

AMPTEK Corporation X-Ray Detector Selection Guide

The XR100 or X-123 are available with Amptek's full range of X-ray probe assemblies.

- The XR100 comes standard with an X-ray probe and preamplifier (pre-amplifier) only, so a PX5 digital pulse processor, multi-channel analyzer and power supply are required to form a complete system.
- 2. The X-123 already includes a digital pulse processor, multi-channel analyzer and power supply, making it a complete system; it is designed for OEMs and optimized for product portability.
- 3. XR100/PX5 is one of the most flexible combinations, designed for laboratory use.
- 4. The PX5 requires a matching X-ray probe and is compatible with other manufacturers' probe products.

Figure 1. Xray probe assembly. Figure 2. Combined

configuration of XR100 and PX5. <u>Click here for information on</u>

specially priced detector systems.

Figure 3.

Detector type: Detector area/thickness; optional thickness of beryllium (Be) window.	Energy resolution at 5.9 keV (half height full width, eV) Peaking time* ¹ . Peak-to-cost ratio (P/B)* ² The following detector	XR100 Product Number (matching PX5 required) ors are fully deplet	X-123 Product Number (system complete) ted
Si-PIN. 6mm² /500μm. 0.5 or 1 mil.	145 - 165 eV. 32 μs; 6200/1.	XY-FSG32MD-G3SP (1 mil thick beryllium window) XY- FSG32MD-E2SP (0.5 mil thick beryllium window)	ZY-FSG32MD-G3SP (1 mil thick beryllium window) ZY- FSG32MD-E2SP (0.5 mil thick beryllium window)
Si-PIN. 13mm² /500μm ; 1 mil. Si-PIN.	180 - 205 eV. 32 μs; 4100/1. 190 - 225 eV.	XY-FS432MD-G3SP (1 mil thick beryllium window) XY-FSJ32MD-G3SP	ZY-FS432MD-G3SP (1 mil thick beryllium window) ZY-FSJ32MD-G3SP
25mm² /500μm ; 1 mil.	32 μs; 2000/1.	(1 mil thick beryllium window)	(1 mil thick beryllium window)
SUPER SDD. 25mm² /500µm 0.5 mil.	125 - 140 eV. 11.2 μs. 8200/1.	xy-gsj3amd-g2sp (0.5 mil thick beryllium window)	ZY-GSJ3AMD-G2SP (0.5 mil thick beryllium window)

 $\ast::^{1}$: peaking time is approximately $2.4\,\text{times}$ the forming time.

 $^{\ast 2}$: The peak-to-bench ratio (P/B) is the ratio of the count rates at $5.9\ keV$ and $2\ keV$ energies.

Figure 4. Energy resolution range of Amptek detectors.

When purchasing a detector, the user should consider not only the energy resolution of the detector, but also the effective detector area, thickness and peak-to-cost ratio.

Fig. 5.Curves of energy resolution and peaking/forming time for $$\rm Si\mathchar`Si\mathch$