part 1. Using the compiler ... 1

Getting started .. 3

IAR language overview ... 3

Supported H8/300H and H8S derivatives 4

Building applications—an overview .. 4

Compiling ... 4

Linking ... 4

Basic settings for project configuration .. 5

Core .. 6

Operating mode .. 6

Data model ... 6

Code model .. 7

Hardware configuration ... 7

Configuration dependencies ... 7

Size of double floating-point type .. 8

Optimization for speed and size ... 8

Runtime environment ... 8

Special support for embedded systems .. 10

Extended keywords .. 10

Pragma directives ... 10
CH8-1

v

vi
Predefined symbols .. 10

Special function types .. 10

Header files for I/O .. 11

Accessing low-level features ... 11

Data storage .. 13

Introduction .. 13

Data models .. 14

Specifying a data model ... 15

Memory types .. 15

Bitvar .. 16

Data8 memory .. 16

Data16 memory .. 17

Data32 memory .. 17

Using data memory attributes .. 18

Pointers and memory types .. 19

Structures and memory types .. 20

More examples ... 20

C++ and memory types .. 21

The stack and auto variables ... 22

Dynamic memory on the heap .. 23

Functions ... 25

Function-related extensions .. 25

Code models and memory attributes for function storage 25

Primitives for interrupts, concurrency, and OS-related
programming .. 26

Interrupt functions ... 26

Trap functions ... 27

Monitor functions ... 28

C++ and special function types ... 31

Placing code and data .. 33

Segments and memory .. 33

What is a segment? .. 33
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Contents
Placing segments in memory .. 34

Customizing the linker command file .. 35

Data segments ... 37

Static memory segments ... 37

The stack ... 40

The heap .. 41

Located data ... 43

Code segments ... 43

Normal code ... 43

Interrupt vectors .. 44

Function vectors for non-interrupt functions 44

C++ dynamic initialization ... 45

Controlling data and function placement in memory 45

Data placement at an absolute location .. 46

Data and function placement in segments .. 48

Verifying the linked result of code and data placement 49

Segment too long errors and range errors .. 49

Linker map file ... 49

The DLIB runtime environment ... 51

Introduction to the runtime environment 51

Runtime environment functionality ... 51

Library selection .. 52

Situations that require library building .. 52

Library configurations .. 53

Debug support in the runtime library ... 53

Using a prebuilt library .. 54

Customizing a prebuilt library without rebuilding 56

Choosing formatters for printf and scanf 57

Choosing printf formatter ... 57

Choosing scanf formatter .. 58

Overriding library modules .. 59

Building and using a customized library 61

Setting up a library project ... 61
CH8-1

vii

viii
Modifying the library functionality .. 61

Using a customized library .. 62

System startup and termination .. 63

System startup .. 64

System termination .. 64

Customizing system initialization ... 65

__low_level_init ... 65

Modifying the file cstartup.s37 ... 66

Standard streams for input and output .. 66

Implementing low-level character input and output 67

Configuration symbols for printf and scanf 68

Customizing formatting capabilities .. 69

File input and output ... 69

Locale ... 70

Locale support in prebuilt libraries .. 71

Customizing the locale support .. 71

Changing locales at runtime ... 72

Environment interaction ... 72

Signal and raise .. 73

Time ... 74

Strtod ... 74

Assert ... 74

Heaps ... 75

C-SPY Debugger runtime interface .. 75

Low-level debugger runtime interface ... 76

The debugger terminal I/O window ... 76

Checking module consistency ... 77

Runtime model attributes .. 77

Using runtime model attributes .. 78

Predefined runtime attributes ... 78

Using a weak runtime model check ... 80

User-defined runtime model attributes .. 81
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Contents
Assembler language interface ... 83

Mixing C and assembler ... 83

Intrinsic functions .. 83

Mixing C and assembler modules .. 84

Inline assembler .. 85

Calling assembler routines from C ... 86

Creating skeleton code ... 86

Compiling the code .. 87

Calling assembler routines from C++ .. 88

Calling convention .. 89

Choosing a calling convention ... 90

Function declarations .. 91

C and C++ linkage ... 91

Preserved versus scratch registers ... 92

Function call .. 93

Function exit ... 95

Restrictions for special function types ... 96

Examples .. 96

Function directives ... 97

Memory access methods ... 98

Example code for showing differences in memory types 99

The data16 memory access method ... 99

The data32 memory access method ... 100

The data8 memory access method ... 100

Call frame information ... 101

Using C++ .. 103

Overview .. 103

Standard Embedded C++ ... 103

Extended Embedded C++ .. 104

Enabling C++ support .. 104

Feature descriptions .. 105

Classes .. 105

Functions .. 108
CH8-1

ix

x

New and Delete operators .. 109

Templates .. 110

Variants of casts ... 113

Mutable .. 113

Namespace .. 113

The STD namespace .. 113

Pointer to member functions .. 113

Using interrupts and C++ destructors .. 114

C++ language extensions ... 114

Efficient coding for embedded applications 117

Taking advantage of the compilation system 117

Controlling compiler optimizations ... 118

Fine-tuning enabled transformations ... 119

Selecting data types and placing data in memory 121

Using efficient data types ... 121

Data model and data memory attributes .. 122

Rearranging elements in a structure ... 123

Anonymous structs and unions .. 124

Writing efficient code ... 126

Saving stack space and RAM memory .. 126

Stack pointer arithmetics .. 127

Function prototypes .. 127

Function calls ... 128

Integer types and bit negation .. 129

Protecting simultaneously accessed variables 129

Accessing special function registers .. 130

Non-initialized variables .. 130

Part 2. Compiler reference .. 133

Compiler usage .. 135

Compiler invocation .. 135

Invocation syntax ... 135
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Contents
Passing options to the compiler ... 136

Environment variables ... 136

Include file search procedure .. 136

Compiler output ... 138

Diagnostics .. 139

Message format .. 139

Severity levels .. 140

Setting the severity level .. 140

Internal error .. 140

Compiler options ... 143

Compiler options syntax ... 143

Types of options ... 143

Rules for specifying parameters ... 143

Options summary ... 146

Descriptions of options .. 148

Data representation .. 175

Alignment .. 175

Alignment in the H8 IAR C/C++ Compiler 176

Basic data types .. 176

Integer types ... 176

Floating-point types .. 178

Pointer types .. 179

Function pointers .. 179

Data pointers .. 180

Casting ... 180

Structure types .. 182

Alignment ... 182

General layout ... 182

Packed structure types ... 183

Type qualifiers .. 183

Declaring objects volatile .. 183

Declaring objects const .. 184
CH8-1

xi

xii
Data types in C++ ... 185

Compiler extensions .. 187

Compiler extensions overview ... 187

Enabling language extensions .. 188

C language extensions .. 188

Important language extensions ... 189

Useful language extensions .. 190

Minor language extensions .. 194

Extended keywords ... 199

General syntax rules for extended keywords 199

Type attributes .. 199

Object attributes .. 202

Summary of extended keywords ... 203

Descriptions of extended keywords ... 204

Pragma directives .. 215

Summary of pragma directives .. 215

Descriptions of pragma directives .. 216

Intrinsic functions ... 227

Summary of intrinsic functions ... 227

Descriptions of intrinsic functions ... 229

The preprocessor ... 245

Overview of the preprocessor .. 245

Predefined preprocessor symbols ... 246

Summary of predefined symbols ... 246

Descriptions of predefined symbols ... 247

Description of miscellaneous preprocessor extensions 252

Library functions ... 255

Introduction .. 255

Header files .. 255

Library object files ... 255
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Contents
Reentrancy ... 256

IAR DLIB Library .. 256

C header files ... 257

C++ header files ... 257

Added C functionality ... 260

ctype.h .. 260

inttypes.h .. 260

math.h ... 260

stdbool.h ... 261

stdint.h .. 261

stdio.h ... 261

stdlib.h .. 261

wchar.h ... 261

wctype.h ... 262

Segment reference ... 263

Summary of segments .. 263

Descriptions of segments .. 264

Implementation-defined behavior .. 283

Descriptions of implementation-defined behavior 283

Translation ... 283

Environment ... 284

Identifiers ... 284

Characters ... 284

Integers ... 286

Floating point ... 286

Arrays and pointers .. 287

Registers ... 287

Structures, unions, enumerations, and bitfields 287

Qualifiers .. 288

Declarators ... 288

Statements .. 288

Preprocessing directives ... 288

IAR DLIB Library functions .. 290
CH8-1

xiii

xiv
Index ... 295
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Tables
1: Typographic conventions used in this guide ... xx

2: Configuration dependencies .. 7

3: Command line options for specifying library and dependency files 9

4: Data model characteristics .. 15

5: Memory types and their corresponding memory attributes 18

6: Code models .. 26

7: XLINK segment memory types .. 34

8: Memory layout of a target system (example) ... 35

9: Segment name suffixes ... 38

10: Heaps, memory types, and segments .. 42

11: Library configurations ... 53

12: Levels of debugging support in runtime libraries ... 54

13: Prebuilt libraries .. 55

14: Customizable items ... 56

15: Formatters for printf .. 58

16: Formatters for scanf .. 59

17: Descriptions of printf configuration symbols ... 68

18: Descriptions of scanf configuration symbols .. 69

19: Low-level I/O files .. 70

20: Heaps and memory types .. 75

21: Functions with special meanings when linked with debug info 75

22: Example of runtime model attributes .. 77

23: Predefined runtime model attributes ... 78

24: Registers used for passing parameters .. 94

25: Registers used for returning values ... 96

26: Specifying the size of an assembler memory instruction 98

27: Call frame information resources defined in a names block 101

28: Compiler optimization levels .. 118

29: Environment variables .. 136

30: Error return codes .. 139

31: Compiler options summary ... 146
CH8-1

xv

xvi
32: Available code models .. 149

33: Available data models ... 151

34: Integer types .. 176

35: Floating-point types .. 178

36: Function pointers ... 179

37: Data pointers ... 180

38: Extended keywords summary ... 203

39: __code16 function memory attribute .. 206

40: __code24 function memory attribute .. 207

41: __data8 data memory attribute .. 207

42: __data16 data memory attribute .. 208

43: __data32 data memory attribute .. 209

44: Pragma directives summary .. 215

45: Intrinsic functions summary .. 227

46: Predefined symbols summary ... 246

47: Traditional standard C header files—DLIB .. 257

48: Embedded C++ header files .. 257

49: Additional Embedded C++ header files—DLIB ... 258

50: Standard template library header files ... 258

51: New standard C header files—DLIB .. 259

52: Segment summary ... 263

53: Message returned by strerror()—IAR DLIB library ... 292
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Preface
Welcome to the H8 IAR C/C++ Compiler Reference Guide. The purpose of
this guide is to provide you with detailed reference information that can help
you to use the H8 IAR C/C++ Compiler to best suit your application
requirements. This guide also gives you suggestions on coding techniques so
that you can develop applications with maximum efficiency.

Who should read this guide
You should read this guide if you plan to develop an application using the C or C++
language for the H8/300H and H8S microcomputer families and need to get detailed
reference information on how to use the H8 IAR C/C++ Compiler. In addition, you
should have a working knowledge of the following:

● The architecture and instruction set of the H8/300H and H8S microcomputer
families. Refer to the documentation from Renesas for information about the
H8/300H and H8S microcomputer families

● The C or C++ programming language
● Application development for embedded systems
● The operating system of your host machine.

How to use this guide
When you start using the H8 IAR C/C++ Compiler, you should read Part 1. Using the
compiler in this guide.

When you are familiar with the compiler and have already configured your project, you
can focus more on Part 2. Compiler reference.

If you are new to using the IAR toolkit, we recommend that you first study the H8 IAR
Embedded Workbench® IDE User Guide. This guide contains a product overview,
tutorials that can help you get started, conceptual and user information about IAR
Embedded Workbench and the IAR C-SPY Debugger, and corresponding reference
information. The H8 IAR Embedded Workbench® IDE User Guide also contains a
glossary.
CH8-1

xvii

xvi

What this guide contains
What this guide contains
Below is a brief outline and summary of the chapters in this guide.

Part 1. Using the compiler

● Getting started gives the information you need to get started using the H8 IAR
C/C++ Compiler for efficiently developing your application.

● Data storage describes how data can be stored in memory, with emphasis on the
different data models and data memory type attributes.

● Functions gives a brief overview of function-related extensions—mechanisms for
controlling functions—and describes some of these mechanisms in more detail.

● Placing code and data describes the concept of segments, introduces the linker
command file, and describes how code and data are placed in memory.

● The DLIB runtime environment describes the runtime environment in which an
application executes. It covers how you can modify it by setting options, overriding
default library modules, or building your own library. The chapter also describes
system initialization and introduces the file cstartup, as well as how to use
modules for locale, and file I/O.

● Assembler language interface contains information required when parts of an
application are written in assembler language. This includes the calling convention.

● Using C++ gives an overview of the two levels of C++ support: The
industry-standard EC++ and IAR Extended EC++.

● Efficient coding for embedded applications gives hints about how to write code that
compiles to efficient code for an embedded application.

Part 2. Compiler reference

● Compiler usage provides reference information about how the compiler interacts
with its environment—the invocation syntax, methods for passing options to the
compiler, environment variables, the include file search procedure, and the different
types of compiler output. The chapter also describes how the compiler’s diagnostic
system works.

● Compiler options explains how to set the compiler options, gives a summary of the
options, and contains detailed reference information for each compiler option.

● Data representation describes the available data types, pointers, and structure types.
● Compiler extensions gives a brief overview of the compiler extensions to the

ISO/ANSI C standard. More specifically the chapter describes the available C
language extensions.

● Extended keywords gives reference information about each of the H8-specific
keywords that are extensions to the standard C/C++ language.

● Pragma directives gives reference information about the pragma directives.
● Intrinsic functions gives reference information about the functions that can be used

for accessing H8-specific low-level features.
CH8-1

ii
H8 IAR C/C++ Compiler
Reference Guide

Preface
● The preprocessor gives a brief overview of the preprocessor, including reference
information about the different preprocessor directives, symbols, and other related
information.

● Library functions gives an introduction to the C or C++ library functions, and
summarizes the header files.

● Segment reference gives reference information about the compiler’s use of
segments.

● Implementation-defined behavior describes how the H8 IAR C/C++ Compiler
handles the implementation-defined areas of the C language standard.

Other documentation
The complete set of IAR Systems development tools for the H8/300H and H8S
microcomputer families is described in a series of guides. For information about:

● Using the IAR Embedded Workbench® IDE with the IAR C-SPY® Debugger, refer
to the H8 IAR Embedded Workbench® IDE User Guide

● Programming for the H8 IAR Assembler, refer to the H8 IAR Assembler Reference
Guide

● Using the IAR XLINK Linker, the IAR XAR Library Builder, and the IAR XLIB
Librarian, refer to the IAR Linker and Library Tools Reference Guide

● Using the IAR DLIB Library functions, refer to the online help system
● Porting application code and projects created with a previous H8 IAR Embedded

Workbench IDE, refer to H8 IAR Embedded Workbench® Migration Guide.

All of these guides are delivered in hypertext PDF or HTML format on the installation
media. Some of them are also delivered as printed books.

FURTHER READING

The following books may be of interest to you when using the IAR Systems
development tools:

● Barr, Michael, and Andy Oram, ed. Programming Embedded Systems in C and
C++ . O’Reilly & Associates.

● Harbison, Samuel P. and Guy L. Steele (contributor). C: A Reference Manual.
Prentice Hall.

● Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Language.
Prentice Hall. [The later editions describe the ANSI C standard.]

● Labrosse, Jean J. Embedded Systems Building Blocks: Complete and Ready-To-Use
Modules in C. R&D Books.

● Lippman, Stanley B. and Josée Lajoie. C++ Primer. Addison-Wesley.
● Mann, Bernhard. C für Mikrocontroller. Franzis-Verlag. [Written in German.]
● Stroustrup, Bjarne. The C++ Programming Language. Addison-Wesley.
CH8-1

xix

xx

Document conventions
We recommend that you visit the following websites:

● The Renesas website, www.Renesas.com, contains information and news about the
H8/300H and H8S microcomputer families.

● The IAR website, www.iar.com, holds application notes and other product
information.

● Finally, the Embedded C++ Technical Committee website,
www.caravan.net/ec2plus, contains information about the Embedded C++
standard.

Document conventions
When, in this text, we refer to the programming language C, the text also applies to C++,
unless otherwise stated.

TYPOGRAPHIC CONVENTIONS

This guide uses the following typographic conventions:

Style Used for

computer Text that you enter or that appears on the screen.

parameter A label representing the actual value you should enter as part of a
command.

[option] An optional part of a command.

{option} A mandatory part of a command.

a | b | c Alternatives in a command.

bold Names of menus, menu commands, buttons, and dialog boxes that
appear on the screen.

reference A cross-reference within this guide or to another guide.

… An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench
interface.

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Table 1: Typographic conventions used in this guide
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Part 1. Using the compiler
This part of the H8 IAR C/C++ Compiler Reference Guide includes the
following chapters:

● Getting started

● Data storage

● Functions

● Placing code and data

● The DLIB runtime environment

● Assembler language interface

● Using C++

● Efficient coding for embedded applications.
CH8-1

1

2

CH8-1

Getting started
This chapter gives the information you need to get started using the H8 IAR
C/C++ Compiler for efficiently developing your application.

First you will get an overview of the supported programming languages,
followed by a description of the steps involved for compiling and linking an
application.

Next, the compiler is introduced. You will get an overview of the basic settings
needed for a project setup, including an overview of the techniques that enable
applications to take full advantage of the H8/300H and H8S microcomputer
families. In the following chapters, these techniques will be studied in more
detail.

IAR language overview
There are two high-level programming languages available for use with the H8 IAR
C/C++ Compiler:

● C, the most widely used high-level programming language used in the embedded
systems industry. Using the H8 IAR C/C++ Compiler, you can build freestanding
applications that follow the standard ISO 9899:1990. This standard is commonly
known as ANSI C.

● C++, a modern object-oriented programming language with a full-featured library
well suited for modular programming. IAR Systems supports two levels of the
C++ language:

● Embedded C++ (EC++), a subset of the C++ programming standard, which is
intended for embedded systems programming. It is defined by an industry
consortium, the Embedded C++ Technical committee. See the chapter Using
C++.

● IAR Extended EC++, with additional features such as full template support,
namespace support, the new cast operators, as well as the Standard Template
Library (STL).

Each of the supported languages can be used in strict or relaxed mode, or relaxed with
IAR extensions enabled. The strict mode adheres to the standard, whereas the relaxed
mode allows some deviations from the standard.
CH8-1

Part 1. Using the compiler 3

4

Supported H8/300H and H8S derivatives
It is also possible to implement parts of the application, or the whole application, in
assembler language. See the H8 IAR Assembler Reference Guide.

For more information about the Embedded C++ language and Extended Embedded
C++, see the chapter Using C++.

Supported H8/300H and H8S derivatives
The H8 IAR C/C++ Compiler supports all derivatives based on the standard Renesas
H8/300H and H8S microcomputer families.

Building applications—an overview
A typical application is built from a number of source files and libraries. The source files
can be written in C, C++, or assembler language, and can be compiled into object files
by the H8 IAR C/C++ Compiler or the H8 IAR Assembler.

A library is a collection of object files. A typical example of a library is the compiler
library containing the runtime environment and the C/C++ standard library. Libraries
can also be built using the IAR XAR Library Builder, the IAR XLIB Librarian, or be
provided by external suppliers.

The IAR XLINK Linker is used for building the final application. XLINK normally uses
a linker command file, which describes the available resources of the target system.

Below, the process for building an application on the command line is described. For
information about how to build an application using the IAR Embedded Workbench
IDE, see the H8 IAR Embedded Workbench® IDE User Guide.

COMPILING

In the command line interface, the following line compiles the source file myfile.c
into the object file myfile.r37 using the default settings:

icch8 myfile.c

In addition, you need to specify some critical options, see Basic settings for project
configuration, page 5. For more information about the compiler invocation syntax and
about how the compiler relates to its environment, see Compiler usage, page 135.

LINKING

The IAR XLINK Linker is used for building the final application. Normally, XLINK
requires the following information as input:

● A number of object files and possibly certain libraries
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Getting started
● The standard library containing the runtime environment and the standard language
functions

● A program start label
● A linker command file that describes the memory layout of the target system
● Information about the output format.

On the command line, the following line can be used for starting XLINK:

xlink myfile.r37 myfile2.r37 -s __program_start -f lnkh8hss.xcl
dlh8hssfn.r37 -o aout.a37 -r

In this example, myfile.r37 and myfile2.r37 are object files, lnkh8hss.xcl is the
linker command file, and dlh8hssfn.r37 is the runtime library. The option -s
specifies the label where the application starts. The option -o specifies the name of the
output file, and the option -r is used for specifying the output format UBROF, which
can be used for debugging in C-SPY.

The IAR XLINK Linker produces output according to your specifications. Choose the
output format that suits your purpose. You might want to load the output to a
debugger—which means that you need output with debug information. Alternatively,
you might want to load the output to a flash loader or a PROM programmer—in which
case you need output without debug information, such as Intel-hex or Motorola
S-records. The option -F can be used for specifying the output format. (The default
output format is motorola.)

Basic settings for project configuration
This section gives an overview of the basic settings for the project setup that are needed
to make the compiler generate the best code for the H8/300H and H8S device you are
using. You can specify the options either from the command line interface or in the IAR
Embedded Workbench IDE. For details about how to set options, see Compiler options
syntax, page 143, and the H8 IAR Embedded Workbench® IDE User Guide,
respectively.

The basic settings are:

● Core—H8/300H or H8S
● Operating mode—Normal or Advanced
● Data model—Small or Huge
● Code model—Small or Large
● Hardware configuration—use of MAC register, interrupt mode, and bus width
● Size of double floating-point type—32-bit or 64-bit doubles
● Optimization settings
● Runtime environment.
CH8-1

Part 1. Using the compiler 5

6

Basic settings for project configuration
If you are using the IAR Embedded Workbench IDE, you also have the option to select
a derivative. A linker command file (xcl) and a C-SPY device description file (ddf) will
automatically be selected based on your choice of derivative. In addition, settings for
hardware configuration may be provided automatically.

In addition to all these settings, there are many other options and settings available for
fine-tuning the result even further. See the chapter Compiler options for a list of all
available options.

CORE

The H8 IAR C/C++ Compiler supports both the H8/300H and H8S microcomputer
families. Use the --core option to select the processor core for which the code is to be
generated.

This option has implications for the available operating modes, and the data and code
model, see Configuration dependencies, page 7.

OPERATING MODE

The H8 IAR C/C++ Compiler supports the different operating modes—Normal and
Advanced—available in the H8/300H and H8S microcomputer families. Use the
--operating_mode option to specify which operating mode you are using.

This option has implications for the used core, and the data and code model, see
Configuration dependencies, page 7.

DATA MODEL

One of the characteristics of the H8/300H and H8S microcomputer families is that there
is a trade-off regarding the way memory is accessed, ranging from cheap access to small
memory areas, up to more expensive methods that can access any location.

In the H8 IAR C/C++ Compiler, you can set a default memory access method by
selecting a data model. The following data models are supported:

● The Small data model, which has a default data pointer size of 2 bytes and which
can access the low 32 Kbytes or top 32 Kbytes of memory. In the Normal operating
mode, this is equivalent to the entire 64 Kbytes of memory

● The Huge data model, which has a default data pointer size of 4 bytes and which can
access the entire memory area. This model is only available in the Advanced
operating mode.

However, it is possible to override the default access method for each individual
variable. The chapter Data storage covers data models in greater detail. The chapter also
covers how to fine-tune the access method for individual data objects.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Getting started
This option has implications for the used core, operating mode, and the code model, see
Configuration dependencies, page 7.

CODE MODEL

The H8 IAR C/C++ Compiler supports code models to control the size of function
addresses, which determines the possible memory range for storing the function. The
following code models are available:

● The Small code model, which has a default function pointer size of 2 bytes;
functions can be placed in the memory range 0x2–0xFFFF; this code model is
available when using the Normal operating mode.

● The Large code model, which has a default function pointer size of 4 bytes;
functions can be placed in the memory range 0x2–0xFFFFFF; this code model is
available when using the Advanced operating mode.

This option has implications for the used core, operating mode, and the data model, see
Configuration dependencies, page 7.

For detailed information about the code models, see the chapter Functions.

HARDWARE CONFIGURATION

Some options specify the hardware properties of the selected microcomputer, or how
you set up your microcomputer for your application. These are:

● The availability of the MAC register and the MAC instructions; see --enable_mac, page
157

● The interrupt mode; many devices support several different interrupt modes. The
interrupt mode is selected by programming special function registers. When you
generate code related to interrupt handling, you must specify the interrupt mode you
will use; see --interrupt_mode, page 159

● The used address bus width of the device you are using; see --bus_width, page 148.

CONFIGURATION DEPENDENCIES

The following table lists the available combinations of the settings of core, operating
mode, data model, and code model:

Core Operating mode Data model Code model

H8S Normal: 16-bit addresses Small Small

H8S Advanced: 32-bit addresses Small, Huge Large

H8/300H Normal: 16-bit addresses Small Small

H8/300H Advanced: 24-bit addresses Small, Huge Large

Table 2: Configuration dependencies
CH8-1

Part 1. Using the compiler 7

8

Basic settings for project configuration
SIZE OF DOUBLE FLOATING-POINT TYPE

Floating-point values are represented by 32- and 64-bit numbers in standard IEEE754
format. By using the compiler option --double={32|64}, you can choose whether
data declared as double should be represented with 32 bits or 64 bits. The data type
float is always represented using 32 bits.

OPTIMIZATION FOR SPEED AND SIZE

The H8 IAR C/C++ Compiler is a state-of-the-art compiler with an optimizer that
performs, among other things, dead-code elimination, constant propagation, inlining,
common sub-expression elimination, and precision reduction. It also performs loop
optimizations, such as unrolling and induction variable elimination.

You can decide between several optimization levels and two optimization goals—size
and speed. Most optimizations will make the application both smaller and faster.
However, when this is not the case, the compiler uses the selected optimization goal to
decide how to perform the optimization.

The optimization level and goal can be specified for the entire application, for individual
files, and for individual functions. In addition, some individual optimizations, such as
function inlining, can be disabled.

For details about compiler optimizations, see Controlling compiler optimizations, page
118. For more information about efficient coding techniques, see the chapter Efficient
coding for embedded applications.

RUNTIME ENVIRONMENT

To create the required runtime environment you should choose a runtime library and set
library options. You may also need to override certain library modules with your own
customized versions.

The runtime library provided is the IAR DLIB Library, which supports ISO/ANSI C and
C++. This library also supports floating-point numbers in IEEE 754 format and it can
be configured to include different levels of support for locale, file descriptors, multibyte
characters, et cetera.

The runtime library you choose can be one of the prebuilt libraries, or a library that you
have customized and built yourself. The IAR Embedded Workbench IDE provides a
library project template that you can use for building your own library version. This
gives you full control of the runtime environment. If your project only contains
assembler source code, there is no need to choose a runtime library.

For detailed information about the runtime environment, see the chapter The DLIB
runtime environment.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Getting started
The way you set up a runtime environment and locate all the related files differs
depending on which build interface you are using—the IAR Embedded Workbench IDE
or the command line.

Choosing a runtime library in the IAR Embedded Workbench IDE

To choose a library, choose Project>Options, and click the Library Configuration tab
in the General Options category. Choose the appropriate library from the Library
drop-down menu.

Note that for the DLIB library there are two different configurations—Normal and
Full—which include different levels of support for locale, file descriptors, multibyte
characters, et cetera. See Library configurations, page 53, for more information.

Based on which library configuration you choose and your other project settings, the
correct library file is used automatically. For the device-specific include files, a correct
include path is set up.

Choosing a runtime library from the command line

Use the following command line options to specify the library and the dependency files:

For a list of all prebuilt library object files for the IAR DLIB Library, see Table 13,
Prebuilt libraries, page 55. The table also shows how the object files correspond to the
dependent project options, and the corresponding configuration files. Make sure to use
the object file that matches your other project options.

Setting library and runtime environment options

You can set certain options to reduce the library and runtime environment size:

● The formatters used by the functions printf, scanf, and their variants, see
Choosing formatters for printf and scanf, page 57.

● The size of the stack and the heap, see The stack, page 40, and The heap, page 41,
respectively.

Command line Description

-I\h8\inc Specifies the include paths

libraryfile.r37 Specifies the library object file

--dlib_config

C:\...\configfile.h

Specifies the library configuration file

Table 3: Command line options for specifying library and dependency files
CH8-1

Part 1. Using the compiler 9

10

Special support for embedded systems
Special support for embedded systems
This section briefly describes the extensions provided by the H8 IAR C/C++ Compiler
to support specific features of the H8/300H and H8S microcomputer families.

EXTENDED KEYWORDS

The H8 IAR C/C++ Compiler provides a set of keywords that can be used for
configuring how the code is generated. For example, there are keywords for controlling
the memory type for individual data objects as well as for declaring special function
types.

By default, language extensions are enabled in the IAR Embedded Workbench IDE.

The command line option -e makes the extended keywords available, and reserves them
so that they cannot be used as variable names. See, -e, page 156 for additional
information.

For detailed descriptions of the extended keywords, see the chapter Extended keywords.

PRAGMA DIRECTIVES

The pragma directives control the behavior of the compiler, for example how it allocates
memory, whether it allows extended keywords, and whether it issues warning messages.

The pragma directives are always enabled in the H8 IAR C/C++ Compiler. They are
consistent with ISO/ANSI C, and are very useful when you want to make sure that the
source code is portable.

For detailed descriptions of the pragma directives, see the chapter Pragma directives.

PREDEFINED SYMBOLS

With the predefined preprocessor symbols, you can inspect your compile-time
environment, for example time of compilation, and the code and data models.

For detailed descriptions of the predefined symbols, see the chapter The preprocessor.

SPECIAL FUNCTION TYPES

The special hardware features of the H8/300H and H8S microcomputer families are
supported by the compiler’s special function types: interrupt, monitor, task, and trap.
You can write a complete application without having to write any of these functions in
assembler language.

For detailed information, see Primitives for interrupts, concurrency, and OS-related
programming, page 26.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Getting started
HEADER FILES FOR I/O

Standard peripheral units are defined in device-specific I/O header files with the
filename extension h. The product package supplies I/O files for all devices that are
available at the time of the product release. You can find these files in the h8\inc
directory. Make sure to include the appropriate include file in your application source
files. If you need additional I/O header files, they can easily be created using one of the
provided ones as a template. For an example, see Accessing special function registers,
page 130.

To read about using I/O files for version 1 of the compiler and for files delivered by
Renesas, see the H8 IAR Embedded Workbench® Migration Guide.

ACCESSING LOW-LEVEL FEATURES

For hardware-related parts of your application, accessing low-level features is essential.
The H8 IAR C/C++ Compiler supports several ways of doing this: intrinsic functions,
mixing C and assembler modules, and inline assembler. For information about the
different methods, see Mixing C and assembler, page 83.
CH8-1

Part 1. Using the compiler 11

12

Special support for embedded systems
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Data storage
This chapter gives a brief introduction to the memory layout of the H8/300H
and H8S microcomputer families and the fundamental ways data can be stored
in memory: on the stack, in static (global) memory, or in heap memory. For
efficient memory usage, H8 IAR C/C++ Compiler provides a set of data
models and data memory attributes, allowing you to fine-tune the access
methods, resulting in smaller code size. The concepts of data models and
memory types are described in relation to pointers, structures, Embedded
C++ class objects, and non-initialized memory. Finally, detailed information
about data storage on the stack and the heap is provided.

Introduction
The H8 IAR C/C++ Compiler supports using the H8/300H and H8S microcomputers in
both Normal and Advanced operating mode.

In the Normal operating mode, all data must be placed within 64 Kbytes of memory, in
the address range 0x0000 to 0xFFFF.

In the Advanced operating mode, the microcomputer can address more memory, and
data can be placed in the address range 0x000000 to 0xFFFFFF (H8/300H) or
0x00000000 to 0xFFFFFFFF (H8S). Note that a specific device may impose additional
limits. The specified address ranges are valid for a device without a bus width limitation,
that is, a 24-bit bus width for an H8/300H device, or a 32-bit bus width for an H8S
device.

In practice, many devices have a more narrow bus width. For example, an H8S device
typically does not implement more than 24 address bits. In this case, the largest possible
address is 0xFFFFFF even for an H8S device.

By specifying the bus width when compiling in the Advanced operating mode, you
provide the compiler with information about the address range of the device. For
example, by specifying a bus width of 24 address bits, the compiler recognizes an
address in the address range 0xFF8000–0xFFFFFF to be accessible with the @aa:16
address mode.

Different types of physical memory can be placed in the memory range. A typical
application will have both read-only memory (ROM) and read/write memory (RAM).
Typically, there is no ROM at the highest 256 bytes in memory. Some parts of the
memory range contain processor control registers and peripheral units.
CH8-1

Part 1. Using the compiler 13

14

Data models
The compiler can access memory in different ways. The access methods range from
generic but expensive methods that can access the full memory space, to cheap methods
that can access limited memory areas. The compiler supports this by means of data
models and data memory attributes.

In a typical application, data can be stored in memory in three different ways:

● On the stack. This is memory space that can be used by a function as long as it is
executing. When the function returns to its caller, the memory space is no longer
valid.

● Static memory. This kind of memory is allocated once and for all; it remains valid
through the entire execution of the application. Variables that are either global or
declared static are placed in this type of memory. The word static in this context
means that the amount of memory allocated for this type of variable does not
change while the application is running.

● On the heap. Once memory has been allocated on the heap, it remains valid until it
is explicitly released back to the system by the application. This type of memory is
useful when the number of objects is not known until the application executes. Note
that there are potential risks connected with using the heap in systems with a limited
amount of memory, or systems that are expected to run for a long time.

Data models
The H8 IAR C/C++ Compiler supports two data models that can be used for applications
with different data requirements.

Technically, the data model specifies the default memory type. This means that the data
model controls the following:

● The placement of static and global variables, as well as constant literals
● Dynamically allocated data, for example data allocated with malloc, or, in C++,

the operator new
● The default pointer type
● The default addressing mode used by the compiler to access variables
● The placement of the runtime stack.

The data model specifies the default memory type. It is possible to override this for
individual variables and pointers. For information about how to specify a memory type
for individual objects, see Using data memory attributes, page 18.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Data storage
SPECIFYING A DATA MODEL

Two data models are implemented: Small, and Huge. These models are controlled by the
--data_model option. Each model has a default memory type and a default pointer
size. If you do not specify a data model option, the compiler will use the Small data
model.

Your project can only use one data model at a time, and the same model must be used
by all user modules and all library modules. However, you can override the default
memory type by explicitly specifying a memory attribute, using either keywords or the
#pragma type_attribute directive.

The following table summarizes the different data models:

For detailed information about the memory ranges for each memory attribute, see
Descriptions of extended keywords, page 204.

See the H8 IAR Embedded Workbench® IDE User Guide for information about setting
options in the IAR Embedded Workbench IDE.

Use the --data_model option to specify the data model for your project; see
--data_model, page 151.

Memory types
This section describes the concept of memory types used for accessing data by the H8
IAR C/C++ Compiler. It also discusses pointers in the presence of multiple memory
types. For each memory type, the capabilities and limitations are discussed.

The H8 IAR C/C++ Compiler uses different memory types to access data that is placed
in different areas of the memory. There are different methods for reaching memory
areas, and they have different costs when it comes to code space, execution speed, and
register usage. The access methods range from generic but expensive methods that can

Data model name
Default memory

attribute

Default pointer

attribute
Placement of data

Small __data16 __data16 Low 32 Kbytes or top 32 Kbytes,
which means all memory in the
Normal operating mode

Huge __data32 __data32 All 16 Mbytes (H8/300H) or 4
Gbytes (H8S) of memory

Table 4: Data model characteristics
CH8-1

Part 1. Using the compiler 15

16

Memory types
access the full memory space, to cheap methods that can access limited memory areas.
Each memory type corresponds to one memory access method. By mapping different
memories—or part of memories—to memory types, the compiler can generate code that
can access data efficiently.

For example, the memory accessible using the data16 memory access method is called
memory of data16 type, or simply data16 memory.

By selecting a data model, you have selected a default memory type that your
application will use. However, it is possible to specify—for individual variables or
pointers—different memory types. This makes it possible to create an application that
can contain a large amount of data, and at the same time make sure that variables that
are used often are placed in memory that can be efficiently accessed.

For more information about memory access methods, see Memory access methods, page
98.

BITVAR

The bitvar memory holds single bit variables and it can only be located in the highest
256 bytes of data memory, where the start address depends on the processor family and
the operating mode you are using. This part of the memory is accessible via the
addressing mode @aa:8.

For more details about the valid address ranges, see __bitvar, page 204.

DATA8 MEMORY

The data8 memory consists of the highest 256 bytes of data memory, where the start
address depends on the processor family and the operating mode you are using.

Because it is unlikely that the data8 memory is large enough for an application to hold
all default data (including the runtime stack), there is no data model that uses data8
memory as the default memory. However, you can declare individual data objects to be
placed in data8 memory by using the __data8 memory attribute.

The theoretical size of a data object placed in data8 memory is limited to 254 bytes
(256-2), although the practical size is normally much smaller, because special function
registers are normally placed here as well.

The code generated by the compiler differs somewhat if you use the Normal operating
mode or the Advanced operating mode. The most significant difference is that, although
a data8 pointer is only 8 bits in size, to dereference it, it must be expanded to 16 bits in
the Normal operating mode, and expanded to 32 bits in the Advanced operating mode.
This dereference problem also applies when indexing an array with a non-constant
index.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Data storage
Data8 memory is best used for single variables which are mainly accessed directly and
not via a pointer. For such variables, the code generated by the compiler can be very
efficient. This means a smaller footprint for the application, and faster execution at
run-time.

For more details, see __data8, page 207 and The data8 memory access method, page
100.

DATA16 MEMORY

The data16 memory consists of the low 32 Kbytes and the high 32 Kbytes of data
memory. In the Normal operating mode, this includes all available memory. The start
address of the high memory area, as well as the maximum object size depend on the
processor family and the operating mode you are using. This memory type is default in
the Small data model.

The code generated by the compiler will differ somewhat between the Normal operating
mode and the Advanced operating mode. The most significant difference is that,
although a data16 pointer is only 16 bits in size, it must be expanded to 32 bits when
dereferenced in the Advanced operating mode.

By using objects of this type, the code generated by the compiler to access them is fairly
small. This means a small footprint for the application, and fast execution at run-time.

For more details, see __data16, page 208 and The data16 memory access method, page
99.

DATA32 MEMORY

Data32 objects can be placed anywhere in the data memory, which means that all
memory up to 4 Gbytes can be accessed. Also, unlike the other memory types, there is
no limitation on the size of the objects that can be placed in this memory type. Data32
memory is default in the Large data model.

The drawback of the data32 memory type is that the code generated to access the
memory is larger and slower than that of any of the other memory types. In addition, the
code uses more processor registers, which may force local variables to be stored on the
stack rather than being allocated in registers. Note that data32 objects can only be used
in the Advanced operating mode.

Note that if you use the Advanced operating mode, you may want to use the Small data
model, and place the majority of data in the default low and high 32 Kbytes of memory.
You can still declare individual variables with the __data32 data memory attribute, and
thus place them in any part of the memory.

For more details, see __data32, page 209 and The data32 memory access method, page
100.
CH8-1

Part 1. Using the compiler 17

18

Memory types
USING DATA MEMORY ATTRIBUTES

The H8 IAR C/C++ Compiler provides a set of extended keywords, which can be used
as data memory attributes. These keywords let you override the default memory type for
individual data objects, which means that you can place data objects in other memory
areas than the default memory. This also means that you can fine-tune the access method
for each individual data object, which results in smaller code size.

The following table summarizes the available memory types and their corresponding
memory attributes:

* You cannot take the address of a __bitvar variable, nor create a pointer to such a variable.

The address ranges for each memory attribute depends on the core, the operating mode,
and the bus width you are using. The keywords are only available if language extensions
are enabled in the H8 IAR C/C++ Compiler.

In the IAR Embedded Workbench IDE, language extensions are enabled by default.

Use the -e compiler option to enable language extensions. See -e, page 156 for
additional information.

For reference information about each keyword, see Descriptions of extended keywords,
page 204.

Syntax

The keywords follow the same syntax as the type qualifiers const and volatile. The
memory attributes are type attributes and therefore they must be specified both when
they are defined and in the declaration, see Type qualifiers, page 183.

The following declarations place the variable i and j in data16 memory. The variables
k and l behave in the same way:

__data16 int i, j;
int __data16 k, l;

Note that the keyword affects both identifiers. If no memory type is specified, the default
memory type is used.

Memory type Memory attribute Pointer size Default in data model

Bitvar __bitvar N/A* --

Data8 __data8 8 bits --

Data16 __data16 16 bits Small

Data32 __data32 32 bits Large

Table 5: Memory types and their corresponding memory attributes
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Data storage
In addition to the rules presented here—to place the keyword directly in the code—the
directive #pragma type_attribute can be used for specifying the memory attributes.
The advantage of using pragma directives for specifying keywords is that it offers you a
method to make sure that the source code is portable. Refer to the chapter Pragma
directives for details about how to use the extended keywords together with pragma
directives.

Type definitions

Storage can also be specified using type definitions. The following two declarations are
equivalent:

typedef char __data16 Byte;
typedef Byte *BytePtr;
Byte b;
BytePtr bp;

and

__data16 char b;
char __data16 *bp;

POINTERS AND MEMORY TYPES

Pointers are used for referring to the location of data. In general, a pointer has a type.
For example, a pointer that has the type int * points to an integer.

In the H8 IAR C/C++ Compiler, a pointer also points to some type of memory. The
memory type is specified using a keyword before the asterisk. For example, a pointer
that points to an integer stored in data16 memory is declared by:

int __data16 * p;

Note that the location of the pointer variable p is not affected by the keyword. In the
following example, however, the pointer variable p2 is placed in data32 memory. Like
p, p2 points to an integer in data16 memory.

int __data16 * __data32 p2;

Whenever possible, pointers should be declared without memory attributes. For
example, the functions in the standard library are all declared without explicit memory
types.

Differences between pointer types

A pointer must contain information needed to specify a memory location of a certain
memory type. This means that the pointer sizes are different for different memory types.
For the H8 IAR C/C++ Compiler, the size of the data8, data16, and data32 pointers
are 8, 16, and 32 bits, respectively.
CH8-1

Part 1. Using the compiler 19

20

Memory types
In the H8 IAR C/C++ Compiler, it is illegal, with one exception, to convert pointers
between different types without explicit casts. The exception is when casting from a
small pointer type to a larger pointer type. Because the pointer size is 8 bits for data8
pointers, 16 bits for data16 pointers, and 32 bits for data32 pointers, and data8 resides
in data16 and data32, it is legal to cast a data8 pointer to a data16 or data32 pointer
without an explicit cast. In the same way it is legal to cast a data16 pointer to a data32
pointer without an explicit cast.

STRUCTURES AND MEMORY TYPES

For structures, the entire object is placed in the same memory type. It is not possible to
place individual structure members in different memory types.

In the example below, the variable gamma is a structure placed in data16 memory.

struct MyStruct
{
 int alpha;
 int beta;
};
__data16 struct MyStruct gamma;

The following declaration is incorrect:

struct MySecondStruct
{
 int blue;
 __data16 int green; /* Error! */
};

MORE EXAMPLES

The following is a series of examples with descriptions. First, some integer variables are
defined and then pointer variables are introduced. Finally, a function accepting a pointer
to an integer in data16 memory is declared. The function returns a pointer to an integer
in data32 memory. It makes no difference whether the memory attribute is placed before
or after the data type. In order to read the following examples, start from the left and add
one qualifier at each step

int a; A variable defined in default memory.

int __data16 b; A variable in data16 memory.

__data32 int c; A variable in data32 memory.

int * d; A pointer stored in default memory. The pointer
points to an integer in default memory.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Data storage
C++ and memory types
A C++ class object is placed in one memory type, in the same way as for normal C
structures. However, the class members that are considered to be part of the object are
the non-static member variables. The static member variables can be placed individually
in any kind of memory.

Remember, in C++ there is only one instance of each static member variable, regardless
of the number of class objects.

Also note that for non-static member functions—unless class memory is used, see
Classes, page 105—the this pointer will be of the default data pointer type. This means
that it must be possible to convert a pointer to the object to the default pointer type. The
restrictions that apply to the default pointer type also apply to the this pointer.

In the Small data model, this means that objects of classes with a member function can
only be placed in the default memory type (__data16).

Example

In the example below, an object, named delta, of the type MyClass is defined in data16
memory. The class contains a static member variable that is stored in data32 memory.

// The class declaration (placed in a header file):
class MyClass
{
public:
 int alpha;
 int beta;

 __data32 static int gamma;
};

// Definitions needed (should be placed in a source file):
__data32 int MyClass::gamma;

int __data32 * e; A pointer stored in default memory. The pointer
points to an integer in data32 memory.

int __data16 * __data32 f; A pointer stored in data32 memory pointing to
an integer stored in data16 memory.

int __data32 * myFunction(

 int __data16 *);
A declaration of a function that takes a
parameter which is a pointer to an integer stored
in data16 memory. The function returns a
pointer to an integer stored in data32 memory.
CH8-1

Part 1. Using the compiler 21

22

The stack and auto variables
// A variable definition:
__data16 MyClass delta;

The stack and auto variables
Variables that are defined inside a function—not declared static—are named auto
variables by the C standard. A small number of these variables are placed in processor
registers; the rest are placed on the stack. From a semantic point of view, this is
equivalent. The main differences are that accessing registers is faster, and that less
memory is required compared to when variables are located on the stack.

Auto variables live as long as the function executes; when the function returns, the
memory allocated on the stack is released.

The stack can contain:

● Local variables and parameters not stored in registers
● Temporary results of expressions
● The return value of a function (unless it is passed in registers)
● Processor state during interrupts
● Processor registers that should be restored before the function returns (callee-save

registers).

The stack is a fixed block of memory, divided into two parts. The first part contains
allocated memory used by the current function, the function that called the current
function, and the function that called it, etc. The second part contains free memory that
can be allocated. The borderline between the two areas is called the top of stack and is
represented by the stack pointer, which is a dedicated processor register. Memory is
allocated on the stack by moving the stack pointer.

A function should never refer to the memory in the area of the stack that contains free
memory. The reason is that if an interrupt occurs, the called interrupt function can
allocate, modify, and—of course—deallocate memory on the stack.

Advantages

The main advantage of the stack is that functions in different parts of the program can
use the same memory space to store their data. Unlike a heap, a stack will never become
fragmented or suffer from memory leaks.

It is possible for a function to call itself—a so-called a recursive function—and each
invocation can store its own data on the stack.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Data storage
Potential problems

The way the stack works makes it impossible to store data that is supposed to live after
the function has returned. The following function demonstrates a common
programming mistake. It returns a pointer to the variable x, a variable that ceases to exist
when the function returns.

int * MyFunction()
{
 int x;
 ... do something ...
 return &x;
}

Another problem is the risk of running out of stack. This will happen when one function
calls another, which in turn calls a third, etc., and the sum of the stack usage of each
function is larger than the size of the stack. The risk is higher if large data objects are
stored on the stack, or when recursive functions—functions that call themselves either
directly or indirectly—are used.

Dynamic memory on the heap
Memory for objects allocated on the heap will live until the objects are explicitly
released. This type of memory storage is very useful for applications where the amount
of data is not known until runtime.

In C, memory is allocated using the standard library function malloc, or one of the
related functions calloc and realloc. The memory is released again using free.

In C++, there is a special keyword, new, designed to allocate memory and run
constructors. Memory allocated with new must be released using the keyword delete.

The H8 IAR C/C++ Compiler supports heaps in both data16 memory and data32
memory. For more information about this, see The heap, page 41.

Potential problems

Applications that are using heap-allocated objects must be designed very carefully,
because it is easy to end up in a situation where it is not possible to allocate objects on
the heap.

The heap can become exhausted if your application uses too much memory. It can also
become full if memory that no longer is in use has not been released.

For each allocated memory block, a few bytes of data for administrative purposes is
required. For applications that allocate a large number of small blocks, this
administrative overhead can be substantial.
CH8-1

Part 1. Using the compiler 23

24

Dynamic memory on the heap
There is also the matter of fragmentation; this means a heap where small sections of free
memory is separated by memory used by allocated objects. It is not possible to allocate
a new object if there is no piece of free memory that is large enough for the object, even
though the sum of the sizes of the free memory exceeds the size of the object.

Unfortunately, fragmentation tends to increase as memory is allocated and released. For
this reason, applications that are designed to run for a long time should try to avoid using
memory allocated on the heap.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Functions
This chapter contains information about functions. It gives a brief overview of
function-related extensions—mechanisms for controlling functions—and
describes some of these mechanisms in more detail.

Function-related extensions
In addition to the ISO/ANSI C standard, the H8 IAR C/C++ Compiler provides several
extensions for writing functions in C. Using these, you can:

● Control the storage of functions in memory
● Use primitives for interrupts, concurrency, and OS-related programming
● Facilitate function optimization
● Access hardware features.

The compiler supports this by means of compiler options, extended keywords, pragma
directives, and intrinsic functions.

For more information about optimizations, see Writing efficient code, page 126. For
information about the available intrinsic functions for accessing hardware operations,
see the chapter Intrinsic functions, page 227.

Code models and memory attributes for function storage
The H8 IAR C/C++ Compiler supports two code models to control the size of function
addresses—Small and Large. Technically, the code model specifies the default memory
type. This means that the code model controls the following:

● The possible memory range for storing the function
● The maximum module size
● The maximum program size.

The code models are controlled by the --code_model option. If you do not specify a
code model option, the compiler will use the Small code model in the Normal operating
mode and the Large code model in the Advanced operating mode.

Your project can only use one code model at a time, and the same model must be used
by all user modules and all library modules.
CH8-1

Part 1. Using the compiler 25

26

Primitives for interrupts, concurrency, and OS-related programming
The following table summarizes the different code models:

The code model must follow the operating mode strictly. In the Normal operating mode,
only the Small code model is available. In the Advanced operating mode, only the Large
code model is available. This means that you have no real choice when it comes to code
models. The code model option has primarily been added for future compatibility.

For detailed information about the memory ranges for each memory attribute, see
Descriptions of extended keywords, page 204.

See the H8 IAR Embedded Workbench® IDE User Guide for information about
specifying a code model in the IAR Embedded Workbench IDE.

Use the --code_model option to specify the code model for your project; see
--code_model, page 149.

Primitives for interrupts, concurrency, and OS-related programming
The H8 IAR C/C++ Compiler provides the following primitives related to writing
interrupt functions, concurrent functions, and OS-related functions:

● The extended keywords __interrupt, __task, __trap, __raw, and
__monitor

● The pragma directive #pragma vector
● The intrinsic functions __enable_interrupt, __disable_interrupt, and

many other related intrinsic functions.

INTERRUPT FUNCTIONS

In embedded systems, the use of interrupts is a method of handling external events
immediately; for example, detecting that a button has been pressed.

In general, when an interrupt occurs in the code, the microcomputer simply stops
executing the code it runs, and starts executing an interrupt routine instead. It is
extremely important that the environment of the interrupted function is restored after the
interrupt has been handled; this includes the values of processor registers and the
processor status register. This makes it possible to continue the execution of the original
code when the code that handled the interrupt has been executed.

Code model name
Default memory

attribute
Max module size Max program size

Small __code16 64 Kbytes 64 Kbytes

Large __code24 16 Mbytes 16 Mbytes

Table 6: Code models
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Functions
The H8/300H and H8S microcomputer families support many interrupt sources. For
each interrupt source, an interrupt routine can be written. Each interrupt routine is
associated with a vector number, which is specified in the H8/300H and H8S
microcomputer documentation from the chip manufacturer. The interrupt vector
corresponds to the vector number in the device documentation from Renesas. If you
want to handle several different interrupts using the same interrupt function, you can
specify several interrupt vectors.

The header file ioderivative.h, where derivative corresponds to the selected
derivative, contains predefined names for the existing exception vectors.

To define an interrupt function, the __interrupt keyword and the #pragma vector
directive can be used. For example:

#pragma vector=_INT_WOVI //Symbol defined in I/O header file
__interrupt void my_interrupt_routine(void)
{
 /* Do something */
}

Note: An interrupt function must have the return type void, and it cannot specify any
parameters.

If a vector is specified in the definition of an interrupt function, the processor interrupt
vector table is populated. It is also possible to define an interrupt function without a
vector. This is useful if an application is capable of populating or changing the interrupt
vector table at runtime. See the chip manufacturer’s H8/300H and H8S microcomputer
documentation for more information about the interrupt vector table.

Note that interrupt vectors are 16 bits in the Normal operating mode and 32 bits in the
Advanced operating mode.

TRAP FUNCTIONS

A trap is a kind of exception that can be activated when a specific event occurs or is
called, by using the processor instruction TRAPA. In many respects, a trap function
behaves as a normal function; it can accept parameters, and return a value.

The typical use for trap functions is for the client interface of an operating system. If this
interface is implemented using trap functions, the operating system part of an
application can be updated independently of the rest of the system.

Each trap function is associated with a vector. The vector value ranges from 0 to 3.

The __trap keyword and the #pragma vector directive can be used to define trap
functions.
CH8-1

Part 1. Using the compiler 27

28

Primitives for interrupts, concurrency, and OS-related programming
For example, the following piece of code defines a function doubling its argument:

#pragma vector=2
__trap int twice(int x)
{
 return x + x;
}

When a trap function is defined with a vector, the trap vector entry in the processor
interrupt vector table is populated. It is also possible to define a trap function without a
vector. This is useful if an application is capable of populating or changing the trap
vectors at runtime. For more information about the interrupt vector table, see the chip
manufacturer’s documentation for the H8/300H and H8S microcomputer families.

When a trap function is used, the compiler ensures that the application also will include
the appropriate trap-handling code. See the chapter Assembler language interface for
more information.

MONITOR FUNCTIONS

A monitor function causes interrupts to be disabled during execution of the function. At
function entry, the interrupt state is saved and interrupts are disabled. At function exit,
the original interrupt state is restored.

To define a monitor function, you can use the __monitor keyword. For reference
information, see __monitor, page 211.

Note: If you specify one interrupt mode when compiling your code, but set up your
device to use another interrupt mode, interrupts will not be correctly disabled for
monitor functions. This means that it is critical to compile your application code
specifying the interrupt mode that is used in your application; see --interrupt_mode,
page 159.

Example of implementing a semaphore in C

In the following example, a semaphore is implemented using one static variable and two
monitor functions. A semaphore can be locked by one process, and is used for
preventing processes from simultaneously using resources that can only be used by one
process at a time, for example a printer.

/* When the_lock is non-zero, someone owns the lock. */
static volatile unsigned int the_lock = 0;

/* get_lock -- Try to lock the lock.
 * Return 1 on success and 0 on failure. */
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Functions
__monitor int get_lock(void)
{
 if (the_lock == 0)
 {
 /* Success, we managed to lock the lock. */
 the_lock = 1;
 return 1;
 }
 else
 {
 /* Failure, someone else has locked the lock. */
 return 0;
 }
}

/* release_lock -- Unlock the lock. */

__monitor void release_lock(void)
{
 the_lock = 0;
}

The following is an example of a program fragment that uses the semaphore:

void my_program(void)
{
 if (get_lock())
 {
 /* ... Do something ... */

 /* When done, release the lock. */
 release_lock();
 }
}

The drawback using this method is that interrupts are disabled for the entire monitor
function.

Example of implementing a semaphore in C++

In C++, it is common to implement small methods with the intention that they should be
inlined. However, the H8 IAR C/C++ Compiler does not support inlining of functions
and methods that are declared using the __monitor keyword.
CH8-1

Part 1. Using the compiler 29

30

Primitives for interrupts, concurrency, and OS-related programming
In the following example in C++, an auto object is used for controlling the monitor
block, which uses intrinsic functions instead of the __monitor keyword.

#include <intrinsics.h>

volatile long tick_count = 0;

/* Class for controlling critical blocks */
class Mutex
{
public:
 Mutex ()
 {
 _state = __get_interrupt_state();
 __disable_interrupt();
 }

 ~Mutex ()
 {
 __set_interrupt_state(_state);
 }

private:
 __istate_t _state;
};

void f()
{
 static long next_stop = 100;
 extern void do_stuff();
 long tick;

 /* A critical block */
 {
 Mutex m;
 /* Read volatile variable 'tick_count' in a safe way
 and put the value in a local variable */

 tick = tick_count;
 }

 if (tick >= next_stop)
 {
 next_stop += 100;
 do_stuff();
 }
}

CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Functions
Note: You can also implement a semaphore by using the intrinsic function __TAS.

C++ AND SPECIAL FUNCTION TYPES

C++ member functions can be declared using special function types. However, two
restrictions apply:

● Interrupt member functions must be static. When calling a non-static member
function, it must be applied to an object. When an interrupt occurs and the interrupt
function is called, there is no such object available.

● Trap member functions cannot be declared virtual. The reason for this is that trap
functions cannot be called via function pointers.
CH8-1

Part 1. Using the compiler 31

32

Primitives for interrupts, concurrency, and OS-related programming
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Placing code and data
This chapter introduces the concept of segments, and describes the different
segment groups and segment types. It also describes how they correspond to
the memory and function types, and how they interact with the runtime
environment. The methods for placing segments in memory, which means
customizing a linker command file, are described.

The intended readers of this chapter are the system designers that are
responsible for mapping the segments of the application to appropriate
memory areas of the hardware system.

Segments and memory
In an embedded system, there are many different types of physical memory. Also, it is
often critical where parts of your code and data are located in the physical memory. For
this reason it is important that the development tools meet these requirements.

WHAT IS A SEGMENT?

A segment is a logical entity containing a piece of data or code that should be mapped
to a physical location in memory. Each segment consists of many segment parts.
Normally, each function or variable with static storage duration is placed in a segment
part. A segment part is the smallest linkable unit, which allows the linker to include only
those units that are referred to. The segment could be placed either in RAM or in ROM.
Segments that are placed in RAM do not have any content, they only occupy space.

The H8 IAR C/C++ Compiler has a number of predefined segments for different
purposes. Each segment has a name that describes the contents of the segment, and a
segment memory type that denotes the type of content. In addition to the predefined
segments, you can define your own segments.

At compile time, the compiler assigns each segment its contents. The IAR XLINK
Linker is responsible for placing the segments in the physical memory range, in
accordance with the rules specified in the linker command file. There are supplied linker
command files, but, if necessary, they can be easily modified according to the
requirements of your target system and application. It is important to remember that,
from the linker's point of view, all segments are equal; they are simply named parts of
memory.
CH8-1

Part 1. Using the compiler 33

34

Placing segments in memory
For detailed information about individual segments, see the chapter Segment reference
in Part 2. Compiler reference.

Segment memory type

XLINK assigns a segment memory type to each of the segments. In some cases, the
individual segments may have the same name as the segment memory type they belong
to, for example CODE. Make sure not to confuse the individual segment names with the
segment memory types in those cases.

By default, the H8 IAR C/C++ Compiler uses only the following XLINK segment
memory types:

XLINK supports a number of other segment memory types than the ones described
above. However, they exist to support other types of microcomputers.

For more details about segments, see the chapter Segment reference.

Placing segments in memory
The placement of segments in memory is performed by the IAR XLINK Linker. It uses
a linker command file that contains command line options which specify the locations
where the segments can be placed, thereby assuring that your application fits on the
target chip. You can use the same source code with different derivatives just by
rebuilding the code with the appropriate linker command file.

In particular, the linker command file specifies:

● The placement of segments in memory
● The maximum stack size
● The maximum heap size.

This section describes the methods for placing the segments in memory, which means
that you have to customize the linker command file to suit the memory layout of your
target system. For showing the methods, fictitious examples are used.

Segment memory type Description

BIT For bit variables; in RAM only

CODE For executable code

CONST For data placed in ROM

DATA For data placed in RAM

Table 7: XLINK segment memory types
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Placing code and data
CUSTOMIZING THE LINKER COMMAND FILE

The config directory contains ready-made linker command files for all supported
devices. The files contain the information required by the linker, and is ready to be used.
The only change you will normally have to make to the supplied linker command file is
to customize it so it fits the target system memory map. If, for example, your application
uses additional external RAM, you need to add details about the external RAM memory
area. In the src\template directory, you can find more examples of generic linker
command files.

As an example, we can assume that the target system has a 24-bit bus width and the
following memory layout:

The ROM can be used for storing CONST and CODE segment memory types. The RAM
memory can contain segments of DATA type. The main purpose of customizing the linker
command file is to verify that your application code and data do not cross the memory
range boundaries, which would lead to application failure.

Remember not to change the original file. We recommend that you make a copy in the
working directory, and modify the copy instead.

The contents of the linker command file

The linker command file is an extended command line, which means you can use the
file to specify any linker option. Typically, the linker command file contains three
different types of linker command line options:

● The CPU used:
-ch8

This specifies your target microcomputer.

● Definitions of constants used later in the file. These are defined using the XLINK
option -D.

● The placement directives (the largest part of the linker command file). Segments can
be placed using the -Z and -P options. The former will place the segment parts in
the order they are found, while the latter will try to rearrange them to make better
use of the memory. The -P option is useful when the memory where the segment
should be placed is not continuous.

Range Type of memory
Holding segments of

segment memory type

0x000000–0x03FFFF ROM CODE and CONST

0xFF0000–0xFFFFFF RAM DATA

Table 8: Memory layout of a target system (example)
CH8-1

Part 1. Using the compiler 35

36

Placing segments in memory
In the linker command file, all numbers are specified in hexadecimal format. However,
neither the prefix 0x nor the suffix h is used.

Note: The supplied linker command file includes comments explaining the contents.

See the IAR Linker and Library Tools Reference Guide for more details.

Using the -Z command for sequential placement

Use the -Z command when you need to keep a segment in one consecutive chunk, when
you need to preserve the order of segment parts in a segment, or, more unlikely, when
you need to put segments in a specific order.

The following illustrates how to use the -Z command to place the segment MYSEGMENTA
followed by the segment MYSEGMENTB in CONST memory (that is, ROM) in the memory
range 0x2000-0xCFFF.

-Z(CONST)MYSEGMENTA,MYSEGMENTB=0-3FFFF

Two segments of different types can be placed in the same memory area by not
specifying a range for the second segment. In the following example, the MYSEGMENTA
segment is first located in memory. Then, the rest of the memory range could be used by
MYCODE.

-Z(CONST)MYSEGMENTA=0-3FFFF
-Z(CODE)MYCODE

Two memory ranges may overlap. This allows segments with different placement
requirements to share parts of the memory space; for example:

-Z(CONST)MYSMALLSEGMENT=0-FFFF
-Z(CONST)MYLARGESEGMENT=0-3FFFF

Even though it is not strictly required, make sure to always specify the end of each
memory range. If you do this, the IAR XLINK Linker will alert you if your segments do
not fit.

Using the -P command for packed placement

The -P command differs from -Z in that it does not necessarily place the segments (or
segment parts) sequentially. With -P it is possible to put segment parts into holes left by
earlier placements.

The following example illustrates how the XLINK -P option can be used for making
efficient use of the memory area. The command will place the data segment MYDATA in
DATA memory (that is, in RAM) in a fictitious memory range:

-P(DATA)MYDATA=FF0000-FFFFFF
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Placing code and data
If your application has an additional RAM area in the memory range
0xFC0000-0xFCFFFF, you just add that to the original definition:

-P(DATA)MYDATA=FF0000-FFFFFF,FC0000–FCFFFF

Note: Copy initialization segments—BASENAME_I and BASENAME_ID—must be
placed using -Z.

Data segments
This section contains descriptions of the segments used for storing the different types of
data: static, stack, heap, and located.

To get a clear understanding about how the data segments work, you must be familiar
with the different memory types and the different data models available in the H8 IAR
C/C++ Compiler. If you need to refresh these details, see the chapter Data storage.

STATIC MEMORY SEGMENTS

Static memory is memory that contains variables that are global or declared static, as
described in the chapter Data storage. Declared static variables can be divided into the
following categories:

● Variables that are initialized to a non-zero value
● Variables that are initialized to zero
● Variables that are located by use of the @ operator or the #pragma location

directive
● Variables that are declared as const and therefore can be stored in ROM
● Variables defined with the __no_init keyword, meaning that they should not be

initialized at all.

For the static memory segments it is important to be familiar with:

● The segment naming
● How the memory types correspond to segment groups and the segments that are part

of the segment groups
● Restrictions for segments holding initialized data
● The placement and size limitation of the segments of each group of static memory

segments.
CH8-1

Part 1. Using the compiler 37

38

Data segments
Segment naming

All static data segment names consist of two parts—the segment base name and a
suffix—for instance, DATA16_Z. The segment base names are derived from the memory
type attributes, for example:

__data16

would yield the segment base name DATA16.

Some of the declared data is placed in non-volatile memory, for example ROM, and
some of the data is placed in RAM. For this reason, it is also important to know the
XLINK segment memory type of each segment. For more details about segment
memory types, see Segment memory type, page 34.

The following table summarizes the different suffixes, which XLINK segment memory
type they are, and which category of declared data they denote:

For a summary of all supported segments, see Summary of segments, page 263.

Examples

Assume the following examples:

Categories of declared data Segment memory type Suffix

Non-initialized data DATA N

Zero-initialized data DATA Z

Non-zero initialized data DATA I

Initializers for the above CONST ID

Constants CONST C

Non-initialized absolute addressed data AN

Constant absolute addressed data AC

Table 9: Segment name suffixes

__data16 int j;
__data16 int i = 0;

The data16 variables that are to be initialized to zero
when the system starts will be placed in the segment
DATA16_Z.

__no_init __data16 int j;The data16 non-initialized variables will be placed in
the segment DATA16_N.

__data16 int j = 4; The data16 non-zero initialized variables will be
placed in the segment DATA16_I, and initializer data
in segment DATA16_ID.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Placing code and data
Initialized data

In ISO/ANSI C all static variables—variables that are allocated to a fixed memory
address—have to be initialized by the runtime system to a known value. This value is
either an explicit value assigned to the variable, or if no value is given, it is cleared to
zero.

In addition, the H8 IAR C/C++ Compiler provides an extension to this rule—variables
declared with the keyword __no_init are not initialized at all—for more
information, see __no_init, page 211.

When an application is started, the system startup code initializes static and global
variables in three steps:

1 It clears the memory of the variables that should be initialized to zero; these variables
are located in segments with the suffix Z.

2 It initializes the non-zero variables by copying a block of ROM to the location of the
variables in RAM. This means that the data in the ROM segment with the suffix ID is
copied to the corresponding I segment.

This works when both segments are placed in continuous memory. However, if one of
the segments is divided into smaller pieces, it is important that:

● The other segment is divided in exactly the same way
● It is legal to read and write the memory that represents the gaps in the sequence.

For example, if the segments are assigned the following ranges, the copy will fail:

However, in the following example, the linker will place the content of the segments in
identical order, which means that the copy will work appropriately:

The ID segment can, for all segment groups, be placed anywhere in memory, because it
is not accessed using the corresponding access method. Note that the gap between the
ranges will also be copied.

3 Finally, global C++ objects are constructed, if any.

DATA16_I 0x1000-0x10FF and 0x1200-0x12FF

DATA16_ID 0x4000-0x41FF

DATA16_I 0x1000-0x10FF and 0x1200-0x12FF

DATA16_ID 0x4000-0x40FF and 0x4200-0x42FF
CH8-1

Part 1. Using the compiler 39

40

Data segments
Data segments for static memory in the default linker command file

The default linker command file contains directives similar to the following directives
to place the static data segments. For details, study the appropriate linker command file
for the selected combination of core, code model, and data model.

First, the segments to be placed in ROM are defined:

-Z(CONST)DATA16_C=2-7FFF
-Z(CONST)DATA32_C=2-7FFFFFFF
-Z(CONST)DATA8_ID,DATA16_ID,DATA32_ID=2-7FFFFFFF

Note: Typically, there is no ROM memory at the highest 256 bytes of memory, which
means there is no DATA8_C segment. Constant data declared __data8 is placed in the
DATA8_I segment instead.

Then, the RAM data segments are placed in memory:

-Z(DATA)DATA8_I,DATA8_Z,DATA8_N=FFFFFF01-FFFFFFFE
-Z(DATA)DATA16_I,DATA16_Z,DATA16_N=FFFF8000-FFFFFFFE
-Z(DATA)DATA32_I,DATA32_Z,DATA32_N=80000000-FFFFFFFE

THE STACK

The stack is used by functions to store variables and other information that is used
locally by functions, as described in the chapter Data storage. It is a continuous block
of memory pointed to by the processor stack pointer register ER7.

The data segment used for holding the stack is called CSTACK. The system startup code
initializes the stack pointer to the end of the stack segment.

Allocating a memory area for the stack is done differently when you use the command
line interface compared to when you use the IAR Embedded Workbench IDE.

Stack size allocation in the IAR Embedded Workbench IDE

Select Project>Options. In the General Options category, click the Stack/Heap page.

Add the required stack size in the Stack size text box.

Stack size allocation from the command line

The size of the CSTACK segment is defined in the linker command file (alternatively,
from the command line).

The default linker file sets up a constant representing the size of the stack, at the
beginning of the linker file:

-D_CSTACK_SIZE=size
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Placing code and data
Note: Normally, this line is prefixed with the comment character //. To make the
directive take affect, remove the comment character.

Specify an appropriate size for your application. Note that the size is written
hexadecimally without the 0x notation.

Placement of stack segment

Further down in the linker file, the actual stack segment is defined in the memory area
available for the stack:

-Z(DATA)CSTACK+_CSTACK_SIZE#FF0000-FFFFFF

Note:

● This range does not specify the size of the stack; it specifies the range of the
available memory

● The # allocates the CSTACK segment at the end of the memory area. In practice,
this means that the stack will get all remaining memory at the same time as it is
guaranteed that it will be at least _CSTACK_SIZE bytes.

Stack size considerations

The compiler uses the internal data stack, CSTACK, for a variety of user program
operations, and the required stack size depends heavily on the details of these
operations. If the given stack size is too large, RAM will be wasted. If the given stack
size is too small, there are two things that can happen, depending on where in memory
you have located your stack. Both alternatives are likely to result in application failure.
Either variable storage will be overwritten, leading to undefined behavior, or the stack
will fall outside of the memory area, leading to an abnormal termination of your
application.

THE HEAP

The heap contains dynamic data allocated by use of the C function malloc (or one of
its relatives) or the C++ operator new.

If your application uses dynamic memory allocation, you should be familiar with the
following:

● Allocating the heap size, which differs depending on which build interface you are
using

● Linker segments used for the heap
● Placing the heap segments in memory.
CH8-1

Part 1. Using the compiler 41

42

Data segments
Heap segments in DLIB

To access a heap in a specific memory, use the appropriate memory attribute as a prefix
to the standard functions malloc, free, calloc, and realloc, for example:

__data16_malloc

If you use any of the standard functions without a prefix, the function will be mapped to
the default memory type.

Each heap will reside in a segment with the name _HEAP prefixed by a segment base
name derived from the memory attribute.

Heaps can be placed in the following memory types:

Note that the data32 heap is only available in the Advanced operating mode.

Heap size allocation in the IAR Embedded Workbench IDE

Select Project>Options. In the General Options category, click the Stack/Heap page.

Add the required heap sizes in the Heap size text boxes.

Heap size allocation from the command line

The size of the heap segment is defined in the linker command file.

The default linker file sets up a constant, representing the size of the heap, at the
beginning of the linker file:

-D_DATA16_HEAP_SIZE=size
-D_DATA32_HEAP_SIZE=size

Note: Normally, this line is prefixed with the comment character //. To make the
directive take affect, remove the comment character.

Specify the appropriate size for your application.

Placement of heap segment

The actual heap segment is allocated in the memory area available for the heap:

-Z(DATA)DATA16_HEAP+_DATA16_HEAP_SIZE=FF8000-FFFFFF
-Z(DATA)DATA32_HEAP+_DATA32_HEAP_SIZE=FF0000-FFFFFF

Memory type Segment name Memory attribute

Data16 DATA16_HEAP __data16

Data32 DATA32_HEAP __data32

Table 10: Heaps, memory types, and segments
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Placing code and data
Note: The ranges do not specify the size of the heaps; they specifies the range of the
available memory.

Heap size and standard I/O

If you have excluded FILE descriptors from the DLIB runtime environment, as in the
normal configuration, there are no input and output buffers at all. Otherwise, as in the
full configuration, be aware that the size of the input and output buffers is set to 512
bytes in the stdio library header file. If the heap is too small, I/O will not be buffered,
which is considerably slower than when I/O is buffered. If you execute the application
using the simulator driver of the IAR C-SPY Debugger, you are not likely to notice the
speed penalty, but it is quite noticeable when the application runs on an H8/300H and
H8S device. If you use the standard I/O library, you should set the heap size to a value
which accommodates the needs of the standard I/O buffer.

LOCATED DATA

A variable that has been explicitly placed at an address, for example by using the
compiler @ syntax, will be placed in either the SEGMENTBASENAME_AC or the
SEGMENTBASENAME_AN segment. The former is used for constant-initialized data, and
the latter for items declared as __no_init. The individual segment part of the segment
knows its location in the memory space, and it does not have to be specified in the linker
command file.

Code segments
This section contains descriptions of the segments used for storing code, and the
interrupt vector table. For a complete list of all segments, see Summary of segments,
page 263.

NORMAL CODE

Functions declared without a memory attribute are placed in different segments,
depending on which code model you are using.

If you use the Small code model, the code is placed in the CODE16 segment. If you use
the Large code model, the code is placed in the CODE24 segment.

In the default linker command file it can look like this:

-P(CODE)CODE24=2-7FFFFF

For the code segments, the -P linker directive is used for allowing XLINK to split up
the segments and pack their contents more efficiently. This is useful if the memory range
is non-consecutive, or if located data exists in the memory range, like interrupt vectors.
CH8-1

Part 1. Using the compiler 43

44

Code segments
INTERRUPT VECTORS

The interrupt vector table contains pointers to interrupt routines, including the reset
routine. The table is placed in the segment INTVEC. For the H8/300H and H8S
microcomputer families, you must place this segment on the address 0x0. The linker
directive would then look like this:

-Z(CONST)INTVEC=0-3FF

The last address for the interrupt vector segment depends on the peripheral devices used
in your hardware configuration. The value specified in this example is probably high
enough, but may need to be changed in rare situations.

FUNCTION VECTORS FOR NON-INTERRUPT FUNCTIONS

The H8/300H and H8S microcomputers allow functions to be called with a short
memory indirect call (addressing mode @@aa:8). By using this feature of the
architecture, the code can be made more compact when calling commonly used
functions. This implies that these functions need a function vector; this vector is stored
in the memory range 0–0xFF.

By default, the compiler uses this addressing mode for many of the DLIB runtime
library functions. In addition, you can declare functions with the extended keyword
__vector_call. The compiler calls this type of functions with the @@aa:8 addressing
mode. The compiler also automatically creates the required function vector.

Both the vectors for the library functions and your own __vector_call declared
functions are automatically inserted in the segment FLIST. This segment must be
defined in the linker command file and the linker directive can look like this:

-P(CONST)FLIST=0–FF

Note that the linker command file defines the INTVEC segment before the FLIST
segment. This means that interrupt routines are assigned vector entries first, and then the
functions with entries in the FLIST segment uses any free entries in the vector area.

If the vector area is too small to hold all interrupt and function vectors, you can reduce
the number of vectors in three ways:

● Reduce the number of __vector_call declared functions.
● Use the compiler option --direct_library_calls. In this case, the compiler

will use normal function calls for all library functions. Note that, for full effect, you
must use this option for all your code that uses library functions.

● By default, the DLIB runtime library is not compiled with the
--direct_library_calls option. To remove all vectors for the library functions,
you can rebuild the library using this option.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Placing code and data
Note: In general, the @@aa:8 addressing mode cannot be used for all functions in your
application, as the number of vectors is limited.

C++ dynamic initialization
In C++, all global objects will be created before the main function is called. The creation
of objects can involve the execution of a constructor.

The DIFUNCT segment contains a vector of addresses that point to initialization code.
All entries in the vector will be called when the system is initialized.

For example:

-Z(CONST)DIFUNCT=2-7FFFFFFF

For additional information, see DIFUNCT, page 281.

Controlling data and function placement in memory
The compiler provides different mechanisms for controlling placement of functions and
data objects in memory. To use memory efficiently, you should be familiar with these
mechanisms to know which one is best suited for different situations. You can use:

● Code and data models

Use the different compiler options for code and data models, respectively, to take
advantage of the different addressing modes available for the microcomputer and
thereby also place functions and data objects in different parts of memory. To read
more about data and code models, see Data models, page 14, and Code models and
memory attributes for function storage, page 25, respectively.

● Memory attributes

Use memory attributes to override the default addressing mode and placement of
individual data objects. To read more about memory attributes for data, see Using
data memory attributes, page 18.

● The @ operator and the #pragma location directive for absolute placement

Use the @ operator or the #pragma location directive to place individual global
and static variables at absolute addresses. The variables must be declared either
__no_init or const. This is useful for individual data objects that must be located
at a fixed address, for example variables with external requirements, or for
populating any hardware tables similar to interrupt vector tables. Note that it is not
possible to use this notation for absolute placement of individual functions.
CH8-1

Part 1. Using the compiler 45

46

Controlling data and function placement in memory
● The @ operator and the #pragma location directive for segment placement

Use the @ operator or the #pragma location directive to place groups of functions
or global and static variables in named segments, without having explicit control of
each object. The variables must be declared either __no_init or const. The
segments can, for example, be placed in specific areas of memory, or initialized or
copied in controlled ways using the segment begin and end operators. This is also
useful if you want an interface between separately linked units, for example an
application project and a bootloader project. Use named segments when absolute
control over the placement of individual variables is not needed, or not useful.

At compile time, data and functions are placed in different segments as described in
Data segments, page 37, and Code segments, page 43, respectively. At link time, one of
the most important functions of the linker is to assign load addresses to the various
segments used by the application. All segments, except for the segments holding
absolute located data, are automatically allocated to memory according to the
specifications of memory ranges in the linker command file, as described in Placing
segments in memory, page 34.

DATA PLACEMENT AT AN ABSOLUTE LOCATION

The @ operator, alternatively the #pragma location directive, can be used for placing
global and static variables at absolute addresses. The variables must be declared either
__no_init or const. If declared const, they can have initializers or an initializer can
be omitted. If you omit the initializer, the runtime system will not provide a value at that
address. To place a variable at an absolute address, the argument to the @ operator and
the #pragma location directive should be a literal number, representing the actual
address. The absolute location must fulfill the alignment requirement for the variable
that should be located.

C++ static member variables can be placed at an absolute address just like any other
static variable.

Note: A variable placed in an absolute location should be defined in an include file, to
be included in every module that uses the variable. An unused definition in a module
will be ignored. A normal extern declaration—one that does not use an absolute
placement directive—can refer to a variable at an absolute address; however,
optimizations based on the knowledge of the absolute address cannot be performed.

Declaring located variables extern and volatile

In C++, const variables are static (module local), which means that each module with
this declaration will contain a separate variable. When you link an application with
several such modules, the linker will report that there are more than one variable located
at, for example, address 0x100.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Placing code and data
To avoid this problem and make the process the same in C and C++, you should declare
these SFRs extern, for example:

extern volatile const __no_init int x @ 0x100;

For information about volatile declared objects, see Protecting simultaneously
accessed variables, page 136.

Examples

In this example, a __no_init declared variable is placed at an absolute address. This
is useful for interfacing between multiple processes/applications et cetera:

__no_init char alpha @ 0xFF2000; /* OK */

In the following examples, there are two const declared objects, where the first is
initialized to zero, and the second is initialized to a specific value. Both objects are
placed in ROM. This is useful for configuration parameters, which are accessible from
an external interface. Note that in the second case, the compiler is not obliged to actually
read from the variable, because the value is known. To force the compiler to read the
value, declare it volatile:

#pragma location=0xFF2002
volatile const int beta; /* OK */

volatile const int gamma @ 0xFF2004 = 3; /* OK */

In the following example, the value is not initialized by the compiler; the value must be
set by other means. The typical use is for configurations where the values are loaded to
ROM separately, or for special function registers that are read-only. To force the
compiler to read the value, declare it volatile:

volatile __no_init const char c @ 0xE004;
void foo(void)
{
 ...
 a = b + c + d;
 ...
}

The following examples show incorrect usage:

int delta @ 0xFF2006; /* Error, neither */
 /* "__no_init" nor "const".*/

const int epsilon @ 0xFF2007; /* Error, misaligned. */
CH8-1

Part 1. Using the compiler 47

48

Controlling data and function placement in memory
DATA AND FUNCTION PLACEMENT IN SEGMENTS

The @ operator, alternatively the #pragma location directive, can be used for placing
individual variables or individual functions in named segments. The named segment can
either be a predefined segment, or a user-defined segment. The variables must be
declared either __no_init or const. If declared const, they can have initializers.

C++ static member variables can be placed in named segments just like any other static
variable.

If you use your own segments, in addition to the predefined segments, these segments
must also be defined in the linker command file using the -Z or the -P segment control
directives.

Note: Take care when explicitly placing a variable or function in a predefined segment
other than the one used by default. This is useful in some situations, but incorrect
placement can result in anything from error messages during compilation and linking to
a malfunctioning application. Carefully consider the circumstances; there might be strict
requirements on the declaration and use of the function or variable.

Also note that user-defined const segments placed in RAM are not initialized by the
compiler. If initialization is required, you must do that yourself.

For more information about segments, see the chapter Placing code and data.

Examples of placing variables in named segments

In the following three examples, a data object is placed in a user-defined segment. The
segment will be allocated in default memory depending on used data model.

__no_init int alpha @ "MYSEGMENT";/* Placed in default memory */

#pragma location="MYSEGMENT"
const int beta; /* OK */

const int gamma @ "MYSEGMENT" = 3; /* OK */

To override the default segment allocation, you can explicitly specify a memory attribute
other than default:

__data32 __no_init int alpha @ "MYSEGMENT";/* Placed in data32*/

The following example shows incorrect usage:

int delta @ "MYSEGMENT"; /* Error, neither */
/* "__no_init" nor "const" */
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Placing code and data
Examples of placing functions in named segments

void f(void) @ "MYSEGMENT";

void g(void) @ "MYSEGMENT"
{
}

#pragma location="MYSEGMENT"
void h(void);

Verifying the linked result of code and data placement
The linker has several features that help you to manage code and data placement, for
example, messages at link time and the linker map file.

SEGMENT TOO LONG ERRORS AND RANGE ERRORS

All code and data that is placed in relocatable segments will have its absolute addresses
resolved at link time. It is also at link time it is known whether all segments will fit in
the reserved memory ranges. If the contents of a segment do not fit in the address range
defined in the linker command file, XLINK will issue a segment too long error.

Some instructions do not work unless a certain condition holds after linking, for
example that a branch must be within a certain distance or that an address must be even.
XLINK verifies that the conditions hold when the files are linked. If a condition is not
satisfied, XLINK generates a range error or warning and prints a description of the
error.

For further information about these types of errors, see the IAR Linker and Library Tools
Reference Guide.

LINKER MAP FILE

XLINK can produce an extensive cross-reference listing, which can optionally contain
the following information:

● A segment map which lists all segments in dump order
● A module map which lists all segments, local symbols, and entries (public symbols)

for every module in the program. All symbols not included in the output can also be
listed

● Module summary which lists the contribution (in bytes) from each module
● A symbol list which contains every entry (global symbol) in every module.

Use the option Generate linker listing in the Embedded Workbench IDE, or the option
-X on the command line, and one of their suboptions to generate a linker listing.
CH8-1

Part 1. Using the compiler 49

50

Verifying the linked result of code and data placement
Normally, XLINK will not generate an output file if there are any errors, such as range
errors, during the linking process. Use the option Range checks disabled in the
Embedded Workbench IDE, or the option -R on the command line, to generate an output
file even if a range error was encountered.

For further information about the listing options and the linker listing, see the IAR Linker
and Library Tools Reference Guide, and the H8 IAR Embedded Workbench® IDE User
Guide.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

The DLIB runtime
environment
This chapter describes the runtime environment in which an application
executes. In particular, the chapter covers the DLIB runtime library and how
you can modify it—setting options, overriding default library modules, or
building your own library—to optimize it for your application.

The chapter also covers system initialization and termination; how an
application can control what happens before the function main is called, and
how you can customize the initialization.

The chapter then describes how to configure functionality like locale and file
I/O, how to get C-SPY runtime support, and how to prevent incompatible
modules from being linked together.

Introduction to the runtime environment
The runtime environment is the environment in which your application executes. The
runtime environment depends on the target hardware, the software environment, and the
application code. The IAR DLIB runtime environment can be used as is together with
the IAR C-SPY Debugger. However, to be able to run the application on hardware, you
must adapt the runtime environment.

This section gives an overview of:

● The runtime environment and its components
● Library selection.

RUNTIME ENVIRONMENT FUNCTIONALITY

The runtime environment (RTE) supports ISO/ANSI C and C++ including the standard
template library. The runtime environment consists of the runtime library, which
contains the functions defined by these standards, and include files that define the library
interface.

The runtime library is delivered both as prebuilt libraries and as source files, and you
can find them in the product subdirectories h8\lib and h8\src, respectively.
CH8-1

Part 1. Using the compiler 51

52

Introduction to the runtime environment
The runtime environment also consists of a part with specific support for the target
system, which includes:

● Support for hardware features:
● Direct access to low-level processor operations by means of intrinsic functions,

such as functions for register handling
● Peripheral unit registers and interrupt definitions in include files

● Runtime environment support, that is, startup and exit code and low-level interface
to some library functions.

● Special compiler support for some functions, for instance functions for
floating-point arithmetics

Some parts, like the startup and exit code and the size of the heaps and stack must be
tailored for the specific hardware and application requirements.

For further information about the library, see the chapter Library functions.

LIBRARY SELECTION

To configure the most code-efficient runtime environment, you must determine your
application and hardware requirements. The more functionality you need, the larger
your code will get.

IAR Embedded Workbench comes with a set of prebuilt runtime libraries. To get the
required runtime environment, you can customize it by:

● Setting library options, for example, for choosing scanf input and printf output
formatters, and for specifying the size of the stack and the heap

● Overriding certain library functions, for example cstartup.s37, with your own
customized versions

● Choosing the level of support for certain standard library functionality, for example,
locale, file descriptors, and multibytes, by choosing a library configuration: normal
or full.

In addition, you can also make your own library configuration, but that requires that you
rebuild the library. This allows you to get full control of the runtime environment.

Note: Your application project must be able to locate the library, include files, and the
library configuration file.

SITUATIONS THAT REQUIRE LIBRARY BUILDING

Building a customized library is complex. You should therefore carefully consider
whether it is really necessary.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

The DLIB runtime environment
You must build your own library when:

● There is no prebuilt library for the required combination of compiler options or
hardware support

● You want to define your own library configuration with support for locale, file
descriptors, multibyte characters, et cetera

● The FLIST segment is too small to hold all the function vector entries, and you want
to rebuild the library and use the --direct_library_calls compiler option to
make sure function vectors are not used by library functions; see Function vectors
for non-interrupt functions, page 44.

For information about how to build a customized library, see Building and using a
customized library, page 61.

LIBRARY CONFIGURATIONS

It is possible to configure the level of support for, for example, locale, file descriptors,
multibytes. The runtime library configuration is defined in the library configuration file.
It contains information about what functionality is part of the runtime environment. The
configuration file is used for tailoring a build of a runtime library, as well as tailoring the
system header files used when compiling your application. The less functionality you
need in the runtime environment, the smaller it is.

The following DLIB library configurations are available:

In addition to these configurations, you can define your own configurations, which
means that you must modify the configuration file. Note that the library configuration
file describes how a library was built and thus cannot be changed unless you rebuild the
library. For further information, see Building and using a customized library, page 61.

The prebuilt libraries are based on the default configurations, see Table 13, Prebuilt
libraries, page 55. There is also a ready-made library project template that you can use
if you want to rebuild the runtime library.

DEBUG SUPPORT IN THE RUNTIME LIBRARY

You can make the library provide different levels of debugging support—basic, runtime,
and I/O debugging.

Library configuration Description

Normal DLIB No locale interface, C locale, no file descriptor support, no multibyte
characters in printf and scanf, and no hex floats in strtod.

Full DLIB Full locale interface, C locale, file descriptor support, multibyte
characters in printf and scanf, and hex floats in strtod.

Table 11: Library configurations
CH8-1

Part 1. Using the compiler 53

54

Using a prebuilt library
The following table describes the different levels of debugging support:

If you build your application project with the XLINK options With runtime control
modules or With I/O emulation modules, certain functions in the library will be
replaced by functions that communicate with the IAR C-SPY Debugger. For further
information, see C-SPY Debugger runtime interface, page 75.

To set linker options for debug support in the IAR Embedded Workbench IDE, choose
Project>Options and select the Linker category. On the Output page, select the
appropriate Format option.

Using a prebuilt library
The prebuilt runtime libraries are configured for different combinations of the following
features:

● Processor core
● Operating mode
● Code model
● Data model
● Size of double
● Library configuration—Normal or Full.

Debugging

support

Linker option in IAR

Embedded Workbench

Linker command

line option
Description

Basic debugging Debug information for
C-SPY

-Fubrof Debug support for C-SPY
without any runtime support

Runtime debugging With runtime control
modules

-r The same as -Fubrof, but
also includes debugger
support for handling program
abort, exit, and assertions.

I/O debugging With I/O emulation
modules

-rt The same as -r, but also
includes debugger support for
I/O handling, which means
that stdin and stdout are
redirected to the C-SPY
Terminal I/O window, and that
it is possible to access files on
the host computer during
debugging.

Table 12: Levels of debugging support in runtime libraries
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

The DLIB runtime environment
For the H8 IAR C/C++ Compiler, this means there is a prebuilt runtime library for each
combination of these options. The libraries are built with size optimization 9 (High). The
following table shows the mapping of the library file name, processor core, code model,
data model, size of double, and library configuration:

The names of the libraries are constructed in the following way:

<type><core><code_model><data_model><size_of_double><lib_con>.r37

Library file name Processor core Code model Data model
Size of

double

Library

configuration

dlh8hssfn.r37 H8300H Small Small 32 bits Normal

dlh8hlsfn.r37 H8300H Large Small 32 bits Normal

dlh8hlhfn.r37 H8300H Large Huge 32 bits Normal

dlh8hssdn.r37 H8300H Small Small 64 bits Normal

dlh8hlsdn.r37 H8300H Large Small 64 bits Normal

dlh8hlhdn.r37 H8300H Large Huge 64 bits Normal

dlh8sssfn.r37 H8S Small Small 32 bits Normal

dlh8slsfn.r37 H8S Large Small 32 bits Normal

dlh8slhfn.r37 H8S Large Huge 32 bits Normal

dlh8sssdn.r37 H8S Small Small 64 bits Normal

dlh8slsdn.r37 H8S Large Small 64 bits Normal

dlh8slhdn.r37 H8S Large Huge 64 bits Normal

dlh8hssff.r37 H8300H Small Small 32 bits Full

dlh8hlsff.r37 H8300H Large Small 32 bits Full

dlh8hlhff.r37 H8300H Large Huge 32 bits Full

dlh8hssdf.r37 H8300H Small Small 64 bits Full

dlh8hlsdf.r37 H8300H Large Small 64 bits Full

dlh8hlhdf.r37 H8300H Large Huge 64 bits Full

dlh8sssff.r37 H8S Small Small 32 bits Full

dlh8slsff.r37 H8S Large Small 32 bits Full

dlh8slhff.r37 H8S Large Huge 32 bits Full

dlh8sssdf.r37 H8S Small Small 64 bits Full

dlh8slsdf.r37 H8S Large Small 64 bits Full

dlh8slhdf.r37 H8S Large Huge 64 bits Full

Table 13: Prebuilt libraries
CH8-1

Part 1. Using the compiler 55

56

Using a prebuilt library
where

● <type> is dl for the IAR DLIB runtime environment
● <core> is one of h8h and h8s for H8300H and H8S processor core, respectively
● <code_model> is one of s or l for Small and Large code model, respectively
● <data_model> is one of s or h for Small and Huge data model, respectively
● <size_of_double> is one of f or d, for 32-bit doubles or 64-bit doubles,

respectively
● <lib_con> is one of n or f for Normal and Full library configuration, respectively.

Note: The library configuration file has the same base name as the library.

The IAR Embedded Workbench IDE will include the correct library object file and
library configuration file based on the options you select. See the H8 IAR Embedded
Workbench® IDE User Guide for additional information.

On the command line, you must specify the following items:

● Specify which library object file to use on the XLINK command line, for instance:
dlh8hssfn.r37

● Specify the include paths for the compiler and assembler:
-I h8\inc

● Specify the library configuration file for the compiler:
--dlib_config C:\...\dlh8hssfn.h

Note: All modules in the library have a name that starts with the character ? (question
mark).

You can find the library object files and the library configuration files in the subdirectory
h8\lib.

CUSTOMIZING A PREBUILT LIBRARY WITHOUT REBUILDING

The prebuilt libraries delivered with the H8 IAR C/C++ Compiler can be used as is.
However, it is possible to customize parts of a library without rebuilding it. There are
two different methods:

● Setting options for:
● Formatters used by printf and scanf
● The sizes of the heap and the stack

● Overriding library modules with your own customized versions.

The following items can be customized:

Items that can be customized Described on page

Formatters for printf and scanf Choosing formatters for printf and scanf, page 57

Table 14: Customizable items
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

The DLIB runtime environment
For a description about how to override library modules, see Overriding library
modules, page 59.

Choosing formatters for printf and scanf
To override the default formatter for all the printf- and scanf-related functions,
except for wprintf and wscanf variants, you simply set the appropriate library
options. This section describes the different options available.

Note: If you rebuild the library, it is possible to optimize these functions even further,
see Configuration symbols for printf and scanf, page 68.

CHOOSING PRINTF FORMATTER

The printf function uses a formatter called _Printf. The default version is quite
large, and provides facilities not required in many embedded applications. To reduce the
memory consumption, three smaller, alternative versions are also provided in the
standard C/EC++ library.

Startup and termination code System startup and termination, page 63

Low-level input and output Standard streams for input and output, page 66

File input and output File input and output, page 69

Low-level environment functions Environment interaction, page 72

Low-level signal functions Signal and raise, page 73

Low-level time functions Time, page 74

Size of heaps, stacks, and segments Placing code and data, page 33

Items that can be customized Described on page

Table 14: Customizable items (Continued)
CH8-1

Part 1. Using the compiler 57

58

Choosing formatters for printf and scanf
The following table summarizes the capabilities of the different formatters:

† Depends on which library configuration is used.

For information about how to fine-tune the formatting capabilities even further, see
Configuration symbols for printf and scanf, page 68.

 Specifying the print formatter in the IAR Embedded Workbench
IDE

To specify the printf formatter in the IAR Embedded Workbench IDE, choose
Project>Options and select the General Options category. Select the appropriate
option on the Library options page.

Specifying printf formatter from the command line

To use any other variant than the default (_PrintfFull), add one of the following lines
in the linker command file you are using:

-e_PrintfLarge=_Printf
-e_PrintfSmall=_Printf
-e_PrintfTiny=_Printf

CHOOSING SCANF FORMATTER

In a similar way to the printf function, scanf uses a common formatter, called
_Scanf. The default version is very large, and provides facilities that are not required
in many embedded applications. To reduce the memory consumption, two smaller,
alternative versions are also provided in the standard C/C++ library.

Formatting capabilities
_PrintfFull

(default)

_PrintfLarge
_PrintfSmall _PrintfTiny

Basic specifiers c, d, i, o, p, s, u, X,
x, and %

Yes Yes Yes Yes

Multibyte support † † † No

Floating-point specifiers a, and A Yes No No No

Floating-point specifiers e, E, f, F, g,
and G

Yes Yes No No

Conversion specifier n Yes Yes No No

Format flag space, +, -, #, and 0 Yes Yes Yes No

Length modifiers h, l, L, s, t, and Z Yes Yes Yes No

Field width and precision, including * Yes Yes Yes No

long long support Yes Yes No No

Table 15: Formatters for printf
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

The DLIB runtime environment
The following table summarizes the capabilities of the different formatters:

† Depends on which library configuration that is used.

For information about how to fine-tune the formatting capabilities even further, see
Configuration symbols for printf and scanf, page 68.

Specifying scanf formatter in the IAR Embedded Workbench IDE

To specify the scanf formatter in the IAR Embedded Workbench IDE, choose
Project>Options and select the General Options category. Select the appropriate
option on the Library options page.

Specifying scanf formatter from the command line

To use any other variant than the default (_ScanfFull), add one of the following lines
in the linker command file you are using:

-e_ScanfLarge=_Scanf
-e_ScanfSmall=_Scanf

Overriding library modules
The library contains modules which you probably need to override with your own
customized modules, for example functions for character-based I/O and cstartup.
This can be done without rebuilding the entire library. This section describes the
procedure for including your version of the module in the application project build
process. The library files that you can override with your own versions are located in the
h8\src\lib directory.

Formatting capabilities _ScanfFull (default) _ScanfLarge _ScanfSmall

Basic specifiers c, d, i, o, p, s, u, X,
x, and %

Yes Yes Yes

Multibyte support † † †

Floating-point specifiers a, and A Yes No No

Floating-point specifiers e, E, f, F, g,
and G

Yes No No

Conversion specifier n Yes No No

Scan set [and] Yes Yes No

Assignment suppressing * Yes Yes No

long long support Yes No No

Table 16: Formatters for scanf
CH8-1

Part 1. Using the compiler 59

60

Overriding library modules
Note: If you override a default I/O library module with your own module, C-SPY
support for the module is turned off. For example, if you replace the module __write
with your own version, the C-SPY Terminal I/O window will not be supported.

Overriding library modules using the IAR Embedded Workbench
IDE

This procedure is applicable to any source file in the library, which means that
library_module.c in this example can be any module in the library.

1 Copy the appropriate library_module.c file to your project directory.

2 Make the required additions to the file (or create your own routine, using the default
file as a model), and make sure that it has the same module name as the original
module. The easiest way to achieve this is to save the new file under the same name as
the original file.

3 Add the customized file to your project.

4 Rebuild your project.

Overriding library modules from the command line

This procedure is applicable to any source file in the library, which means that
library_module.c in this example can be any module in the library.

1 Copy the appropriate library_module.c to your project directory.

2 Make the required additions to the file (or create your own routine, using the default
file as a model), and make sure that it has the same module name as the original
module. The easiest way to achieve this is to save the new file under the same name as
the original file.

3 Compile the modified file using the same options as for the rest of the project:

icch8 library_module

This creates a replacement object module file named library_module.r37.

4 Add library_module.r37 to the XLINK command line, either directly or by using
an extended linker command file, for example:

xlink library_module dlh8hssfn.r37

Make sure that library_module is placed before the library on the command line.
This ensures that your module is used instead of the one in the library.

Run XLINK to rebuild your application.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

The DLIB runtime environment
This will use your version of library_module.r37, instead of the one in the library.
For information about the XLINK options, see the IAR Linker and Library Tools
Reference Guide.

Building and using a customized library
In some situations, see Situations that require library building, page 52, it is necessary
to rebuild the library. In those cases you need to:

● Set up a library project
● Make the required library modifications
● Build your customized library
● Finally, make sure your application project will use the customized library.

Information about the build process is described in H8 IAR Embedded Workbench® IDE
User Guide.

Note: It is possible to build IAR Embedded Workbench projects from the command
line by using the IAR Command Line Build Utility (iarbuild.exe). However, no
make or batch files for building the library from the command line are provided.

SETTING UP A LIBRARY PROJECT

The IAR Embedded Workbench IDE provides a library project template which can be
used for customizing the runtime environment configuration. This library template has
full library configuration, see Table 11, Library configurations, page 53.

In the IAR Embedded Workbench IDE, modify the generic options in the created library
project to suit your application, see Basic settings for project configuration, page 5.

Note: There is one important restriction on setting options. If you set an option on file
level (file level override), no options on higher levels that operate on files will affect that
file.

MODIFYING THE LIBRARY FUNCTIONALITY

You must modify the library configuration file and build your own library if you want
to modify support for, for example, locale, file descriptors, and multibyte characters.
This will include or exclude certain parts of the runtime environment.

The library functionality is determined by a set of configuration symbols. The default
values of these symbols are defined in the file Dlib_defaults.h. This read-only file
describes the configuration possibilities. In addition, your library has its own library
configuration file dlh8Custom.h, which sets up that specific library with full library
configuration. For more information, see Table 14, Customizable items, page 56.
CH8-1

Part 1. Using the compiler 61

62

Building and using a customized library
The library configuration file is used for tailoring a build of the runtime library, as well
as tailoring the system header files.

Modifying the library configuration file

In your library project, open the file dlh8Custom.h and customize it by setting the
values of the configuration symbols according to the application requirements.

When you are finished, build your library project with the appropriate project options.

USING A CUSTOMIZED LIBRARY

After you have built your library, you must make sure to use it in your application
project.

In the IAR Embedded Workbench IDE you must perform the following steps:

1 Choose Project>Options and click the Library Configuration tab in the General
Options category.

2 Choose Custom DLIB from the Library drop-down menu.

3 In the Library file text box, locate your library file.

4 In the Configuration file text box, locate your library configuration file.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

The DLIB runtime environment
System startup and termination
This section describes the runtime environment actions performs during startup and
termination of applications. The following figure gives a graphical overview of the
startup and exit sequences:

Figure 1: Startup and exit sequences

The code for handling startup and termination is located in the source files
cstartup.s37, cexit.s37, and low_level_init.c or low_level_init.s37
located in the h8\src\lib directory.

Reset

__low_level_init

Hardware setup

Static initialization

Dynamic C++ initialization

exit

abort

_Exit

__exit

Application

main

Program entry label

cstartup

Return from main and call exit

System terminated

_exit

Dynamic C++ destruction
 and atexit execution

cexit
CH8-1

Part 1. Using the compiler 63

64

System startup and termination
SYSTEM STARTUP

When an application is initialized, a number of steps are performed:

● When the CPU is reset it will jump to the program entry label __program_start
in the system startup code.

● The stack pointer to be used by the optional __low_level_init is set up to the
end of the CSTACK segment. Note that if the required memory is not yet available in
your hardware configuration, you need to modify the startup code.

● Optionally, the function __low_level_init is called, giving the application a
chance to perform early initializations. Note that this requires a stack and thereby
the previous step.

● The stack pointer to be used by your application is set up to the end of the CSTACK
segment. This requires the memory to be available.

● Static variables are initialized; this includes clearing zero-initialized memory and
copying the ROM image of the RAM memory of the rest of the initialized variables
depending on the return value of __low_level_init

● Static C++ objects are constructed
● The main function is called, which starts the application.

SYSTEM TERMINATION

An application can terminate normally in two different ways:

● Return from the main function
● Call the exit function.

As the ISO/ANSI C standard states that the two methods should be equivalent, the
system startup code calls the exit function if main returns. The parameter passed to the
exit function is the return value of main.

The default exit function is written in C. It calls a small assembler function _exit that
will perform the following operations:

● Call functions registered to be executed when the application ends. This includes
C++ destructors for static and global variables, and functions registered with the
standard C function atexit

● Close all open files
● Call __exit
● When __exit is reached, stop the system.

An application can also exit by calling the abort or the _Exit function. The abort
function just calls __exit to halt the system, and does not perform any type of cleanup.
The _Exit function is equivalent to the abort function, except for the fact that _Exit
takes an argument for passing exit status information.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

The DLIB runtime environment
If you want your application to perform anything extra at exit, for example resetting the
system, you can write your own implementation of the __exit(int) function.

C-SPY interface to system termination

If your project is linked with the XLINK options With runtime control modules or
With I/O emulation modules, the normal __exit and abort functions are replaced
with special ones. C-SPY will then recognize when those functions are called and can
take appropriate actions to simulate program termination. For more information, see
C-SPY Debugger runtime interface, page 75.

Customizing system initialization
It is likely that you need to customize the code for system initialization. For example,
your application might need to initialize memory-mapped special function registers
(SFRs), or omit the default initialization of data segments performed by cstartup.

You can do this by providing a customized version of the routine __low_level_init,
which is called from cstartup.s37 before the data segments are initialized.
Modifying the file cstartup directly should be avoided.

The code for handling system startup is located in the source files cstartup.s37, and
low_level_init.c or low_level_init.s37, located in the h8\src\lib directory.

If you intend to rebuild the library, the source files are available in the template library
project, see Building and using a customized library, page 61.

Note: Regardless of whether you modify the routine __low_level_init or the file
cstartup.s37, you do not have to rebuild the library.

__LOW_LEVEL_INIT

Two skeleton low-level initialization files are supplied with the product: a C source file,
low_level_init.c and an alternative assembler source file, low_level_init.s37.
The only limitation using the C source version is that static initialized variables cannot
be used within the file, as variable initialization has not been performed at this point.

The value returned by __low_level_init determines whether or not data segments
should be initialized by the system startup code. If the function returns 0, the data
segments will not be initialized.
CH8-1

Part 1. Using the compiler 65

66

Standard streams for input and output
MODIFYING THE FILE CSTARTUP.S37

As noted earlier, you should not modify the file cstartup.s37 if a customized version
of __low_level_init is enough for your needs. However, if you do need to modify
the file cstartup.s37, we recommend that you follow the general procedure for
creating a modified copy of the file and adding it to your project, see Overriding library
modules, page 59.

Situations that require a modified cstartup.s37 file

One specific situation that requires you to modify the cstartup.s37 file is when the
memory where the stack is located is not available when the microcomputer is reset.

The __low_level_init function must set up the hardware to make the stack memory
available. However, the call from cstartup to __low_level_init requires a small
amount of stack, and that memory must be available before the call to
__low_level_init.

In this case, you must modify cstartup and set up the stack pointer to some RAM area,
which can temporarily be used for the call to __low_level_init. For example, you
can use memory reserved for static variables, as this memory is not initialized until after
the call to __low_level_init. For more details, see the comments available in the
cstartup.s37 file.

Note that parts of the code in cstartup.s37 depend on the used data model. Normally,
the assembler does not need to know what data model you use, and there are no
assembler options to specify the data model. To assemble the file cstartup.s37, you
have to define the preprocessor symbol __DATA_MODEL__ to the value 1 (for the Small
data model) or 3 (for the Huge data model).

To define the symbol from the command line, use:

-D__DATA_MODEL__=1 (or 3)

In the IAR Embedded Workbench IDE, the assembler will automatically get the correct
value for the preprocessor symbol __DATA_MODEL__.

Standard streams for input and output
There are three standard communication channels (streams)—stdin, stdout, and
stderr—which are defined in stdio.h. If any of these streams are used by your
application, for example by the functions printf and scanf, you need to customize the
low-level functionality to suit your hardware.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

The DLIB runtime environment
There are primitive I/O functions, which are the fundamental functions through which
C and C++ performs all character-based I/O. For any character-based I/O to be available,
you must provide definitions for these functions using whatever facilities the hardware
environment provides.

IMPLEMENTING LOW-LEVEL CHARACTER INPUT AND
OUTPUT

To implement low-level functionality of the stdin and stdout streams, you must write
the functions __read and __write, respectively. You can find template source code for
these functions in the h8\src\lib directory.

If you intend to rebuild the library, the source files are available in the template library
project, see Building and using a customized library, page 61. Note that customizing the
low-level routines for input and output does not require you to rebuild the library.

Note: If you write your own variants of __read or __write, special considerations
for the C-SPY runtime interface are needed, see C-SPY Debugger runtime interface,
page 75.

Example of using __write and __read

The code in the following examples use memory-mapped I/O to write to an LCD
display:

__no_init volatile unsigned char LCD_IO @ address;

size_t __write(int Handle, const unsigned char * Buf,
 size_t Bufsize)
{
 int nChars = 0;
 /* Check for stdout and stderr
 (only necessary if file descriptors are enabled.) */
 if (Handle != 1 && Handle != 2)
 {
 return -1;
 }
 for (/*Empty */; Bufsize > 0; --Bufsize)
 {
 LCD_IO = * Buf++;
 ++nChars;
 }
 return nChars;
}

CH8-1

Part 1. Using the compiler 67

68

Configuration symbols for printf and scanf
The code in the following example uses memory-mapped I/O to read from a keyboard:

__no_init volatile unsigned char KB_IO @ 0xD2;

size_t __read(int Handle, unsigned char *Buf, size_t BufSize)
{
 int nChars = 0;
 /* Check for stdin
 (only necessary if FILE descriptors are enabled) */
 if (Handle != 0)
 {
 return -1;
 }
 for (/*Empty*/; BufSize > 0; --BufSize)
 {
 int c = KB_IO;
 if (c < 0)
 break;
 *Buf++ = c;
 ++nChars;
 }
 return nChars;
}

For information about the @ operator, see Data and function placement in segments,
page 48.

Configuration symbols for printf and scanf
When you set up your application project, you typically need to consider what printf
and scanf formatting capabilities your application requires, see Choosing formatters
for printf and scanf, page 57.

If the provided formatters do not meet your requirements, you can customize the full
formatters. However, that means you need to rebuild the runtime library.

The default behavior of the printf and scanf formatters are defined by configuration
symbols in the file DLIB_Defaults.h.

The following configuration symbols determine what capabilities the function printf
should have:

Printf configuration symbols Includes support for

_DLIB_PRINTF_MULTIBYTE Multibyte characters

_DLIB_PRINTF_LONG_LONG Long long (ll qualifier)

Table 17: Descriptions of printf configuration symbols
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

The DLIB runtime environment
When you build a library, the following configurations determine what capabilities the
function scanf should have:

CUSTOMIZING FORMATTING CAPABILITIES

To customize the formatting capabilities, you need to set up a library project, see
Building and using a customized library, page 61. Define the configuration symbols
according to your application requirements.

File input and output
The library contains a large number of powerful functions for file I/O operations. If you
use any of these functions you need to customize them to suit your hardware. In order
to simplify adaptation to specific hardware, all I/O functions call a small set of primitive
functions, each designed to accomplish one particular task; for example, __open opens
a file, and __write outputs a number of characters.

_DLIB_PRINTF_SPECIFIER_FLOAT Floating-point numbers

_DLIB_PRINTF_SPECIFIER_A Hexadecimal floats

_DLIB_PRINTF_SPECIFIER_N Output count (%n)

_DLIB_PRINTF_QUALIFIERS Qualifiers h, l, L, v, t, and z

_DLIB_PRINTF_FLAGS Flags -, +, #, and 0

_DLIB_PRINTF_WIDTH_AND_PRECISION Width and precision

_DLIB_PRINTF_CHAR_BY_CHAR Output char by char or buffered

Scanf configuration symbols Includes support for

_DLIB_SCANF_MULTIBYTE Multibyte characters

_DLIB_SCANF_LONG_LONG Long long (ll qualifier)

_DLIB_SCANF_SPECIFIER_FLOAT Floating-point numbers

_DLIB_SCANF_SPECIFIER_N Output count (%n)

_DLIB_SCANF_QUALIFIERS Qualifiers h, j, l, t, z, and L

_DLIB_SCANF_SCANSET Scanset ([*])

_DLIB_SCANF_WIDTH Width

_DLIB_SCANF_ASSIGNMENT_SUPPRESSING Assignment suppressing ([*])

Table 18: Descriptions of scanf configuration symbols

Printf configuration symbols Includes support for

Table 17: Descriptions of printf configuration symbols (Continued)
CH8-1

Part 1. Using the compiler 69

70

Locale
Note that file I/O capability in the library is only supported by libraries with full library
configuration, see Library configurations, page 53. In other words, file I/O is supported
when the configuration symbol __DLIB_FILE_DESCRIPTOR is enabled. If not enabled,
functions taking a FILE * argument cannot be used.

Template code for the following I/O files are included in the product:

The primitive functions identify I/O streams, such as an open file, with a file descriptor
that is a unique integer. The I/O streams normally associated with stdin, stdout, and
stderr have the file descriptors 0, 1, and 2, respectively.

Note: If you link your library with I/O debugging support, C-SPY variants of the
low-level I/O functions will be linked for interaction with C-SPY. For more
information, see Debug support in the runtime library, page 53.

Locale
Locale is a part of the C language that allows language- and country-specific settings for
a number of areas, such as currency symbols, date and time, and multibyte character
encoding.

Depending on what runtime library you are using you get different level of locale
support. However, the more locale support, the larger your code will get. It is therefore
necessary to consider what level of support your application needs.

The DLIB library can be used in two major modes:

● With locale interface, which makes it possible to switch between different locales
during runtime

● Without locale interface, where one selected locale is hardwired into the
application.

I/O function File Description

__close close.c Closes a file.

__lseek lseek.c Sets the file position indicator.

__open open.c Opens a file.

__read read.c Reads a character buffer.

__write write.c Writes a character buffer.

remove remove.c Removes a file.

rename rename.c Renames a file.

Table 19: Low-level I/O files
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

The DLIB runtime environment
LOCALE SUPPORT IN PREBUILT LIBRARIES

The level of locale support in the prebuilt libraries depends on the library configuration.

● All prebuilt libraries support the C locale only
● All libraries with full library configuration have support for the locale interface. For

prebuilt libraries with locale interface, it is by default only supported to switch
multibyte character encoding during runtime.

● Libraries with normal library configuration do not have support for the locale
interface.

If your application requires a different locale support, you need to rebuild the library.

CUSTOMIZING THE LOCALE SUPPORT

If you decide to rebuild the library, you can choose between the following locales:

● The standard C locale
● The POSIX locale
● A wide range of international locales.

Locale configuration symbols

The configuration symbol _DLIB_FULL_LOCALE_SUPPORT, which is defined in the
library configuration file, determines whether a library has support for a locale interface
or not. The locale configuration symbols _LOCALE_USE_LANG_REGION and
_ENCODING_USE_ENCODING define all the supported locales and encodings.

If you want to customize the locale support, you simply define the locale configuration
symbols required by your application. For more information, see Building and using a
customized library, page 61.

Note: If you use multibyte characters in your C or assembler source code, make sure
that you select the correct locale symbol (the local host locale).

Building a library without support for locale interface

The locale interface is not included if the configuration symbol
_DLIB_FULL_LOCALE_SUPPORT is set to 0 (zero). This means that a hardwired locale
is used—by default the standard C locale—but you can choose one of the supported
locale configuration symbols. The setlocale function is not available and can
therefore not be used for changing locales at runtime.
CH8-1

Part 1. Using the compiler 71

72

Environment interaction
Building a library with support for locale interface

Support for the locale interface is obtained if the configuration symbol
_DLIB_FULL_LOCALE_SUPPORT is set to 1. By default, the standard C locale is used,
but you can define as many configuration symbols as required. Because the setlocale
function will be available in your application, it will be possible to switch locales at
runtime.

CHANGING LOCALES AT RUNTIME

The standard library function setlocale is used for selecting the appropriate portion
of the application’s locale when the application is running.

The setlocale function takes two arguments. The first one is a locale category that is
constructed after the pattern LC_CATEGORY. The second argument is a string that
describes the locale. It can either be a string previously returned by setlocale, or it
can be a string constructed after the pattern:

lang_REGION

or

lang_REGION.encoding

The lang part specifies the language code, and the REGION part specifies a region
qualifier, and encoding specifies the multibyte encoding that should be used.

The lang_REGION part matches the _LOCALE_USE_LANG_REGION preprocessor
symbols that can be specified in the library configuration file.

Example

This example sets the locale configuration symbols to Swedish to be used in Finland and
UTF8 multibyte encoding:

setlocale (LC_ALL, "sv_FI.Utf8");

Environment interaction
According to the C standard, your application can interact with the environment using
the functions getenv and system.

Note: The putenv function is not required by the standard, and the library does not
provide an implementation of it.

The getenv function searches the string, pointed to by the global variable __environ,
for the key that was passed as argument. If the key is found, the value of it is returned,
otherwise 0 (zero) is returned. By default, the string is empty.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

The DLIB runtime environment
To create or edit keys in the string, you must create a sequence of null terminated strings
where each string has the format:

key=value\0

The last string must be empty. Assign the created sequence of strings to the __environ
variable.

For example:

const char MyEnv[] = ”Key=Value\0Key2=Value2\0”;
__environ = MyEnv;

If you need a more sophisticated environment variable handling, you should implement
your own getenv, and possibly putenv function. This does not require that you rebuild
the library. You can find source templates in the files getenv.c and environ.c in the
h8\src\lib directory. For information about overriding default library modules, see
Overriding library modules, page 59.

If you need to use the system function, you need to implement it yourself. The system
function available in the library simply returns -1.

If you decide to rebuild the library, you can find source templates in the library project
template. For further information, see Building and using a customized library, page 61.

Note: If you link your application with support for I/O debugging, the functions
getenv and system will be replaced by C-SPY variants. For further information, see
Debug support in the runtime library, page 53.

Signal and raise
There are default implementations of the functions signal and raise available. If
these functions do not provide the functionality that you need, you can implement your
own versions.

This does not require that you rebuild the library. You can find source templates in the
files Signal.c and Raise.c in the h8\src\lib directory. For information about
overriding default library modules, see Overriding library modules, page 59.

If you decide to rebuild the library, you can find source templates in the library project
template. For further information, see Building and using a customized library, page 61.
CH8-1

Part 1. Using the compiler 73

74

Time
Time
To make the time and date functions work, you must implement the three functions
clock, time, and __getzone.

This does not require that you rebuild the library. You can find source templates in the
files Clock.c and Time.c, and Getzone.c in the h8\src\lib directory. For
information about overriding default library modules, see Overriding library modules,
page 59.

If you decide to rebuild the library, you can find source templates in the library project
template. For further information, see Building and using a customized library, page 61.

The default implementation of __getzone specifies UTC as the time-zone.

Note: If you link your application with support for I/O debugging, the functions clock
and time will be replaced by C-SPY variants that return the host clock and time
respectively. For further information, see C-SPY Debugger runtime interface, page 75.

Strtod
The function strtod does not accept hexadecimal floating-point strings in libraries
with the normal library configuration. To make a library do so, you need to rebuild the
library, see Building and using a customized library, page 61. Enable the configuration
symbol _DLIB_STRTOD_HEX_FLOAT in the library configuration file.

Assert
If you have linked your application with support for runtime debugging, C-SPY will be
notified about failed asserts. If this is not the behavior you require, you must add the
source file xReportAssert.c to your application project. Alternatively, you can
rebuild the library. The __ReportAssert function generates the assert notification.You
can find template code in the h8\src\lib directory. For further information, see
Building and using a customized library, page 61. To turn off assertions, you must define
the symbol NDEBUG.

In the IAR Embedded Workbench IDE, this symbol NDEBUG is by default defined in a
Release project and not defined in a Debug project. If you build from the command line,
you must explicitly define the symbol according to your needs.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

The DLIB runtime environment
Heaps
The runtime environment supports heaps in the following memory types:

See The heap, page 41 for information about how to set the size for each heap. To use a
specific heap, the prefix in the table is the extended keyword to use in front of malloc,
free, calloc, and realloc. The default functions will use one of the specific heap
variants, depending on project settings such as data model. For information about how
to use a specific heap in C++, see New and Delete operators, page 109.

C-SPY Debugger runtime interface
To include support for runtime and I/O debugging, you must link your application
with the XLINK options With runtime control modules or With I/O emulation
modules, see Debug support in the runtime library, page 53. In this case, C-SPY
variants of the following library functions will be linked to the application:

Memory type Segment name Extended keyword
Used by default in data

model

Data16 DATA16_HEAP __data16 Small

Data32 DATA32_HEAP __data32 Huge

Table 20: Heaps and memory types

Function Description

__close Closes the associated host file on the host computer

__exit C-SPY notifies that the end of the application has been reached *

__open Opens a file on the host computer

__read stdin, stdout, and stderr will be directed to the Terminal I/O
window; all other files will read the associated host file

__seek Seeks in the associated host file on the host computer

__write stdin, stdout, and stderr will be directed to the Terminal I/O
window, all other files will write to the associated host file

_ReportAssert Handles failed asserts *

abort C-SPY notifies that the application has called abort *

clock Returns the clock on the host computer

remove Writes a message to the Debug Log window and returns -1

rename Writes a message to the Debug Log window and returns -1

system Writes a message to the Debug Log window and returns -1

Table 21: Functions with special meanings when linked with debug info
CH8-1

Part 1. Using the compiler 75

76

C-SPY Debugger runtime interface
* The linker option With I/O emulation modules is not required for these functions.

LOW-LEVEL DEBUGGER RUNTIME INTERFACE

The low-level debugger runtime interface is used for communication between the
application being debugged and the debugger itself. The debugger provides runtime
services to the application via this interface; services that allow capabilities like file and
terminal I/O to be performed on the host computer.

These capabilities can be valuable during the early development of an application, for
example in an application using file I/O before any flash file system I/O drivers have
been implemented. Or, if you need to debug constructions in your application that use
stdin and stdout without the actual hardware device for input and output being
available. Another debugging purpose can be to produce debug trace printouts.

The mechanism used for implementing this feature works as follows. The debugger will
detect the presence of the function __DebugBreak, which will be part of the application
if you have linked it with the XLINK options for C-SPY runtime interface. In this case,
the debugger will automatically set a breakpoint at the __DebugBreak function. When
the application calls, for example open, the __DebugBreak function is called, which
will cause the application to break and perform the necessary services. The execution
will then resume.

THE DEBUGGER TERMINAL I/O WINDOW

To make the Terminal I/O window available, the application must be linked with
support for I/O debugging, see Debug support in the runtime library, page 53. This
means that when the functions __read or __write are called to perform I/O
operations on the streams stdin, stdout, or stderr, data will be sent to or read
from the C-SPY Terminal I/O window.

Note: The Terminal I/O window is not opened automatically just because __read or
__write is called; you must open it manually.

See the H8 IAR Embedded Workbench® IDE User Guide for more information about
the Terminal I/O window.

time Returns the time on the host computer

Function Description

Table 21: Functions with special meanings when linked with debug info (Continued)
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

The DLIB runtime environment
Checking module consistency
This section introduces the concept of runtime model attributes, a mechanism used by
the IAR compiler, assembler, and linker to ensure module consistency.

When developing an application, it is important to ensure that incompatible modules are
not used together. For example, in the H8 IAR C/C++ Compiler, it is possible to specify
the size of the double floating-point type. If you write a routine that only works for
64-bit doubles, it is possible to check that the routine is not used in an application built
using 32-bit doubles.

The tools provided by IAR use a set of predefined runtime model attributes. You can use
these predefined attributes or define your own to perform any type of consistency check.

RUNTIME MODEL ATTRIBUTES

A runtime attribute is a pair constituted of a named key and its corresponding value. Two
modules can only be linked together if they have the same value for each key that they
both define.

There is one exception: if the value of an attribute is *, then that attribute matches any
value. The reason for this is that you can specify this in a module to show that you have
considered a consistency property, and this ensures that the module does not rely on that
property.

Example

In the following table, the object files could (but do not have to) define the two runtime
attributes color and taste. In this case, file1 cannot be linked with any of the other
files, since the runtime attribute color does not match. Also, file4 and file5 cannot
be linked together, because the taste runtime attribute does not match.

On the other hand, file2 and file3 can be linked with each other, and with either
file4 or file5, but not with both.

Object file Color Taste

file1 blue not defined

file2 red not defined

file3 red *

file4 red spicy

file5 red lean

Table 22: Example of runtime model attributes
CH8-1

Part 1. Using the compiler 77

78

Checking module consistency
USING RUNTIME MODEL ATTRIBUTES

Runtime model attributes can be specified in your C/C++ source code to ensure module
consistency with other object files by using the #pragma rtmodel directive. For
example:

#pragma rtmodel="__rt_version", "1"

For detailed syntax information, see #pragma rtmodel, page 225.

Runtime model attributes can also be specified in your assembler source code by using
the RTMODEL assembler directive. For example:

RTMODEL "color", "red"

For detailed syntax information, see the H8 IAR Assembler Reference Guide.

Note: The predefined runtime attributes all start with two underscores. Any attribute
names you specify yourself should not contain two initial underscores in the name, to
eliminate any risk that they will conflict with future IAR runtime attribute names.

At link time, the IAR XLINK Linker checks module consistency by ensuring that
modules with conflicting runtime attributes will not be used together. If conflicts are
detected, an error is issued.

PREDEFINED RUNTIME ATTRIBUTES

The table below shows the predefined runtime model attributes that are available for the
H8 IAR C/C++ Compiler. These can be included in assembler code or in mixed C or
C++ and assembler code.

Runtime model attribute Value Description

__bus_width1) 20, 24, 28, 32,
 or *

Corresponds to the --bus_width option.
The attribute is specified for files compiled in
the Advanced operating mode, but not for
files compiled in the Normal operating mode.

__code_model small or
large

Corresponds to the code model used in the
project.

__data_model small or
huge

Corresponds to the data model used in the
project.

__double_size 32, or 64 Size in bits of the double data type.

__interrupt_mode1) 0, 1, 2, 3, or * Corresponds to the used interrupt mode.

__int_size 16 Size in bits of the int data type. Present for
future compatibility.

Table 23: Predefined runtime model attributes
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

The DLIB runtime environment
1) If you use the --weak_rtmodel_check compiler option, this runtime model attribute may
have the value * instead of any other possible value. To read more about this, see Using a weak
runtime model check, page 80.

The easiest way to find the proper settings of the RTMODEL directive is to compile a C or
C++ module to generate an assembler file, and then examine the file.

If you are using assembler routines in the C or C++ code, refer to the chapter Assembler
directives in the H8 IAR Assembler Reference Guide.

Examples

For an example of using the runtime model attribute __rt_version for checking
module consistency on used calling convention, see Hints for using calling convention
3, page 91.

The following assembler source code provides a function, test_and_set, that tests
and sets the variable semaphore. Because the function uses an instruction that is only
available for H8S, the function may only be included in a project which uses an H8S
microcomputer. To ensure this, the runtime model attribute __use_h8s_instr has
been defined with the value yes. This definition ensures that the module
test_and_set can only be linked with either other modules that contain the same
definition, or with modules that specify the special value * for the attribute. Note that
the compiler sets this attribute to no when you build an H8/300H project unless the
command line option --weak_rtmodel_check is used.

CASEON
RTMODEL"__use_h8s_instr", "yes"
MODULE test_and_set
PUBLIC test_and_set
EXTERN semaphore
RSEG CODE16:CODE:NOROOT(1)

__operating_mode normal or
advanced

Corresponds to the operating mode used in
the project.

__rt_version n This runtime key is always present in all
modules generated by the H8 IAR C/C++
Compiler. If a major change in the runtime
characteristics occurs, the value of this key
changes.

__use_h8s_instr1) yes, no, or * H8S instructions may be used in the code
generated for this module.

__use_mac_instr1) yes, no, or * Corresponds to the --enable_mac
option.

Runtime model attribute Value Description

Table 23: Predefined runtime model attributes (Continued)
CH8-1

Part 1. Using the compiler 79

80

Checking module consistency
test_and_set:
; ER5 and ER6 are scratch registers
; Return semaphore value in R6L
MOV.B #0, R6L
MOV.L #semaphore, ER5
TAS @ER5
BPL was_0
MOV.B #1, R6L

was_0:
RTS
ENDMOD
END

If this module is used in an application built for the H8/300H core, the following error
is issued by the linker:

Error[e117]: Incompatible runtime models. Module myMain specifies
that '__use_h8s_instr' must be 'no', but module test_and_set has
the value 'yes'

USING A WEAK RUNTIME MODEL CHECK

If you use the --weak_rtmodel_check compiler option, some of the runtime model
attributes may have the value * instead of any other possible value. This means that the
compiled module can be linked with other modules which have a specific value other
than *. This allows for modules that are compatible to be linked together although they
have not been compiled with the same compiler options.

If you use the --weak_rtmodel_check compiler option, the following runtime model
attributes will have the * value in the following situations:

__bus_width If no code is generated that depends on the specified bus
width, this symbol will have the value *, which means that bus
width-independent code can be used in any project.

__use_h8s_instr If compiling for H8/300H, this symbol will have the value *,
which means that the generated code can be used in projects
built for an H8S microcomputer.

__use_mac_instr If no code is generated that depends on the presence of MAC
registers or MAC instructions, this symbol will have the value
*, which means that the generated code can be used in any
project independently of the presence of MAC hardware.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

The DLIB runtime environment
If you use the IAR Embedded Workbench IDE, libraries will automatically be built with
the option --weak_rtmodel_check, making it possible to use the libraries in more
situations than would otherwise have been possible.

USER-DEFINED RUNTIME MODEL ATTRIBUTES

In cases where the predefined runtime model attributes are not sufficient, you can define
your own attributes by using the #pragma rtmodel directive or the RTMODEL
assembler directive. For each property, select a key and a set of values that describe the
states of the property that are incompatible. Note that key names that start with two
underscores are reserved by the compiler.

Examples

If you write code for a specific device, your code will not work correctly if used in a
project for another device. In this case it can be useful to specify a runtime model
attribute that describes the device for which you have written your code. Using this
attribute in all modules specific to this device, and corresponding attributes for code
related to any other device provides you with an automatic control that code will not be
incorrectly linked together. Most parts of your code is probably device-neutral and do
not need to include a device attribute.

In a file ad_converter_handler.c:

#pragma rtmodel="device", "H8S_2148_Series"
.../* Code that handles the A/D converters
 for this specific device */

In the main file of your application, which is intended to be used for an application for
a different device, for example the H8S/2655 Series:

#pragma rtmodel="device", "H8S_2655_Series"

If you try to build these two files together, the linker will notify you about the files being
incompatible.

Another example, if you have a UART that can run in two modes, you can specify a
runtime model attribute, for example uart. For each mode, specify a value, for example
mode1 and mode2. You should declare this in each module that assumes that the UART
is in a particular mode. This is how it could look like in one of the modules:

#pragma rtmodel="uart", "mode1"

__interrupt_mode If no code is generated that depends on the specified interrupt
mode, this symbol will have the value *, which means that
the generated code can be used in any project independently
of which interrupt mode that is being used.
CH8-1

Part 1. Using the compiler 81

82

Checking module consistency
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Assembler language
interface
When you develop an application for an embedded system, there may be
situations where you will find it necessary to write parts of the code in
assembler, for example, when using mechanisms in the H8/300H and H8S
microcomputer families that require precise timing and special instruction
sequences.

This chapter describes the available methods for this, as well as some C
alternatives, with their advantages and disadvantages. It also describes how to
write functions in assembler language that work together with an application
written in C or C++.

Finally, the chapter covers the different memory access methods
corresponding to the supported memory types, and how you can implement
support for call frame information in your assembler routines for use in the
C-SPY Call Stack window.

Mixing C and assembler
The H8 IAR C/C++ Compiler provides several ways to mix C or C++ and assembler:

● Modules written entirely in assembler
● Intrinsic functions (the C alternative)
● Inline assembler.

It might be tempting to use simple inline assembler. However, you should carefully
choose which method to use.

INTRINSIC FUNCTIONS

The compiler provides a small number of predefined functions that allow direct access
to low-level processor operations without having to use the assembler language. These
functions are known as intrinsic functions. They can be very useful in, for example,
time-critical routines.
CH8-1

Part 2. Compiler reference 83

84

Mixing C and assembler
An intrinsic function looks like a normal function call, but it is really a built-in function
that the compiler recognizes. The intrinsic functions compile into inline code, either as
a single instruction, or as a short sequence of instructions.

The advantage of an intrinsic function compared to using inline assembler is that the
compiler has all necessary information to interface the sequence properly with register
allocation and variables. The compiler also knows how to optimize functions with such
sequences; something the compiler is unable to do with inline assembler sequences. The
result iss that you get the desired sequence properly integrated in your code, and that the
compiler can optimize the result.

For detailed information about the available intrinsic functions, see the chapter Intrinsic
functions.

MIXING C AND ASSEMBLER MODULES

When an application is written partly in assembler language and partly in C or C++, you
are faced with a number of questions:

● How should the assembler code be written so that it can be called from C?
● Where does the assembler code find its parameters, and how is the return value

passed back to the caller?
● How should assembler code call functions written in C?
● How are global C variables accessed from code written in assembler language?
● Why does not the debugger display the call stack when assembler code is being

debugged?

The first issue is discussed in this section. The following two are covered in the section
Calling convention, page 89.

The section on memory access methods, page 98, covers how data in memory is
accessed.

The answer to the final question is that the call stack can be displayed when you run
assembler code in the debugger. However, the debugger requires information about the
call frame, which must be supplied as annotations in the assembler source file. For more
information, see Call frame information, page 101.

It is possible to write parts of your application in assembler and mix them with your C
or C++ modules. There are several benefits with this:

● The function call mechanism is well-defined
● The code will be easy to read
● The optimizer can work with the C or C++ functions.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Assembler language interface
There will be some overhead in the form of a function call and return instruction
sequences, and the compiler will regard some registers as scratch registers. On the other
hand, you will have a well-defined interface between what the compiler performs and
what you write in assembler. When using inline assembler, you will not have any
guarantees that your inline assembler lines do not interfere with the compiler generated
code.

The recommended method for mixing C or C++ and assembler modules is described in
Calling assembler routines from C, page 86, and Calling assembler routines from C++,
page 88, respectively.

INLINE ASSEMBLER

It is possible to insert assembler code directly into a C or C++ function. The asm
keyword assembles and inserts the supplied assembler statement in-line. The following
example shows how to use inline assembler to insert assembler instructions directly in
the C source code. This example also shows the risks of using inline assembler.

bool __data8 flag;

void foo()
{
 while (!flag)
 {
 asm("BSET #0,@flag:8");
 }
}

In this example, the change of flag is not noticed by the compiler, which means the
surrounding code cannot be expected to rely on the inline assembler statement.

The inline assembler instruction will simply be inserted at the given location in the
program flow. The consequences or side-effects the insertion may have on the
surrounding code have not been taken into consideration. If, for example, registers or
memory locations are altered, they may have to be restored within the sequence of inline
assembler instructions for the rest of the code to work properly.

Inline assembler sequences have no well-defined interface with the surrounding code
generated from your C or C++ code. This makes the inline assembler code fragile, and
will possibly also become a maintenance problem if you upgrade the compiler in the
future. In addition, there are several limitations to using inline assembler:

● The compiler’s various optimizations will disregard any effects of the inline
sequences, which will not be optimized at all

● In general, assembler directives will cause errors or have no meaning. Data
definition directives will work as expected
CH8-1

Part 2. Compiler reference 85

86

Calling assembler routines from C
● Alignment cannot be controlled
● Auto variables cannot be accessed.

Inline assembler is therefore often best avoided. If there is no suitable intrinsic function
available, we recommend the use of modules written in assembler language instead of
inline assembler, because the function call to an assembler routine normally causes less
performance reduction.

For information about the bool data type, see Integer types, page 176.

Calling assembler routines from C
An assembler routine that is to be called from C must:

● Conform to the calling convention
● Have a PUBLIC entry-point label
● Be declared as external before any call, to allow type checking and optional

promotion of parameters, as in the following examples:

extern int foo(void);

or

extern int foo(int i, int j);

One way of fulfilling these requirements is to create skeleton code in C, compile it, and
study the assembler list file.

The compiler supports several different calling conventions, see Calling convention,
page 89. Although any calling convention can be used, it is strongly recommended to
use calling convention 1 or 2 when you interface between C and assembler.

CREATING SKELETON CODE

The recommended way to create an assembler language routine with the correct
interface is to start with an assembler language source file created by the C compiler.
Note that you must create skeleton code for each function prototype.

The following example shows how to create skeleton code to which you can easily add
the functional body of the routine. The skeleton source code only needs to declare the
variables required and perform simple accesses to them.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Assembler language interface
In this example, the assembler routine takes an int and a double, and then returns an
int:

extern int gInt;
extern double gDouble;

__cc_version1 int func(int arg1, double arg2)
{
 int locInt = arg1;
 gInt = arg1;
 gDouble = arg2;
 return locInt;
}

int main()
{
 int locInt = gInt;
 gInt = func(locInt, gDouble);
 return 0;
}

Note: In this example we use a low optimization level when compiling the code to
show local and global variable access. If a higher level of optimization is used, the
required references to local variables could be removed during the optimization. The
actual function declaration is not changed by the optimization level.

COMPILING THE CODE

In the IAR Embedded Workbench IDE, specify list options on file level. Select the file
in the workspace window. Then choose Project>Options. In the C/C++ Compiler
category, select Override inherited settings. On the List page, deselect Output list
file, and instead select the Output assembler file option and its suboption Include
source. Also, be sure to specify a low level of optimization.

Use the following options to compile the skeleton code:

icch8 skeleton -lA .

The -lA option creates an assembler language output file including C or C++ source
lines as assembler comments. The . (period) specifies that the assembler file should be
named in the same way as the C or C++ module (skeleton), but with the filename
extension s37. Also remember to specify the code model, and data model you are using
as well as a low level of optimization and -e for enabling language extensions.

The result is the assembler source output file skeleton.s37.
CH8-1

Part 2. Compiler reference 87

88

Calling assembler routines from C++
Note: The -lA option creates a list file containing call frame information (CFI)
directives, which can be useful if you intend to study these directives and how they are
used. If you only want to study the calling convention, you can exclude the CFI
directives from the list file. In the IAR Embedded Workbench IDE, select
Project>Options>C/C++ Compiler>List and deselect the suboption Include
compiler runtime information. On the command line, use the option -lB instead of
-lA. Note that CFI information must be included in the source code to make the C-SPY
Call Stack window work.

The output file

The output file contains the following important information:

● The calling convention
● The return values
● The global variables
● The function parameters
● Call frame information (CFI).

The CFI directives describe the call frame information needed by the Call Stack window
in the IAR C-SPY® Debugger.

Calling assembler routines from C++
The C calling convention does not apply to C++ functions. Most importantly, a function
name is not sufficient to identify a C++ function. The scope and the type of the function
are also required to guarantee type-safe linkage, and to resolve overloading.

Another difference is that non-static member functions get an extra, hidden argument,
the this pointer.

However, when using C linkage, the calling convention conforms to the C calling
convention. An assembler routine may therefore be called from C++ when declared in
the following manner:

extern "C"
{
 int my_routine(int x);
}

Memory access layout of non-PODs (“plain old data structures”) is not defined, and may
change between compiler versions. Therefore, we do not recommend that you access
non-PODs from assembler routines.

To achieve the equivalent to a non-static member function, the implicit this pointer has
to be made explicit:
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Assembler language interface
class X;

extern "C"
{
 void doit(X *ptr, int arg);
}

It is possible to “wrap” the call to the assembler routine in a member function. Using an
inline member function removes the overhead of the extra call—provided that function
inlining is enabled:

class X
{
public:
 inline void doit(int arg) { ::doit(this, arg); }
};

Note: Support for C++ names from assembler code is extremely limited. This means
that:

● Assembler list files resulting from compiling C++ files cannot, in general, be passed
through the assembler.

● It is not possible to refer to or define C++ functions that do not have C linkage in
assembler.

Calling convention
A calling convention is the way a function in a program calls another function. The
compiler handles this automatically, but, if a function is written in assembler language,
you must know where and how its parameters can be found, how to return to the program
location from where it was called, and how to return the resulting value.

It is also important to know which registers an assembler-level routine must preserve. If
the program preserves too many registers, the program might be ineffective. If it
preserves too few registers, the result would be an incorrect program.

The H8 IAR C/C++ Compiler provides three calling conventions. This section describes
the calling conventions used by the H8 IAR C/C++ Compiler. The following items are
looked upon:

● Choosing a calling convention
● Function declarations
● C and C++ linkage
● Preserved versus scratch registers
● Function entrance
● Function exit
● Return address handling.
CH8-1

Part 2. Compiler reference 89

90

Calling convention
At the end of the section, some examples are shown to describe the calling convention
in practice.

CHOOSING A CALLING CONVENTION

There are three calling conventions to choose between:

● Calling convention 3 (__cc_version3)

A __cc_version3 declared function, or a function without an explicitly specified
calling convention, uses the calling convention of the H8 IAR C/C++ Compiler,
version 2.x. Basically, the compiler selects appropriate parameters with a size of up
to 64 bits and passes them in the registers ER6, ER5, and ER4. Remaining parameters
are passed on the stack. The first stack parameter has the lowest address on the stack,
and so on. This calling convention is used by the compiler by default. However, it is
not recommended to use this convention when interfacing between C and assembler.

● Calling convention 2 (__cc_version2)

A __cc_version2 declared function uses the calling convention of ICCH8,
compiler versions 1.20A and up. Basically, the first two scalar parameters with a size
of up to 32 bits are sent in the registers ER6 and ER5. This calling convention is
provided to support assembler functions written for older compilers being called by
the new compiler. Old C functions using this calling convention can normally not be
used, as they require an environment which is not provided by the new compiler. You
can use this calling convention when interfacing between C and assembler, allowing
you to pass up to two parameters in registers.

● Calling convention 1 (__cc_version1)

A __cc_version1 declared function uses the calling convention of ICCH8,
compiler versions up to 1.20A. Basically, the first scalar parameter with a size of up
to 32 bits is sent in the ER6 register. This calling convention is provided to support
assembler functions written for older compilers being called by the new compiler.
Old C functions using this calling convention can normally not be used, as they
require an environment which is not provided by the new compiler. You can use this
calling convention when interfacing between C and assembler, allowing you to pass
one parameter in registers.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Assembler language interface
You can declare individual functions to use the calling convention 1 or 2 by using the
__cc_version1 or __cc_version2 function attribute, for example:

extern __cc_version1 void doit(int arg);

Hints for using calling convention 3

The default calling convention, calling convention 3, is very complex and if you intend
to use it for your assembler routines, you should create a list file and see how the
compiler assigns the different parameters to the available registers. For an example, see
Creating skeleton code, page 86.

If you intend to use calling convention 3, you should also specify a value to the runtime
model attribute __rt_version using the RTMODEL assembler directive:

RTMODEL "__rt_version"="value"

The parameter value should have the same value as the one used internally by the
compiler. For information about what value to use, see the generated list file. If the
calling convention changes in future compiler versions, the runtime model value used
internally by the compiler will also change. Using this method gives a module
consistency check as the linker will produce an error if there is a mismatch between the
values.

For more information about checking module consistency, see Checking module
consistency, page 77.

FUNCTION DECLARATIONS

In C, a function must be declared in order for the compiler to know how to call it. A
declaration could look as follows:

__cc_version1 int a_function(int first, char * second);

This means that the function takes two parameters: an integer and a pointer to a
character. The function returns a value, an integer.

In the general case, this is the only knowledge that the compiler has about a function.
Therefore, it must be able to deduce the calling convention from this information.

C AND C++ LINKAGE

In C++, a function can have either C or C++ linkage. Only functions with C linkage can
be implemented in assembler.
CH8-1

Part 2. Compiler reference 91

92

Calling convention
The following is an example of a declaration of a function with C linkage:

extern "C"
{
 __cc_version1 int f(int);
}

It is often practical to share header files between C and C++. The following is an
example of a declaration that declares a function with C linkage in both C and C++:

#ifdef __cplusplus
extern "C"
{
#endif

 __cc_version1 int f(int);

#ifdef __cplusplus
}
#endif

PRESERVED VERSUS SCRATCH REGISTERS

The general H8/300H and H8S CPU registers are divided into three separate sets, which
are described in this section.

Scratch registers

Any function may destroy the contents of a scratch register. If a function needs the
register value after a call to another function, it must store it during the call, for example
on the stack.

● For __cc_version3, the registers ER4, ER5, and ER6 are scratch registers
● For __cc_version1 and __cc_version2, the registers ER5 and ER6 are scratch

registers.

Preserved registers

Preserved registers, on the other hand, are preserved across function calls. Any function
may use the register for other purposes, but must save the value prior to use and restore
it at the exit of the function.

● For __cc_version3, the registers ER0–ER3 must be preserved
● For __cc_version1 and __cc_version2, the registers ER0–ER4 must be

preserved.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Assembler language interface
Special registers

For some registers there are certain prerequisites that you must consider:

● The stack pointer register—R7 or ER7—must at all times point to or below the last
element on the stack. In the eventuality of an interrupt, everything below the point
the stack pointer points to, will be destroyed.

● The status registers—CCR and EXR, as required—are saved in interrupt, monitor,
and trap functions.

● When running in the Normal operating mode, the stack pointer only occupies the
register R7 of ER7. In this version of the compiler, the register E7 of ER7 is not used
by the compiler, and is free for use as an extra scratch register or similar. However,
note that future versions of the compiler may use register E7.

FUNCTION CALL

During a function call, the calling function passes the parameters, either in registers or
on the stack. Control is then passed to the called function with the return address being
automatically pushed on the stack.

The called function:

● stores any local registers required by the function on the stack
● allocates space for its auto variables and temporary values
● proceeds to run the function itself.

Register parameters versus stack parameters

Parameters can be passed to a function using one of two basic methods: in registers or
on the stack. It is much more efficient to use registers than to take a detour via memory,
so the calling convention is designed to utilize registers as much as possible. The
remaining parameters are passed on the stack.

Register parameters

The registers available for passing parameters are:

● For __cc_version3, parameters with a size up to 64 bits are sent in the registers
ER4, ER5, and ER6

● For __cc_version2, the first two scalar parameters with a size up to 32 bits are
sent in the registers ER6 and ER5

● For __cc_version1, the first scalar parameter with a size up to 32 bits is sent in
the registers ER6.
CH8-1

Part 2. Compiler reference 93

94

Calling convention
In addition to the parameters visible in a function declaration and definition, there can
be hidden parameters, which are also passed via registers. If the function returns a
struct, or union, and for calling convention 1 an 2 also double, the memory location
where the structure is to be stored is passed using a pointer with the stack pointer
attribute. This pointer is passed as a hidden parameter in a register.

Register assignment using calling convention 1 and 2

The assignment of registers to parameters is a straightforward process. Traversing the
parameters in strict order from left to right, using a first-fit algorithm, the first, or first
two, parameters are passed in registers if they are scalar and up to 32 bits in size.

Parameters are allocated to registers according to the following table:

Register assignment using calling convention 3

In this calling convention, as many parameters as possible are passed in registers. The
remaining parameters are passed on the stack. The compiler may change the order of the
parameters to achieve the most efficient register usage.

The algorithm for assigning parameters to registers is quite complex in this calling
convention. For details, you should create a list file and see how the compiler assigns the
different parameters to the available registers, see Creating skeleton code, page 86.

Stack parameters

There is only a limited number of registers that can be used for passing parameters;
when no more registers are available, the remaining parameters are passed on the stack.
In addition, the parameters are passed on the stack in the following cases:

● Structure types: struct, union, and classes
● Unnamed parameters to variable length functions; in other words, functions

declared as foo(param1, ...), for example printf.

Parameters
Passed in registers

(__cc_version1)

Passed in registers

(__cc_version2)

8-bit values R6L Parameter 1: R6L
Parameter 2: R5L

16-bit values R6 Parameter 1: R6
Parameter 2: R5

32-bit values ER6 Parameter 1: ER6
Parameter 2: ER5

Table 24: Registers used for passing parameters
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Assembler language interface
Stack layout

Stack parameters are stored in the main memory, starting at the location pointed to by
the stack pointer. Below the stack pointer (towards low memory) there is free space that
the called function can use. The parameters are passed in reverse order, which means the
last parameter is transferred first and it is stored at the location pointed to by the stack
pointer. The next one is stored at the next location on the stack that is divisible by two,
etc.

Figure 2: Storing stack parameters in memory

FUNCTION EXIT

The called function exits by deallocating auto variables, restoring registers, and finally
popping the return address from the stack.

Return values

A function can return a value to the function or program that called it, or it can be of the
type void. The return value of a function, if any, can be scalar (such as integers and
pointers), floating-point, or a structure. A return value can be passed via register or via
the stack.

For all three calling conventions, the following details are valid:

● Scalar return values are passed in registers
● For calling convention 1 and 2, return values larger than 32 bits are returned as

struct/union return values
● struct and union return values are passed using a pointer with the stack data

pointer attribute. The memory location where this type of return values are stored is
pointed to by an implicit first parameter passed to the function.

The caller’s stack frame
High
address

Low
address

ER7 or R7
Stack pointer

Parameter n to 1

Return address and saved status registers for
interrupts and traps

Saved registers including status registers for
monitor functions

 Auto variables

Free stack memory for temporary storage
CH8-1

Part 2. Compiler reference 95

96

Calling convention
Registers used for returning values

Scalar return values are passed in registers; the following registers are available for
returning values R6L, R6, ER6, or ER5:ER4 depending on the size of the return value.

Stack cleaning at function exit

Normally, it is the responsibility of the caller to clean the stack after the called function
has returned.

Return address handling

A function written in assembler language should, when finished, return to the caller. At
a function call, the return address is stored on the stack.

The return address is restored directly from the stack with the RTS instruction; RTE for
interrupt functions.

RESTRICTIONS FOR SPECIAL FUNCTION TYPES

The following deviations from the specified calling conventions exist:

● An __interrupt declared function saves all used registers (there are no scratch
registers)

● A __task declared function does not save the caller’s registers
● A __raw declared interrupt function does not save the caller’s register.

EXAMPLES

The following section shows a series of declaration examples and the corresponding
calling conventions. The complexity of the examples increases towards the end.

Example 1

Assume that we have the following function declaration:

__cc_version1 short add1(short);

Return values Passed in registers

8-bit values R6L

16-bit values R6

32-bit values ER6

64-bit values ER5:ER4 (calling convention 3 only)

Table 25: Registers used for returning values
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Assembler language interface
This function takes one parameter in the register R6, and the return value is passed back
to its caller in the register R6.

The following assembler routine is compatible with the declaration; it will return a value
that is one number higher than the value of its parameter:

INC.W #1,R6
RTS

Example 2

This example shows how structures are passed on the stack. Assume that we have the
following declarations:

struct a_struct { long a; };
__cc_version1 short a_function(struct a_struct x, short y);

The calling function must reserve four bytes on the top of the stack and copy the contents
of the struct to that location. The integer parameter y is passed in the register R6. The
return value is passed back to its caller in the register R6.

Example 3

The function below will return a struct.

struct a_struct { long a; };
__cc_version1 struct a_struct a_function(short x);

It is the responsibility of the calling function to allocate a memory location for the return
value and pass a pointer to it as a hidden first parameter. The pointer to the location
where the return value should be stored is passed in R6 in the Small data model, and in
ER6 in the other models. The parameter x is passed on the stack, as calling convention
1 only passes one parameter in registers.

Assume that the function instead would have been declared to return a pointer to the
structure:

__cc_version1 struct a_struct * a_function(short x);

In this case, the return value is a scalar, so there is no hidden parameter. The parameter
x is passed in R6, and the return value is returned in R6 or ER6, depending on the data
model.

FUNCTION DIRECTIVES

Note: This type of directives is primarily intended to support static overlay, a feature
which is useful in some smaller microcontrollers. The H8 IAR C/C++ Compiler does
not use static overlay, because it has no use for it.
CH8-1

Part 2. Compiler reference 97

98

Memory access methods
The function directives FUNCTION, ARGFRAME, LOCFRAME, and FUNCALL are generated
by the H8 IAR C/C++ Compiler to pass information about functions and function calls
to the IAR XLINK Linker. These directives can be seen if you use the compiler option
Assembler file (-lA) to create an assembler list file.

For reference information about the function directives, see the H8 IAR Assembler
Reference Guide.

Memory access methods
This section describes the different memory types presented in the chapter Data storage.
In addition to just presenting the assembler code used for accessing data, it will be used
for explaining the reason behind the different memory types.

You should be familiar with the H8/300H and H8S instruction set, in particular the
different addressing modes used by the instructions that can access memory.

The H8 IAR Assembler supports all of the many addressing modes of the H8/300H and
H8S architectures. For simplicity, the following examples assume an H8S device. The
following addressing modes are used in the examples:

Note that the instruction size differs significantly between the different addressing
modes, especially for the absolute addressing modes. The generated code will become
significantly smaller if the most suitable addressing mode can be used for accessing your
data. This is the reason for introducing data models and data memory attributes, which
are important tools for you to control the size of the generated application code.

Addressing mode Symbol Instruction example
Instruction

size

Register indirect @ERn MOV.B @ER2,R6L 2 bytes

Register indirect with
displacement and 16-bit
offset

@(d:16,ERn) MOV.B @(4:16,ER2),R6L 4 bytes

Register indirect with
displacement and 32-bit
offset

@(d:32,ERn) MOV.B

@(0x40000:32,ER2),R6L

8 bytes

Absolute 8-bit address @aa:8 MOV.B @x:8,R6L 2 bytes

Absolute 16-bit address @aa:16 MOV.B @x:16,R6L 4 bytes

Absolute 32-bit address @aa:32 MOV.B @x:32,R6L 6 bytes

Table 26: Specifying the size of an assembler memory instruction
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Assembler language interface
EXAMPLE CODE FOR SHOWING DIFFERENCES IN MEMORY
TYPES

For each of the access methods described in the following sections, there will be three
examples:

● Accessing a global variable
● Accessing a global array using an unknown index
● Accessing a structure using a pointer.

These three examples can be illustrated by the following C program:

char x;
char y[10];

struct s
{
 long a;
 char b;
};

char test(short i, struct s * p)
{
 return x + y[i] + p->b;
}

THE DATA16 MEMORY ACCESS METHOD

When it is known to the compiler that a data object is located in data16 memory, it can
use the @aa:16 addressing mode for absolute addressing. The compiler may also be
able to use the @(d:16,ERn) addressing mode for indirect addressing with
displacement, instead of using the more expensive @(d:32,ERn) addressing mode.

For more details about data16 memory, see Data16 memory, page 17.

Examples

The following list shows how data16 memory is accessed for the code examples listed
in Example code for showing differences in memory types, page 99; in this case the
Normal operating mode is assumed:

MOV.B @x:16,R6L Access the global variable x

MOV.B @(y:16,ER5),R6L Access an entry in the global array y, index i in R5

MOV.B @(0x4:16,ER5),R6L Access through a pointer, pointer p in R5
CH8-1

Part 2. Compiler reference 99

100

Memory access methods
THE DATA32 MEMORY ACCESS METHOD

When it is known to the compiler that a data object is located in data32 memory, it must
use the @aa:32 addressing mode for absolute addressing.

For more details about data32 memory, see Data32 memory, page 17.

Examples

The following list shows how data32 memory is accessed for the code examples listed
in Example code for showing differences in memory types, page 99:

THE DATA8 MEMORY ACCESS METHOD

When it is known to the compiler that a data object is located in data8 memory, it can
use the @aa:8 addressing mode for absolute addressing.

For more details about data8 memory, see Data8 memory, page 16.

Examples

The following list shows how data8 memory is accessed for the examples listed in
Example code for showing differences in memory types, page 99; in this case the Normal
operating mode is assumed. The list also includes the code required to extend a data8
pointer to be used for accessing the variable.

MOV.B @x:32,R6L Access the global variable x

MOV.B @(y:32,ER5),R6L Access an array, index i in ER5

MOV.B @(0x4:16,ER5),R6L Access through a pointer, pointer p in ER5

MOV.B @x:8,R6L Access the global variable x

ADD.B #LOW(y),R5L

MOV.B #0xFF,R5H

MOV.B @ER5,R6L

Access an entry in the global array y. R5 contains
the index i when starting. Note that only the low
part of i is used. The array index in data8 memory
is 8 bits in size.

ADD.B #0x4,R5L

MOV.B #0xFF,R5H

MOV.B @ER5,R6L

Access through a pointer. R5L contains the pointer
p when starting.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Assembler language interface
Call frame information
When debugging an application using C-SPY, it is possible to view the call stack, that
is, the functions that have called the current function. The compiler makes this possible
by supplying debug information that describes the layout of the call frame, in particular
information about where the return address is stored.

If you want the call stack to be available when debugging a routine written in assembler
language, you must supply equivalent debug information in your assembler source using
the assembler directive CFI. This directive is described in detail in the H8 IAR
Assembler Reference Guide.

The CFI directives will provide C-SPY with information about the state of the calling
function(s). Most important of this is the return address, and the value of the stack
pointer at the entry of the function or assembler routine. Given this information, C-SPY
can reconstruct the state for the calling function, and thereby unwind the stack.

A full description about the calling convention may require extensive call frame
information. In many cases, a more limited approach will suffice.

When describing the call frame information, the following three components must be
present:

● A names block describing the available resources to be tracked
● A common block corresponding to the calling convention
● A data block describing the changes that are performed on the call frame. This

typically includes information about when the stack pointer is changed, and when
permanent registers are stored or restored on the stack.

The following table lists all the resources defined in the names block used by the
compiler:

Resource Description

R0L:8, R0H:8, R1L:8, R1H:8, R2L:8,
R2H:8, R3L:8, R3H:8, R4L:8, R4H:8,
R5L:8, R5H:8, R6L:8, R6H:8, E0:16,
E1:16, E2:16, E3:16, E4:16, E5:16,
E6:16, E7:16, R0:16, R1:16, R2:16,
R3:16, R4:16, R5:16, R6:16, ER0:32,
ER1:32, ER2:32, ER3:32, ER4:32, ER5:32,
ER6:32

Normal registers

R7:16 The stack pointer in Normal operating mode

ER7:32 The stack pointer in Advanced operating
mode

Table 27: Call frame information resources defined in a names block
CH8-1

Part 2. Compiler reference 101

102

Call frame information
* Note that for compatibility, EXR is a defined resource also for H8/300H, although H8/300H does
not have an EXR register.

CCR:8, EXR:8 Special purpose registers*

?RET32 The return address

?RETWORD0:16, ?RETBYTE2:8,
?RETBYTE3:8

These resources describe the return address

Resource Description

Table 27: Call frame information resources defined in a names block (Continued)
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Using C++
IAR Systems supports two levels of the C++ language: The industry-standard
Embedded C++ and IAR Extended Embedded C++. They are described in this
chapter.

Overview
Embedded C++ is a subset of the C++ programming language which is intended for
embedded systems programming. It was defined by an industry consortium, the
Embedded C++ Technical Committee. Performance and portability are particularly
important in embedded systems development, which was considered when defining the
language.

STANDARD EMBEDDED C++

The following C++ features are supported:

● Classes, which are user-defined types that incorporate both data structure and
behavior; the essential feature of inheritance allows data structure and behavior to
be shared among classes

● Polymorphism, which means that an operation can behave differently on different
classes, is provided by virtual functions

● Overloading of operators and function names, which allows several operators or
functions with the same name, provided that there is a sufficient difference in their
argument lists

● Type-safe memory management using the operators new and delete
● Inline functions, which are indicated as particularly suitable for inline expansion.

C++ features which have been excluded are those that introduce overhead in execution
time or code size that are beyond the control of the programmer. Also excluded are
recent additions to the ISO/ANSI C++ standard. This is because they represent potential
portability problems, due to the fact that few development tools support the standard.
Embedded C++ thus offers a subset of C++ which is efficient and fully supported by
existing development tools.

Standard Embedded C++ lacks the following features of C++:

● Templates
● Multiple and virtual inheritance
● Exception handling
● Runtime type information
CH8-1

Part 1. Using the compiler 103

104

Overview
● New cast syntax (the operators dynamic_cast, static_cast,
reinterpret_cast, and const_cast)

● Namespaces
● The mutable attribute.

The exclusion of these language features makes the runtime library significantly more
efficient. The Embedded C++ library furthermore differs from the full C++ library in
that:

● The standard template library (STL) is excluded
● Streams, strings, and complex numbers are supported without the use of templates
● Library features which relate to exception handling and runtime type information

(the headers except, stdexcept, and typeinfo) are excluded.

Note: The library is not in the std namespace, because Embedded C++ does not
support namespaces.

EXTENDED EMBEDDED C++

IAR Systems’ Extended EC++ is a slightly larger subset of C++ which adds the
following features to the standard EC++:

● Full template support
● Namespace support
● The mutable attribute
● The cast operators static_cast, const_cast, and reinterpret_cast.

All these added features conform to the C++ standard.

To support Extended EC++, this product includes a version of the standard template
library (STL), in other words, the C++ standard chapters utilities, containers, iterators,
algorithms, and some numerics. This STL has been tailored for use with the Extended
EC++ language, which means that there are no exceptions, no multiple inheritance, and
no support for runtime type information (rtti). Moreover, the library is not in the std
namespace.

Note: A module compiled with Extended EC++ enabled is fully link-compatible with
a module compiled without Extended EC++ enabled.

ENABLING C++ SUPPORT

In the H8 IAR C/C++ Compiler, the default language is C. To be able to compile files
written in Embedded C++, you must use the --ec++ compiler option. See --ec++, page
156. You must also use the IAR DLIB runtime library.

To take advantage of Extended Embedded C++ features in your source code, you must
use the --eec++ compiler option. See --eec++, page 157.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Using C++
To set the equivalent option in the IAR Embedded Workbench IDE, select
Project>Options>C/C++ Compiler>Language.

Feature descriptions
When writing C++ source code for the IAR C/C++ Compiler, there are some benefits
and some possible quirks that you need to be aware of when mixing C++ features—such
as classes, and class members—with IAR language extensions, such as IAR-specific
attributes.

CLASSES

A class type class and struct in C++ can have static and non-static data members,
and static and non-static function members. The non-static function members can be
further divided into virtual function members, non-virtual function members,
constructors, and destructors. For the static data members, static function members, and
non-static non-virtual function members the same rules apply as for statically linked
symbols outside of a class. In other words, they can have any applicable IAR-specific
type, memory, and object attribute.

The non-static virtual function members can have any applicable IAR-specific type,
memory, and object attribute as long as a pointer to the member function can be
implicitly converted to the default function pointer type. The constructors, destructors,
and non-static data members cannot have any IAR attributes.

For further information about attributes, see Type qualifiers, page 183.

Example

class A {
 public:
 //Located in data16 at address 60
 static __data16 __no_init int i @ 60;
 static __vector_call void f(); //Call via vector area
 __vector_call void g(); //Call via vector area
};

The this pointer used for referring to a class object will by default have the data
memory attribute for the default data pointer type. This means that such a class object
can only be defined to reside in memory from which pointers can be implicitly converted
to a default data pointer.
CH8-1

Part 1. Using the compiler 105

106

Feature descriptions
Example

class B {
 public:
 void f();
 int i;
};
B __data8 b;

If you use the Small data model, the following declaration is illegal. A data32 pointer
cannot implicitly be converted to a default (data16) pointer. The address of b cannot be
converted to a this pointer of an object of class B:

B __data32 b;

Class memory

To compensate for this limitation, a class can be associated with a class memory type.
The class memory type changes:

● the this pointer type in all member functions, constructors, and destructors into a
pointer to class memory

● the default memory for static storage duration variables—that is, not auto
variables—of the class type, into the specified class memory

● the pointer type used for pointing to objects of the class type, into a pointer to class
memory.

Example

In the following examples, the Advanced operating mode and the Huge data model are
assumed:

class __data16 C {
 public:
 void f(); // Has a this pointer of type C __data16 *
 void f() const; // Has a this pointer of type
 // C __data16 const *
 C(); // Has a this pointer pointing into data16
 // memory
 C(C const &); // Takes a parameter of type C __data16
 // const & (also true of generated copy
 // constructor)
 int i;
};
C Ca; // Resides in data16 memory instead of the
 // default memory
C __data16 Cb; // Resides in data16 memory, the 'this'
 // pointer still points into data16 memory
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Using C++
C __data32 Cc; // Not allowed, the __data32 pointer
// can't be implicitly converted into a
// __data16 pointer

void h()
{
 C Cd; // Not allowed, auto variables are located in

// data32 memory
}
C * Cp1; // Creates a pointer to data16 memory
C __data8 * Cp2; // Creates a pointer to data8 memory

Note: Whenever a class type associated with a class memory type, like C, must be
declared, the class memory type must be mentioned as well:

class __data16 C;

Also note that class types associated with different class memories are not compatible
types.

There is a built-in operator that returns the class memory type associated with a class,
__memory_of(class). For instance, __memory_of(C) returns __data16.

When inheriting, the rule is that it must be possible to convert implicitly a pointer to a
subclass into a pointer to its base class. This means that a subclass can have a more
restrictive class memory than its base class, but not a less restrictive class memory.

class __data16 D : public C { // OK, same class memory
 public:
 void g();
 int j;
};

class __data8 E : public C { // OK, data8 memory is inside
 // data16
 public:
 void g() // Has a this pointer pointing into data8 memory
 {
 f(); // Gets a this pointer into data16 memory
 }
 int j;
};

class __data32 F : public C { // Not OK, data32 memory isn’t
 // inside data16 memory
 public:
 void g();
 int j;
};
CH8-1

Part 1. Using the compiler 107

108

Feature descriptions
class G : public C { // OK, will be associated with same class
 // memory as C
 public:
 void g();
 int j;
};

A new expression on the class will allocate memory in the heap residing in the class
memory. A delete expression will naturally deallocate the memory back to the same
heap. To override the default new and delete operator for a class, declare

void *operator new(size_t);
void operator delete(void *);

as member functions, just like in ordinary C++.

In member functions, the this parameter is a pointer to the memory specified by the
class. To call a member function of an object, the this parameter must be able to point
to the object. For the same reason, if the class has anything but a trivial constructor or a
destructor, objects of that type cannot be created in a memory to which the this
parameter could not point.

In particular, temporary objects and auto objects are created in stack memory, and
cannot be used in situations where this would violate the restrictions on the this
pointer.

For more information about memory types, see Memory types, page 15.

FUNCTIONS

A function with extern "C" linkage is compatible with a function that has C++ linkage.

Example

extern "C" {
 typedef void (*fpC)(void); // A C function typedef
};
void (*fpCpp)(void); // A C++ function typedef

fpC f1;
fpCpp f2;
void f(fpC);

f(f1); // Always works
f(f2); // fpCpp is compatible with fpC
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Using C++
NEW AND DELETE OPERATORS

There are operators for new and delete for each memory that can have a heap, that is,
data16 and data32 memory.

These examples assume that there is a heap in both data16 and data32 memory.

void __data16 * operator new __data16(__data16_size_t);
void __data32 * operator new __data32(__data32_size_t);
void operator delete(void __data16 *);
void operator delete(void __data32 *);

And correspondingly for array new and delete operators:

void __data16 * operator new[] __data16(__data16_size_t);
void __data32 * operator new[] __data32(__data32_size_t);
void operator delete[](void __data16 *);
void operator delete[](void __data32 *);

Use this syntax if you want to override both global and class-specific operator new
and operator delete for any data memory.

Note that there is a special syntax to name the operator new functions for each
memory, while the naming for the operator delete functions relies on normal
overloading.

New and delete expressions

A new expression calls the operator new function for the memory of the type given. If
a class, struct, or union type with a class memory is used, the class memory will
determine the operator new function called. For example,

//Calls operator new __data16(__data16_size_t)
int __data16 *p = new __data16 int;

//Calls operator new __data16(__data16_size_t)
int __data16 *q = new int __data16;

//Calls operator new[] __data16(__data16_size_t)
int __data16 *r = new __data16 int[10];

//Calls operator new __data32(__data32_size_t)
class __data32 S{...};
S *s = new S;

A delete expression calls the operator delete function that corresponds to the
argument given. For example,

delete p; //Calls operator delete(void __data16 *)
delete s; //Calls operator delete(void __data32 *)
CH8-1

Part 1. Using the compiler 109

110

Feature descriptions
Note that the pointer used in a delete expression must have the correct type, that is, the
same type as that returned by the new expression. If you use a pointer to the wrong
memory, the result might be a corrupt heap. For example,

int __data16 * t = new __data32 int;
delete t; //Error: Causes a corrupt heap

TEMPLATES

Extended EC++ supports templates according to the C++ standard, except for the
support of the export keyword. The implementation uses a two-phase lookup which
means that the keyword typename has to be inserted wherever needed. Furthermore, at
each use of a template, the definitions of all possible templates must be visible. This
means that the definitions of all templates have to be in include files or in the actual
source file.

Templates and data memory attributes

For data memory attributes to work as expected in templates, two elements of the
standard C++ template handling have been changed—class template partial
specialization matching and function template parameter deduction.

In Extended Embedded C++, the class template partial specialization matching
algorithm works like this:

When a pointer or reference type is matched against a pointer or reference to a
template parameter type, the template parameter type will be the type pointed to,
stripped of any data memory attributes, if the resulting pointer or reference type is
the same.

Example

// Data16 is assumed to be the memory type of the default
 pointer.
template<typename> class Z;
template<typename T> class Z<T *>;

Z<int __data8 *> zn; // T = int __data8
Z<int __data16 *> zf; // T = int
Z<int *> zd; // T = int
Z<int __data32 *> zh; // T = int __data32

In Extended Embedded C++, the function template parameter deduction algorithm
works like this:

When function template matching is performed and an argument is used for the
deduction; if that argument is a pointer to a memory that can be implicitly converted
to a default pointer, do the parameter deduction as if it was a default pointer.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Using C++
When an argument is matched against a reference, do the deduction as if the
argument and the parameter were both pointers.

Example

template<typename T> void fun(T *);

fun((int __data8 *) 0); // T = int. The result is different
 // than the analogous situation with
 // class template specializations.
fun((int *) 0); // T = int
fun((int __data16 *) 0); // T = int
fun((int __data32 *) 0); // T = int __data32

For templates that are matched using this modified algorithm, it is impossible to get
automatic generation of special code for pointers to small memory types. For large and
“other” memory types (memory that cannot be pointed to by a default pointer) it is
possible. In order to make it possible to write templates that are fully
memory-aware—in the rare cases where this is useful—use the #pragma
basic_template_matching directive in front of the template function declaration.
That template function will then match without the modifications described above.

Example

#pragma basic_template_matching
template<typename T> void fun(T *);

fun((int __data8 *) 0); // T = int __data8

Non-type template parameters

It is allowed to have a reference to a memory type as a template parameter, even if
pointers to that memory type are not allowed.

Example

typedef __bitvar struct {unsigned char n:1;} aBitVar;

template <aBitVar &y>
void foo()
{
 y.n = 1;
}

extern aBitVar x;
CH8-1

Part 1. Using the compiler 111

112

Feature descriptions
void bar()
{
 foo<x>();
}

The standard template library

The STL (standard template library) delivered with the product is tailored for Extended
EC++, as described in Extended Embedded C++, page 104.

The containers in the STL, like vector and map, are memory attribute aware. This
means that a container can be declared to reside in a specific memory type which has the
following consequences:

● The container itself will reside in the chosen memory
● Allocations of elements in the container will use a heap for the chosen memory
● All references inside it use pointers to the chosen memory.

Example

vector<int> d; // d placed in default memory,
 // using the default heap, uses
 // default pointers
vector<int __data16> __data16 x; // x placed in data16 memory,
 // heap allocation from data16,
 // uses pointers to data16
 // memory
vector<int __data32> __data16 y; // y placed in data16 memory,
 // heap allocation from data32,
 // uses pointers to data32
 // memory
vector<int __data16> __data32 z; // Illegal

Note that map<key, T>, multimap<key, T>, hash_map<key, T>, and
hash_multimap<key, T> all use the memory of T. This means that the value_type
of these collections will be pair<key, const T> mem where mem is the memory type
of T. Supplying a key with a memory type is not useful.

Note that two containers that only differ by the data memory attribute they use cannot
be assigned to each other.

Example

vector<int __data16> x;
vector<int __data32> y;

x = y; // Illegal
y = x; // Illegal
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Using C++
However, the templated assign member method will work:

x.assign(y.begin(), y.end());
y.assign(x.begin(), x.end());

STL and the IAR C-SPY Debugger

C-SPY has built-in display support for the STL containers.

VARIANTS OF CASTS

In Extended EC++ the following additional C++ cast variants can be used:

 const_cast<t2>(t), static_cast<t2>(t), reinterpret_cast<t2>(t).

MUTABLE

The mutable attribute is supported in Extended EC++. A mutable symbol can be
changed even though the whole class object is const.

NAMESPACE

The namespace feature is only supported in Extended EC++. This means that you can
use namespaces to partition your code. Note, however, that the library itself is not placed
in the std namespace.

THE STD NAMESPACE

The std namespace is not used in either standard EC++ or in Extended EC++. If you
have code that refers to symbols in the std namespace, simply define std as nothing;
for example:

#define std // Nothing here

POINTER TO MEMBER FUNCTIONS

A pointer to a member function can only contain a default function pointer, or a function
pointer that can implicitly be casted to a default function pointer. To use a pointer to a
member function, make sure that all functions that should be pointed to reside in the
default memory or a memory contained in the default memory.

For the current version of the H8 IAR C/C++ Compiler, this is not very relevant as only
one function memory attribute can be used at a time.
CH8-1

Part 1. Using the compiler 113

114

C++ language extensions
Example

class X{
public:
 __code24 void f();
};
void (__code24 X::*pmf)(void) = &X::f;

USING INTERRUPTS AND C++ DESTRUCTORS

If interrupts are enabled and the interrupt functions use class objects that have
destructors, there may be problems if the program exits either by using exit or by
returning from main. If an interrupt occurs after an object has been destroyed, there is
no guarantee that the program will work properly.

To avoid this, you must override the function exit(int).

The standard implementation of this function (located in the file exit.c) looks like this:

extern void _exit(int arg);
void exit(int arg)
{
 _exit(arg);
}

_exit(int) is responsible for calling the destructors of global class objects before
ending the program.

To avoid interrupts, place a call to the intrinsic function __disable_interrupt before
the call to _exit.

C++ language extensions
When you use the compiler in C++ mode and have enabled IAR language extensions,
the following C++ language extensions are available in the compiler:

● In a friend declaration of a class, the class keyword may be omitted, for
example:
class B;
class A
{
 friend B; //Possible when using IAR language
 //extensions
 friend class B; //According to standard
};
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Using C++
● Constants of a scalar type may be defined within classes, for example:
class A {
 const int size = 10;//Possible when using IAR language
 //extensions
 int a[size];
};

According to the standard, initialized static data members should be used instead.

● In the declaration of a class member, a qualified name may be used, for example:
struct A {
 int A::f(); //Possible when using IAR language extensions
 int f(); //According to standard
};

● It is permitted to use an implicit type conversion between a pointer to a function
with C linkage (extern "C") and a pointer to a function with C++ linkage
(extern "C++"), for example:
extern "C" void f();//Function with C linkage
void (*pf) () //pf points to a function with C++ linkage
 = &f; //Implicit conversion of pointer.

According to the standard, the pointer must be explicitly converted.

● If the second or third operands in a construction that contains the ? operator are
string literals or wide string literals (which in C++ are constants), the operands may
be implicitly converted to char * or wchar_t *, for example:
char *P = x ? "abc" : "def"; //Possible when using IAR
 //language extensions
char const *P = x ? "abc" : "def"; //According to standard

● Default arguments may be specified for function parameters not only in the
top-level function declaration, which is according to the standard, but also in
typedef declarations, in pointer-to-function function declarations, and in
pointer-to-member function declarations.

● In a function that contains a non-static local variable and a class that contains a
non-evaluated expression (for example a sizeof expression), the expression may
reference the non-static local variable. However, a warning is issued.

If you use any of these constructions without first enabling language extensions, errors
are issued.
CH8-1

Part 1. Using the compiler 115

116

C++ language extensions
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Efficient coding for
embedded applications
For embedded systems, the size of the generated code and data is very
important, because using smaller external memory or on-chip memory can
significantly decrease the cost and power consumption of a system.

This chapter gives an overview about how to write code that compiles to
efficient code for an embedded application. The issues discussed are:

● Taking advantage of the compilation system

● Selecting data types and placing data in memory

● Writing efficient code.

As a part of this, the chapter also demonstrates some of the more common
mistakes and how to avoid them, and gives a catalog of good coding
techniques.

Taking advantage of the compilation system
Largely, the compiler determines what size the executable code for the application will
be. The compiler performs many transformations on a program in order to generate the
best possible code. Examples of such transformations are storing values in registers
instead of memory, removing superfluous code, reordering computations in a more
efficient order, and replacing arithmetic operations by cheaper operations.

The linker should also be considered an integral part of the compilation system, since
there are some optimizations that are performed by the linker. For instance, all unused
functions and variables are removed and not included in the final object file. It is also as
input to the linker you specify the memory layout. For detailed information about how
to design the linker command file to suit the memory layout of your target system, see
the chapter Placing code and data.
CH8-1

Part 1. Using the compiler 117

118

Taking advantage of the compilation system
CONTROLLING COMPILER OPTIMIZATIONS

The H8 IAR C/C++ Compiler allows you to specify whether generated code should be
optimized for size or for speed, at a selectable optimization level. The purpose of
optimization is to reduce the code size and to improve the execution speed. When only
one of these two goals can be reached, the compiler prioritizes according to the settings
you specify. Note that one optimization sometimes enables other optimizations to be
performed, and an application may become smaller even when optimizing for speed
rather than size.

The following table describes the optimization levels:

By default, the same optimization level for an entire project or file is used, but you
should consider using different optimization settings for different files in a project. For
example, put code that must execute very quickly into a separate file and compile it for
minimal execution time (maximum speed), and the rest of the code for minimal code
size. This will give a small program, which is still fast enough where it matters. The
#pragma optimize directive allows you to fine-tune the optimization for specific
functions, such as time-critical functions.

A high level of optimization will result in increased compile time, and may also make
debugging more difficult, since it will be less clear how the generated code relates to the
source code. At any time, if you experience difficulties when debugging your code, try
lowering the optimization level.

Optimization level Description

None (Best debug support) Variables live through their entire scope

Low Dead code elimination
Redundant label elimination
Redundant branch elimination

Medium Code hoisting
Common subexpression elimination

High (Maximum optimization) Cross jumping
Cross call (when optimizing for size)
Loop unrolling
Function inlining
Code motion
Type-based alias analysis

Table 28: Compiler optimization levels
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Efficient coding for embedded applications
Both compiler options and pragma directives are available for specifying the preferred
type and level of optimization. The chapter Compiler options contains reference
information about the command line options used for specifying optimization type and
level. Refer to the H8 IAR Embedded Workbench® IDE User Guide for information
about the compiler options available in the IAR Embedded Workbench IDE. Refer to
#pragma optimize, page 221, for information about the pragma directives that can be
used for specifying optimization type and level.

FINE-TUNING ENABLED TRANSFORMATIONS

At each optimization level you can disable some of the transformations individually. To
disable a transformation, use either the appropriate option, for instance the command
line option --no_inline, alternatively its equivalent in the IAR Embedded Workbench
IDE Function inlining, or the #pragma optimize directive. The following
transformations can be disabled:

● Common subexpression elimination
● Loop unrolling
● Function inlining
● Code motion
● Type-based alias analysis.

Common subexpression elimination

Redundant re-evaluation of common subexpressions is by default eliminated at
optimization levels Medium and High. This optimization normally reduces both code
size and execution time. However, the resulting code might be difficult to debug.

Note: This option has no effect at optimization levels None and Low.

To read more about the command line option, see --no_cse, page 163.

Loop unrolling

It is possible to duplicate the loop body of a small loop, whose number of iterations can
be determined at compile time, to reduce the loop overhead.

This optimization, which can be performed at optimization level High, normally
reduces execution time, but increases code size. The resulting code might also be
difficult to debug.

The compiler heuristically decides which loops to unroll. Different heuristics are used
when optimizing for speed and size.

Note: This option has no effect at optimization levels None, Low, and Medium.

To read more about the command line option, see --no_unroll, page 165.
CH8-1

Part 1. Using the compiler 119

120

Taking advantage of the compilation system
Function inlining

Function inlining means that a simple function, whose definition is known at compile
time, is integrated into the body of its caller to eliminate the overhead of the call. This
optimization, which is performed at optimization level High, normally reduces
execution time, but increases code size. The resulting code might also be difficult to
debug.

The compiler decides which functions to inline. Different heuristics are used when
optimizing for speed and size.

Note: This option has no effect at optimization levels None, Low, and Medium.

To read more about the command line option, see --no_inline, page 164.

Code motion

Evaluation of loop-invariant expressions and common subexpressions are moved to
avoid redundant re-evaluation. This optimization, which is performed at optimization
level High, normally reduces code size and execution time. The resulting code might
however be difficult to debug.

Note: This option has no effect at optimization levels None, and Low.

Type-based alias analysis

When two or more pointers reference the same memory location, these pointers are said
to be aliases for each other. The existence of aliases makes optimization more difficult
because it is not necessarily known at compile time whether a particular value is being
changed.

Type-based alias analysis optimization assumes that all accesses to an object will take
place using its declared type or as a char type. This assumption lets the compiler detect
whether pointers may reference the same memory location or not.

Type-based alias analysis is performed at optimization level High. For ISO/ANSI
standard-conforming C or C++ application code, this optimization can reduce code size
and execution time. However, non-standard-conforming C or C++ code might result in
the compiler producing code that leads to unexpected behavior. Therefore, it is possible
to turn this optimization off.

Note: This option has no effect at optimization levels None, Low, and Medium.

To read more about the command line option, see --no_tbaa, page 164.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Efficient coding for embedded applications
Example

short f(short * p1, long * p2)
{
 *p2 = 0;
 *p1 = 1;
 return *p2;
}

With type-based alias analysis, it is assumed that a write access to the short pointed to
by p1 cannot affect the long value that p2 points to. Thus, it is known at compile time
that this function returns 0. However, in non-standard-conforming C or C++ code these
pointers could overlap each other by being part of the same union. By using explicit
casts, you can also force pointers of different pointer types to point to the same memory
location.

Selecting data types and placing data in memory
For efficient treatment of data, you should consider the data types used and the most
efficient placement of the variables.

USING EFFICIENT DATA TYPES

The data types you use should be considered carefully, because this can have a large
impact on code size and code speed.

● Use small and unsigned data types, (unsigned char and unsigned short)
unless your application really requires signed values.

● Try to avoid 64-bit data types, such as double and long long.
● Bitfields with sizes other than 1 bit should be avoided because they will result in

inefficient code compared to bit operations.
● When using arrays, it is more efficient if the type of the index expression matches

the index type of the memory of the array. For data8 this is signed char, for
data16 this is short, and for data32 it is long.

● Using floating-point types on a microprocessor without a math co-processor is very
inefficient, both in terms of code size and execution speed.

● Declaring a pointer to const data tells the calling function that the data pointed to
will not change, which opens for better optimizations.

For details about representation of supported data types, pointers, and structures types,
see the chapter Data representation.
CH8-1

Part 1. Using the compiler 121

122

Selecting data types and placing data in memory
Floating-point types

Using floating-point types on a microprocessor without a math coprocessor is very
inefficient, both in terms of code size and execution speed. The H8 IAR C/C++
Compiler supports two floating-point formats—32 and 64 bits. The 32-bit floating-point
type float is more efficient in terms of code size and execution speed. However, the
64-bit format double supports higher precision and larger numbers.

In the H8 IAR C/C++ Compiler, the floating-point type float always uses the 32-bit
format. The format used by the double floating-point type depends on the setting of the
--double compiler option.

Unless the application requires the extra precision that 64-bit floating-point numbers
give, we recommend using 32-bit floats instead. Also consider replacing code using
floating-point operations with code using integers since these are more efficient.

Note that a floating-point constant in the source code is treated as being of the type
double. This can cause innocent-looking expressions to be evaluated in double
precision. In the example below a is converted from a float to a double, 1 is added
and the result is converted back to a float:

float test(float a)
{
 return a + 1.0;
}

To treat a floating-point constant as a float rather than as a double, add an f to it, for
example:

float test(float a)
{
 return a + 1.0f;
}

DATA MODEL AND DATA MEMORY ATTRIBUTES

The H8 IAR C/C++ Compiler provides two different data models and a set of data
memory attributes—__bitvar, __data8, __data16, and __data32—corresponding
to the different memory types. For more details, see Memory types, page 15.

For many applications it is sufficient to use the data model feature to specify the default
memory for the data objects. However, efficient usage of the data model in combination
with the memory attributes can significantly reduce the application size.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Efficient coding for embedded applications
Using Small or Huge data model in the Advanced operating mode

When running in the Advanced operating mode, it may feel natural to use the Huge data
model. However, if most of your data, including the runtime stack, can fit in 64 Kbytes
of memory—the low 32 Kbytes and the high 32 Kbytes—you can potentially gain much
by using the Small data model; primarily when most data accesses are direct.

You can still place individual variables in other parts of the memory by using the data
memory attribute __data32. Note two things:

● Pointers to variables declared __data32 cannot be handled by the prebuilt runtime
library for the Small data model because this model assumes that all pointers are
pointers to data16 variables and have the size 16 bits. However, the compiler will
notify you about any attempts of sending a pointer to a data32 variable to a library
function.

● Even though pointers to data16 variables are 16 bits in size, they have to be
extended to 32 bits before they can be used in the Advanced operating mode. For
code that makes most data accesses through pointers, some of the advantages with
using the Small data model are lost. In some cases, the code might even become
larger and slower than when using the Huge data model.

Placing frequently accessed data in data8 memory

There is no data model where data8 is the default memory. It is not likely that all of your
default data, including the runtime stack, fits into the topmost 256 bytes of memory,
especially considering that the special function registers are normally also placed in this
area. However, if you place frequently accessed variables here by using the __data8
memory attribute, the code to access these variables will be both smaller and faster.

Note that this is mainly true for character-sized variables. Among the MOV instructions,
it is only MOV.B that can take advantage of placement in data8 memory. The MOV.W and
MOV.L instructions must access data8 variables using the @aa:16 addressing mode.

As for data16, placing a variable in data8 memory is primarily useful for direct data
accesses. In general, accessing data8 variables through pointers is not a good idea. The
code will probably be both larger and slower compared to placing the variables in
default memory. In the same way, it is normally no advantage to store arrays in data8
memory.

REARRANGING ELEMENTS IN A STRUCTURE

The H8/300H and H8S microcomputer families require that data in memory must be
aligned. Each element in a structure needs to be aligned according to its specified type
requirements. This means that the compiler must insert pad bytes if the alignment is not
correct.
CH8-1

Part 1. Using the compiler 123

124

Selecting data types and placing data in memory
There are two reasons why this can be considered a problem:

● Network communication protocols are usually specified in terms of data types with
no padding in between

● There is a need to save data memory.

For information about alignment requirements, see Alignment, page 175.

There are two ways to solve the problem:

● Use #pragma pack directive. This is an easy way to remove the problem with the
drawback that each access to an unaligned element in the structure will use more
code.

● Write your own customized functions for packing and unpacking structures. This is
a more portable way, which will not produce any more code apart from your
functions. The drawback is the need for two views on the structure data—packed
and unpacked.

For further details about the #pragma pack directive, see #pragma pack, page 222.

ANONYMOUS STRUCTS AND UNIONS

When a structure or union is declared without a name, it becomes anonymous. The effect
is that its members will only be seen in the surrounding scope.

Anonymous structures are part of the C++ language; however, they are not part of the C
standard. In the H8 IAR C/C++ Compiler they can be used in C if language extensions
are enabled.

In the IAR Embedded Workbench IDE, language extensions are enabled by default.

Use the -e compiler option to enable language extensions. See -e, page 156, for
additional information.

Example

In the following example, the members in the anonymous union can be accessed, in
function f, without explicitly specifying the union name:

struct s
{

char tag;
union
{

long l;
float f;

};
} st;
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Efficient coding for embedded applications
void f(void)
{

st.l = 5;
}

The member names must be unique in the surrounding scope. Having an anonymous
struct or union at file scope, as a global, external, or static variable is also allowed.
This could for instance be used for declaring I/O registers, as in the following example:

__no_init volatile
union
{

unsigned char IOPORT;
struct
{

unsigned char way: 1;
unsigned char out: 1;

};
} @ 0x1234;

This declares an I/O register byte IOPORT at the address 0x1234. The I/O register has 2
bits declared, way and out. Note that both the inner structure and the outer union are
anonymous.

The following example illustrates how variables declared this way can be used:

void test(void)
{

IOPORT = 0;
way = 1;
out = 1;

}

Anonymous structures and unions are implemented in terms of objects named after the
first field, with a prefix _A to place the name in the implementation part of the
namespace. In this example, the anonymous union will be implemented through an
object named _A_IOPORT.
CH8-1

Part 1. Using the compiler 125

126

Writing efficient code
Writing efficient code
This section contains general programming hints on how to implement functions to
make your applications robust, but at the same time facilitate compiler optimizations.

The following is a list of programming techniques that will, when followed, enable the
compiler to better optimize the application.

● Local variables—auto variables and parameters—are preferred over static or global
variables. The reason is that the optimizer must assume, for example, that called
functions may modify non-local variables. When the life spans for local variables
end, the previously occupied memory can then be reused. Globally declared
variables will occupy data memory during the whole program execution.

● Avoid taking the address of local variables using the & operator. There are two main
reasons why this is inefficient. First, the variable must be placed in memory, and
thus cannot be placed in a processor register. This results in larger and slower code.
Second, the optimizer can no longer assume that the local variable is unaffected
over function calls.

● Module-local variables—variables that are declared static—are preferred over
global variables. Also avoid taking the address of frequently accessed static
variables.

● The compiler is capable of inlining functions. This means that instead of calling a
function, the compiler inserts the content of the function at the location where the
function was called. The result is a faster, but often larger, application. Also,
inlining may enable further optimizations. The compiler often inlines small
functions declared static. The use of the #pragma inline directive and the C++
keyword inline gives you fine-grained control, and it is the preferred method
compared to the traditional way of using preprocessor macros. This feature can be
disabled using the --no_inline command line option; see --no_inline, page 164.

● Avoid using inline assembler. Instead, try writing the code in C or C++, use intrinsic
functions, or write a separate module in assembler language. For more details, see
Mixing C and assembler, page 83.

SAVING STACK SPACE AND RAM MEMORY

The following is a list of programming techniques that will, when followed, save
memory and stack space:

● If stack space is limited, avoid long call chains and recursive functions.
● Avoid using large non-scalar types, such as structures, as parameters or return type;

in order to save stack space, you should instead pass them as pointers or, in C++, as
references.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Efficient coding for embedded applications
STACK POINTER ARITHMETICS

The stack pointer has a size of 32 bits (ER7) in the Advanced operating mode and 16 bits
(R7) in the Normal operating mode. This means that stack arithmetics in the Normal
operating mode can be less expensive than in the Advanced operating mode.

For example, when the compiler reserves an area on the stack for local (auto) variables
it subtracts a constant value from the stack pointer. In the Advanced operating mode, this
requires using the SUB.L instruction. In the Normal operating mode, a SUB.W
instruction can be used instead, which means faster and a more compact code can be
generated.

In addition to the difference in hardware behavior when using different operating modes,
a corresponding technique can be used if the maximum size of the runtime stack is
known by the compiler.

For example, in the Advanced operating mode, only the lower 16 bits of the stack pointer
need to be updated if the size of the stack is smaller than 64 Kbytes, and the stack is
located entirely within one 64 Kbyte page in memory (....0000–....FFFF). Another
example, but less common, is if the stack size is smaller than 256 bytes, and the stack is
located entirely within one 256-byte page in memory (....00–....FF).

By using the compiler option --stack_pointer_size, you can make it possible for
the compiler to generate more efficient code in these cases.

To read more about this option, see --stack_pointer_size, page 171.

FUNCTION PROTOTYPES

It is possible to declare and define functions using one of two different styles:

● Prototyped
● Kernighan & Ritchie C (K&R C)

Both styles are included in the C standard; however, it is recommended to use the
prototyped style, since it makes it easier for the compiler to find problems in the code.
In addition, using the prototyped style will make it possible to generate more efficient
code, since type promotion (implicit casting) is not needed. The K&R style is only
supported for compatibility reasons.

To make the compiler verify that all functions have proper prototypes, use the compiler
option Require prototypes (--require_prototypes).
CH8-1

Part 1. Using the compiler 127

128

Writing efficient code
Prototyped style

In prototyped function declarations, the type for each parameter must be specified.

int test(char, int); /* declaration */
int test(char a, int b) /* definition */
{

}

Kernighan & Ritchie style

In K&R style—traditional pre-ISO/ANSI C—it is not possible to declare a function
prototyped. Instead, an empty parameter list is used in the function declaration. Also,
the definition looks different.

int test(); /* old declaration */
int test(a,b) /* old definition */
char a;
int b;
{

}

FUNCTION CALLS

For the H8/300H and H8S architecture, there are only a few possibilities to influence the
function call and make them more efficient:

● By declaring a function with the function attribute __vector_call, the address to
the function will automatically be inserted at a free place in the vector area of the
microcomputer. Any calls to this function will then use the @@aa:8 addressing
mode. This type of call is 2 bytes in size, compared to 4 bytes for a normal call. By
declaring frequently used functions as __vector_call, you reduce the size of
your application.

● You may declare a function with the __trap keyword. In addition to the primary
effect that the trap function will execute with interrupts disabled, the call is also
shorter than a normal function call. However, in all other respects, trap functions
have all the overhead of normal function calls.

● In contrast to functions declared __trap, there is an intrinsic function named
__TRAPA that only inserts a TRAPA instruction. This is not handled as a normal
function call. The caller does not save any registers, or add any other overhead. This
makes the function call efficient. On the other hand, the called function must not
destroy any registers except the status register. All things considered, this type of
function call is primarily suitable for tiny routines written in assembler where you
want minimal overhead. Note that you cannot send any parameters to the function
when using the __TRAPA intrinsic function.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Efficient coding for embedded applications
Note: The function memory attributes __code16 and __code24 do not affect the
function call.

INTEGER TYPES AND BIT NEGATION

There are situations when the rules for integer types and their conversion lead to
possibly confusing behavior. Things to look out for are assignments or conditionals (test
expressions) involving types with different size and logical operations, especially bit
negation. Here, types also include types of constants.

In some cases there may be warnings (for example, constant conditional or pointless
comparison), in others just a different result than what is expected. Under certain
circumstances the compiler may warn only at higher optimizations, for example, if the
compiler relies on optimizations to identify some instances of constant conditionals. In
the following example an 8-bit character, a 16-bit integer, and two’s complement is
assumed:

void f1(unsigned char c1)
{
 if (c1 == ~0x80)
 ;
}

Here, the test is always false. On the right hand side, 0x80 is 0x0080, and ~0x0080
becomes 0xFF7F. On the left hand side, c1 is an 8-bit unsigned character, so it cannot
be larger than 255. It also cannot be negative, which means that the integral promoted
value can never have the top 8 bits set.

PROTECTING SIMULTANEOUSLY ACCESSED VARIABLES

Variables that are accessed from multiple threads, for example from main or an
interrupt, must be properly marked and have adequate protection, the only exception to
this is a variable that is always read-only.

To mark a variable properly, use the volatile keyword. This informs the compiler,
among other things, that the variable can be changed from other threads. The compiler
will then avoid optimizing on the variable (for example, keeping track of the variable in
registers), will not delay writes to it, and be careful accessing the variable only the
number of times given in the source code. To read more about the volatile type
qualifier, see Declaring objects volatile, page 183.
CH8-1

Part 1. Using the compiler 129

130

Writing efficient code
A sequence that accesses a volatile declared variable must also not be interrupted. This
can be achieved using the __monitor keyword in interruptible code. This must be done
for both write and read sequences, otherwise you might end up reading a partially
updated variable. This is true for all variables of all sizes. Accessing a small-sized
variable can be an atomic operation, but this is not guaranteed and you should not rely
on it unless you continuously study the compiler output. It is safer to ensure that the
sequence is an atomic operation using the __monitor keyword.

ACCESSING SPECIAL FUNCTION REGISTERS

Specific header files for a number of H8/300H and H8S derivatives are included in the
H8 IAR C/C++ Compiler delivery. The header files are named ioderivative.h and
define the processor-specific special function registers (SFRs).

Note: Each header file contains one section used by the compiler, and one section used
by the assembler.

SFRs with bitfields are declared in the header file. The following example is from
io2130.h when used in the Advanced operating mode:

union un_kbcomp { /* union KBCOMP */
 unsigned char BYTE; /* Byte access */
 struct { /* Bit access */
 unsigned char KBCH :3; /* KBCH */
 unsigned char KBADE :1; /* KBADE */
 unsigned char IrCKS :3; /* IrCKS */
 unsigned char IrE :1; /* IrE */
 } BIT;
};
#define KBCOMP (*(volatile union un_kbcomp __data32 *)0xFFFEE4)

By including the appropriate include file in your code, it is possible to access either the
whole register or any individual bit (or bitfields) from C code as follows:

/* Access to the whole register */
KBCOMP.BYTE = 0;

/* Bitfield accesses */
KBCOMP.BIT.KBADE = 1;
KBCOMP.BIT.KBCH = 0;

You can also use the header files as templates when you create new header files for other
H8/300H and H8S devices.

NON-INITIALIZED VARIABLES

Normally, the runtime environment will initialize all global and static variables when the
application is started.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Efficient coding for embedded applications
The compiler supports the declaration of variables that will not be initialized, using the
__no_init type modifier. They can be specified either as a keyword or using the
#pragma object_attribute directive. The compiler places such variables in
separate segments, according to the specified memory keyword. See the chapter Placing
code and data for more information.

For __no_init, the const keyword implies that an object is read-only, rather than that
the object is stored in read-only memory. It is not possible to give a __no_init object
an initial value.

Variables declared using the __no_init keyword could, for example, be large input
buffers or mapped to special RAM that keeps its content even when the application is
turned off.

For information about the __no_init keyword, see page 211. Note that to use this
keyword, language extensions must be enabled; see -e, page 156. For information about
the #pragma object_attribute, see page 220.
CH8-1

Part 1. Using the compiler 131

132

Writing efficient code
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Part 2. Compiler
reference
This part of the H8 IAR C/C++ Compiler Reference Guide contains the
following chapters:

● Compiler usage

● Compiler options

● Data representation

● Compiler extensions

● Extended keywords

● Pragma directives

● Intrinsic functions

● The preprocessor

● Library functions

● Segment reference

● Implementation-defined behavior.
CH8-1

133

134
CH8-1

Compiler usage
This chapter provides reference information about how the compiler interacts
with its environment. The chapter briefly lists and describes the invocation
syntax, methods for passing options to the compiler, environment variables,
the include file search procedure, and finally the different types of compiler
output.

Compiler invocation
You can use the compiler either from the IAR Embedded Workbench IDE or from the
command line. Refer to the H8 IAR Embedded Workbench® IDE User Guide for
information about using the compiler from the IAR Embedded Workbench IDE.

INVOCATION SYNTAX

The invocation syntax for the compiler is:

icch8 [options][sourcefile][options]

For example, when compiling the source file prog.c, use the following command to
generate an object file with debug information:

icch8 prog --debug

The source file can either be a C or C++ file, typically with the filename extension c or
cpp, respectively. If no filename extension is specified, the default extension c is
assumed.

Generally, the order of options on the command line, both relative to each other and to
the source filename, is not significant. There is, however, one exception: when you use
the -I option, the directories are searched in the same order that they are specified on the
command line.

If you run the compiler from the command prompt without any arguments, the compiler
version number and all available options including brief descriptions are directed to
stdout and displayed on the screen.
CH8-1

Part 2. Compiler reference 135

136

Include file search procedure
PASSING OPTIONS TO THE COMPILER

There are three different ways of passing options to the compiler:

● Directly from the command line

Specify the options on the command line after the icch8 command, either before or
after the source filename; see Invocation syntax, page 135.

● Via environment variables

The compiler automatically appends the value of the environment variables to every
command line; see Environment variables, page 136.

● Via a text file by using the -f option; see -f, page 158.

For general guidelines for the compiler option syntax, an options summary, and a
detailed description of each option, see the Compiler options chapter.

ENVIRONMENT VARIABLES

The following environment variables can be used with the H8 IAR C/C++ Compiler:

Include file search procedure
This is a detailed description of the compiler’s #include file search procedure:

● If the name of the #include file is an absolute path, that file is opened.
● If the compiler encounters the name of an #include file in angle brackets, such as:

#include <stdio.h>

it searches the following directories for the file to include:

1 The directories specified with the -I option, in the order that they were
specified, see -I, page 159.

2 The directories specified using the C_INCLUDE environment variable, if any, see
Environment variables, page 136.

Environment variable Description

C_INCLUDE Specifies directories to search for include files; for example:
C_INCLUDE=c:\program files\iar systems\embedded

workbench 4.n\h8\inc;c:\headers

QCCH8 Specifies command line options; for example: QCCH8=-lA asm.lst
-z9

Table 29: Environment variables
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Compiler usage
● If the compiler encounters the name of an #include file in double quotes, for
example:

#include "vars.h"

it searches the directory of the source file in which the #include statement occurs,
and then performs the same sequence as for angle-bracketed filenames.

If there are nested #include files, the compiler starts searching the directory of the
file that was last included, iterating upwards for each included file, searching the
source file directory last. For example:

src.c in directory dir\src
#include "src.h"
...

src.h in directory dir\include
#include "config.h"
...

When dir\exe is the current directory, use the following command for compilation:

icch8 ..\src\src.c -I..\include -I..\debugconfig

Then the following directories are searched in the order listed below for the file
config.h, which in this example is located in the dir\debugconfig directory:

dir\include Current file.

dir\src File including current file.

dir\include As specified with the first -I option.

dir\debugconfig As specified with the second -I option.

Use angle brackets for standard header files, like stdio.h, and double quotes for files
that are part of your application.

Note: Both \ and / can be used as directory delimiters.
CH8-1

Part 2. Compiler reference 137

138

Compiler output
Compiler output
The compiler can produce the following output:

● A linkable object file

The object files produced by the compiler use a proprietary format called UBROF,
which stands for Universal Binary Relocatable Object Format. By default, the object
file has the filename extension r37.

● Optional list files

Different types of list files can be specified using the compiler option -l, see -l, page
159. By default, these files will have the filename extension lst.

● Optional preprocessor output files

A preprocessor output file is produced when you use the --preprocess option; by
default, the file will have the filename extension i.

● Diagnostic messages

Diagnostic messages are directed to stderr and displayed on the screen, as well as
printed in an optional list file. To read more about diagnostic messages, see
Diagnostics, page 139.

● Error return codes

These codes provide status information to the operating system which can be tested
in a batch file, see Error return codes, page 139.

● For each memory, the generated amount of bytes for functions and data

Information about the generated amount of bytes for functions and data for each
memory is directed to stdout and displayed on the screen. Some of the bytes might
be reported as shared.

Shared objects are functions or data objects that are shared between modules. If any
of these occur in more than one module, only one copy will be retained. For example,
in some cases inline functions are not inlined, which means that they are marked as
shared, because only one instance of each function will be included in the final
application. This mechanism is sometimes also used for compiler-generated code or
data not directly associated with a particular function or variable, and when only one
instance is required in the final application.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Compiler usage
Error return codes

The H8 IAR C/C++ Compiler returns status information to the operating system which
can be tested in a batch file.

The following command line error codes are supported:

Diagnostics
This section describes the format of the diagnostic messages and explains how
diagnostic messages are divided into different levels of severity.

MESSAGE FORMAT

All diagnostic messages are issued as complete, self-explanatory messages. A typical
diagnostic message from the compiler is produced in the form:

filename,linenumber level[tag]: message

where filename is the name of the source file in which the error was encountered,
linenumber is the line number at which the compiler detected the error, level is the
level of seriousness of the diagnostic, tag is a unique tag that identifies the diagnostic
message, and message is a self-explanatory message, possibly several lines long.

Diagnostic messages are displayed on the screen, as well as printed in the optional list
file.

Use the option --diagnostics_tables to list all possible compiler diagnostic
messages in a named file.

Code Description

0 Compilation successful, but there may have been warnings.

1 There were warnings, provided that the option
--warnings_affect_exit_code was used.

2 There were errors.

3 There were fatal errors making the compiler abort.

Table 30: Error return codes
CH8-1

Part 2. Compiler reference 139

140

Diagnostics
SEVERITY LEVELS

The diagnostics are divided into different levels of severity:

Remark

A diagnostic message that is produced when the compiler finds a source code construct
that can possibly lead to erroneous behavior in the generated code. Remarks are by
default not issued, but can be enabled, see --remarks, page 169.

Warning

A diagnostic message that is produced when the compiler finds a programming error or
omission which is of concern, but not so severe as to prevent the completion of
compilation. Warnings can be disabled by use of the command-line option
--no_warnings, see page 166.

Error

A diagnostic message that is produced when the compiler has found a construct which
clearly violates the C or C++ language rules, such that code cannot be produced. An
error will produce a non-zero exit code.

Fatal error

A diagnostic message that is produced when the compiler has found a condition that not
only prevents code generation, but which makes further processing of the source code
pointless. After the message has been issued, compilation terminates. A fatal error will
produce a non-zero exit code.

SETTING THE SEVERITY LEVEL

The diagnostic message can be suppressed or the severity level can be changed for all
diagnostic messages, except for fatal errors and some of the regular errors.

See Options summary, page 146, for a description of the compiler options that are
available for setting severity levels.

See the chapter Pragma directives, for a description of the pragma directives that are
available for setting severity levels.

INTERNAL ERROR

An internal error is a diagnostic message that signals that there has been a serious and
unexpected failure due to a fault in the compiler. It is produced using the following form:

Internal error: message
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Compiler usage
where message is an explanatory message. If internal errors occur, they should be
reported to your software distributor or IAR Systems Technical Support. Include
information enough to reproduce the problem, typically:

● The product name
● The version number of the compiler, which can be seen in the header of the list files

generated by the compiler
● Your license number
● The exact internal error message text
● The source file of the application that generated the internal error

A list of the options that were used when the internal error occurred.
CH8-1

Part 2. Compiler reference 141

142

Diagnostics
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Compiler options
This chapter describes the syntax of compiler options and the general syntax
rules for specifying option parameters, and gives detailed reference
information about each option.

Compiler options syntax
Compiler options are parameters you can specify to change the default behavior of the
compiler. You can specify compiler options from the command line—which is
described in more detail in this section—and from within the IAR Embedded
Workbench IDE. Refer to the H8 IAR Embedded Workbench® IDE User Guide for
information about the compiler options available in the IAR Embedded Workbench IDE
and how to set them.

TYPES OF OPTIONS

There are two types of names for command line options, short names and long names.
Some options have both.

● A short option name consists of one character, and it may have parameters. You
specify it with a single dash, for example -e

● A long option name consists of one or several words joined by underscores, and it
may have parameters. You specify it with double dashes, for example
--char_is_signed.

For information about the different methods for passing options, see Passing options to
the compiler, page 136.

RULES FOR SPECIFYING PARAMETERS

There are some general syntax rules for specifying option parameters. First, the rules
depending on whether the parameter is optional or mandatory, and whether the option
has a short or a long name, are described. Then, the remaining rules are listed.

Optional parameters

For options with a short name and an optional parameter, the parameter should be
specified without a preceding space, for example:

-z or -z3
CH8-1

Part 2. Compiler reference 143

144

Compiler options syntax
For options with a long name and an optional parameter, the parameter should be
specified with a preceding equal sign (=).

However, there are no long options with only an optional parameter. Optional
parameters are always specified together with a mandatory parameter, see Options with
both optional and mandatory parameters, page 144.

Mandatory parameters

For options with a short name and a mandatory parameter, the parameter can be
specified either with or without a preceding space, for example:

-I..\src or -I ..\src\

For options with a long name and a mandatory parameter, the parameter can be specified
either with a preceding equal sign (=) or with a preceding space, for example:

--diagnostics_tables=filename

or

-diagnostics_tables filename

Options with both optional and mandatory parameters

For options taking both optional and mandatory parameters, the rules for specifying the
parameters are:

● For short options, optional parameters are specified without a preceding space
● For long options, optional parameters are specified with a preceding equal sign (=)
● For short and long options, mandatory parameters are specified with a preceding

space.

For example, a short option with an optional parameter followed by a mandatory
parameter:

-lA filename

For example, a long option with an optional parameter followed by a mandatory
parameter:

--preprocess=n filename
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Compiler options
Rules for specifying a filename or directory as parameters

The following rules apply for options taking a filename or directory as parameters:

● Options that take a filename as a parameter can optionally also take a path. The path
can be relative or absolute. For example, to generate a listing to the file list.lst
in the directory ..\listings\:

icch8 prog -l ..\listings\list.lst

● For options that take a filename as the destination for output, the parameter can be
specified as a path without a specified filename. The compiler stores the output in
that directory, in a file with an extension according to the option. The filename will
be the same as the name of the compiled source file, unless a different name has
been specified with the option -o, in which case that name will be used. For
example:

icch8 prog -l ..\listings\

The produced list file will have the default name ..\listings\prog.lst

● The current directory is specified with a period (.). For example:

icch8 prog -l .

● / can be used instead of \ as the directory delimiter.
● By specifying -, input files and output files can be redirected to stdin and stdout,

respectively. For example:

icch8 prog -l -

Additional rules

In addition, the following rules apply:

● When an option takes a parameter, the parameter cannot start with a dash (-)
followed by another character. Instead, you can prefix the parameter with two
dashes; the following example will create a list file called -r:

icch8 prog -l ---r

● For options that accept multiple arguments may be repeated, the arguments can be
provided as a comma-separated list (without a space), for example:

--diag_warning=Be0001,Be0002
CH8-1

Part 2. Compiler reference 145

146

Options summary
Options summary
The following table summarizes the compiler command line options:

Command line option Description

--bus_width Specifies width of address bus

--char_is_signed Treats char as signed

--code_model Specifies the code model

--core Specifies a processor core

-D Defines preprocessor symbols

--data_model Specifies the data model

--debug Generates debug information

--dependencies Lists file dependencies

--diag_error Treats these as errors

--diag_remark Treats these as remarks

--diag_suppress Suppresses these diagnostics

--diag_warning Treats these as warnings

--diagnostics_tables Lists all diagnostic messages

--direct_library_calls Library functions are not called via the vector area

--dlib_config Determines the library configuration file

--double Forces the compiler to use 32-bit or 64-bit doubles

-e Enables language extensions

--ec++ Enables Embedded C++ syntax

--eec++ Enables Extended Embedded C++ syntax

--enable_mac Enables use of MAC register

--enable_multibytes Enables support for multibyte characters

--error_limit Specifies the allowed number of errors before
compilation stops

-f Extends the command line

--header_context Lists all referred source files

-I Specifies include file path

--interrupt_mode Specifies interrupt mode

-l Creates a list file

--library_module Creates a library module

Table 31: Compiler options summary
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Compiler options
--max_cycles_no_interrupt Specifies maximum number of cycles during which
interrupts may be disabled.

--migration_preprocessor

_extensions

Extends the preprocessor

--misrac Enables MISRA C-specific error messages

--misrac_verbose Enables verbose logging of MISRA C checking

--module_name Sets object module name

--no_code_motion Disables code motion optimization

--no_cse Disables common subexpression elimination

--no_inline Disables function inlining

--no_path_in_file_macros Removes the path from the return value of the
symbols __FILE__ and __BASE_FILE__

--no_tbaa Disables type-based alias analysis

--no_typedefs_in_diagnostics Disables the use of typedef names in diagnostics

--no_unroll Disables loop unrolling

--no_warnings Disables all warnings

--no_wrap_diagnostics Disables wrapping of diagnostic messages

-o Sets object filename

--omit_types Excludes type information

--only_stdout Uses standard output only

--operating_mode Specifies the operating mode

--preinclude Includes an include file before reading the source
file

--preprocess Generates preprocessor output

--public_equ Defines a global named assembler label

-r Generates debug information

--remarks Enables remarks

--require_prototypes Verifies that prototypes are proper

-s Optimizes for speed

--silent Sets silent operation

--stack_pointer_size Specifies how many bits of the stack pointer that
the compiler will use for stack pointer arithmetics

--strict_ansi Checks for strict compliance with ISO/ANSI C

Command line option Description

Table 31: Compiler options summary (Continued)
CH8-1

Part 2. Compiler reference 147

148

Descriptions of options
Descriptions of options
The following section gives detailed reference information about each compiler option.

Note that if you use the options page Extra Options to specify specific command line
options, there is no check for consistency problems like conflicting options, duplication
of options, or use of irrelevant options.

--bus_width --bus_width={20|24|28|32}

Parameters

Description

Use this option to specify the width of the address bus for the device you are using. You
must specify this option if you use the Advanced operating mode and compile a file that
contains located variables. In the Normal operating mode, the bus width is assumed to
be 16 bits, and this option cannot be specified.

By specifying the bus width, the compiler can use the correct and optimal addressing
mode when addressing variables that have an absolute location.

Project>Options>General Options>Target>Address bus width

--warnings_affect_exit_code Warnings affects exit code

--warnings_are_errors Warnings are treated as errors

--weak_rtmodel_check Modules compiled with different options may be
linked together

-z Optimizes for size

Command line option Description

Table 31: Compiler options summary (Continued)

20, 24 Available for the H8/300H microcomputer family

20, 24, 28, 32 Available for the H8S microcomputer family
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Compiler options
--char_is_signed --char_is_signed

Description

By default, the compiler interprets the char type as unsigned. Use this option to make
the compiler interpret the char type as signed instead. This can be useful when you, for
example, want to maintain compatibility with another compiler.

Note: The runtime library is compiled without the --char_is_signed option. If you
use this option, you may get type mismatch warnings from the IAR XLINK Linker,
because the library uses unsigned chars.

Project>Options>C/C++ Compiler>Language>Plain ‘char’ is

--code_model --code_model={small|large}

Parameters

Description

The H8 IAR C/C++ Compiler supports placing code in different parts of memory by
means of code models: the Small code model and the Large code model. The Small code
model is default in the Normal operating mode and the Large code model is default in
the Advanced operating mode. Use the --code_model option to select the code model
for which the code is to be generated.

Note that all modules of your application must use the same code model.

See also

Basic settings for project configuration, page 5 and Code models and memory attributes
for function storage, page 25.

In the IAR Embedded Workbench IDE, the appropriate code model will automatically
be used based on the selected operating mode.

Parameter
Default function

memory attribute

Max. module and

program size
Pointer size Available in mode

small __code16 64 Kbytes 2 bytes Normal operating
mode

large __code24 16 Mbytes 4 bytes Advanced operating
mode

Table 32: Available code models
CH8-1

Part 2. Compiler reference 149

150

Descriptions of options
--core --core={H8300H|H8S}

Parameters

Description

The H8 IAR C/C++ Compiler supports both the H8/300H and H8S microcomputer
families. Use this option to select the processor core for which the code is to be
generated.

See also

Basic settings for project configuration, page 5

Project>Options>General Options>Target>Core

-D -D symbol[=value]

Parameters

Description

Use this option to define a preprocessor symbol. If no value is specified, 1 is used. This
option can be used one or more times on the command line.

The option -D has the same effect as a #define statement at the top of the source file:

-Dsymbol

is equivalent to:

#define symbol 1

In order to get the equivalence of:

#define FOO

specify the = sign but nothing after, for example:

-DFOO=

H8300H (default) Generates code for the H8/300H microcomputer family

H8S Generates code for the H8S microcomputer family

symbol The name of the preprocessor symbol

value The value of the preprocessor symbol
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Compiler options
Project>Options>C/C++ Compiler>Preprocessor>Defined symbols

--data_model --data_model={small|huge}

Parameters

Description

The H8 IAR C/C++ Compiler supports placing data in different parts of memory by
means of code models: the Small data model and the Huge data model. Use the
--data_model option to select the data model for which the code is to be generated.

Note that all modules of your application must use the same data model.

See also

Basic settings for project configuration, page 5 and Data models, page 14.

Project>Options>General Options>Target>Data model

--debug, -r --debug

-r

Description

Use the --debug or -r option to make the compiler include information in the object
modules that is useful to the IAR C-SPY® Debugger and other symbolic debuggers.

Note: Including debug information will make the object files larger than otherwise.

Project>Options>C/C++ Compiler>Output>Generate debug information

Parameter
Default data

memory attribute

Default data

pointer
Available in mode

Placement of

data

small

(default)
__data16 __data16 Normal and Advanced

operating modes
Low 32 Kbytes
or high 32
Kbytes

huge __data32 __data32 Advanced operating mode 16 Mbyte for
H8/300H and
4Gbyte for H8S

Table 33: Available data models
CH8-1

Part 2. Compiler reference 151

152

Descriptions of options
--dependencies --dependencies=[i|m] {filename|directory}

Parameters

For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 145.

Description

Use this option to make the compiler list all source and header files opened by the
compilation into a file with the default filename extension i.

Example

If --dependencies or --dependencies=i is used, the name of each opened source
file, including the full path, if available, is output on a separate line. For example:

 c:\iar\product\include\stdio.h
 d:\myproject\include\foo.h

If --dependencies=m is used, the output uses makefile style. For each source file, one
line containing a makefile dependency rule is produced. Each line consists of the name
of the object file, a colon, a space, and the name of a source file. For example:

 foo.r37: c:\iar\product\include\stdio.h
 foo.r37: d:\myproject\include\foo.h

An example of using --dependencies with a popular make utility, such as gmake
(GNU make):

1 Set up the rule for compiling files to be something like:

 %.r37 : %.c
 $(ICC) $(ICCFLAGS) $< --dependencies=m $*.d

That is, in addition to producing an object file, the command also produces a
dependency file in makefile style (in this example, using the extension .d).

2 Include all the dependency files in the makefile using, for example:

 -include $(sources:.c=.d)

Because of the dash (-) it works the first time, when the .d files do not yet exist.

This option is not available in the IAR Embedded Workbench IDE.

i (default) Lists only the names of files

m Lists in makefile style
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Compiler options
--diag_error --diag_error=tag,tag,...

Parameters

Description

Use this option to reclassify certain diagnostic messages as errors. An error indicates a
violation of the C or C++ language rules, of such severity that object code will not be
generated, and the exit code will be non-zero. This option may be used more than once
on the command line.

Project>Options>C/C++ Compiler>Diagnostics>Treat these as errors

--diag_remark --diag_remark=tag,tag,...

Parameters

Description

Use this option to reclassify certain diagnostic messages as remarks. A remark is the
least severe type of diagnostic message and indicates a source code construct that may
cause strange behavior in the generated code. This option may be used more than once
on the command line.

Note: By default, remarks are not displayed; use the --remarks option to display
them.

Project>Options>C/C++ Compiler>Diagnostics>Treat these as remarks

--diag_suppress --diag_suppress=tag,tag,...

Parameters

tag The number of a diagnostic message, for example the message
number Pe117

tag The number of a diagnostic message, for example the message
number Pe177

tag The number of a diagnostic message, for example the message
number Pe177
CH8-1

Part 2. Compiler reference 153

154

Descriptions of options
Description

Use this option to suppress certain diagnostic messages. These messages will not be
displayed. This option may be used more than once on the command line.

Project>Options>C/C++ Compiler>Diagnostics>Suppress these diagnostics

--diag_warning --diag_warning=tag,tag,...

Parameters

Description

Use this option to reclassify certain diagnostic messages as warnings. A warning
indicates an error or omission that is of concern, but which will not cause the compiler
to stop before compilation is completed. This option may be used more than once on the
command line.

Example

The following example classifies the remark Pe826 as a warning:

--diag_warning=Pe826

Project>Options>C/C++ Compiler>Diagnostics>Treat these as warnings

 --diagnostics_tables --diagnostics_tables {filename|directory}

Parameters

For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 145.

Description

Use this option to list all possible diagnostic messages in a named file. This can be very
convenient, for example if you have used a pragma directive to suppress or change the
severity level of any diagnostic messages, but forgot to document why.

This option cannot be given together with other options.

This option is not available in the IAR Embedded Workbench IDE.

tag The number of a diagnostic message, for example the message
number Pe826
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Compiler options
--direct_library_calls --direct_library_calls

Description

By default, many library routines will be called via the vector area, which means the
addressing mode @@aa:8 is used. When this option is used, all library routines will be
called as normal subroutines instead of via the vector area.

Project>Options>C/C++ Compiler>Optimizations>Library calls>Direct

 --dlib_config --dlib_config filename

Parameters

For information about specifying a filename, see Rules for specifying a filename or
directory as parameters, page 145.

Description

Each runtime library has a corresponding library configuration file. Use the
--dlib_config option to specify the library configuration file for the compiler. Make
sure that you specify a configuration file that corresponds to the library you are using.

All prebuilt runtime libraries are delivered with corresponding configuration files. You
can find the library object files and the library configuration files in the directory
h8\lib. For examples and a list of prebuilt runtime libraries, see Using a prebuilt
library, page 54.

If you build your own customized runtime library, you should also create a
corresponding customized library configuration file, which must be specified to the
compiler. For more information, see Building and using a customized library, page 61.

To set the related options, select:

Project>Options>General Options>Library Configuration

 --double --double={32|64}

Parameters

32 (default) 32-bit doubles are used

64 64-bit doubles are used
CH8-1

Part 2. Compiler reference 155

156

Descriptions of options
Description

Use this option to select the precision used by the compiler for representing the
floating-point types double and long double. The compiler can use either 32-bit or
64-bit precision. By default, the compiler uses 32-bit precision.

See also

Floating-point types, page 178.

Project>Options>General Options>Target>Size of type 'double'

-e -e

Description

In the command line version of the H8 IAR C/C++ Compiler, language extensions are
disabled by default. If you use language extensions such as extended keywords and
anonymous structs and unions in your source code, you must enable them by using this
option.

Note: The -e option and the --strict_ansi option cannot be used at the same time.

See also

The chapter Compiler extensions.

Project>Options>C/C++ Compiler>Language>Allow IAR extensions

--ec++ --ec++

Description

In the H8 IAR C/C++ Compiler, the default language is C. If you use Embedded C++
syntax in your source code, you must use this option to set the language the compiler
uses to Embedded C++.

Project>Options>C/C++ Compiler>Language>Embedded C++
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Compiler options
--eec++ --eec++

Description

In the H8 IAR C/C++ Compiler, the default language is C. If you take advantage of
Extended Embedded C++ features like namespaces or the standard template library in
your source code, you must use this option to set the language the compiler uses to
Extended Embedded C++.

See also

Extended Embedded C++, page 104.

Project>Options>C/C++ Compiler>Language>Extended Embedded C++

--enable_mac --enable_mac

Description

The H8 IAR C/C++ Compiler can take advantage of the MAC instructions available in the
H8/300H and H8S microcomputer families. Use the --enable_mac option to make the
compiler enable the MAC register and thereby, when possible, use the MAC instructions.

Project>Options>General Options>Target>MAC

--enable_multibytes --enable_multibytes

Description

By default, multibyte characters cannot be used in C or C++ source code. Use this option
to make multibyte characters in the source code be interpreted according to the host
computer’s default setting for multibyte support.

Multibyte characters are allowed in C and C++ style comments, in string literals, and in
character constants. They are transferred untouched to the generated code.

Project>Options>C/C++ Compiler>Language>Enable multibyte support

--error_limit --error_limit=n

Parameters

n The number of errors before the compiler stops the compilation. n
must be a positive integer; 0 indicates no limit.
CH8-1

Part 2. Compiler reference 157

158

Descriptions of options
Description

Use the --error_limit option to specify the number of errors allowed before the
compiler stops the compilation. By default, 100 errors are allowed.

This option is not available in the IAR Embedded Workbench IDE.

-f -f filename

Parameters

For information about specifying a filename, see Rules for specifying a filename or
directory as parameters, page 145.

Description

Use this option to make the compiler read command line options from the named file,
with the default filename extension xcl.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines, because the newline character acts just as
a space or tab character.

Both C and C++ style comments are allowed in the file. Double quotes behave in the
same way as in the Microsoft Windows command line environment.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--header_context --header_context

Description

Occasionally, to find the cause of a problem it is necessary to know which header file
that was included from which source line. Use this option to list, for each diagnostic
message, not only the source position of the problem, but also the entire include stack at
that point.

This option is not available in the IAR Embedded Workbench IDE.

-I -I path

Parameters

path The search path for #include files
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Compiler options
Description

Use this option to specify the search path for #include files. This option may be used
more than once on the command line.

See also

Include file search procedure, page 136.

Project>Options>C/C++ Compiler>Preprocessor>Additional include directories

--interrupt_mode --interrupt_mode={0|1|2|3}

Parameters

Description

The H8 IAR C/C++ Compiler supports the different interrupts modes available in the
H8/300H and H8S microcomputer families. Use the --interrupt_mode option to
specify the interrupt mode in use.

See also

Interrupt functions, page 26, and Monitor functions, page 28.

Project>Options>General Options>Target>Interrupt mode

-l -l[a|A|b|B|c|C|D][N][H] {filename|directory}

Parameters

0,1,2,3 One of the interrupt modes available in the H8/300H and H8S
microcomputer families

a Assembler list file

A Assembler list file with C or C++ source as comments

b Basic assembler list file. This file has the same contents as a list file
produced with -la, except that no extra compiler generated
information (runtime model attributes, call frame information, frame
size information) is included *
CH8-1

Part 2. Compiler reference 159

160

Descriptions of options
* This makes the list file less useful as input to the assembler, but more useful for reading by a
human.

For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 145.

Description

Use this option to generate an assembler or C/C++ listing to a file. Note that this option
can be used one or more times on the command line.

To set related options, select Project>Options>C/C++ Compiler>List

--library_module --library_module

Description

Use this option to make the compiler generate a library module rather than a program
module. A program module is always included during linking. A library module will
only be included if it is referenced in your program.

Project>Options>C/C++ Compiler>Output>Output file>Library

B Basic assembler list file. This file has the same contents as a list file
produced with -lA, except that no extra compiler-generated
information (runtime model attributes, call frame information, frame
size information) is included *

c C or C++ list file

C (default) C or C++ list file with assembler source as comments

D C or C++ list file with assembler source as comments, but without
instruction offsets and hexadecimal byte values

N No diagnostics in file

H Include source lines from header files in output. Without this
option, only source lines from the primary source file are included

a Assembler list file
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Compiler options
--max_cycles_no_interrupt --max_cycles_no_interrupt=n

Parameters

Description

By default, the compiler does not use the EEPMOV.B instruction. Use this option to
specify the maximum number of cycles during which interrupts may be disabled. If the
compiler is allowed to have interrupts disabled for a period, it can generate code
containing the EEPMOV.B instruction.

Project>Options>C/C++ Compiler>Optimizations>Generate EEPMOV

and

Project>Options>C/C++ Compiler>Optimizations>Max cycles

 --migration_preprocessor_

extensions

--migration_preprocessor_extensions

Description

If you need to migrate code from an earlier IAR C or C/C++ compiler, you may want to
use this option. Use this option to use the following in preprocessor expressions:

● Floating-point expressions
● Basic type names and sizeof
● All symbol names (including typedefs and variables).

Note: If you use this option, not only will the compiler accept code that is not standards
conformant, but it will also reject some code that does conform to the standard.

Important! Do not depend on these extensions in newly written code, as support for
them may be removed in future compiler versions.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

n The maximum number of cycles during which interrupts may be
disabled. The default value 0 prohibits the compiler from using the
EEPMOV.B instruction.
CH8-1

Part 2. Compiler reference 161

162

Descriptions of options
--misrac --misrac[={tag1,tag2-tag3,…|all|required}]

Parameters

Description

Use this option to enable the compiler to check for deviations from the rules described
in the MISRA Guidelines for the Use of the C Language in Vehicle Based Software
(1998). By using one or more arguments with the option, you can restrict the checking
to a specific subset of the MISRA C rules. If the compiler is unable to check for a rule,
specifying the option for that rule has no effect. For instance, MISRA C rule 15 is a
documentation issue, and the rule is not checked by the compiler. As a consequence,
specifying --misrac=15 has no effect.

To set related options, select:

Project>Options>General Options>MISRA C or Project>Options>C/C++
Compiler>MISRA C

--misrac_verbose --misrac_verbose

Description

Use this option to generate a MISRA C log during compilation and linking. This is a list
of the rules that are enabled—but not necessarily checked—and a list of rules that are
actually checked.

If this option is enabled, the compiler displays a text at sign-on that shows both enabled
and checked MISRA C rules.

Project>Options>General Options>MISRA C>Log MISRA C Settings

--misrac=n Enables checking for the MISRA C rule with number n

--misrac=o,n Enables checking for the MISRA C rules with numbers o and n

--misrac=o-p Enables checking for all MISRA C rules with numbers from o to p

--misrac=m,n,o-p Enables checking for MISRA C rules with numbers m, n, and from o
to p

--misrac=all Enables checking for all MISRA C rules

--misrac=required Enables checking for all MISRA C rules categorized as required
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Compiler options
 --module_name --module_name=name

Parameters

Description

Normally, the internal name of the object module is the name of the source file, without
a directory name or extension. Use this option to specify an object module name
explicitly.

This option is useful when several modules have the same filename, because the
resulting duplicate module name would normally cause a linker error; for example,
when the source file is a temporary file generated by a preprocessor.

Project>Options>C/C++ Compiler>Output>Object module name

--no_code_motion --no_code_motion

Description

Use this option to disable code motion optimizations. These optimizations, which are
performed at optimization levels 6 and 9, normally reduce code size and execution time.
However, the resulting code may be difficult to debug.

Note: This option has no effect at optimization levels below 6.

Project>Options>C/C++ Compiler>Optimization>Enable transformations>Code
motion

--no_cse --no_cse

Description

Use this option to disable common subexpression elimination. At optimization levels 6
and 9, the compiler avoids calculating the same expression more than once. This
optimization normally reduces both code size and execution time. However, the
resulting code may be difficult to debug.

Note: This option has no effect at optimization levels below 6.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Common subexpression elimination

name An explicit object module name
CH8-1

Part 2. Compiler reference 163

164

Descriptions of options
--no_inline --no_inline

Description

Use this option to disable function inlining. Function inlining means that a simple
function, whose definition is known at compile time, is integrated into the body of its
caller to eliminate the overhead of the call.

This optimization, which is performed at optimization level 9, normally reduces
execution time and increases code size. The resulting code may also be difficult to
debug.

The compiler heuristically decides which functions to inline. Different heuristics are
used when optimizing for speed that for size.

Note: This option has no effect at optimization levels below 9.

Project>Options>C/C++ Compiler>Optimization>Enable
transformations>Function inlining

--no_path_in_file_macros --no_path_in_file_macros

Description

Use this option to exclude the path from the return value of the predefined preprocessor
symbols __FILE__ and __BASE_FILE__.

This option is not available in the IAR Embedded Workbench IDE.

--no_tbaa --no_tbaa

Description

Use this option to disable type-based alias analysis. When this options is not used, the
compiler is free to assume that objects are only accessed through the declared type or
through unsigned char.

See also

Type-based alias analysis, page 120.

Project>Options>C/C++ Compiler>Optimizations>Enable
transformations>Type-based alias analysis
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Compiler options
--no_typedefs_in_diagnostics --no_typedefs_in_diagnostics

Description

Use this option to disable the use of typedef names in diagnostics. Normally, when a
type is mentioned in a message from the compiler, most commonly in a diagnostic
message of some kind, the typedef names that were used in the original declaration are
used whenever they make the resulting text shorter.

Example

typedef int (*MyPtr)(char const *);
MyPtr p = "foo";

will give an error message like the following:

Error[Pe144]: a value of type "char *" cannot be used to
initialize an entity of type "MyPtr"

If the --no_typedefs_in_diagnostics option is used, the error message will be like
this:

Error[Pe144]: a value of type "char *" cannot be used to
initialize an entity of type "int (*)(char const *)"

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--no_unroll --no_unroll

Description

Use this option to disable loop unrolling. The code body of a small loop, whose number
of iterations can be determined at compile time, is duplicated to reduce the loop
overhead.

For small loops, the overhead required to perform the looping can be large compared
with the work performed in the loop body.

The loop unrolling optimization duplicates the body several times, reducing the loop
overhead. The unrolled body also opens up for other optimization opportunities.

This optimization, which is performed at optimization level 9, normally reduces
execution time, but increases code size. The resulting code may also be difficult to
debug.

The compiler heuristically decides which loops to unroll. Different heuristics are used
when optimizing for speed and size.

Note: This option has no effect at optimization levels below 9.
CH8-1

Part 2. Compiler reference 165

166

Descriptions of options
Project>Options>C/C++ Compiler>Optimization>Enable transformations>Loop
unrolling

--no_warnings --no_warnings

Description

By default, the compiler issues warning messages. Use this option to disable all warning
messages.
This option is not available in the IAR Embedded Workbench IDE.

--no_wrap_diagnostics --no_wrap_diagnostics

Description

By default, long lines in compiler diagnostic messages are broken into several lines to
make the message easier to read. Use this option to disable line wrapping of diagnostic
messages.

This option is not available in the IAR Embedded Workbench IDE.

-o -o {filename|directory}

Parameters

For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 145.

Description

By default, the object code output produced by the compiler is located in a file with the
same name as the source file, but with the extension r37. Use this option to explicitly
specify a different output filename for the object code output.

Project>Options>General Options>Output>Output directories>Object files
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Compiler options
--omit_types --omit_types

Description

By default, the compiler includes type information about variables and functions in the
object output. Use this option if you do not want the compiler to include this type
information in the output, which is useful when you build a library that should not
contain type information. The object file will then only contain type information that is
a part of a symbol’s name. This means that the linker cannot check symbol references
for type correctness.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--only_stdout --only_stdout

Description

Use this option to make the compiler use the standard output stream (stdout) also for
messages that are normally directed to the error output stream (stderr).

This option is not available in the IAR Embedded Workbench IDE.

--operating_mode --operating_mode={normal|advanced}

Parameters

Description

The H8 IAR C/C++ Compiler supports the different operating modes—Normal and
Advanced—available in the H8/300H and H8S microcomputer families. Use the
--operating_mode option to specify the operating mode in use.

See also

Basic settings for project configuration, page 5.

Project>Options>General Options>Target>Operating mode

normal The Normal operating mode is used.

advanced The Advanced operating mode is used.
CH8-1

Part 2. Compiler reference 167

168

Descriptions of options
 --preinclude --preinclude includefile

Parameters

For information about specifying a filename, see Rules for specifying a filename or
directory as parameters, page 145.

Description

Use this option to make the compiler include the specified include file before it starts to
read the source file. This is useful if you want to change something in the source code
for the entire application, for instance if you want to define a new symbol.

Project>Options>C/C++ Compiler>Preprocessor>Preinclude file

--preprocess --preprocess[=[c][n][l]] {filename|directory}

Parameters

For information about specifying a filename or a directory, see Rules for specifying a
filename or directory as parameters, page 145.

Description

Use this option to direct preprocessor output to a named file.

Project>Options>C/C++ Compiler>Preprocessor>Preprocessor output to file

--public_equ --public_equ symbol[=value]

Parameters

c Preserve comments

n Preprocess only

l Generate #line directives

symbol The name of the assembler symbol to be defined

value An optional value of the defined assembler symbol
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Compiler options
Description

This option is equivalent to defining a label in assembler language by using the EQU
directive and exporting it using the PUBLIC directive. This option may be used more
than once on the command line.

This option is not available in the IAR Embedded Workbench IDE.

-r, --debug -r

--debug

Description

Use the -r or the --debug option to make the compiler include information in the
object modules required by the IAR C-SPY Debugger and other symbolic debuggers.

Note: Including debug information will make the object files larger than otherwise.

Project>Options>C/C++ Compiler>Output>Generate debug information

--remarks --remarks

Description

The least severe diagnostic messages are called remarks. A remark indicates a source
code construct that may cause strange behavior in the generated code. By default, the
compiler does not generate remarks. Use this option to make the compiler generate
remarks.

See also

Severity levels, page 140.

Project>Options>C/C++ Compiler>Diagnostics>Enable remarks

--require_prototypes --require_prototypes

Description

Use this option to force the compiler to verify that all functions have proper prototypes.
Using this option means that code containing any of the following will generate an error:

● A function call of a function with no declaration, or with a Kernighan & Ritchie
C declaration

● A function definition of a public function with no previous prototype declaration
CH8-1

Part 2. Compiler reference 169

170

Descriptions of options
● An indirect function call through a function pointer with a type that does not include
a prototype.

Project>Options>C/C++ Compiler>Language>Require prototypes

-s -s[2|3|6|9]

Parameters

*The most important difference between -s2 and -s3 is that at level 2, all non-static variables
will live during their entire scope.

Description

Use this option to make the compiler optimize the code for maximum execution speed.
If no optimization option is specified, the optimization level 3 is used by default.

A low level of optimization makes it relatively easy to follow the program flow in the
debugger, and, conversely, a high level of optimization makes it relatively hard.

Note: The -s and -z options cannot be used at the same time.

Project>Options>C/C++ Compiler>Optimization>Speed

--silent --silent

Description

By default, the compiler issues introductory messages and a final statistics report. Use
this option to make the compiler operate without sending these messages to the standard
output stream (normally the screen).

This option does not affect the display of error and warning messages.

This option is not available in the IAR Embedded Workbench IDE.

2 None* (Best debug support)

3 (default) Low*

6 Medium

9 High (Maximum optimization)
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Compiler options
--stack_pointer_size --stack_pointer_size={8|16|32}

Parameters

Description

Use this option to inform the compiler of how many bits of the stack pointer the compiler
must update when performing stack pointer arithmetics, or in other words, how many
bits of the stack pointer that can change while the application executes. If you carefully
consider the stack size, its placement in memory, and the use of this option, the compiler
can produce more compact code.

When you use this option, you should be aware of the following issues:

● You must make sure that the stack does not cross a 64-Kbyte (for 16-bit
arithmetics) or 256-byte (for 8-bit arithmetics) page boundary

● Specifying the value 32 in the Normal operating mode will silently be
interpreted as the value 16

● Even if specifying the value 32 in the Advanced operating mode, only 16 bits of
the stack pointer will be used when using the Small data model

● There is no runtime model attribute that protects you from mixing modules
compiled with different settings on this option

● You are not recommended to use this option when compiling code that will be
used in more than one application, for example when building libraries. If a
small value is set when compiling the library code, and a too large stack is used
in the application using the library, you might get errors that are hard to find.

See also

Stack pointer arithmetics, page 127.

To set this option, use Project>Options>C/C++ Compiler>Extra Options.

--strict_ansi --strict_ansi

By default, the compiler accepts a relaxed superset of ISO/ANSI C, see Minor language
extensions, page 194. Use this option to ensure that the program conforms to the
ISO/ANSI C standard.

Note: The -e option and the --strict_ansi option cannot be used at the same time.

8,16,32 The number of bits of the stack pointer that the compiler will use
for stack pointer arithmetics.
CH8-1

Part 2. Compiler reference 171

172

Descriptions of options
Project>Options>C/C++ Compiler>Language>Language conformances>Strict
ISO/ANSI

--warnings_affect_exit_code --warnings_affect_exit_code

Description

By default, the exit code is not affected by warnings, as only errors produce a non-zero
exit code. With this option, warnings will generate a non-zero exit code.

This option is not available in the IAR Embedded Workbench IDE.

--warnings_are_errors --warnings_are_errors

Description

Use this option to make the compiler treat all warnings as errors. If the compiler
encounters an error, no object code is generated. Warnings that have been changed into
remarks are not treated as errors.

Note: Any diagnostic messages that have been reclassified as warnings by the compiler
option --diag_warning or the #pragma diag_warning directive will also be treated
as errors when --warnings_are_errors is used.

See also

--diag_warning, page 154 and #pragma diag_warning, page 219.

Project>Options>C/C++ Compiler>Diagnostics>Treat all warnings as errors

--weak_rtmodel_check --weak_rtmodel_check

Description

The H8 IAR C/C++ Compiler provides a robust system for ensuring module
consistency. Use this option to use a weaker consistency check.

In some siuations, you may want a weaker check. For example, if you build a library for
the H8/300 core, you may want it to be used in H8S projects as well. This is possible,
as the H8S architecture is backward compatible with the H8/300H architecture. By
specifying the --weak_rtmodel_check option, code compiled for H8/300H will be
accepted in H8S projects.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Compiler options
See also

Using a weak runtime model check, page 80.

This option will automatically be set when building a library,
Project>Options>General Options>Output>Output file>Library

-z -z[2|3|6|9]

Parameters

*The most important difference between -z2 and -z3 is that at level 2, all non-static variables
will live during their entire scope.

Description

Use this option to make the compiler optimize the code for minimum size. If no
optimization option is specified, the optimization level 3 is used by default.

A low level of optimization makes it relatively easy to follow the program flow in the
debugger, and, conversely, a high level of optimization makes it relatively hard.

Note: The -s and -z options cannot be used at the same time.

Project>Options>C/C++ Compiler>Optimizations>Size

2 None* (Best debug support)

3 (default) Low*

6 Medium

9 High (Maximum optimization)
CH8-1

Part 2. Compiler reference 173

174

Descriptions of options
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Data representation
This chapter describes the data types, pointers, and structure types supported
by the H8 IAR C/C++ Compiler.

See the chapter Efficient coding for embedded applications for information about
which data types and pointers provide the most efficient code for your
application.

Alignment
Every C data object has an alignment that controls how the object can be stored in
memory. Should an object have an alignment of, for example, four, it must be stored on
an address that is divisible by four.

The reason for the concept of alignment is that some processors have hardware
limitations for how the memory can be accessed.

Assume that a processor can read 4 bytes of memory using one instruction, but only
when the memory read is placed on an address divisible by 4. Then, 4-byte objects, such
as long integers, will have alignment 4.

Another processor might only be able to read 2 bytes at a time; in that environment, the
alignment for a 4-byte long integer might be 2.

A structure type will inherit the alignment from its components.

All objects must have a size that is a multiple of the alignment. Otherwise, only the first
element of an array would be placed in accordance with the alignment requirements.

In the following example, the alignment of the structure is 4, under the assumption that
long has alignment 4. Its size is 8, even though only 5 bytes are effectively used.

struct str {
 long a;
 char b;
};

In standard C, the size of an object can be determined by using the sizeof operator.
CH8-1

Part 2. Compiler reference 175

176

Basic data types
ALIGNMENT IN THE H8 IAR C/C++ COMPILER

The H8/300H and H8S microcomputer can access memory using 8-, 16-, or 32-bit
operations. However, when a 16- or 32-bit access is performed, the data must be located
at an even address. The H8 IAR C/C++ Compiler ensures this by assigning an alignment
to every data type, ensuring that the H8/300H and H8S microcomputer will be able to
read the data. A 16- or 32-bit access to an odd address will not work.

Basic data types

The compiler supports both all ISO/ANSI C basic data types and some additional types.

INTEGER TYPES

The following table gives the size and range of each integer data type:

Signed variables are represented using the two’s complement form.

Bool

The bool data type is supported by default in the C++ language. If you have enabled
language extensions, the bool type can also be used in C source code if you include the
file stdbool.h. This will also enable the boolean values false and true.

Data type Size Range Alignment

bool 8 bits 0 to 1 1

char 8 bits 0 to 255 1

signed char 8 bits -128 to 127 1

unsigned char 8 bits 0 to 255 1

signed short 16 bits -32768 to 32767 2

unsigned short 16 bits 0 to 65535 2

signed int 16 bits -32768 to 32767 2

unsigned int 16 bits 0 to 65535 2

signed long 32 bits -231 to 231-1 2

unsigned long 32 bits 0 to 232-1 2

signed long long 64 bits -263 to 263-1 2

unsigned long long 64 bits 0 to 264-1 2

Table 34: Integer types
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Data representation
The enum type

The compiler will use the smallest type required to hold enum constants, preferring
signed rather than unsigned.

When IAR Systems language extensions are enabled, and in C++, the enum constants
and types can also be of the type long, unsigned long, long long, or unsigned
long long.

To make the compiler use a larger type than it would automatically use, define an enum
constant with a large enough value. For example,

/* Disables usage of the char type for enum */
enum Cards{Spade1, Spade2,
DontUseChar=257};

The char type

The char type is by default unsigned in the compiler, but the --char_is_signed
compiler option allows you to make it signed. Note, however, that the library is compiled
with the char type as unsigned.

The wchar_t type

The wchar_t data type is an integer type whose range of values can represent distinct
codes for all members of the largest extended character set specified among the
supported locals.

The wchar_t data type is supported by default in the C++ language. To use the
wchar_t type also in C source code, you must include the file stddef.h from the
runtime library.

Bitfields

In ISO/ANSI C, int and unsigned int can be used as the base type for integer
bitfields. In the H8 IAR C/C++ Compiler, any integer type can be used as the base type
when language extensions are enabled.

Bitfields in expressions will have the same data type as the integer base type.

By default, the compiler places bitfield members from the least significant to the most
significant bit in the container type.

By using the directive #pragma bitfields=reversed, the bitfield members are
placed from the most significant to the least significant bit.
CH8-1

Part 2. Compiler reference 177

178

Basic data types
FLOATING-POINT TYPES

In the H8 IAR C/C++ Compiler, floating-point values are represented in standard IEEE
754 format. The sizes for the different floating-point types are:

Note: The size of double and long double depends on the --double={32|64}
option, see --double, page 155. The type long double uses the same precision as
double.

 The compiler does not support subnormal numbers. All operations that should produce
subnormal numbers will instead generate zero.

Exception flags according to the IEEE 754 standard are not supported.

32-bit floating-point format

The representation of a 32-bit floating-point number as an integer is:

The exponent is 8 bits, and the mantissa is 23 bits.

The value of the number is:

(-1)S * 2(Exponent-127) * 1.Mantissa

The range of the number is:

±1.18E-38 to ±3.39E+38

The precision of the float operators (+, -, *, and /) is approximately 7 decimal digits.

64-bit floating-point format

The representation of a 64-bit floating-point number as an integer is:

The exponent is 11 bits, and the mantissa is 52 bits.

Type Size if --double=32 Size if --double=64

float 32 bits 32 bits

double 32 bits (default) 64 bits

long double 32 bits (default) 64 bits

Table 35: Floating-point types

S

31 30 23 22 0

Exponent Mantissa

S

63 62 52 51 0

Exponent Mantissa
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Data representation
The value of the number is:

(-1)S * 2(Exponent-1023) * 1.Mantissa

The range of the number is:

±2.23E-308 to ±1.79E+308

The precision of the float operators (+, -, *, and /) is approximately 15 decimal digits.

Representation of special floating-point numbers

The following list describes the representation of special floating-point numbers:

● Zero is represented by zero mantissa and exponent. The sign bit signifies positive or
negative zero.

● Infinity is represented by setting the exponent to the highest value and the mantissa
to zero. The sign bit signifies positive or negative infinity.

● Not a number (NaN) is represented by setting the exponent to the highest positive
value and the most significant bit in the mantissa to 1. The value of the sign bit is
ignored.

Pointer types
The H8 IAR C/C++ Compiler has two basic types of pointers: functions pointers and
data pointers.

FUNCTION POINTERS

The size of function pointers is always 16 or 32 bits, and they can address the entire
memory. The internal representation of a function pointer is the actual address it refers
to.

The following function pointers are available:

* The value 0 denotes the NULL pointer.

Keyword Address range* Pointer size Description

__code16 0–0xFFFF 2 bytes No restrictions on code placement.
Can be used in Normal operating
mode only.

__code24 0–0xFFFFFF 4 bytes No restrictions on code placement.
Can be used in Advanced operating
mode only.

Table 36: Function pointers
CH8-1

Part 2. Compiler reference 179

180

Pointer types
DATA POINTERS

Data pointers have three sizes: 8, 16, or 32 bits. The following data pointers are
available:

1) The value 0 denotes the NULL pointer.
2) Note that, in runtime, the compiler may represent a physical address in more than one way.
For example, when a __data16 pointer is converted to a __data32 pointer, the pointer value
is sign-extended causing a __data16 pointer value of 0x8000 to be extended to
0xFFFF8000 even though the actual memory location has the address 0xFF8000 because the
device only implements 24 address bits. In most cases, the compiler will handle this automatically,
but in some cases you may need to be aware of the internal representation and the details of how
pointer values are converted at casts.

CASTING

Casts between pointers have the following characteristics:

● Casting a value of an integer type to a pointer of a smaller type is performed by
truncation

● Casting a value of an unsigned integer type to a pointer of a larger type is performed
by zero extension

● Casting a value of a signed integer type to a pointer of a larger type is performed by
sign extension

● Casting a pointer type to a smaller integer type is performed by truncation

Keyword Pointer size Index type
Pointer value

range1) Address range

__data8 1 byte signed

char

0x0–0xFF Normal operating mode:
0xFF00–0xFFFF

Advanced operating mode H8/300H:
0xFFFF00-0xFFFFFF

Advanced operating mode H8S:
0xFFFFFF00-0xFFFFFFFF

__data16 2 bytes signed

short

0x0000-

0xFFFF

Normal operating mode:
0x0–0xFFFF

Advanced operating mode H8/300H:
0x0-0x7FFF,

0xFF8000-0xFFFFFF

Advanced operating mode H8S:
0x0-0x7FFF,

0xFFFF8000-0xFFFFFFFF

__data32 4 bytes signed

long

0x00000000-

0xFFFFFFFF2)
Advanced operating mode H8/300H:
0x0–0xFFFFFF

Advanced operating mode H8S:
0x0–0xFFFFFFFF

Table 37: Data pointers
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Data representation
● Casting a pointer type to a larger integer type is performed by first casting the
pointer to an unsigned integer type of the same size as the pointer and then, if
necessary, by zero extension

● Casting a data pointer to a function pointer and vice versa is illegal
● Casting a function pointer to an integer type gives an undefined result
● Casting a __data8 pointer to a larger data pointer type is performed by extending

the 8-bit value with bits that have the value 1
● Casting a __data16 pointer to a __data32 pointer is performed by sign extension
● Casting a data pointer type to a smaller data pointer type is performed by truncation.

Note: If a __data32 pointer that points to the topmost 32 Kbyte of memory is
converted to a __data16 pointer and then back to a __data32 pointer, the value will
in most cases not be equal to the original __data32 pointer value. After the cast to the
__data16 pointer and back, the __data32 pointer has been sign-extended and has the
value 1 in all bit positions above the bus width for the device. The new pointer value
will work correctly when accessing the original variable. However, in a comparison
between the original __data32 pointer and the converted __data32 pointer, the
pointers will not be equal. The same problem is also present when casting from a
__data32 pointer to a __data8 pointer and back.

size_t

size_t is the unsigned integer type required to hold the maximum size of an object. In
the H8 IAR C/C++ Compiler, the size of size_t is 16 bits (unsigned short) in the
Small data model, and 32 bits (unsigned long) in the Huge data model.

ptrdiff_t

ptrdiff_t is the type of the signed integer required to hold the difference between two
pointers to elements of the same array. In the H8 IAR C/C++ Compiler, the size of
ptrdiff_t is 16 bits (signed short) in the Small data model, and 32 bits (signed
long) in the Huge data model.

Note: Subtracting the start address of an object from the end address can yield a
negative value, because the object can be larger than what the ptrdiff_t can represent.
See this example:

char buff[60000]; /* Assuming ptrdiff_t is a 16-bit */
char *p1 = buff; /* signed integer type. */
char *p2 = buff + 60000;
ptrdiff_t diff = p2 - p1;
CH8-1

Part 2. Compiler reference 181

182

Structure types
intptr_t

intptr_t is a signed integer type large enough to contain a void *. In the H8 IAR
C/C++ Compiler, the size of intptr_t is 16 bits (signed short) in the Small data
model, and 32 bits (signed long) in the Huge data model.

uintptr_t

uintptr_t is equivalent to intptr_t, with the exception that it is unsigned.

Structure types
The members of a struct are stored sequentially in the order in which they are
declared: the first member has the lowest memory address.

ALIGNMENT

The struct and union types inherit the alignment requirements of their members,
which means the struct and union have the same alignment as the member with the
highest alignment requirement. In addition, the size of a struct is adjusted to allow
arrays of aligned structure objects.

GENERAL LAYOUT

Members of a struct (fields) are always allocated in the order given in the declaration.
The members are placed in memory according to the given alignment (offsets).

Example

struct {
short s; /* stored in byte 0 and 1 */
char c; /* stored in byte 2 */
long l; /* stored in byte 4, 5, 6, and 7 */
char c2; /* stored in byte 8 */

} s;

The following diagram shows the layout in memory:

The alignment of the structure is 2 bytes, and its size is 10 bytes.

s.s
2 bytes

s.c
1 byte

pad
1 byte

s.l
4 bytes

s.c2
1 byte

pad
1 byte
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Data representation
PACKED STRUCTURE TYPES

The #pragma pack directive is used for changing the alignment requirements of the
members of a structure. This will change the way the layout of the structure is
performed. The members will be placed in the same order as when declared, but there
might be less pad space between members.

Example

#pragma pack(1)
struct {

short s;
char c;
long l;
char c2;

} s;

will be placed:

For more information, see Rearranging elements in a structure, page 123.

Type qualifiers
According to the ISO/ANSI C standard, volatile and const are type qualifiers.

DECLARING OBJECTS VOLATILE

There are three main reasons for declaring an object volatile:

● Shared access; the object is shared between several tasks in a multitasking
environment

● Trigger access; as for a memory-mapped SFR where the fact that an access occurs
has an effect

● Modified access; where the contents of the object can change in ways not known to
the compiler.

4 bytes

s.s s.c s.1 s.c2

4 bytes
CH8-1

Part 2. Compiler reference 183

184

Type qualifiers
Definition of access to volatile objects

The ISO/ANSI standard defines an abstract machine, which governs the behavior of
accesses to volatile declared objects. In general and in accordance to the abstract
machine, the compiler:

● Considers each read and write access to an object that has been declared volatile
as an access

● The unit for the access is either the entire object or, for accesses to an element in a
composite object—such as an array, struct, class, or union—the element. For
example:
char volatile a;
a = 5; /* A write access */
a += 6; /* First a read then a write access */

● An access to a bitfield is treated as an access to the underlaying type.

However, these rules are not detailed enough to handle the hardware-related
requirements. The rules specific to the H8 IAR C/C++ Compiler are described below.

Rules for accesses

In the H8 IAR C/C++ Compiler, accesses to volatile declared objects are subject to
the following rules:

1 All accesses are preserved

2 All accesses are complete, that is, the whole object is accessed

3 All accesses are performed in the same order as given in the abstract machine

4 All accesses are atomic, that is, they cannot be interrupted.

The H8 IAR C/C++ Compiler adheres to these rules for all data objects with the size 8,
16, or 32 bits. These data objects are accessed with a single MOV.B/W/L instruction.

For single bit bitfields, the compiler will attempt to access the bitfield using a bit
instruction. However, complex operations on the bitfield might read or write the entire
underlying type in which the bit is located.

For all other object types, only rule number one applies.

DECLARING OBJECTS CONST

The const type qualifier is used for indicating that a data object, accessed directly or
via a pointer, is non-writable. A pointer to const declared data can point to both
constant and non-constant objects. It is good programming practice to use const
declared pointers whenever possible because this improves the compiler’s possibilities
to optimize the generated code and reduces the risk of application failure due to
erroneously modified data.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Data representation
Static and global objects declared const and located in the memories data16 and data32
are allocated in ROM. For data8, the objects are allocated in RAM and initialized by the
runtime system at startup.

In C++, objects that require runtime initialization cannot be placed in ROM.

Data types in C++
In C++, all plain C data types are represented in the same way as described earlier in this
chapter. However, if any Embedded C++ features are used for a type, no assumptions
can be made concerning the data representation. This means, for example, that it is not
legal to write assembler code that accesses class members.
CH8-1

Part 2. Compiler reference 185

186

Data types in C++
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Compiler extensions
This chapter gives a brief overview of the H8 IAR C/C++ Compiler extensions
to the ISO/ANSI C standard. All extensions can also be used for the C++
programming language. More specifically the chapter describes the available C
language extensions.

Compiler extensions overview
The compiler offers the standard features of ISO/ANSI C as well as a wide set of
extensions, ranging from features specifically tailored for efficient programming in the
embedded industry to the relaxation of some minor standards issues.

You can find the extensions available as:

● C/C++ language extensions

For a summary of available language extensions, see C language extensions, page
188. For reference information about the extended keywords, see the chapter
Extended keywords. For information about C++, the two levels of support for the
language, and C++ language extensions; see the chapter Using C++.

● Pragma directives

The #pragma directive is defined by the ISO/ANSI C standard and is a mechanism
for using vendor-specific extensions in a controlled way to make sure that the source
code is still portable.

The compiler provides a set of predefined pragma directives, which can be used for
controlling the behavior of the compiler, for example how it allocates memory,
whether it allows extended keywords, and whether it outputs warning messages.
Most pragma directives are preprocessed, which means that macros are substituted
in a pragma directive. The pragma directives are always enabled in the compiler and
many of them have an equivalent C/C++ language extensions. For a list of available
pragma directives, see the chapter Pragma directives.

● Preprocessor extensions

The preprocessor of the compiler adheres to the ISO/ANSI standard. In addition, the
compiler also makes a number of preprocessor-related extensions available to you.
For more information, see the chapter The preprocessor.
CH8-1

Part 2. Compiler reference 187

188

C language extensions
● Intrinsic functions

The intrinsic functions provide direct access to low-level processor operations and
can be very useful in, for example, time-critical routines. The intrinsic functions
compile into inline code, either as a single instruction or as a short sequence of
instructions. To read more about using intrinsic functions, see Mixing C and
assembler, page 83. For a list of available functions, see the chapter Intrinsic
functions.

● Library functions

The IAR DLIB Library provides most of the important C and C++ library definitions
that apply to embedded systems. In addition, the library also provides some
extensions, partly taken from the C99 standard. For more information, see IAR DLIB
Library, page 256.

Note: Any use of these extensions, except for the pragma directives, makes your
application inconsistent with the ISO/ANSI C standard.

ENABLING LANGUAGE EXTENSIONS

In the IAR Embedded Workbench® IDE, language extensions are enabled by default.

For information about how to enable and disable language extensions from the
command line, see the compiler options -e, page 156 and --strict_ansi, page 171.

C language extensions
This section gives a brief overview of the C language extensions available in the H8 IAR
C/C++ Compiler. The compiler provides a wide set of extensions, so to help you to find
the extensions required by your application, the extensions have been grouped according
to their expected usefulness. In short, this means:

● Important language extensions—extensions specifically tailored for efficient
embedded programming, typically to meet memory restrictions

● Useful language extensions—features considered useful and typically taken from
related standards, such as C99 and C++

● Minor language extensions, that is, the relaxation of some minor standards issues
and also some useful but minor syntax extensions.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Compiler extensions
IMPORTANT LANGUAGE EXTENSIONS

The following language extensions available both in the C and the C++ programming
languages are well suited for embedded systems programming:

● Memory attributes, type attributes, and object attributes

For information about the related concepts, the general syntax rules, and for
reference information, see the chapter Extended keywords.

● Placement at an absolute address or in a named segment

The @ operator or the directive #pragma location can be used for placing global
and static variables at absolute addresses, or placing a variable or function in a named
segment. For more information about using these primitives, see Controlling data
and function placement in memory, page 45 and #pragma location, page 220.

● Alignment

Each data type has its own alignment, for more details, see Alignment, page 175. If
you want to change alignment, the #pragma pack and #pragma data_alignment
directives are available. If you want to check the alignment of an object, use the
__ALIGNOF__() operator.

The __ALIGNOF__ operator is used for accessing the alignment of an object. It takes
one of two forms:

● __ALIGNOF__ (type)
● __ALIGNOF__ (expression)

In the second form, the expression is not evaluated.

● Anonymous structs and unions

C++ includes a feature named anonymous unions. The compiler allows a similar
feature for both structs and unions in the C programming language. For more
information, see Anonymous structs and unions, page 124.

● Bitfields and non-standard types

In ISO/ANSI C, a bitfield must be of the type int or unsigned int. Using IAR
Systems language extensions, any integer type or enum may be used. The advantage
is that the struct will be smaller. This matches G.5.8 in the appendix of the ISO
standard, ISO Portability Issues. For more information, see Bitfields, page 177.

● Dedicated segment operators __segment_begin and __segment_end

The syntax for these operators are:

 void * __segment_begin(segment]
 void * __segment_end(segment]
CH8-1

Part 2. Compiler reference 189

190

C language extensions
These operators return the address of the first byte of the named segment and the
first byte after the named segment, respectively. This can be useful if you have used
the @ operator or the #pragma location directive to place a data object or a
function in a user-defined segment.

The named segment must be a string literal that has been declared earlier with the
#pragma segment directive. If the segment was declared with a memory attribute
memattr, the type of the __segment_begin function is a pointer to memattr void.
Otherwise, the type is a default pointer to void. Note that you must have enabled
language extensions to use these operators.

In the following example, the type of the __segment_begin operator is void
__data16 *.

#pragma segment="MYSEG" __data16
...
segment_start_address = __segment_begin("MYSEG");

See also #pragma segment, page 225 and #pragma location, page 220.

USEFUL LANGUAGE EXTENSIONS

This section lists and briefly describes useful extensions, that is, useful features typically
taken from related standards, such as C99 and C++:

● Inline functions

The #pragma inline directive, alternatively the inline keyword, advises the
compiler that the function whose declaration follows immediately after the directive
should be inlined. This is similar to the C++ keyword inline. For more information,
see #pragma inline, page 219.

● Mixing declarations and statements

It is possible to mix declarations and statements within the same scope. This feature
is part of the C99 standard and C++.

● Declaration in for loops

It is possible to have a declaration in the initialization expression of a for loop, for
example:

for (int i = 0; i < 10: ++i)
{...}

This feature is part of the C99 standard and C++.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Compiler extensions
● The bool data type

To use the bool type in C source code, you must include the file stdbool.h. This
feature is part of the C99 standard and C++. (The bool data type is supported by
default in C++.)

● C++ style comments

C++ style comments are accepted. A C++ style comment starts with the character
sequence // and continues to the end of the line. For example:

// The length of the bar, in centimeters.
int length;

This feature is copied from the C99 standard and C++.

Inline assembler

Inline assembler can be used for inserting assembler instructions in the generated
function. This feature is part of the C99 standard and C++.

The asm and __asm extended keywords both insert an assembler instruction. However,
when compiling C source code, the asm keyword is not available when the option
--strict_ansi is used. The __asm keyword is always available.

Note: Not all assembler directives or operators can be inserted using this keyword.

The syntax is:

asm ("string");

The string can be a valid assembler instruction or an assembler directive, but not a
comment. You can write several consecutive inline assembler instructions, for example:

asm ("Label: nop\n"
 " jmp Label");

where \n (new line) separates each new assembler instruction. Note that you can define
and use local labels in inline assembler instructions.

For more information about inline assembler, see Mixing C and assembler, page 83.

Compound literals

To create compound literals you can use the following syntax:

/* Create a pointer to an anonymous array */
int *p = (int []) {1,2,3};

/* Create a pointer to an anonymous structX */
structX *px = &(structX) {5,6,7};
CH8-1

Part 2. Compiler reference 191

192

C language extensions
Note:

● A compound literal can be modified unless it is declared const
● Compound literals are not supported in Embedded C++ and Extended EC++.
● This feature is part of the C99 standard.

Incomplete arrays at end of structs

The last element of a struct may be an incomplete array. This is useful because one
chunk of memory can be allocated for the struct itself and for the array, regardless of
the size of the array.

Note: The array cannot be the only member of the struct. If that was the case, then
the size of the struct would be zero, which is not allowed in ISO/ANSI C.

Example

struct str
{
 char a;
 unsigned long b[];
};

struct str * GetAStr(int size)
{
 return malloc(sizeof(struct str) +
 sizeof(unsigned long) * size);
}

void UseStr(struct str * s)
{
 s->b[10] = 0;
}

The struct will inherit the alignment requirements from all elements, including the
alignment of the incomplete array. The array itself will not be included in the size of the
struct. However, the alignment requirements will ensure that the struct will end exactly
at the beginning of the array; this is known as padding.

In the example, the alignment of struct str will be 4 and the size is also 4. (Assuming
a processor where the alignment of unsigned long is 4.)
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Compiler extensions
The memory layout of struct str is described in the following figure.

This feature is copied from the C99 standard.

Hexadecimal floating-point constants

Floating-point constants can be given in hexadecimal style. The syntax is
0xMANTp{+|-}EXP, where MANT is the mantissa in hexadecimal digits, including an
optional . (decimal point), and EXP is the exponent with decimal digits, representing an
exponent of 2. This feature is copied from the C99 standard.

Examples

0x1p0 is 1

0xA.8p2 is 10.5*2^2

Designated initializers in structures and arrays

Any initialization of either a structure (struct or union) or an array can have a
designation. A designation consists of one or more designators followed by an
initializer. A designator for a structure is specified as .elementname and for an array
[constant index expression]. Using designated initializers is not supported in
C++.

a

First long element of b

Second long element of b

...

pad
byte

pad
byte

pad
byte
CH8-1

Part 2. Compiler reference 193

194

C language extensions
Examples

The following definition shows a struct and its initialization using designators:

struct{
 int i;
 int j;
 int k;
 int l;
 short array[10]
} x = {
 .l.j = 6, /* initialize l and j to 6 */
 8, /* initialize k to 8 */
 {[7][3] = 2, /* initialize element 7 and 3 to 2 */
 5} /* initialize element 4 to 5 */
 .k = 4 /* reinitialize k to 4 */
};

Note that a designator specifies the destination element of the initialization. Note also
that if one element is initialized more than once, it is the last initialization that will be
used.

To initialize an element in a union other than the first, do like this:

union{
 int i;
 float f;
}y = {.f = 5.0};

To set the size of an array by initializing the last element, do like this:

char array[] = {[10] = ‘a’};

MINOR LANGUAGE EXTENSIONS

This section lists and briefly describes minor extensions, that is, the relaxation of some
standards issues and also some useful but minor syntax extensions:

● Arrays of incomplete types

An array may have an incomplete struct, union, or enum type as its element type.
The types must be completed before the array is used (if it is), or by the end of the
compilation unit (if it is not).

● Forward declaration of enums

The IAR Systems language extensions allow that you first declare the name of an
enum and later resolve it by specifying the brace-enclosed list.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Compiler extensions
● Missing semicolon at end of struct or union specifier

A warning is issued if the semicolon at the end of a struct or union specifier is
missing.

● NULL and void

In operations on pointers, a pointer to void is always implicitly converted to another
type if necessary, and a null pointer constant is always implicitly converted to a null
pointer of the right type if necessary. In ISO/ANSI C, some operators allow such
things, while others do not allow them.

● Casting pointers to integers in static initializers

In an initializer, a pointer constant value may be cast to an integral type if the integral
type is large enough to contain it. For more information about casting pointers, see
Casting, page 180.

● Taking the address of a register variable

In ISO/ANSI C, it is illegal to take the address of a variable specified as a register
variable. The compiler allows this, but a warning is issued.

● Duplicated size and sign specifiers

Should the size or sign specifiers be duplicated (for example, short short or
unsigned unsigned), an error is issued.

● long float means double

The type long float is accepted as a synonym for double.

● Repeated typedef declarations

Redeclarations of typedef that occur in the same scope are allowed, but a warning
is issued.

● Mixing pointer types

Assignment and pointer difference is allowed between pointers to types that are
interchangeable but not identical; for example, unsigned char * and char *. This
includes pointers to integral types of the same size. A warning is issued.

Assignment of a string constant to a pointer to any kind of character is allowed, and
no warning will be issued.

● Non-top level const

Assignment of pointers is allowed in cases where the destination type has added type
qualifiers that are not at the top level (for example, int ** to int const **).
Comparing and taking the difference of such pointers is also allowed.
CH8-1

Part 2. Compiler reference 195

196

C language extensions
● Non-lvalue arrays

A non-lvalue array expression is converted to a pointer to the first element of the
array when it is used.

● Empty translation units

A translation unit (source file) is allowed to be empty, that is, it does not have to
contain any declarations.

In strict ISO/ANSI mode, a warning is issued if the translation unit is empty.

● Comments at the end of preprocessor directives

This extension, which makes it legal to place text after preprocessor directives, is
enabled, unless strict ISO/ANSI mode is used. The purpose of this language
extension is to support compilation of legacy code; we do not recommend that you
write new code in this fashion.

● An extra comma at the end of enum lists

Placing an extra comma is allowed at the end of an enum list. In strict ISO/ANSI
mode, a warning is issued.

● A label preceding a }

In ISO/ANSI C, a label must be followed by at least one statement. Therefore, it is
illegal to place the label at the end of a block. In the H8 IAR C/C++ Compiler, a
warning is issued.

Note: This also applies to the labels of switch statements.

● Empty declarations

An empty declaration (a semicolon by itself) is allowed, but a remark is issued
(provided that remarks are enabled).

● Single-value initialization

ISO/ANSI C requires that all initializer expressions of static arrays, structs, and
unions are enclosed in braces.

Single-value initializers are allowed to appear without braces, but a warning is
issued. In the H8 IAR C/C++ Compiler, the following expression is allowed:

struct str
{
 int a;
} x = 10;
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Compiler extensions
● Declarations in other scopes

External and static declarations in other scopes are visible. In the following example,
the variable y can be used at the end of the function, even though it should only be
visible in the body of the if statement. A warning is issued.

int test(int x)
{
 if (x)
 {
 extern int y;
 y = 1;
 }

 return y;
}

● Expanding function names into strings with the function as context

Use any of the symbols __func__ or __FUNCTION__ inside a function body to
make it expand into a string, with the function name as context. Use the symbol
__PRETTY_FUNCTION__ to also include the parameter types and return type. The
result might, for example, look like this if you use the __PRETTY_FUNCTION__
symbol:

"void func(char)"

These symbols are useful for assertions and other trace utilities and they require that
language extensions are enabled, see -e, page 156.
CH8-1

Part 2. Compiler reference 197

198

C language extensions
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Extended keywords
This chapter describes the extended keywords that support specific features
of the H8/300H and H8S microcomputer and the general syntax rules for the
keywords. Finally, the chapter gives a detailed description of each keyword.

For information about the address ranges of the different memory areas, see
the chapter Segment reference.

General syntax rules for extended keywords
To understand the syntax rules for the extended keywords, it is important to be familiar
with some related concepts.

The H8 IAR C/C++ Compiler provides a set of attributes that can be used on functions
or data objects to support specific features of the H8/300H and H8S microcomputer
families. There are two types of attributes—type attributes and object attributes:

● Type attributes affect the external functionality of the data object or function
● Object attributes affect the internal functionality of the data object or function.

The syntax for the keywords differs slightly depending on whether it is a type attribute
or an object attribute, and whether it is applied to a data object or a function.

For information about how to use attributes to modify data, see the chapter Data storage.
For information about how to use attributes to modify functions, see the chapter
Functions. For detailed information about each attribute, see Descriptions of extended
keywords, page 204.

Note: The extended keywords are only available when language extensions are enabled
in the H8 IAR C/C++ Compiler.

In the IAR Embedded Workbench IDE, language extensions are enabled by default.

Use the -e compiler option to enable language extensions. See -e, page 156 for
additional information.

TYPE ATTRIBUTES

Type attributes define how a function is called, or how a data object is accessed. This
means that type attributes must be specified both when they are defined and in the
declaration.
CH8-1

Part 2. Compiler reference 199

200

General syntax rules for extended keywords
You can either place the type attributes directly in your source code, or use the pragma
directive #pragma type_attribute.

Type attributes can be further divided into memory attributes and general type
attributes.

Memory attributes

A memory attribute corresponds to a certain logical or physical memory in the
microcomputer.

● Available function memory attributes: __code16 and __code24
● Available data memory attributes: __data8, __data16, __data32, and

__bitvar

Data objects, functions, and destinations of pointers or C++ references always have a
memory attribute. If no attribute is explicitly specified in the declaration or by the
pragma directive #pragma type_attribute, an appropriate default attribute is used.
You can only specify one memory attribute for each level of pointer indirection.

General type attributes

The following general type attributes are available:

● Function type attributes change the calling convention of a function:
__interrupt, __monitor, __trap, __cc_version1, __cc_version2,
__cc_version3, and __vector_call

● Data type attributes: const and volatile

You can specify as many type attributes as required for each level of pointer indirection.

To read more about the type qualifiers const and volatile, see Type qualifiers, page
183.

Syntax for type attributes used on data objects

In general, type attributes for data objects follow the same syntax as the type qualifiers
const and volatile.

The following declaration assigns the __data16 type attribute to the variables i and j;
in other words, the variable i and j is placed in data16 memory. The variables k and l
behave in the same way:

__data16 int i, j;
int __data16 k, l;

Note that the attribute affects both identifiers.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Extended keywords
The following declaration of i and j is equivalent with the previous one:

#pragma type_attribute=__data16
int i, j;

The advantage of using pragma directives for specifying keywords is that it offers you a
method to make sure that the source code is portable. Note that the pragma directive has
no effect if a memory attribute is already explicitly declared.

For more examples of using memory attributes, see More examples, page 20.

An easier way of specifying storage is to use type definitions. The following two
declarations are equivalent:

typedef char __data16 Byte;
typedef Byte *BytePtr;
Byte b;
BytePtr bp;

and

__data16 char b;
char __data16 *bp;

Note that #pragma type_attribute can be used together with a typedef
declaration.

Syntax for type attributes on data pointers

The syntax for declaring pointers using type attributes follows the same syntax as the
type qualifiers const and volatile:

Syntax for type attributes on functions

The syntax for using type attributes on functions, differs slightly from the syntax of type
attributes on data objects. For functions, the attribute must be placed either in front of
the return type, alternatively in parentheses, for example:

__interrupt void my_handler(void);

or

void (__interrupt my_handler)(void);

int __data16 * p; The int object is located in __data16 memory.

int * __data16 p; The pointer is located in __data16 memory.

__data16 int * p; The pointer is located in __data16 memory.
CH8-1

Part 2. Compiler reference 201

202

General syntax rules for extended keywords
The following declaration of my_handler is equivalent with the previous one:

#pragma type_attribute=__interrupt
void my_handler(void);

Syntax for type attributes on function pointers

To declare a function pointer, use the following syntax:

int (__code16 * fp) (double);

After this declaration, the function pointer fp points to code16 memory.

An easier way of specifying storage is to use type definitions:

typedef __code16 void FUNC_TYPE(int);
typedef FUNC_TYPE *FUNC_PTR_TYPE;
FUNC_TYPE func();
FUNC_PTR_TYPE funcptr;

Note that #pragma type_attribute can be used together with a typedef
declaration.

OBJECT ATTRIBUTES

Object attributes affect the internal functionality of functions and data objects, but not
how the function is called or how the data is accessed. This means that an object attribute
does not need to be present in the declaration of an object.

The following object attributes are available:

● Object attributes that can be used for variables: __no_init
● Object attributes that can be used for functions and variables: location, @, and

__root

● Object attributes that can be used for functions: __intrinsic, __noreturn,
__raw, __task, and vector.

You can specify as many object attributes as required for a specific function or data
object.

For more information about location and @, see Controlling data and function
placement in memory, page 45. For more information about vector, see #pragma
vector, page 226.

Syntax for object attributes

The object attribute must be placed in front of the type. For example, to place myarray
in memory that is not initialized at startup:

__no_init int myarray[10];
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Extended keywords
The #pragma object_attribute directive can also be used. The following
declaration is equivalent to the previous one:

#pragma object_attribute=__no_init
int myarray[10];

Note: Object attributes cannot be used in combination with the typedef keyword.

Summary of extended keywords
The following table summarizes the extended keywords:

Note: Some of the keywords can be used on both data and functions.

Extended keyword Description

__bitvar Controls the declaration of bit variables

__cc_version1 Specifies calling convention 1; available for backward compatibility

__cc_version2 Specifies calling convention 2; available for backward compatibility

__cc_version3 Specifies the default calling convention explicitly

__code16 Controls the storage of functions

__code24 Controls the storage of functions

__data8 Controls the storage of data objects

__data16 Controls the storage of data objects

__data32 Controls the storage of data objects

__interrupt Supports interrupt functions

__intrinsic Reserved for compiler internal use only

__monitor Supports atomic execution of a function

__no_init Supports non-volatile memory

__noreturn Informs the compiler that the declared function will not return

__raw Prevents saving used registers in interrupt functions

__root Ensures that a function or variable is included in the object code even
if unused

__task Allows functions to exit without restoring registers

__trap Supports trap functions

__vector_call Allows functions to be called direct via the vector area

Table 38: Extended keywords summary
CH8-1

Part 2. Compiler reference 203

204

Descriptions of extended keywords
Descriptions of extended keywords
The following sections give detailed information about each extended keyword.

__bitvar Controls the storage of bit variables.

The __bitvar keyword is available for declaring single bit variables. A bit variable is
placed in the highest 256 bytes of data memory addressable with the @aa:8 addressing
mode. If you want to place a bit variable in a different memory area, you must declare a
struct with a single bit bitfield, which has no restrictions in placement. In this case, do
not use the __bitvar keyword. A variable declared with the __bitvar keyword
cannot be located.

For backward compatibility, the include file migration.h defines the macro
BIT(name), which you can use for declaring bit variables.

Note: You cannot take the address of a __bitvar variable, nor create a pointer to such
a variable.

Syntax

Follows the generic syntax rules for memory type attributes that can be used on data
objects, see Type attributes, page 199.

Example

__bitvar struct {unsigned char name: 1;}

where name will be treated as a bit variable and placed in memory in the special
BITVARS segment.

__cc_version1 Specifies calling convention 1.

The __cc_version1 keyword is available for backward compatibility of the interface
for calling assembler routines from C. It makes a function use the calling convention of
the old H8 IAR C Compiler up to version 1.20A instead of the default calling
convention. This calling convention, alternatively __cc_version2, is preferred for
calling assembler routines from C.

Syntax

Follows the generic syntax rules for type attributes that can be used on functions, see
Type attributes, page 199.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Extended keywords
Example

__cc_version1 int func(int arg1, double arg2)

See also

For information about the different calling conventions, see Calling convention, page
89.

__cc_version2 Specifies calling convention 2.

The __cc_version2 keyword is available for backward compatibility of the interface
for calling assembler routines from C. It makes a function use the calling convention of
the old ICCH8 IAR C Compiler from version 1.20A to 1.x instead of the default calling
convention. This calling convention, alternatively __cc_version1, is preferred for
calling assembler routines from C.

Syntax

Follows the generic syntax rules for type attributes that can be used on functions, see
Type attributes, page 199.

Example

__cc_version2 int func(int arg1, double arg2)

See also

For information about the different calling conventions, see Calling convention, page
89.

__cc_version3 Specifies the default calling convention explicitly.

The __cc_version3 keyword makes a function use the calling convention of the
ICCH8 IAR C Compiler version 2.x. This is the default calling convention, which means
there is no practical use for this keyword in this version of the compiler.

Syntax

Follows the generic syntax rules for type attributes that can be used on functions, see
Type attributes, page 199.

Example

__cc_version3 int func(int arg1, double arg2)
CH8-1

Part 2. Compiler reference 205

206

Descriptions of extended keywords
See also

For information about the different calling conventions, see Calling convention, page
89.

__code16 Controls the storage of functions.

The __code16 memory attribute places a function in the code16 memory range
0x2–0xFFFF.

The __code16 attribute is default in the Small code model and it is only available in the
Normal operating mode. This attribute cannot be used in any other situation, which
means there is no practical use for it in this version of the compiler:

Syntax

Follows the generic syntax rules for memory type attributes that can be used on
functions, see Type attributes, page 199.

Example

__code16 void foo(void);
__code16 void foo(void)
{
...
}

See also

For more information about the memory models, see Code models and memory
attributes for function storage, page 25.

__code24 Controls the storage of functions.

The __code24 memory attribute places a function in the code24 memory range
0x2–0xFFFFFF.

Address range Pointer size
Max module

size

Default in code

model

Available in operating

mode

0x2-0xFFFF 2 bytes 64 Kbytes Small Normal

Table 39: __code16 function memory attribute
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Extended keywords
The __code24 attribute is default in the Large code model and it is only available in the
Advanced operating mode. This attribute cannot be used in any other situation, which
means there is no practical use for it in this version of the compiler:

Syntax

Follows the generic syntax rules for memory type attributes that can be used on
functions, see Type attributes, page 199.

Example

__code24 void foo(void);
__code24 void foo(void)
{
...
}

See also

For more information about the memory models, see Code models and memory
attributes for function storage, page 25.

__data8 Controls the storage of data objects.

The __data8 memory attribute places a data object in the data8 memory type, in other
words in the highest 256 bytes of memory, where the start address depends on which
processor family, operating mode, and bus width that is being used. This part of the
memory is accessible via the addressing mode @aa:8.

The following table summarizes the available address ranges for each possible
combination of operating mode and processor core:

Address range Pointer size
Max module

size

Default in code

model

Available in operating

mode

0x2-0xFFFFFF 4 bytes 16 Mbytes Normal Advanced

Table 40: __code24 function memory attribute

Address range Max object size Pointer size Description

0xFF01-

0xFFFE

256-2 bytes 1 byte • Valid for the Normal operating mode
• Valid for both H8S and H8/300H

0xFFFF01-

0xFFFFFE

256-2 bytes 1 byte • Valid for the Advanced operating mode
• Valid for H8/300H

0xFFFFFF01-

0xFFFFFFFE

256-2 bytes 1 byte • Valid for the Advanced operating mode
• Valid for H8S

Table 41: __data8 data memory attribute
CH8-1

Part 2. Compiler reference 207

208

Descriptions of extended keywords
Note:

● An access via a __data8 pointer requires that the pointer is extended to 16 or 32
bits, depending on the operating mode

● The address range also depends on the specified bus width, see Data pointers,
page 180.

Syntax

Follows the generic syntax rules for memory type attributes that can be used on data
objects, see Type attributes, page 199.

Example

__data8 int x;

See also

For more information about memory types, see Memory types, page 15.

__data16 Controls the storage of data objects.

The __data16 memory attribute places a data object in the data16 memory range, in
other words in the lowest 32 Kbytes and highest 32 Kbytes of memory, where the start
address of the highest bytes of memory depends on which processor family, operating
mode, and bus width that is being used. This part of the memory is accessible via the
addressing mode @aa:16. The __data16 memory attribute is default in the Small data
model.

The following table summarizes the available address ranges for each possible
combination of operating mode and processor core:

Address range Max object size Pointer size Description

0x1-0xFFFE 64 Kbytes -2 2 bytes • Valid for the Normal operating mode
• Valid for both H8S and H8/300H

0x1-0x7FFE,

0xFF8000-

0xFFFFFE

32 Kbytes -2
(May not wrap
around from
0xFFFFFF to
0x0)

2 bytes • Valid for the Advanced operating mode
• Valid for H8/300H

Table 42: __data16 data memory attribute
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Extended keywords
Note:

● An access via a __data16 pointer requires that the pointer is extended to 32 bits,
depending on the operating mode

● The address range also depends on the specified bus width, see Data pointers, page
180.

Syntax

Follows the generic syntax rules for memory type attributes that can be used on data
objects, see Type attributes, page 199.

Example

__data16 int x;

See also

For more information about memory types, see Memory types, page 15.

__data32 Controls the storage of data objects.

The __data32 memory attribute places a data object in the data32 memory range, in
other words in the entire memory area, where the end address of memory depend on
which processor family, operating mode, and bus width that is being used. This memory
is accessible via the addressing mode @aa:32. The __data32 memory attribute is
default in the Huge data model.

The following table summarizes the available address ranges for each possible
combination of operating mode and processor core:

0x1-0x7FFE,

0xFFFF8000-

0xFFFFFFFE

32 Kbytes -2
(May not wrap
around from
0xFFFFFFFF to
0x0)

2 bytes • Valid for the Advanced operating mode
• Valid for H8S

Address range Max object size Pointer size Description

Table 42: __data16 data memory attribute (Continued)

Address range Max object size Pointer size Description

0x1-

0xFFFFFE

16 Mbytes -2 4 bytes • Valid for the Advanced operating mode
• Valid for H8/300H

0x1-

0xFFFFFFFE

4 Gbytes -2 4 bytes • Valid for the Advanced operating mode
• Valid for H8S

Table 43: __data32 data memory attribute
CH8-1

Part 2. Compiler reference 209

210

Descriptions of extended keywords
Note: The address range also depends on the specified bus width, see Data pointers,
page 180.

Syntax

Follows the generic syntax rules for memory type attributes that can be used on data
objects, see Type attributes, page 199.

Example

__data32 int x;

See also

For more information about memory types, see Memory types, page 15.

__interrupt The __interrupt keyword specifies interrupt functions. To specify one or several
interrupt vectors, use the #pragma vector directive. The range of the interrupt vectors
depends on the device used. It is possible to define an interrupt function without a vector,
but then the compiler will not generate an entry in the interrupt vector table.

An interrupt function must have a void return type and cannot have any parameters.

The header file ioderivative.h, where derivative corresponds to the selected
derivative, contains predefined names for the existing interrupt vectors.

Syntax

Follows the generic syntax rules for type attributes that can be used on functions, see
Type attributes, page 199.

Example

The following example declares an interrupt function with the interrupt vector value
0x14, which corresponds to offset 0x28 or 0x50 in the INTVEC segment, depending on
the operating mode:

#pragma vector=0x14
__interrupt void my_interrupt_handler(void);

See also

For additional information, see Interrupt functions, page 26.

__intrinsic The __intrinsic keyword is reserved for compiler internal use only.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Extended keywords
__monitor The __monitor keyword causes interrupts to be disabled during execution of the
function. This allows atomic operations to be performed, such as operations on
semaphores that control access to resources by multiple processes. A function declared
with the __monitor keyword is equivalent to any other function in all other respects.

Note that it is vital to specify the interrupt mode in use when you compile your monitor
function. The compiler will generate code to save the interrupt status on function entry,
and restore it before exiting the function. If you specify an incorrect interrupt mode, the
generated code will not work correctly in your application. For more information about
specifying interrupt mode, see --interrupt_mode, page 159.

Syntax

Follows the generic syntax rules for type attributes that can be used on functions, Type
attributes, page 199.

Example

__monitor int get_lock(void);

See also

Read more about monitor functions in Monitor functions, page 28. Read also about the
intrinsic functions __disable_interrupt, page 231, __enable_interrupt, page 235,
__get_interrupt_state, page 235, and __set_interrupt_state, page 241.

__no_init Use the __no_init keyword to place a data object in non-volatile memory. This means
that the initialization of the variable, for example at system startup, is suppressed.

Syntax

Follows the generic syntax rules for object attributes, Object attributes, page 202.

Example

__no_init int myarray[10];

__noreturn The __noreturn keyword can be used on a function to inform the compiler that the
function will not return. If you use this keyword on such functions, the compiler can
optimize more efficiently. Examples of functions that do not return are abort and exit.

Syntax

Follows the generic syntax rules for object attributes, Object attributes, page 202.
CH8-1

Part 2. Compiler reference 211

212

Descriptions of extended keywords
Example

__noreturn void terminate(void);

__raw Prevents saving used registers in interrupt functions.

Interrupt functions preserve the content of all used processor registers at function
entrance and restore them at exit. However, for some very special applications, it can be
desirable to prevent the registers from being saved at function entrance. This can be
accomplished by the use of extended keyword __raw.

Syntax

Follows the generic syntax rules for object attributes, Object attributes, page 202.

Example

__raw __interrupt void my_interrupt_function()

__root A function or variable with the __root attribute is kept whether or not it is referenced
from the rest of the application, provided its module is included. Program modules are
always included and library modules are only included if needed.

Syntax

Follows the generic syntax rules for object attributes, Object attributes, page 202.

Example

__root int myarray[10];

See also

To read more about modules, segments, and the link process, see the IAR Linker and
Library Tools Reference Guide.

__task This keyword allows functions to exit without restoring registers and it is typically used
for the main function.

By default, functions save the contents of used non-scratch registers (permanent
registers) on the stack upon entry, and restore them at exit. Functions declared as
__task do not save any registers, and therefore require less stack space. Such functions
should only be called from assembler routines.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Extended keywords
The function main may be declared __task, unless it is explicitly called from the
application. In real-time applications with more than one task, the root function of each
task may be declared __task.

Syntax

Follows the generic syntax rules for type attributes that can be used on functions, see
Type attributes, page 199.

Example

__task void my_handler(void);

__trap A trap function is called and executed by the TRAPA assembler instruction and returned
by the RTE instruction. A trap function must have one or several vectors, which are
specified using the #pragma vector directive. See the chip manufacturer’s hardware
documentation for information about the trap vector range. If a trap vector is not given,
an error will be issued if the function is called. A trap function can take parameters and
return a value and it has the same calling convention as other functions.You can call the
trap functions from your C or C++ application.

Note that you can also make the compiler generate the TRAPA instruction by using the
intrinsic function __TRAPA. In comparison with functions declared with the extended
keyword __trap, a __TRAPA call:

● Will not save any registers
● Cannot pass any parameters to the trap function
● Cannot receive a return value.

The intrinsic function is primarily intended for special debug functions written in
assembler.

Syntax

Follows the generic syntax rules for type attributes that can be used on functions, see
Type attributes, page 199.

Example

#pragma vector=2
__trap int my_trap_function(void);

See also

For additional information, see __TRAPA, page 242, Calling convention, page 89 and
Trap functions, page 27.
CH8-1

Part 2. Compiler reference 213

214

Descriptions of extended keywords
__vector_call Allows functions to be called via the vector area.

By default, any function you write will be called as a normal subroutine via a direct
function call. However, a __vector_call declared function will instead be called
indirectly via the vector area, which means the addressing mode @@aa:8 is used.

A call using the @@aa:8 addressing mode is only 2 bytes in size, compared to 4 bytes
for a normal function call using the @aa:24 addressing mode.

Syntax

Follows the generic syntax rules for type attributes that can be used on functions, see
Type attributes, page 199.

See also

For more details, see Function vectors for non-interrupt functions, page 44
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Pragma directives
This chapter describes the pragma directives of the H8 IAR C/C++ Compiler.

The #pragma directive is defined by the ISO/ANSI C standard and is a
mechanism for using vendor-specific extensions in a controlled way to make
sure that the source code is still portable.

The pragma directives control the behavior of the compiler, for example how
it allocates memory for variables and functions, whether it allows extended
keywords, and whether it outputs warning messages.

The pragma directives are always enabled in the compiler.

Summary of pragma directives
The following table shows the pragma directives of the compiler:

Pragma directive Description

#pragma

basic_template_matching

Makes a template function fully memory-aware

#pragma bitfields Controls the order of bitfield members

#pragma constseg Places constant variables in a named segment

#pragma data_alignment Gives a variable a higher (more strict) alignment

#pragma dataseg Places variables in a named segment

#pragma diag_default Changes the severity level of diagnostic messages

#pragma diag_error Changes the severity level of diagnostic messages

#pragma diag_remark Changes the severity level of diagnostic messages

#pragma diag_suppress Suppresses diagnostic messages

#pragma diag_warning Changes the severity level of diagnostic messages

#pragma include_alias Specifies an alias for an include file

#pragma inline Inlines a function

#pragma language Controls the IAR language extensions

#pragma location Specifies the absolute address of a variable

#pragma message Prints a message

Table 44: Pragma directives summary
CH8-1

Part 2. Compiler reference 215

216

Descriptions of pragma directives
Note: For portability reasons, some old-style pragma directives are recognized but will
give a diagnostic message. It is important to be aware of this if you need to port existing
code that contains any of those pragma directives. For additional information, see the
H8 IAR Embedded Workbench® Migration Guide.

Descriptions of pragma directives
This section gives detailed information about each pragma directive.

All pragma directives using = for value assignment should be entered like:

#pragma pragmaname=pragmavalue

or

#pragma pragmaname = pragmavalue

 #pragma basic_template_matching #pragma basic_template_matching

Use this pragma directive in front of a template function declaration to make the
function fully memory-aware, in the rare cases where this is useful. That template
function will then match the template without the modifications described in Templates
and data memory attributes, page 110.

Example

#pragma basic_template_matching
template<typename T> void fun(T *);

fun((int __data8 *) 0); // T = int __data8

#pragma object_attribute Changes the definition of a variable or a function

#pragma optimize Specifies type and level of optimization

#pragma pack Specifies the alignment of structures and union members

#pragma required Ensures that a symbol which is needed by another symbol is
present in the linked output

#pragma rtmodel Adds a runtime model attribute to the module

#pragma segment Declares a segment name to be used by intrinsic functions

#pragma type_attribute Changes the declaration and definitions of a variable or
function

#pragma vector Specifies the vector of an interrupt or trap function

Pragma directive Description

Table 44: Pragma directives summary (Continued)
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Pragma directives
#pragma bitfields #pragma bitfields={reversed|default}

The #pragma bitfields directive controls the order of bitfield members.

By default, the H8 IAR C/C++ Compiler places bitfield members from the least
significant bit to the most significant bit in the container type. Use the
#pragma bitfields=reversed directive to place the bitfield members from the
most significant to the least significant bit. This setting remains active until you turn it
off again with the #pragma bitfields=default directive.

#pragma constseg The #pragma constseg directive places constant variables in a named segment. Use
the following syntax:

#pragma constseg=MY_CONSTANTS
const int factorySettings[] = {42, 15, -128, 0};
#pragma constseg=default

The segment name cannot be a predefined segment; see the chapter Segment reference
for more information.

The memory in which the segment resides is optionally specified using the following
syntax:

#pragma constseg=__data16 MyOtherSeg

All constants defined following this directive will be placed in the segment
MyOtherSeg and accessed using data16 addressing. Note that data objects declared
without the const keyword are not affected by this pragma directive.

 #pragma data_alignment #pragma data_alignment=expression

Use this pragma directive to give a variable a higher (more strict) alignment than it
would otherwise have. It can be used on variables with static and automatic storage
duration.

The value of the constant expression must be a power of two (1, 2, 4, etc.).

When you use #pragma data_alignment on variables with automatic storage
duration, there is an upper limit on the allowed alignment for each function, determined
by the calling convention used.
CH8-1

Part 2. Compiler reference 217

218

Descriptions of pragma directives
#pragma dataseg The #pragma dataseg directive places variables in a named segment. Use the
following syntax:

#pragma dataseg=MY_SEGMENT
__no_init char myBuffer[1000];
#pragma dataseg=default

The segment name cannot be a predefined segment, see the chapter Segment reference
for more information. The variable myBuffer will not be initialized at startup, and can
for this reason not have any initializer.

The memory in which the segment resides is optionally specified using the following
syntax:

#pragma dataseg=__data16 MyOtherSeg

All variables in MyOtherSeg will be accessed using data16 addressing.

#pragma diag_default #pragma diag_default=tag,tag,...

Changes the severity level back to default, or as defined on the command line for the
diagnostic messages with the specified tags. For example:

#pragma diag_default=Pe117

See Diagnostics, page 139 for more information about diagnostic messages.

#pragma diag_error #pragma diag_error=tag,tag,...

Changes the severity level to error for the specified diagnostics. For example:

#pragma diag_error=Pe117

See Diagnostics, page 139 for more information about diagnostic messages.

#pragma diag_remark #pragma diag_remark=tag,tag,...

Changes the severity level to remark for the specified diagnostics. For example:

#pragma diag_remark=Pe177

See Diagnostics, page 139 for more information about diagnostic messages.

#pragma diag_suppress #pragma diag_suppress=tag,tag,...

Suppresses the diagnostic messages with the specified tags. For example:

#pragma diag_suppress=Pe117,Pe177
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Pragma directives
See Diagnostics, page 139 for more information about diagnostic messages.

#pragma diag_warning #pragma diag_warning=tag,tag,...

Changes the severity level to warning for the specified diagnostics. For example:

#pragma diag_warning=Pe826

See Diagnostics, page 139 for more information about diagnostic messages.

#pragma include_alias #pragma include_alias "orig_header" "subst_header"

#pragma include_alias <orig_header> <subst_header>

The #pragma include_alias directive makes it possible to provide an alias for a
header file. This is useful for substituting one header file with another, and for
specifying an absolute path to a relative file.

The parameter subst_header is used for specifying an alias for orig_header. This
pragma directive must appear before the corresponding #include directives and
subst_header must match its corresponding #include directive exactly.

Example

#pragma include_alias <stdio.h> <C:\MyHeaders\stdio.h>
#include <stdio.h>

This example will substitute the relative file stdio.h with a counterpart located
according to the specified path.

#pragma inline #pragma inline[=forced]

The #pragma inline directive advises the compiler that the function whose
declaration follows immediately after the directive should be inlined—that is, expanded
into the body of the calling function. Whether the inlining actually takes place is subject
to the compiler’s heuristics.

This is similar to the C++ keyword inline, but has the advantage of being available in
C code.

Specifying #pragma inline=forced disables the compiler’s heuristics and forces the
inlining. If the inlining fails for some reason, for example if it cannot be used with the
function type in question (like printf), an error message is emitted.
CH8-1

Part 2. Compiler reference 219

220

Descriptions of pragma directives
#pragma language #pragma language={extended|default}

The #pragma language directive is used for turning on the IAR language extensions
or for using the language settings specified on the command line:

#pragma location #pragma location=address

The #pragma location directive specifies the location—the absolute address—of the
variable whose declaration follows the pragma directive. For example:

#pragma location=0xFF2000
char PORT1; /* PORT1 is located at address 0xFF2000 */

The directive can also take a string specifying the segment placement for either a
variable or a function, for example:

#pragma location="foo"

For additional information and examples, see Located data, page 43.

#pragma message #pragma message(message)

Makes the compiler print a message on stdout when the file is compiled. For example:

#ifdef TESTING
#pragma message("Testing")
#endif

#pragma object_attribute #pragma object_attribute=keyword

The #pragma object_attribute directive affects the definition of the identifier that
follows immediately after the directive. The object is modified, not its type.

The following keyword can be used with #pragma object_attribute for a variable:

The following keyword can be used with #pragma object_attribute for a function:

extended Turns on the IAR language extensions and turns off the
--strict_ansi command line option.

default Uses the settings specified on the command line.

__no_init Suppresses initialization of a variable at startup.

__noreturn Informs the compiler that the function will not return.

__raw Prevents saving used registers in interrupt functions.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Pragma directives
The following keyword can be used with #pragma object_attribute for a function
or variable:

Example

In the following example, the variable bar is placed in the non-initialized segment:

#pragma object_attribute=__no_init
char bar;

Unlike the directive #pragma type_attribute that specifies the storing and accessing
of a variable, it is not necessary to specify an object attribute in declarations. The
following example declares bar without a #pragma object_attribute:

__no_init char bar;

#pragma optimize #pragma optimize=token_1 token_2 token_3

where token_n is one of the following:

The #pragma optimize directive is used for decreasing the optimization level, or for
turning off some specific optimizations. This pragma directive only affects the function
that follows immediately after the directive.

Note that it is not possible to optimize for speed and size at the same time. Only one of
the s and z tokens can be used. It is also not possible to use macros embedded in this
pragma directive. Any such macro will not get expanded by the preprocessor.

__task Allows functions to exit without restoring registers.

__root Ensures that a function or data object is included in the linked
application, even if it is not referenced.

s Optimizes for speed

z Optimizes for size

2|none|3|low|6|medium|9|high Specifies the level of optimization

no_code_motion Turns off code motion

no_cse Turns off common subexpression elimination

no_inline Turns off function inlining

no_tbaa Turns off type-based alias analysis

no_unroll Turns off loop unrolling
CH8-1

Part 2. Compiler reference 221

222

Descriptions of pragma directives
Note: If you use the #pragma optimize directive to specify an optimization level that
is higher than the optimization level you specify using a compiler option, the pragma
directive is ignored.

Example

#pragma optimize=s 9
int small_and_used_often()
{
 ...
}

#pragma optimize=z 9
int big_and_seldom_used()
{
 ...
}

#pragma pack #pragma pack([[{push|pop},][name,]][n])

The #pragma pack directive is used for specifying the alignment of structures and
union members.

pack(n) sets the structure alignment to n. The pack(n) only affects declarations of
structures following the pragma directive and to the next #pragma pack or end of file.

pack() resets the structure alignment to default.

pack(push [,name] [,n]) pushes the current alignment with the label name and sets
alignment to n. Note that both name and n are optional.

pack(pop [,name] [,n]) pops to the label name and sets alignment to n. Note that
both name and n are optional.

If name is omitted, only top alignment is removed. If n is omitted, alignment is set to the
value popped from the stack.

Note that accessing an object that is not aligned at its correct alignment requires code
that is both larger and slower than the code needed to access the same kind of object
when aligned correctly. If there are many accesses to such fields in the program, it is
usually better to construct the correct values in a struct that is not packed, and access this
instead.

n Packing alignment, one of: 1, 2, 4, 8, or 16

name Pushed or popped alignment label
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Pragma directives
Also, special care is needed when creating and using pointers to misaligned fields. For
direct access to such fields in a packed struct, the compiler will emit the correct (slower
and larger) code when needed. However, when such a field is accessed through a pointer
to the field, the normal (smaller and faster) code for accessing the type of the field is
used, which will, in the general case, not work.

Example 1

This example declares a structure without using the #pragma pack directive:

struct First
{
 char alpha;
 short beta;
};

In this example, the structure First is not packed and has the following memory layout:

Note that one pad byte has been added.

Example 2

This example declares a similar structure using the #pragma pack directive:

#pragma pack(1)

struct FirstPacked
{
 char alpha;
 short beta;
};

#pragma pack()

In this example, the structure FirstPacked is packed and has the following memory
layout:

alpha beta

1 byte 2 bytes1 byte

alpha beta

1 byte 2 bytes
CH8-1

Part 2. Compiler reference 223

224

Descriptions of pragma directives
Example 3

This example declares a new structure, Second, that contains the structure
FirstPacked declared in the previous example. The declaration of Second is not
placed inside a #pragma pack block:

struct Second
{
 struct FirstPacked first;
 short gamma;
};

The following memory layout is used:

Note that the structure FirstPacked will use the memory layout, size, and alignment
described in example 2. The alignment of the member gamma is 2, which means that
alignment of the structure Second will become 2 and one pad byte will be be added.

#pragma required #pragma required=symbol

Use the #pragma required directive to ensure that a symbol which is needed by
another symbol is present in the linked output. The symbol can be any statically linked
function or variable, and the pragma directive must be placed immediately before a
symbol definition.

Use the directive if the requirement for a symbol is not otherwise visible in the
application, for example if a variable is only referenced indirectly through the segment
it resides in.

Example

void * const myvar_entry @ "MYSEG" = &myvar;
...
#pragma required=myvar_entry
long myvar;

first.alpha first.beta

1 byte 2 bytes 1 byte 2 bytes

gamma
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Pragma directives
#pragma rtmodel #pragma rtmodel="key","value"

Use the #pragma rtmodel directive to add a runtime model attribute to a module. Use
a text string to specify key and value.

This pragma directive is useful to enforce consistency between modules. All modules
that are linked together and define the same runtime attribute key must have the same
value for the corresponding key value, or the special value *. Using the special value *
is equivalent to not defining the attribute at all. It can, however, be useful to state
explicitly that the module can handle any runtime model.

A module can have several runtime model definitions.

Note: The predefined compiler runtime model attributes start with a double underscore.
In order to avoid confusion, this style must not be used in the user-defined attributes.

Example

#pragma rtmodel="I2C","ENABLED"

The linker will generate an error if a module that contains this definition is linked with
a module that does not have the corresponding runtime model attributes defined.

For more information about and examples of using runtime model attributes and module
consistency, see Checking module consistency, page 77.

#pragma segment #pragma segment="segment" [memattr] [align]

The #pragma segment directive declares a segment name that can be used by the
operators __segment_begin and __segment_end. All segment declarations for a
specific segment must have the same memory type attribute and alignment.

The optional memory attribute memattr will be used in the return type of the operator.
The optional parameter align can be specified to align the segment part. The value
must be a constant integer expression to the power of two.

Example

#pragma segment="MYSEG" __data16 4

See also Dedicated segment operators __segment_begin and __segment_end, page 189.

For more information about segments and segment parts, see the chapter Placing code
and data.
CH8-1

Part 2. Compiler reference 225

226

Descriptions of pragma directives
#pragma type_attribute #pragma type_attribute=keyword

The #pragma type_attribute directive can be used for specifying IAR-specific type
attributes, which are not part of the ISO/ANSI C language standard. Note however, that
a given type attribute may not be applicable to all kind of objects. For a list of all
supported type attributes, see Type qualifiers, page 183.

The #pragma type_attribute directive affects the declaration of the identifier, the
next variable, or the next function that follows immediately after the pragma directive.

Example

In the following example, even though IAR-specific type attributes are used, the
application can still be compiled by a different compiler. First, a typedef is declared;
a char object with the memory attribute __data8 is defined as MyCharInData8. Then
a pointer is declared; the pointer is located in data16 memory and it points to a char
object that is located in data8 memory.

#pragma type_attribute=__data8
typedef char MyCharInData8;
#pragma type_attribute=__data16
MyCharInData8 * ptr;

The following declarations, which use extended keywords, are equivalent. See the
chapter Extended keywords for more details.

char __data8 * __data16 ptr;

#pragma vector #pragma vector=vector1[, vector2, vector3, ...]

The #pragma vector directive specifies the vector(s) of an interrupt or trap function
whose declaration follows the pragma directive.

Example

#pragma vector=0x14
__interrupt void my_handler(void);
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Intrinsic functions
This chapter gives reference information about the intrinsic functions.

The intrinsic functions provide direct access to low-level processor operations
and can be very useful in, for example, time-critical routines. The intrinsic
functions compile into inline code, either as a single instruction or as a short
sequence of instructions.

Summary of intrinsic functions
The following table summarizes the intrinsic functions:

Intrinsic function Description

__and_ccr Performs a logical AND between the contents of CCR
and a parameter; the result is stored in CCR

__and_exr Performs a logical AND between the contents of EXR
and a parameter; the result is stored in EXR

__bcd_add_char Returns the sum of two parameters represented as a
two-digit BCD number

__bcd_add_short Returns the sum of two parameters represented as a
four-digit BCD number

__bcd_subtract_char Returns the difference between two parameters
represented as a two-digit BCD number

__bcd_subtract_short Returns the difference between two parameters
represented as a four-digit BCD number

__dadd Adds the BCD array parameters and stores the result
in memory

__disable_interrupt Disables interrupts

__do_byte_eepmov Inserts an EEPMOV.B instruction

__do_word_eepmov Inserts an EEPMOV.W instruction

__dsub Subtracts two BCD array parameters and stores the
result in memory

__eepmov Inserts an EEPMOV.B instruction or a loop using the
EEPMOV.W instruction

Table 45: Intrinsic functions summary
CH8-1

Part 2. Compiler reference 227

228

Summary of intrinsic functions
__eepmovi Inserts one or two EEPMOV.B instructions or a loop
using the EEPMOV.W instruction

__enable_interrupt Enables interrupts

__get_imask_ccr Returns the value of the CCR I bit

__get_imask_exr Returns the value of the EXR I2–I0 bits

__get_interrupt_state Returns the interrupt state

__mac Performs multiply and accumulate

__macl Performs multiply and accumulate with a mask

__MOVFPE Reads data using the MOVFPE instruction

__MOVTPE Writes data using the MOVTPE instruction

__no_operation Generates a NOP instruction

__or_ccr Performs a logical OR between the contents of CCR
and parameter; the result is stored in CCR

__or_exr Performs a logical OR between the contents of EXR
and parameter; the result is stored in EXR

__read_ccr Returns the value of the CCR register

__read_exr Returns the value of the EXR register

__rotlc Rotates a value to the left

__rotlw Rotates a value to the left

__rotll Rotates a value to the left

__rotrc Rotates a value to the right

__rotrw Rotates a value to the right

__rotrl Rotates a value to the right

__set_imask_ccr Sets the I bit in the CCR register

__set_imask_exr Sets the I2–I0 bits in the EXR register

__set_interrupt_mask Sets the interrupt control bits in the CCR register

__set_interrupt_state Restores the interrupt state

__sleep Enters sleep mode; inserts a SLEEP instruction

__TAS Inserts a TAS instruction

__TRAPA Inserts a TRAPA instruction

__write_ccr Sets CCR to a specific value

__write_exr Sets EXR to a specific value

Intrinsic function Description

Table 45: Intrinsic functions summary (Continued)
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Intrinsic functions
To use intrinsic functions in an application, include the header file intrinsics.h.

Note that the intrinsic function names start with double underscores, for example:

__segment_begin

Also note that some of the intrinsic functions are only available under certain
circumstances. Specifically, intrinsic functions operating on the EXR register are only
available for the H8S core. Intrinsic functions operating on the MAC register are only
available for devices with a MAC register.

Descriptions of intrinsic functions
The following section gives reference information about each intrinsic function.

__and_ccr void __and_ccr(unsigned char);

Performs a logical AND between the contents of the condition code register CCR and the
parameter; the result is stored in CCR. The parameter must be a constant value.

Example

__and_ccr(0xEF); /* Clear the U bit */

__and_exr void __and_exr(unsigned char);

Performs a logical AND between the contents of the extended control register EXR and
the parameter; the result is stored in EXR. The parameter must be a constant value.

Note: This intrinsic function is only available for the H8S core.

Example

__and_exr(0x7F); /* Clear the T bit */

__xor_ccr Performs a logical XOR between the contents of CCR
and a parameter; the result is stored in CCR

__xor_exr Performs a logical XOR between the contents of EXR
and a parameter; the result is stored in EXR

Intrinsic function Description

Table 45: Intrinsic functions summary (Continued)
CH8-1

Part 2. Compiler reference 229

230

Descriptions of intrinsic functions
__bcd_add_char unsigned char __bcd_add_char(unsigned char x, unsigned char y);

Returns the sum of the two parameters. The parameters and the return value are
represented as two-digit binary coded decimal (BCD) numbers.

Example

c = __bcd_add_char(c, 0x09); /* Add decimal 9 to c */

__bcd_add_short unsigned short __bcd_add_short(unsigned short x,

 unsigned short y);

Returns the sum of the two parameters. The return value is represented as a four-digit
binary coded decimal (BCD) number.

Example

s = __bcd_add_short(s, 0x0199); /* Add decimal 199 to s */

__bcd_subtract_char unsigned char __bcd_subtract_char(unsigned char x,

 unsigned char y);

Returns the difference between the two parameters, where the operations is x - y. The
parameters and the return value are represented as two-digit binary coded decimal
(BCD) numbers.

Example

c = __bcd_subtract_char(c, 0x09); /* Subtract decimal 9
 from c */

__bcd_subtract_short unsigned short __bcd_subtract_short(unsigned short x,

 unsigned short y);

Returns the difference between the two parameters, where the operation is x - y. The
parameters and the return value are represented as four-digit binary coded decimal
(BCD) numbers.

Example

s = __bcd_subtract_short(s, 0x0199); /* Subtract decimal 199
 from s */
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Intrinsic functions
__dadd void __dadd(unsigned char size, const void * ptr1,

 const void * ptr2, void * res);

Adds two large binary numbers indicated by the parameters ptr1 and ptr2. The result
is stored in memory indicated by the parameter res.

The numbers are stored as character arrays, where each character contains two binary
coded decimal (BCD) digits. The size parameter denotes the number of characters in
the arrays (the array size), implying that the number of BCD digits is size * 2.

The BCD numbers are stored with the most significant byte at the lowest address (in the
first array entry).

Example

char bcd_num_1[10];
char bcd_num_2[10];
char bcd_result[10];

__dadd(10, /* Perform bcd_num_1 + bcd_num_2 */
 bcd_num_1,
 bcd_num_2,
 bcd_result);

 __disable_interrupt void __disable_interrupt(void);

The code generated to disable interrupts depends on the interrupt mode you have
specified with the command line option --interrupt_mode.

Note that it is vital that you specify the interrupt mode you are using, when you use this
intrinsic function. If you specify an incorrect interrupt mode, the generated code will not
work correctly in your application. For more information about specifying the interrupt
mode, see --interrupt_mode, page 159.

Example

__disable_interrupt(); /* Disable interrupts */

__do_byte_eepmov void __do_byte_eepmov(const void * src, void * dst,

 unsigned char count);

Inserts one EEPMOV.B instruction to transfer up to 255 bytes of data from the memory
indicated by src to the memory indicated by dst. Note that interrupts are disabled
during the transfer, including the NMI interrupt.
CH8-1

Part 2. Compiler reference 231

232

Descriptions of intrinsic functions
In contrast to EEPMOV.B instructions generated automatically by the compiler, this
intrinsic function does not consider the value specified by the command line option
--max_cycles_no_interrupt. Even if the option specifies that a maximum of 100
cycles may pass with interrupts disabled, you can specify a transfer count, when using
this intrinsic function, that causes interrupts to be disabled for a longer period.

Note that the order of the parameters src and dst differs between
__do_byte/word_eepmov and __eepmov/eepmovi.

Example

__do_byte_eepmov(buf1, buf2, 100}; /* Move 100 bytes from buf1
 to buf2 */

__do_word_eepmov void __do_word_eepmov(const void * src, void * dst,

 unsigned short count);

Inserts a program loop using an EEPMOV.W instruction to transfer up to 65535 byte of
data from the memory indicated by src to the memory indicated by dst. Note that in
contrast to __do_byte_eepmov, the NMI interrupt is enabled during the transfer.

In contrast to EEPMOV.W instructions generated automatically by the compiler, the
intrinsic function does not consider the value specified by the command line option
--max_cycles_no_interrupt. Even if the option specifies that a maximum of 100
cycles may pass with interrupts disabled, you can specify a transfer count, when using
this intrinsic function, that causes interrupts to be disabled for a longer period.

Note that the order of the parameters src and dst differs between
__do_byte/word_eepmov and __eepmov/eepmovi.

Example

__do_word_eepmov(buf1, buf2, 10000}; /* Move 10000 bytes from
 buf1 to buf2 */

__dsub void __dsub(unsigned char size, const void * ptr1,

 const void * ptr2, void * res);

Subtracts two large numbers indicated by the parameters ptr1 and ptr2, where the
operation is ptr1 - ptr2. The result is stored in memory indicated by the parameter
res.

The numbers are stored as character arrays, where each character contains two binary
coded decimal (BCD) digits. The size parameter denotes the numbers of characters in
the arrays (the array size), implying that the number of BCD digits is size * 2.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Intrinsic functions
The BCD numbers are stored with the most significant byte at the lowest address (in the
first array entry).

Example

char bcd_num_1[10];
char bcd_num_2[10];
char bcd_result[10];

__dsub(10, /* Perform bcd_num_1 - bcd_num_2 */
 bcd_num_1,
 bcd_num_2,
 bcd_result);

__eepmov void __eepmov(void * dst, const void * src,

 unsigned short count);

Inserts code to transfer data from the memory indicated by src to the memory indicated
by dst. The parameter count must be a constant value in the range 0–65535. If the
value is 255 or less, the compiler inserts one EEPMOV.B instruction to transfer data. If
the value is above 255, the compiler inserts a loop using an EEPMOV.W instruction to
transfer data.

Note that interrupts are disabled during the transfer. If count is larger than 255, which
means an EEPMOV.W instruction is used, NMI interrupts are accepted during the transfer.

In contrast to EEPMOV.B and EEPMOV.W instructions generated automatically by the
compiler, this intrinsic function does not consider the valued specified by the command
line option --max_cycles_no_interrupt. Even if the option specifies that a
maximum of 100 cycles may pass with interrupts disabled, you can specify a transfer
count, when using this intrinsic function, that causes interrupts to be disabled for a
longer period.

Note that the order of the parameters src and dst differs between
__do_byte/word_eepmov and __eepmov/eepmovi.

Example

__eepmov(buf2, buf1, 100}; /* Move 100 bytes from buf1 to
 buf2 using EEPMOV.B */

__eepmov(buf2, buf1, 1000}; /* Move 1000 bytes from buf1 to
 buf2 using EEPMOV.W */
CH8-1

Part 2. Compiler reference 233

234

Descriptions of intrinsic functions
__eepmovi void __eepmovi(void * dst, const void * src,

 unsigned short count);

Inserts code to transfer data from the memory indicated by src to the memory indicated
by dst. The argument count may be a constant value in the range 0–65535. If the value
is 255 or less, the compiler will insert one EEPMOV.B instruction to transfer data. If the
value is above 255, but 510 or less, the compiler will insert two EEPMOV.B instructions
to transfer data. If the value is above 510, the compiler will insert a loop using an
EEPMOV.W instruction to transfer data.

If the parameter count is a variable, the compiler will insert a loop using an EEPMOV.W
instruction to transfer data.

Note that interrupts are disabled during the transfer. If the parameter count is a variable
or constant larger than 510, which means an EEPMOV.W instruction is used, NMI
interrupts will be accepted during the transfer. For constant values in the range 256 to
510, interrupts are accepted between the two EEPMOV.B instructions.

In contrast to EEPMOV.B and EEPMOV.W instructions generated automatically by the
compiler, this intrinsic function does not consider the value specified by the command
line option --max_cycles_no_interrupt. Even if the option specifies that a
maximum of 100 cycles may pass with interrupts disabled, you can specify a transfer
count, when using this intrinsic function, that causes interrupts to be disabled for a
longer period.

Note that the order of the parameters src and dst differs between
__do_byte/word_eepmov and __eepmov/eepmovi.

Example

__eepmovi(buf2, buf1, 100}; /* Move 100 bytes from buf1 to
 buf2 using EEPMOV.B */

__eepmovi(buf2, buf1, 400}; /* Move 400 bytes from buf1 to
 buf2 using two EEPMOV.B */

__eepmovi(buf2, buf1, 1000}; /* Move 1000 bytes from buf1 to
 buf2 using EEPMOV.W */

__eepmovi(buf2, buf1, x}; /* Move x bytes from buf1 to
 buf2 using EEPMOV.W */
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Intrinsic functions
__enable_interrupt void __enable_interrupt(void);

The code generated to enable interrupts depends on the interrupt mode you have
specified with the command line option --interrupt_mode.

When you use this intrinsic function, it is vital that you specify the interrupt mode in use.
If you specify an incorrect interrupt mode, the generated code will not work correctly in
your application. For more information about specifying the interrupt mode, see
--interrupt_mode, page 159.

Example

__enable_interrupt(); /* Enable interrupts */

__get_imask_ccr unsigned char __get_imask_ccr(void);

Returns the value (0 or 1) of the I bit in the condition code register CCR.

Example

c = __get_imask_ccr(); /* Read I bit value (0 or 1) */

__get_imask_exr unsigned char __get_imask_exr(void);

Returns the values (0 to 7) of the I2–10 bits in the extended control register EXR.

Note: This intrinsic function is only available for H8S.

Example

c = __get_imask_exr(); /* Read I2–I0 bits value (0 to 7) */

__get_interrupt_state __istate_t __get_interrupt_state(void);

Returns the global interrupt state. The return type __istate_t has the following
definition:

typedef unsigned short __istate_t;

The value of the CCR register is saved in the low byte of the short integer. If you compile
for the H8S core, the EXR register is saved in the high byte.

The return value can be used as a parameter for the __set_interrupt_state
function, which will restore the interrupt state.
CH8-1

Part 2. Compiler reference 235

236

Descriptions of intrinsic functions
Example

state = __get_interrupt_state(); /* Save interrupt state */

__mac long __mac(long val, const short * ptr1, const short * ptr2,

 unsigned long count);

Performs a series of multiply and accumulate instructions and returns the sum.

The MACL register is initialized with val, and the MACH register is cleared. Then, the two
signed short integer vectors pointed to by ptr1 and ptr2 are multiplied and
accumulated. Each pair of entries (one from vector ptr1 and one from ptr2) is
multiplied with signed multiplication, and the 32-bit result from each multiplication is
added to the contents of the MACL and MACH registers. This procedure is repeated count
times, in other words, count holds the number of values in the vectors. The contents of
the MACL register after the operation is returned as the function value.

For more details about the MAC instruction, such as how to specify saturated or
non-saturated mode, see the H8S Programming Manual.

For more advanced operations, such as using the resulting value of the MACH register, or
using the value of the multiplier flags N-MULT, Z-MULT, or V-MULT, you should write
your own assembler routines. Note that the H8 IAR C/C++ Compiler supports the data
type long long (64 bits), which can be useful if you write a function that returns the
combined value from MACH and MACL.

Note: This intrinsic function is only available for H8S devices with MAC hardware.

Example

short vec1[16];
short vec2[16];

result = __mac(0, vec1, vec2, 16); /* Multiply/accumulate vec1
 and vec2 */

__macl long __macl(long val, const short * ptr1, const short * ptr2,

 unsigned long count, unsigned long mask);

Performs a series of multiply and accumulate instructions, and returns the sum.

For a general description of the operation of this intrinsic function, see __mac, page 236.
In addition, if a suitable value is set for mask, the __macl intrinsic function also handles
the vector pointed to by ptr2 as a ring buffer. In other words, that vector can be shorter
than the vector pointed to by ptr1. The first entries of the ptr2 vector are repeatedly
reused.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Intrinsic functions
To work correctly, you must carefully consider the mask value. It is recommended that
you set the value to the inverted value of the byte size of the vector pointed to by ptr2,
for example ~4 if the size of the vector is 4 bytes (two short integer entries).

You must also make sure that the vector pointed to by ptr2 is properly aligned. The
alignment must be twice as high as the size of the ring buffer, for example 8 if the size
of the vector pointed to by ptr2 is 4.

Example

The following example and the corresponding figure illustrates the operation of the
intrinsic function:

short vec1[8];
#pragma data_alignment=3 /* Align on 8-byte boundary */
short vec2[2]; /* Size is 4 bytes */

result = __macl(0, vec1, vec2, 8, ~4);
 /* Mask is the inverted value of the size of vec2 */:

Figure 3: Graphical view of __macl intrinsic function

Note: This intrinsic function is only available for H8S devices with MAC hardware.

vec1[0]

vec1[1]

vec1[2]

vec1[3]

vec1[4]

vec1[5]

vec1[6]

vec1[7]

*

*

*

*

*

*

*

*

vec2[0]

vec2[1]
CH8-1

Part 2. Compiler reference 237

238

Descriptions of intrinsic functions
__MOVFPE unsigned char __MOVFPE(const unsigned char __data16 *);

Reads data using the MOVFPE instruction. To meet the requirements of the MOVFPE
instruction, the address must be an absolute data16 address.

Example

c = __MOVFPE(&port); /* Read data from port using MOVFPE */

__MOVTPE void __MOVTPE(unsigned char, unsigned char __data16 *);

Writes data using the MOVTPE instruction. To meet the requirements of the MOVTPE
instruction, the address must be an absolute data16 address.

Example

__MOVTPE(c, &port); /* Write data to port using MOVTPE */

__no_operation void __no_operation(void);

Generates a NOP instruction.

Example

__no_operation(); /* Insert a NOP instruction */

__or_ccr void __or_ccr(unsigned char);

Performs a logical OR between the contents of the condition code register CCR and the
parameter; the result is stored in CCR. The parameter must be a constant value.

Example

__or_ccr(0x10); /* Set the U bit */

__or_exr void __or_exr(unsigned char);

Performs a logical OR between the contents of the extended control register EXR and the
parameter; the result is stored in EXR. The parameter must be a constant value.

Note: This intrinsic function is only available for H8S.

Example

__or_exr(0x80); /* Set the T bit */
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Intrinsic functions
__read_ccr unsigned char __read_ccr(void);

Returns the value of the condition code register CCR.

Example

c = __read_ccr(); /* Read contents of CCR */

__read_exr unsigned char __read_exr(void);

Returns the value of the extended control register EXR.

Note: This intrinsic function is only available for H8S.

Example

c = __read_exr(); /* Read contents of EXR */’

__rotlc unsigned char __rotlc(unsigned short count, unsigned char value)

Returns value after the argument has been rotated left count number of times.

__rotlw unsigned short __rotlw(unsigned short count, unsigned short

 value)

Returns value after the argument has been rotated left count number of times.

__rotll unsigned long __rotll(unsigned short count, unsigned long value)

Returns value after the argument has been rotated left count number of times.

__rotrc unsigned char __rotrc(unsigned short count, unsigned char value)

Returns value after the argument has been rotated right count number of times.

__rotrw unsigned short __rotrw(unsigned short count, unsigned short

 value)

Returns value after the argument has been rotated right count number of times.
CH8-1

Part 2. Compiler reference 239

240

Descriptions of intrinsic functions
__rotrl unsigned long __rotrl(unsigned short count, unsigned long value)

Returns value after the argument has been rotated right count number of times.

__set_imask_ccr void __set_imask_ccr(unsigned char);

Sets or clears the interrupt mask bit I in the condition code register CCR. The function
takes a parameter, which must be a constant value representing the bit mask, where:

Example

__set_imask_ccr(0); /* Clear I bit in CCR */

__set_imask_exr void __set_imask_exr(unsigned char);

Sets or clears the interrupt mask bits I2 to I0 in the extended control register EXR. The
function takes a parameter, which must be a constant value representing the bit mask.

The bits I2 to I0 in the EXR register are treated like a 3-bit bitfield, that can take the
value 0 to 7. For example, if you specify the parameter value 3, binary 011, bit I2 will
be cleared, and I1 and I0 will be set.

Note: This intrinsic function is only available for H8S.

Example

__set_imask_exr(7); /* Set highest interrupt level in I2–I0 in
 EXR */

__set_interrupt_mask void __set_interrupt_mask(unsigned char);

Sets or clears the interrupt control bits I and UI in the condition code register CCR. The
function takes a parameter, which must be a constant value representing the bit mask,
where:

0 Clears the I bit

1 Sets the I bit

0 Clears the I and UI bits

1 Clears the I bit and sets the UI bit

2 Sets the I bit and clears the UI bit
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Intrinsic functions
Example

__set_interrupt_mask(3); /* Set both I and UI bits in CCR */

__set_interrupt_state void __set_interrupt_state(__istate_t);

Restores the interrupt state by setting the value returned by the
__get_interrupt_state function.

The contents of the CCR register is always restored. If you compile for the H8S core, the
EXR register is also restored.

For information about the __istate_t type, see __get_interrupt_state, page 235.

Example

__set_interrupt_state(state); /* Restore interrupt state */

__sleep void __sleep(void);

Inserts a SLEEP instruction.

Example

__sleep(); /* Enter power-down mode */

__TAS bool __TAS(unsigned char * addr);

Inserts the test-and-set TAS instruction.

The function reads the old value of the variable pointed to by addr, and in the same
instruction also sets bit 7 of that variable. The old value of bit 7 in the variable is
returned; true if bit 7 is set and false if bit 7 is cleared.

This intrinsic function is primarily intended for semaphore handling. If you use a normal
instruction sequence (read old value, set new value), an interrupt routine might execute
between the read of the old value and the assignment of a new value. If the interrupt
modifies the value, the test of the old value will be incorrect at the interrupt function exit.
To make the test and set an atomic operation, use the __TAS intrinsic function.

Note: This intrinsic function is only available for H8S.

3 Sets the I and UI bits
CH8-1

Part 2. Compiler reference 241

242

Descriptions of intrinsic functions
Example

while (!__TAS(&semaphore)); /* Test and set semaphore */
 delay(); /* If not free, wait and retry */

__TRAPA void __TRAPA(unsigned char);

Inserts a TRAPA instruction. The parameter specifies the trap number, which can have
the values 0–3.

Note the difference between declaring a function with the extended keyword __trap,
and using this intrinsic function.

When you declare a function with the keyword __trap, the function can be called in
the same way as any other function, including providing parameters and using a return
value. The only difference to a normal function is that the TRAPA instruction is used for
calling the function, and that the function executes while interrupts are disabled.

However, if you use the __TRAPA intrinsic function, the compiler does not perform the
normal procedures at function calls:

● It does not generate code to save non-scratch registers
● It does not accept parameters to the trap function
● It does not handle a return value from the trap function
● It assumes that all registers preserve their values, except for the condition code

register CCR.

This means that you cannot write the trap function in C, if you intend to call it with the
__TRAPA intrinsic function. In that case, you have to write it in assembler and make sure
that the trap function does not destroy any registers except for the CCR register.

The advantage using the __TRAPA intrinsic function is that there is no extra overhead
involved; the only extra code generated by the compiler is the TRAPA instruction.

Example

__TRAPA(2); /* Call trap function with vector 2 */

__write_ccr void __write_ccr(unsigned char);

Sets the condition code register CCR to a specific value.

Example

__write_ccr(0); /* Clear entire CCR */
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Intrinsic functions
__write_exr void __write_exr(unsigned char);

Sets the extended control register EXR to a specific value.

Note: This intrinsic function is only available for H8S.

Example

__write_exr(0); /* Clear entire EXR (T and I2–I0) */

__xor_ccr void __xor_ccr(unsigned char);

Performs a logical XOR between the contents of the condition code register CCR and the
parameter; the result is stored in CCR. The parameter must be a constant value.

Example

__xor_ccr(0x10); /* Toggle value of the U bit */

__xor_exr void __xor_exr(unsigned char);

Performs a logical XOR between the contents of the extended control register EXR and
the parameter; the result is stored in EXR. The parameter must be a constant value.

Note: This intrinsic function is only available for H8S.

Example

__xor_exr(0x80); /* Toggle value of the T bit */
CH8-1

Part 2. Compiler reference 243

244

Descriptions of intrinsic functions
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

The preprocessor
This chapter gives a brief overview of the preprocessor, including reference
information about the different preprocessor directives, symbols, and other
related information.

Overview of the preprocessor
The preprocessor of the H8 IAR C/C++ Compiler adheres to the ISO/ANSI standard.
The compiler also makes the following preprocessor-related features available to you:

● Predefined preprocessor symbols

These symbols allow you to inspect the compile-time environment, for example the
time and date of compilation. Some of the symbols take arguments and perform more
advanced operations than just inspecting the compile-time environment. For details,
see Predefined preprocessor symbols, page 246.

● User-defined preprocessor symbols

In addition to defining your own preprocessor symbols using the #define directive,
you can also use the option -D to define your own preprocessor symbols, see -D, page
150.

● Preprocessor extensions

There are several preprocessor extensions, for example many pragma directives; for
more information, see the chapter Pragma directives in this guide. For information
about other extensions related to the preprocessor, see Description of miscellaneous
preprocessor extensions, page 252.

● Preprocessor output

Use the option --preprocess to direct preprocessor output to a named file, see
--preprocess, page 168.

Some parts listed by the ISO/ANSI standard are implementation-defined, for example
the character set used in the preprocessor directives and inclusion of bracketed and
quoted filenames. To read more about this, see Preprocessing directives, page 288.
CH8-1

Part 2. Compiler reference 245

246

Predefined preprocessor symbols
Predefined preprocessor symbols
This section first summarizes all predefined symbols and then provides detailed
information about each symbol.

SUMMARY OF PREDEFINED SYMBOLS

The following table summarizes the predefined symbols:

Predefined symbol Identifies

__BASE_FILE__ Identifies the name of the file being compiled. If the file
is a header file, the name of the file that includes the
header file is identified

__BUILD_NUMBER__ A unique integer that identifies the build number of the
compiler currently in use

__CODE_COMPATIBILITY_CHECK__An integer that identifies whether strict runtime model
attribute control is made

__CODE_MODEL__ An integer that identifies the code model in use

__CORE__ An integer that identifies the chip core in use

__cplusplus Determines whether the compiler runs in C++ mode*

__DATA_MODEL__ An integer that identifies the data model in use

__DATE__ Determines the date of compilation*

__DIRECT_LIBRARY_CALLS__ An integer that identifies whether direct library calls
are made instead of vector calls

__DOUBLE_SIZE__ An integer that identifies which size is used for
double

__embedded_cplusplus Determines whether the compiler runs in C++ mode*

__FILE__ Identifies the name of the file being compiled*

__IAR_SYSTEMS_ICC__ Identifies the IAR compiler platform

__ICCH8__ Identifies the H8 IAR C/C++ Compiler

__INTERRUPT_MODE__ An integer that identifies the interrupt mode in use

__LINE__ Determines the current source line number*

__LITTLE_ENDIAN__ An integer that identifies the byte order in use

__MAC_ENABLED__ Identifies whether the MAC register is enabled

__MAX_CYCLES_NO_INTERRUPT__ Identifies the maximum number of cycles that
interrupts may be disabled

Table 46: Predefined symbols summary
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

The preprocessor
* This symbol is required by the ISO/ANSI standard.

DESCRIPTIONS OF PREDEFINED SYMBOLS

The following section gives reference information about each predefined symbol.

__BASE_FILE__ Use this symbol to identify which file is currently being compiled. This symbol expands
to the name of that file, unless the file is a header file. In that case, the name of the file
that includes the header file is identified.

See also, __FILE__, page 249.

__BUILD_NUMBER__ A unique integer that identifies the build number of the compiler currently in use.

The build number does not necessarily increase with a compiler that is released later.

__CODE_COMPATIBILITY_CHECK__ An integer that identifies whether strict runtime model attribute control is made.

The value of this symbol is defined to 1 when the --weak_rtmodel_check option is
not used, which means that specific values are generated for all runtime model
attributes.

__MODEL_XXX__ A constant value to identify the code and data model
in use

__OPERATING_MODE__ An integer that identifies the operating mode in use

__STACK_POINTER_SIZE__ An integer that identifies the maximum stack size that
can be used

__STDC__ Identifies ISO/ANSI Standard C*

__STDC_VERSION__ Identifies the version of ISO/ANSI Standard C in use*

__SUBVERSION__ An integer that identifies the version letter of the
version number, for example the C in 4.21C, as an
ASCII character

__TID__ Identifies the target processor of the IAR compiler in
use

__TIME__ Determines the time of compilation*

__VER__ Identifies the version number of the IAR compiler in
use

Predefined symbol Identifies

Table 46: Predefined symbols summary
CH8-1

Part 2. Compiler reference 247

248

Predefined preprocessor symbols
__CODE_MODEL__ An integer that identifies the code model in use.

This symbol reflects the setting of the --code_model option. The value of the symbol
is defined to __MODEL_SMALL__ (1) or __MODEL_LARGE__ (2) for the Small and Large
code models, respectively. These symbolic names can be used when testing the
__CODE_MODEL__ symbol.

__CORE__ An integer that identifies the chip core being used.

This symbol reflects the setting of the --core option. The value of the symbol is
defined to __CORE_H8300H__ (1) or __CORE_H8S__ (2) for the H8300H and H8S
cores, respectively. These symbolic names can be used when testing the __CORE__
symbol.

__cplusplus This predefined symbol expands to the number 199711L when the compiler runs in any
of the C++ modes. When the compiler runs in ISO/ANSI C mode, the symbol is
undefined.

This symbol can be used with #ifdef to detect whether the compiler accepts C++ code.
It is particularly useful when creating header files that are to be shared by C and C++
code.

__DATA_MODEL__ An integer that identifies the data model being used.

This symbol reflects the setting of the --data_model option. The value of the symbol
is defined to __MODEL_SMALL__ (1) and __MODEL_HUGE__ (3) for the Small and Huge
data models, respectively. These symbolic names can be used when testing the
__DATA_MODEL__ symbol.

__DATE__ Use this symbol to identify when the file was compiled. This symbol expands to the date
of compilation, which is returned in the form "Mmm dd yyyy", for example "Jan 30
2002".

__DIRECT_LIBRARY_CALLS__ An integer that identifies whether direct library calls are made instead of vector calls.

The value of this symbol is defined to 1 when the --direct_library_calls option
is used, which means that library functions are called directly instead of indirectly via
the vector area.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

The preprocessor
__DOUBLE_SIZE__ An integer that identifies the size of double being used.

This symbol reflects the setting of the --double option.The value of the symbol is
defined to 4 when the size of double is 32, and 8 when the size of double is 64.

__embedded_cplusplus This predefined symbol expands to the number 1 when the compiler runs in any of the
C++ modes. When the compiler runs in ISO/ANSI C mode, the symbol is undefined.

__FILE__ Use this symbol to identify which file is currently being compiled. This symbol expands
to the name of that file.

See also, __BASE_FILE__, page 247.

__IAR_SYSTEMS_ICC__ This predefined symbol expands to a number that identifies the IAR compiler platform.
The current identifier is 6. Note that the number could be higher in a future version of
the product.

This symbol can be tested with #ifdef to detect whether the code was compiled by a
compiler from IAR Systems.

__ICCH8__ This predefined symbol expands to the number 1 when the code is compiled with the H8
IAR C/C++ Compiler.

__INTERRUPT_MODE__ An integer that identifies the interrupt mode used.

This symbol reflects the setting of the --interrupt_mode option. The value of the
symbol is defined to __INTERRUPT_MODE_0__ (0), __INTERRUPT_MODE_1__ (1),
__INTERRUPT_MODE_2__ (2), or __INTERRUPT_MODE_3__ (3), for the different
interrupt modes, respectively. These symbolic names can be used when testing the
__INTERRUPT_MODE__ symbol.

__LINE__ This predefined symbol expands to the current line number of the file currently being
compiled.

__LITTLE_ENDIAN__ An integer that identifies the byte order of the microcomputer.

For the H8/300H and H8S microcomputer families, the value of this symbol is defined
to 0, which means that the byte order is big-endian.
CH8-1

Part 2. Compiler reference 249

250

Predefined preprocessor symbols
__MAC_ENABLED__ An integer that identifies if the MAC register is enabled.

The value of this symbol is defined to 1 when the --enable_mac option is used, which
means the MAC register is enabled for use by the compiler.

__MAX_CYCLES_NO_INTERRUPT__ An integer that identifies the maximum number of cycles interrupts may be disabled.

If you write a sequence of code where it is critical that interrupts are not disabled too
long, you may insert a test using this preprocessor symbol in your code.

The value of this symbol is defined to the value of the parameter specified when using
the --max_cycles_no_interrupt option.

If the command line option is not used, the value of this symbol is 0.

__MODEL_XXX__ An integer that identifies the code and data model in use.

The __MODEL_XXX__ symbols can be used as symbolic names when testing the
__CODE_MODEL__ and __DATA_MODEL__ symbols, which reflects the setting of the
--code_model and --data_model options, respectively. The value of the symbols are
defined to __MODEL_SMALL__ (1) for the Small code and data model,
__MODEL_LARGE__ (2) for the Large code model, and __MODEL_HUGE__ (3) for the
Huge data model, respectively.

__OPERATING_MODE__ An integer that identifies the operating mode used.

This symbol reflects the setting of the --operating_mode option.The value of the
symbol is defined to __OPERATING_MODE_NORMAL__ (1) or
__OPERATING_MODE_ADVANCED__ (2) for the Normal and Advanced operating
modes, respectively. These symbolic names can be used when testing the
__OPERATING_MODE__ symbol.

__STACK_POINTER_SIZE__ An integer that identifies the maximum part of the stack pointer that must be updated
when performing stack pointer arithmetics.

The value of the symbol is defined to __STACK_POINTER_SIZE_8__ (8),
__STACK_POINTER_SIZE_16__ (16), or __STACK_POINTER_SIZE_32__ (32)
depending on the setting of the --stack_pointer_size option. These symbolic
names can be used when testing the __STACK_POINTER_SIZE__ symbol.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

The preprocessor
__STDC__ This predefined symbol expands to the number 1. This symbol can be tested with
#ifdef to detect whether the compiler in use adheres to ISO/ANSI C.

__STDC_VERSION__ ISO/ANSI C and version identifier.

This predefined symbol expands to 199409L.

Note: This predefined symbol does not apply in EC++ mode.

__SUBVERSION__ An integer that identifies the version letter of the version number.

An integer that identifies the version letter of the version number, for example the C in
4.21C, as an ascii character.

__TID__ Target identifier for the H8 IAR C/C++ Compiler.

Expands to the target identifier which contains the following parts:

● A one-bit intrinsic flag (i) which is reserved for use by IAR
● A target-identifier (t) unique for each IAR compiler. For the H8/300H and H8S

microcomputer, the target identifier is 37
● A value (c) used in version 1.x of the compiler to specify the value of the chip used;

command line option -v
● A value (m) used in version 1.x of the compiler to specify the value of the memory

model; command line option -m.

In version 2.x of the compiler, the chip and memory model options have been replaced
by the command line options --core, --operating_mode, --code_model, and
--data_model. As there is no natural correspondence between these new options and
the old options -v and -m, the new compiler will specify the values 15 (0xF) for both c
and m.

The __TID__value is constructed as:

((i << 15) | (t << 8) | (c << 4) | m)

You can extract the values as follows:

i = (__TID__ >> 15) & 0x01; /* intrinsic flag */

t = (__TID__ >> 8) & 0x7F; /* target identifier */

c = (__TID__ >> 4) & 0x0F; /* chip used; -v option version

1.x */

m = __TID__ & 0x0F; /* memory model; -m option

version 1.x */
CH8-1

Part 2. Compiler reference 251

252

Description of miscellaneous preprocessor extensions
To find the value of the target identifier for the current compiler, execute:

printf("%ld",(__TID__ >> 8) & 0x7F)

Note: The use of __TID__ is not recommended. We recommend that you use the
symbols __ICCH8__, __CORE__, __OPERATING_MODE__, __CODE_MODEL__, and
__DATA_MODEL__ instead.

__TIME__ Current time.

Expands to the time of compilation in the form hh:mm:ss.

__VER__ Compiler version number.

Expands to an integer representing the version number of the compiler. The value of the
number is calculated in the following way:

(100 * the major version number + the minor version number)

Example

The example below prints a message for version 3.34.

#if __VER__ == 334
#pragma message("Compiler version 3.34")
#endif

In this example, 3 is the major version number and 34 is the minor version number.

Description of miscellaneous preprocessor extensions
The following section gives reference information about the preprocessor extensions
that are available in addition to the predefined symbols, pragma directives and
ISO/ANSI directives.

NDEBUG This preprocessor symbol determines whether any assert macros you have written in
your application shall be included or not in the built application.

If this symbol is not defined, all assert macros are evaluated. If the symbol is defined,
all assert macros are excluded from the compilation. In other words, if the symbol is:

● defined, the assert code will not be included
● not defined, the assert code will be included

This means that if you have written any assert code and build your application, you
should define this symbol to exclude the assert code from the application.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

The preprocessor
Note that the assert macro is defined in the assert.h standard include file.

In the IAR Embedded Workbench IDE, the NDEBUG symbol is automatically defined if
you build your application in the Release build configuration.

_Pragma() _Pragma("string")

where string follows the syntax of the corresponding pragma directive.

This preprocessor operator is part of the C99 standard and can be used, for example in
defines and has the equivalent effect of the #pragma directive.

Note: The -e option—enable language extensions—is not required.

#if NO_OPTIMIZE
 #define NOOPT _Pragma("optimize=2")
#else
 #define NOOPT
#endif

See the chapter Pragma directives.

#warning message Use this preprocessor directive to produce messages. Typically this is useful for
assertions and other trace utilities, similar to the way the ISO/ANSI standard #error
directive is used. The syntax is:

#warning message

where message can be any string.

__VA_ARGS__ Variadic macros are the preprocessor macro equivalents of printf style functions.

Syntax

#define P(...) __VA_ARGS__
#define P(x,y,...) x + y + __VA_ARGS__

Here, __VA_ARGS__ will contain all variadic arguments concatenated, including the
separating commas.

Example

#if DEBUG
 #define DEBUG_TRACE(...) printf(S,__VA_ARGS__)
#else
 #define DEBUG_TRACE(...)
#endif
CH8-1

Part 2. Compiler reference 253

254

Description of miscellaneous preprocessor extensions
...
DEBUG_TRACE("The value is:%d\n",value);

will result in:

printf("The value is:%d\n",value);
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Library functions
This chapter gives an introduction to the C and C++ library functions. It also
lists the header files used for accessing library definitions.

For detailed reference information about the library functions, see the online
help system.

Introduction
The H8 IAR C/C++ Compiler comes with the IAR DLIB Library, which is a complete
ISO/ANSI C and C++ library. This library also supports floating-point numbers in IEEE
754 format and it can be configured to include different levels of support for locale, file
descriptors, multibyte characters, et cetera.

For additional information, see the chapter The DLIB runtime environment.

For detailed information about the library functions, see the online documentation
supplied with the product. There is also keyword reference information for the DLIB
library functions. To obtain reference information for a function, select the function
name in the editor window and press F1.

For additional information about library functions, see the chapter
Implementation-defined behaviour in this guide.

HEADER FILES

Your application program gains access to library definitions through header files, which
it incorporates using the #include directive. The definitions are divided into a number
of different header files, each covering a particular functional area, letting you include
just those that are required.

It is essential to include the appropriate header file before making any reference to its
definitions. Failure to do so can cause the call to fail during execution, or generate error
or warning messages at compile time or link time.

LIBRARY OBJECT FILES

Most of the library definitions can be used without modification, that is, directly from
the library object files that are supplied with the product. For information about how to
choose a runtime library, see Basic settings for project configuration, page 5. The linker
will include only those routines that are required—directly or indirectly—by your
application.
CH8-1

Part 2. Compiler reference 255

256

IAR DLIB Library
REENTRANCY

A function that can be simultaneously invoked in the main application and in any
number of interrupts is reentrant. A library function that uses statically allocated data is
therefore not reentrant. Most parts of the DLIB library are reentrant, but the following
functions and parts are not reentrant:

In addition, some functions share the same storage for errno. These functions are not
reentrant, since an errno value resulting from one of these functions can be destroyed
by a subsequent use of the function before it has been read. Among these functions are:

exp, exp10, ldexp, log, log10, pow, sqrt, acos, asin, atan2,
cosh, sinh, strtod, strtol, strtoul

Remedies for this are:

● Do not use non-reentrant functions in interrupt service routines
● Guard calls to a non-reentrant function by a mutex, or a secure region, etc.

IAR DLIB Library
The IAR DLIB Library provides most of the important C and C++ library definitions
that apply to embedded systems. These are of the following types:

● Adherence to a free-standing implementation of the ISO/ANSI standard for the
programming language C. For additional information, see the chapter
Implementation-defined behavior in this guide.

● Standard C library definitions, for user programs.
● Embedded C++ library definitions, for user programs.
● The system startup code. It is described in the chapter The DLIB runtime

environment in this guide.
● Runtime support libraries; for example low-level floating-point routines.
● Intrinsic functions, allowing low-level use of H8/300H and H8S features. See the

chapter Intrinsic functions for more information.

atexit Needs static data

heap functions Need static data for memory allocation tables

strerror Needs static data

strtok Designed by ISO/ANSI standard to need static data

I/O Every function that uses files in some way. This includes
printf, scanf, getchar, and putchar. The
functions sprintf and sscanf are not included.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Library functions
C HEADER FILES

This section lists the header files specific to the DLIB library C definitions. Header files
may additionally contain target-specific definitions; these are documented in the chapter
IAR language extensions.

The following table lists the C header files:

C++ HEADER FILES

This section lists the C++ header files.

Embedded C++

The following table lists the Embedded C++ header files:

Header file Usage

assert.h Enforcing assertions when functions execute

ctype.h Classifying characters

float.h Testing floating-point type properties

iso646.h Using Amendment 1—iso646.h standard header

limits.h Testing integer type properties

locale.h Adapting to different cultural conventions

math.h Computing common mathematical functions

setjmp.h Executing non-local goto statements

signal.h Controlling various exceptional conditions

stdarg.h Accessing a varying number of arguments

stdbool.h Adds support for the bool data type in C.

stddef.h Defining several useful types and macros

stdio.h Performing input and output

stdlib.h Performing a variety of operations

string.h Manipulating several kinds of strings

time.h Converting between various time and date formats

wchar.h Support for wide characters

wctype.h Classifying wide characters

Table 47: Traditional standard C header files—DLIB

Header file Usage

complex Defining a class that supports complex arithmetic

Table 48: Embedded C++ header files
CH8-1

Part 2. Compiler reference 257

258

IAR DLIB Library
The following table lists additional C++ header files:

Extended Embedded C++ standard template library

The following table lists the Extended EC++ standard template library (STL) header
files:

exception Defining several functions that control exception handling

fstream Defining several I/O stream classes that manipulate external files

iomanip Declaring several I/O stream manipulators that take an argument

ios Defining the class that serves as the base for many I/O streams classes

iosfwd Declaring several I/O stream classes before they are necessarily defined

iostream Declaring the I/O stream objects that manipulate the standard streams

istream Defining the class that performs extractions

new Declaring several functions that allocate and free storage

ostream Defining the class that performs insertions

sstream Defining several I/O stream classes that manipulate string containers

stdexcept Defining several classes useful for reporting exceptions

streambuf Defining classes that buffer I/O stream operations

string Defining a class that implements a string container

strstream Defining several I/O stream classes that manipulate in-memory character
sequences

Header file Usage

fstream.h Defining several I/O stream classes that manipulate external files

iomanip.h Declaring several I/O stream manipulators that take an argument

iostream.h Declaring the I/O stream objects that manipulate the standard streams

new.h Declaring several functions that allocate and free storage

Table 49: Additional Embedded C++ header files—DLIB

Header file Description

algorithm Defines several common operations on sequences

deque A deque sequence container

functional Defines several function objects

hash_map A map associative container, based on a hash algorithm

Table 50: Standard template library header files

Header file Usage

Table 48: Embedded C++ header files (Continued)
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Library functions
Using standard C libraries in C++

The C++ library works in conjunction with 15 of the header files from the standard C
library, sometimes with small alterations. The header files come in two forms—new and
traditional—for example, cassert and assert.h.

The following table shows the new header files:

hash_set A set associative container, based on a hash algorithm

iterator Defines common iterators, and operations on iterators

list A doubly-linked list sequence container

map A map associative container

memory Defines facilities for managing memory

numeric Performs generalized numeric operations on sequences

queue A queue sequence container

set A set associative container

slist A singly-linked list sequence container

stack A stack sequence container

utility Defines several utility components

vector A vector sequence container

Header file Usage

cassert Enforcing assertions when functions execute

cctype Classifying characters

cerrno Testing error codes reported by library functions

cfloat Testing floating-point type properties

climits Testing integer type properties

clocale Adapting to different cultural conventions

cmath Computing common mathematical functions

csetjmp Executing non-local goto statements

csignal Controlling various exceptional conditions

cstdarg Accessing a varying number of arguments

cstddef Defining several useful types and macros

cstdio Performing input and output

Table 51: New standard C header files—DLIB

Header file Description

Table 50: Standard template library header files (Continued)
CH8-1

Part 2. Compiler reference 259

260

Added C functionality
Added C functionality
The IAR DLIB Library includes some added C functionality, partly taken from the C99
standard.

The following include files provide these features:

● ctype.h
● inttypes.h
● math.h
● stdbool.h
● stdint.h
● stdio.h
● stdlib.h
● wchar.h
● wctype.h

CTYPE.H

In ctype.h, the C99 function isblank is defined.

INTTYPES.H

This include file defines the formatters for all types defined in stdin.h to be used by
the functions printf, scanf, and all their variants.

MATH.H

In math.h all functions exist in a float variant and a long double variant, suffixed
by f and l respectively. For example, sinf and sinl.

The following C99 macro symbols are defined:

HUGE_VALF, HUGE_VALL, INFINITY, NAN, FP_INFINITE, FP_NAN, FP_NORMAL,
FP_SUBNORMAL, FP_ZERO, MATH_ERRNO, MATH_ERREXCEPT, math_errhandling.

The following C99 macro functions are defined:

fpclassify, signbit, isfinite, isinf, isnan, isnormal, isgreater, isless,
islessequal, islessgreater, isunordered.

cstdlib Performing a variety of operations

cstring Manipulating several kinds of strings

ctime Converting between various time and date formats

Header file Usage

Table 51: New standard C header files—DLIB (Continued)
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Library functions
The following C99 type definitions are added:

float_t, double_t.

STDBOOL.H

This include file makes the bool type available if the Allow IAR extensions (-e) option
is used.

STDINT.H

This include file provides integer characteristics.

STDIO.H

In stdio.h, the following C99 functions are defined:

vscanf, vfscanf, vsscanf, vsnprintf, snprintf

The functions printf, scanf, and all their variants have added functionality from the
C99 standard. For reference information about these functions, see the library reference
available from the Help menu.

The following functions providing I/O functionality for libraries built without FILE
support are definded:

STDLIB.H

In stdlib.h, the following C99 functions are defined:

_Exit, llabs, lldiv, strtoll, strtoull, atoll, strtof, strtold.

The function strtod has added functionality from the C99 standard. For reference
information about this functions, see the library reference available from the Help
menu.

The __qsortbbl function is defined; it provides sorting using a bubble sort algorithm.
This is useful for applications that have a limited stack.

WCHAR.H

In wchar.h, the following C99 functions are defined:

vfwscanf, vswscanf, vwscanf, wcstof, wcstolb.

__write_array Corresponds to fwrite on stdout.

__ungetchar Corresponds to ungetc on stdout.

__gets Corresponds to fgets on stdin.
CH8-1

Part 2. Compiler reference 261

262

Added C functionality
WCTYPE.H

In wctype.h, the C99 function iswblank is defined.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Segment reference
The H8 IAR C/C++ Compiler places code and data into named segments
which are referred to by the IAR XLINK Linker. Details about the segments
are required for programming assembler language modules, and are also useful
when interpreting the assembler language output from the compiler.

For information about how to define segments in the linker command file, see
Customizing the linker command file, page 35.

Summary of segments
The table below lists the segments that are available in the H8 IAR C/C++ Compiler.
Note that located denotes absolute location using the @ operator or the #pragma
location directive. The XLINK segment memory type BIT, CODE, CONST, or DATA
indicates whether the segment should be placed in ROM or RAM memory areas; see
Table 7, XLINK segment memory types, page 34.

Segment Description Type

BITVARS Holds __bitvar declared data objects. BIT

CHECKSUM Holds a checksum optionally generated by the linker. CODE

CODE16 Holds __code16 declared functions, that is the Small code model. CODE

CODE24 Holds __code24 declared functions, that is the Large code model. CODE

CSTACK Holds the stack used by C or C++ programs. DATA

DATA8_AC Holds located __data8 declared constant data. CONST

DATA8_AN Holds located __data8 declared uninitialized data. DATA

DATA8_I Holds non-zero initialized __data8 declared data objects. DATA

DATA8_ID Holds initial values for the non-zero initialized __data8 declared
data.

CONST

DATA8_N Holds uninitialized __data8 declared data. DATA

DATA8_Z Holds zero-initialized __data8 declared data. DATA

DATA16_AC Holds located __data16 declared constant data. CONST

DATA16_AN Holds located __data16 declared uninitialized data. DATA

DATA16_C Holds __data16 declared constant data, including string literals. CONST

DATA16_HEAP Holds the __data16 heap used for dynamically allocated data. DATA

Table 52: Segment summary
CH8-1

Part 2. Compiler reference 263

264

Descriptions of segments
Descriptions of segments
The following section gives reference information about each segment. For detailed
information about the extended keywords mentioned here, see the chapter Extended
keywords.

Note that in many of the following examples, the memory range is specified to start at
address 0x2, even though there is memory from address 0x0. In all cases, address 0x0
is occupied by the reset vector. As a minimum, the reset vector occupies two bytes. In
practice, even more of the low memory is occupied by additional reset vectors, interrupt
vectors, et cetera. The linker will automatically move the segments as required.

For the data8 memory, the first byte (0xFF00, 0xFFFF00, or 0xFFFFFF00 depending
on operating mode or core) is not occupied, and is potentially available for variables.
However, a data8 pointer to this byte would have the value 0, equal to the NULL pointer.
For the data8 memory, this means that segments must be placed so that they do not
occupy the first byte.

DATA16_I Holds non-zero initialized __data16 declared data objects. DATA

DATA16_ID Holds initial values for the non-zero initialized __data16 declared
data.

CONST

DATA16_N Holds uninitialized __data16 declared data. DATA

DATA16_Z Holds zero-initialized __data16 declared data. DATA

DATA32_AC Holds located __data32 declared constant data. CONST

DATA32_AN Holds located __data32declared uninitialized data. DATA

DATA32_C Holds __data32 declared constant data, including string literals. CONST

DATA32_HEAP Holds the __data32 heap used for dynamically allocated data. DATA

DATA32_I Holds non-zero initialized __data32 declared data objects. DATA

DATA32_ID Holds initial values for the non-zero initialized __data32 declared
data.

CONST

DATA32_N Holds uninitialized __data32 declared data. DATA

DATA32_Z Holds zero-initialized __data32 declared data. DATA

DIFUNCT Holds the dynamic initialization vector used by C++. CONST

FLIST Holds the jump-table for functions called indirectly via the vector
area.

CONST

INTVEC Holds the interrupt and trap vector tables. CONST

Segment Description Type

Table 52: Segment summary (Continued)
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Segment reference
In the same way, data segments cannot generally occupy the last byte of memory. In the
C language, it is legal for a pointer to have a value which is one higher than the address
of the last byte of the variable. If a variable is located at the top of memory, a pointer
pointing to the last byte of that variable would wrap around and get the value 0, which
is identical with the NULL pointer. This is not legal. The NULL pointer must have a
value separate from all other legal pointers. In practice, it is not a problem to avoid the
last byte of memory. In most devices, the top of memory is reserved for special function
registers, and the data segments will be moved down in memory, accordingly.

BITVARS Holds __bitvar declared data objects.

Description

This segment holds __bitvar declared data objects. Although the H8S core is able to
address single bits in the entire memory range, __bitvar declared objects can only be
placed in the topmost 256 bytes of memory. To place bit variables in other parts of the
memory, structures with bitfields can be used instead.

XLINK segment memory type

BIT

Memory range

The memory range for this segment depends on the operating mode and core being used:

● Normal operating mode: 0xFF00–0xFFFF
● Advanced operating mode and H8/300H: 0xFFFF00–0xFFFFFF
● Advanced operating mode and H8S: 0xFFFFFF00–0xFFFFFFFF

This segment contains bit variables. To identify an individual bit uniquely, it is not
sufficient to provide the memory address. The bit number must also be specified. For
this reason, this segment uses artificial addresses composed from both the memory
address and the bit number:

Bit address = (memory_address) * 8 + (bit_number)

where bit_number can be specified from 0 (least significant bit) to 7 (most significant
bit).

In the linker command file, you must specify the bit address when declaring the
BITVARS segment, not the normal memory address. Because the XLINK segment
memory type of this segment is BIT, XLINK will automatically treat the addresses as
bit addresses and place this segment correctly in memory.
CH8-1

Part 2. Compiler reference 265

266

Descriptions of segments
Example 1

If you intend to locate the BITVARS segment within the memory range 0xFF00–0xFFFF
in the linker command file, you must first convert the range to the bit range
0x7F800–0x7FFFF and specify that range instead. This range covers all bits from bit 0
at address 0xFF00 up to bit 7 at address 0xFFFF.

Example 2

If you intend to locate the BITVARS segment within the memory range
0xFFFFFF00–0xFFFFFFFF in the linker command file, you must first convert the range
to the bit range 0x7FFFFF800–0x7FFFFFFFF. However, XLINK only accepts 32-bit
addresses, which means that you must also truncate the range that you finally specify in
the linker command file to 0xFFFFF8000–0xFFFFFFFF. XLINK will automatically
convert these values to the correct memory range by adding bits to the left, as required.

Access type

Read/write

CHECKSUM Holds a checksum optionally generated by the linker.

Description

The linker can optionally calculate a checksum for all generated raw data bytes. This
checksum is located in the CHECKSUM segment. For information about how to generate
the checksum, see the IAR Linker and Library Tools Reference Guide.

XLINK segment memory type

CODE

Memory range

This segment can be placed anywhere in memory.

Access type

Read-only
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Segment reference
CODE16 Holds __code16 declared program code, that is code generated in the Small code
model.

Description

Your functions are placed in this segment when you use the Small code model. The
segment is only used in the Normal operating mode.

XLINK segment memory type

CODE

Memory range

This segment can be placed anywhere within the memory range:

0x0002–0xFFFF

Access type

Read-only

CODE24 Holds __code24 declared program code, that is code generated in the Large code
model.

Description

Your functions are placed in this segment when you use the Large code model. The
segment is only used in the Advanced operating mode.

XLINK segment memory type

CODE

Memory range

This segment can be placed anywhere within the memory range:

0x000002–0xFFFFFF

Access type

Read-only
CH8-1

Part 2. Compiler reference 267

268

Descriptions of segments
CSTACK Holds the internal data stack.

Description

This segment holds the internal data stack used by C/C++ programs. This segment is not
initialized by the system startup code. For information about specifying the segment
placement and its length, see The stack, page 40.

XLINK segment memory type

DATA

Memory range

The address range depends on the data model, operating mode, and core being used:

● Normal operating mode (always the Small data model): 0x0002–0xFFFF
● Advanced operating mode, Small data model, and H8/300H: 0x0002–0x7FFF,

0xFF8000–0xFFFFFF 1)

● Advanced operating mode, Small data model, and H8S: 0x0002–0x7FFF,
0xFFFF8000–0xFFFFFFFF 1)

● Advanced operating mode, Huge data model, and H8/300H: 0x000002–FFFFFF
● Advanced operating mode, Huge data model, and H8S: 0x00000002–FFFFFFFF

1) Note that the stack segment must be contiguous and must be placed in one of the
memory ranges.

Access type

Read/write

DATA8_AC Holds located __data8 declared constants.

Description

This segment holds constants declared using the __data8 memory attribute and the
IAR absolute location placement extension (the @ operator alternatively the #pragma
location directive). These constants do not need to—and must not—be given a
location using a segment placement directive to the linker.

XLINK segment memory type

CONST
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Segment reference
Memory range

The individual segment part of the segment knows its location in the memory space, and
it does not have to be specified in the linker command file.

Access type

Read-only

DATA8_AN Holds located __data8 declared non-initialized data.

Description

This segment holds non-initialized data declared using the __data8 memory attribute
and the IAR absolute location placement extension (the @ operator alternatively the
#pragma location directive). This data does not need to—and must not—be given a
location using segment placements options to the linker.

XLINK segment memory type

DATA

Memory range

The individual segment part of the segment knows its location in the memory space, and
it does not have to be specified in the linker command file.

Access type

Read/write

DATA8_I Holds static and global non-zero initialized __data8 declared data objects.

Description

This segment holds static and global __data8 declared data objects, which have a
non-zero initial value. The initial values are copied to this segment from the DATA8_ID
segment by the system startup code.

When you define this segment in the linker command file, the -Z segment control
directive must be used and not the -P directive. The -P directive does not guarantee a
fixed order between the segment parts when they are copied from the *_ID segments to
their corresponding *_I segments.
CH8-1

Part 2. Compiler reference 269

270

Descriptions of segments
In addition to non-zero initialized variables, __data8 declared constant data is silently
converted to initialized variables instead of being placed in a _C segment. To have a
DATA8_C segment would require programmable read-only memory in the topmost 256
bytes of memory, which is not the case for many H8 devices. Instead, the topmost 256
bytes are typically occupied by special function registers and a small RAM area.

XLINK segment memory type

DATA

Memory range

The address range depends on the used operating mode and core:

● Normal operating mode: 0xFF01–0xFFFE
● Advanced operating mode and H8/300H: 0xFFFF01–0xFFFFFE
● Advanced operating mode and H8S: 0xFFFFFF01–0xFFFFFFFE

Access type

Read/write

DATA8_ID Holds initial values for the non-zero initialized __data8 declared data objects.

Description

This segment holds the initial values for the non-zero initialized __data8 declared data
objects. The initial values are copied from DATA8_ID to DATA8_I by the system startup
code.

When you define this segment in the linker command file, the -Z segment control
directive must be used and not the -P directive. The -P directive does not guarantee a
fixed order between the segment parts when they are copied from the *_ID segments to
their corresponding *_I segments.

XLINK segment memory type

CONST

Memory range

This segment can be placed anywhere in the memory addressable by the selected
operating mode.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Segment reference
Access type

Read-only

DATA8_N Holds static and global uninitialized __data8 data objects.

Description

This segment holds static and global uninitialized __data8 data objects that will not be
initialized at system startup. Variables defined using the __no_init keyword will be
placed in this segment.

XLINK segment memory type

DATA

Memory range

The address range depends on the operating mode and core being used:

● Normal operating mode: 0xFF01–0xFFFE
● Advanced operating mode and H8/300H: 0xFFFF01–0xFFFFFE
● Advanced operating mode and H8S: 0xFFFFFF01–0xFFFFFFFE

Access type

Read/write

DATA8_Z Holds static and global zero-initialized __data8 declared data objects.

Description

This segment holds static and global __data8 declared data objects, which have a zero
initial value.

XLINK segment memory type

DATA

Memory range

The address range depends on the operating mode and core being used:

● Normal operating mode: 0xFF01–0xFFFE
● Advanced operating mode and H8/300H: 0xFFFF01–0xFFFFFE
● Advanced operating mode and H8S: 0xFFFFFF01–0xFFFFFFFE
CH8-1

Part 2. Compiler reference 271

272

Descriptions of segments
Access type

Read/write

DATA16_AC Holds located __data16 declared constants.

Description

This segment holds constants declared using the __data16 memory attribute and the
IAR absolute location placement extension (the @ operator alternatively the #pragma
location directive). These constants do not need to—and must not—be given a
location using a segment placement directive to the linker.

XLINK segment memory type

CONST

Memory range

The individual segment part of the segment knows its location in the memory space, and
it does not have to be specified in the linker command file.

Access type

Read-only

DATA16_AN Holds located __data16 declared non-initialized data.

Description

This segment holds non-initialized data declared using the __data16 memory attribute
and the IAR absolute location placement extension (the @ operator alternatively the
#pragma location directive). This data does not need to—and must not—be given a
location using segment placements options to the linker.

XLINK segment memory type

DATA

Memory range

The individual segment part of the segment knows its location in the memory space, and
it does not have to be specified in the linker command file.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Segment reference
Access type

Read/write

DATA16_C Holds __data16 constant data, including string literals.

Description

This segment holds __data16 constant data, including string literals, which can be
placed in ROM memory.

XLINK segment memory type

CONST

Memory range

The address range depends on the operating mode and core being used:

● Normal operating mode: 0x0002–0xFFFE
● Advanced operating mode and H8/300H: 0x000002–0x007FFF,

0xFF8000–0xFFFFFE

● Advanced operating mode and H8S: 0x00000002–0x00007FFF,
0xFFFF8000–0xFFFFFFFE

Access type

Read-only

DATA16_HEAP Holds the __data16 heap used for dynamically allocated data.

Description

This segment holds the __data16 heap used for dynamically allocated data, in other
words data used by malloc and free, and in C++, new and delete.

For more information about this segment and its length, dynamically allocated data and
the heap, see The heap, page 41. For information about using the new and delete
operators for a heap in different memory types, see New and Delete operators, page 109.

XLINK segment memory type

DATA
CH8-1

Part 2. Compiler reference 273

274

Descriptions of segments
Memory range

The address range depends on the operating mode and core being used:

● Normal operating mode: 0x0002–0xFFFE
● Advanced operating mode and H8/300H: 0x000002–0x007FFF,

0xFF8000–0xFFFFFE

● Advanced operating mode and H8S: 0x00000002–0x00007FFF,
0xFFFF8000–0xFFFFFFFE

Access type

Read/write

DATA16_I Holds static and global non-zero initialized __data16 declared data objects.

Description

This segment holds static and global __data16 declared data objects, which have a
non-zero initial value. The initial values are copied to this segment from the DATA16_ID
segment by the system startup code.

When you define this segment in the linker command file, the -Z segment control
directive must be used and not the -P directive. The -P directive does not guarantee a
fixed order between the segment parts when they are copied from the *_ID segments to
their corresponding *_I segments.

XLINK segment memory type

DATA

Memory range

The address range depends on the operating mode and core being used:

● Normal operating mode: 0x0002–0xFFFE
● Advanced operating mode and H8/300H: 0x000002–0x007FFF,

0xFF8000–0xFFFFFE

● Advanced operating mode and H8S: 0x00000002–0x00007FFF,
0xFFFF8000–0xFFFFFFFE

Access type

Read/write
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Segment reference
DATA16_ID Holds initial values for the non-zero initialized __data16 declared data objects.

Description

This segment holds the initial values for the non-zero initialized __data16 declared
data objects. The initial values are copied from DATA16_ID to DATA16_I by the system
startup code.

When you define this segment in the linker command file, the -Z segment control
directive must be used and not the -P directive. The -P directive does not guarantee a
fixed order between the segment parts when they are copied from the *_ID segments to
their corresponding *_I segments.

XLINK segment memory type

CONST

Memory range

This segment can be placed anywhere in the memory addressable by the selected
operating mode.

Access type

Read-only

DATA16_N Holds static and global uninitialized __data16 data objects.

Description

This segment holds static and global uninitialized __data16 data objects that will not
be initialized at system startup. Variables defined using the __no_init keyword will
be placed in this segment.

XLINK segment memory type

DATA

Memory range

The address range depends on the operating mode and core being used:

● Normal operating mode: 0x0002–0xFFFE
● Advanced operating mode and H8/300H: 0x000002–0x007FFF,

0xFF8000–0xFFFFFE
CH8-1

Part 2. Compiler reference 275

276

Descriptions of segments
● Advanced operating mode and H8S: 0x00000002–0x00007FFF,
0xFFFF8000–0xFFFFFFFE

Access type

Read/write

DATA16_Z Holds static and global zero-initialized __data16 declared data objects.

Description

This segment holds static and global __data16 declared data objects, which have a zero
initial value.

XLINK segment memory type

DATA

Memory range

The address range depends on the operating mode and core being used:

● Normal operating mode: 0x0002–0xFFFE
● Advanced operating mode and H8/300H: 0x000002–0x007FFF,

0xFF8000–0xFFFFFE

● Advanced operating mode and H8S: 0x00000002–0x00007FFF,
0xFFFF8000–0xFFFFFFFE

Access type

Read/write

DATA32_AC Holds located __data32 declared constants.

Description

This segment holds constants declared using the __data32 memory attribute and the
IAR absolute location placement extension (the @ operator alternatively the #pragma
location directive). These constants do not need to—and must not—be given a
location using a segment placement directive to the linker.

XLINK segment memory type

CONST
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Segment reference
Memory range

The individual segment part of the segment knows its location in the memory space, and
it does not have to be specified in the linker command file.

Access type

Read-only

DATA32_AN Holds located __data32 declared non-initialized data.

Description

This segment holds non-initialized data declared using the __data32 memory attribute
and the IAR absolute location placement extension (the @ operator alternatively the
#pragma location directive). This data does not need to—and must not—be given a
location using segment placements options to the linker.

XLINK segment memory type

DATA

Memory range

The individual segment part of the segment knows its location in the memory space, and
it does not have to be specified in the linker command file.

Access type

Read/write

DATA32_C Holds __data32 constant data, including string literals.

Description

This segment holds __data32 constant data, including string literals, which can be
placed in ROM memory.

XLINK segment memory type

CONST
CH8-1

Part 2. Compiler reference 277

278

Descriptions of segments
Memory range

The address range depends on the core in use:

● H8/300H: 0x000002–0xFFFFFE
● H8S: 0x00000002–0xFFFFFFFE

Access type

Read-only

DATA32_HEAP Holds the __data32 heap used for dynamically allocated data.

Description

This segment holds the __data32 heap used for dynamically allocated data, in other
words data used by malloc and free, and in C++, new and delete.

For more information about this segment and its length, dynamically allocated data and
the heap, see The heap, page 41. For information about using the new and delete
operators for a heap in different memory types, see New and Delete operators, page 109.

XLINK segment memory type

DATA

Memory range

The address range depends on the core in use:

● H8/300H: 0x000002–0xFFFFFE
● H8S: 0x00000002–0xFFFFFFFE

Access type

Read/write

DATA32_I Holds static and global non-zero initialized __data32 declared data objects.

Description

This segment holds static and global __data32 declared data objects, which have a
non-zero initial value. The initial values are copied to this segment from the DATA32_ID
segment by the system startup code.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Segment reference
When you define this segment in the linker command file, the -Z segment control
directive must be used and not the -P directive. The -P directive does not guarantee a
fixed order between the segment parts when they are copied from the *_ID segments to
their corresponding *_I segments.

XLINK segment memory type

DATA

Memory range

The address range depends on the used core:

● H8/300H: 0x000002–0xFFFFFE
● H8S: 0x00000002–0xFFFFFFFE

Access type

Read/write

DATA32_ID Holds initial values for the non-zero initialized __data32 declared data objects.

Description

This segment holds the initial values for the non-zero initialized __data32 declared
data objects. The initial values are copied from DATA8_ID to DATA8_I by the system
startup code.

When you define this segment in the linker command file, the -Z segment control
directive must be used and not the -P directive. The -P directive does not guarantee a
fixed order between the segment parts when they are copied from the *_ID segments to
their corresponding *_I segments.

XLINK segment memory type

CONST

Memory range

This segment can be placed anywhere in memory.

Access type

Read-only
CH8-1

Part 2. Compiler reference 279

280

Descriptions of segments
DATA32_N Holds static and global uninitialized __data32 data objects.

Description

This segment holds static and global uninitialized __data32 data objects that will not
be initialized at system startup. Variables defined using the __no_init keyword will
be placed in this segment.

XLINK segment memory type

DATA

Memory range

The address range depends on the core being used:

● H8/300H: 0x000002–0xFFFFFE
● H8S: 0x00000002–0xFFFFFFFE

Access type

Read/write

DATA32_Z Holds static and global zero-initialized __data32 declared data objects.

Description

This segment holds static and global __data32 declared data objects, which have a zero
initial value.

XLINK segment memory type

DATA

Memory range

The address range depends on the core being used:

● H8/300H: 0x000002–0xFFFFFE
● H8S: 0x00000002–0xFFFFFFFE

Access type

Read/write
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Segment reference
DIFUNCT Holds the dynamic initialization vector used by C++.

Description

This segment holds information required to call constructors for C++ static objects. In
other words, this segment holds pointers to code, typically C++ constructors, which
should be executed by the system startup code before main is called.

XLINK segment memory type

CONST

Memory range

The address range depends on the data model, operating mode, and core being used:

● Normal operating mode (always the Small data model): 0x0002–0xFFFF
● Advanced operating mode, Small data model, and H8/300H: 0x0002–0x7FFF,

0xFF8000–0xFFFFFF 1)

● Advanced operating mode, Small data model, and H8S: 0x0002–0x7FFF,
0xFFFF8000–0xFFFFFFFF 1)

● Advanced operating mode, Huge data model, and H8/300H: 0x000002–FFFFFF
● Advanced operating mode, Huge data model, and H8S: 0x00000002–FFFFFFFF

1) Note that the DIFUNCT segment must be contiguous and must be placed in one of the
memory ranges.

Access type

Read-only

FLIST Holds the jump-table for functions called indirectly via the vector area.

Description

This segment holds the jump-table for functions called indirectly via the vector area,
which means the @@aa:8 addressing mode is used. This includes:

● Many library routines, unless the compiler option --direct_library_calls are
used

● All __vector_call declared functions.

XLINK segment memory type

CONST
CH8-1

Part 2. Compiler reference 281

282

Descriptions of segments
Memory range

0x02–0xFF

Access type

Read-only

INTVEC Holds the interrupt and trap vector tables.

Description

This segmet holds the interrupt and trap vector tables, which are generated for all
functions declared either __interrupt or __trap in combination with the #pragma
vector directive.

XLINK segment memory type

CONST

Memory range

Interrupt vectors are normally stored in the lower part of memory, from address 0x0 to
at most address 0x3FF. However, there is no formal upper limit for the segment. In the
default linker command files, 0x3FF is used as upper limit.

Access type

Read-only
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Implementation-defined
behavior
This chapter describes how the H8/300H and H8S IAR C/C++ Compiler
handles the implementation-defined areas of the C language.

ISO 9899:1990, the International Organization for Standardization standard -
Programming Languages - C (revision and redesign of ANSI X3.159-1989,
American National Standard), changed by the ISO Amendment 1:1994,
Technical Corrigendum 1, and Technical Corrigendum 2, contains an appendix
called Portability Issues. The ISO appendix lists areas of the C language that ISO
leaves open to each particular implementation.

Note: The H8/300H and H8S IAR C/C++ Compiler adheres to a freestanding
implementation of the ISO standard for the C programming language. This
means that parts of a standard library can be excluded in the implementation.

Descriptions of implementation-defined behavior
This section follows the same order as the ISO appendix. Each item covered includes
references to the ISO chapter and section (in parenthesis) that explains the
implementation-defined behavior.

TRANSLATION

Diagnostics (5.1.1.3)

Diagnostics are produced in the form:

filename,linenumber level[tag]: message

where filename is the name of the source file in which the error was encountered,
linenumber is the line number at which the compiler detected the error, level is the
level of seriousness of the message (remark, warning, error, or fatal error), tag is a
unique tag that identifies the message, and message is an explanatory message, possibly
several lines.
CH8-1

Part 2. Compiler reference 283

284

Descriptions of implementation-defined behavior
ENVIRONMENT

Arguments to main (5.1.2.2.2.1)

The function called at program startup is called main. There is no prototype declared for
main, and the only definition supported for main is:

int main(void)

To change this behavior for the IAR DLIB runtime environment, see Customizing
system initialization, page 65.

Interactive devices (5.1.2.3)

The streams stdin and stdout are treated as interactive devices.

IDENTIFIERS

Significant characters without external linkage (6.1.2)

The number of significant initial characters in an identifier without external linkage is
200.

Significant characters with external linkage (6.1.2)

The number of significant initial characters in an identifier with external linkage is 200.

Case distinctions are significant (6.1.2)

Identifiers with external linkage are treated as case-sensitive.

CHARACTERS

Source and execution character sets (5.2.1)

The source character set is the set of legal characters that can appear in source files. The
default source character set is the standard ASCII character set. However, if you use the
command line option --enable_multibytes, the source character set will be the host
computer’s default character set.

The execution character set is the set of legal characters that can appear in the execution
environment. The default execution character set is the standard ASCII character set.
However, if you use the command line option --enable_multibytes, the execution
character set will be the host computer’s default character set. The IAR DLIB Library
needs a multibyte character scanner to support a multibyte execution character set

See Locale, page 70.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Implementation-defined behavior
Bits per character in execution character set (5.2.4.2.1)

The number of bits in a character is represented by the manifest constant CHAR_BIT. The
standard include file limits.h defines CHAR_BIT as 8.

Mapping of characters (6.1.3.4)

The mapping of members of the source character set (in character and string literals) to
members of the execution character set is made in a one-to-one way. In other words, the
same representation value is used for each member in the character sets except for the
escape sequences listed in the ISO standard.

Unrepresented character constants (6.1.3.4)

The value of an integer character constant that contains a character or escape sequence
not represented in the basic execution character set or in the extended character set for
a wide character constant generates a diagnostic message, and will be truncated to fit the
execution character set.

Character constant with more than one character (6.1.3.4)

An integer character constant that contains more than one character will be treated as an
integer constant. The value will be calculated by treating the leftmost character as the
most significant character, and the rightmost character as the least significant character,
in an integer constant. A diagnostic message will be issued if the value cannot be
represented in an integer constant.

A wide character constant that contains more than one multibyte character generates a
diagnostic message.

Converting multibyte characters (6.1.3.4)

The only locale supported—that is, the only locale supplied with the IAR C/C++
Compiler—is the ‘C’ locale. If you use the command line option
--enable_multibytes, the IAR DLIB Library will support multibyte characters if
you add a locale with multibyte support or a multibyte character scanner to the library.
See Locale, page 70.

Range of 'plain' char (6.2.1.1)

A ‘plain’ char has the same range as an unsigned char.
CH8-1

Part 2. Compiler reference 285

286

Descriptions of implementation-defined behavior
INTEGERS

Range of integer values (6.1.2.5)

The representation of integer values are in the two's complement form. The most
significant bit holds the sign; 1 for negative, 0 for positive and zero.

See Basic data types, page 176, for information about the ranges for the different integer
types.

Demotion of integers (6.2.1.2)

Converting an integer to a shorter signed integer is made by truncation. If the value
cannot be represented when converting an unsigned integer to a signed integer of equal
length, the bit-pattern remains the same. In other words, a large enough value will be
converted into a negative value.

Signed bitwise operations (6.3)

Bitwise operations on signed integers work the same way as bitwise operations on
unsigned integers; in other words, the sign-bit will be treated as any other bit.

Sign of the remainder on integer division (6.3.5)

The sign of the remainder on integer division is the same as the sign of the dividend.

Negative valued signed right shifts (6.3.7)

The result of a right-shift of a negative-valued signed integral type preserves the sign-bit.
For example, shifting 0xFF00 down one step yields 0xFF80.

FLOATING POINT

Representation of floating-point values (6.1.2.5)

The representation and sets of the various floating-point numbers adheres to IEEE
854–1987. A typical floating-point number is built up of a sign-bit (s), a biased
exponent (e), and a mantissa (m).

See Floating-point types, page 178, for information about the ranges and sizes for the
different floating-point types: float and double.

Converting integer values to floating-point values (6.2.1.3)

When an integral number is cast to a floating-point value that cannot exactly represent
the value, the value is rounded (up or down) to the nearest suitable value.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Implementation-defined behavior
Demoting floating-point values (6.2.1.4)

When a floating-point value is converted to a floating-point value of narrower type that
cannot exactly represent the value, the value is rounded (up or down) to the nearest
suitable value.

ARRAYS AND POINTERS

size_t (6.3.3.4, 7.1.1)

See size_t, page 181, for information about size_t.

Conversion from/to pointers (6.3.4)

See Casting, page 180, for information about casting of data pointers and function
pointers.

ptrdiff_t (6.3.6, 7.1.1)

See ptrdiff_t, page 181, for information about the ptrdiff_t.

REGISTERS

Honoring the register keyword (6.5.1)

User requests for register variables are not honored.

STRUCTURES, UNIONS, ENUMERATIONS, AND BITFIELDS

Improper access to a union (6.3.2.3)

If a union gets its value stored through a member and is then accessed using a member
of a different type, the result is solely dependent on the internal storage of the first
member.

Padding and alignment of structure members (6.5.2.1)

See the section Basic data types, page 176, for information about the alignment
requirement for data objects.

Sign of 'plain' bitfields (6.5.2.1)

A 'plain' int bitfield is treated as a signed int bitfield. All integer types are allowed as
bitfields.
CH8-1

Part 2. Compiler reference 287

288

Descriptions of implementation-defined behavior
Allocation order of bitfields within a unit (6.5.2.1)

Bitfields are allocated within an integer from least-significant to most-significant bit.

Can bitfields straddle a storage-unit boundary (6.5.2.1)

Bitfields cannot straddle a storage-unit boundary for the chosen bitfield integer type.

Integer type chosen to represent enumeration types (6.5.2.2)

The chosen integer type for a specific enumeration type depends on the enumeration
constants defined for the enumeration type. The chosen integer type is the smallest
possible.

QUALIFIERS

Access to volatile objects (6.5.3)

Any reference to an object with volatile qualified type is an access.

DECLARATORS

Maximum numbers of declarators (6.5.4)

The number of declarators is not limited. The number is limited only by the available
memory.

STATEMENTS

Maximum number of case statements (6.6.4.2)

The number of case statements (case values) in a switch statement is not limited. The
number is limited only by the available memory.

PREPROCESSING DIRECTIVES

Character constants and conditional inclusion (6.8.1)

The character set used in the preprocessor directives is the same as the execution
character set. The preprocessor recognizes negative character values if a 'plain' character
is treated as a signed character.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Implementation-defined behavior
Including bracketed filenames (6.8.2)

For file specifications enclosed in angle brackets, the preprocessor does not search
directories of the parent files. A parent file is the file that contains the #include
directive. Instead, it begins by searching for the file in the directories specified on the
compiler command line.

Including quoted filenames (6.8.2)

For file specifications enclosed in quotes, the preprocessor directory search begins with
the directories of the parent file, then proceeds through the directories of any
grandparent files. Thus, searching begins relative to the directory containing the source
file currently being processed. If there is no grandparent file and the file has not been
found, the search continues as if the filename was enclosed in angle brackets.

Character sequences (6.8.2)

Preprocessor directives use the source character set, with the exception of escape
sequences. Thus, to specify a path for an include file, use only one backslash:

#include "mydirectory\myfile"

Within source code, two backslashes are necessary:

file = fopen("mydirectory\\myfile","rt");

Recognized pragma directives (6.8.6)

In addition to the pragma directives described in the chapter Pragma directives, the
following directives are recognized but will have no effect:

alignment
ARGSUSED
baseaddr
can_instantiate
codeseg
cspy_support
define_type_info
do_not_instantiate
function
hdrstop
instantiate
keep_definition
memory
module_name
none
no_pch
NOTREACHED
CH8-1

Part 2. Compiler reference 289

290

Descriptions of implementation-defined behavior
once
__printf_args
public_equ
__scanf_args
system_include
VARARGS
warnings

Default __DATE__ and __TIME__ (6.8.8)

The definitions for __TIME__ and __DATE__ are always available.

IAR DLIB LIBRARY FUNCTIONS

The information in this section is valid only if the runtime library configuration you have
chosen supports file descriptors. See the chapter The DLIB runtime environment for
more information about runtime library configurations.

NULL macro (7.1.6)

The NULL macro is defined to 0.

Diagnostic printed by the assert function (7.2)

The assert() function prints:

filename:linenr expression -- assertion failed

when the parameter evaluates to zero.

Domain errors (7.5.1)

NaN (Not a Number) will be returned by the mathematic functions on domain errors.

Underflow of floating-point values sets errno to ERANGE (7.5.1)

The mathematics functions set the integer expression errno to ERANGE (a macro in
errno.h) on underflow range errors.

fmod() functionality (7.5.6.4)

If the second argument to fmod() is zero, the function returns NaN; errno is set to
EDOM.

signal() (7.7.1.1)

The signal part of the library is not supported.
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Implementation-defined behavior
Note: Low-level interface functions exist in the library, but will not perform anything.
Use the template source code to implement application-specific signal handling. See
Signal and raise, page 73.

Terminating newline character (7.9.2)

stdout stream functions recognize either newline or end of file (EOF) as the
terminating character for a line.

Blank lines (7.9.2)

Space characters written to the stdout stream immediately before a newline character
are preserved. There is no way to read the line through the stdin stream that was
written through the stdout stream.

Null characters appended to data written to binary streams (7.9.2)

No null characters are appended to data written to binary streams.

Files (7.9.3)

Whether a write operation on a text stream causes the associated file to be truncated
beyond that point, depends on the application-specific implementation of the low-level
file routines. See File input and output, page 69.

remove() (7.9.4.1)

The effect of a remove operation on an open file depends on the application-specific
implementation of the low-level file routines. See File input and output, page 69.

rename() (7.9.4.2)

The effect of renaming a file to an already existing filename depends on the
application-specific implementation of the low-level file routines. See File input and
output, page 69.

%p in printf() (7.9.6.1)

The argument to a %p conversion specifier, print pointer, to printf() is treated as
having the type void *. The value will be printed as a hexadecimal number, similar to
using the %x conversion specifier.

%p in scanf() (7.9.6.2)

The %p conversion specifier, scan pointer, to scanf() reads a hexadecimal number and
converts it into a value with the type void *.
CH8-1

Part 2. Compiler reference 291

292

Descriptions of implementation-defined behavior
Reading ranges in scanf() (7.9.6.2)

A - (dash) character is always treated as a range symbol.

File position errors (7.9.9.1, 7.9.9.4)

On file position errors, the functions fgetpos and ftell store EFPOS in errno.

Message generated by perror() (7.9.10.4)

The generated message is:

usersuppliedprefix:errormessage

Allocating zero bytes of memory (7.10.3)

The calloc(), malloc(), and realloc() functions accept zero as an argument.
Memory will be allocated, a valid pointer to that memory is returned, and the memory
block can be modified later by realloc.

Behavior of abort() (7.10.4.1)

The abort() function does not flush stream buffers, and it does not handle files,
because this is an unsupported feature.

Behavior of exit() (7.10.4.3)

The argument passed to the exit function will be the return value returned by the main
function to cstartup.

Environment (7.10.4.4)

The set of available environment names and the method for altering the environment list
is described in Environment interaction, page 72.

system() (7.10.4.5)

How the command processor works depends on how you have implemented the system
function. See Environment interaction, page 72.

Message returned by strerror() (7.11.6.2)

The messages returned by strerror() depending on the argument is:

Argument Message

EZERO no error

EDOM domain error

Table 53: Message returned by strerror()—IAR DLIB library
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Implementation-defined behavior
The time zone (7.12.1)

The local time zone and daylight savings time implementation is described in Time, page
74.

clock() (7.12.2.1)

From where the system clock starts counting depends on how you have implemented the
clock function. See Time, page 74.

ERANGE range error

EFPOS file positioning error

EILSEQ multi-byte encoding error

<0 || >99 unknown error

all others error nnn

Argument Message

Table 53: Message returned by strerror()—IAR DLIB library (Continued)
CH8-1

Part 2. Compiler reference 293

294

Descriptions of implementation-defined behavior
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Index

Index
A
abort, system termination (DLIB) . 64
absolute location

data, placing at (@) . 46
language support for . 189
#pragma location . 220

addressing. See memory types
algorithm (STL header file) . 258
alignment . 175

forcing stricter (#pragma data_alignment) 217
of data types. 176

alignment (pragma directive) . 289
__ALIGNOF__ (operator) . 189
__and_ccr (intrinsic function) . 229
__and_exr (intrinsic function). 229
anonymous structures . 124
anonymous symbols, creating . 191
applications

building . 4
initializing . 64
terminating. 64

ARGFRAME (compiler function directive) 98
ARGSUSED (pragma directive) . 289
arrays . 194

hints about index type . 121
implementation-defined behavior. 287
non-lvalue . 196

asm, __asm (language extension) 191
assembler code

calling from C . 86
calling from C++ . 88
inline . 85

language extension . 191
assembler directives

CFI. 101
EQU. 169
PUBLIC. 169
RTMODEL . 78

assembler instructions
MOVFPE . 238
MOVTPE. 238
NOP. 238
RTE . 213
SLEEP . 241
TAS . 241
TRAPA . 27, 242

assembler language interface . 83
creating skeleton code . 86

assembler list file . 98
asserts . 74

including in application (NDEBUG) 252
assert.h (library header file) . 257
assumptions (programming experience) xvii
atoll, in stdlib.h . 261
atomic operations . 28

__monitor . 211
auto variables . 22

B
baseaddr (pragma directive) . 289
__BASE_FILE__ (predefined symbol) 247
basic_template_matching (pragma directive) 216

using . 111
__bcd_add_char (intrinsic function) 230
__bcd_add_short (intrinsic function) 230
__bcd_subtract_char (intrinsic function). 230
__bcd_subtract_short (intrinsic function) 230
bitfields

data representation . 177
hints . 121
implementation-defined behavior. 287
non-standard types in . 189
specifying order of members (#pragma bitfields). 217

__bitvar (extended keyword). 204
bitvar (memory type) . 16
BITVARS (segment) . 265
CH8-1

295

296
bool (data type) . 176
adding support for in DLIB . 257
making available in C code . 261
supported in C code . 176

bubble sort algorithm, adding support for 261
__BUILD_NUMBER__ (predefined symbol) 247
--bus_width (compiler option) . 148
__bus_width (runtime model attribute) 78

C
C and C++ linkage . 91
C calling convention . 89
C header files . 257
call chains . 126
call stack . 101
callee-save registers, stored on stack. 22
calling convention

C . 89
C++, requiring C linkage . 88
overriding default (__cc_version1) 204
overriding default (__cc_version2) 205
overriding default (__cc_version3) 205

calloc (standard library function) . 23
can_instantiate (pragma directive) 289
cassert (library header file) . 259
cast operators

in Extended EC++ . 104
missing from Embedded C++ 104

casting
between pointer types . 19
of pointers and integers . 180

cctype (library header file) . 259
__cc_version1 (extended keyword). 204
__cc_version2 (extended keyword). 205
__cc_version3 (extended keyword). 205
cerrno (library header file) . 259
CFI (assembler directive) . 101
cfloat (library header file) . 259

char (data type) . 176
changing default representation (--char_is_signed) . . . 149
signed and unsigned. 177

characters, implementation-defined behavior 284
--char_is_signed (compiler option) 149
CHECKSUM (segment) . 266
class memory (extended EC++) . 106
class template partial specialization matching
(extended EC++). 110
classes. 105
climits (library header file) . 259
clocale (library header file) . 259
__close (library function) . 70
cmath (library header file). 259
code execution . 7
code models

configuration . 7
Large . 26
overview . 25
Small . 26
specifying on command line . 149

code motion
compiler transformation. 120
disabling (--no_code_motion) 163

codeseg (pragma directive) . 289
code, placement of . 263
__CODE_COMPATIBILITY_CHECK__
(predefined symbol) . 247
__CODE_MODEL__ (predefined symbol). 248
--code_model (compiler option) . 149
__code_model (runtime model attribute) 78
__code16 (extended keyword) . 206
CODE16 (segment). 267
__code24 (extended keyword) . 206
CODE24 (segment). 267
comments

after preprocessor directives. 196
C++ style, using in C code. 191

common subexpression elimination
compiler transformation. 119
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Index
disabling (--no_cse) . 163
compiler

environment variables . 136
invocation syntax . 135

compiler listing, generating (-l). 159
compiler object file

including debug information in (--debug, -r) 151
specifying filename of (-o). 166

compiler options . 143
specifying parameters . 145
summary . 146
typographic convention . xx
-D. 150
-e . 156
-f . 158
-I . 159
-l . 87, 159
-o . 166
-r . 169
-s . 170
-z . 173
--bus_width . 148
--char_is_signed. 149
--code_model . 149
--core . 150
--data_model . 151
--debug. 151
--dependencies . 152
--diagnostics_tables . 154
--diag_error . 153
--diag_remark . 153
--diag_suppress . 153
--diag_warning. 154
--direct_library_calls . 155
--dlib_config . 155
--double . 155
--ec++ . 156
--eec++. 157
--enable_mac . 157

--enable_multibytes . 157
--error_limit . 158
--header_context . 158
--interrupt_mode . 159
--library_module . 160
--max_cycles_no_interrupt . 161
--migration_preprocessor_extensions. 161
--misrac . 162
--misrac_verbose . 162
--module_name . 163
--no_code_motion . 163
--no_cse . 163
--no_inline . 164
--no_tbaa . 164
--no_typedefs_in_diagnostics 165
--no_unroll . 165
--no_warnings . 166
--no_wrap_diagnostics . 166
--omit_types. 167
--only_stdout . 167
--operating_mode. 167
--preinclude . 168
--preprocess . 168
--public_equ. 168
--remarks . 169
--require_prototypes. 169
--silent . 170
--stack_pointer_size . 171
--strict_ansi . 171
--warnings_affect_exit_code 139, 172
--warnings_are_errors . 172
--weak_rtmodel_check. 172

compiler subversion number . 251
compiler version number . 252
compiling, from the command line . 4
complex numbers, supported in Embedded C++. 104
complex (library header file). 257
compound literals . 191
computer style, typographic convention xx
CH8-1

297

298
configuration
basic project settings . 5
hardware . 7
__low_level_init . 65

configuration symbols, in library configuration files. 61
consistency, module . 77
constseg (pragma directive) . 217
const, declaring objects. 184
const_cast (cast operator) . 104
conventions, typographic . xx
copyright notice . ii
__CORE__ (predefined symbol). 248
core

configuration . 6
specifying on command line . 150

--core (compiler option) . 150
__CORE_H8S__ (predefined symbol) 248
__CORE_H8300H__ (predefined symbol) 248
__cplusplus (predefined symbol) 248
csetjmp (library header file) . 259
csignal (library header file) . 259
cspy_support (pragma directive) . 289
CSTACK (segment)

example . 40
See also stack

cstartup, customizing . 66
cstdarg (library header file) . 259
cstddef (library header file) . 259
cstdio (library header file). 259
cstdlib (library header file) . 260
cstring (library header file) . 260
ctime (library header file) . 260
ctype.h (library header file). 257

added C functionality. 260
C++

calling convention . 88
features excluded from EC++ 103
language extensions . 114
See also Embedded C++ and Extended Embedded C++

terminology . xx
C++ header files . 257–258
C++ names, in assembler code . 89
C++-style comments in C code . 191
C-SPY

low-level interface . 75
STL container support . 113

C_INCLUDE (environment variable) 136
C99 standard, added functionality from 260

D
__dadd (intrinsic function) . 231
data

alignment of. 175
at absolute location . 46
placement of . 263

data memory attributes, using . 18
data models . 14

configuration . 6
data pointers . 180
data representation . 175
data storage. 13
data types . 176

floating-point . 178
integers . 176

dataseg (pragma directive) . 218
data_alignment (pragma directive) 217
__DATA_MODEL__ (predefined symbol) 248
--data_model (compiler option) . 151
__data_model (runtime model attribute) 78
data8 (memory type). 16
__data8 (extended keyword) . 207
DATA8_AC (segment) . 268
DATA8_AN (segment) . 269
DATA8_I (segment) . 269
DATA8_ID (segment) . 270
DATA8_N (segment) . 271
DATA8_Z (segment) . 271
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Index
__data16 (extended keyword) . 208
data16 (memory type) . 17
DATA16_AC (segment) . 272
DATA16_AN (segment) . 272
DATA16_C (segment). 273
DATA16_I (segment) . 274
DATA16_ID (segment) 270, 275, 279
DATA16_N (segment). 271, 275, 280
DATA16_Z (segment) . 276
__data32 (extended keyword) . 209
data32 (memory type) . 17
DATA32_AC (segment) . 276
DATA32_AN (segment) . 277
DATA32_C (segment). 277
DATA32_HEAP (segment) . 278
DATA32_I (segment) . 278
DATA32_ID (segment) . 279
DATA32_N (segment). 280
DATA32_Z (segment) . 280
__DATE__ (predefined symbol) . 248
date (library function), configuring support for. 74
--debug (compiler option) . 151
debug information, including in object file 151, 169
declaration

functions . 91
declarations

empty . 196
in for loops. 190

declarations and statements, mixing 190
declarators, implementation-defined behavior 288
define_type_info (pragma directive) 289
delete operator (extended EC++) 109
delete (keyword) . 23
--dependencies (compiler option) 152
deque (STL header file) . 258
destructors and interrupts, using . 114
diagnostic messages . 139

classifying as errors . 153
classifying as remarks . 153

classifying as warnings . 154
disabling warnings . 166
disabling wrapping of . 166
enabling remarks . 169
listing all used . 154
suppressing . 153

--diagnostics_tables (compiler option) 154
diag_default (pragma directive) . 218
--diag_error (compiler option) . 153
diag_error (pragma directive) . 218
--diag_remark (compiler option). 153
diag_remark (pragma directive) . 218
--diag_suppress (compiler option) 153
diag_suppress (pragma directive) 218
--diag_warning (compiler option) 154
diag_warning (pragma directive) 219
DIFUNCT (segment) . 45, 264, 281
directives

function . 98
pragma . 10, 215

directory, specifying as parameter. 145
__DIRECT_LIBRARY_CALLS__ (predefined symbol) . 248
--direct_library_calls (compiler option) 155
__disable_interrupt (intrinsic function). 231
disclaimer . ii
DLIB. 8, 256

reference information. See the online help system 255
--dlib_config (compiler option). 155
document conventions. xx
documentation, library . 255
--double (compiler option) . 155
double (data type) . 178
double, configuring size of floating-point type 8
__DOUBLE_SIZE__ (predefined symbol) 249
__double_size (runtime model attribute). 78
double_t, in math.h . 261
__do_byte_eepmov (intrinsic function) 231
do_not_instantiate (pragma directive) 289
__do_word_eepmov (intrinsic function) 232
CH8-1

299

300
__dsub (intrinsic function) . 232
dynamic initialization . 58–59, 63

in Embedded C++ . 45
dynamic memory . 23

E
--ec++ (compiler option). 156
EC++ header files . 257
--eec++ (compiler option) . 157
__eepmov (intrinsic function) . 233
__eepmovi (intrinsic function) . 234
EEPMOV.B, enable use by disabling interrupts 161
Embedded C++. 103

absolute location . 46, 48
differences from C++. 103
dynamic initialization in . 45
enabling . 156
function linkage . 91
language extensions . 103
overview . 103
special function types. 31
static member variables . 46, 48

Embedded C++ objects, placing in memory type 21
__embedded_cplusplus (predefined symbol) 249
__enable_interrupt (intrinsic function) 235
--enable_mac (compiler option) . 157
--enable_multibytes (compiler option) 157
enumerations, implementation-defined behavior. 287
enums

data representation . 177
forward declarations of . 194

environment
implementation-defined behavior. 284

environment variables . 136
C_INCLUDE . 136
QCCH8 . 136

EQU (assembler directive) . 169
error messages . 140

classifying . 153
error return codes . 139
exception handling, missing from Embedded C++ 103
exception vectors . 44
exception (library header file) . 258
_Exit (exit function) . 64
exit (exit function) . 64
_exit (exit function) . 64
__exit (exit function). 64
experience, programming . xvii
export keyword, missing from Extended EC++ 110
Extended Embedded C++ . 104

enabling . 157
standard template library (STL) 258

extended keywords . 199
enabling . 156
overview . 10
summary . 203
syntax. 18
__bitvar . 204
__cc_version1 . 204
__cc_version2 . 205
__cc_version3 . 205
__code16 . 206
__code16 (function pointer). 179
__code24 . 206
__code24 (function pointer). 179
__data8 . 207
__data8 (data pointer) . 180
__data16 . 208
__data16 (data pointer) . 180
__data32 . 209
__data32 (data pointer) . 180
__interrupt . 27, 210

See also INTVEC (segment)
using in pragma directives. 226

__intrinsic . 210
__monitor . 211
__noreturn . 211
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Index
using in pragma directives. 220
__no_init . 131, 211
__no_init, using in pragma directives. 220
__raw . 212

using in pragma directives. 220
__root. 212

using in pragma directives. 221
__task. 212

using in pragma directives. 221
__trap. 27, 213

See also INTVEC (segment)
__vector_call . 214

F
-f (compiler option). 158
fatal error messages . 140
__FILE__ (predefined symbol). 249
file dependencies, tracking . 152
file paths, specifying for #include files 159
filename

of object file. 166
specifying as parameter . 145

FLIST (segment). 281
float (data type). 178
floating-point constants

hexadecimal notation . 193
hints . 122

floating-point format. 178
hints . 121–122
implementation-defined behavior. 286
special cases. 179
32-bits . 178
64-bits . 178

floating-point type, configuring size of double 8
float.h (library header file) . 257
float_t, in math.h. 261
for loops, declarations in. 190

formats
floating-point values . 178
standard IEEE (floating-point) 178

_formatted_write (library function) 57
fpclassify, in math.h . 260
FP_INFINITE, in math.h . 260
FP_NAN, in math.h . 260
FP_NORMAL, in math.h . 260
FP_SUBNORMAL, in math.h . 260
FP_ZERO, in math.h. 260
fragmentation, of heap memory . 24
free (standard library function) . 23
fstream (library header file) . 258
fstream.h (library header file) . 258
__func__ (language extension) . 197
FUNCALL (compiler function directive) 98
__FUNCTION__ (language extension) 197
function directives. 98
function inlining

compiler transformation. 120
disabling (--no_inline) . 164

function pointers . 179
function prototypes . 127
function template parameter deduction (extended EC++) . 110
function type information, omitting in object output. 167
function vectors for non-interrupt functions 44
FUNCTION (compiler function directive) 98
function (pragma directive). 289
functional (STL header file) . 258
functions . 25

declaring . 91
Embedded C++ and special function types 31
executing . 14
inlining. 190
interrupt . 26, 28
intrinsic . 83, 126
monitor . 28
omitting type info . 167
parameters . 93
CH8-1

301

302
placing in segments . 49
recursive. 126

storing data on stack . 22–23
reentrancy (DLIB) . 256
related extensions. 25
return values from . 95
special function types. 26
trap. 27

G
getenv (library function), configuring support for 72
getzone (library function), configuring support for 74
__get_imask_ccr (intrinsic function). 235
__get_imask_exr (intrinsic function) 235
__get_interrupt_state (intrinsic function) 235
glossary. xvii
guidelines, reading . xvii

H
hardware, configuration for. 7
hash_map (STL header file) . 258
hash_set (STL header file) . 259
hdrstop (pragma directive) . 289
header files

library . 255
C . 257
C++ . 257–258
EC++ . 257
special function registers . 130
stdbool.h . 176, 257
stddef.h . 177
STL . 258
using as templates . 130

--header_context (compiler option). 158
heap . 23

changing default size (command line) 42
changing default size (IDE) . 42

size. 40–42
storing data . 14

HEAP (segment) . 273, 278
hidden parameters . 94
hints, optimization . 126
HUGE_VALF, in math.h. 260
HUGE_VALL, in math.h . 260

I
-I (compiler option). 159
IAR Systems Technical Support . 141
__IAR_SYSTEMS_ICC__ (predefined symbol) 249
__ICCH8__ (predefined symbol) 249
identifiers, implementation-defined behavior 284
IEEE format, floating-point values 178
implementation-defined behavior 283
include_alias (pragma directive) . 219
INFINITY, in math.h . 260
inheritance, in Embedded C++ . 103
initialization

dynamic . 58–59, 63
single-value . 196

initializers, static . 195
inline assembler . 85, 191

See also assembler language interface
inline functions . 190
inline (pragma directive) . 219
inlining of functions, in compiler 120
instantiate (pragma directive) . 289
integer characteristics, adding . 261
integers . 176

casting . 180
implementation-defined behavior. 286
intptr_t . 182
ptrdiff_t . 181
size_t . 181
uintptr_t . 182

integral promotion . 129
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Index
internal error . 140
__interrupt (extended keyword) 27, 210

using in pragma directives . 226
interrupt functions. 26

placement in memory. 44
interrupt vector table . 27–28

INTVEC segment . 282
interrupt vectors, specifying with pragma directive. 226
interrupts

disabling . 211
disabling during function execution 28
processor state . 22
specifying cycles for disabling. 161

interrupts and EC++ destructors, using 114
__INTERRUPT_MODE__ (predefined symbol) 249
--interrupt_mode (compiler option) 159
__interrupt_mode (runtime model attribute) 78
__INTERRUPT_MODE_0__ (predefined symbol) 249
__INTERRUPT_MODE_1__ (predefined symbol) 249
__INTERRUPT_MODE_2__ (predefined symbol) 249
__INTERRUPT_MODE_3__ (predefined symbol) 249
intptr_t (integer type) . 182
__intrinsic (extended keyword). 210
intrinsic functions . 126

overview . 83
summary . 227
__and_ccr . 229
__and_exr . 229
__bcd_add_char . 230
__bcd_add_short . 230
__bcd_subtract_char . 230
__bcd_subtract_short . 230
__dadd . 231
__disable_interrupt . 231
__do_byte_eepmov . 231
__do_word_eepmov. 232
__dsub . 232
__eepmov. 233
__eepmovi . 234

__enable_interrupt . 235
__get_imask_ccr . 235
__get_imask_exr . 235
__get_interrupt_state . 235
__mac . 236
__MOVFPE . 238
__MOVTPE. 238
__no_operation . 238
__or_ccr. 238
__or_exr. 238
__read_ccr . 239
__read_exr . 239
__rotlc . 239
__rotll . 239
__rotlw. 239
__rotrc . 239
__rotrl . 240
__rotrw . 239
__set_imask_ccr . 240
__set_imask_exr . 240
__set_interrupt_mask. 240
__set_interrupt_state . 241
__sleep. 241
__TAS . 241
__TRAPA . 242
__write_ccr . 242
__write_exr . 243
__xor_ccr . 243
__xor_exr. 243

intrinsics.h (header file) . 229
inttypes.h, added C functionality 260
INTVEC (segment). 44, 282
__int_size (runtime model attribute) 78
invocation syntax . 135
iomanip (library header file) . 258
iomanip.h (library header file) . 258
ios (library header file) . 258
iosfwd (library header file) . 258
iostream (library header file). 258
CH8-1

303

304
iostream.h (library header file) . 258
isblank, in ctype.h . 260
isfinite, in math.h . 260
isgreater, in math.h . 260
isinf, in math.h . 260
islessequal, in math.h . 260
islessgreater, in math.h . 260
isless, in math.h . 260
isnan, in math.h. 260
isnormal, in math.h . 260
ISO/ANSI C

C++ features excluded from EC++ 103
specifying strict usage . 171

ISO/ANSI standard, compiler extensions 187
iso646.h (library header file). 257
istream (library header file). 258
isunordered, in math.h . 260
iswblank, in wctype.h . 262
iterator (STL header file) . 259

K
keep_definition (pragma directive) 289
keywords, extended. 10

L
-l (compiler option). 87, 159
labels. 196

__program_start . 64
language extensions

descriptions . 187
Embedded C++ . 103
enabling . 156

language (pragma directive) . 220
Large (code model) . 26
libraries . 4

runtime. 54
standard template library . 258

library calls, specifying on command line. 155
library configuration file

modifying . 62
option for specifying . 155

library documentation . 255
library features, missing from Embedded C++ 104
library functions . 255

choosing printf formatter . 57
choosing scanf formatter . 58
choosing sprintf formatter . 57
choosing sscanf formatter . 58
reference information. xix
remove . 70
rename . 70
summary . 257
__close. 70
__lseek. 70
__open . 70
__read . 70
__write. 70

library header files . 255
library modules, creating . 160
library object files . 255
--library_module (compiler option) 160
limits.h (library header file) . 257
__LINE__ (predefined symbol) . 249
linkage, C and C++ . 91
linker command files

contents . 34
customizing35, 37, 39–41, 43–44
introduction . 34
template . 35
using the -Z command . 36
viewing default . 40

linking, from the command line . 5
list (STL header file). 259
listing, generating . 159
literals, compound. 191
literature, recommended . xix
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Index
__LITTLE_ENDIAN__ (predefined symbol) 249
llabs, in stdlib.h. 261
lldiv, in stdlib.h . 261
locale.h (library header file) . 257
location (pragma directive) . 46, 220
LOCFRAME (compiler function directive) 98
long double (data type) . 178
long float (data type), synonym for double 195
loop overhead, reducing . 165
Loop unrolling (compiler option) 119
loop unrolling, disabling . 165
loop-invariant expressions. 120
low-level processor operations 188, 227
__low_level_init, customizing . 65
__lseek (library function) . 70

M
__mac (intrinsic function). 236
mac instructions
enabling from command line (--enable_mac) 157
macros, variadic . 253
__MAC_ENABLED__ (predefined symbol) 250
malloc (standard library function). 23
map (STL header file) . 259
math.h (library header file) . 257
math.h, added C functionality . 260
MATH_ERREXCEPT, in math.h 260
math_errhandling, in math.h . 260
MATH_ERRNO, in math.h. 260
__MAX_CYCLES_NO_INTERRUPT__
(predefined symbol) . 250
--max_cycles_no_interrupt (compiler option) 161
memory

allocating in Embedded C++ . 23
dynamic . 23
heap . 23
non-initialized . 130
RAM, saving . 126

releasing in Embedded C++. 23
stack. 22

saving . 126
static . 14
used by executing functions . 14
used by global or static variables 14

memory access methods
data8 . 100
data16 . 99
data32 . 100

memory management, type-safe . 103
memory types . 15

bitvar . 16
data8 . 16
data16 . 17
data32 . 17
Embedded C++ . 21
hints . 122
placing variables in . 21
pointers . 19
specifying . 18
structures . 20
summary . 18

memory (pragma directive). 289
memory (STL header file). 259
message (pragma directive). 220
--migration_preprocessor_extensions (compiler option) . . 161
--misrac (compiler option) . 162
--misrac_verbose (compiler option) 162
__MODEL_XXX__ (predefined symbol). 250
module consistency. 77

rtmodel. 225
module name, specifying . 163
--module_name (compiler option) 163
module_name (pragma directive) 289
__monitor (extended keyword) . 211
monitor functions . 28
__MOVFPE (intrinsic function) . 238
MOVFPE (assembler instruction) 238
CH8-1

305

306
__MOVTPE (intrinsic function) . 238
MOVTPE (assembler instruction). 238
multibyte character support. 157
multiple inheritance, missing from Embedded C++ 103
mutable attribute, in Extended EC++ 113

N
namespace support

in Extended EC++ . 104, 113
missing from Embedded C++ 104

NAN, in math.h. 260
NDEBUG (preprocessor extension) 252
new operator (extended EC++) . 109
new (keyword) . 23
new (library header file) . 258
new.h (library header file) . 258
none (pragma directive) . 289
non-initialized variables . 131
non-interrupt functions and vectors
placement in memory . 44
non-interrupt functions in vectors . 44
non-scalar parameters . 126
NOP (assembler instruction) . 238
__noreturn (extended keyword) . 211

using in pragma directives . 220
NOTREACHED (pragma directive) 289
--no_code_motion (compiler option) 163
--no_cse (compiler option) . 163
__no_init (extended keyword) 131, 211

using in pragma directives . 220
--no_inline (compiler option) . 164
__no_operation (intrinsic function). 238
--no_path_in_file_macros (compiler option). 164
no_pch (pragma directive) . 289
--no_unroll (compiler option) . 165
--no_warnings (compiler option) 166
--no_wrap_diagnostics (compiler option) 166
numeric (STL header file). 259

O
-o (compiler option) . 166
object attributes. 202
object filename, specifying . 166
object module name, specifying . 163
object_attribute (pragma directive) 131, 220
--omit_types (compiler option) . 167
once (pragma directive) . 290
--only_stdout (compiler option) . 167
__open (library function) . 70
operating mode, configuration for. 6
__OPERATING_MODE__ (predefined symbol) 250
--operating_mode (compiler option) 167
__operating_mode (runtime model attribute) 79
__OPERATING_MODE_ADVANCED__
(predefined symbol) . 250
__OPERATING_MODE_NORMAL__
(predefined symbol) . 250
operators

@ . 189
__ALIGNOF__ . 189
__memory_of. 107
__segment_begin . 189
__segment_end . 189

optimization
code motion, disabling (--no_code_motion) 163
common subexpression elimination,
disabling (--no_cse) . 163
configuration . 8
function inlining, disabling (--no_inline) 164
hints . 126
loop unrolling, disabling (--no_unroll). 165
size, specifying . 173
speed, specifying . 170
types and levels . 118
type-based alias analysis, disabling (--no_tbaa) 164

optimization techniques . 119
optimize (pragma directive) . 221
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Index
options summary, compiler . 146
__or_ccr (intrinsic function) . 238
__or_exr (intrinsic function) . 238
ostream (library header file) . 258
output

specifying . 5
specifying file name. 5

output files, from XLINK . 5
output, preprocessor . 168

P
pack (pragma directive) . 183, 222
packed structure types. 183
parameters

function . 93
hidden . 94
non-scalar . 126
register . 93
rules for specifying a file or directory 145
specifying . 145
stack. 93, 95
typographic convention . xx

placement of code and data . 263
pointer types

casting between . 19
mixing, language extensions . 195

pointers
casting . 180
data . 180
function . 179
implementation-defined behavior. 287
using instead of large non-scalar parameters 126

polymorphism, in Embedded C++ 103
porting of code, containing pragma directives. 216
_Pragma (preprocessor extension) 253
pragma directives . 215

alignment . 289
ARGSUSED . 289

baseaddr. 289
basic_template_matching. 216
basic_template_matching,using 111
bitfields . 177, 217
can_instantiate (pragma directive) 289
codeseg (pragma directive) . 289
constseg . 217
cspy_support . 289
dataseg . 218
data_alignment. 217
define_type_info . 289
diag_default . 218
diag_error . 218
diag_remark . 218
diag_suppress. 218
diag_warning . 219
do_not_instantiate . 289
function . 289
hdrstop . 289
include_alias . 219
inline . 219
instantiate. 289
keep_definition . 289
language. 220
location . 46, 220
memory . 289
message . 220
module_name. 289
none . 289
NOTREACHED. 289
no_pch . 289
object_attribute . 131, 220
once . 290
optimize . 221
overview . 10
pack . 183, 222
public_equ . 290
required . 224
rtmodel. 225
CH8-1

307

308
segment . 225
syntax. 216
system_include . 290
type_attribute . 226
VARARGS. 290
vector . 27, 226
warnings . 290
__printf_args . 290
__scanf_args . 290

predefined symbols . 246
overview . 10
__BASE_FILE__. 247
__BUILD_NUMBER__ . 247
__CODE_COMPATIBILITY_CHECK__ 247
__CODE_MODEL__ . 248
__CORE__ . 248
__CORE_H8S__ . 248
__CORE_H8300H__ . 248
__cplusplus . 248
__DATA_MODEL__ . 248
__DATE__ . 248
__DIRECT_LIBRARY_CALLS__ 248
__DOUBLE_SIZE__. 249
__embedded_cplusplus . 249
__FILE__. 249
__IAR_SYSTEMS_ICC__ . 249
__ICCH8__ . 249
__INTERRUPT_MODE__ . 249
__INTERRUPT_MODE_0__ 249
__INTERRUPT_MODE_1__ 249
__INTERRUPT_MODE_2__ 249
__INTERRUPT_MODE_3__ 249
__LINE__ . 249
__LITTLE_ENDIAN__. 249
__MAC_ENABLED__ . 250
__MAX_CYCLES_NO_INTERRUPT__ 250
__MODEL_XXX__. 250
__OPERATING_MODE__ . 250
__OPERATING_MODE_ADVANCED__ 250

__OPERATING_MODE_NORMAL__. 250
__STACK_POINTER_SIZE__ 250
__STACK_POINTER_SIZE_8__ 250
__STACK_POINTER_SIZE_16__ 250
__STACK_POINTER_SIZE_32__ 250
__STDC_VERSION__ . 251
__STDC__. 251
__SUBVERSION__ . 251
__TID__ . 251
__TIME__ . 252
__VER__ . 252

--preinclude (compiler option) . 168
--preprocess (compiler option) . 168
preprocessing directives, implementation-defined
behavior . 288
preprocessor extensions

NDEBUG . 252
#warning message . 253
_Pragma. 253
__VA_ARGS__ . 253

preprocessor output. 168
preprocessor symbols . 246

defining . 150
preprocessor, extending. 161
prerequisites (programming experience) xvii
preserved registers . 92
__PRETTY_FUNCTION__ (language extension) 197
print formatter, selecting . 58
printf (library function) . 57

choosing formatter . 57
processor operations, low-level . 227
programming experience, required xvii
programming hints . 126
__program_start (label). 64
ptrdiff_t (integer type). 181
PUBLIC (assembler directive) . 169
--public_equ (compiler option) . 168
public_equ (pragma directive) . 290
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Index
Q
QCCH8 (environment variable) . 136
qualifiers

const . 184
implementation-defined behavior. 288
volatile . 183

queue (STL header file) . 259

R
-r (compiler option). 169
raise (library function), configuring support for 73
RAM memory, saving. 126
__raw (extended keyword) . 212

using in pragma directives . 220
__read (library function) . 70
read formatter, selecting . 59
reading guidelines. xvii
reading, recommended . xix
__read_ccr (intrinsic function) . 239
__read_exr (intrinsic function) . 239
realloc (standard library function). 23
recursive functions . 126

storing data on stack . 22–23
reentrancy (DLIB). 256
reference information, typographic convention. xx
register parameters . 93
registered trademarks . ii
registers

assigning to parameters . 94
callee-save, stored on stack . 22
implementation-defined behavior. 287
preserved . 92
scratch . 92

reinterpret_cast (cast operator) . 104
remark (diagnostic message)

classifying . 153
enabling . 169

--remarks (compiler option) . 169
remarks (diagnostic message) . 140
remove (library function) . 70
rename (library function) . 70
required (pragma directive). 224
--require_prototypes (compiler option) 169
return values, from functions . 95
__root (extended keyword) . 212

using in pragma directives . 221
__rotlc (intrinsic function) . 239
__rotll (intrinsic function). 239
__rotlw (intrinsic function) . 239
__rotrc (intrinsic function) . 239
__rotrl (intrinsic function). 240
__rotrw (intrinsic function). 239
routines, time-critical . 83, 188, 227
RTE (assembler instruction) . 213
RTMODEL (assembler directive) . 78
rtmodel (pragma directive) . 225
rtti support, missing from STL . 104
__rt_version (runtime model attribute) 79
runtime libraries . 54

introduction . 255
naming convention. 55
summary . 55

runtime model attributes . 77
__bus_width. 78
__code_model . 78
__data_model. 78
__double_size . 78
__interrupt_mode. 78
__int_size. 78
__operating_mode . 79
__rt_version . 79
__use_h8s_instr . 79
__use_mac_instr . 79

runtime type information, missing from Embedded C++ . 103
CH8-1

309

310
S
-s (compiler option) . 170
scanf (library function), choosing formatter 58
scratch registers . 92
segment memory types, in XLINK 34
segment operators . 189
segment (pragma directive). 225
segments . 263

BITVARS. 265
CHECKSUM . 266
CODE16 . 267
CODE24 . 267
CSTACK, example. 40
DATA8_AC . 268
DATA8_AN . 269
DATA8_I . 269
DATA8_ID. 270
DATA8_N . 271
DATA8_Z. 271
DATA16_AC . 272
DATA16_AN . 272
DATA16_C . 273
DATA16_I . 274
DATA16_ID. 270, 275, 279
DATA16_N . 271, 275, 280
DATA16_Z. 276
DATA32_AC . 276
DATA32_AN . 277
DATA32_C . 277
DATA32_HEAP. 278
DATA32_I . 278
DATA32_ID. 279
DATA32_N . 280
DATA32_Z. 280
DIFUNCT . 45, 264, 281
FLIST . 281
HEAP. 273, 278
introduction . 33

INTVEC . 44, 282
summary . 263

__segment_begin (extended operator). 189
__segment_end (extended operator) 189
semaphores (__monitor) . 211
set (STL header file) . 259
setjmp.h (library header file). 257
settings, basic for project configuration 5
__set_imask_ccr (intrinsic function) 240
__set_imask_exr (intrinsic function). 240
__set_interrupt_mask (intrinsic function) 240
__set_interrupt_state (intrinsic function) 241
severity level, of diagnostic messages 140

specifying . 140
SFR (special function registers) . 130

declaring extern . 46
shared object . 138
signal (library function), configuring support for 73
signal.h (library header file) . 257
signbit, in math.h . 260
signed char (data type) . 176–177

specifying . 149
signed int (data type). 176
signed long long (data type) . 176
signed long (data type) . 176
signed short (data type). 176
--silent (compiler option) . 170
silent operation, specifying . 170
64-bits (floating-point format) . 178
size optimization, specifying. 173
size_t (integer type) . 181
skeleton code, creating for assembler language interface . . 86
__sleep (intrinsic function) . 241
SLEEP (assembler instruction) . 241
slist (STL header file) . 259
Small (code model). 26
snprintf, in stdio.h . 261
source files, list all referred. 158
special function registers (SFR) . 130
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Index
special function types . 26
overview . 10

speed optimization, specifying . 170
sprintf (library function) . 57

choosing formatter . 57
sscanf (library function), choosing formatter 58
sstream (library header file) . 258
stack . 22

advantages and problems using 22
changing default size (from command line) 40
changing default size (in Embedded Workbench) 40
contents of . 22
function usage . 14
internal data . 268
saving space . 126
size. 41

stack parameters . 93, 95
stack pointer . 22

configuring for artithmetics . 127
stack (STL header file) . 259
__STACK_POINTER_SIZE__ (predefined symbol) 250
--stack_pointer_size (compiler option) 171
__STACK_POINTER_SIZE_8__ (predefined symbol) . . 250
__STACK_POINTER_SIZE_16__ (predefined symbol) . 250
__STACK_POINTER_SIZE_32__ (predefined symbol) . 250
standard error . 167
standard output, specifying . 167
standard template library (STL)

in Extended EC++ . 104, 112, 258
missing from Embedded C++ 104

startup, system . 64
statements, implementation-defined behavior 288
static memory . 14
static overlay. 97
static_cast (cast operator) . 104
std namespace, missing from EC++
and Extended EC++ . 113
stdarg.h (library header file) . 257
stdbool.h (library header file) 176, 257

added C functionality. 261

__STDC__ (predefined symbol) . 251
__STDC_VERSION__ (predefined symbol) 251
stddef.h (library header file) 177, 257
stderr. 70, 167
stdexcept (library header file) . 258
stdin . 70
stdint.h, added C functionality . 261
stdio.h (library header file) . 257
stdio.h, additional C functionality 261
stdlib.h (library header file). 257
stdlib.h, additional C functionality 261
stdout . 70, 167
STL. 112
streambuf (library header file). 258
streams, supported in Embedded C++. 104
--strict_ansi (compiler option). 171
string (library header file) . 258
strings, supported in Embedded C++ 104
string.h (library header file) . 257
strstream (library header file) . 258
strtod (library function), configuring support for 74
strtod, in stdlib.h . 261
strtof, in stdlib.h . 261
strtold, in stdlib.h . 261
strtoll, in stdlib.h . 261
strtoull, in stdlib.h . 261
structs . 192

anonymous. 189
structure types

alignment . 182–183
layout . 182
packed . 183

structures
anonymous. 124
implementation-defined behavior. 287
placing in memory type . 20

__SUBVERSION__ (predefined symbol). 251
support, technical . 141
CH8-1

311

312
symbols
anonymous, creating . 191
overview of predefined. 10
preprocessor, defining . 150

syntax
compiler options . 143
extended keywords. 199

system startup . 64
system termination . 64
system (library function), configuring support for 72
system_include (pragma directive) 290

T
__TAS (intrinsic function) . 241
TAS (assembler instruction) . 241
__task (extended keyword) . 212

using in pragma directives . 221
technical support, IAR Systems . 141
template support

in Extended EC++ . 104, 110
missing from Embedded C++ 103

termination, system. 64
terminology. .xvii, xx
32-bits (floating-point format) . 178
this pointer, referring to a class object (extended EC++). . 105
this (pointer) . 88
__TID__ (predefined symbol). 251
__TIME__ (predefined symbol) . 252
time (library function), configuring support for 74
time-critical routines . 83, 188, 227
time.h (library header file) . 257
tips, programming. 126
trademarks . ii
translation, implementation-defined behavior 283
__trap (extended keyword) . 27, 213
trap functions . 27
trap vectors, specifying with pragma directive 226
__TRAPA (intrinsic function). 242

TRAPA (assembler instruction) 27, 242
type attributes . 199
type definitions, used for specifying memory storage 201
type information, omitting . 167
type qualifiers, const and volatile 183
typedefs, repeated declarations . 195
type-based alias analysis

compiler transformation. 120
disabling (--no_tbaa) . 164

type-safe memory management . 103
type_attribute (pragma directive) 226
typographic conventions . xx

U
uintptr_t (integer type) . 182
unions

anonymous. 124, 189
implementation-defined behavior. 287

unsigned char (data type) . 176–177
changing to signed char . 149

unsigned int (data type). 176
unsigned long long (data type) . 176
unsigned long (data type) . 176
unsigned short (data type) . 176
__use_h8s_instr (runtime model attribute) 79
__use_mac_instr (runtime model attribute). 79
utility (STL header file) . 259

V
VARARGS (pragma directive) . 290
variable type information, omitting in object output 167
variables

auto . 22
defined inside a function . 22
global, placement in memory. 14
local. See auto variables
non-initialized . 131
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Index
omitting type info . 167
placing at absolute addresses . 46
placing in named segments . 48
static, placement in memory . 14

vector (pragma directive) . 27, 226
vector (STL header file) . 259
__vector_call (extended keyword) 214
__VER__ (predefined symbol) . 252
version, of compiler . 251–252
vfscanf, in stdio.h . 261
vfwscanf, in wchar.h . 261
void, pointers to . 195
volatile, declaring objects . 183
vscanf, in stdio.h . 261
vsnprintf, in stdio.h . 261
vsscanf, in stdio.h . 261
vswscanf, in wchar.h. 261
vwscanf, in wchar.h . 261

W
#warning message (preprocessor extension) 253
warnings . 140

classifying . 154
disabling . 166
exit code. 172

warnings (pragma directive) . 290
--warnings_affect_exit_code (compiler option) 139
--warnings_are_errors (compiler option) 172
wchar.h (library header file) . 257
wchar.h, added C functionality . 261
wchar_t (data type), adding support for in C. 177
wcstof, in wchar.h . 261
wcstolb, in wchar.h . 261
wctype.h (library header file) . 257
wctype.h, added C functionality . 262
--weak_rtmodel_check (compiler option) 172
__write (library function) . 70
__write_ccr (intrinsic function). 242

__write_exr (intrinsic function) . 243

X
XLINK output files . 5
XLINK segment memory types . 34
__xor_ccr (intrinsic function) . 243
__xor_exr (intrinsic function) . 243

Z
-z (compiler option) . 173

Symbols
#include files, specifying . 136, 159
#warning message (preprocessor extension) 253
-D (compiler option) . 150
-e (compiler option) . 156
-f (compiler option). 158
-I (compiler option). 159
-l (compiler option). 87, 159
-o (compiler option) . 166
-r (compiler option). 169
-s (compiler option) . 170
-z (compiler option) . 173
--bus_width (compiler option) . 148
--char_is_signed (compiler option) 149
--code_model (compiler option) . 149
--core (compiler option) . 150
--data_model (compiler option) . 151
--debug (compiler option) . 151
--dependencies (compiler option) 152
--diagnostics_tables (compiler option) 154
--diag_error (compiler option) . 153
--diag_remark (compiler option). 153
--diag_suppress (compiler option) 153
--diag_warning (compiler option) 154
--direct_library_calls (compiler option) 155
CH8-1

313

314
--dlib_config (compiler option). 155
--double (compiler option) . 155
--ec++ (compiler option). 156
--eec++ (compiler option) . 157
--enable_mac (compiler option) . 157
--enable_multibytes (compiler option) 157
--error_limit (compiler option) . 158
--header_context (compiler option). 158
--interrupt_mode (compiler option) 159
--library_module (compiler option) 160
--max_cycles_no_interrupt (compiler option) 161
--migration_preprocessor_extensions (compiler option) . . 161
--misrac (compiler option) . 162
--misrac_verbose (compiler option) 162
--module_name (compiler option) 163
--no_code_motion (compiler option) 163
--no_cse (compiler option) . 163
--no_inline (compiler option) . 164
--no_path_in_file_macros (compiler option). 164
--no_tbaa (compiler option) . 164
--no_typedefs_in_diagnostics (compiler option) 165
--no_unroll (compiler option) . 165
--no_warnings (compiler option) 166
--no_wrap_diagnostics (compiler option) 166
--omit_types (compiler option) . 167
--only_stdout (compiler option) . 167
--operating_mode (compiler option) 167
--preinclude (compiler option) . 168
--preprocess (compiler option) . 168
--remarks (compiler option) . 169
--require_prototypes (compiler option) 169
--silent (compiler option) . 170
--stack_pointer_size (compiler option) 171
--strict_ansi (compiler option). 171
--warnings_affect_exit_code (compiler option) 139, 172
--warnings_are_errors (compiler option) 172
--weak_rtmodel_check (compiler option) 172
@ (operator) . 189
_Exit (exit function) . 64

_exit (exit function) . 64
_Exit, in stdlib.h . 261
_formatted_write (library function) 57
_Pragma (preprocessor extension) 253
__ALIGNOF__ (operator) . 189
__and_ccr (intrinsic function) . 229
__and_exr (intrinsic function). 229
__asm (language extension) . 191
__BASE_FILE__ (predefined symbol) 247
__bcd_add_char (intrinsic function) 230
__bcd_add_short (intrinsic function) 230
__bcd_subtract_char (intrinsic function). 230
__bcd_subtract_short (intrinsic function) 230
__bitvar (extended keyword). 204
__BUILD_NUMBER__ (predefined symbol) 247
__bus_width (runtime model attribute) 78
__cc_version1 (extended keyword). 204
__cc_version2 (extended keyword). 205
__cc_version3 (extended keyword). 205
__close (library function) . 70
__code_model (runtime model attribute) 78
__CODE_MODEL__ (predefined symbol). 248
__code16 (extended keyword) . 206
__code16 (function pointer) . 179
__code24 (extended keyword) . 206
__code24 (function pointer) . 179
__CORE__ (predefined symbol). 248
__CORE_H8S__ (predefined symbol) 248
__CORE_H8300H__ (predefined symbol) 248
__cplusplus (predefined symbol) 248
__dadd (intrinsic function) . 231
__data_model (runtime model attribute) 78
__DATA_MODEL__ (predefined symbol) 248
__data8 (data pointer) . 180
__data8 (extended keyword) . 207
__data16 (data pointer) . 180
__data16 (extended keyword) . 208
__data32 (data pointer) . 180
__data32 (extended keyword) . 209
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

Index
__DATE__ (predefined symbol) . 248
__DIRECT_LIBRARY_CALLS__ (predefined symbol) . 248
__disable_interrupt (intrinsic function). 231
__double_size (runtime model attribute). 78
__DOUBLE_SIZE__ (predefined symbol) 249
__do_byte_eepmov (intrinsic function) 231
__do_word_eepmov (intrinsic function) 232
__dsub (intrinsic function) . 232
__eepmov (intrinsic function) . 233
__eepmovi (intrinsic function) . 234
__embedded_cplusplus (predefined symbol) 249
__enable_interrupt (intrinsic function) 235
__exit (exit function). 64
__FILE__ (predefined symbol). 249
__FUNCTION__ (language extension) 197
__func__ (language extension) . 197
__gets, in stdio.h . 261
__get_imask_ccr (intrinsic function). 235
__get_imask_exr (intrinsic function) 235
__get_interrupt_state (intrinsic function) 235
__IAR_SYSTEMS_ICC__ (predefined symbol) 249
__ICCH8__ (predefined symbol) 249
__interrupt (extended keyword) 27, 210

using in pragma directives . 226
__interrupt_mode (runtime model attribute) 78
__INTERRUPT_MODE__ (predefined symbol) 249
__INTERRUPT_MODE_0__ (predefined symbol) 249
__INTERRUPT_MODE_1__ (predefined symbol) 249
__INTERRUPT_MODE_2__ (predefined symbol) 249
__INTERRUPT_MODE_3__ (predefined symbol) 249
__intrinsic (extended keyword). 210
__int_size (runtime model attribute) 78
__LINE__ (predefined symbol) . 249
__LITTLE_ENDIAN__ (predefined symbol) 249
__low_level_init, customizing . 65
__lseek (library function) . 70
__mac (intrinsic function). 236
__MAC_ENABLED__ (predefined symbol) 250
__memory_of, operator. 107

__MODEL_XXX__ (predefined symbol). 250
__monitor (extended keyword) . 211
__MOVFPE (intrinsic function) . 238
__MOVTPE (intrinsic function) . 238
__noreturn (extended keyword) . 211

using in pragma directives . 220
__no_init (extended keyword) 131, 211

using in pragma directives . 220
__no_operation (intrinsic function). 238
__open (library function) . 70
__operating_mode (runtime model attribute) 79
__OPERATING_MODE__ (predefined symbol) 250
__OPERATING_MODE_ADVANCED__
(predefined symbol) . 250
__OPERATING_MODE_NORMAL__
(predefined symbol) . 250
__or_ccr (intrinsic function) . 238
__or_exr (intrinsic function) . 238
__PRETTY_FUNCTION__ (language extension) 197
__printf_args (pragma directive). 290
__program_start (label). 64
__qsortbbl, in stdlib.h . 261
__raw (extended keyword) . 212

using in pragma directives . 220
__read (library function) . 70
__read_ccr (intrinsic function) . 239
__read_exr (intrinsic function) . 239
__root (extended keyword) . 212

using in pragma directives . 221
__rotlc (intrinsic function) . 239
__rotll (intrinsic function). 239
__rotlw (intrinsic function) . 239
__rotrc (intrinsic function) . 239
__rotrl (intrinsic function). 240
__rotrw (intrinsic function). 239
__rt_version (runtime model attribute) 79
__scanf_args (pragma directive) . 290
__segment_begin (extended operators) 189
__segment_end (extended operators) 189
__set_imask_ccr (intrinsic function) 240
CH8-1

315

316
__set_imask_exr (intrinsic function). 240
__set_interrupt_mask (intrinsic function) 240
__set_interrupt_state (intrinsic function) 241
__sleep (intrinsic function) . 241
__STACK_POINTER_SIZE__ (predefined symbol) 250
__STACK_POINTER_SIZE_8__ (predefined symbol) . . 250
__STACK_POINTER_SIZE_16__ (predefined symbol) . 250
__STACK_POINTER_SIZE_32__ (predefined symbol) . 250
__STDC_VERSION__ (predefined symbol) 251
__STDC__ (predefined symbol) . 251
__SUBVERSION__ (predefined symbol). 251
__TAS (intrinsic function) . 241
__task (extended keyword) . 212

using in pragma directives . 221
__TID__ (predefined symbol). 251
__TIME__ (predefined symbol) . 252
__trap (extended keyword) . 27, 213
__TRAPA (intrinsic function). 242
__ungetchar, in stdio.h . 261
__use_h8s_instr (runtime model attribute) 79
__use_mac_instr (runtime model attribute). 79
__VA_ARGS__ (preprocessor extension). 253
__vector_call (extended keyword) 214
__VER__ (predefined symbol) . 252
__write (library function) . 70
__write_array, in stdio.h . 261
__write_ccr (intrinsic function). 242
__write_exr (intrinsic function) . 243
__xor_ccr (intrinsic function) . 243
__xor_exr (intrinsic function) . 243

Numerics
32-bits (floating-point format) . 178
64-bits (floating-point format) . 178
CH8-1

H8 IAR C/C++ Compiler
Reference Guide

	Brief contents
	Contents
	Tables
	Preface
	Who should read this guide
	How to use this guide
	What this guide contains
	Other documentation
	Further reading

	Document conventions
	Typographic conventions

	Part 1. Using the compiler
	Getting started
	IAR language overview
	Supported H8/300H and H8S derivatives
	Building applications-an overview
	Compiling
	Linking

	Basic settings for project configuration
	Core
	Operating mode
	Data model
	Code model
	Hardware configuration
	Configuration dependencies
	Size of double floating-point type
	Optimization for speed and size
	Runtime environment
	Choosing a runtime library in the IAR Embedded Workbench IDE
	Choosing a runtime library from the command line
	Setting library and runtime environment options

	Special support for embedded systems
	Extended keywords
	Pragma directives
	Predefined symbols
	Special function types
	Header files for I/O
	Accessing low-level features

	Data storage
	Introduction
	Data models
	Specifying a data model

	Memory types
	Bitvar
	Data8 memory
	Data16 memory
	Data32 memory
	Using data memory attributes
	Syntax
	Type definitions

	Pointers and memory types
	Differences between pointer types

	Structures and memory types
	More examples

	C++ and memory types
	The stack and auto variables
	Advantages
	Potential problems

	Dynamic memory on the heap
	Potential problems

	Functions
	Function-related extensions
	Code models and memory attributes for function storage
	Primitives for interrupts, concurrency, and OS-related programming
	Interrupt functions
	Trap functions
	Monitor functions
	C++ and special function types

	Placing code and data
	Segments and memory
	What is a segment?
	Segment memory type

	Placing segments in memory
	Customizing the linker command file
	The contents of the linker command file
	Using the -Z command for sequential placement
	Using the -P command for packed placement

	Data segments
	Static memory segments
	Segment naming
	Initialized data
	Data segments for static memory in the default linker command file

	The stack
	Stack size allocation in the IAR Embedded Workbench IDE
	Stack size allocation from the command line
	Placement of stack segment
	Stack size considerations

	The heap
	Heap segments in DLIB
	Heap size allocation in the IAR Embedded Workbench IDE
	Heap size allocation from the command line
	Placement of heap segment
	Heap size and standard I/O

	Located data

	Code segments
	Normal code
	Interrupt vectors
	Function vectors for non-interrupt functions

	C++ dynamic initialization
	Controlling data and function placement in memory
	Data placement at an absolute location
	Declaring located variables extern and volatile
	Examples

	Data and function placement in segments
	Examples of placing variables in named segments
	Examples of placing functions in named segments

	Verifying the linked result of code and data placement
	Segment too long errors and range errors
	Linker map file

	The DLIB runtime environment
	Introduction to the runtime environment
	Runtime environment functionality
	Library selection
	Situations that require library building
	Library configurations
	Debug support in the runtime library

	Using a prebuilt library
	Customizing a prebuilt library without rebuilding

	Choosing formatters for printf and scanf
	Choosing printf formatter
	Specifying the print formatter in the IAR Embedded Workbench IDE
	Specifying printf formatter from the command line

	Choosing scanf formatter
	Specifying scanf formatter in the IAR Embedded Workbench IDE
	Specifying scanf formatter from the command line

	Overriding library modules
	Overriding library modules using the IAR Embedded Workbench IDE
	Overriding library modules from the command line

	Building and using a customized library
	Setting up a library project
	Modifying the library functionality
	Modifying the library configuration file

	Using a customized library

	System startup and termination
	System startup
	System termination
	C-SPY interface to system termination

	Customizing system initialization
	_ _low_level_init
	Modifying the file cstartup.s37
	Situations that require a modified cstartup.s37 file

	Standard streams for input and output
	Implementing low-level character input and output
	Example of using _ _write and _ _read

	Configuration symbols for printf and scanf
	Customizing formatting capabilities

	File input and output
	Locale
	Locale support in prebuilt libraries
	Customizing the locale support
	Locale configuration symbols
	Building a library without support for locale interface
	Building a library with support for locale interface

	Changing locales at runtime
	Example

	Environment interaction
	Signal and raise
	Time
	Strtod
	Assert
	Heaps
	C-SPY Debugger runtime interface
	Low-level debugger runtime interface
	The debugger terminal I/O window

	Checking module consistency
	Runtime model attributes
	Using runtime model attributes
	Predefined runtime attributes
	Examples

	Using a weak runtime model check
	User-defined runtime model attributes
	Examples

	Assembler language interface
	Mixing C and assembler
	Intrinsic functions
	Mixing C and assembler modules
	Inline assembler

	Calling assembler routines from C
	Creating skeleton code
	Compiling the code
	The output file

	Calling assembler routines from C++
	Calling convention
	Choosing a calling convention
	Hints for using calling convention 3

	Function declarations
	C and C++ linkage
	Preserved versus scratch registers
	Scratch registers
	Preserved registers
	Special registers

	Function call
	Register parameters versus stack parameters
	Register parameters
	Stack parameters
	Stack layout

	Function exit
	Return values
	Registers used for returning values
	Stack cleaning at function exit
	Return address handling

	Restrictions for special function types
	Examples
	Function directives

	Memory access methods
	Example code for showing differences in memory types
	The data16 memory access method
	The data32 memory access method
	The data8 memory access method

	Call frame information

	Using C++
	Overview
	Standard Embedded C++
	Extended Embedded C++
	Enabling C++ support

	Feature descriptions
	Classes
	Class memory

	Functions
	New and Delete operators
	New and delete expressions

	Templates
	Templates and data memory attributes
	Non-type template parameters
	The standard template library
	STL and the IAR C-SPY Debugger

	Variants of casts
	Mutable
	Namespace
	The STD namespace
	Pointer to member functions
	Using interrupts and C++ destructors

	C++ language extensions

	Efficient coding for embedded applications
	Taking advantage of the compilation system
	Controlling compiler optimizations
	Fine-tuning enabled transformations
	Common subexpression elimination
	Loop unrolling
	Function inlining
	Code motion
	Type-based alias analysis

	Selecting data types and placing data in memory
	Using efficient data types
	Floating-point types

	Data model and data memory attributes
	Using Small or Huge data model in the Advanced operating mode
	Placing frequently accessed data in data8 memory

	Rearranging elements in a structure
	Anonymous structs and unions

	Writing efficient code
	Saving stack space and RAM memory
	Stack pointer arithmetics
	Function prototypes
	Prototyped style
	Kernighan & Ritchie style

	Function calls
	Integer types and bit negation
	Protecting simultaneously accessed variables
	Accessing special function registers
	Non-initialized variables

	Part 2. Compiler reference
	Compiler usage
	Compiler invocation
	Invocation syntax
	Passing options to the compiler
	Environment variables

	Include file search procedure
	Compiler output
	Error return codes

	Diagnostics
	Message format
	Severity levels
	Remark
	Warning
	Error
	Fatal error

	Setting the severity level
	Internal error

	Compiler options
	Compiler options syntax
	Types of options
	Rules for specifying parameters
	Optional parameters
	Mandatory parameters
	Options with both optional and mandatory parameters
	Rules for specifying a filename or directory as parameters
	Additional rules

	Options summary
	Descriptions of options
	--bus_width
	--char_is_signed
	--code_model
	--core
	-D
	--data_model
	--debug, -r
	--dependencies
	--diag_error
	--diag_remark
	--diag_suppress
	--diag_warning
	--diagnostics_tables
	--direct_library_calls
	--dlib_config
	--double
	-e
	--ec++
	--eec++
	--enable_mac
	--enable_multibytes
	--error_limit
	-f
	--header_context
	-I
	--interrupt_mode
	-l
	--library_module
	--max_cycles_no_interrupt
	--migration_preprocessor_ extensions
	--misrac
	--misrac_verbose
	--module_name
	--no_code_motion
	--no_cse
	--no_inline
	--no_path_in_file_macros
	--no_tbaa
	--no_typedefs_in_diagnostics
	--no_unroll
	--no_warnings
	--no_wrap_diagnostics
	-o
	--omit_types
	--only_stdout
	--operating_mode
	--preinclude
	--preprocess
	--public_equ
	-r, --debug
	--remarks
	--require_prototypes
	-s
	--silent
	--stack_pointer_size
	--strict_ansi
	--warnings_affect_exit_code
	--warnings_are_errors
	--weak_rtmodel_check
	-z

	Data representation
	Alignment
	Alignment in the H8 IAR C/C++ Compiler

	Basic data types
	Integer types
	Bool
	The enum type
	The char type
	The wchar_t type
	Bitfields

	Floating-point types
	32-bit floating-point format
	64-bit floating-point format
	Representation of special floating-point numbers

	Pointer types
	Function pointers
	Data pointers
	Casting
	size_t
	ptrdiff_t
	intptr_t
	uintptr_t

	Structure types
	Alignment
	General layout
	Packed structure types

	Type qualifiers
	Declaring objects volatile
	Definition of access to volatile objects
	Rules for accesses

	Declaring objects const

	Data types in C++

	Compiler extensions
	Compiler extensions overview
	Enabling language extensions

	C language extensions
	Important language extensions
	Useful language extensions
	Inline assembler
	Compound literals
	Incomplete arrays at end of structs
	This feature is copied from the C99 standard.
	Hexadecimal floating-point constants
	Designated initializers in structures and arrays

	Minor language extensions

	Extended keywords
	General syntax rules for extended keywords
	Type attributes
	Memory attributes
	General type attributes
	Syntax for type attributes used on data objects
	Syntax for type attributes on data pointers
	Syntax for type attributes on functions
	Syntax for type attributes on function pointers

	Object attributes
	Syntax for object attributes

	Summary of extended keywords
	Descriptions of extended keywords
	_ _bitvar
	_ _cc_version1
	_ _cc_version2
	_ _cc_version3
	_ _code16
	_ _code24
	_ _data8
	_ _data16
	_ _data32
	_ _interrupt
	_ _intrinsic
	_ _monitor
	_ _no_init
	_ _noreturn
	_ _raw
	_ _root
	_ _task
	_ _trap
	_ _vector_call

	Pragma directives
	Summary of pragma directives
	Descriptions of pragma directives
	#pragma basic_template_matching
	#pragma bitfields
	#pragma constseg
	#pragma data_alignment
	#pragma dataseg
	#pragma diag_default
	#pragma diag_error
	#pragma diag_remark
	#pragma diag_suppress
	#pragma diag_warning
	#pragma include_alias
	#pragma inline
	#pragma language
	#pragma location
	#pragma message
	#pragma object_attribute
	#pragma optimize
	#pragma pack
	#pragma required
	#pragma rtmodel
	#pragma segment
	#pragma type_attribute
	#pragma vector

	Intrinsic functions
	Summary of intrinsic functions
	Descriptions of intrinsic functions
	_ _and_ccr
	_ _and_exr
	_ _bcd_add_char
	_ _bcd_add_short
	_ _bcd_subtract_char
	_ _bcd_subtract_short
	_ _dadd
	_ _disable_interrupt
	_ _do_byte_eepmov
	_ _do_word_eepmov
	_ _dsub
	_ _eepmov
	_ _eepmovi
	_ _enable_interrupt
	_ _get_imask_ccr
	_ _get_imask_exr
	_ _get_interrupt_state
	_ _mac
	_ _macl
	_ _MOVFPE
	_ _MOVTPE
	_ _no_operation
	_ _or_ccr
	_ _or_exr
	_ _read_ccr
	_ _read_exr
	_ _rotlc
	_ _rotlw
	_ _rotll
	_ _rotrc
	_ _rotrw
	_ _rotrl
	_ _set_imask_ccr
	_ _set_imask_exr
	_ _set_interrupt_mask
	_ _set_interrupt_state
	_ _sleep
	_ _TAS
	_ _TRAPA
	_ _write_ccr
	_ _write_exr
	_ _xor_ccr
	_ _xor_exr

	The preprocessor
	Overview of the preprocessor
	Predefined preprocessor symbols
	Summary of predefined symbols
	Descriptions of predefined symbols
	_ _BASE_FILE_ _
	_ _BUILD_NUMBER_ _
	_ _CODE_COMPATIBILITY_CHECK_ _
	_ _CODE_MODEL_ _
	_ _CORE_ _
	_ _cplusplus
	_ _DATA_MODEL_ _
	_ _DATE_ _
	_ _DIRECT_LIBRARY_CALLS_ _
	_ _DOUBLE_SIZE_ _
	_ _embedded_cplusplus
	_ _FILE_ _
	_ _IAR_SYSTEMS_ICC_ _
	_ _ICCH8_ _
	_ _INTERRUPT_MODE_ _
	_ _LINE_ _
	_ _LITTLE_ENDIAN_ _
	_ _MAC_ENABLED_ _
	_ _MAX_CYCLES_NO_INTERRUPT_ _
	_ _MODEL_XXX_ _
	_ _OPERATING_MODE_ _
	_ _STACK_POINTER_SIZE_ _
	_ _STDC_ _
	_ _STDC_VERSION_ _
	_ _SUBVERSION_ _
	_ _TID_ _
	_ _TIME_ _
	_ _VER_ _

	Description of miscellaneous preprocessor extensions
	NDEBUG
	_Pragma()
	#warning message
	_ _VA_ARGS_ _
	Syntax
	Example

	Library functions
	Introduction
	Header files
	Library object files
	Reentrancy

	IAR DLIB Library
	C header files
	C++ header files
	Embedded C++
	Extended Embedded C++ standard template library
	Using standard C libraries in C++

	Added C functionality
	ctype.h
	inttypes.h
	math.h
	stdbool.h
	stdint.h
	stdio.h
	stdlib.h
	wchar.h
	wctype.h

	Segment reference
	Summary of segments
	Descriptions of segments
	BITVARS
	CHECKSUM
	CODE16
	CODE24
	CSTACK
	DATA8_AC
	DATA8_AN
	DATA8_I
	DATA8_ID
	DATA8_N
	DATA8_Z
	DATA16_AC
	DATA16_AN
	DATA16_C
	DATA16_HEAP
	DATA16_I
	DATA16_ID
	DATA16_N
	DATA16_Z
	DATA32_AC
	DATA32_AN
	DATA32_C
	DATA32_HEAP
	DATA32_I
	DATA32_ID
	DATA32_N
	DATA32_Z
	DIFUNCT
	FLIST
	INTVEC

	Implementation-defined behavior
	Descriptions of implementation-defined behavior
	Translation
	Diagnostics (5.1.1.3)

	Environment
	Arguments to main (5.1.2.2.2.1)
	Interactive devices (5.1.2.3)

	Identifiers
	Significant characters without external linkage (6.1.2)
	Significant characters with external linkage (6.1.2)
	Case distinctions are significant (6.1.2)

	Characters
	Source and execution character sets (5.2.1)
	Bits per character in execution character set (5.2.4.2.1)
	Mapping of characters (6.1.3.4)
	Unrepresented character constants (6.1.3.4)
	Character constant with more than one character (6.1.3.4)
	Converting multibyte characters (6.1.3.4)
	Range of 'plain' char (6.2.1.1)

	Integers
	Range of integer values (6.1.2.5)
	Demotion of integers (6.2.1.2)
	Signed bitwise operations (6.3)
	Sign of the remainder on integer division (6.3.5)
	Negative valued signed right shifts (6.3.7)

	Floating point
	Representation of floating-point values (6.1.2.5)
	Converting integer values to floating-point values (6.2.1.3)
	Demoting floating-point values (6.2.1.4)

	Arrays and pointers
	size_t (6.3.3.4, 7.1.1)
	Conversion from/to pointers (6.3.4)
	ptrdiff_t (6.3.6, 7.1.1)

	Registers
	Honoring the register keyword (6.5.1)

	Structures, unions, enumerations, and bitfields
	Improper access to a union (6.3.2.3)
	Padding and alignment of structure members (6.5.2.1)
	Sign of 'plain' bitfields (6.5.2.1)
	Allocation order of bitfields within a unit (6.5.2.1)
	Can bitfields straddle a storage-unit boundary (6.5.2.1)
	Integer type chosen to represent enumeration types (6.5.2.2)

	Qualifiers
	Access to volatile objects (6.5.3)

	Declarators
	Maximum numbers of declarators (6.5.4)

	Statements
	Maximum number of case statements (6.6.4.2)

	Preprocessing directives
	Character constants and conditional inclusion (6.8.1)
	Including bracketed filenames (6.8.2)
	Including quoted filenames (6.8.2)
	Character sequences (6.8.2)
	Recognized pragma directives (6.8.6)
	Default _ _DATE_ _ and _ _TIME_ _ (6.8.8)

	IAR DLIB Library functions
	NULL macro (7.1.6)
	Diagnostic printed by the assert function (7.2)
	Domain errors (7.5.1)
	Underflow of floating-point values sets errno to ERANGE (7.5.1)
	fmod() functionality (7.5.6.4)
	signal() (7.7.1.1)
	Terminating newline character (7.9.2)
	Blank lines (7.9.2)
	Null characters appended to data written to binary streams (7.9.2)
	Files (7.9.3)
	remove() (7.9.4.1)
	rename() (7.9.4.2)
	%p in printf() (7.9.6.1)
	%p in scanf() (7.9.6.2)
	Reading ranges in scanf() (7.9.6.2)
	File position errors (7.9.9.1, 7.9.9.4)
	Message generated by perror() (7.9.10.4)
	Allocating zero bytes of memory (7.10.3)
	Behavior of abort() (7.10.4.1)
	Behavior of exit() (7.10.4.3)
	Environment (7.10.4.4)
	system() (7.10.4.5)
	Message returned by strerror() (7.11.6.2)
	The time zone (7.12.1)
	clock() (7.12.2.1)

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z
	Symbols
	Numerics

