586 TECPAK OEM TEMPERATURE CONTROLLER The 586 TECPak OEM temperature controller is a compact, high-power temperature controller that can be used independently or with a LaserPak to form a complete system. The TECPak offers the same quality instrumentation as our bench top units, but in a smaller and lower cost solution for custom systems. #### **EXCELLENT STABILITY** The 586 offers \pm 0.004°C temperature stability over 1 hour, and only \pm 0.01°C fluctuation over 24 hours. #### **AUTO-TUNE AUTOMATIC PID CALCULATION** The 586 series automatically calculates PID parameters for your mount. #### **FULLY ADJUSTABLE PID VALUES** Every TECPak has eight factory-set gain settings, along with the option to choose your own. #### **DUAL SENSOR INPUTS** Simultaneously monitor both cold plate and device temperature. #### INTEGRATED FAN POWER SUPPLY Provides integrated supply to power a laser mount cooling fan. #### AT-A-GLANCE #### **Power Ranges** - ▶ 190 Watt / 4 Amp / 56 Volt - ▶ 190 Watt / 8 Amp / 26 Volt - ▶ 392 Watt / 8 Amp / 56 Volt - ▶ 345 Watt / 15 Amp / 28 Volt #### Works With - **▶** Thermistors - ▶ RTD (2- or 4-wire) - ► LM335 #### Heat & Cool ▶ TEC Modules & Resistive Heaters #### Save Space Compact Enclosure #### Remote Operation via PC - Use your existing control code. Our command set is compatible with other manufacturers. - ▶ USB Connection ## DRIVE ANY ARROYO LASERMOUNT. The 586 Series TECPak will drive any Arroyo Instruments laser fixture and many compatible fixtures. Connections are easy, and we offer purpose-built cables. Plug and play compatibility. ### **586 SERIES SPECIFICATIONS** | | | 586-04-56 | 586-08-26 | 586-08-56 | 586-15-28 | | | |------------|---|--------------------|-----------|-----------|-----------|--|--| | | Current | Current | | | | | | | re Channel | Range (A) | ±4 | ±8 | ±8 | ±15 | | | | | Compliance Voltage (V) | ±56 | ±26 | ±56 | ±28 | | | | | Max Power (W) | 190 | 190 | 392 | 345 | | | | | Resolution (A) | 0.01 | | | | | | | | Accuracy (\pm [% set point + A]) | 0.5 + 0.01 | | | | | | | | Noise/Ripple (mA, rms) | < 15 | < 15 | < 20 | < 25 | | | | | Temperature Control | | | | | | | | | Range (°C)¹ | -99 to 250 | | | | | | | Drive | Resolution (°C) | 0.001 ² | | | | | | | Ξ. | Thermistor Accuracy (± °C) ³ | 0.054 | | | | | | | | LM335 Accuracy (± °C) ³ | 0.05 | | | | | | | | 100Ω RTD Accuracy (± °C) ³ | 0.33 | | | | | | | | 1kΩ RTD Accuracy (± °C)³ | 0.40 | | | | | | | | Short Term Stability (1hr) (± °C)⁵ | 0.004 | | | | | | | | Short Term Stability (24hr) (± °C)⁵ | 0.01 | | | | | | | | Current | | | | | | | | |----------------------|---|---|-----------|---|----|--|--|--| | - | Resolution (mA) | | 10 | | | | | | | | Accuracy (± mA) | 10 | 20 | 20 | 30 | | | | | | Voltage | | | | | | | | | | Resolution (mV) | | 10 | | | | | | | Measurement Channels | Accuracy (±V) | | 0.0 | | | | | | | | Sensor ⁶ | | | | | | | | | | 10μA Thermistor | | | | | | | | | | Range (k Ω) / Resolution (k Ω) | | 0.1 - 450 | | | | | | | | Sensor 1 Accuracy (\pm [% reading + $k\Omega$]) | | 0.05 + | | | | | | | | Sensor 2 Accuracy (\pm [% reading + $k\Omega$]) | | 0.20 + | | | | | | | | 100µA Thermistor | | | | | | | | | Ğ, | Range (k Ω) / Resolution (k Ω) | | 0.05 - 45 | / 0.001 | | | | | | ij | Sensor 1 Accuracy (\pm [% reading + $k\Omega$]) | | 0.05 + | Software limits. Actual range dependen on sensor type and system dynamics. RTD and auxiliary sensor resolution 0.01' Accuracy figures are the additional error the 586 TECPak adds to the measurement, and does not include the sensor uncertainties. 25°C, 100 μA thermistor. Stability measurements done at 25°C using a 10 kΩ thermistor on the 100 μA | | | | | | me. | Sensor 2 Accuracy (\pm [% reading + $k\Omega$]) | | 0.20 + | | | | | | | n. | LM335 | | | | | | | | | eas | Bias (mA) | | 1 | | | | | | | Ž | Range (mV) / Resolution (mV) | | 1730 - 42 | | | | | | | | Accuracy (± [% reading + mV]) | | 0.3 - | | | | | | | | 100Ω RTD | | | | | | | | | - | Range (Ω) / Resolution (Ω) | | 20 – 192 | | | | | | | | Accuracy (\pm [% reading + Ω]) | | 0.03 + | | | | | | | | 1kΩ RTD | 1kΩ RTD | | | | | | | | | Range (Ω) / Resolution (Ω) | | 100 – 45 | 00 / 0.1 | | setting. The number is ½ the peak-to-
peak deviation from the average over th | | | | | Accuracy (\pm [% reading + Ω]) | | 0.05 | measurement period. | | | | | | | Current Limit | 6. Specifications apply to both primary | | | | | | | | | Resolution (A) | | 0. | and auxiliary sensors unless otherwise indicated. | | | | | | | Accuracy (± A) | | 0.2 | | | | | | | | TEC Connector | | 17W2, f | | | | | | | | . 22 connector | | 112,1 | | | | | | 250W **Fan Supply** Computer Interface Weight [lbs (kg)] Size (H x W x D) [inches (mm)] **Operating Temperature** Storage Temperature Power Software limits. Actual range dependent on sensor type and system dynamics. RTD and auxiliary sensor resolution 0.01°C Accuracy figures are the additional error the 586 TECPak adds to the measurement, and does not include the www.arroyoinstruments.com 8 - 12V, 350mA max USB 2.0 Full Speed (Type B) Universal, 90V to 240V, 50/60 Hz 3.5 (89) x 12 (305) x 14 (356) 11.6 (5.3) +10°C to +40°C -20°C to +60°C 600W 600W 250W General