

Single-Channel, Two-Channel & Three-Channel Control Units

VGC501, VGC502, VGC503

CE

目次

製品	品の識別	4
適合	合性	4
使用	目目的	5
供給	合部品	5
安全	全に関する注意	6
1.1	使用されている表示	6
1.2	作業者資格	6
1.3	安全に関する一般的な注意	6
1.4	責任および保証	7
技術	村データ	7
設置		10
3.1	機械的設置	11
	3.1.1 ラックに設置 VGC501	11
	3.1.2 ラックに設置 VGC502, VGC503	12
	3.1.3 コントロールパネルに設置	13
	3.1.4 デスクトップユニット	14
3.2	電源コネクタ	14
3.3	真空ゲージコネクタ <i>CH 1</i> , <i>CH 2, CH</i> 3	15
3.4	CONTROLコネクタ VGC501	16
3.5	CONTROLコネクタ VGC502, VGC503	16
3.6	RELAY コネクタ VGC502, VGC503	17
3.7	インターフェースコネクタ USB Type B	18
3.8	インターフェースコネクタ USB Type A	18
3.9	インターフェースコネクタ Ethernet	18
操作	乍	19
4.1	フロントパネル	19
4.2	スイッチの入/切	21
4.3	動作モード	21
4.4	測定モード	24
4.5	パラメータモード	25
	4.5.1 セットポイントパラメータ	26
	4.5.2 センサパラメータ	28
	4.5.3 センサ - コントロールパラメータ	32
	4.5.4 ジェネラルパラメータ	34

NFICON

	4.5.5 テストパラメータ	37
	4.5.6 データロガーモード	39
	4.5.7 パラメータ転送モード	40
5	通信プロトコル(シリアルインターフェース)	41
6	保守	59
7	トラブルシューティング	59
8	修理	60
9	アクセサリ	60
10	保管	60
11	廃棄	60
付録	1 K	61
	A: 変換表	61
	B: ファームウェアアップデート	61
	C: Ethernet の設定	63
	C 1: ネットワークへの接続	63
	C 2: コンピューターへの接続	64
	C 3: Ethernet 接続ツール	64
	D: 文献	65
	EU 適合宣言	65

製品の識別

インフィコンにお問い合わせの際は、本製品の銘板に記載されている内容をお知らせください。銘板に記載されている内容を、書きとめておくと便利です。

適合性

このドキュメントは、以下の製品に適用されます。

398-481 (VGC501,1チャンネル式コントローラ)

398-482 (VGC502, 2 チャンネル式コントローラ)

398-483 (VGC503, 3 チャンネル式コントローラ)

部品番号は、装置の裏面に貼られているタイプラベルに記載されています。

この取扱説明書は、ファームウェアバージョン 1.04 に基づいています。 装置が説明どおりに動作しない場合は、ファームウェアバージョンが正しいかチェックしてください。 (→

③ 38)を参照してください。

凡例に特に示されていない場合、本書の図は VGC503(3 チャンネル式コントローラ)に対応しています。 VGC503は類推により VGC501(1 チャンネル式コントローラ)及び VGC502(2 チャンネル式コントロ ーラ)に適用されます。

弊社は、予告なしに製品の技術的改良を行う権利を保有します。図面は絶対的なものではありません。

すべての寸法は mm 単位で示されています。

使用目的

真空計コントローラユニット VGC501、VGC502、および、VGC503 は、インフィコン製の真空計と共に 使用し、総合的な圧力測定を実施します。真空計はそれぞれの取扱説明書に従って使用してください。

供給部品

- 1x コントローラユニット 1x 電源ケーブル 1x ラバーストリップ
- 2× ラバー脚
- 4x つば付きネジ
- 4x プラスチックスリーブ
- 1× CD-ROM (取扱説明書、ツール ...)
- 1x EU 適合宣言
- 1x 取扱説明書(英)

1 安全に関する注意

1.1 使用されている表示

危険性の表示

TOP DANGER

あらゆるケガを予防するための注意です。

I WARNING

機器および環境に対する著しい損害を予防する ための注意です。

正しい取り扱いまたは使用に関する情報です。 従わない場合は、故障または機器の損傷を引き 起こします。

他の表示

<.....> ラベリング

1.2 作業者資格

1.3 安全に関する一般的な注意

実施するすべての作業は該当する安全規定に従っ てください。

この取扱説明書に記載されている安全に関するす べての注意に従い、また、製品のすべてのユーザ ーに対して情報を提供してください。

遮断装置

遮断装置はエンドユーザーによって識別可能で、 容易に操作できるようにしてください。 主電源からコントローラを切断する場合には、主 電源ケーブルを抜いてください。

Disconnecting device acc. to EN 61010-1

NFICON

1.4 責任および保証

エンドユーザーまたは第三者が以下の行為を行った場合、インフィコンはいかなる責任も負わず、 また保証は無効になるものとします。

- 取扱説明書の記載内容を無視した場合。
- ・指示に従わずに製品を使用した場合。
- 製品に対して改造(改修、修理など)を行った 場合。
- 該当する製品説明書に記載されていない付属品 とともに製品を使用した場合。

2 技術データ

主な仕様

電源電圧	100 240 V (ac) ±10%
周波数	50 60 Hz
消費電力 VGC501 VGC502 VGC503	≤45 W ≤65 W ≤90 W
過電圧カテゴリー	II
保護等級	1
接続	欧州機器コネクタ IEC 320 C14

環境

温度 保管 使用	–20 +60 °C + 5 +50 °C
相対湿度	最大 80%(31℃まで) 最大 50%まで低下(40℃ 以上の場合)
使用	屋内専用 最大高度 2000 m NN
汚染度	П
保護等級	IP30

1

2

ゲージの接続

チャンネル数 VGC501 VGC502 VGC503 チャンネルのゲージ 接続

3 RJ45 (FCC68), 8-pin (→
15) D-Sub, 15-pin, メス型 (→
15) (パラレル接続)

ピラニ	PSG400, PSG400-S, PSG100-S, PSG101-S, PSG500, PSG500-S, PSG502-S, PSG510-S, PSG512-S, PSG550, PSG552, PSG554
ピラニ / キャパシタンス	PCG400, PCG400-S, PCG550, PCG552, PCG554
冷陰極	PEG100, MAG500, MAG504
冷陰極 / ピラニ	MPG400, MPG401, MPG500, MPG504
熱陰極電離 / ピラニ	BPG400, BPG402, HPG400
キャパシタンス	CDG020D, CDG025, CDG025D, CDG025D- X3, CDG045, CDG045-H, CDG045D, CDG045D2, CDG045hs,CDG100, CDG100D, CDG100D2, CDG100Dhs, CDG160D, CDG200D
熱陰極電離 / キャパシタンス / ピラニ	BCG450
ゲージの電源	
電圧	+24 V (dc) ± 5%
リップル	<±1%
電流	0 1 A (チャンネルあた り)

25 W (チャンネルあたり) PTC エレメントを介した 1.5 A (チャンネルあたり) 装置のスイッチを切った 後、またはゲージを外し た後に自己リセット 電源は、保護設置超低電 圧の規定に適合

動作

消費電力

ヒューズ

適合ゲージ

フロントパネル	
VGC501	3 個のコントロールキー
VGC502, VGC503	4 個のコントロールキー
リモートコントロー	USB type B インターフェ
ル	ース
	Ethernet インターフェース

NFICON

測定技術

測定範囲	ゲージに依存
	(→ 🕮 [1] [21])
測定誤差	
ゲイン誤差	≤0.01% F.S. (通常)
	≤0.10% F.S. (over
	temperature range, time)
オフセット誤差	≤0.01% F.S. (通常)
	≤0.10% F.S. (0ver temperature range_time)
測定します	
	≥10073 >107a
衣示レート	210/5
フィルター時定	
遅い	$0.5 (I_g = 0.02 \Pi Z)$ $800 \text{ ms} (f_a = 0.2 \text{ Hz})$
「「「「」」「「」」	160 ms (f _g = 1 Hz)
上刀 単位	Micron V
オフセット述正	Micron, V リーアゲージ田(CDC)
	(0.10, 10.00)
可変修止ノアクター	0.10 10.00
A/D コンバーター	分解能 0.001% F.S.
	(BPG, HPG, BCG and
	CDGxxxD の測定値はデ
	ジタル伝送されます。)
セットポイント	
ビット小1 ノトの叙	2(白巾に設守可能)

VGC501 VGC502 VGC503	2(目田に設定可能) 4(自由に設定可能) 6(自由に設定可能)
応答ディレイ	≤10 ms, 測定値に近いし きい値を切り替える場合 (大きな差はフィルタ時 定数を考慮)
調整レンジ	ゲージに依存 (→ 🖹 27, 28)
ヒステリシス	≥1% F.S. リニアゲージ 用(CDG), ≥10% 対数センサ

セットポイントリレー	
接点タイプ	切り替え接点、フローテ ィング
負荷.	60 V(VDC), 30 W (Ω) 30 V(VAC), 1 A (Ω)
寿命 機械 電気	1×10 ⁸ サイクル 1×10 ⁵ サイクル (最大負 荷時)
接続位置	→ 🖹 17
VGC501 (CONTROL) VGC502, VGC503 (RELAY)	D-Sub 15 ピン、オス型 (ピンアサイン → 🗎 16) D-Sub 25 ピン、メス型 (ピンアサイン → 🗎 17)
エラー信号	
数 応答時間	1 ≤10 ms
エラー信号リレー	
接点タイプ	切り替え接点、フローテ ィング
負荷	60 V(VDC), 0.5 A, 30 W 30 V(VAC), 1 A
寿命 機械 電気	1×10 ⁸ サイクル 1×10 ⁵ サイクル (最大負 荷時)
接続位置	→ 🖹 17
コネクタ VGC501 (CONTROL)	D-Sub 15 ピン、オス型 (ピンアサイン → 🗎 16)
VGC502, VGC503 (RELAY)	D-Sub 25 ピン、メス型 (ピンアサイン → 🖹 17)
アナログ出力	
数 VGC501 VGC502 VGC503 電圧範囲	1 2 (1/チャンネル) 3 (1/チャンネル) –5 +14.5 V (VDC)
表示値からの偏差 内部抵抗 電圧と圧力の関係	ゲージ未接続時、+14.5 V 出力 ±20 mV <50 Ω センサに依存 (→ □□ [1] [21])
C <i>ONTROL</i> コネクタ VGC501	D-Sub 15 ピン、オス型 (ピンアサイン → 🗎 16)

VGC502, VGC503 D-Sub9ピン、オス型

(ピンアサイン ightarrow \oplus 17)

レコーダ出力

-			
(VGC5	02, ۱	VGC503	のみ)

数	1
電圧範囲	0 +10 V (VDC)
分解能	1 mV
精度	±20 mV
内部抵抗	<50 Ω
電圧と圧力の関係	プログラム式
CONTROL コネクタ	D-Sub 9 ピン、オス型 (ピンアサイン → 🗎 17)

USB Type A

プロトコル	FAT ファイルシステム
	ASCII 形式でファイル処
	理

USB Type B

プロトコル	ACK/ NAK、ASCII(3 キャ ラクタニーモニック)
データ形式	双方向データフロー、1 スタートビット、8 デー
	タビット、1ストップビ ット、パリティビットな し、ハンドシェイクなし
ボーレート	9600, 19200, 38400, 57600, 115200

Ethernet

プロトコル	ACK/ NAK、ASCII(3 キャ
	ラクタニーモニック) [,]
データ形式	双方向データフロー、1
	スタートビット、8 デー
	タビット、1 ストップビ
	ット、パリティビットな
	し、ハンドシェイクなし
ボーレート	9600, 19200, 38400, 57600, 115200
IP アドレス	DHCP (デフォルト) もし
	くは、手動設定(→ 🗎 63)
MAC アドレス	"MAC"パラメータによる
	読み込み可能

外形寸法 [mm]

VGC501

VGC502, VGC503

使用

ラックに搭載 コントロールパネルに搭載 デスクトップユニット

重量

VGC501	0.85 kg
VGC502	1.10 kg
VGC503	1.14 kg

	.n. 🚥
3	没直
	Skilled personnel
	本コントローラユニットは、適切な技術 トレーニングを受け、必要な経験を積ん でいる作業員か、あるいは、本製品のエ ンドユーザーによる教育を受けている担 当者が必ず設置してください
本コン ントロ トッフ	ットローラユニットは 19 インチラックやコ コールパネルに設置して、あるいは、デスク プユニットとして使用できます。
	STOP DANGER
	損傷した製品を動作させると非常に危険 です。
	損傷した製品は動作させず、また、使用 できないように処置を施してください。

3.1 機械的設置

3.1.1 ラックに設置 VGC501

本コントローラは、DIN41 494(19 インチ、3HU) に適合したラックシャーシアダプタに設置できる ように設計されています。このため、設置には 4 個のつば付きネジおよび 4 個のプラスチックス リーブが同梱されています。

STOP DANGER
ラックの保護等級
 製品をラックに設置すると、ラックの保 護等級(異物および水からの保護)が低 下する場合もあります(スイッチングキ ャビネットに関する EN 60204-1 な ど)。
必要なラックの保護等級に適合させるた め、適切な対策を講じてください。

ガイドレール

VGC501 のフロントパネルに無理な力がかから ないように、ラックシャーシアダプタにガイドレ ールを取り付けてください。

ラックシャーシアダプタを安全かつ簡単に取り付けるために、ラックフレームにスライドレールを 取り付けることをお勧めします。

Height 2 ラックシャーシアダプタ

最大許容周囲温度(→ ■ 7)を超えると、
 装置が損傷する恐れがあります。
 最大許容周囲温度を超えないように、また放熱孔から空気が自由に出入りできる
 ように注意してください。装置を直接日
 光にさらさないでください。

2 VGC501 をラックシャーシアダプタに挿入します。

同梱されているつば付きネジおよびプラスチック スリーブを使用して VGC501 をラックシャーシ アダプタに固定してください。

Height 3 ラックシャーシアダプタ

19 インチ Height 3 ラックシャーシアダプタに設置する場合は、アクセサリのアダプタパネル(つば付きネジ、プラスチックスリーブ各 2 個が同梱)を使用してください。 (Accessories $\rightarrow \equiv 60$).

- ラックに、ラックシャーシアダプタを固定 します。
 - 最大許容周囲温度(→ 7)を超えると、
 装置が損傷する恐れがあります。
 最大許容周囲温度を超えないように、また放熱孔から空気が自由に出入りできる
 ように注意してください。装置を直接日
 光にさらさないでください。

ラックシャーシアダプタ Height 3

アダプタパネルを付属のネジを使用して VGC501のフロントパネル上部に取り付け てください。

 B VGC501 をラックシャーシアダプタに挿入 します。

同梱されているつば付きネジおよびプラスチック スリーブを使用して VGC501 をラックシャーシ アダプタに固定してください。

3.1.2 ラックに設置 VGC502, VGC503

本コントローラは、DIN41 494(19 インチ、3HU) に適合したラックシャーシアダプタに設置できる ように設計されています。このため、設置には4 個のつば付きネジおよび4個のプラスチックス リーブが同梱されています。

ガイドレール

VGC502/503のフロントパネルに無理な力がかか らないように、ラックシャーシアダプタにガイド レールを取り付けてください。

ラックシャーシアダプタを安全かつ簡単に取り付けるために、ラックフレームにスライドレールを取り付けることをお勧めします。

Height 3 ラックシャーシアダプタ

ラックに、ラックシャーシアダプタを固定 します。

最大許容周囲温度(→ <a>■ 7)を超えると、装置が損傷する恐れがあります。

最大許容周囲温度を超えないように、ま た放熱孔から空気が自由に出入りできる ように注意してください。装置を直接日 光にさらさないでください。

VGC502/503 をラックシャーシアダプタに 挿入します。

同梱されているつば付きネジおよびプラスチック スリーブを使用して VGC502/503 をラックシャ ーシアダプタに固定してください。

3.1.3 コントロールパネルに設置

VGC501

VGC501 をコントロールパネルに設置する場合 は、以下の手順に従ってください。

最大許容周囲温度(→
≧ 7)を超えると、装置が損 傷する恐れがあります。

最大許容周囲温度を超えないように、また放熱孔 から空気が自由に出入りできるように注意してく ださい。装置を直接日光にさらさないでください。 VGC501のフロントパネルに無理な力がかから ないように、ユニットの底部を支えてください。

VGC501 を開口部に挿入してください。

4 個の M3 ネジを使用して、ユニットを固定して くだい。

VGC502, VGC503

VGC502/503 をコントロールパネルに設置する場合は、以下の手順に従ってください。

最大許容周囲温度(→ ≧ 7)を超えると、装置が損 傷する恐れがあります。

最大許容周囲温度を超えないように、また放熱孔 から空気が自由に出入りできるように注意してく ださい。装置を直接日光にさらさないでください。 VGC502/503のフロントパネルに無理な力がかか らないように、ユニットの底部を支えてください。

● VGC502/503 を開口部に挿入してください。

4 個の M3 ネジを使用して、ユニットを固定して くだい。

3.1.4 デスクトップユニット

VGC502/503 は同梱されている 2 つのラバー脚 とラバーストリップを使用し、卓上ユニットとし ても使用できます。

下図のように VGC502/503 を上下反対にします。 フロントパネルの下側に、同梱されている ラバーストリップを押し込みます。また、 ケーシングの底面に、同梱されているラバー脚を貼り付けてください。

ŀс

最大許容周囲温度を超えない場所で使用してくだ さい。装置を直接日光にさらさないでください。 (→
圖 7).

3.2 電源コネクタ

電源ケーブルは、装置に同梱されています。プラ グが壁コンセントに適合しない場合は、適切な電 源ケーブルを用意してください。(導体の断面積 は、3×1.5 mm³).

装置がスイッチングキャビネットに設置されてい る場合は、主電源を切替可能な集中電力分配器を 介して供給することができます。

保護接地

ユニットの背面にある接地ネジを使用して、 VGC50x をポンプスタンドの保護接地に接続でき ます。必要に応じて、保護導体を使用しポンプス タンドの保護接地を接地ネジに接続してください。

3.3 真空ゲージコネクタ CH 1, CH 2, **CH 3**

各チャンネルともに、パラレル接続の2つのポ ートを使用できます。

- RJ45 機器ポート, メス型, 8 ピン (CH A)
- D-Sub 機器ポート, メス型, 15 ピン (CH B)
- [P 真空ゲージは、弊社センサケーブル、 または、シールドケーブルを介して CH1、CH2、CH3 コネクタに接続して ください。また、必ず VGC50x に適合 している真空ゲージを仕様してくださ い(→ **■**7)。

電の恐れがあります。EN61010に適合さ せてください。 これらの電圧は、保護接地超低電圧の規定

(PELV) に適合させてください。

RJ45 機器ポートピン配置 CH 1, CH 2, CH 3 RJ45機器ポート

RJ45 機器ポートのピン配置

(メス型、8ピン):

Pin	Signal	
1	電源	+24 V (dc)
2	電源コモン	GND
3	信号出力	(測定値 0 … +10 V (dc))
4	真空計識別	
5	信号コモン	
6	ステータス	
7	HV L	
8	HVH/HV E	MI

D-Sub機器ポート

D-Sub 機器ポートのピン配置

(メス型、15ピン)

NFICON

Pin	Signal	
1	EMI ステータ	ス
2	信号出力	(測定値 0 +10 V (dc))
3	Status	
4	HV_H / HV_EM	ЛІ
5	電源コモン	GND
6	未接続	
7	デガス	
8	電源	+24 V (dc)
9	未接続	
10	真空計識別	
11	電源	+24 V (dc)
12	信号コモン	
13	RxD	
14	TxD	
15	シャーシ	

3.4 CONTROL コネクタ VGC501

このコネクタは、ユーザーが測定信号を読み取り、 エラーリレーのフローティングコンタクトのステ ータスの取り込み、また、冷陰極ゲージ (PEG/MAG)の高真空回路のオン/オフの切替え

■ 周辺機器を、背面の CONTROL ポート に接続して使用してください。シール

ドケーブルを使用してください。

STOP DANGER

危険電圧

ができます。

60VDC または 30VAC 以上の電圧は、感 電の恐れがあります。EN61010 に適合さ せてください。

これらの電圧は、保護接地超低電圧の規定 (PELV)に適合させてください。

ピン配置

D-Sub 機器ポートのピン配置 (オス型、15 ピン)

Pin	Signal
1 2	アナログ出力 -5+13 V (dc) アナログ出力 GND
	セットポイントリレー 1
3 4 5	 ──」 しきい値以上の圧 ── しきい値以下 ──」 カまたは電源がオ [●]─」 の圧力 フ
6	HV_H on +24 V off 0 V
7 8	+24 V (dc), ヒューズは、PTC エレメント 200 mA により 300mA に保護されてい シャーシ ます。装置のスイッチを切った き GND 後、または CONTROL コネク タから外した後に自己リセット します。保護接地超低電圧の規 定に適合させてください。
	エラー信号
9 10 11	
	セットポイントリレー 2
12 13 14	──────」しきい値以上の圧 ──── しきい値以下 [●] ──── カまたは電源がオ [●] ─── の圧力 [─] ── フ

- 15 シャーシ = GND
- アナログ出力(ピン1)は表示された値 と最大で±20 mV 異なる場合があります。

3.5 CONTROL コネクタ VGC502, VGC503

CONTROL ポートには、以下の信号ピンが備え られています。:

- 各チャンネルの信号用のアナログ出力部
- レコーダ出力部。プログラム式のアナログ出 カであり、3つのチャンネルの1つに割り当 てることができます。
- HV-EMI。 冷陰極ゲージ(PEG/MAG)の高 真空回路のオン/オフを切り替えます。信号 レベルは、On = +24V、Off = 0V です。
- 周辺機器を、背面の CONTROL ポートに 接続して使用してください。シールドケ ーブルを使用してください。

ピン配置, 接点位置

D-Sub 機器ポートのピン配置 (メス型、25 ピン)

Pin	Signal
	セットポイントリレー 1
4 5 6	────────────────────────────────────
	セットポイントリレー 2
8 9 10	↓ しきい値以上の しきい値以下の
	セットポイントリレー 3
11 12 13	しきい値以上の しきい値以下の 圧力または電源 圧力 がオフ
	セットポイントリレー 4
16 17 18	────────────────────────────────────
	セットポイントリレー 5
19 20 21	↓ しきい値以上の しきい値以下の 」 圧力または電源 ↓ 圧力 がオフ
	セットポイントリレー 6
22 23 24	────────────────────────────────────
	エラー信号

3 15 14	エラー 源がオ	または電 つ		ーなし
	より高い遮 できます	断能力をリ	レーに与	えることが
25	+24 V (dc), 200 mA	ヒューズは 200mA に保 スイッチを ⁻ RELAY コオ 己リセット 圧の規定に	、PTC エレ 護されてし 切った後、 、 クタからタ します。保 適合させて	メントにより います。装置の または トした後に自 護接地超低電 ください。
1, 7	GND			
2	未使用.			

3.7 インターフェースコネクタ USB Type B

USB Type B インターフェースコネクタにより、 コンピューターを介して VGC50x と直接通信を することができます。(例 ファームウェアアッ プデート、パラメータセーブ(読み取り/書き込 み)など)

■ 周辺機器を、背面の USB ポート・くに接 続して使用してください。シールドケ ーブルを使用してください。

USB Type B

3.8 インターフェースコネクタ USB Type A

マスタ機能を持つ USB Type A インターフェース コネクタはユニットの全面に位置し、USB メモ リステックを接続するために使用します。(例 ファームウェアアップデート、パラメータセーブ (読み取り/書き込み)、データロガーなど) USB メモリステックを、前面の USB ポ ート⊷に接続して使用してください。 シールドケーブルを使用してください。

3.9 インターフェースコネクタ Ethernet

Ethernet インターフェースコネクタにより、コン ピューターを介して VGC50x と直接通信をする ことができます。

Ethernet ケーブルを、背面の Ethernet ポート・〜に接続して使用してください。

Ethernet

緑 LED

リンクまたは送信 LED。ハードウェアの接続が 確立されていることを示します。

黄 LED

ステータス、または、パケット検出 LED。送信 時のステータスを示します。この LED が点滅し て、ちらつく場合、データは送信されています。

4 操作

4.1 フロントパネル

ディスプレイ VGC501

ディスプレイ VGC502, VGC503

パラメータ、もしくは、バーグラフ表示

パラメータ、バーグラフ表示

測定チャンネルの表示

セットポイントリレー、

4.2 スイッチの入/切

VGC50x のスイッチを入れる

ユニット背面の電源スイッチを入れます。 コントローラユニットがラックまたはコントロー ルパネルに設置されている場合、集中電力分配器 を介してスイッチを入切することもできます。

スイッチを入れた後は、VGC50x は以下の動作を実行します。

- セルフテスト
- すべての接続ゲージの認識
- 過去に設定したパラメータの復活
- 測定モードの起動
- パラメータの適用(センサタイプが変更されている場合)

VGC50x のスイッチを切る

ユニット背面の電源スイッチを切ります。 コントローラユニットがラックまたはコントロー ルパネルに設置されている場合、集中電力分配器 を介してスイッチを入切することもできます。

8

スイッチを切った後、VGC50x を再び初 期化するまでには約 10 秒を必要とします。 VGC50x のスイッチを入れるまで、少な くとも 10 秒間待ってください。

4.3 動作モード

VGC50x は、以下の動作モードのいずれかに設定 することができます。

- 測定モード 測定モードは、標準的な動作モードです。センサの圧 力値を表示します。エラーが発生した場合は、ステー タスメッセージが表示されます。「測定モード」を参 照してください。 (→ ■ 24)
- パラメータモード パラメータモードでは、様々なパラメータにアクセス することができます。矢印ボタンを使用することによ り、パラメータ設定のチェックまたは変更が行えま す。これにより、VGC50xを設定することができま す。「パラメータモード」を参照してください。 (→ 圖 25)

 - センサパラメータSENSOR > このパラメータは、現在選択されているチャンネ ルのセンサのみに関係します。各チャンネルにつ いて、それぞれのセンサパラメータセットがあり ます。「センサパラメータ」を参照してくださ い。(→ ■ 28)
 - センサ・コントロールパラメータ SENSOR-CONTROL>

このパラメータは、現在選択されているチャンネ ルのセンサのみに関係します。各チャンネルにつ いて、それぞれのセンサパラメータセットがあり ます。「センサコントロールパラメータ」を参照 してください。 (→ 🖹 32))

- テストパラメータ TEST > このパラメータグループを使用して、各システム 機能をチェックします。通常動作時に、このパラ メータは必要ありません。「テストパラメータ」 を参照してください。(→ ■37)
- データロガーモード DATA LOGGER >
 このモードを使用して、データロギングの一般的な設定を行います。「データロガーモード」を参照してください。(→
 ③ 39)
- パラメータ転送モード SETUP
 データロガーのパラメータ(読み取り/書き込み)
 を行います。「転送モード」を参照してください。(→
 ¹ 40)

NFICON

VGC501

INFICON

VGC502, VGC503

測定モード 4.4

測定モードは、VGC50x シリーズの標準的な動作 モードで以下の表示をします。

- バーグラフ表示 (任意)
- 各チャンネルの測定値
- 各チャンネルのステータス表示

バーグラフの調整

必要に応じてバーグラフを表示することができま す。(→ 🖹 36).

チャンネルの選択(VGC502/503のみ)

装置は、次のチャンネルを選択しま す。選択されたチャンネル番号が数秒 間点滅します

高真空回路を起動する

(冷陰極ゲージ)

特定のゲージは、高真空回路をマニュアルで起動 することができます。ゲージコントロールを S-ON HAND に設定する必要があります。

(→ 🖹 33).

- 次のゲージに利用可能:
- □ Pirani
- D Pirani / Capacitance (PCG)
- ☑ Cold cathode (PEG, MAG) (MPG)
- □ Cold cathode / Pirani
- □ Hot ionization / Pirani (BPG, HPG) (CDG)
- □ Capacitance
- □ Hot ionization / Pirani / Capacitance (BCG)

4

⇒ 「DOWN」キーを約1秒間押し続 けてください。

(PSG)

選択したチャンネルのゲージのス イッチがオフになります。ディス プレイには、ステータスメッセー ジ「OFF」が表示されます。

「UP」キーを約1秒間押し続けて ください。

選択したチャンネルのゲージのス イッチが入ります。ディスプレイ には、圧力値またはステータスメ ッセージが表示されます。

高真空回路を起動する

(熱陰極ゲージ)

特定のゲージは、高真空回路をマニュアルで起動

することができます。ゲージコントロールを

EMISSION HAND に設定する必要があります。

(→ 🖹 32).

□ F カ値が 2.4Pa より高真空になった場合 に高真空回路(エミッション)の切り替 えが可能です。

次のゲージに利用可能:

- Pirani (PSG)
- Pirani / Capacitance (PCG)
- Cold cathode (PEG, MAG)
- Cold cathode / Pirani (MPG)
- Hot ionization / Pirani (BPG402 only) $\mathbf{\nabla}$
- Capacitance (CDG)
- Hot ionization / Pirani / Capacitance \mathbf{N} (BCG)

「DOWN」キーを約1秒間押し続 けてください。

選択したチャンネルのゲージのス イッチがオフになります。ディス プレイには、熱陰極ゲージの測定 値の代わりにピラニもしくは CDG の測定値が表示されます。

「UP」キーを約1秒間押し続けて ください。

選択したチャンネルのゲージのス イッチが入ります。ディスプレイ には、圧力値およびステータスメ ッセージ 6 が表示されます。

VGC50x でリニアゲージ(CDG)を操作してい る場合、マイナスの圧力表示を示すことがありま す。

考えられる原因:

- ゼロ点よりもマイナス側へのドリフト
- オフセット補正が利用されている場合

センサの識別

まず、 ¹ キーで必要な測定チャンネルを選択します。

「UP」および「DOWN」キー を、約0.5~1秒間押し続けてく ださい。 選択された測定チャネルに接続さ れたゲージの種類を自動的に識別 し、6秒間表示されます:

ピラニ真空計

(PSG400, PSG400-S, PSG100-S, PSG101-S, PSG500, PSG500-S, PSG502-S, PSG510-S, PSG512-S, PSG550, PSG552, PSG554)

コンビネーション真空計 ピラニ/キャパシタンス (PCG400, PCG400-S, PCG550, PCG552, PCG554)

冷陰極真空計 (PEG100, MAG500, MAG504)

コンビネーション真空計 冷陰極真空計/ピラニ (MPG400, MPG401, MPG500, MPG504) コンビネーション真空計 熱陰極真空計/ピラニ

(BPG400)

(BPG402)

(HPG400)

コンビネーション真空計 冷陰極真空計/ピラニ (BCG450) キャパシタンス真空計 (アナログ) (CDG020D, CDG025, CDG045, CDG045-H, CDG100) キャパシタンス真空計 (デジタル) (CDG025D, CDG025D-X3, CDG045D, CDG045D2, CDG100D, CDG100D2, CDG160D, CDG200D)

センサが接続されていません

センサの識別ができず

noSENSOR

noIDENT.

「パラメータ」キーを押すと、測定 モードからパラメータモードに切 り替わります。

4.5 パラメータモード

パラメータモードは、設定のチェックまたは変更、 VGC50xのテスト、測定データの保存などの操作 が行えます。操作を容易にするために個々のパラ メータは、グループに分けられています。

→ 🖹 25

パラメータグループの選択

⇒ セットポイントパラ メータ → \triangleq 26 センサパラメータ → \triangleq 28 センサ - コントロー ルパラメータ → \triangleq 32 ジェネラルパラメー タ→ \triangleq 34 テストパラメータ → \triangleq 37 データロガーモード → \triangleq 39 パラメータ転送モー ド→ \triangleq 40

グループの 決定

パラメータの変更

パラメータを確認します。インジケ ーターが点滅すると変更することが できます。

パラメータ値を変更します。

パラメータ値の保存。パラメータグ ループの最後のパラメータがアクセ スされた後は、装置は測定モードに 戻ります。パラメータの変更はただ ちに反映され、これらの値は自動的 に保存されます。

4.5.1 セットポイントパラメータ

SETPOINT

セットポイントリレーパラメータ は、セットポイントの設定をするこ とができます。セットポイントは各 装置に2個(VGC501)、4個 (VGC592)、6個(VGC503)を利 用することができます。

セットポイント

VGC503 には、測定値に依存して切 り替わる 6 個のリレーが備えられて います。リレー接点は電気ポテンシ ャルがなく、RELAY 接続を通じてス イッチングに使用できます。

パラメータ

SP1-CH	セットポイントリレー1 の設定
SP1-L	セットポイントリレー1 の下方しき い値
SP1-H	セットポイントリレー1 の上方しき い値
SP2-CH	セットポイントリレー2 の設定
SP2-L	セットポイントリレー2 の下方しき い値
SP2-H	セットポイントリレー2 の上方しき い値
SP3-CH	セットポイントリレー3 の設定 (VGC502/503 のみ)
SP3-H	セットポイントリレー3 の下方しき い値 (VGC502/503 のみ)

SP3-H	セットポイントリレー3 の上方しき い値 (VGC502/503 のみ)
SP4-CH	セットポイントリレー4 の設定 (VGC502/503 のみ)
SP4-L	セットポイントリレー4 の下方しき い値 (VGC502/503 のみ)
SP4-H	セットポイントリレー4 の上方しき い値 (VGC502/503 のみ)
SP5-CH	セットポイントリレー5 の設定 (VGC503 のみ)
SP5-L	セットポイントリレー5 の下方しき い値 (VGC503 のみ)
SP5-H	セットポイントリレー5 の上方しき い値 (VGC503 のみ)
SP6-CH	セットポイントリレー6 の設定 (VGC502/503 のみ)
SP6-L	セットポイントリレー6 の下方しき い値 (VGC503 のみ)
SP6-H	セットポイントリレー6 の上方しき い値 (VGC503 のみ)
<	レベルバック

VGC501 は 2 個、VGC502 は 4 個、VGC503 は 6 個のセットポイントリレーが備えられ、各セッ トポイントリレーはそれぞれ下方しきい値と上方 しきい値を設定します。セットポイントリレーの ステータスはフロントパネルに表示され、 CONTROL コネクタ、もしくは、RELAY コネク タを介してフローティングコンタクトで使用でき ます。

- VGC501: CONTROL コネクタ (→
 ^(→) 16)
- VGC502, VGC503: RELAYコネクタ (→ 17)

- 上方しきい値を下方しきい値の 1/2 桁よ り上に、または、下方しきい値は上方し きい値の 1/2 桁下に設定することを推奨 します。
- セットポイントリレーの構成

	説明
SP1-CH	セットポイントリレー1 の設定
SP1-CH 1	セットポイントリレーがチャンネル1に設定されている。
SP1-CH 2	☆ セットポイントリレーがチャンネル2に設定されている。 (VGC502/503のみ)
SP1-CH 3	☆ セットポイントリレーがチャンネル3に設定されている。 (VGC503のみ)
SP1-CH DISABLED	⇔ セットポイントリレーが無効 (ファクトリー設定)
SP1-CH ENABLED	

セットポイントリレーの下方しきい値と 上方しきい値は常に同じチャンネルに設 定されます。最後の割り当てが、両方の しきい値に有効です。 下方しきい値の調整レンジ

	説明	
SP1-L	セットポイント きい値は、以下 設定することが が下方しきい値 とリレーが起動 一のコモン接点 に接続します。	リレーの下方し の圧力レンジに できます。圧力 します。(リレ が、メーク接点)
z. B.: SP1-L 5.00-4	⇨ ゲージ依存	
	別のゲージタ ている場合に て、VGC50 トポイントリ を調整します	マイプが接続され よ、必要に応じ < は自動的にセッ リレーのしきい値 ト。
	SPx-L min.	SPx-L max.
PSGxxx	2×10 ^{-3 *)}	
PCGxxx	2×10 ^{-3*)}	
PEG100/MAGxxx	1×10 ⁻⁹	
MPGxxx	1×10 ⁻⁹	
BPG400	1×10 ⁻⁸	
BPG402	1×10 ⁻⁸	= SPx-H max.
HPG400	1×10 ⁻⁶	
BCG450	1×10 ⁻⁸	
CDGxxx	F.S. / 1000	
CDGxxxD	F.S. / 1000	

圧力単位は mbar, ガスは N2

- ^{*)} RNG EXT (ピラニ範囲拡張) が起動されてい る場合は 2×10-4 mbar (→ 🖹 34))
- ヒステリシスが、下方しきい値の 10% (対数センサ)または、フルスケールレンジの 1% (リニアセンサ)になります。 上方しきい値は、必要に応じて自動的に最小ヒステリシスに調整されます。しきい値の領域は、リレーの起動および停止にヒステリシス(ディレイ)を生じさせます。このヒステリシスにより、圧力がいずれかのしきい値に近づいたときに、セットポイントの迅速な入/切が防げられます。

上方しきい値の調整レンジ			
	説明		
<mark>SP1-Н</mark> z. B.: <u>SP1-Н 1500</u>	セットポイントリレーの上方しき い値は、以下の圧カレンジに設定 することができます。圧力が上方 しきい値よりも高くなるとリレー が起動します。(リレーのコモン 接点が、ブレーク接点に接続しま す。) ⇒ ゲージ依存 別のゲージタイプが接続され ている場合は、必要に応じ て、VGC50xは自動的にセッ トポイントリレーのしきい値 を調整します。		
	SPx-H min.	SPx-H max.	
PSGxxx		1×10 ³	
PCGxxx		1.5×10 ³	
PEG100/MAGxxx		1×10 ⁻²	
MPGxxx		1×10 ³	
BPG400		1×10 ³	
BPG402	= SPX-L min.	1×10 ³	
HPG400		1×10 ³	
BCG450		1.5×10 ³	
CDGxxx		F.S.	
CDGxxxD		F.S.	
	圧力単位は mbar	, ガスは N2	

レンデン ヒステリシスが、下方しきい値の 10% (対数センサ)または、フルスケール レンジの1%(リニアセンサ)になりま す。上方しきい値は、必要に応じて自 動的に最小ヒステリシスに調整されま す。しきい値の領域は、リレーの起動 および停止にヒステリシス(ディレ イ)を生じさせます。このヒステリシ スにより、圧力がいずれかのしきい値 に近づいたときに、セットポイントの 迅速な入/切が防げられます。

4.5.2 センサパラメータ

SENSOR > センサパラメータは、接続ゲージ のパラメータの表示および変更を するために使用されます。

パラメータ

DEGAS	デガス機能
FSR	測定レンジ
FILTER	測定フィルター
OFFSET	オフセット
GAS	ガス補正係数
COR	オフセット補正
HV-CTRL	高真空回路の起動/停止
EMISSION	エミッション
FILAMENT	フィラメント選択
DIGITS	表示フォーマット
<	レベルバック

接続されているセンサのタイプにより、表示しな いパラメータがあります。

→ <a>≥ 29 29 30 30 31 31 32 32 32 32

	DEGAS	FSR	FILTER	OFFSET	GAS	COR	HV-CTRL	EMISSION	FILAMENT	DIGITS
PSGxxx	_	_	~	-	✓	✓	-	-	-	✓
PCGxxx	_	_	~	_	✓	✓	-	-	-	✓
PEG100/MAGxxx	_	_	~	_	✓	✓	✓	-	-	✓
MPGxxx	-	-	~	-	✓	✓	-	-	-	✓
₽ BPG400	✓	-	~	-	✓	✓	-	-	-	✓
원 BPG402	✓	-	~	-	✓	✓	-	✓	✓	✓
HPG400	-	-	~	-	✓	✓	-	-	-	✓
BCG450	✓	_	~	-	✓	✓	-	✓	-	✓
CDGxxx	-	\checkmark	~	\checkmark	-	\checkmark	-	-	-	\checkmark
CDGxxxD	-	✓	✓	✓	-	✓	-	-	-	✓

デガス機能

熱陰極を備えた電離真空計は、電極の堆積物の影 響を受けます。これらの堆積物は、信号変動の原 因となります。デガス機能は、センサ電極システ ムの付着物を取り除きます。

- ご デガス機能は、7.2×10⁻⁴ Pa 以下になって から使用してください。
- 「デガス機能は、選択されたアクティブフ ィラメントに対して働きます。

次のゲージに利用可能:

- □ Pirani (PSG) D Pirani / Capacitance (PCG)
- (PEG, MAG) □ Cold cathode
- Cold cathode / Pirani (MPG)
- Hot ionization / Pirani (BPG)
- Hot ionization / Pirani (HPG) (CDG)
- □ Capacitance
- Hot ionization / Pirani / Capacitance (BCG)

パラメータの変更と保存

リニ	アアナログゲージ(CDG)については、フ
ルス	、ケールレンジの仕様を設め	定する必要がありま
す。	リニアデジタルゲージ(CDGxxxD)と対数
ゲー	・ジは自動で識別されます。)
次の	ゲージに利用可能:	
ΠF	Pirani	(PSG)
ΠF	Pirani / Capacitance	(PCG)
	Cold cathode	(PEG, MAG)
	Cold cathode / Pirani	(MPG)
Πŀ	lot ionization / Pirani	(BPG, HPG)
☑ (Capacitance	(CDG)

☑ Capacitance

リニアセンサの測定レンジ

□ Hot ionization / Pirani / Capacitance (BCG)

	説明
FSR	
e.g. <mark>FSR 1000 MBAR</mark>	 ⇒ 0.01 mbar, 0.02mbar, 0.05mbar 0.01 Torr, 0.02 Torr, 0.05 Torr 0.10 mbar, 0.25 mbar, 0.50 mbar 0.10 Torr, 0.25 Torr, 0.50 Torr 1 mbar, 2 mbar, 5 mbar 1 Torr, 2 Torr, 5 Torr 10 mbar, 20 mbar, 50 mbar 10 Torr, 20 Torr, 50 Torr
	100 mbar, 200 mbar, 500 mbar 100 Torr, 200 Torr, 500 Torr 1000 mbar, 1100 mbar 1000 Torr 2 bar, 5 bar, 10 bar, 50 bar
	変換テーブルは、付録に記載さ れています(→ 🖹 61).

測定フィルター

信号にノイズが混入している場合や、干渉が発生 している場合、測定フィルターにより測定値を向 上させることができます。

測定フィルターはアナログ出力に影響を 与えません。 (→
17).

才	フセット値は、実測値に応	じて表示され、	再調
整	されます。		
次	のゲージに利用可能:		
	Pirani	(PSG)	
	Pirani / Capacitance	(PCG)	
	Cold cathode	(PEG, MAG)	
	Cold cathode / Pirani	(MPG)	
	Hot ionization / Pirani	(BPG, HPG)	
\checkmark	Capacitance	(CDG)	
	Hot ionization / Pirani / Car	pacitance	
		(BCG)	

コントローラのオフセット補正

次の機能にオフセット補正が影響します。

- ☑ 表示された測定値
- 口 セットポイントリレーのしきい値
- □ CONTROL コネクタからのアナログ出力 (→
 ^{(→} 16, 16)

	Wert
OFFSET	+
OFFSET OFF	 □ オフセット補正未使 用
e.g. <mark>OFFSET 9.5</mark> 3	 B → オフセット補正起動 (測定の関連する単 位で表示)
	⇒ 「UP」キーを 1.5 秒以上押して ください。 オフセット補正が起動します。 (現在の圧力値が新しいオフセ ット値になります。)
	オフセット値をリセットしま す。
	[⇔] 変更を保存し、リードモードに 戻ります。
オフセット補正が起	ご動すると、あらかじめ指定さ

れたオフセット値が各圧力値から減算されます。 これにより、基準圧力に対して相対圧力が測定し やすくなります。

デジタル CDG のゼロ点調整

[z] 先ず、CDG を調整してからコントローラ を調整します。

(PSG)

(CDG)

次のゲージに利用可能:

- D Pirani
- D Pirani / Capacitance (PCG)
- □ Cold cathode (PEG, MAG)
- □ Cold cathode / Pirani (MPG)
- □ Hot ionization / Pirani (BPG, HPG)
- ☑ Capacitance
- □ Hot ionization / Pirani / Capacitance (BCG)

ゲージのゼロ点調整をする場合、オフセ ット補正を無効にする必要があります。

CDG のゼロ点調整が起動しま す。

↓ ゼロ点調整後、ゼロ値が表示されます。 CDG(ノイズ、ドリフト)の分解能に より、ゼロは±数桁表示されます。

ガス補正係数

ガス補正係数は以下の場合に使用できます。

- ゲージは通常、N2 または空気雰囲気における 測定用に校正されています。次のガス種の補 正係数を使用する場合は、パラメータを使用 してチャンネルを他のガス種に設定します。 (N₂, Ar, H₂, He, Ne, Kr, Xe)
- 固定された補正係数がないガス種により圧力 制御を実施する場合は、可変補正係数により 圧力値を手動入力により乗算することができ ます。(COR).
- → 特性曲線 □ [1] … [16].

次のゲージに利用可能:		圧力のみ
⊠ Pirani	(PSG)	<1 mbar
Pirani / Capacitance	(PCG)	<1 mbar
Cold cathode	(PEG, MA	(G)
Cold cathode / Pirani	(MPG)	<1 × 10 ⁻³ mbar
Hot ionization / Pirani	(BPG)	<1 × 10 ⁻³ mbar
Hot ionization / Pirani	(HPG)	
Capacitance	(CDG)	
Hot ionization / Pirani / G	Capacitance	9
	(BCG)	<1 × 10 ⁻³ mbar

	説明
GAS	
GAS N2	⇔ Gas: 窒素 / 空気 (デフォル ト設定)
GAS AR	⇔ Gas: アルゴン
GAS H2	⇔ Gas: 水素
GAS HE	⇔ Gas: ヘリウム
GAS NE	
GAS KR	⇔ Gas: クリプトン
GAS XE	⇔ Gas: キセノン
GAS COR	 ⇒ 手動で COR パラメータから 設定する上記以外のガス種の 補正係数

ガス補正係数 COR

ガス補正係数CORは、固定された補正係数がな いガス種へ補正することができます。 (→ 特性 曲線 📖 [1] ... [16]) このパラメータは、ゲージ の全測定範囲で有効です。

前提条件:パラメータ「GAS COR」が設定され ています。

このパラメータは、圧力単位には使用で きません。(電圧)

(PSG)

(PCG)

- 次のゲージに利用可能:
- ☑ Pirani
- Pirani / Capacitance
- ☑ Cold cathode (PEG, MAG)
- ☑ Cold cathode / Pirani (MPG)
- ☑ Hot ionization / Pirani (BPG, HPG) (CDG)
- ☑ Capacitance
- ☑ Hot ionization / Pirani / Capacitance (BCG)

このパラメータは、圧力単位には使用で きません。(電圧)

NFICON

ゲージの起動/停止

高真空回路の起動/停止 (→ 🖹 [24])				
次のゲージに利用可能: □ Pirani □ Pirani / Capacitance ☑ Cold cathode □ Cold cathode / Pirani □ Hot ionization / Pirani □ Capacitance		(PSG) (PCG) (PEG, MAG) (MPG) (BPG, HPG) (CDG)		
Hot ionization / Pirani / Capacitance		(BCG)		
	説明			
HV-CTRL			4	
HV-CTRL ON	⇒ 高真空回路の起動			
HV-CTRL OFF	☆ 高真空回路の停止			
エミッション				

エミッションのオン/オフ切り替え 次のゲージに利用可能:

	Pirani	(PSG)
	Pirani / Capacitance	(PCG)
	Cold cathode	(PEG, MAG)
	Cold cathode / Pirani	(MPG)
\checkmark	Hot ionization / Pirani	(BPG402 only)
	Capacitance	(CDG)
\checkmark	Hot ionization / Pirani / Capacitance	(BCG)

	説明
EMISSION	
EMISSION AUTO	⇒ エミッションのオン/オフ をゲージが自動的に切り替 えます。
EMISSION HAND	ユミッションのオン/オフ をユーザーが切り替えま す。

エミッションがオンになると、 が点灯します。

フィラメント選択

フィラメ	ント	の選択
------	----	-----

次のゲージに利用可能:	
🛛 Pirani	(PSG)
Pirani / Capacitance	(PCG)
Cold cathode	(PEG, MAG)
Cold cathode / Pirani	(MPG)
Hot ionization / Pirani	(BPG402 only)
Capacitance	(CDG)
□ Hot ionization / Pirani / Capacitance	(BCG)

	説明
FILAMENT	
FILAMENT AUTO	☆ ゲージが自動的にフィラメ ントを切り替え
FILAMENT FIL 1	⇔ フィラメント1が有効
FILAMENT FIL 2	⇒ フィラメント2が有効

表示フォーマット

測定値の表示桁数

(PSG)
(PCG)
(PEG, MAG)
(MPG)
(BPG, HPG)
(CDG)
(BCG)

		説	説明	
DIGITS				
	DIGITS AUTO	⇔	自動 ^{*)} (ファクトリー設 定)	
	DIGITS 1	⇔	例:2E-1 または 500	
	DIGITS 2	⇔	例:2.5E-1 または 520	
	DIGITS 3	⇔	例:2.47E-1 または 523	
	DIGITS 4	⇔	例 : 2.473E-1 または 523.7	

^{*)} 仮数は、接続ゲージと現在の有効測定値に応じて決定 されます。

PSG および PCG ゲージにおいて、測定レンジが p<1.0E-4 mbar で RNG-EXT が有効になっている (→
■ 34) 場合、小数桁が 1 つ下がります。

4.5.3 センサ - コントロールパラメータ

SENSOR-CONTROL >

センサ - コントロールパラメータは 接続ゲージをどのように起動/停止す るかを定義するパラメータを表示、 入力、編集するために使用されま す。

このグループは PEG/MAG ゲージのみに 使用可能です。 パラメータ

S-ON	ゲージ起動
S-OFF	ゲージ停止
T-ON	オンしきい値(VGC502/503 のみ)
T-OFF	オフしきい値
<	レベルバック

	説明	
T-ON		
e.g.: <mark>T-ON 100</mark>	⇒ 該当するチャンネルの測定圧力値 がオンしきい値以下になると、セ ンサが起動	
L T-OFF の設定圧力値は <mark>T-ON</mark> の設定圧力値 以上にしなければならない		

ゲージの停止

いくつかのゲージは異なる方法で停止させる事が できる。

ジを起		説	明
的にゲ	S-OFF S-OFF HAND	⇔	手動停止 : 💟 キーによって、ゲー
ンしき)測定圧 下にな	S-OFF SELF	₽	ジを停止 セルフコントロール :
ンしき)測定圧 下にな			T-OFF パラメータはオフ しきい値を定める。自身 の測定圧力値がオンしき い値以上になるとゲージ が停止
	S-OFF CH 1	⇔	Ch 1
ンしき)測定圧 下にな	(VGC502/503 のみ)		パラメータ T-OFF はオフ しきい値を定める。Ch 1 の測定圧力値がオフしき い値以上になるとゲージ が停止
	S-OFF CH 2	⇒	Ch 2
起動さ	(VGC502/503 のみ)		パラメータ T-OFF はオフ しきい値を定める。Ch 2 の測定圧力値がオフしき い値以上になるとゲージ が停止
S-ON			까┝┙ ┖
2000	<u>S-OFF CH S</u> (VGC503 のみ)		パラメータ T-OFF はオフ しきい値を定める。Ch 3 の測定圧力値がオフしき い値以上になるとゲージ が停止

ゲージの起動

いくつかのゲージは異なる方法で起動させる事が できる。

説明	
 ⇒ 手動起動: △キーによって、ゲージを起動 	
⇒ ホットスタート: VGC50x 起動時に自動的にゲ ージが起動 →	
⇒ Ch 1: パラメータ T-ON はオンしき い値を定める。Ch 1 の測定圧 力値がオンしきい値以下にな るとゲージが起動	
⇒ Ch 2: パラメータ T-ON はオンしき い値を定める。Ch 2 の測定圧 力値がオンしきい値以下にな るとゲージが起動	
⇒ Ch 3:	
パラメータ T-ON はオンしき い値を定める。Ch 3 の測定圧 力値がオンしきい値以下にな るとゲージが起動	

オンしきい値 (VGC502/503 のみ)

他チャンネル接続ゲージによってゲージを起動させる場合の、しきい値を定義する。 このパラメータはゲージ起動パラメータが S-ON CH 1, CH 2 または CH 3 (VGC503 のみ)設定時 にのみ使用可能です。

オフしきい値 VGC501

そのゲージ自身によって、ゲージ停止させるため のオフしきい値を定義する。このパラメータはセ ンサ停止パラメータ が S-OFF SELF 設定時にの み使用可能です。

オフしきい値 VGC502, VGC503

他チャンネル接続ゲージもしくはそのゲージ自身 によって、ゲージ停止させるためのオフしきい値 を定義する

このパラメータは、センサ停止パラメータが S-OFF CH 1, CH 2, CH 3 (VGC503 のみ)または S-OFF SELF 設定時にのみ使用可能です。

4.5.4 ジェネラルパラメータ

GENERAL

ジェネラルパラメータは一般的に 適用可能なシステムパラメータを 表示、入力、編集するために使用 されます。

このグループのパラメータ

UNIT	圧力単位
BAUD USB	USB インターフェース 伝送速度
RNG-EXT	ピラニレンジ拡張
AO-MODE	レコーダ出力
ERR-RELAY	エラーリレー
BARGRAPH	バーグラフディスプレイ
BACKLIGHT	バックライト
SCREENSAVE	スクリーンセーバー
CONTRAST	コントラスト調整
DEFAULT	ファクトリー設定
LANGUAGE	言語
FORMAT	ナンバーフォーマット、測定値
END VAL	測定範囲限界値の表示
<	レベルバック

圧力単位

測定値やしきい値等の単位 (換算表 → 🖹 61).

	説明
JNIT	
UNIT MBAR	⇔ mBar
UNIT HPASCAL	⇔ hPa (ファクトリー設定)
UNIT TORR	➡ Torr (Torr lock が有効でない場合のみ、使用可能 → 圖 38)
UNIT PASCAL	⇔ Pa
UNIT MICRON	 ⇒ Micron (= 0.001 Torr) (Torr lock が有効でない場合のみ、使用可 能 → ③ 38)
UNIT VOLT	⇒ V

圧力単位の変更は BPG、HPG、BCG ゲージの圧 力単位設定にも影響を及ぼします。 VGC501 のみ: 圧力単位 micron が選択された場 合、99000micron 以上は自動的に Torr へ変換さ れます。90Torr 以下になると、自動的に micron へ戻ります。

伝送速度

USB インターフェース伝送速度

	説明
BAUD USB	
BAUD USB 9600	⇨ 9600 ボーレート
BAUD USB 19200	⇨ 19200 ボーレート
BAUD USB 38400	⇒ 38400 ボーレート
BAUD USB 57600	⇨ 57600 ボーレート
BAUD USB 115200	⇒ ボーレート (ファクトリー設定)

ピラニレンジ拡張

表示範囲及びセットポイント設定範囲の拡張

この機能が使用可能なゲージ:

				Measurement range
🗹 Pirani	🗹 Pirani			5×10 ⁻⁵ 1000 mbar
Pirani / Capacitar	nce		(PCG)	5×10 ⁻⁵ 1500 mbar
Cold cathode			(PEG, MAG))
Cold cathode / Pi	ran	i	(MPG)	
□ Hot ionization / Pi	Hot ionization / Pirani		(BPG, HPG)	
Capacitance	Capacitance		(CDG)	
□ Hot ionization / Pi	irar	ni / Ca	apacitanc	e (BCG)
	=			
	記	抈		
RNG-EXT				
RNG-EXT DISABLED	⇔	無効	(ファクト	リー設定)
RNG-EXT ENABLED	⇔	有効	。表示範囲]を 5×10 ⁻
			al よく払り	x

NFICON

レコーダ出力(VGC502, VGC503)

レコーダ出力はプログラム式のアナログ出力です。 レコーダ出力電圧は、センサ測定圧力値の機能で す。圧力と電圧の関係は出力の特性曲線と呼びま す。

基本的に対数とリニアの特性曲線を区別する必要 があります。

- 測定範囲が多くの桁数に及ぶ場合は、対数特 性曲線が有効です。この場合は、圧力の対数 を算出し、その結果を適切な方法で拡大/縮小 するのが適当な方法です。
- 測定範囲が少しの桁数にしか及ばない場合は、 リニア特性曲線が有効です。この場合はレコ ーダ出力電圧は圧力値に比例します。どの圧 力値を最大出力電圧に割り当てるか定める事 が出来ます。

以下に使用可能な特性曲線について詳しく説明し ます。それぞれの場合での、レコーダ出力電圧 U(V)から圧力 P(mbar)を算出する方法を示しま す。

- - パラメータ AO-MODE を選択します。

 - ☑△ キーで特性曲線を選択します。

スイッチング機能は任意のチャンネルに割り当て る事が可能です。

	説明	
AO-MODE		
AO-MODE LOG	⇒ 測定範囲全体の対数表示(ファ クトリー設定)	
	$\begin{array}{l} PSG: p = 10^{[U]}(10 \ / \ 7) - 4] \\ PCG: p = 10^{[U]}(10 \ / \ 7) - 4] \\ PEG/MAG: p = 10^{[U]}(10 \ / \ 7) - 9] \\ MPG: p = 10^{[U]}(10 \ / \ 12) - 9] \\ CDG: p = 10^{[U]}(10 \ / \ 4) - 4] \times FS \\ BPG: p = 10^{[U]}(10 \ / \ 12) - 9] \\ BCG: p = 10^{[U]}(10 \ / \ 12) - 9] \\ HPG: p = 10^{[U]}(10 \ / \ 9) - 6] \end{array}$	
AO-MODE LOG A	⇒ 測定範囲全体の対数表示 (VGC012, VGC023, VGC032 と互換性有り)	
	PSG: $p = 10^{[U]}(10/6) - 3]$ PCG: $p = 10^{[U]}(10/7) - 4]$ PEG/MAG: $p = 10^{[U]}(9/7) - 9 - 7/9]$ MPG: $p = 10^{[U]}(10/11) - 8]$ CDG: $p = 10^{[U]}(10/4) - 4] \times FS$ BPG400: $p = 10^{[U]}(U - 7.75) / 0.75]$ BPG402: $p = 10^{[U} - 8]$	A
	BCG: p = 10^[(U - 7.75) / 0.75] HPG: p = 10^[U/(10/9) - 6]	A

AO-MODE LOG -6	⇔	測定範囲の一部を対数表示 (2.5V/桁)
		p = 10^[U/(10/4) - 10]
AO-MODE LOG -3	⇔	測定範囲の一部を対数表示 (2.5V/桁)
		p = 10^[U/(10/4) - 7]
AO-MODE LOG +0	⇔	測定範囲の一部を対数表示 (2.5V/桁)
		p = 10^[U/(10/4) - 4]
AO-MODE LOG +3	⇔	測定範囲の一部を対数表示 (2.5V/桁)
		p = 10^[U/(10/4) - 1]
AO-MODE LOG C1	⇔	以下センサの組み合わせに一致 した対数表示
		Ch1:PSG
		Ch2: PEG
		p = 10^[U/(10/12) - 9]
AO-MODE LOG C2	⇔	以下センサの組み合わせに一致 した対数表示
		CDG on channel 1 Ch1:CDG
		CDG on channel 2 Ch2: CDG
		この特性曲線が有効なのは、セ ンサが異なる測定範囲を持つ場 合のみです。組み合わせたセン サのトータルの測定範囲が、0~ 10Vの範囲で対数表示されま す。
AO-MODE LOG C3	⇔	以下センサの組み合わせに一致 した対数表示 • Ch1:CDG • Ch2:CDG • Ch3:CDG この特性曲線が有効なのは、セ ンサが異なる測定範囲を持つ場 合のみです。組み合わせたセン サのトータルの測定範囲が、0~ 10V の範囲で対数表示されま す。
AO-MODE LIN -10	⇔	 3 台のセンサは、その測定範囲(FS)に関して ソートする必要があります。ソート順は昇順か降順になります。 リニア表示: U = 10 V は p = 10⁻¹⁰ mbar と等価です p = U/10 × 10⁻¹⁰ Adjustable in the range LIN - 100 - 100 + 200
		IU LIN +3 リーフまティ

U = 10 V は p = 10⁺³ mbar と等

価です。 p = U/10 × 10⁺³

NFICON

AO-MODE IM221	⇔ IM221 の対数表示(1V/桁): U = 8 V は p = 10 ⁻² mbar と等価 です。 p = 10^[U - 10]	BARGRAPH DEC h BARGRAPH DEC+SP
AO-MODE LOG C4	 ⇒ 以下センサの組み合わせに一致 した 12 桁の対数表示(0.83V/ 桁): • Ch1:PCG • Ch2:BPG402 p = 10^[U/(10/12) - 9] U = 10 V は p = 1000 mbar と等 価です。 センサ間の切り替えポイントは 10⁻² mbar です。 	ARGRAPH f(0.2s)
AO-MODE PM411	▷ PM411 ボードと同様な出力の 非リニア特性曲線	BARGRAPH f(1s)
AO-MODE CH x	⇔ 出力電圧 = 入力電圧	
エラー信号リレー		
エラー信号リレー	のスイッチング動作	

	説明	BARGRAPH f(6s)
ERR-RELAY		
ERR-RELAY ALL		
ERR-RELAY no SE	⇒ ユニットエラーのみ	
ERR-RELAY CH 1	⇒ センサ1及びユニットエラー	
ERR-RELAY CH 2	⇒ センサ2及びユニットエラー (VGC502/50のみ)	BARGRAPH f(1min)
ERR-RELAY CH 3	⇒ センサ3及びユニットエラー (VGC503のみ)	

バーグラフ

ドットマトリックス内にバーグラフまたは時間関 数(p = f(t) としての測定圧力を表示させることが 出来る。

パラメータ設定中は、そのパラメータと設定値が この場所に表示される

	説明
BARGRAPH	
BARGRAPH OFF	⇔ ファクトリー設定
BARGRAPH FSR	⇒ フルスケールレンジをカバー するバーグラフ
BARGRAPH FSR h	⇒ フルスケールレンジをカバー するバーグラフ、高度なプレ ゼンテーション
BARGRAPH FSR+SP	⇒ フルスケールレンジ及びセッ トポイント状態をカバーする バーグラフ
BARGRAPH DEC	⇒ 現在の測定値によって1桁を カバーするバーグラフ

	カバーするバーグラフ、高度 なプレゼンテーション
DEC+SP	⇒ 現在の測定値によって1桁及 びセットポイント状態をカバ ーするバーグラフ
PH f(0.2s)	⇔ p = f _(t) 、オートスケール、0.2 秒/pixel
	200ms 毎の測定値が表形式に 保存され、ラスト 100 個の測

保存され、ラスト 100 個の測 定値(=100 pixel) がオート スケールで表示される 表されるデータ列は20秒の ログ時間に相当します。

⇒ 現在の測定値によって1桁を

⇒ $p = f_{(t)}$ 、オートスケール、1 秒/pixel 1s 毎の測定値が表形式に保 存され、ラスト 100 個の測定 値(=100 pixel) がオートス ケールで表示される

> 表されるデータ列は 100 秒の ログ時間に相当します。

⇒ $p = f_{(t)}$ 、オートスケール、6 秒/pixel 6s 毎の測定値が表形式に保 存され、ラスト 100 個の測定 値(=100 pixel) がオートス ケールで表示される 表されるデータ列は 10分の ログ時間に相当します。

⇒ $p = f_{(t)}$ 、オートスケール、1 分/pixel 1分毎の測定値が表形式に保 存され、ラスト 100 個の測定 値(=100 pixel) がオートス ケールで表示される 表されるデータ列は 100 分の ログ時間に相当します。

バックライト

	説明
BACKLIGHT	
e.g. BACKLIGHT 60%	⇨ ファクトリー設定
	0~100%調整可能
	100% = 最高輝度

ī.

スクリーンセーバー

スクリーンセーバーはバックライトの輝度を下げ ます

	設定
SCREENSAVE	
SCREENSAVE OFF	⇨ ファクトリー設定
SCREENSAVE 10min	⇒ 10 分後
SCREENSAVE 30min	⇒ 30 分後
SCREENSAVE 1h	⇒ 1時間後
SCREENSAVE 2h	⇒ 2時間後
SCREENSAVE 8h	⇒ 8時間後

コントラスト

	設定
CONTRAST	
e.g. CONTRAST 40%	⇒ ファクトリー設定 0~100%調整可能
	100% = 最大コントラスト

デフォルトパラメータ設定

全てのユーザーパラメータ設定をデフォルトパラ メータ(ファクトリー設定)に置き換えます。

	設定
DEFAULT	
DEFAULT ▼+▲ 2s	〇二キー同時に2秒以上の 長押しによってデフォルトパ ラメータのロードが開始され ます
DEFAULT SET	➡ デフォルトパラメータロ ード完了

言語

表示言語

	説明
LANGUAGE	
LANGUAGE ENGLISH	⇨ 英語(ファクトリー設定)
LANGUAGE GERMAN	⇒ ドイツ語
LANGUAGE FRENCH	⇔ フランス語

測定値フォーマット

浮動小数点または指数関数フォーマットでの測定 値。もし測定値が浮動小数点フォーマットでの表 現が適当でない場合、自動的に指数関数フォーマ ットで表示される。

	説明
FORMAT	
FORMAT X.X	☆ 浮動小数点フォーマット ※適当な場合(ファクトリー 設定)
FORMAT X.XESY	⇔ 指数関数フォーマット

測定範囲限界値の表示

アンダーレンジまたはオーバーレンジの表示

	説明
END VAL	
END VAL UR/OR	⇒ アンダーレンジまたはオーバ ーレンジでの測定の場合、 UR または OR が表示される (ファクトリー設定)
END VAL 説明	⇒ アンダーレンジまたはオーバ ーレンジでの測定の場合、そ れぞれの測定範囲限界値が表 示される

4.5.5 テストパラメータ

- TEST > Test parameter グループは例え ば、ファームウェアバージョンの 表示、特別なパラメータ値の入力 及び編集そしてテストプログラム の実行のために使用されます。
- このグループは VGC50x 起動時に^⑤キ ーが押された場合のみ使用可能です。

このグループのパラメータ

SOFTWARE	ファームウェアバージョン
HARDWARE	ハードウェアバージョン
MAC	MAC アドレス
RUNHOURS	動作時間
WATCHDOG	ウォッチドッグコントロール
TORR-LOCK	Torr ロック
KEY-LOCK	キーロック
FLASH	FLASH テスト(プログラムメモ リ)
EEPROM	EEPROM テスト(パラメータメモ リ)
DISPLAY	ディスプレイテスト
I/O	1/0 テスト

COMP.

<

互換性

レベルバック

このグループのパラメータは全てのゲージに使用 可能です。

ファームウェアバージョン ファームウェアバージョン(プログラムバージョ ン)が表示されます。

	バージョン
e.g. SOFTWARE 1.00	この情報は INFICON にお問い 合わせする際に有効です。

ハードウェアバージョンハードウェアバージョン(プログラムバージョン)が表示されます。

	ハードウェア
e.g. HARDWARE 1.0	この情報は INFICON にお問い 合わせする際に有効です。

MACアドレス

MAC アドレスが表示されます。

	MAC アドレス
z. B. MAC 00A0410A0008	アドレスは分離記号(例:00- A0-41-0A-00-08)無しで表示さ れます。

運転時間

運転時間が表示されます。

 時間

 e.g. RUNHOURS 24 h

ウォッチドッグコントロール

エラー時のシステムコントロール(ウォッチドッ グコントロール)の挙動

	設定
WATCHDOG	
WATCHDOG AUTO	⇒ システムは2秒後、ウォッチ ドッグからのエラーメッセー ジを自動的に応答します。 (ファクトリー設定)
WATCHDOG OFF	⇒ ウォッチドッグからのエラー メッセージはオペレーターに よって応答されなければなり ません。

Torr ロック

圧力単位 Torr と Micron は設定を抑制する事がで きます。 UNIT TORR (→ ③ 34).

	設:	定
TORR-LOCK		
TORR-LOCK OFF	₽	圧力単位 Torr と Micron は使 用可能です。(ファクトリー 設定)
TORR-LOCK ON	⇔	圧力単位 Torr と Micron は使 用出来ません。

キーロック

キーロック機能はパラメータモードでの不慮の入 力を防止し、誤作動を防ぎます。

	設定
KEY-LOCK	
KEY-LOCK OFF	⇒ キーロック機能は無効です。 (ファクトリー設定)
KEY-LOCK ON	⇔ キーロック機能は有効です。

FLASH テスト

プログラムメモリのテスト

	テストシーケンス
FLASH ▼+▲	○○ キーを同時に押すと、テ ストが開始されます。
FLASH RUN	
FLASH PASS	☆ エラーなしにテスト終了。テ スト後 8 デジットチェック サム(例: FLASH 0x12345678)が表示されま す。
FLASH ERROR	 ⇒ テストが終了し、エラーを検出。テスト後 8 デジットチェックサム (例:FLASH 0x12345678)が表示されます。 繰り返しテスト後、エラーが未解決の場合、お近くの INFICON サービスセンター までご連絡ください。

NFICON

EEPROM テスト

パラメータメモリのテスト

	テストシーケンス
EEPROM ▼+▲	○○ キーを同時に押すと、テ ストが開始されます。
EEPROM RUN	⇔ テスト実行中
EEPROM PASS	⇒ エラーなしにテスト終了。
EEPROM ERROR	 ⇒ テストが終了し、エラーを検出。 繰り返しテスト後、エラーが 未解決の場合、お近くの INFICON サービスセンター までご連絡ください。

ディスプレイテスト

ディスプレイのテスト

	テストシーケンス
DISPLAY ▼+▲	○ キーを同時に押すと、テ ストが開始されます。
	⇒ テスト開始後 10 秒間、全て のディスプレイエレメントが 点灯します。

I/O テスト

リレーのテスト。テストプログラムはスイッチン グ機能をテストします。

リレーが順次オン/オフします。スイッチング動 作はステータスが表示され、またはっきりと切り 替わり音が聞こえるとされています。

スイッチング機能のコンタクトはユニット背面の *CONTROL* コネクタ(VGC501)または *RELAY* コネクタ(VGC502/503)に接続されています (→
[●] 16)。オーム計を使用して本機能を確認して ください。

互換性

VGC50x は INFICON ゲージまたは OLV トラン スミッターに互換性があります。

	説明
COMP. INFICON	INFICON ゲージをサポートしま す。(デフォルト)
COMP. OLV	OLV トランスミッターをサポー トします。

4.5.6 データロガーモード

DATA LOGGER > data logger グループは以下の目的 で使用されます。

- USB メモリステック (VGC50x 前面の type A インターフェー ス)内の測定データの表示
- 表示中の測定データの USB メ モリステックからの削除
- このグループは FAT ファイルシステム (FAT32) 用にフォーマットされた USB メモリステックが接続されている場合 のみ使用可能です。使用するメモリス テックは最大 32 GB までとしてください。
- USB メモリステック (特に安価なもの) の中には USB 規格の要件を満たさない ために VGC50x に自動で認識されない ものがあります。お近くの INFICON サ ービスセンターに連絡する前に、もう 1 度別のメモリステックをお試しくださ い。

このグループのパラメータ

DATE	現在の日付
TIME	現在の時刻
INTERVAL	表示間隔
DEC-SEPARATOR	小数点
FILENAME	ファイル名
START / STOP	表示の開始/停止
CLEAR	表示中の測定データが入ったファイル の削除

日付

	説明
DATE	現在の日付が YYYY-MM-DD 形 式で表示されます。
e.g. DATE 2015-04-15	⇨ 例:2015-04-15

時刻

	説明
TIME	現在の時刻が hh:mm 形式 (24 時 間表記) で表示されます。
e.g. TIME 15:45	⇒ 例:15:45

間隔

データロギング間隔

	説明
INTERVAL	
INTERVAL 1s	→ 表示間隔: 1/s
INTERVAL 10s	⇨ 表示間隔:1/10 s
INTERVAL 30s	⇨ 表示間隔:1/30 s
INTERVAL 1min	⇨ 表示間隔:1/60 s
INTERVAL 1%	⇒ 表示間隔:測定値が1%以上 変化したとき
INTERVAL 5%	⇒ 表示間隔:測定値が5%以上 変化したとき

小数点

測定データファイル内の測定値に適用される小数 点

	Wert
DEC-SEPARATOR	
DEC-SEPARATOR ,	⇔ コンマ
DEC-SEPARATOR .	⇔ ピリオド

ファイル名

	説明
FILENAME	測定データファイルの名前。 最大7字
e.g. FILENAME DATALOG	⇒ ファイル名の語尾:CSV

開始/停止

測定値表示の開始/停止

🏥 測定値の表示中は 💁 が点滅します。

削除

USB メモリステックからすべての測定データフ ァイル (CSV ファイル)を削除します。

	説明
CLEAR ▼+▲	○ キーを同時に押すと、フ ァイルが削除されます。
CLEAR RUNNING	⇔ CSV ファイルの削除中
CLEAR DONE	⇨ CSV ファイルの削除完了

4.5.7 パラメータ転送モード

SETUP >	このグループは以下の目的で使用され ます。
	 USB メモリステック (VGC50x 前 面の type A インターフェース) へ の全パラメータの保存
	。 UCP メエリフニック中の合パニメ

 USB メモリステック内の全パラメ ータの VGC50x へのロード

- USBメモリステックのフォーマット
- USB メモリステックからのパラメ ータ保存ファイルの削除
- このグループは FAT ファイルシステム (FAT32) 用にフォーマットされた USB メモリステックが接続されている場合の み使用可能です。使用するメモリステッ クは最大 32 GB までとしてください。

このグループのパラメータ

SAVE	全パラメータの保存
RESTORE	全パラメータの VGC50x へのロード
FORMAT	USB メモリステックのフォーマット (FAT32)
CLEAR	パラメータ保存ファイルの削除
<	レベルバック

パラメータの保存

VGC50x のすべてのパラメータを USB メモリス テック (CSV ファイル) に保存します。

	説明
SAVE SAVE SETUP	⇒ USBメモリステック上のフ ァイル名: SETUP01.CSV
E SAVE SETUP99	⇒ USBメモリステック上のフ ァイル名: SETUP99.CSV
SAVE RUNNING	⇔ CSV ファイルの保存中
SAVE DONE	☆ 保存完了

パラメータのロード

すべてのパラメータを USB メモリステックから VGC50x にロードします。

	説明
RESTORE	
RESTORE SETUP01	⇒ USBメモリステック上のフ ァイル名: SETUP01.CSV
:	
RESTORE SETUP99	⇒ USBメモリステック上のフ ァイル名: SETUP99.CSV

フォーマット

USB メモリステックをフォーマットします。

	説明
FORMAT ▼+▲	○ キーを同時に押すと、フ オーマットが開始されます。
FORMAT RUNNING	⇨ フォーマット中
FORMAT DONE	⇔ フォーマット完了

削除

すべてのパラメータファイル (CSV ファイル) を USB メモリステックから削除します。

説明

CLEAR ▼+▲	○ キーを同時に押すと、フ ァイルが削除されます。
CLEAR RUNNING	⇔ CSV ファイルの削除中
CLEAR DONE	⇨ CSV ファイルの削除完了

5 通信プロトコル(シリアルイン ターフェース)

VGC50x は 仮想シリアルインターフェース (COM ポート) を介してコンピューターと通信し ます。そのため、ユーザーソフトウェアは USB Type B または Ethernet インターフェースを介し て VGC50x にアクセスすることができます。

USB Type B インターフェースを介した通信

USB Type B インターフェースを介してコンピュ ーターに VGC50x が接続されると、仮想 COM ポート用の対応ドライバが自動的にインストール されます。ドライバが自動でインストールされな い場合は、 FTDI のウェブサイト (www.ftdichip.com/Drivers/VCP.htm) からドライ バをダウンロードすることが可能です。

インストール後の仮想 COM ポートは追加のシリ アルインターフェースとしてコンピューターのデ バイスマネージャーに表示されます。

Ethernet インターフェースを介した通信

Ethernet 接続ツールを使うと、仮想シリアルイン ターフェース (COM) に IP アドレスを割り当て ることができます。 さらに、コンピューター経 由で Ethernet インターフェースの設定を行うこ とも可能です。(→ 🗎 63)

インストール後の仮想 COM ポートは追加のシリ アルインターフェースとしてコンピューターのデ バイスマネージャーに表示されます。

VGC50x が運転状態になると、1 秒間隔で測定値 の伝送が開始されます。最初のキャラクタが VGC50x に転送されると、ただちに測定値の自動 伝送は停止します。必要な問い合わせまたはパラ メータの変更を行ってから、COM コマンドによ って測定値の伝送を再開することができます。 (→ ■ 44)

通信構造および手順は VGC501、VGC502、 VGC503 のどのコントローラでも同じです。そ のため、この章では VGC50x という形で表記し ています。

チャンネル固有のパラメータを備えたニーモニッ クには、それぞれの装置のチャンネル数と同じ数 だけ値を併記しなければならないので、注意が必 要です。

例: VGC501 伝送: **OFC** [,a] VGC502 伝送: **OFC** [,a,b] VGC503 伝送: **OFC** [,a,b,c]

5.1 データ伝送

データ伝送は双方向です。つまり、データと制御 コマンドはどちらの方向にも伝送することができ ます。

データ形式

1スタートビット、8データビット、パリティビ ットなし、1ストップビット、ハードウェアハン ドシェイクなし

定義

使用される略語と記号:

表記	意味		
ホスト	コンピューターまたは端末		
[]	オプションのエレメント		
ASCII	情報交換用米国標準符号		
		10 進数	16 進数
<etx></etx>	テキストの終わり (CTRL C) インターフェースのリセット	3	03
<cr></cr>	復帰 行頭への復帰	13	0D
<lf></lf>	改行 1 行送り	10	0A
<enq></enq>	問い合わせ (CTRL E) データ伝送要求	5	05
<ack></ack>	応答 肯定報告信号	6	06
<nak></nak>	否定応答 否定報告信号	21	15

"送信": ホストから VGC50x へのデータ転送
 "受信": VGC50x からホストへのデータ転送

フローコントロール

ホストは各 ASCII 文字列の送信後に報告信号 (<ACK><CR><LF> または <NAK> <CR><LF>) を待つ必要があります。

ホストの入力バッファーは少なくとも 32 バイト の容量が必要です。

5.2 通信プロトコル

送信形式

メッセージは ASCII 文字列としてニーモニック コードとパラメータの形で VGC50x に送信され ます。すべてのニーモニックは 3 つの ASCII キ ャラクタで構成されます。

空白 (スペース) は無視されます。 <ETX> (CTRL C) で、VGC50x の入力バッファーがクリ アされます。

送信プロトコル

ホスト	VGC50x	説明
ニーモニック [パラメータ] > <cr>[<lf>] ></lf></cr>		メッセージと「メ ッセージの終わ り」の受信
< <ack><cr><lf></lf></cr></ack>		受信メッセージに 対する肯定応答

受信形式

VGC50x は、ニーモニック命令を伴った要求を受 信すると、測定データやパラメータを ASCII 文 字列でホストに伝送します。

ASCII 文字列の伝送を要求するには、<ENQ> (CTRLE) を送信する必要があります。最後に選 択されたニーモニックに対応する追加の文字列は、 <ENQ> を繰り返し送信することで読み取ります。

VGC50x は正当な要求を伴わずに <ENQ> を受信した場合、エラーステータスを伝送します。

受信プロトコル

ホスト	VGC50x	説明
ニーモニック [パラメータ] -> <cr>[<lf>] ></lf></cr>		メッセージと「メ ッセージの終わ り」の受信
<		受信メッセージに 対する肯定応答
<enq></enq>		データ伝送要求
> <	側定値 ラメータ ──	データと「メッセ ージの終わり」の 伝送
: <enq></enq>		: データ伝送要求
< 第 またはパ ⁻	側定値 ラメータ ──	データと「メッセ ージの終わり」の
<cr><lf></lf></cr>		伝送

NFICON

エラー処理

VGC50x は受信した文字列を検査し、エラーが検 出された場合は否定応答 <NAK> が出力します。

エフー認識フロトコル	
ホスト VGC50x	説明
ニーモニック [パラメータ] 	メッセージと「メッ セージの終わり」の 受信
***** 送信またはプログラミン	ッグエラー *****
< <nak><cr><lf></lf></cr></nak>	受信メッセージに対 する否定応答
ニーモニック [パラメータ] 	メッセージと「メッ セージの終わり」の 受信
< <ack><cr><lf></lf></cr></ack>	受信メッセージに対 する肯定応答

 \rightarrow

5.3 ニーモニック

ADC	A/D コンバーターテスト	56
AOM	アナログ出力モード	52
ΑΥΤ	相手確認	58
BAL	バックライト	52
BAU	伝送速度 (USB)	52
CAL	校正ファクター	48
CF1	ゲージ1の校正ファクター	48
CF2	ゲージ2の校正ファクター	48
CF3	ゲージ3の校正ファクター	48
COM	測定値の連続出力モード	44
COR	校正ファクター	48
CPR	統合圧カレンジ (リニアゲージ)	44
СРТ	ゲージとの互換性	56
DAT	日付	55
DCB	バーグラフ表示のコントロール	53
DCC	コントラストの調整	53
DCD	表示桁数	48
DCS	スクリーンセーバーのコントロール	53
DGS	デガス機能	48
DIS	ディスプレイテスト	56
EEP	EEPROM テスト	56
EPR	FLASH テスト	56
ERA	エラーリレーの割り当て	53
ERR	エラーステータス	45
ETH	Ethernet 接続	59

EUM	エミッションのユーザーモード	49
EVA	測定範囲限界値	54
FIL	測定値フィルター	49
FMT	数字フォーマット (測定値)	54
FSR	測定レンジ (リニアゲージ)	49
FUM	フィラメントのユーザーモード	49
GAS	ガスタイプの修正	50
HDW	ハードウェアバージョン	56
HVC	高真空回路の制御、エミッションの オン/オフ	56
ΙΟΤ	I/O テスト	56
ITR	データ出力	50
LCM	データロガーの起動/停止	55
LNG	言語 (ディスプレイ)	54
LOC	キーロック	56
MAC	Ethernet MAC アドレス	56
OFC	オフセット補正 (リニアゲージ)	50
OFD	オフセット表示 (リニアゲージ)	50
OFS	オフセット補正 (VGC501 のみ)	51
PNR	ファームウェアバージョン	56
PR1	ゲージ1の測定データ	45
PR2	ゲージ2の測定データ	45
PR3	ゲージ3の測定データ	45
PRE	ピラニレンジ拡張	54
PRX	ゲージ 1、2 および 3 の測定データ	45
RES	リセット	46
RHR	運転時間	56
RST	RS232C テスト	56
SAV	パラメータの保存 (EEPROM)	54
SC1	ゲージ1のコントロール	51
SC2	ゲージ2のコントロール	51
SC3	ゲージ3のコントロール	51
SCM	パラメータの保存/ロード (USB)	55
SP1	セットポイントリレー1	47
SP2	セットポイントリレー2	47
SP3	セットポイントリレー3	47
SP4	セットポイントリレー4	47
SP5	セットポイントリレー5	47
SP6	セットポイントリレー6	47
SPS	セットポイントリレーのステータス	47
TAD	A/D コンバーターテスト	56
TAI	ID 抵抗テスト	57
TDI	ディスプレイテスト	57
TEE	EEPROM テスト	57
TEP	FLASH テスト	57

TID ゲージの識別

47

NFICON

TIM	時刻	55
ΤΙΟ	I/O テスト	57
TKB	キーテスト	58
TLC	Torr ロック	58
TMP	ユニット内温度	58
TRS	RS232C テスト	58
UNI	圧力単位	54
WDT	ウォッチドッグコントロール	58

5.4 測定モード

COM - 測定値の連続出力

送信: COM [,a] <CR>[<LF>]

	説明
а	時間間隔、a =
	0-> 100 ミリ秒
	1-> 1秒 (デフォルト)
	2-> 1分

受信: <ACK><CR><LF>

<ACK>の応答に続き、要求した間隔での測定値の連続出力がすぐに開始されます。

受信: b,sx.xxxxEsxx,c,sy.yyyyEsyy,d,sz.zzzzEs zz <CR><LF>

	説明
b	ゲージ1のステータス、b =
	0-> 測定データ OK
	1-> アンダーレンジ
	2 –> オーバーレンジ
	3-> 測定値エラー(センサエラー)
	4-> センサオフ (PEG、MAG)
	5–> センサなし
	6-> 識別エラー
	7 –> BPG、HPG、BCG エラー
sx.xxxxEsxx	ゲージ1の測定値 ¹⁾ [現在の圧力単位] (s = 符号)
С	ゲージ2のステータス
sy.yyyyEsyy	ゲージ2の測定値 ¹⁾ [現在の圧力単位] (s = 符号)
d	ゲージ3のステータス
sz.zzzEszz	ゲージ3の測定値 ¹⁾ [現在の圧力単位] (s = 符号)
1) 測 出:	定値は必ず指数関数フォーマットで カされます。
対数ゲージの	場合、3番目と4番目の小数桁は常

N数ワーンの場合、3 番日と4 番日の小数桁は常に0 になります。

このパラメータは、 VGC502 や VGC503 にフル スケール (F.S.) の異なる複数のリニアゲージが 接続されている場合に、異なる圧カレンジを 1 つの圧カレンジに統合します。これにより、この 統合圧カレンジの圧力を最も高い精度で読み取る ことが可能になります。
圧カレンジが低いゲージのフルスケールを上回る 圧力の場合は、VGC502/503 が圧カレンジの高い ゲージに切り替えます。
リニアゲージが1つしか接続されていない場合 は、このゲージの測定値が出力されます。 リニアゲージが接続されていない場合は、測定値 として1000 mbar が出力され、 パラメータ a、 b、c は「0」になります。
例
チャンネル 1: リニアゲージ、1000 mbar F.S. チャンネル 2: リニアゲージ、10 mbar F.S. チャンネル 3: 冷陰極 (MAG)
チャンネル1 ^{1E+3} ^{1E-1}
チャンネル 2 1E+1 1E-3
統合圧カレン ^{1E+3} 1E-3 レー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

CPR - 統合圧カレンジ (リニアゲージ)

送信コマンド:	CPR,1,2,0	または
	CPR,1,2	または
	CPR,2,1	

送信: CPR [,a,b,c] <CR>[<LF>]

説明
選択したゲージの測定チャンネル、a=
0-> リニアゲージの接続なし
1-> 測定チャンネル1
2-> 測定チャンネル2
3-> 測定チャンネル3
選択したゲージの測定チャンネル
選択したゲージの測定チャンネル

受信: <ACK><CR><LF>

送信: <ENQ>

受信: a,b,c,sx.xxxxEsxx

	説明
а	選択したゲージの測定チャンネル
b	選択したゲージの測定チャンネル
С	選択したゲージの測定チャンネル
sx.xxxxEsxx	統合測定値 ¹⁾ [現在の圧力単位]
	(s = 符号)

- 1) 測定値は必ず指数関数フォーマット で出力されます。
- ERR エラーステータス
- 送信: ERR <CR>[<LF>] エラーステータス
- 受信: <ACK><CR><LF>
- 送信: <ENQ>
- 受信: aaaa <CR><LF>

説明

aaaa	エラーステータス、aaaa =
	0000 -> エラーなし
	1000 –> ERROR (コントローラエラー (フロン トパネルのディスプレイ表示)
	0100 –> NO HWR (ハードウェアなし)
	0010 –> PAR (無効なパラメータ)
	0001 –> SYN (構文エラー)

エラーステータスは読み取りが行われ ると解除されますが、エラーが持続し ている場合はすぐに復活します。

PRx - ゲージ1、2 または3の測定データ

送信: PRx <CR>[<LF>]

- 説明
- × 測定値、x = 1-> ゲージ1 2-> ゲージ2

3-> ゲージ3

- 受信: <ACK><CR><LF>
- 送信: <ENQ>
- 受信: a,sx.xxxxEsxx <CR><LF>

	説明
а	ステータス、a=
	0-> 測定データ OK
	1-> アンダーレンジ
	2-> オーバーレンジ
	3-> センサエラー
	4-> センサオフ (PEG, MAG)
	5-> センサなし
	6-> 識別エラー
	7 –> BPG, HPG, BCG エラー
sx.xxxxEsxx	測定値 ¹⁾ [現在の圧力単位] (s = 符号)

1) 測定値は必ず指数関数フォーマット で出力されます。

対数ゲージの場合、3番目と4番目の小数桁は常に0になります。

PRX - ゲージ1、2 および3の測定データ

送信: PRX <CR>[<LF>]

- 受信: <ACK><CR><LF> 送信: <ENQ>
- 受信: a,sx.xxxxEsxx,b,sy.yyyyEsyy,c, sz.zzzzEszz <CR><LF>

	説明
а	ゲージ1のステータス、a=
	0-> 測定データ OK
	1-> アンダーレンジ
	2-> オーバーレンジ
	3-> センサエラー
	4-> センサオフ (PEG, MAG)
	5-> センサなし
	6-> 識別エラー
	7-> BPG、HPG、BCG エラー

sx.xxxxEsxx	│ ゲージ1の測定値 ¹⁾ [現在の圧力単位] (s = 符号)
b	ゲージ2のステータス
sy.yyyyEsyy	ゲージ2の測定値 ¹⁾ [現在の圧力単位] (s = 符号)
с	ゲージ3のステータス
sz.zzzEszz	ゲージ3の測定値 ¹⁾ [現在の圧力単位] (s = 符号)

1) 測定値は必ず指数関数フォーマット で出力されます。

対数ゲージの場合、3番目と4番目の小数桁は常に0になります。

RES - リセット

送信: RES [,a] <CR>[<LF>]

	説明
а	a =
	1-> 現在発生しているエラーの解除と測定モード への復帰

- 受信: <ACK><CR><LF>
- 送信: <ENQ>
- 受信: b[,b][,b][...] <CR><LF>

	説明	
b	発生し ⁻	ているすべてのエラーメッセージ、b =
	0 ->	エラーなし
	1 ->	ウォッチドッグのトリガー状態
	2 ->	タスク失敗エラー
	3 ->	FLASH エラー
	4 ->	RAM エラー
	5 ->	EEPROM エラー
	6 ->	ディスプレイエラー
	7 ->	A/D コンバーターエラー
	8 ->	UART エラー
	9 ->	ゲージ1の一般エラー
	10 ->	ゲージ1の ID エラー
	11 –>	ゲージ2の一般エラー
	12 –>	ゲージ2の ID エラー
	13 –>	ゲージ3の一般エラー
	14 ->	ゲージ3の ID エラー

TID - ゲージの識別

送信:	TID <cr>[<lf>]</lf></cr>	ゲージの識別
受信: 送信:	<ack><cr><lf> <enq></enq></lf></cr></ack>	
受信:	a,b,c <cr><lf></lf></cr>	

説明

а	ゲージ1の識別、a=		
	PSG	(ピラニゲージ)	
	PCG	(ピラニ / キャパシタンスゲージ)	
	PEG/MAG	(冷陰極ゲージ)	
	MPG	(冷陰極 / ピラニゲージ)	
	CDG	(キャパシタンスゲージ)	
	BPG	(熱陰極電離 / ピラニゲージ)	
	BPG402	(熱陰極電離 / ピラニゲージ)	
	HPG	(熱陰極電離 / ピラニゲージ)	
	BCG	(熱陰極電離 / キャパシタンス / ピラニ	
		ゲージ)	
	noSEn	(センサなし)	
	noid	(ID なし)	
b	ゲージ2の	識別	
с	ゲージ3の	識別	

5.5 セットポイントパラメータ

SPS - セットポイントリレーのステータス

- 送信: SPS <CR>[<LF>]
- 受信: <ACK><CR><LF>
- 送信: <ENQ>
- 受信: a,b,c,d,e,f <CR><LF>

説明

а	セットポイントリレー1 のステータス、a=
	0-> オフ
	1-> オン
b	セットポイントリレー2 のステータス
С	セットポイントリレー3 のステータス
d	セットポイントリレー4 のステータス
е	セットポイントリレー5 のステータス
f	セットポイントリレー6 のステータス

SP1 ... SP6 - セットポイントリレー1 ... 6

送信: SPx [,a,x.xxxxEsxx,y.yyyyEsyy] <CR>[<LF>]

	説明
Х	セットポイントリレーx、x =
	1-> セットポイントリレー1
	2-> セットポイントリレー2
	3-> セットポイントリレー3
	4-> セットポイントリレー4
	5-> セットポイントリレー5
	6-> セットポイントリレー6
а	セットポイントリレーの割り当て、a=
	0-> オフ状態
	1-> オン状態
	2-> 測定チャンネル1
	3-> 測定チャンネル2
	4-> 測定チャンネル3
x.xxxxEsxx	下方しきい値 ¹⁾ [現在の圧力単位] (デフォ ルト= ゲージごとに異なる) (s = 符号)
y.yyyyEsyy	上方しきい値 ¹⁾ [現在の圧力単位] (デフォ
	ルト= ゲージごとに異なる) (s = 符号)
1)	値の入力はどのフォーマットでも可能
	です。
	入力された値はゲージ内で浮動小数点

フォーマットに変換されます。

- 受信: <ACK><CR><LF>
- 送信: <ENQ>

受信:	a,x.xxxxEsxx,y.y	′yyyEsyy	<cr><lf></lf></cr>
-----	------------------	----------	--------------------

	説明
а	セットポイントリレーの割り当て
x.xxxxEsxx	下方しきい値 [現在の圧力単位] (s = 符号)
y.yyyyEsyy	上方しきい値 [現在の圧力単位] (s = 符号)

5.6 ゲージパラメータ

- CAL 校正ファクター
- CAL は COR コマンドと同様です。

CF1, CF2, CF3 - ゲージ1、2または3の校正フ ァクター

送信: CFx [,a.aaa] <CR>[<LF>]

	説明
х	ゲージ x の校正ファクター、x =
	1-> ゲージ1
	2-> ゲージ2
	3-> ゲージ3
a.aaa	ゲージ x の校正ファクター、0.100 10.000 (デ
	フォルト = 1.000)
受信:	<ack><cr><lf></lf></cr></ack>

- 送信: <ENQ>
- 受信: a.aaa,b.bbb,c.ccc <CR><LF>

	説明
a.aaa	ゲージ1の校正ファクター
b.bbb	ゲージ2の校正ファクター
C.CCC	ゲージ3の校正ファクター

- COR 校正ファクター
- 送信: COR [,a.aaa,b.bbb,c.ccc] <CR>[<LF>]

説明 a.aaa ゲージ1の校正ファクター、0.100 ... 10.000 (デ フォルト = 1.000) b.bbb ゲージ2の校正ファクター c.ccc ゲージ3の校正ファクター

- 受信: <ACK><CR><LF>
- 送信: <ENQ>
- 受信: a.aaa,b.bbb,c.ccc <CR><LF>

	説明
a.aaa	ゲージ1の校正ファクター
b.bbb	ゲージ2の校正ファクター
c.ccc	ゲージ3の校正ファクター

DCD - 表示桁数

- 送信: DCD [,a,a,a] <CR>[<LF>]
- 受信: <ACK><CR><LF>送信: <ENQ>
- 达信。<ENQ>

а

受信: a,a,a <CR><LF>

説明
桁数、a =
0-> 自動 (デフォルト)
1 –> 1 桁
2> 2 桁
3> 3 桁
4->4桁

PrE (→

⑤ 54) がオンで、圧力が p<1.0E-4 mbar の場合、PSG および PCG ゲージの表示は少数桁 が 1 つ下がります。

DGS - デガス機能

送信: DGS [,a,b,c] <CR>[<LF>]

	説明
а	ゲージ1のデガス機能、a =
	0-> デガス機能オフ (デフォルト)
	1-> デガス機能オン (3分間)
b	ゲージ2のデガス機能
С	ゲージ3のデガス機能
受信: <ack><cr><lf> 送信: <enq> 受信: a,b,c <cr><lf></lf></cr></enq></lf></cr></ack>	
	説明
а	ゲージ1のデガス機能
b	ゲージ2のデガス機能

c ゲージ3のデガス機能

EUM - エミッションのユーザーモード

- 送信: EUM [,a,b,c] <CR>[<LF>] 受信: <ACK><CR><LF>
- 送信: <ENQ>
- 受信: a,b,c <CR><LF>

|説明

	170 73
а	測定チャンネル1のエミッション、a=
	0-> 手動
	1-> 自動 (デフォルト)
b	測定チャンネル2のエミッション
С	測定チャンネル3のエミッション

FIL - 測定値フィルター

送信: FIL [,a,b,c] <CR>[<LF>]

説明

а	ゲージ1のフィルター、a =	
	0-> フィルターオフ	
	1-> 速い	
	2-> 標準	
	3-> 遅い	
b	ゲージ2のフィルター	
с	ゲージ3のフィルター	
受信: <ack><cr><lf></lf></cr></ack>		
送信	: <enq></enq>	
受信	∷a,b,c <cr><lf></lf></cr>	
	≣⇔ 用B	

	all 97
а	ゲージ1のフィルター時定数
b	ゲージ2のフィルター時定数
С	ゲージ3のフィルター時定数

FUM -	フィラメ	ントのユ	ーザーモー	ド	BPG402
-------	------	------	-------	---	--------

送信:	FUM [,a,b,c] <cr>[<lf>]</lf></cr>
受信:	<ack><cr><lf></lf></cr></ack>

送信: <ENQ>

受信: a,b,c <CR><LF>

説明 a 測定チャンネル1のフィラメント、a= 0-> 自動 (デフォルト) 1-> フィラメント1 2-> フィラメント2 b 測定チャンネル2のフィラメント c 測定チャンネル3のフィラメント

FSR - 測定レンジ (リニアゲージ)

リニアアナログゲージについては、測定レンジのフルスケール値 (Full Scale)
 をユーザーが定義してください。リニアデジタルゲージと対数ゲージのフルスケール値は自動的に認識されます。

送信: FSR [,a,b,c] <CR>[<LF>]

	説明	
а	ゲージ1のフルス	スケール値、a =
	0 ->	0.01 mbar
	1 ->	0.01 Torr
	2 ->	0.02 Torr
	3 ->	0.05 Torr
	4 ->	0.10 mbar
	5 ->	0.10 Torr
	6 ->	0.25 mbar
	7 ->	0.25 Torr
	8 ->	0.50 mbar
	9 ->	0.50 Torr
	10 ->	1 mbar
	11 –>	1 Torr
	12 ->	2 mbar
	13 ->	2 Torr
	14 ->	5 mbar
	15 –>	5 Torr
	16 –>	10 mbar
	17 –>	10 Torr
	18 –>	20 mbar
	19 –>	20 Torr
	20 ->	50 mbar
	21 –>	50 Torr
	22 ->	100 Torr
	23 ->	100 mbar
	24 ->	200 mbar
	25 ->	200 Torr
	26 ->	500 mbar
	27 ->	500 Torr
	28 ->	1000 mbar
	29 ->	1100 mbar
	30 ->	1000 Iorr
	31 ->	2 bar
	32 ->	5 Dar
	33 ->	
h	34->	SUDAI マムール店
D	テーシ2のフルス	ヘケール1個
С	ゲージ3のフルス	<ケール値

受信: <ACK><CR><LF>

- 送信: <ENQ>
- 受信: a,b,c <CR><LF>

説明

а	ゲージ1のフルスケール値
b	ゲージ2のフルスケール値
С	ゲージ3のフルスケール値

GAS - ガスタイプの修正

- 送信: GAS [,a,b,c] <CR>[<LF>]
- 受信: <ACK><CR><LF>
- 送信: <ENQ>
- 受信: a,b,c <CR><LF>

説明

チャンネル1のガスタイプの修正、a =
0-> 窒素 / 空気 (デフォルト)
1-> アルゴン
2> 水素
3-> ヘリウム
4-> ネオン
5-> クリプトン
6-> キセノン
7-> その他のガス
チャンネル2のガスタイプの修正
チャンネル3のガスタイプの修正

HVC - 高真空回路のコントロール、エミッショ ンのオン/オフ

- 送信: HVC [,a,b,c] <CR>[<LF>]
- 受信: <ACK><CR><LF>
- 送信: <ENQ>
- 受信: a,b,c <CR><LF>

説明

а	ゲージ1、a=
	0-> オフ
	1-> オン
b	ゲージ2
с	ゲージ3

ITR - BPG、HPG、BCG、CDGxxxD データ出力

送信: ITR <CR>[<LF>]

受信: <ACK><CR><LF> 送信: <ENQ>

受信: aa,aa,aa,aa,aa,aa,aa,aa bb,bb,bb,bb,bb,bb,bb cc,cc,cc,cc,cc,cc,cc <CR><LF>

	説明
aa,aa,aa,aa,aa,aa,aa,aa	ゲージ1のデータ文字列
	(0 … 7 バイト(16 進数))
bb,bb,bb,bb,bb,bb,bb,bb	ゲージ2のデータ文字列
	(0 … 7 バイト(16 進数))
CC,CC,CC,CC,CC,CC,CC,CC	ゲージ3のデータ文字列
	(0 … 7 バイト(16 進数))

OFC - オフセット補正

(リニアゲージ)

送信: OFC [,a,b,c] <CR>[<LF>]

説明

а	ゲージ1のオフセット補正、a=
	0-> オフ (デフォルト)
	1-> オン
	2-> オフセット値の決定とオフセット補正の有効化
	3-> リニアゲージのゼロ点調整
b	ゲージ2のオフセット補正
с	ゲージ3のオフセット補正
受信	言: <ack><cr><lf></lf></cr></ack>

- 送信: <ENQ>
- 受信: a,b,c <CR><LF>

説明

- ゲージ1のオフセット補正 а b ゲージ2のオフセット補正
 - ゲージ3のオフセット補正

OFD - オフセット表示 (リニアゲージ)

送信: OFD

[,sa.aaaaEsaa,sb.bbbbEsbb,sc.ccccEscc] <CR>[<LF>]

	説明
sa.aaaaEsaa	ゲージ1のオフセット ¹⁾ , [現在の圧力単
	位] (デフォルト= 0.0000E+00) (s = 符号)
sb.bbbbEsbb	ゲージ2のオフセット ¹⁾ (s = 符号)
sc.ccccEscc	ゲージ3のオフセット ¹⁾ (s = 符号)

「1」値の入力はどのフォーマットでも可能で す。入力された値はゲージ内で浮動小数 点フォーマットに変換されます。

受信: <ACK><CR><LF>

送信: <ENQ>

受信: sa.aaaaEsaa,sb.bbbbEsbb,sc.ccccEscc <CR><LF>

	説明
sa.aaaaEsaa	ゲージ1のオフセット ¹⁾ (s = 符号)
sb.bbbbEsbb	ゲージ2のオフセット ¹⁾ (s = 符号)
sc.ccccEscc	ゲージ3のオフセット ¹⁾ (s = 符号)

OFS - オフセット補正 (リニアゲージ、VGC501 のみ)

送信·	OES [a sy yyyyEsyy] < CR>[<] E>]	
いていた。		

	説明
а	モード、a=
	0-> オフ (デフォルト)
	オフセット値の入力は不要です。
	1-> オン
	オフセット値の入力がない場合、前
	回定義したオフセット値が引き継が
	れます。
	2-> 自動 (オフセット測定)
	オフセット値の入力は不要です。
	3-> ゼロ点調整 CDGxxxD
	オフセット値の入力は不要です。
sx.xxxxEsxx	オフセット ¹⁾ , [現在の圧力単位]
	(デフォルト = 0.0000E+00)
	s = 符号

1) 値の入力はどのフォーマットでも可能 です。入力された値はゲージ内で小数 点フォーマットに変換されます。

受信: <ACK><CR><LF>

- 送信: <ENQ>
- 受信: a,sx.xxxxEsxx <CR><LF>

	説明
а	モード
sx.xxxxEsxx	オフセット ¹⁾ , [現在の圧力単位]
	s = 符号

5.7 センサ - コントロール

SC1, SC2, SC3 - ゲージ1、2 または3 のコント ロール

送信: SCx [,a,b,c.ccEscc,d.ddEsdd] <CR>[<LF>]

	説明
x	ゲージのコントロール、x =
	1-> ゲージ1
	2-> ゲージ2
	3-> ゲージ3
а	ゲージの起動、a =
	0-> 手動 (デフォルト)
	1-> ホットスタート
	2> 外部
	3-> 測定チャンネル1による
	4-> 測定チャンネル2による
	5-> 測定チャンネル3による
b	ゲージの停止、b =
	0-> 手動 (デフォルト)
	1-> セルフコントロール
	2-> 外部
	3-> 測定チャンネル1による
	4-> 測定チャンネル2による
	5-> 測定チャンネル3による
c.ccEscc	オンしきい値 (s = 符号)
d.ddEsdd	オフしきい値 (s = 符号)
受信: <a< td=""><td>ACK><cr><lf></lf></cr></td></a<>	ACK> <cr><lf></lf></cr>
送信: <e< td=""><td>:NQ></td></e<>	:NQ>
受信: a,ł	o,c.ccEscc,d.ddEsdd <cr><lf></lf></cr>
	 説明

	祝明
а	ゲージの起動
b	ゲージの停止
c.ccEscc	オンしきい値 (s = 符号)
d.ddEsdd	オフしきい値 (s = 符号)

5.8 ジェネラルパラメータ

AOM - アナログ出力モード レコーダ出力の特性曲線 送信: AOM [,a,b] <CR>[<LF>]

説明 測定チャンネル

а	測定ナ	ヤンイル、a=
	0 ->	測定チャンネル 1
	1 ->	測定チャンネル 2
	2 ->	測定チャンネル 3
b	出力特性	生、b=
	0 ->	対数 LOG
	1 ->	対数 LOG A
	2 ->	対数 LOG -6
	3 ->	対数 LOG -3
	4 ->	対数 LOG +0
	5 ->	対数 LOG +3
	6 ->	対数 LOG C1
	7 ->	対数 LOG C2
	8 ->	対数 LOG C3
	9 ->	リニア LIN -10
	10 ->	リニア LIN -9
	11 ->	リニア LIN -8
	12 ->	リニア LIN -7
	13 ->	リニア LIN -6
	14 ->	リニア LIN -5
	15 –>	リニア LIN -4
	16 –>	リニア LIN -3
	17 –>	リニア LIN -2
	18 ->	リニア LIN -1
	19 –>	リニア LIN +0
	20 ->	リニア LIN +1
	21 –>	リニア LIN +2
	22 ->	リニア LIN +3
	23 ->	IM221
	24 ->	対数 LOG C4
	25 ->	PM411
	26 ->	CH x

受信: <ACK><CR><LF>

送信: <ENQ>

受信: a,b <CR><LF>

	説明
а	測定チャンネル
b	電圧 (測定値)

BAL - バックライト

送信: BAL [,a] <CR>[<LF>]

説明

- a バックライト (%)、a = 0 ... 100 100%が最高輝度です。
- 受信: <ACK><CR><LF>
- 送信: <ENQ>
- 受信: a <CR><LF>
 - 説明
- a バックライト

BAU - 伝送速度 (USB)

送信: BAU [,a] <CR>[<LF>]

説明

- a 伝送速度、a = 0 -> 9600 ボー (デフォルト) 1 -> 19200 ボー
 - 2 -> 38400 ボー
 - 3-> 57600 ボー
 - 4 -> 115200 ボー

新しいボーレートが入力されると、報告信号はその新しい伝送速度で伝送されます。

- 受信: <ACK><CR><LF>
- 送信: <ENQ>
- 受信: x <CR><LF>

説明

a 伝送速度

DCB - パーグラフ表示のコントロール

送信: **DCB** [,a,b] <CR>[<LF>]

説明

а	測定チャンネル、a=
	0-> 測定チャンネル 1
	1-> 測定チャンネル 2
	2-> 測定チャンネル3
b	バーグラフ表示、b =
	0-> オフ (デフォルト)
	1-> フルスケールレンジをカバーするバーグラフ
	2-> フルスケールレンジをカバーするバーグラフ、
	高度なプレゼンテーション
	3-> フルスケールレンジおよびセットポイントしき い値をカバーするバーグラフ
	4> 現在の測定値に応じた 1 桁をカバーするバーグ ラフ
	5 –> 現在の測定値に応じた 1 桁をカバーするバーグ ラフ、高度なプレゼンテーション
	6-> 現在の測定値に応じた 1 桁とセットポイントし きい値をカバーするバーグラフ
	7 –> p = f _(t) 、オートスケール、0.2 秒 / pixel
	200 ミリ秒毎の測定値が表形式で保存され、ラスト 100 個の測定値 (=100 pixel) がオートスケールで表 示されます。
	表されるデータ列は 20 秒のログ時間に相当します。
	8 –> p = f _(t) 、オートスケール、1 秒 / pixel
	1 秒毎の測定値が表形式で保存され、ラスト 100 個 の測定値 (=100 pixel) がオートスケールで表示され ます。
	表されるデータ列は 100 秒のログ時間に相当しま す。
	9 –> p = f _(t) 、オートスケール、6 秒 / pixel
	6 秒毎の測定値が表形式で保存され、ラスト 100 個 の測定値 (=100 pixel) がオートスケールで表示され ます。
	表されるデータ列は 10 分のログ時間に相当します。
	10 -> p = f _(t) 、オートスケール、1 分 / pixel
	1 分毎の測定値が表形式で保存され、ラスト 100 個 の測定値 (=100 pixel) がオートスケールで表示され ます。
	表されるデータ列は 100 分のログ時間に相当しま す。

- 受信: <ACK><CR><LF>送信: <ENQ>
- 受信: a,b <CR><LF>

説明

а	測定チャンネル
b	バーグラフ表示

DCC - コントラストの調整

送信: **DCC** [,a] <CR>[<LF>]

説明

а	コントラスト (%)、a = 0 100
	100% = 最大コントラスト
受信 送信	: <ack><cr><lf> : <enq></enq></lf></cr></ack>

受信: a <CR><LF>

	説明
а	コントラスト

DCS - スクリーンセーバーのコントロール

送信: **DCS** [,a] <CR>[<LF>]

	説明
а	スクリーンセーバー、a=
	0-> オフ (デフォルト)
	1 -> 10 分後
	2-> 30 分後
	3-> 1 時間後
	4 -> 2 時間後
	5-> 8時間後

受信·	<ack><cr><lf></lf></cr></ack>
又 (二)	

- 送信: <ENQ>
- 受信: a <CR><LF>
 - 説明
- a スクリーンセーバー

ERA-エラーリレーの割り当て

送信: **ERA** [,a] <CR>[<LF>]

説明

а	エラーリレーのスイッチング動作、a =
	0-> すべてのエラー (デフォルト)
	1-> ユニットエラーのみ
	2 –> センサ1およびユニットエラー
	3-> センサ2およびユニットエラー
	4-> センサ3およびユニットエラー
受信	: <ack><cr><lf></lf></cr></ack>
送信	: <enq></enq>

受信: a <CR><LF>

説明

a エラーリレーのスイッチング動作

EVA - 測定範囲限界値

送信: EVA [,a] <CR>[<LF>]

説明

測定範囲限界值、a =
0-> アンダーレンジまたはオーバーレンジの場合に
1-> アンダーレンジまたはオーバーレンジの場合に
測定範囲限界値を表示

- 受信: <ACK><CR><LF>
- 送信: <ENQ>
- 受信: a <CR><LF>
- 説明
- a 測定範囲限界値

FMT - 数字フォーマット (測定値)

送信: FMT [,a] <CR>[<LF>]

説明

а	数字フォーマット (測定値) 、a =	
	0-> 浮動小数点フォーマット ※可能な場合 (デフ	
	オルト)	
	1-> 指数関数フォーマット	

受信:	<ack><cr><lf></lf></cr></ack>
送信:	<enq></enq>

受信: a <CR><LF>

説明

a 数字フォーマット

LNG - 言語 (ディスプレイ)

送信: LNG [,a] <CR>[<LF>]

説明

а	言語、a =
	0-> 英語 (デフォルト)
	1-> ドイツ語
	2-> フランス語

受信: <ACK><CR><LF> 送信: <ENQ>

受信: a <CR><LF>

	説明
а	言語

- PRE ピラニレンジ拡張
- 送信: **PRE** [,a,b,c] <CR>[<LF>]

説明

- a ゲージ1のピラニレンジ拡張、a=
 0-> 無効 (デフォルト)
 1-> 有効
 b ゲージ2のピラニレンジ拡張
 c ゲージ3のピラニレンジ拡張
- 受信: <ACK><CR><LF>
- 送信: <ENQ>
- 受信: a <CR><LF>

説明

- a ゲージ1のピラニレンジ拡張
- b ゲージ2のピラニレンジ拡張
- c ゲージ3のピラニレンジ拡張
- PCG および PSG ゲージのみ、測定レンジを 5×10⁵ mbar まで拡張します。

SAV - パラメータの保存 (EEPROM)

送信: SAV [,a] <CR>[<LF>]

	説明
а	EEPROM へのパラメータの保存、a =
	0-> デフォルトパラメータを保存 (デフォルト)
	1-> ユーザーパラメータを保存

受信: <ACK><CR><LF>

UNI – 圧力単位

送信: UNI [,a] <CR>[<LF>]

	説明
а	圧力単位、a=
	0-> mbar/bar
	1 -> Torr
	2 -> Pa
	3 -> Micron
	4-> hPa (デフォルト)
	5 -> V
受信: <ack><cr><lf> 送信: <enq></enq></lf></cr></ack>	
受信	: a <cr><lf></lf></cr>
	 説明

a 圧力単位

5.9 データロガーパラメータ

このグループは FAT ファイルシステム (FAT32) 用にフォーマットされた USB メモリステックが接続されている場合の み使用可能です。使用するメモリステッ クは最大 32 GB までとしてください。

DAT - 日付

- 送信: DAT [,yyyy-mm-dd] <CR>[<LF>]
- 受信: <ACK><CR><LF>
- 送信: <ENQ>
- 受信: yyyy-mm-dd <CR><LF>

	説明
yyyy-mm-dd	現在の日付 (yyyy-mm-dd) 形式

- LCM データロガーの開始/停止
- 送信: LCM [,a,b,c,ddddddd] <CR>[<LF>]
- 受信: <ACK><CR><LF>
- 送信: <ENQ>
- 受信: a,b,c,ddddddd <CR><LF>

説明 データロガーコマンド、a= а 0-> Stop / データロギング停止 1-> Start / データロギング開始 2-> Clear / 測定データファイル (CSV ファイル)のUSBメモリステック からの削除 データロギング間隔、b= b 0-> ロギング間隔: 1/s 1-> ロギング間隔: 1/10 s 2-> ロギング間隔: 1/30 s 3-> ロギング間隔: 1/60 s 4-> ロギング間隔:測定値が1%以上変 化したとき 5-> ロギング間隔:測定値が5%以上変 化したとき 小数点、c= С 0->,(カンマ) 1->.(ピリオド) dddddd ファイル名 (最大7字)

TIM - 時刻

- 送信: TIM [,hh:mm] <CR>[<LF>]
- 受信: <ACK><CR><LF>

送信: <ENQ>

受信: hh:mm <CR><LF>

	説明
hh:mm	現在の時刻 (hh:mm [24 h] 形式)

5.10 パラメータ転送

このグループは FAT ファイルシステム (FAT32) 用にフォーマットされた USB メモリステックが接続されている場合の み使用可能です。使用するメモリステッ クは最大 32 GB までとしてください。

SCM - パラメータの保存/ロード (USB)

- 送信: SCM [,a,bb] <CR>[<LF>]
- 受信: <ACK><CR><LF>
- 送信: <ENQ>
- 受信: a <CR><LF>

	説明
а	パラメータのセットアップ、a=
	0-> 保存完了 (読み取りのみ)
	1 –> CSV ファイルの保存中 (読み取りのみ)
	2> USB メモリステックから VGC50x にすべての パラメータをロード
	3-> USBメモリステックをフォーマット (FAT32)
	4> USB メモリステックからパラメータファイル (CSV ファイル) を削除
hh	ファイルタの物字 (0 00)

bb | ファイル名の数字 (0... 99)

5.11 テストパラメータ

(サービス担当者向け)

ADC - A/D コンパーターテスト

ADC は TAD コマンドと同様です。

CPT - 互換性

送信: **CPT** [,a] <CR>[<LF>] 受信: <ACK><CR><LF> 送信: <ENQ> 受信: a <CR><LF>

説明

а

a =
0 –> INFICON ゲージ (標準)
1-> OLV トランスミッター

DIS - ディスプレイテスト

DIS は TDI コマンドと同様です。

EEP - EEPROM テスト

EEP は TEE コマンドと同様です。

EPR - FLASH テスト

EPR は TEP コマンドと同様です。

HDW - ハードウェアバージョン

送信: HD	<mark>V</mark> <cr>[<lf>]</lf></cr>
--------	-------------------------------------

- 受信: <ACK><CR><LF>
- 送信: <ENQ>
- 受信: a.a <CR><LF>

	説明		
a.a	ハードウェアバージョン、	例:	1.0

<mark>IOT</mark> - I/O テスト

IOT は TIO コマンドと同様です。

LOC - キーロック

送信: LOC [,a] <cr>[<li< th=""><th>F>]</th></li<></cr>	F>]
---	-----

=088
ат. РА

а	キーロック、a=
	0-> オフ (デフォルト)
	1-> オン

受信:	<ack><cr><lf></lf></cr></ack>
送信:	<enq></enq>
受信:	a <cr><lf></lf></cr>

説明

a キーロックのステータス

MAC - Ethernet MAC アドレス

- 送信: MAC <CR>[<LF>]
- 受信: <ACK><CR><LF>
- 送信: <ENQ>
- 受信: aa-aa-aa-aa-aa-aa <CR><LF>

	説明
aa-aa-aa-aa- aa	ユニットの Ethernet MAC アドレス: 00-A0-41-0A-00-00 00-A0-41-0B- FF-FF

PNR - ファームウェアバージョン

- 送信: PNR <CR>[<LF>] 受信: <ACK><CR><LF>
- 送信: <ENQ>
- 受信: a.aa <CR><LF>

説明

a.aa ファームウェアバージョン、例:1.00

RHR - 運転時間

- 送信: RHR <CR>[<LF>]
- 受信: <ACK><CR><LF>送信: <ENQ>
- 受信: a <CR><LF>

説明

a 動作 (運転) 時間、例:24 [時間]

RST - RS232 テスト

RST は TRS コマンドと同様です。

TAD - A/D コンバーターテスト

- 送信: TAD <CR>[<LF>]
- 受信: <ACK><CR><LF>
- 送信: <ENQ>
- 受信: aa.aaaa,bb.bbbb,cc.cccc <CR><LF>

	説明
aa.aaaa	チャンネル1の A/D コンバーター 測定信号 [0.0000 11.0000 V]
bb.bbbb	チャンネル2の A/D コンバーター 測定信号 [0.0000 11.0000 V]
CC.CCCC	チャンネル3の A/D コンバーター 測定信号 [0.0000 11.0000 V]

TAI – ID 抵抗テスト

- 送信: TAI <CR>[<LF>]
- 受信: <ACK><CR><LF>
- 送信: <ENQ> テスト開始 (非常に短時間)
- 受信: a.aa,b.bb,c.cc <CR><LF>

説明

a.aa	ゲージ1の ID [kOhm]
b.bb	ゲージ 2 の ID [kOhm]
C.CC	ゲージ 3 の ID [kOhm]

TDI - ディスプレイテスト

送信: TDI [,a] <CR>[<LF>]

説明

а	ディスプレイテスト、a=
	0-> テスト停止 - 現在の動作モードに応じたディ
	スプレイを表示 (デフォルト)
	1 –> テスト開始 - すべてのセグメントが点灯

- 受信: <ACK><CR><LF>
- 送信: <ENQ>
- 受信: x <CR><LF>

説明

x ディスプレイテストのステータス

TEE - EEPROM テスト

パラメータメモリのテスト

- 送信: TEE <CR>[<LF>]
- 受信: <ACK><CR><LF>
- 送信: <ENQ> テスト開始 (時間:1秒未満)
- テストは何度も繰り返し実行しないでく ださい (EEPROM の寿命が低下するた め)。
- 受信: aaaa <CR><LF>

aaaa エラーステータス

TEP - FLASH テスト

- プログラムメモリのテスト
- 送信: **TEP** <CR>[<LF>]
- 受信: <ACK><CR><LF>
- 送信: <ENQ> テストの開始 (非常に短時間)
- 受信: aaaa,bbbbbbbb <CR><LF>

	説明
aaaa	エラーステータス
bbbbbbbbbb	チェックサム (16 進数)

TIO - I/O テスト

Caution
Caution: リレーが圧力に関係なく切り替 わります。
テストプログラムを開始することにより、 接続されているコントロールシステムに望 ましくない影響を及ぼす可能性がありま す。
センサケーブルとコントロールシステムの 配線をすべて取り外し、制御コマンドやメ ッセージが誤作動しないようにしてくださ い。

送信: TIO [,a,b] <CR>[<LF>]

	説明	
a	テストステータス、a=	
	0-> オフ	
	1-> オン	
b	リレーステータス (16 進数)、bb =	
	00-> すべてのリレーのオフ	
	01 -> セットポイントリレー1 のオン	
	02 -> セットポイントリレー2 のオン	
	04 -> セットポイントリレー3のオン	
	08 -> セットポイントリレー4 のオン	
	10 -> セットポイントリレー5 のオン	
	20 -> セットポイントリレー6のオン	
	40-> エラーリレーのオン	
	4F -> すべてのリレーのオン	
受信: <ack><cr><lf></lf></cr></ack>		
送信: <enq></enq>		
受信: a,b <cr><lf></lf></cr>		
	記明	
а	I/O テストステータス	

b リレーステータス

TKB - キーテスト

- 送信: TKB <CR>[<LF>
- 受信: <ACK><CR><LF>
- 送信: <ENQ>
- 受信: abcd <CR><LF>

説明

а	+−1、a =
	0-> 押されていない
	1-> 押された
b	キー2、b =
	0-> 押されていない
	1-> 押された
с	+—3、c =
	0-> 押されていない
	1-> 押された
d	キー4、d =
	0-> 押されていない
	1-> 押された

TLC - Torr ロック

送信: TLC [,a] <CR>[<LF>]

	説明		
а	Torr ロック、a=		
	0-> オフ (デフォルト)		
	1-> オン		
受信	受信: <ack><cr><lf></lf></cr></ack>		
送信	送信: <enq></enq>		
受信: a <cr><lf></lf></cr>			
	説明		
а	Torr ロックのステータス		
TMD,五十小人中泪中			
	IWF- ユーツ P 泊皮		
送信	: TMP <cr>[<lf>]</lf></cr>		

- 受信: <ACK><CR><LF> 送信: <ENQ>
- 受信: aa <CR><LF>
 - 説明
- aa 温度 (±2°C) [°C]

TRS - RS232C テスト

- 送信: TRS <CR>[<LF>]
- 受信: <ACK><CR><LF>
- 送信: <ENQ>テストの開始 (各キャラクタの 繰り返し、<CTRL> C でテスト中断).

WDT - ウォッチドッグコントロール

送信: WDT [,a] <CR>[<LF>]

説明

- a ウォッチドッグコントロール、a= 0-> 手動のエラー応答 1-> 自動のエラー応答 ¹⁾(デフォルト)
- ¹⁾ウォッチドッグがトリガーされると、2 秒後に自動的にエラーに応答し、エラ ーを解除します。
- 受信: <ACK><CR><LF>
- 送信: <ENQ>
- 受信: a <CR><LF>

説明

a ウォッチドッグコントロール

5.12 追記

AYT - 相手確認

- 送信: AYT <CR>[<LF>]
- 受信: <ACK><CR><LF>
- 送信: <ENQ>
- 受信: a,b,c,d,e <CR><LF>

説明

а	ユニットタイプ、例:VGC503
b	ユニットの型番、例:398-483
с	ユニットの製造番号、例:100
d	ユニットのファームウェアバージョン、例:1.00
е	ユニットのハードウェアバージョン、例:1.0

ETH - Ethernet 接続

送信: ETH

[,a,bbb.bbb.bbb.bbb,ccc.ccc.ccc.ddd.ddd.ddd .ddd] <CR>[<LF>]

- 受信: <ACK><CR><LF>
- 送信: <ENQ>
- 受信: a,bbb.bbb.bbb.bbb,ccc.ccc.ccc.ddd. ddd.ddd.ddd <CR><LF>

	説明
а	DHCP (dynamic host configuration protocol)、a =
	0-> 静的
	1> 動的
bbb.bbb.bbb.bbb	IP アドレス
CCC.CCC.CCC.CCC	サブネットアドレス
ddd.ddd.ddd	ゲートウェイアドレス

5.13 例

■ 送信 (T)" と "受信 (R)" はホストに関して述べています。

T: R: T: R:	TID <cr> [<lf>] <ack> <cr> <lf> <enq> PSG <cr> <lf></lf></cr></enq></lf></cr></ack></lf></cr>	ゲージの識別要求 肯定応答 データ伝送要求 ゲージの識別
T:	SP1 <cr> [<lf>]</lf></cr>	スイッチング機能 1 (セ ットポイント 1) のパラ
R: T:	<ack> <cr> <lf> <enq></enq></lf></cr></ack>	メータ要求
R: <cł< td=""><td>1,1.0000E-09,9.0000E-07 R> <lf></lf></td><td>育定応告 データ伝送要求 しきい値</td></cł<>	1,1.0000E-09,9.0000E-07 R> <lf></lf>	育定応告 データ伝送要求 しきい値
T: <cf< td=""><td><mark>SP1</mark>,1,6.80E-3,9.80E-3 R> [<lf>]</lf></td><td>スイッチング機能 1 (セ ットポイント 1) のパラ メータ変面</td></cf<>	<mark>SP1</mark> ,1,6.80E-3,9.80E-3 R> [<lf>]</lf>	スイッチング機能 1 (セ ットポイント 1) のパラ メータ変面
R:	<ack> <cr> <lf></lf></cr></ack>	,
T: R: T: R: T: R: R:	FOL,2 <cr> [<lf>] <nak> <cr> <lf> <enq> 0001 <cr> <lf> FIL,2 <cr> [<lf>] <ack> <cr> <lf> <enq> 2 <cr> <lf></lf></cr></enq></lf></cr></ack></lf></cr></lf></cr></enq></lf></cr></nak></lf></cr>	フィルター時定数変更 (構文エラー) 否定応答 データ伝送要求 エラーステータス フィルター時定数変更 肯定応答 データ伝送要求 フィルター時定数
T: R: T: R: R:	PR1 <cr> [<lf>] <ack> <cr> <lf> <enq> 0,8.3400E-03 <cr> <lf> <enq> 1,8.0000E-04 <cr> <lf></lf></cr></enq></lf></cr></enq></lf></cr></ack></lf></cr>	測定データ要求 肯定応答 データ伝送要求 ステータスと圧力値 データ伝送要求 ステータスと圧力値

6 保守

VGC50x のクリーニング

ユニットの外側は、わずかに湿らせた布でクリー ニングしてください。腐食性の洗剤や研磨剤は使 用しないでください。

	FOP DANGER
	DANGER: 電源電圧
<u>/!\</u>	ユニット内部に液体が浸入した場合、帯電 部に触れることは非常に危険です。
	内部に液体が浸入していないことを確かめ てください。
	10 10 10 10

電池の交換

リアルタイムクロックのデータ整合性を保つため、 製品には電池 (CR2032 型、使用寿命 >10 年) が 入っています。リアルタイムクロックが不正確な 日付を繰り返し表示する場合、電池の交換が必要 になります。お近くの INFICON サービスセンタ ーまでご連絡ください。

トラブルシューティング 7

エラーの通知 ▲ が点滅・ し、エラーリレーが開きます。 (→ 🖹 17)

エラーメッセージ		
	考えられる原因および対策/応答	
SENSOR ERROR	センサの配線またはコネクタの断線 または接続不良 (センサエラー) で す。	N
	⇒ 逸 キーで応答します。	3
WATCHDOG ERROR	 VGC50xの電源がオフにされた後、 +分な間隔をおかずオンにされました。 ⇒ ・ キーで応答します。 ウォッチドッグコントロールが自動に設定されている場合、2秒後に VGC50xが自動的にメッセージに応答します。(→ 圖 38) 	1
	 重大な電気的障害または動作システムのエラーのため、ウォッチドッグがトリガーされました。 ⇒ ● キーで応答します。 ウォッチドッグコントロールが WATCHDOG AUTO に設定されている場合、2 秒後に VGC50x が自動的にメッセージに応答します。 (→ ③ 38) 	
DATA CORRUPTED	パラメータメモリ (EEPROM) エラ ーです。 ⇒ 🕒 キーで応答します。	1

技術サポート

C

メッセージに複数回応答したり、ゲージの 交換を行っても問題が解決しないときは、 お近くの INFICON サービスセンターまで ご連絡ください。

8 修理

修理の際は、問題のある製品をお近くの INFICON サービスセンターまでご返送ください。 エンドユーザーまたは第三者が修理を実施した場 合、INFICON はその責任を一切負わず、また保 証は無効になるものとします。

9 アクセサリ

VGC501 のみ

	注文番号
アダプタパネル (19 インチ、Height 3 U のラックシャーシアダプタへの 設置用)	398-499

10 保管

11 廃棄

部品の分別

製品を分解した後、部品を次のように分別します。

電子部品と非電子部品

これらの部品を材料に応じて分別し、リサイクル してください。

付録

A: 変換表

重量

	kg	lb	slug	oz
kg	1	2.205	68.522×10 ⁻³	35.274
lb	0.454	1	31.081×10 ⁻³	16
slug	14.594	32.174	1	514.785
oz	28.349×10 ⁻³	62.5×10 ⁻³	1.943×10 ⁻³	1

圧力

	N/m², Pa	Bar	mBar, hPa	Torr	at
N/m², Pa	1	10×10 ⁻⁶	10×10 ⁻³	7.5×10 ⁻³	9.869×10 ⁻⁶
Bar	100×10 ³	1	10 ³	750.062	0.987
mBar, hPa	100	10 ⁻³	1	750.062×10 ⁻³	0.987×10 ⁻³
Torr	133.322	1.333×10 ⁻³	1.333	1	1.316×10 ⁻³
at	101.325×10 ³	1.013	1.013×10 ³	760	1

真空技術において用いられる圧力単位

	mBar	Bar	Ра	hPa	kPa	Torr mm HG
mBar	1	1×10 ⁻³	100	1	0.1	0.75
Bar	1×10 ³	1	1×10 ⁵	1×10 ³	100	750
Ра	0.01	1×10 ⁻⁸	1	0.01	1×10⁻³	7.5×10 ⁻³
hPa	1	1×10⁻³	100	1	0.1	0.75
kPa	10	0.01	1×10 ³	10	1	7.5
Torr mm HG	1.332	1.332×10 ⁻³	133.32	1.3332	0.1332	1
		1 Pa	= 1 N	/m²		

長さ

	mm	m	inch	ft
mm	1	10 ⁻³	39.37×10 ⁻³	3.281×10 ⁻³
m	10 ³	1	39.37	3.281
inch	25.4	25.4×10⁻³	1	8.333×10 ⁻²
ft	304.8	0.305	12	1

温度

	ケルビン	摄氏	華氏
ケルビン	1	°C+273.15	(°F+459.67)×5/9
摄氏	K-273.15	1	5/9×°F-17.778
華氏	9/5×K-459.67	9/5×(°C+17.778)	1

B: ファームウェアアップデート

新しいゲージタイプを使用する場合など、 お使いの VGC50x のファームウェアにアッ プデートが必要なときは、お近くの INFICON サービスセンターまでご連絡く ださい。 次の方法でファームウェアアップデートを行うこ とができます。

- USBメモリステック経由 (ユニット前面の type A コネクタ)、または
- ユニット背面の USB type B コネクタを介して USB アップデートツールを使用

ユーザーパラメータ

パラメータモードで行われた設定のほとんどはフ ァームウェアアップデートによる影響を受けませ んが、アップデートの前にパラメータを保存して おくことをお勧めします。(→ ■ 40)

USB メモリステック (type A) 経由のファーム ウェアアップデート

- USB メモリステック (特に安価なもの) の中には USB 規格の要件を満たさない ために VGC50x に自動で認識されない ものがあります。お近くの INFICON サ ービスセンターに連絡する前に、もう 1 度別のメモリステックをお試しくださ い。
- 当社のウェブサイト "www.inficon.com" から、".S19"と".CNF"で終わる2つのファイルをUSBメモリステックにダウンロードします。
- 2 ユニットのスイッチを切ります。
- メモリステックを接続し、ユニットのスイ ッチを入れます。

BOOTING	非常に短時間
BOOTLOADER V1.x	非常に短時間
ERASING FW	古いファームウェアの削除中
UPDATING FW	新しいファームウェアのロード中
UPDATE COMPLETE	アップデート完了

- メモリステックを取り外します。ユニット が自動的に再起動します。

USB アップデートツール (USB type B) を使っ たファームウェアアップデート

動作条件: Microsoft Windows XP、7または8

- P まずお使いのオペレーティングシステ ムをアップデートする必要があります。 また、管理者権限も必要です。
- [z] ファームウェアアップデートの間は、 ユニット前面に USB メモリステックを 接続しないでください。
- [] 仮想シリアルインターフェース (COM) が自動的に確立されないときは、こち らのウェブサイト "www.ftdichip.com/drivers/vcp.htm" か らドライバのダウンロードとインスト ールを行うことができます。
- 1 CD ROM または当社のウェブサイト "www.inficon.com" から USB アップデート ツールをダウンロードします。

❷ USB ケーブル type A/B を使ってユニット とコンピューターを接続します。

 USB アップデートツールを起動し、メニュ ーから COM インターフェースを選択して <Connect> をクリックします。

4 <Release Notes> をクリックし、ソフトウ ェアリリースノートを確認します。

COM10 Disconnect	
Device Info Manage Firmware Manage Parameters Release Cotes	
INFICON	^
Software Release Notes	
This document describes the software release notes for the VGC501, VGC502 and VGC503.	
V0.04 - PROTOTYPE RELEASE	
Release Date : 2015-01-16 Filename : INF_VGC50x_V004.S19	
Known Problems	
-	-
	b.

- **5**
- <Manage Firmware>をクリックし、ファー ムウェアの選択を行います。
- <Load from disk>を選択すると、当社の ウェブサイト "www.inficon.com" から ファームウェアのコピーがダウンロー ドされます。その後、適切なフォルダ を選択します。
- <Load from server>を選択すると、アッ プデートツールがインターネットに接 続します。選択リストから希望のファ ームウェアバージョンを選びます。

Connect Device	
Device Info Manage Firmware Manage Parameters Release Notes	
1. Select Firmware O Load from disk	
Select	
Coad from server	

<Update>をクリックすると、ファームウ ェアのアップデートが行われます。

アップデートに失敗した場合は、再試行し てください。

Update					
w Version:					
nware:	_				
	w Version: mware:				

C: Ethernet の設定

ユーザープログラム (端末プログラム、LabView など) がシリアルインターフェースをサポートし ている必要があります。Microsoft Windows オペ レーティングシステムでは、VGC50x が仮想 COM インターフェースとして表示されます。

[z] Ethernet の接続は、ネットワーク管理 者に連絡してから行ってください。

- [} まずお使いのオペレーティングシステ ムをアップデートする必要があります。 また、管理者権限も必要です。
- C1: ネットワークへの接続
- 登録ありの場合
- ●VGC50x の MAC アドレスを読み取ります。 (→ 🖹 38)

- 2 ネットワーク管理者が VGC50x をネットワ ークに登録します。登録後、ネットワーク 管理者に Ethernet パラメータ (IP アドレス、 ゲートウェイ、ネットマスク、DHCP) を 確認します。
- **3** VGC50xの設定:
 - VGC50x の全パラメータを USB メモリス テックに保存します。 ("SAVE SETUP"、 → <a> ± 40)
 - ●メモリステック内の保存先 CSV ファイル に Ethernet パラメータ (IP アドレス、ゲ ートウェイ、ネットマスク、DHCP)を設 定します。
 - ●変更後のパラメータを VGC50x にロード します。("RESTORE SETUP"、 \rightarrow 🗎 40)
 - Ethernet パッチケーブルを使って VGC50x をネットワークに接続します。
- Ethernet 接続ツールを使ってネットワーク 内で VGC50x を検索し、仮想 COM インタ
- **ら** VGC50x との通信用プログラムを起動し、 割り当てられた COM インターフェースに 接続します。

登録なしの場合

A Ethernet パラメータ (IP アドレス、ゲート ウェイ、ネットマスク、DHCP) が不明の 場合、ネットワーク管理者に確認します。

- 2 VGC50xの設定:
 - VGC50x の全パラメータを USB メモリス テックに保存します。 ("SAVE SETUP"、 → <a> ± 40)
 - ●メモリステック内の保存先 CSV ファイル に Ethernet パラメータ (IP アドレス、ゲ ートウェイ、ネットマスク、DHCP)を設 定します。
 - ●変更後のパラメータを VGC50x にロード します。("RESTORE SETUP"、 \rightarrow 🗎 40)
 - Ethernet パッチケーブルを使って VGC50x をネットワークに接続します。
- B Ethernet 接続ツールを使ってネットワーク 内で VGC50x を検索し、仮想 COM インタ ーフェースに割り当てます。 (→ 🖹 64)
- ④ VGC50x との通信用プログラムを起動し、 割り当てられた COM インターフェースに 接続します。

C2: コンピューターへの接続

DHCP サーバーのあるコンピューターの場合

● 次のいずれかを使って VGC50x をコンピュ ーターに接続します。

- クロスオーバーEthernet ケーブル
- ●スイッチ
- Ethernet パッチケーブル (必要条件:イン ターフェースの auto MDI-X 機能)

2 DHCP サーバーが自動的に IP アドレスを 割り当てます。 必要条件: DHCP = ON (標準)

B Ethernet 接続ツールを使ってネットワーク 内で VGC50x を検索し、仮想 COM インタ ーフェースに割り当てます。 (→ 🖹 64)

④ VGC50x との通信用プログラムを起動し、 割り当てられた COM インターフェースに 接続します。

DHCP サーバーのないコンピューターの場合

O VGC50xの全パラメータをUSBメモリス テックに保存します。("SAVE SETUP"、 $\rightarrow \blacksquare 40)$

2 メモリステック内の保存先 CSV ファイル に以下の Ethernet パラメータを設定します。

IP アドレス:

ネットマスク:

192.168.0.1 (2 台目の場合は 192.168.0.2、以降同様) 255.255.0.0

DHCP: OFF

変更後のパラメータを VGC50x にロードし ます。("RESTORE SETUP"、 $\rightarrow \square$ 40)

- ④ 次のいずれかを使って VGC50x をコンピュ ーターに接続します。
 - クロスオーバーEthernet ケーブル
 - •スイッチ
 - Etherne パッチケーブル (必要条件:イン ターフェースの auto MDI-X 機能)
- Ethernet 接続ツールを使ってネットワーク 内で VGC50x を検索し、仮想 COM インタ ーフェースに割り当てます。 (→ 🖹 64)

6 VGC50x との通信用プログラムを起動し、 割り当てられた COM インターフェースに 接続します。

C 3: Ethernet 接続ツール

Ethernet 接続ツールを使うと、仮想シリアルイン ターフェース (COM) を IP アドレスに割り当て ることができます。 さらに、コンピューター経 由で Ethernet インターフェースの設定を行うこ とも可能です。

動作条件: Windows 7 または 8 (Windows XP では 機能しません)

CD ROM または当社のウェブサイト "www.inficon.com" から Ethernet 接続ツー ルをダウンロードします。

2 Ethernet 接続ツールを起動して<Search Devices>をクリックすると、ツールがロー カルネットワークに接続されたデバイスを 検索し、選択ウィンドウに一覧表示します。 選択したデバイスの基本情報は <Device Info> に表示されます。

B

<Network Settings> で自動または手動のネ ットワーク設定を行います。

A

[B 新しく作成した仮想インターフェース (COM) はリストボックスと Windows のデバイスマネージャーに表示されま す。

D: 文献

- 🛄 [1] www.inficon.com **Operating Manual** Pirani Standard Gauge PSG400, **PSG400-S** tina04e1 INFICON AG, LI-9496 Balzers, Liechtenstein
- [2] www.inficon.com **Operating Manual** Compact Pirani Gauge PSG500/-S, PSG502-S, PSG510-S, PSG512-S tina44e1 INFICON AG, LI-9496 Balzers, Liechtenstein
- [3] www.inficon.com **Operating Manual** Pirani Standard Gauge PSG100-S, **PSG101-S** tina17e1 INFICON AG, LI-9496 Balzers, Liechtenstein
- 🛄 [4] www.inficon.com **Operating Manual** Pirani Standard Gauge PSG550, PSG552, PSG554 tina60e1 INFICON AG, LI-9496 Balzers, Liechtenstein
- 🛄 [5] www.inficon.com **Operating Manual** Penning Gauge PEG100 tina14e1 INFICON AG, LI-9496 Balzers, Liechtenstein
- [6] 🛄 www.inficon.com **Operating Manual** Cold Cathode Gauge MAG500, **MAG504** tina83e1 INFICON AG, LI-9496 Balzers, Liechtenstein
- [7] www.inficon.com **Operating Manual** Bayard-Alpert Pirani Gauge BPG400 tina03e1 INFICON AG, LI-9496 Balzers, Liechtenstein

Search Devices (local	letwork)		
Search Devices			
192.168.0.2 - VGC 502 - 001 192.168.0.1 - VGC 501 - 002		^	
192.168.0.3 - VGC 503 - 001		.	
		白動のネ	い トワーク
Device Info Network Settings V	rtual Serial Port		
Obtain network setting	automatically		テーハーか必
 Manually configure net 	work settings		
	en county c		
IP Address.	192.168.0.3	手動の不	ットワーク語
Subnet Mask:	255.0.0.0		
Default Gateway:	0.0.0.0		
	Save	1	
Virtual \$	Serial Port:	> で、各テ	「バイスに特
	\/ +º L ≠	ョロセナ	F- []
	ミシートを	「刮りヨし	こり、
Security Test 0/		X	
riguration 1001 (V)			
evices (local Network)			
es	🖳 Ethernet Con	nfiguration Tool (V)	

Ethernet Configuration Tool (V

🖳 Ethe

X

Search Devices (local Network)	
Search Devices	🖳 Ethernet Configuration Tool (V)
192 198 0 2 - VICE 902 - 001 192 198 0 1 - VICE 901 - 002 192 199 0 1 - VICE 903 - 001 NC () Device Info Network-Settings Virtual Senal Port Map Device to COM Port	Search Devices (local Network) Search Devices 192:168:0.2 - VGC 502 - 001 192:168:0.1 - VGC 501 - 002 192:168:0.3 - VGC 503 - 001
192.168.0.3 - VGC 503 - 001 Connect Disconnect COMS COM9 COM9 COM1 COM9 COM1 COM9 COM1 COM9 COM1 COM9 COM9 COM1 COM9 COM9 COM9 COM9 COM9 COM9 COM9 COM9	Device Info Network/Settings Virtual Serial Port Map Device to COM Port 192.168.0.3 - VGC 503 - 001 Connect Disconnect Mapped Devices
	Device Pot 192.168.0.3 - VGC 503 - 001 COM5 192.168.0.1 - VGC 501 - 002 COM9

新しい COM ポートを作成したりすること ができます。

Search Devices (local Netw	/ork)
Search Devices	
192.168.0.2 - VGC 502 - 001 192.168.0.1 - VGC 501 - 002	
192.168.0.3 - VGC 503 - 001	
Device Info Network Settings Virtual S	erial Port
Map Device to COM Port	
192.168.0.3 - VGC 503 - 001	COM9
Connect Disconnec	t COM5 15
	COM9 COM11
Mapped Devices	Create COM
Device	Port
	=
	-

- [8] www.inficon.com Operating Manual Capacitance Diaphragm Gauge CDG025 tina01d1 INFICON AG, LI–9496 Balzers, Liechtenstein
- www.inficon.com
 Operating Manual
 Capacitance Diaphragm Gauge
 CDG045, CDG045-H
 tina07e1
 INFICON AG, LI–9496 Balzers,
 Liechtenstein
- [10] www.inficon.com
 Operating Manual
 Capacitance Diaphragm Gauge
 CDG100
 tina08e1
 INFICON AG, LI–9496 Balzers,
 Liechtenstein
- [11] www.inficon.com
 Operating Manual
 Pirani Capacitance Diaphragm Gauge
 PCG400, PCG400-S
 tina28e1
 INFICON AG, LI–9496 Balzers,
 Liechtenstein
- [12] www.inficon.com
 Operating Manual
 Pirani Capacitance Diaphragm Gauge
 PCG550, PCG552, PCG554
 tina56e1
 INFICON AG, LI–9496 Balzers,
 Liechtenstein
- [13] www.inficon.com
 Operating Manual
 High Pressure / Pirani Gauge HPG400
 tina31e1
 INFICON AG, LI–9496 Balzers,
 Liechtenstein
- Image: Provide the second state of the second state

ETL Certification

ETL LISTED

The products VGC501, VGC502 and VGC503

- conform to the UL Standards UL 61010-1 and UL 61010-2-030
- are certified to the CSA Standards CSA C22.2 # 61010-1 and CSA C22.2 # 61010-2-030

- [15] www.inficon.com Operating Manual Inverted Magnetron Pirani Gauge MPG400, MPG401 tina48d1 INFICON AG, LI–9496 Balzers, Liechtenstein
- [16] www.inficon.com
 Operating Manual
 Cold Cathode Pirani Gauge MPG500,
 MPG504
 tina83d1
 INFICON AG, LI–9496 Balzers,
 Liechtenstein
- [17] www.inficon.com
 Operating Manual
 Bayard-Alpert Pirani Gauge BPG402
 tina46e1
 INFICON AG, LI–9496 Balzers,
 Liechtenstein
- [18] www.inficon.com
 Operating Manual
 Capacitance Diaphragm Gauge
 CDG025D
 tina49e1
 INFICON AG, LI–9496 Balzers,
 Liechtenstein
- [19] www.inficon.com
 Operating Manual
 Capacitance Diaphragm Gauge
 CDG045D
 tina51e1
 INFICON AG, LI–9496 Balzers,
 Liechtenstein
- [20] www.inficon.com Operating Manual Capacitance Diaphragm Gauge CDG100D tina52e1 INFICON AG, LI–9496 Balzers, Liechtenstein
- [21] www.inficon.com Operating Manual Capacitance Diaphragm Gauge CDG160D, CDG200D tina53e1 INFICON AG, LI–9496 Balzers, Liechtenstein

CE 適合宣言書

弊社ーインフィコンは、以下の製品が、特定の電圧限度内での使用のために設計された電気機器に関する 指令 2014/35/EU、電磁環境両立性に関する指令 2014/30/EU、および電気・電子機器における特定有害物 資の使用制限に関する指令 2011/65/EU の条項を満たしていることを宣言します。

製品名

One-Channel, Two-Channel & Three-Channel Control Units VGC501, VGC502, VGC503

部品番号

398-481 398-482 398-483

規格

整合規格および国際/国内規格ならびに仕様:

- EN 61000-3-2:2006 + A1:2009 + A2:2009 (EMC: 高調波電流の限度)
- EN 61000-3-3:2013 (EMC: 電圧変化、電圧変動およびフリッカの限度)
- EN 61000-6-1:2007 (EMC:住宅、商業および軽工業環境に対する共通イミュニティ)
- EN 61000-6-2:2005 (EMC:工業環境に対する共通イミュニティ規格)
- EN 61000-6-3:2007 + A1:2011 (EMC: 住宅、商業および軽工業環境に対する共通エミッション規格)
- EN 61000-6-4:2007 + A1:2011 (EMC:工業環境に対する共通エミッション規格)
- EN 61010-1:2010 (計測、制御および試験室用電気機器の安全要求事項)
- EN 61326-1:2013 (計測、制御および試験室用電気機器の EMC 要求事項)

製造者 / 署名

INFICON AG, Balzers

2015 年 4 月 22 日

Dr. Urs Wälchli マネージングディレクター

2015年4月22日

Markus Truniger プロダクトマネージャー

インフィコン株式会社 http://www.inficon.jp

本社 〒 222-0033 横浜市港北区新横浜 2-2-8 (新横浜ナラビル5階)

TEL: (045)-471-3328 FAX: (045)-471-3327 技術サービスセンター 〒 222-0033 横浜市港北区新横浜 2-2-3 (第 1 竹生ビル 1 階)

TEL: (045)-471-3326 FAX: (045)-471-3327

Document : tina96e1 (2015-09)