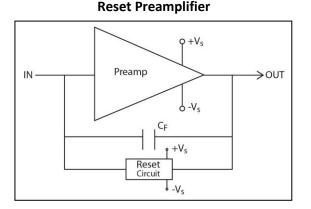


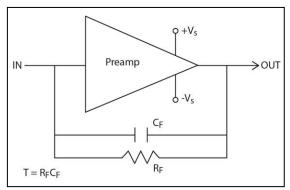
Application Note: Reset Preamplifier

What should the preamplifier output look like?

The plot on the left shows the signal pulses out of the preamplifier (gain is about 1 mV/keV). The plot on the right is "zoomed out" and show the reset waveform.


This plot is for a SiPIN detector. An SDD produces pulses of the opposite polarity: positive going steps and then negative going resets. Some detectors and preamplifiers will have a different conversion gain (the FastSDD is about 4 mV/keV) and some reset over a different range.

Why do you have the big "sawtooth" waveform?


Each X-ray interaction produces a small step. These steps are all in the same direction, so eventually the preamp output will go to the amplifier's $-V_s$. The reset drives the preamp back to the $+V_s$. The output can then step from there. Even without a signal, the leakage current through the detector will cause the output to drift towards the $-V_s$, requiring a reset. The frequency of the triangular reset waveform will depend on the sum of the detector leakage current and the x-ray counting rate from the detector.

Do all preamplifiers produce this reset waveform?

No, there are preamps which use a "continuous" reset. The simplest preamps just have a feedback resistor in parallel with the feedback capacitor. After each signal pulse, of a few millivolts, the pulse decays exponentially back to baseline, with a time constant that is typically anywhere from 50 μ s to 1 ms. But the feedback resistor adds thermal noise, thus degrading energy resolution. High energy resolution preamps all use the reset approach.

RC Feedback Preamplifier

AMPTEK, Inc. 14 DeAngelo Drive, Bedford, MA 01730-2204 USA +1 781 275-2242 Fax: +1 781 275-3470 www.amptek.com sales@amptek.com