
Agilent E2094
SICL Libraries
Agilent SICL User’s Guide
for Windows
Agilent Technologies

Notices
© Agilent Technologies, Inc. 2003

No part of this manual may be reproduced in
any form or by any means (including elec-
tronic storage and retrieval or translation
into a foreign language) without prior agree-
ment and written consent from Agilent
Technologies, Inc. as governed by United
States and international copyright laws.

Manual Part Number
E2094-91001

Edition
Sixth edition, April 2003

Printed in USA

Agilent Technologies, Inc.
815 W 14th Street
Loveland, CO 80537 USA

Warranty
The material contained in this docu-
ment is provided “as is,” and is sub-
ject to being changed, without notice,
in future editions. Further, to the max-
imum extent permitted by applicable
law, Agilent disclaims all warranties,
either express or implied, with regard
to this manual and any information
contained herein, including but not
limited to the implied warranties of
merchantability and fitness for a par-
ticular purpose. Agilent shall not be
liable for errors or for incidental or
consequential damages in connec-
tion with the furnishing, use, or per-
formance of this document or of any
information contained herein. Should
Agilent and the user have a separate
written agreement with warranty
terms covering the material in this
document that conflict with these
terms, the warranty terms in the sep-
arate agreement shall control.

Technology Licenses
The hardware and/or software described in
this document are furnished under a license
and may be used or copied only in accor-
dance with the terms of such license.

Restricted Rights Legend
If software is for use in the performance of a
U.S. Government prime contract or subcon-
tract, Software is delivered and licensed as
“Commercial computer software” as
defined in DFAR 252.227-7014 (June 1995),
or as a “commercial item” as defined in FAR
2.101(a) or as “Restricted computer soft-
ware” as defined in FAR 52.227-19 (June
1987) or any equivalent agency regulation or
contract clause. Use, duplication or disclo-
sure of Software is subject to Agilent Tech-
nologies’ standard commercial license
terms, and non-DOD Departments and
Agencies of the U.S. Government will
receive no greater than Restricted Rights as
defined in FAR 52.227-19(c)(1-2) (June

1987). U.S. Government users will receive
no greater than Limited Rights as defined in
FAR 52.227-14 (June 1987) or DFAR
252.227-7015 (b)(2) (November 1995), as
applicable in any technical data.

Safety Notices

CAUTION

A CAUTION notice denotes a haz-
ard. It calls attention to an operat-
ing procedure, practice, or the like
that, if not correctly performed or
adhered to, could result in damage
to the product or loss of important
data. Do not proceed beyond a
CAUTION notice until the indicated
conditions are fully understood and
met.

WARNING

A WARNING notice denotes a
hazard. It calls attention to an
operating procedure, practice, or
the like that, if not correctly per-
formed or adhered to, could result
in personal injury or death. Do not
proceed beyond a WARNING
notice until the indicated condi-
tions are fully understood and
met.
2 Agilent SICL User’s Guide

Agilent SICL User’s Guide for Windows

1 Introduction
Agilent SICL User’s Guide
What’s in This Guide? 10

SICL Overview 11

Introducing VISA and SICL 11

SICL Description 12

SICL Support 12
SICL Users 12
SICL Documentation 13

If You Need Help 14
2 Getting Started with SICL
Getting Started Using C 16

C Example Program Code 16
C Example Code Description 18
Compiling the C Example Program 20
Running the C Example Program 21
Where to Go Next 21

Getting Started Using Visual Basic 23

Porting to Visual Basic 6.0 23
Visual Basic Program Example Code 24
Visual Basic Example Code Description 26
Building and Running the VB Example Program 27
Where to Go Next 29
3 Programming with SICL
Building a SICL Application 32

Including the SICL Declaration File 32
Libraries for C Applications and DLLs 32
Compiling and Linking C Applications 33
3

4

Loading and Running Visual Basic Applications 34
Thread Support for 32-bit Windows Applications 34
Opening a Communications Session 35
Sending I/O Commands 39
Handling Asynchronous Events 60
Handling Errors 63
Using Locks 69
Additional Example Programs 74
4 Using SICL with GPIB
Introduction to GPIB Interfaces 88

GPIB Interfaces Overview 88
Typical GPIB Interface 88
Configuring GPIB Interfaces 89

Selecting a GPIB Communications Session 91

SICL GPIB Functions 91
Using GPIB Device Sessions 92

Using GPIB Interface Sessions 98

SICL Functions for GPIB Interface Sessions 98
GPIB Interface Session Examples 100

Using GPIB Commander Sessions 103

SICL Functions for GPIB Commander Sessions 103
Addressing GPIB Commanders 103
Writing GPIB Interrupt Handlers 104
5 Using SICL with VXI
Introduction to VXI Interfaces 110

VXI Interfaces Overview 111

Typical VXI Interface 111
Configuring VXI Interfaces 112

VXI Communications Sessions 116
Agilent SICL User’s Guide

Agilent SICL User’s Guide
VXI Device Types 116
SICL Functions for VXI Interfaces 117
Programming VXI Message-Based Devices 118
Addressing VXI Message-Based Devices 119
Programming VXI Register-Based Devices 122
Addressing VXI Register-Based Devices 123

Programming Using the I-SCPI Interface 126

Using the I-SCPI Interface 126
I-SCPI SICL Functions 126

Programming Directly to Registers 131

Mapping Memory Space for Register-Based Devices 131
Reading and Writing Device Registers 133
Example: VXI Register-Based Programming (C) 134

Programming VXI Interface Sessions 136

VXI Interface Sessions Functions 136
Addressing VXI Interface Sessions 136

Miscellaneous VXI Interface Programming 139

Communicating with VME Devices 139
VXI Backplane Memory I/O Performance 144
Using VXI-Specific Interrupts 148
6

6 Using SICL with RS-232
Introduction to RS-232 Interfaces 154

ASRL (RS-232) Interface Overview 154
Configuring RS-232 Interfaces 155
RS-232 Communications Sessions 156
RS-232 SICL Functions 158
Using RS-232 Device Sessions 160
Using RS-232 Interface Sessions 166
5

7 Using SICL with LAN
6

Introduction to LAN Interfaces 176

LAN Interfaces Overview 177

LAN Client/Server Model 177
LAN Hardware Architecture 178
LAN Software Architecture 179
LAN Networking Protocols 180
LAN Clients and Threads 181
LAN Servers 182
SICL LAN Configuration and Performance 182
SICL LAN Functions 183

Configuring LAN Client Interfaces 184

Using IO Config 184

Configuring LAN Server Interfaces 187

Using IO Config 187

Using LAN-gatewayed Sessions 189

Addressing Guidelines 189
Creating a LAN-gatewayed Session 189
SICL Function Support 192
Remote Interface Support 192
LAN Timeout Functions 193
Example Programs 194

Using LAN Interface Sessions 198

Addressing LAN Interface Sessions 198
SICL Function Support 198

Using Locks, Threads, and Timeouts 200

Using Locks and Threads Over LAN 200
Using Timeouts with LAN 201
Agilent SICL User’s Guide

8 Using SICL with USB
Agilent SICL User’s Guide
USB Interfaces Overview 208

Communicating with a USB Instrument Using SICL 209

Operations Supported on All USBTMC Devices 211
Operations Supported Only on USBTMC-USB488 Devices 211
A Appendix A: SICL Library Information
SICL Library Information 216

File System Information 216
Windows 98/Windows Me 216
Windows NT/Windows 2000/Windows XP 219

Porting to Visual Basic 221

RS-232 Cabling Information 221
B Appendix B: Troubleshooting SICL Programs
Troubleshooting SICL Programs 238

SICL Error Codes 238
Common Windows Problems 242
Common RS-232 Problems 242
Common GPIO Problems 243
Common LAN Problems 245
General Troubleshooting Techniques 245
LAN Client Problems 246
LAN Server Problems 248
Glossary
7

8 Agilent SICL User’s Guide

Agilent E2094 SICL User’s Guide for Windows
Agilent SICL User’s Guide
1
Introduction

This Agilent Standard Instrument Control Libraries (SICL)
User’s Guide for Windows describes Agilent SICL and how to
use it to develop I/O applications on Microsoft Windows 98SE,
Windows Me, Windows 2000, Windows XP, and Windows NT 4.0.
A “getting started” chapter is provided to help you write and
run your first SICL program. Then, this guide explains how to
build and program SICL applications. Later chapters are
interface-specific, describing how to use SICL with GPIB, VXI,
RS-232, LAN, and USB interfaces.
NOTE Before you can use SICL, you must install and configure SICL on your
computer. See the Agilent IO Libraries Installation and Configuration Guide
for Windows for installation on Windows systems. Unless otherwise
indicated, Windows NT refers to Windows NT 4.0.
This chapter includes:

• What’s in This Guide?

• SICL Overview

• If You Need Help
9Agilent Technologies

1 Introduction
What’s in This Guide?
10
This chapter provides an introduction and overview of SICL.
Subsequent chapters address the following topics:

• Chapter 2 - Getting Started with SICL shows how to build
and run an example program in C/C++ and in Visual Basic.

• Chapter 3 - Programming with SICL shows how to build a
SICL application in a Windows environment and provides
information on communications sessions, addressing, error
handling, locking, etc.

• Chapter 4 - Using SICL with GPIB shows how to
communicate over the GPIB interface.

• Chapter 5 - Using SICL with VXI shows how to communicate
over the VXIbus interface.

• Chapter 6 - Using SICL with RS-232 shows how to
communicate over the RS-232 interface.

• Chapter 7 - Using SICL with LAN shows how to communicate
over a Local Area Network (LAN).

• Chapter 8 - Using SICL with USB shows how to communicate
over a USB interface.

• Appendix A - SICL Library Information provides
information on SICL files and SICL error codes, as well as
porting to Visual Basic and on RS-232 cables.

• Appendix B - Troubleshooting SICL Programs gives general
troubleshooting techniques and shows common Windows,
RS-232, and LAN problems.

• Glossary includes major terms and definitions used in this
guide.
Agilent SICL User’s Guide

Introduction 1
SICL Overview
Agilent SICL User’s Guide
SICL is part of the Agilent IO Libraries. The Agilent IO Libraries
consists of two libraries: Agilent Virtual Instrument Software
Architecture (VISA) and Agilent Standard Instrument Control
Library (SICL).
Introducing VISA and SICL
• Agilent Virtual Instrument Software Architecture (VISA) is
an I/O library designed according to the VXIplug&play
System Alliance that allows software developed from
different vendors to run on the same system.

• Use VISA if you want to use VXIplug&play instrument
drivers in your applications, or if you want the I/O
applications or instrument drivers that you develop to be
compliant with VXIplug&play standards. If you are using
new instruments or are developing new I/O applications or
instrument drivers, we recommend you use Agilent VISA.

• Agilent Standard Instrument Control Library (SICL) is an
I/O library developed by Agilent that is portable across many
I/O interfaces and systems.

• You can use Agilent SICL if you have been using SICL and
want to remain compatible with software currently
implemented in SICL.
NOTE Since VISA and SICL are different libraries, using VISA functions and SICL
functions in the same I/O application is not supported.
11

1 Introduction
SICL Description
12
Agilent Standard Instrument Control Library (SICL) is an I/O
library developed by Agilent that is portable across many I/O
interfaces and systems. SICL is a modular instrument
communications library that works with a variety of computer
architectures, I/O interfaces, and operating systems.
Applications written in C/C++ or Visual Basic using this library
can be ported at the source code level from one system to
another with very few, if any, changes.

SICL uses standard, commonly used functions to communicate
over a wide variety of interfaces. For example, a program
written to communicate with a particular instrument on a given
interface can also communicate with an equivalent instrument
on a different type of interface.
SICL Support
The 32-bit version of SICL is supported on this version of the
Agilent IO Libraries for Windows 98SE, Windows Me, Windows
2000, Windows XP, and Windows NT. Support for the 16-bit
version of SICL was removed in version H.01.00. However,
versions through G.02.02 support 16-bit SICL. C, C++, and
Visual Basic are supported on all these Windows versions. SICL
is supported on the GPIB, VXI, RS-232, LAN, and USB
interfaces.
SICL Users
SICL is intended for instrument I/O and C/C+ + or Visual Basic
programmers who are familiar with Windows 98SE, Windows
Me, Windows 2000, Windows XP, or Windows NT. To perform
SICL installation and configuration on Windows 2000, Windows
XP, or Windows NT, you must have system administrator
privileges on the applicable system.
Agilent SICL User’s Guide

Introduction 1
SICL Documentation
Agilent SICL User’s Guide
The following table shows associated documentation you can
use when programming with Agilent SICL.

Table 1 Agilent SICL Documentation

Document Description

Agilent SICL User’s Guide
for Windows

Shows how to use Agilent SICL.

SICL Online Help Information is provided in the form of Windows
Help.

SICL Example Programs Example programs are provided online to help you
develop SICL applications. If the default
installation directory was used, SICL example
programs are provided in the C:\Program
Files\Agilent\IO Libraries\c\
samples\ subdirectory (for C/C++), and in
the C:\Program Files\Agilent\
IO Libraries\vb\samples\
subdirectory (for Visual Basic).

VXIbus Consortium
specifications (when using
VISA over LAN)

TCP/IP Instrument Protocol Specification -
VXI-11, Rev. 1.0
TCP/IP-VXIbus Interface Specification - VXI-11.1,
Rev. 1.0
TCP/IP-IEEE 488.1 Interface Specification -
VXI-11.2, Rev. 1.0
TCP/IP-IEEE 488.2 Instrument Interface
Specification - VXI-11.3, Rev. 1.0
13

1 Introduction
If You Need Help
14
• In the USA and Canada, you can reach Agilent Technologies
at these telephone numbers:

USA: 1-800-452-4844
Canada: 1-877-894-4414

• Outside the USA and Canada, contact your country’s Agilent
support organization. A list of contact information for other
countries is available on the Agilent web site:

http://www.agilent.com/find/assist
Agilent SICL User’s Guide

http://www.agilent.com/find/assist

Agilent E2094 SICL User’s Guide for Windows
Agilent SICL User’s Guide
2
Getting Started with SICL

This chapter provides guidelines to help you get started
programming with SICL using the C/C++ and Visual Basic
languages. This chapter provides example programs in C/C++
and in Visual Basic to help you verify your configuration and
introduce you to some of SICL’s basic features. The chapter
contents are:

• Getting Started Using C

• Getting Started Using Visual Basic
NOTE This chapter is divided into two sections: the first section is for C
programmers and the second section is for Visual Basic programmers. See
“Getting Started Using C” if you want to use SICL with the C/C++
programming language. See “Getting Started Using Visual Basic” if you
want to use SICL with the Visual Basic programming language.

You may want to review the SICL Language Reference in online Help to
familiarize yourself with SICL functions. To see the reference information
online, double-click the Help icon in the Agilent IO Libraries program
group.
15Agilent Technologies

2 Getting Started with SICL
Getting Started Using C
16
This section describes an example program called idn that
queries a GPIB instrument for its identification string. This
example builds a console application for WIN32 programs
(32-bit SICL programs on Windows 98SE, Windows Me,
Windows 2000, Windows XP, or Windows NT) using the C
programming language.
C Example Program Code
All files used to develop SICL applications in C or C++ are
located in the c subdirectory of the base IO Libraries directory.
Sample C/C++ programs are located in the C:\Program
Files\Agilent\IO Libraries\c\samples subdirectory, if
Agilent IO Libraries was installed in the default directory.

Each sample program subdirectory contains makefiles or
project files that you can use to build each sample C program.
You must first compile the sample C/C++ programs before you
can execute them.

The idn example files are located in the c\samples\idn
subdirectory under the base IO Libraries directory. This
subdirectory contains the source program, IDN.C. The source
file IDN.C is listed on the following pages. An explanation of the
function calls in the example follows the program listing.

/* This program uses the Standard Instrument
Control Library to query a GPIB instrument for
an identification string and then prints the
result. This program is to be built as a WIN32
console application on Windows 98SE, Windows Me,
Windows 2000, Windows XP, or Windows NT. Edit
the DEVICE_ADDRESS line to specify the address
of the applicable device. For example:
gpib0,0: refers to a GPIB device at bus address
0 connected to an interface named “gpib0” by the
IO Config utility.
Agilent SICL User’s Guide

Getting Started with SICL 2

Agilent SICL User’s Guide
gpib0,9,0: refers to a GPIB device at bus
address 9, secondary address 0, connected to an
interface named “gpib0” by the IO Config
utility. */

#include <stdio.h>/* for printf() */
#include “sicl.h”/* SICL routines */

#define DEVICE_ADDRESS “gpib0,0” /* Modify for
 setup */

void main(void)
{

INST id; /* device session id */
char buf[256] = { 0 }; /* read buffer for idn
 string */

#if defined(__BORLANDC__) && !defined(__WIN32__)
 _InitEasyWin();/ / required for Borland
 EasyWin programs.*/
#endif

/* Install a default SICL error handler that
logs an error message and exits. On Windows 98SE
or Windows Me, view messages with the SICL
Message Viewer. For Windows 2000, XP, or NT, use
the Event Viewer. */

ionerror(I_ERROR_EXIT);

/* Open a device session using the
 DEVICE_ADDRESS */
id = iopen(DEVICE_ADDRESS);

/* Set the I/O timeout value for this session to
 1 second */
itimeout(id, 1000);

/* Write the *RST string (and send an EOI
 indicator) to put the instrument into a known
 state. */
iprintf(id, “*RST\n”);
17

18

2 Getting Started with SICL
/* Write the *IDN? string and send an EOI
indicator, then read the response into buf.*/
ipromptf(id, “*IDN?\n”, “%t”, buf);

printf(“%s\n”, buf);
iclose(id);

/* This call is a no-op for WIN32 programs.*/
_siclcleanup();

}

C Example Code Description
sicl.h

The sicl.h file is included at the beginning of the file to provide
the function prototypes and constants defined by SICL.

INST

Notice the declaration of INST id at the beginning of main. The
type INST is defined by SICL and is used to represent a unique
identifier that will describe the specific device or interface that
you are communicating with. The id is set by the return value of
the SICL iopen call and will be set to 0 if iopen fails for any
reason.

ionerror

The first SICL call, ionerror, installs a default error handling
routine that is automatically called if any of the subsequent
SICL calls result in an error. I_ERROR_EXIT specifies a built-in
error handler that will print out a message about the error and
then exit the program. If desired, a custom error handling
routine can be specified instead.
Agilent SICL User’s Guide

Getting Started with SICL 2

Agilent SICL User’s Guide
NOTE On Windows 98SE and Windows Me, error messages may be viewed by
executing the Message Viewer utility in the Agilent IO Libraries program
group. On Windows 2000, XP, and NT, these messages may be viewed
with the Event Viewer utility in the Agilent IO Libraries Control on the
Windows taskbar.
iopen

When an iopen call is made, the parameter string ”gpib0,0”
passed to iopen specifies the GPIB interface followed by the bus
address of the instrument. The interface name gpib0 is the name
given to the interface during execution of the IO Config utility.
The bus (primary) address of the instrument follows (0 in this
case) and is typically set with switches on the instrument or
from the front panel of the instrument.
NOTE To modify the program to set the interface name and instrument address to
those applicable for your setup, see Chapter 3, “Programming with SICL”
for information on using SICL’s addressing capabilities.
itimeout

itimeout is called to set the length of time (in milliseconds) that
SICL will wait for an instrument to respond. The specified value
will depend on the needs of your configuration. Different
timeout values can be set for different sessions as needed.

iprintf and ipromptf

SICL provides formatted I/O functions that are patterned after
those used in the C programming language. These SICL
functions support the standard ANSI C format strings, plus
additional formats defined specifically for instrument I/O.

The SICL iprintf call sends the Standard Commands for
Programmable Instruments (SCPI) command *RST to the
instrument that puts it in a known state. Then, ipromptf
queries the instrument for its identification string. The string is
19

20

2 Getting Started with SICL
read back into buf and then printed to the screen. (Separate
iprintf and iscanf calls could have been used to perform this
operation.)

The %t read format string specifies that an ASCII string is to be
read back, with end indicator termination. SICL automatically
handles all addressing and GPIB bus management necessary to
perform these reads and writes to the instrument.

iclose and _siclcleanup

The iclose function closes the device session to this instrument
(id is no longer valid after this point). WIN32 programs on
Windows 98SE, Windows 2000, Windows Me, Windows XP, or
Windows NT do not require the _siclcleanup call.
Compiling the C Example Program
The c\samples\idn subdirectory (default path C:\Program
Files\Agilent\IO Libraries\c\samples\idn)
contains a number of files you can use to build the example
with specific compilers. You will have a subset of the following
files, depending on the Windows environment you are using.

Table 2 File Listing for c\samples\idn subdirectory

idn.c Example program source file.

idn.def Module definition file for IDN example program.

MSCIDN.MAK Windows 3.1 makefile for Microsoft C and Microsoft SDK
compilers.

VCIDN.MAK Windows 3.1 project file for Microsoft Visual C++.

VCIDN32.MAK Windows 98SE/Me /2000/XP/NT (32-bit) project file for
Microsoft Visual C++.

BCIDN32.IDE Windows 98SE/Me/2000/XP/NT (32-bit) project file for
Borland C Integrated Development Environment.
Agilent SICL User’s Guide

Getting Started with SICL 2

Agilent SICL User’s Guide
Steps required to compile the idn example program follow.

1 Connect an instrument to a GPIB interface that is compatible
with IEEE 488.2.

2 Change directories to the location of the example.

3 The program assumes the GPIB interface name is gpib0 (set
using IO Config) and the instrument is at bus address 0. If
necessary, modify the interface name and instrument
address on the DEVICE_ADDRESS definition line in the
IDN.C source file.

4 Select and load the appropriate project or make file. Then,
compile the program as follows:

• For Borland compilers, use Project | Open Project. Then,
select Project | Build All.

• For Microsoft compilers, use Project | Open. Next, set the
include file path by selecting Options | Directories. Then, in
the Include File Path box, enter the full path to the c
subdirectory. Finally, select Project | Re-build All.
Running the C Example Program
To run the idn example program, execute the program from a
console command prompt.

• For Borland, select Run | Run.

• For Microsoft, select Project | Execute or Run | Go.

If the program runs correctly, an example of the output if
connected to a 54601A oscilloscope is:

HEWLETT-PACKARD,54601A,0,1.7

If the program does not run, see the message logger for a list of
run-time errors, and see “Appendix B: Troubleshooting SICL
Programs” for guidelines to correcting the problem.
Where to Go Next
Go to Chapter 3, “Programming with SICL.” In addition, you
should see the chapter(s) that describe how to use SICL with
your specific interface(s):
21

22

2 Getting Started with SICL
• Chapter 4 - Using SICL with GPIB

• Chapter 5 - Using SICL with VXI

• Chapter 6 - Using SICL with RS-232

• Chapter 7 - Using SICL with LAN

• Chapter 8 - Using SICL with USB

You may also want to familiarize yourself with SICL functions,
which are defined in the reference information provided in the
SICL online Help. If you have any problems, see “Appendix B:
Troubleshooting SICL Programs” for more information.
Agilent SICL User’s Guide

Getting Started with SICL 2
Getting Started Using Visual Basic
Agilent SICL User’s Guide
This section provides guidelines to getting started programming
applications in Visual Basic 6.0 (VB 6.0).
Porting to Visual Basic 6.0
This edition of this manual shows how to program SICL
applications in Visual Basic version 6.0. For SICL applications
written in an earlier Visual Basic version than 6.0 (for example,
version 3.0), you can port your SICL applications to Visual
Basic version 6.0. Once you have made the changes shown, your
SICL applications should run correctly with Visual Basic 6.0.

To port SICL applications to Visual Basic 6.0, you will need to
add the SICL32.BAS declaration file (rather than the SICL.BAS
file) as a module to each project that calls SICL for Visual Basic
6.0.

There may also be changes in functions when passing null
pointers for strings to SICL functions. For example, in Visual
Basic version 3.0, the preceding ByVal keyword was used as
ivprintf(id, mystring, ByVal 0&). However, in Visual Basic
version 4.0 or later, you only need to pass the 0& null pointer
because version 4.0 or later knows this is by reference
(ivprintf(id, mystring, 0&)).

In Visual Basic 6.0, project files have a .vbp extension, not a
.mak extension. Earlier versions that used a .mak project suffix
may be imported into VB 6.0 by selecting Open Project... and
choosing a project with a .mak extension from an earlier
version of Visual Basic. When you save the project, VB 6.0 will
append a .vbp to the project file.

Constants in Visual Basic 3.0 and 4.0, such as
MB_ICON_EXCLAMATION and MB_OK are not defined in
Visual Basic 6.0. Instead, use constants such as
vbExclamation and vbOK.
23

24

2 Getting Started with SICL
Print statements should be changed to Debug.Print or
Form1.Print. Output will then be directed to print to the
Immediate window or to a Form named Form1, respectively.
Otherwise, you will get an error: Method not valid without suitable
object.
Visual Basic Program Example Code
This section describes an example program called idn that
queries a GPIB instrument for its identification string. This
example builds a console application for WIN32 programs
(32-bit SICL programs on Windows 98SE, Windows Me,
Windows 2000, Windows XP, or Windows NT) using the
Microsoft Visual Basic 6.0 Programming language.
NOTE Be sure to include the SICL32.BAS file (in the VB directory) in your Visual
Basic project. This file contains the necessary SICL definitions, function
prototypes, and support procedures to allow you to call SICL functions
from Visual Basic.
All files used to develop SICL applications in Visual Basic 6.0
are located in the vb subdirectory of the base IO Libraries
directory. The default install location of the IO Libraries
directory is C:\Program Files\Agilent.

Sample Visual Basic programs are located in the C:\Program
Files\Agilent\IO Libraries\vb\samples subdirectory.
Each sample program subdirectory contains a (.vbp) project
file that you can open from Visual Basic 6.0.

The idn example files are located in the vb\samples\idn
subdirectory under the base IO Libraries directory. This
subdirectory contains the Visual Basic module, idn.bas. This
module is listed on the following pages (some comments are not
listed). An explanation of the function calls in the example
follows the program listing.

Option Explicit
'''
' idn.bas
' The following subroutine queries *IDN? on a
Agilent SICL User’s Guide

Getting Started with SICL 2

Agilent SICL User’s Guide
' GPIB instrument and prints out the result. No
' SICL error handling is set up in this
 example, but should be as good programming
 practice
'''

Sub Main()
 Dim id As Integer
 Dim strres As String * 80 ‘ Fixed-length
 ‘ String
 Dim actual As Long
 ' Open the instrument session
 ‘"gpib0" is the SICL Interface name as
 ‘ defined in:
 ' Start|Programs|Agilent IO Libraries|IO
 ‘ Config
 ' "22" is the instrument gpib address on the
 ' bus
 ' Change these to the SICL Name and gpib
 ‘ address for your instrument

 id = iopen("gpib0,22")
 Call itimeout(id, 5000)

 ' Query device's *IDN? string
 Call iwrite(id, "*IDN?" + Chr$(10), 6, 1, 0&)

 ' Read result
 Call iread(id, strres, 80, 0&, actual)

 ' Display the results
 MsgBox "Result is: " + strres, vbOKOnly,
 "*IDN? Result"

 ' Close the instrument session
 Call iclose(id)

 ' Tell SICL to clean up for this task
 Call siclcleanup

End Sub
25

2 Getting Started with SICL
Visual Basic Example Code Description
26
id

Notice the declaration of id at the beginning of Sub Main(). The
integer id is used to represent a unique identifier that will
describe the specific device or interface that you are
communicating with. The id is set by the return value of the
SICL iopen call and will be set to 0 if iopen fails for any reason.

iopen

When an iopen call is made, the parameter string "gpib0,22"
passed to iopen specifies the GPIB interface followed by the bus
address of the instrument. The interface name "gpib0" is the
name given to the interface during execution of the IO Config
utility. The bus (primary) address of the instrument follows
("22" in this case) and is typically set with switches on the
instrument or from the front panel of the instrument.
NOTE To modify the program to set the interface name and instrument address to
those applicable for your setup, see Chapter 3, “Programming with SICL”
for information on using SICL's addressing capabilities.
NOTE On Windows 98SE and Windows Me, error messages may be viewed by
executing the Message Viewer utility in the Agilent IO Libraries program
group. On Windows 2000, XP, and NT, these messages may be viewed
with the Event Viewer utility in the Agilent IO Libraries Control on the
taskbar.
itimeout

itimeout is called to set the length of time (in milliseconds) that
SICL will wait for an instrument to respond. The specified value
will depend on the needs of your configuration. Different
timeout values can be set for different sessions as needed.
Agilent SICL User’s Guide

Getting Started with SICL 2

Agilent SICL User’s Guide
iwrite and iread

The SICL I/O iwrite function sends a block of data to an
interface or device and iread reads raw data from the device or
interface. The iwrite call sends the Standard Commands for
Programmable Instruments (SCPI) command *IDN? to the
instrument that asks for its identification string.

The fixed-length string strres is read back into buf with iread
and this is then displayed in a Message Box. SICL automatically
handles all addressing and GPIB bus management necessary to
perform these reads and writes to the instrument.

iclose and _siclcleanup

The iclose function closes the device session to this instrument
(id is no longer valid after this point). WIN32 programs on
Windows 98SE, Windows Me, Windows 2000, Windows XP, or
Windows NT do not require the _siclcleanup call.
Building and Running the VB Example Program
The vb\samples\idn subdirectory contains the files you can
use to build and run the example. You will have a subset of the
following files, depending on the Windows environment you are
using.

idn.bas Microsoft Visual Basic 6.0 Module file
idn.vbp Microsoft Visual Basic 6.0 Project file
idn.vbw Microsoft Visual Basic 6.0 Workspace file

The steps to build and run the idn example program follow.

1 Connect an instrument to a GPIB interface that is compatible
with IEEE 488.2.

2 Start the Visual Basic 6.0 application.
NOTE This example assumes you are building a new project (no .vbp file exists
for the project). If you do not want to build the project from scratch, from
the menu select File | Open Project..., select and open the idn.vbp file,
and skip to Step 10. Otherwise, go to Step 3.
27

28

2 Getting Started with SICL
3 Start a new Visual Basic (VB 6.0) Standard EXE project. VB
6.0 will open up a new Project1 project with a blank Form,
Form1. From the menu, select Project | Add Module, select the
Existing tab, and browse to the idn directory.

4 The idn example files are located in directory C:\Program
Files\Agilent\IO Libraries\vb\samples\idn.
Select the file idn.bas and click Open.

5 (Optional) Since the Main() subroutine is executed when the
program is run without requiring user interaction with a
Form, Form1 may be deleted if desired. To do this, right-click
Form1 in the Project Explorer window and select Remove
Form1.

6 SICL applications in Visual Basic require that the SICL
Visual Basic declaration file sicl32.bas module be added to
your VB project. This file contains the SICL function
definitions and constant declarations needed to make SICL
calls from Visual Basic.

7 To add this module to your project, from the menu select
Project | Add Module, select the Existing tab, browse to the vb\
directory under the IO Libraries install directory, select
sicl32.bas, and click Open.

8 At this point, the Visual Basic project can be run and
debugged. You will need to edit the idn.bas module code to
change the SICL Interface Name and address in the code to
match your device configuration.

9 The program assumes the SICL interface name is gpib0 (set
using IO Config) and the instrument is at bus address 22. If
necessary, modify the interface name and instrument
address.

10 If the program runs correctly, an example of the output if
connected to a Hewlett-Packard 34401A Multimeter would
be:

AGILENT,34401A,0,4-1-1

11 If you want to make an executable file, from the menu select
File | Make idn.exe... and click Open. This will create idn.exe in
the idn directory.
Agilent SICL User’s Guide

Getting Started with SICL 2

Agilent SICL User’s Guide
12 If the program does not run, see the message logger for a list
of run-time errors and see “Appendix B: Troubleshooting
SICL Programs” for guidelines to correcting the problem.
Where to Go Next
Go to Chapter 3, “Programming with SICL.” In addition, you
should see the chapter(s) that describe how to use SICL with
your specific interface(s):

• Chapter 4 - Using SICL with GPIB

• Chapter 5 - Using SICL with VXI

• Chapter 6 - Using SICL with RS-232

• Chapter 7 - Using SICL with LAN

• Chapter 8 - Using SICL with USB

You may also want to familiarize yourself with SICL functions,
which are defined in the reference information provided in
SICL online Help. If you have any problems, see “Appendix B:
Troubleshooting SICL Programs” for more information.
29

30

2 Getting Started with SICL
Agilent SICL User’s Guide

Agilent E2094 SICL User’s Guide for Windows
Agilent SICL User’s Guide
3
Programming with SICL

This chapter describes how to build a SICL application and
discusses SICL programming techniques. Example programs
are provided to help you develop SICL applications.

The example programs in this chapter can be found in the
following locations, if the Agilent IO Libraries were installed in
the default directory:

For C/C++: C:\Program Files\Agilent\IO
Libraries\c\samples\

For Visual Basic: C:\Program Files\Agilent\IO
Libraries\vb\samples\

The chapter includes:

• Building a SICL Application

• Opening a Communications Session

• Sending I/O Commands

• Handling Asynchronous Events

• Handling Errors

• Using Locks

• Additional Example Programs
NOTE For details about SICL functions, see online Help.
31Agilent Technologies

3 Programming with SICL
Building a SICL Application
32
This section provides guidelines to building a SICL application
in a Windows environment.
Including the SICL Declaration File
For C and C++ programs, you must include the sicl.h header file
at the beginning of every file that contains SICL function calls.
This header file contains the SICL function prototypes and the
definitions for all SICL constants and error codes.

#include “sicl.h”

For Visual Basic version 3.0 or earlier programs, you must add
the SICL.BAS file to each project that calls SICL. For Visual
Basic version 4.0 or later programs, you must add the
SICL32.BAS file to each project that calls SICL.
Libraries for C Applications and DLLs
All WIN32 applications and DLLs that use SICL must link to the
SICL32.LIB import library. (Borland compilers use
BCSICL32.DLL.)

The SICL libraries are located in the c directory under the IO
Libraries base directory (for example, C:\Program
Files\Agilent\IO Libraries\c, if you installed SICL in
the default location). You may want to add this directory to the
library file path used by your language tools.

Use the DLL version of the C run-time libraries, because the
run-time libraries contain global variables that must be shared
between your application and the SICL DLL.

If you use the static version of the C run-time libraries, these
global variables will not be shared and unpredictable results
could occur. For example, if you use isscanf with the %F format,
an application error will occur. The following sections describe
how to use the DLL versions of the run-time libraries.
Agilent SICL User’s Guide

Programming with SICL 3
Compiling and Linking C Applications
Agilent SICL User’s Guide
A summary of important compiler-specific considerations
follows for several C/C++ compiler products when developing
WIN32 applications.
NOTE If you are using a version of the Microsoft or Borland compilers other than
those listed in this subsection, the menu structure and selections may be
different than indicated here. However, the equivalent functionality exists
for your specific version.
Microsoft Visual C++ Compilers

1 Select Project | Settings or Build | Settings from the menu
(depending on the version of your compiler).

2 Click the C/C++ button. Then, select Code Generation from the
Category list box and select Multithreaded Using DLL from the
Use Run-Time Library list box. Click OK to close the dialog box.

3 Select Project | Settings or Build | Settings from the menu. Click
the Link button. Then, add sicl32.lib to the Object/Library
Modules list box. Click OK to close the dialog box.

4 You may want to add the SICL c directory (for example,
C:\Program Files\Agilent\IO Libraries\c) to the
include file and library file search paths. To do this, select
Tools | Options from the menu and click the Directories button.
Then:

a To set the include file path, select Include Files from the
Show Directories for: list box. Next, click the Add button and
type C:\Program Files\Agilent\IO Libraries\c.
Then, click OK.

b To set the library file path, select Library Files from the
Show Directories for: list box. Next, click the Add button and
type C:\Program Files\Agilent\IO Libraries\c.
Then, click OK.
33

34

3 Programming with SICL
Borland C++ Version 4.0 Compilers

1 Link your programs with BCSICL32.LIB (not SICL32.LIB).
BCSICL32.LIB is located in the c subdirectory under the
SICL base directory (for example, C:\Program
Files\Agilent\IO Libraries\c, if SICL is installed in
the default location).

2 Edit the BCC32.CFG and TLINK32.CFG files, located in the
bin subdirectory of the Borland C installation directory.

a Add the following line to BCC32.CFG so the compiler can
find the sicl.h file: -IC: \IO_base_dir\c, where
IO_base_dir is the IO Libraries base directory.

b Add the following line to both files so the compiler and
linker can find BCSICL32.LIB: -LC: \IO_base_dir\c,
where IO_base_dir is the IO Libraries base directory.

c For example, to create MYPROG.exe from MYPROG.C,
type: BCC32 MYPROG.C BCSICL32.LIB.
Loading and Running Visual Basic Applications
To load and run an existing Visual Basic application, first run
Visual Basic. Then, open the project file for the program you
want to run by selecting File | Open Project from the Visual Basic
menu. Visual Basic project files have a .MAK file extension.
After you have opened the application’s project file, you can run
the application by pressing F5 or by clicking the Run button on
the Visual Basic Toolbar.

You can create a standalone executable (.exe) version of this
program by selecting File | Make EXE File from the Visual Basic
menu. Once this is done, the application can be run stand-alone
(just like any other .exe file) without having to run Visual Basic.
Thread Support for 32-bit Windows Applications
SICL can be used in multi-threaded designs and SICL calls can
be made from multiple threads in WIN32 applications. However,
there are some important points to keep in mind:
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
• SICL error handlers (installed with ionerror) are per
process (not per thread), but are called in the context of the
thread that caused the error to occur. Calling ionerror from
one thread will overwrite any error handler presently
installed by another thread.

• The igeterrno is per thread and returns the last SICL error
that occurred in the current thread.

• You may want to make use of the SICL session locking
functions (ilock and iunlock) to help coordinate common
instrument accesses from more than one thread.

• See Chapter 7, “Using SICL with LAN” for thread
information when using SICL with LAN.
Opening a Communications Session
A communications session is a channel of communication with
a particular device, interface, or commander.

• A device session is used to communicate with a device on an
interface. A device is a unit that receives commands from a
controller. Typically a device is an instrument, but could be a
computer, a plotter, or a printer.

• An interface session is used to communicate with a
specified interface. Interface sessions allow you to use
interface-specific functions (for example, igpibsendcmd).

• A commander session is used to communicate with the
interface’s commander. Typically a commander session is
used when a computer is acting like a device.

Opening a Communications Session

There are two parts to opening a communications session with
a specific device, interface, or commander. First, you must
declare a variable for the SICL session identifier. C and C++
programs should declare the session variable to be of type
INST. Visual Basic programs should declare the session variable
to be of type Integer. Once the variable is declared, you can
open the communication channel by using the SICL iopen
function, as shown in the following example.
35

36

3 Programming with SICL
C example:

INST id;
id = iopen (addr);

Visual Basic example:

Dim id As Integer
id = iopen (addr)

where id is the session identifier used to communicate to a
device, interface, or commander. The addr parameter specifies
a device or interface address, or the term cmdr for a
commander session. See the sections that follow for details on
creating the different types of communications sessions.

Your program may have several sessions open at the same time
by creating multiple session identifiers with the iopen function.
Use the SICL iclose function to close a channel of
communication.

Device Sessions

A device session allows you direct access to a device without
knowing the type of interface to which the device is connected.
On GPIB, for example, you do not have to address a device to
listen before sending data to it. This insulation makes
applications more robust and portable across interfaces, and is
recommended for most applications.

Device sessions are the recommended way of communicating
using SICL. They provide the highest-level programming
method, best overall performance, and best portability.

Addressing Device Sessions To create a device session, specify
the interface logical unit or symbolic name and a specific device
logical address in the addr parameter of the iopen function.
The logical unit is an integer corresponding to the interface.

The device address generally consists of an integer that
corresponds to the device’s bus address. It may also include a
secondary address that is an integer. (Secondary addressing is
not supported on S-232 interfaces.) The following are valid
device addresses.
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
The interface logical unit and symbolic name are set by running
the IO Config utility from the Agilent IO Libraries Control (IO
icon on the taskbar) for Windows 98SE, Windows Me, Windows
2000, Windows XP, or Windows NT. See the Agilent IO Libraries
Installation and Configuration Guide for Windows for
information on the IO Config utility.

Examples: Opening a Device Session The following examples
open a device session with a GPIB device at address 23.

C example:

INST dmm;
dmm = iopen (“gpib0,23”);

Visual Basic example:

Dim dmm As Integer
dmm = iopen (“gpib0,23”)

Interface Sessions

An interface session allows direct, low-level control of the
specified interface. A full set of interface-specific SICL
functions exists for programming features that are specific to a
particular interface type (GPIB, Serial, etc.). This provides full
control of the activities on a given interface, but creates less
portable code.

Table 3 Addressing Instruments

7,23 Device at address 23 connected to an interface card at logical
unit 7.

7,23,1 Device at address 23, secondary address 1, connected to an
interface card at logical unit 7.

gpib0,23 GPIB device at address 23.

gpib0,23,1 GPIB device at address 23, secondary address 1, connected to a
second GPIB interface card.

com1,488 RS-232 device
37

38

3 Programming with SICL
Addressing Interface Sessions To create an interface session,
specify the particular interface logical unit or symbolic name in
the addr parameter of the iopen function. The interface logical
unit and symbolic name are set by running the IO Config utility
from the Agilent IO Libraries Control (IO icon on the taskbar)
for Windows 98SE, Windows Me, Windows 2000, Windows XP,
or Windows NT. See the Agilent IO Libraries Installation and
Configuration Guide for Windows for information on the IO
Config utility.

The logical unit is an integer that corresponds to a specific
interface. The symbolic name is a string that uniquely describes
the interface. The following are valid interface addresses.

Examples: Opening an Interface Session These examples open
an interface session with an RS-232 interface.

C example:

INST com1;
com1 = iopen (“com1”);

Visual Basic example:

Dim com1 As Integer
com1 = iopen (“com1”)

Commander Sessions

A commander session allows your computer to talk to the
interface controller. Typically, the controller is the computer
used to communicate with devices on the interface. When the

Table 4 Valid Addresses for Interfaces

7 Interface card at logical unit 7

gpib0 GPIB interface card.

gpib1 Second GPIB interface card.

com1 RS-232 interface card.
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
computer is not the active controller, commander sessions can
be used to talk to the computer that is the active controller. In
this mode, the computer is acting like a device on the interface.

Addressing Commander Sessions To create a commander
session, specify a valid interface address followed by a comma,
and then the string cmdr in the iopen function. The following
are valid commander addresses.

Examples: Creating a Commander Session These examples
create a commander session with the GPIB interface. The
function calls open a session of communication with the
commander on a GPIB interface.

C example:

INST cmdr;
cmdr = iopen(“gpib0,cmdr”);

Visual Basic example:

Dim cmdr As Integer
cmdr = iopen (“gpib0,cmdr”)

Table 5 Valid Commander Addresses

gpib0,cmdr GPIB commander session.

7,cmdr Commander session on interface at logical unit 7.
Sending I/O Commands
Once you have established a communications session with a
device, interface, or commander, you can start communicating
with that session using SICL’s I/O routines. SICL provides
formatted I/O and non-formatted I/O routines.

• Formatted I/O converts mixed types of data under the
control of a format string. The data is buffered, thus
optimizing interface traffic. The formatted I/O routines are
geared towards instruments, and reduce the amount of I/O
code.
39

40

3 Programming with SICL
• Non-formatted I/O sends or receives raw data to a device,
interface, or commander. With non-formatted I/O, no format
or conversion of the data is performed. Thus, if formatted
data is required, the formatting must be done by the user.

Formatted I/O in C Applications

The SICL formatted I/O mechanism is similar to the C stdio
mechanism. SICL formatted I/O, however, is designed
specifically for instrument communication and is optimized for
IEEE 488.2 compatible instruments. The three main functions
for formatted I/O in C applications are:

• The iprintf function formats according to the format string
and sends data to a device:

iprintf(id, format [,arg1][,arg2][,...]);

The iscanf function receives and converts data according to
the format string:

iscanf(id, format [,arg1][,arg2][,...]);

• The ipromptf function formats and sends data to a device
and then immediately receives and converts the response
data:

ipromptf(id, writefmt, readfmt[,arg1]
 [,arg2][,...]);

The formatted I/O functions are buffered. Also, there are two
non-buffered and non-formatted I/O functions called iread and
iwrite. (See “Non-Formatted I/O” later in this chapter.) These
are raw I/O functions and do not intermix with formatted I/O
functions.

If raw I/O must be mixed, use the ifread/ifwrite functions.
These functions have the same parameters as iread and iwrite,
but read or write raw output data to the formatted I/O buffers.
See “Formatted I/O Buffers” in this section for more details.

Formatted I/O Conversion Formatted I/O functions convert
data under the control of the format string. The format string
specifies how the argument is converted before it is input or
output. A typical format string syntax is:
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
%[format flags][field width][. precision]
[, array size][argument modifier]format code

Format Flags Zero or more flags may be used to modify the
meaning of the format code. The format flags are only used
when sending formatted I/O (iprintf and ipromptf). Supported
format flags are:

This example converts numb into a 488.2 floating point number
and sends the value to the session specified by id:

int numb = 61;
iprintf (id, “%@2d&\n”, numb);

Sends: 61.000000

Table 6 Formatting Flags

Format Flag Description

@1 Converts to a 488.2 NR1 number.

@2 Converts to a 488.2 NR2 number.

@3 Converts to a 488.2 NR3 number.

@H Converts to a 488.2 hexadecimal number.

@Q Converts to a 488.2 octal number.

@B Converts to a 488.2 binary number.

+ Prefixes number with sign (+ or –).

– Left justifies result.

space Prefixes number with blank space if positive or with – if
negative.

Uses alternate form. For o conversion, it prints a leading zero.
For x or X, a nonzero will have 0x or 0X as a prefix. For e, E, f, g,
or G, the result will always have one digit on the right of the
decimal point.

0 Causes left pad character to be a zero for all numeric
conversion types.
41

42

3 Programming with SICL
Field Width is an optional integer that specifies how many
characters are in the field. If the formatted data has fewer
characters than specified in the field width, it will be padded.
The padded character is dependent on various flags. You can
use an asterisk (*) in place of the integer to indicate that the
integer is taken from the next argument.

This example pads numb to six characters and sends the value
to the session specified by id:

long numb = 61;
iprintf (id, “%6ld&\n”, numb);

Pads to six characters: 61

. Precision is an optional integer preceded by a period. When
used with format codes e, E, and f, the number of digits to the
right of the decimal point are specified. For the d, i, o, u, x, and
X format codes, the minimum number of digits to appear is
specified. For the s and S format codes, the precision specifies
the maximum number of characters to be read from the
argument.

This field is only used when sending formatted I/O (iprintf and
ipromptf). You can use an asterisk (*) in place of the integer to
indicate that the integer is taken from the next argument.

This example converts numb so that there are only two digits to
the right of the decimal point and sends the value to the session
specified by id:

float numb = 26.9345;
iprintf (id, “.2f\n”, numb);

Sends : 26.93

, Array Size The comma operator is a format modifier which
allows you to read or write a comma-separated list of numbers
(only valid with %d and %f format codes). It is a comma
followed by an integer. The integer indicates the number of
elements in the array. The comma operator has the format of
,dd where dd is the number of elements to read or write. This
example specifies a comma-separated list to be sent to the
session specified by id.
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
int list[5]={101,102,103,104,105};
iprintf (id, “%,5d\n”, list);

Sends: 101,102,103,104,105

Argument Modifier The meaning of the optional argument
modifier h, l, w, z, or Z is dependent on the format code.

Format Codes for sending and receiving formatted I/O are
different. The following tables summarize the format codes for
each.

Table 7 Argument Modifiers in C Applications

Argument
Modifier

Format
Codes

Description

h d,i Corresponding argument is a short integer.

h f Corresponding argument is a float for iprintf or a
pointer to a float for iscanf.

l d,i Corresponding argument is a long integer.

l b,B Corresponding argument is a pointer to a block of
long integers.

l f Corresponding argument is a double for iprintf
or a pointer to a double for iscanf.

w b,B Corresponding argument is a pointer to a block of
short integers.

z b,B Corresponding argument is a pointer to a block of
floats.

Z b,B Corresponding argument is a pointer to a block of
doubles.

Table 8 iprintf and ipromptf Format Codes in C Applications

Format Codes Description

d,i Corresponding argument is an integer.

f Corresponding argument is a float.
43

44

3 Programming with SICL
This example sends an arbitrary block of data to the session
specified by the id parameter. The asterisk (*) is used to
indicate that the number is taken from the next argument:

int size = 1024;
char data [1024];
.
.
iprintf (id, “%*b&\n”, size, data);

Sends 1024 characters of block data.

b,B Corresponding argument is a pointer to an arbitrary block of
data.

c,C Corresponding argument is a character.

t Controls whether the END indicator is sent with each LF
character in the format string.

s,S Corresponding argument is a pointer to a null terminated string.

% Sends an ASCII percent (%) character.

o,u,x,X Corresponding argument will be treated as an unsigned integer.

e,E,g,G Corresponding argument is a double.

n Corresponding argument is a pointer to an integer.

F Corresponding argument is a pointer to a FILE descriptor
opened for reading.

Table 9 iscanf and ipromptf Format Codes

Format Codes Description

d,i,n Corresponding argument must be a pointer to an integer.

e,f,g Corresponding argument must be a pointer to a float.

c Corresponding argument is a pointer to a character.

s,S,t Corresponding argument is a pointer to a string.

Table 8 iprintf and ipromptf Format Codes in C Applications

Format Codes Description
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
This example receives data from the session specified by the id
parameter and converts the data to a string:

char data[180];
iscanf (id, “%s”, data);

Example: Formatted I/O (C) shows one way to send and
receive formatted I/O. This example opens a GPIB
communications session with a multimeter and uses a comma
operator to send a comma-separated list to the multimeter. The
lf format codes are used to receive a double from the
multimeter.

/* formatio.c
This example program makes a multimeter
measurement with a comma-separated list passed
with formatted I/O and prints the results */

#include <sicl.h>
#include <stdio.h>

main()
{
INST dvm;
double res;
double list[2] = {1,0.001};

#if defined(__BORLANDC__) && !defined(__WIN32__)
 _InitEasyWin(); /*Required for Borland EasyWin
 programs*/
#endif

o,u,x Corresponding argument must be a pointer to an unsigned
integer.

[Corresponding argument must be a character pointer.

F Corresponding argument is a pointer to a FILE descriptor
opened for writing.

Table 9 iscanf and ipromptf Format Codes

Format Codes Description
45

46

3 Programming with SICL
/* Log message and terminate on error */
ionerror (I_ERROR_EXIT);

/* Open the multimeter session */
dvm = iopen (“gpib0,16”);
itimeout (dvm, 10000);

/*Initialize dvm*/
iprintf (dvm, “*RST\n”);

/*Set up multimeter and send comma-separated
 list*/
iprintf (dvm, “CALC:DBM:REF 50\n”);
iprintf (dvm, “MEAS:VOLT:AC? %,2lf\n”, list);

/* Read the results */
iscanf (dvm,”%lf”,&res);

/* Print the results */
printf (“Result is %f\n”,res);

/* Close the multimeter session */
iclose (dvm);

/* This is a no-op for WIN32 programs.*/
_siclcleanup();

 return 0;
}

Format Strings for iprintf puts a special meaning on the
newline character (\n). The newline character in the format
string flushes the output buffer to the device. All characters in
the output buffer will be written to the device with an END
indicator included with the last byte (the newline character).
This means you can control at what point you want the data
written to the device.

If no newline character is included in the format string for an
iprintf call, the characters converted are stored in the output
buffer. It will require another call to iprintf or a call to iflush to
have those characters written to the device.
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
This can be very useful in queuing up data to send to a device. It
can also raise I/O performance by doing a few large writes
instead of several smaller writes. This behavior can be changed
by the isetbuf and isetubuf functions. See “Formatted I/O
Buffers” in the following section for details.

The format string for iscanf ignores most white-space
characters. Two white-space characters that it does not ignore
are newlines (\n) and carriage returns (\r). These characters
are treated just like normal characters in the format string,
which must match the next non-white-space character read
from the device.

Formatted I/O Buffers The SICL software maintains both a read
and write buffer for formatted I/O operations. Occasionally, you
may want to control the actions of these buffers. See the isetbuf
function for other options for buffering data.

The write buffer is maintained by the iprintf and the write
portion of the ipromptf functions. It queues characters to send
to the device so that they are sent in large blocks, thus
increasing performance. The write buffer automatically flushes
when it sends a newline character from the format string (see
the %t format code to change this feature).

The write buffer also flushes immediately after the write
portion of the ipromptf function. It may occasionally be flushed
at other non-deterministic times, such as when the buffer fills.
When the write buffer flushes, it sends its contents to the
device.

 The read buffer is maintained by the iscanf and the read
portion of the ipromptf functions. The read buffer queues the
data received from a device until it is needed by the format
string. The read buffer is automatically flushed before the write
portion of an ipromptf. Flushing the read buffer destroys the
data in the buffer and guarantees that the next call to iscanf or
ipromptf reads data directly from the device rather than from
data that was previously queued.
47

48

3 Programming with SICL
NOTE Flushing the read buffer also includes reading all pending response data
from a device. If the device is still sending data, the flush process will
continue to read data from the device until it receives an END indicator
from the device.
Related Formatted I/O Functions A set of functions related to
formatted I/O follows.

Table 10 Functions Related to Formatted I/O

I/O Function Description

ifread Obtains raw data directly from the read formatted I/O buffer.
This is the same buffer that iscanf uses.

ifwrite Writes raw data directly to the write formatted I/O buffer. This
is the same buffer that iprintf uses.

iprintf Converts data via a format string and writes the arguments
appropriately.

iscanf Reads data from a device/interface, converts this data via a
format string, and assigns the values to your arguments.

ipromptf Sends, then receives, data from a device/instrument. It also
converts data via format strings that are identical to iprintf and
iscanf.

iflush Flushes the formatted I/O read and write buffers. A flush of
the read buffer means that any data in the buffer is lost. A
flush of the write buffer means that any data in the buffer is
written to the session’s target address.

isetbuf Sets the size of the formatted I/O read and the write buffers. A
size of zero (0) means no buffering. If no buffering is used,
performance can be severely affected.

isetubuf Sets the read or the write buffer to your allocated buffer. The
same buffer cannot be used for both reading and writing. You
should also be careful when using buffers that are
automatically allocated.
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
Formatted I/O in Visual Basic Applications

SICL formatted I/O is designed specifically for instrument
communication and is optimized for IEEE 488.2 compatible
instruments. The two main functions for formatted I/O in Visual
Basic applications are:

• The ivprintf function, which formats according to the format
string and sends data to a device:

Function ivprintf(id As Integer, fmt As
 String, ap As Any) As Integer

• The ivscanf function, which receives and converts data
according to the format string:

Function ivscanf(id As Integer, fmt As
 String,ap As Any) As Integer
NOTE There are certain restrictions when using ivprintf and ivscanf with Visual
Basic. For details about these restrictions, see “Restrictions Using ivprintf
in Visual Basic” in the iprintf function or “Restrictions Using ivscanf in
Visual Basic” in the iscanf function of online Help.
The formatted I/O functions are buffered. There are two
non-buffered and non-formatted I/O functions called iread and
iwrite. (See “Non-Formatted I/O” later in this chapter.) These
are raw I/O functions and do not intermix with the formatted
I/O functions.

If raw I/O must be mixed, use the ifread/ifwrite functions.
They have the same parameters as iread and iwrite, but read or
write raw output data to the formatted I/O buffers. See
“Formatted I/O Buffers” for details.

Formatted I/O Conversion The formatted I/O functions convert
data under the control of the format string. The format string
specifies how the argument is converted before it is input or
output. The typical format string syntax is:

%[format flags][field width][. precision]
[, array size][argument modifier]format code
49

50

3 Programming with SICL
Format Flags Zero or more flags may be used to modify the
meaning of the format code. The format flags are only used
when sending formatted I/O (ivprintf). Supported format flags
are:

This example converts numb into a 488.2 floating point number
to the session specified by id. The function return values must
be assigned to variables for all Visual Basic function calls. Also,
+ Chr$(10) adds the newline character to the format string to
indicate that the formatted I/O write buffer should be flushed.
(This is equivalent to the \n character sequence used for C/C++
programs.)

Dim numb As Integer
Dim ret_val As Integer

Table 11 Format Flags for ivprintf in Visual Basic

Format Flag Description

@1 Converts to a 488.2 NR1 number.

@2 Converts to a 488.2 NR2 number.

@3 Converts to a 488.2 NR3 number.

@H Converts to a 488.2 hexadecimal number.

@Q Converts to a 488.2 octal number.

@B Converts to a 488.2 binary number.

+ Prefixes number with sign (+ or –).

– Left justifies result.

space Prefixes number with blank space if positive or with – if negative.

Uses alternate form. For o conversion, it prints a leading zero. For
x or X, a nonzero will have 0x or 0X as a prefix. For e, E, f, g, or G,
the result will always have one digit on the right of the decimal
point.

0 Causes left pad character to be a zero for all numeric conversion
types.
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
numb = 61
ret_val = ivprintf(id, “%@2d” + Chr$(10),
numb)

 Sends: 61.000000

Field Width is an optional integer that specifies how many
characters are in the field. If the formatted data has fewer
characters than specified in the field width, it will be padded.
The padded character is dependent on various flags. This
example pads numb to six characters and sends the value to the
session specified by id:

Dim numb As Integer
Dim ret_val As Integer

numb = 61
ret_val = ivprintf(id, “%6d” + Chr$(10), numb)

Pads to six characters: 61

. Precision is an optional integer preceded by a period. When
used with format codes e, E, and f, the number of digits to the
right of the decimal point are specified. For the d, i, o, u, x, and
X format codes, the minimum number of digits to appear is
specified. This field is only used when sending formatted I/O
(ivprintf).

This example converts numb so there are only two digits to the
right of the decimal point and sends the value to the session
specified by id:

Dim numb As Double
Dim ret_val As Integer

numb = 26.9345
ret_val = ivprintf(id, “%.2lf” + Chr$(10),
numb)

Sends : 26.93

, Array Size The comma operator is a format modifier which
allows you to read or write a comma-separated list of numbers
(only valid with %d and %f format codes). It is a comma
51

52

3 Programming with SICL
followed by an integer. The integer indicates the number of
elements in the array. The comma operator has the format of
,dd where dd is the number of elements to read or write.

This example specifies a comma-separated list to be sent to the
session specified by id.

Dim list(4) As Integer
Dim ret_val As Integer

list(0) = 101
list(1) = 102
list(2) = 103
list(3) = 104
list(4) = 105

ret_val = ivprintf(id, “%,5d” + Chr$(10),
 list(0))

Sends: 101,102,103,104,105

Argument Modifier The optional argument modifier h, l, w, z, or
Z is dependent on the format code.

Table 12 Argument Modifiers in Visual Basic Application

Argument
Modifier

Format
Codes

Description

h d,i Corresponding argument is an Integer.

h f Corresponding argument is a Single.

l d,i Corresponding argument is a Long.

l d,B Corresponding argument is an array of Long.

l f Corresponding argument is a Double.

w d,B Corresponding argument is an array of Integer.

z d,B Corresponding argument is an array of Single.

Z d,B Corresponding argument is an array of Double.
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
Format Codes for sending and receiving formatted I/O are
different. The following tables summarize the format codes for
each.

s

s

Table 13 ivprintf format codes in Visual Basic Application

Format Codes Description

d, i Corresponding argument is an Integer.

b, B Not supported on Visual Basic.

c,C Not supported on Visual Basic.

t Not supported on Visual Basic.

s,S Not supported on Visual Basic.

% Sends an ASCII percent (%) character.

o,u,x,X Corresponding argument will be treated as an Integer.

f,e,E,g,G Corresponding argument is a Double.

n Corresponding argument is an Integer.

F Corresponding arg is a pointer to a FILE descriptor.

Table 14 ivscanf format codes in Visual Basic Application

Format Codes Description

d,i,n Corresponding argument must be an Integer.

e,f,g Corresponding argument must be a Single.

c Corresponding argument is a fixed length String.

s,S,t Corresponding argument is a fixed length String.

o,u,x Corresponding argument must be an Integer.

[Corresponding argument must be a fixed length character
String.

F Not supported on Visual Basic.
53

54

3 Programming with SICL
This example receives data from the session specified by the id
parameter and converts the data to a string:

Dim ret_val As Integer
Dim data As String * 180
ret_val = ivscanf(id, “%180s”, data)

‘ Example: Formatted I/O (Visual Basic)

Option Explicit
'''
'nonfmt.bas
'The following subroutine measures AC voltage
'on a multimeter and prints out the results.
'''

Sub Main()

 Dim dvm As Integer
 Dim strres As String * 20 'Fixed-length String
 Dim actual As Long

 'Open the multimeter session
 '"gpib0" is the SICL Interface name as defined
 'in:
 'Start | Programs | Agilent IO Libraries | IO
 ‘ Config
 '"23" is the instrument gpib address on the bus
 'Change these to the SICL Name and gpib address
 'for your instrument

 dvm = iopen("gpib0,23")
 Call itimeout(dvm, 5000)

 'Initialize dvm
 Call iwrite(dvm, "*RST" + Chr$(10), 5, 1, 0&)

 'Set up multimeter and take measurements
 Call iwrite(dvm, "CALC:DBM:REF 50" + _
 Chr$(10), 16, 1, 0&)

 Call iwrite(dvm, "MEAS:VOLT:AC? 1, 0.001") +
 Chr$(10), 23, 1, 0&)
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
 'Read measurements
 Call iread(dvm, strres, 20, 0&, actual)

 'Display the results
 MsgBox "Result is " + Left$(strres, actual)

 'Close the multimeter session
 Call iclose(dvm)

 'Tell SICL to cleanup for this task
 Call siclcleanup

 Exit Sub

End Sub

Format Strings In the format string for ivprintf, when the
special characters Chr$(10) are used, the output buffer to the
device is flushed. All characters in the output buffer will be
written to the device with an END indicator included with the
last byte. This means you can control at what point you want
the data written to the device.

If no Chr$(10) is included in the format string for an ivprintf
call, the characters converted are stored in the output buffer. It
will require another call to ivprintf or a call to iflush to have
those characters written to the device. This can be very useful
in queuing up data to send to a device. It can also raise I/O
performance by doing a few large writes instead of several
smaller writes.

The format string for ivscanf ignores most white-space
characters. Two white-space characters that it does not ignore
are newlines (Chr$(10)) and carriage returns (Chr$(13)). These
characters are treated just like normal characters in the format
string, which must match the next non-white-space character
read from the device.

Formatted I/O Buffers The SICL software maintains both a read
and write buffer for formatted I/O operations. Occasionally, you
may want to control the actions of these buffers.
55

56

3 Programming with SICL
The write buffer is maintained by the ivprintf function. It
queues characters to send to the device so that they are sent in
large blocks, thus increasing performance. The write buffer
automatically flushes when it sends a newline character from
the format string. The write buffer may occasionally be flushed
at other non-deterministic times, such as when the buffer fills.
When the write buffer flushes, it sends its contents to the
device.

The read buffer is maintained by the ivscanf function. It queues
the data received from a device until it is needed by the format
string. Flushing the read buffer destroys the data in the buffer
and guarantees that the next call to ivscanf reads data directly
from the device rather than data that was previously queued.
NOTE Flushing the read buffer also includes reading all pending response data
from a device. If the device is still sending data, the flush process will
continue to read data from the device until it receives an END indicator
from the device.
Related Formatted I/O Functions This set of functions are
related to formatted I/O in Visual Basic:

Table 15 Related Formatted I/O Functions

I/O Function Description

ifread Obtains raw data directly from the read formatted I/O buffer. This
is the same buffer that ivscanf uses.

ifwrite Writes raw data directly to the write formatted I/O buffer. This is
the same buffer that ivprintf uses.

ivprintf Converts data via a format string and converts the arguments
appropriately.

ivscanf Reads data from a device/interface, converts data via a format
string, and assigns the value to your arguments.

iflush Flushes the formatted I/O read and write buffers. A flush of the
read buffer means that any data in the buffer is lost. A flush of
the write buffer means that any data in the buffer is written to
the session’s target address.
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
Non-Formatted I/O

There are two non-buffered, non-formatted I/O functions called
iread and iwrite. These are raw I/O functions and do not
intermix with the formatted I/O functions. If raw I/O must be
mixed, use the ifread and ifwrite functions that have the same
parameters as iread and iwrite, but read/write raw data
from/to the formatted I/O buffers.

iread Function The iread function reads raw data from the
device or interface specified by the id parameter and stores the
results in the location where buf is pointing.

C example:

iread(id, buf, bufsize, reason, actualcnt);

VB example:

Call iread(id, buf, bufsize, reason, actualcnt)

iwrite Function The iwrite function sends the data pointed
to by buf to the interface or device specified by id.

C example:

iwrite(id, buf, datalen, end, actualcnt);

VB example:

Call iwrite(id, buf, datalen, end, actualcnt)

Example: Non-Formatted I/O (C) This C language program
illustrates using non-formatted I/O to communicate with a
multimeter over the GPIB interface. The SICL non-formatted
I/O functions iwrite and iread are used for communication. A
similar example was used to illustrate formatted I/O earlier in
this chapter.

/* nonfmt.c
This example program measures AC voltage on a
multimeter and prints the results*/

#include <sicl.h>
#include <stdio.h>
57

58

3 Programming with SICL
main()

 {
 INST dvm;
 char strres[20];
 unsigned long actual;

 #if defined(__BORLANDC__) &&
 !defined(__WIN32__)
 _InitEasyWin(); /*required for Borland
 EasyWin programs*/
 #endif

 /* Log message and terminate on error */
 ionerror (I_ERROR_EXIT);

 /* Open the multimeter session */
 dvm = iopen (“gpib0,16”);
 itimeout (dvm, 10000);

 /*Initialize dvm*/
 iwrite (dvm, “*RST\n”, 5, 1, NULL);

 /*Set up multimeter and take measurements*/
 iwrite (dvm,”CALC:DBM:REF 50\n”,16,1,NULL);
 iwrite (dvm,”MEAS:VOLT:AC? 1,
 0.001\n”,23,1,NULL);

 /* Read measurements */
 iread (dvm, strres, 20, NULL, &actual);

 /* NULL terminate result string and print the
 results*/
 /* This technique assumes the last byte sent
 was a line-feed */

 if (actual){
 strres[actual - 1] = (char) 0;
 printf(“Result is %s\n”, strres);
 }

 /* Close the multimeter session */
 iclose(dvm);

 /* This call is a no-op for WIN32 programs.*/
 _siclcleanup();
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
 return 0; }

Example: Non-Formatted I/O (Visual Basic)

' nonfmt.bas
' The following subroutine measures AC voltage
‘ on a multimeter and prints the results. Sub
Main ()
 Dim dvm As Integer
 Dim strres As String * 20
 Dim actual As Long

 ' Open the multimeter session
 dvm = iopen(“gpib0,16”)
 Call itimeout(dvm, 10000)

 ' Initialize dvm
 Call iwrite(dvm,ByVal “*RST” + Chr$(10), 5,
 1,\ 0&)

 ' Set up multimeter and take measurements
 Call iwrite(dvm,ByVal “CALC:DBM:REF 50” +
 Chr$(10),16,1, 0&)

 Call iwrite(dvm,ByVal “MEAS:VOLT:AC? 1, 0.001”
 + Chr$(10),23,1, 0&)

 ' Read measurements
 Call iread(dvm,ByVal strres, 20, 0&, actual)

 ' Print the results
 Print “Result is “ + Left$(strres, actual)

 ' Close the multimeter session
 Call iclose(dvm)

 ' Tell SICL to clean up for this task
 Call siclcleanup

 Exit Sub

End Sub
59

3 Programming with SICL
Handling Asynchronous Events
60
Asynchronous events are events that happen outside the control
of your application. These events include Service ReQuests
(SRQs) and interrupts. An SRQ is a notification that a device
requires service. Both devices and interfaces can generate SRQs
and interrupts.
NOTE SICL allows installation of SRQ and interrupt handlers in C programs, but
does not support them in Visual Basic programs.
By default, asynchronous events are enabled. However, the
library will not generate any events until the appropriate
handlers are installed in your program.

If an application uses asynchronous events (ionsrq, ionintr), a
callback thread is created by the underlying SICL
implementation to service the asynchronous event. This thread
will not be terminated until some other thread of the
application performs an ExitProcess on Windows 98SE or Me,
or calls iclose on Windows 2000, XP, or NT. Some example
declarations are:

void SICLCALLBACK my_int_handler(INST id, int
 reason,long sec)
 {
 /* your code here */
 }

void SICLCALLBACK my_srq_handler(INST id)
 {
 /* your code here */
 }
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
SRQ Handlers

The ionsrq function installs an SRQ handler. The currently
installed SRQ handler is called any time its corresponding
device generates an SRQ. If an interface is unable to determine
which device on the interface generated the SRQ, all SRQ
handlers assigned to that interface will be called.

Therefore, an SRQ handler cannot assume that its
corresponding device generated an SRQ. The SRQ handler
should use the ireadstb function to determine whether its
device generated an SRQ. If two or more sessions refer to the
same device, the handlers for each of the sessions are called.

Interrupt Handlers

Two distinct steps are required for an interrupt handler to be
called. First, the interrupt handler must be installed. Second,
the interrupt event or events need to be enabled. The ionintr
function installs an interrupt handler. The isetintr function
enables the interrupt event or events.

An interrupt handler can be installed with no events enabled.
Conversely, interrupt events can be enabled with no interrupt
handler installed. Only when both an interrupt handler is
installed and interrupt events are enabled will the interrupt
handler be called.

Temporarily Disabling/Enabling Asynchronous Events

To temporarily prevent all SRQ and interrupt handlers from
executing, use the iintroff function to disable all asynchronous
handlers for all sessions in the process.

To re-enable asynchronous SRQ and interrupt handlers
previously disabled by iintroff, use the iintron function. This
enables all asynchronous handlers for all sessions in the
process that had been previously enabled. These functions do
not affect the isetintr values or the handlers (ionsrq or
ionintr). The default value for both functions is on.

For operating systems that support multiple threads such as
Windows 98SE, Windows Me, Windows 2000, Windows XP, and
Windows NT, SRQ and interrupt handlers execute on a separate
61

62

3 Programming with SICL
thread (a thread created and managed by SICL). This means a
handler can be executing when the iintroff call is made. If this
occurs, the handler will continue to execute until it has
completed.

An implication of this is that the SRQ or interrupt handler may
need to synchronize its operation with the application’s
primary thread. This could be accomplished via WIN32
synchronization methods or by using SICL locks, where the
handler uses a separate session to perform its work.

Calls to iintroff/iintron may be nested, meaning that there
must be an equal number of ons and offs. Thus, calling the
iintron function may not actually re-enable interrupts.

Occasionally, you may want to suspend a process and wait until
an event occurs that causes a handler to execute. The iwaithdlr
function causes the process to suspend until an enabled SRQ or
interrupt condition occurs and the related handler executes.
Once the handler completes its operation, this function returns
and processing continues.

For this function to work properly, your application must turn
interrupts off (i.e., use iintroff). The iwaithdlr function behaves
as if interrupts are enabled. Interrupts are still disabled after
the iwaithdlr function has completed.

Interrupts must be disabled if you use iwaithdlr. Use iintroff to
disable interrupts. The reason for disabling interrupts is that
there may be a race condition between the isetintr and
iwaithdlr. If you only expect one interrupt, it might come before
the iwaithdlr. This may or may not have the desired effect. For
example:

...
ionintr (gpib0, act_isr);
isetintr (gpib0, I_INTR_INTFACT, 1);
...
iintroff ();
igpibpassctl (gpib0, ba);
while (!done)
iwaithdlr (0);
iintron ();
...
Agilent SICL User’s Guide

Programming with SICL 3
Handling Errors
Agilent SICL User’s Guide
This section provides guidelines to handling errors in SICL,
including:

• Logging SICL Error Messages

• Using Error Handlers in C

• Using Error Handlers in Visual Basic

Logging SICL Error Messages

This section shows how to use the Event Viewer (Windows
2000, XP, and NT) or the Message Viewer (Windows 98SE and
Me) to log SICL error messages.

• To use the Event Viewer (Windows 2000, XP, and NT), run
the Event Viewer after you run the SICL program.

• To use the Message Viewer (Windows 98SE and Me), run the
Message Viewer before you run the SICL program.

Using the Event Viewer For Windows 2000/XP/NT, SICL logs
internal messages as Windows 2000/XP/NT events. This
includes error messages logged by the I_ERROR_EXIT and
I_ERROR_NOEXIT error handlers. While developing your SICL
application or tracking down problems, you can view these
messages by opening the the Agilent IO Libraries Control (IO
icon on the taskbar) and clicking Run Event Viewer. Both system
and application messages can be logged to the Event Viewer
from SICL. SICL messages are identified by SICL LOG or by the
driver name (e.g., ag341i32).

Using the Message Viewer For Windows 98SE or Me, you can
use the Message Viewer utility. This utility provides a debug
window to which SICL logs internal messages during
application execution, including those logged by the
I_ERROR_EXIT and I_ERROR_NOEXIT error handlers. The
Message Viewer utility provides menu selections for saving the
logged messages to a file, and to clear the message buffer. To
start the Message Viewer utility, open the Agilent IO Libraries
Control (IO icon on the taskbar) and click Run Message Viewer.
63

64

3 Programming with SICL
Using Error Handlers in C

When a SICL function call in a C/C++ program results in an
error, it typically returns a special value such as a NULL pointer
or a non-zero error code. SICL allows you to install an error
handler for all SICL functions within a C/C++ application to
provide a convenient mechanism for handling errors.

Installing an error handler allows your application to ignore the
return value, and permits the error procedure to detect errors
and recover. The error handler is called before the function that
generated the error completes. Error handlers are per process
(not per session or per thread).

ionerror Function The function ionerror used to install an
error handler is defined as:

int ionerror (proc);
void (*proc)();

where:

void SICLCALLBACK proc (id, error);
INST id;
int error;

The routine proc is the error handler and is called whenever a
SICL error occurs. Two special reserved values of proc may be
passed to the ionerror function.

This mechanism has substantial advantages over other I/O
libraries, because error handling code is located away from the
center of your application.

Table 16 Reserved Values for proc

I_ERROR_EXIT This value installs a special error handler which will log a
diagnostic message and then terminate the process.

I_ERROR_NOEXIT This value installs a special error handler which will log a
diagnostic message and then allow the process to continue
execution.
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
Example: Installng an Error Handler (C) Typically, error
handling code is intermixed with the I/O code in an application.
However, with SICL error handling routines no special error
handling code is inserted between the I/O calls. Instead, a single
line at the top (calling ionerror) installs an error handler that
gets called any time an error occurs. In this example, a
standard, system-defined error handler is installed that logs a
diagnostic message and then exits.

/* errhand.c
This example demonstrates how a SICL error
handler can be installed. */

#include <sicl.h>
#include <stdio.h>

main ()
 {
 INST dvm;
 double res;

 #if defined(__BORLANDC__) &&
 !defined(__WIN32__)
 _InitEasyWin(); /*Required for Borland
 EasyWin programs */
 #endif

 ionerror (I_ERROR_EXIT);
 dvm = iopen (“gpib0,16”);
 itimeout (dvm, 10000);
 iprintf (dvm, “%s\n”, “MEAS:VOLT:DC?”);
 iscanf (dvm, “%lf”, &res);
 printf (“Result is %lf\n”, res);
 iclose (dvm);

 /* This call is a no-op for WIN32 programs.*/
 _siclcleanup();

 return 0;
 }
65

66

3 Programming with SICL
Example: Writing an Error Handler (C) This is an example of
writing and implementing your own error handler.
NOTE If an error occurs in iopen, the id passed to the error handler may not be
valid.
/* errhand2.c
This program shows how you can install your own
error handler*/
#include <sicl.h>
#include <stdio.h>
#include <stdlib.h>

void SICLCALLBACK err_handler (INST id, int
error) {
fprintf (stderr, “Error: %s\n”, igeterrstr
(error));
exit (1);
}
main ()
 {
 INST dvm;
 double res;

 #if defined(__BORLANDC__) &&
 !defined(__WIN32__)
 _InitEasyWin(); /*Required for Borland
 EasyWin */
 #endif

 ionerror (err_handler);
 dvm = iopen (“gpib0,16”);
 itimeout (dvm, 10000);
 iprintf (dvm, “%s\n”, “MEAS:VOLT:DC?”);
 iscanf (dvm, “%lf”, &res);
 printf (“Result is %lf\n”, res);
 iclose (dvm);

 /* This call is a no-op for WIN32 programs*/
 _siclcleanup();
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
 return 0;
 }

Using Error Handlers in Visual Basic

Typically in an application, error handling code is intermixed
with the I/O code. However, by using Visual Basic’s error
handling capabilities, no special error handling code need be
inserted between the I/O calls. Instead, a single line at the top
(On Error GoTo) installs an error handler in the subroutine
that gets called any time a SICL or Visual Basic error occurs.

When a SICL call results in an error, the error is communicated
to Visual Basic by setting Visual Basic’s Err variable to the SICL
error code and Error$ is set to a human-readable string that
corresponds to Err. This allows SICL to be integrated with
Visual Basic’s built-in error handling capabilities. SICL
programs written in Visual Basic can set up error handlers with
the Visual Basic On Error statement.

The SICL ionerror function for C programs is not used with
Visual Basic. Similarly, the I_ERROR_EXIT and
I_ERROR_NOEXIT default handlers used in C programs are not
defined for Visual Basic.

When an error occurs within a Visual Basic program, the
default behavior is to display a dialog box indicating the error
and then halt the program. If you want your program to
intercept errors and keep executing, you will need to install an
error handler with the On Error statement. For example:

On Error GoTo MyErrorHandler

This will cause your program to jump to code at the label
MyErrorHandler when an error occurs. Note that the error
handling code must exist within the subroutine or function
where the error handler was declared.

If you do not want to call an error handler or have your
application terminate when an error occurs, you can use the On
Error statement to tell Visual Basic to ignore errors. For
example:

On Error Resume Next
67

68

3 Programming with SICL
This tells Visual Basic to proceed to the statement following the
statement in which an error occurs. In this case, you could call
the Visual Basic Err function in subsequent lines to find out
which error occurred.

Visual Basic error handlers are only active within the scope of
the subroutine or function in which they are declared. Each
Visual Basic subroutine or function that wants an error handler
must declare its own error handler. This is different than the
way SICL error handlers installed with ionerror work in C
programs. An error handler installed with ionerror remains
active within the scope of the whole C program.

Example: Error Handlers (Visual Basic) In this Visual Basic
example, the error handler displays the error message in a
dialog box and then terminates the program. When an error
occurs, the Visual Basic Err variable is set to the error code and
the Error$ variable is set to the error message string for the
error that occurred.

Option Explicit
'''
'errhand.bas
'In this example, the error handler displays the
'error message in a Message Box and then
'terminates the program.
'''

Sub Main()

 Dim dvm As Integer
 Dim res As Double

 'Install an error handler
 On Error GoTo ErrorHandler

 '"gpib0" is the SICL Interface name as
 'defined in:

 'Start | Programs | Agilent IO Libraries | IO
 ‘ Config
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
 '"22" is the instrument gpib address on the bus
 'Change these to the SICL Name and gpib address
 ‘for your instrument

 dvm = iopen("gpib0,22")

 'Set timeout to 5 seconds
 Call itimeout(dvm, 5000)

 'Take a measurement
 Call ivprintf(dvm, "MEAS:VOLT:DC?" + Chr$(10),
 0&)

 'Read the results
 Call ivscanf(dvm, "%lf", res)

 MsgBox "Result is " + Format(res)

 iclose (dvm)

 'Tell SICL to cleanup for this task
 Call siclcleanup

 Exit Sub

ErrorHandler:

 'Display the error message
 MsgBox "*** Error : " + Error, vbExclamation

 'Tell SICL to cleanup for this task
 Call siclcleanup

End Sub
Using Locks
Because SICL allows multiple sessions on the same device or
interface, the action of opening does not mean you have
exclusive use. In some cases this is not an issue, but should be a
consideration if you are concerned with program portability.
69

70

3 Programming with SICL
What are Locks?

The SICL ilock function is used to lock an interface or device.
The SICL iunlock function is used to unlock an interface or
device.

Locks are performed on a per-session (device, interface, or
commander) basis. Also, locks can be nested. The device or
interface only becomes unlocked when the same number of
unlocks are done as the number of locks. Doing an unlock
without a lock returns the error I_ERR_NOLOCK.

What does it mean to lock? Locking an interface (from an
interface session) restricts other device and interface sessions
from accessing this interface. Locking a device restricts other
device sessions from accessing this device; however, other
interface sessions may continue to access the interface for this
device. Locking a commander (from a commander session)
restricts other commander sessions from accessing this
commander.
CAUTION It is possible for an interface session to access a device locked from a
device session. In such a case, data may be lost from the device session
that was underway. For example, Agilent Visual Engineering Environment
(VEE) applications use SICL interface sessions. Therefore, I/O operations
from VEE applications can supercede any device session that has a lock on
a particular device.
Not all SICL routines are affected by locks. Some routines that
set or return session parameters never touch the interface
hardware and therefore work without locks. For information on
using locks in multi-threaded SICL applications over LAN, see
Chapter 7, “Using SICL with LAN.”

Lock Actions

If a session tries to perform any SICL function that obeys locks
on an interface or device currently locked by another session,
the default action is to suspend the call until the lock is
released, or, if a timeout is set, until the call times out.
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
This action can be changed with the isetlockwait function. If
the isetlockwait function is called with the flag parameter set
to 0 (zero), the default action is changed. Rather than causing
SICL functions to suspend, an error will be returned
immediately.

To return to the default action, to suspend and wait for an
unlock, call the isetlockwait function with the flag set to any
non-zero value.

Locking in a Multi-User Environment

In a multi-user/multi-process environment where devices are
being shared, it is a good idea to use locking to ensure exclusive
use of a particular device or set of devices. However, as
explained in the “Using Locks” section, an interface session can
access a device locked from a device session.

In general, it is not good programming practice to lock a device
at the beginning of an application and unlock it at the end. This
can result in deadlocks or long waits by others who want to use
the resource.

The recommended procedure to use locking is per transaction.
Per transaction means that you lock before you setup the device,
then unlock after all desired data have been acquired. When
sharing a device, you cannot assume the state of the device, so
the beginning of each transaction should have any setup needed
to configure the device or devices to be used.

Example: Device Locking (C)

/* locking.c
This example shows how device locking can be
used to gain exclusive access to a device*/

#include <sicl.h>
#include <stdio.h>

main()
 {
 INST dvm;
 char strres[20];
 unsigned long actual;
71

72

3 Programming with SICL
 #if defined(__BORLANDC__) &&
 !defined(__WIN32__)
 _InitEasyWin(); /*required for Borland
 EasyWin programs */
 #endif

 /* Log message and terminate on error */
 ionerror (I_ERROR_EXIT);

 /* Open the multimeter session */
 dvm = iopen (“gpib0,16”);
 itimeout (dvm, 10000);

 /* Lock the multimeter device to prevent
 access from other applications*/
 ilock(dvm);

 /* Take a measurement */
 iwrite (dvm, “MEAS:VOLT:DC?\n”, 14, 1, NULL);

 /* Read the results */
 iread (dvm, strres, 20, NULL, &actual);

 /* Release the multimeter device for use by
 others */
 iunlock(dvm);

 /* NULL terminate result string and print
 results */
 /* This technique assumes the last byte sent
 was a line-feed */

 if (actual) {
 strres[actual - 1] = (char) 0;
 printf(“Result is %s\n”, strres);
 }

 /* Close the multimeter session */
 iclose(dvm);

 /* This call is a no-op for WIN32 programs.*/
 _siclcleanup();

 return 0;}
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
Example: Device Locking (Visual Basic)

Option Explicit
'''
' locking.bas
' This example shows how device locking can be
 used to gain exclusive access to a device
'''

Sub Main()

 Dim dvm As Integer
 Dim strres As String * 20 'Fixed length String
 Dim actual As Long

 'Install an error handler
 On Error GoTo ErrorHandler

 'Open the multimeter session
 dvm = iopen("gpib0,23")
 Call itimeout(dvm, 10000)

 'Lock the multimeter device to prevent access
 ‘from other applications
 Call ilock(dvm)

 'Take a measurement
 Call iwrite(dvm, "MEAS:VOLT:DC?" + Chr$(10),
 14, 1, 0&)

 'Read the results
 Call iread(dvm, strres, 20, 0&, actual)

 'Release the multimeter for use by others
 Call iunlock(dvm)

 'Display the results
 MsgBox "Result is " + Left$(strres, actual)

 'Close the multimeter session
 Call iclose(dvm)

 'Tell SICL to cleanup for this task
 Call siclcleanup

 Exit Sub
73

74

3 Programming with SICL
ErrorHandler:

 'Display the error message.
 MsgBox "*** Error : " + Error
 'Tell SICL to cleanup for this task
 Call siclcleanup

End Sub
Additional Example Programs
This section contains two additional example programs that
provide guidelines to help you develop SICL applications,
including Example: Oscilloscope Program (C) and Example:
Oscilloscope Program (Visual Basic).

Example: Oscillosope Program (C)

This C example programs an oscilloscope (such as an Agilent
54601), uploads the measurement data, and instructs the
oscilloscope to print its display to a printer. This program uses
many SICL features and illustrates some important C and
Windows programming techniques for SICL.

Program Files The oscilloscope example files are located in the
C:\Program Files\Agilent\IO
Libraries\c\samples\scope subdirectory, if IO Libraries
was installed in the default directory. The subdirectory
contains the source program and a number of files to help you
build the example with specific compilers, depending on the
Windows environment used.

Table 17 Program Files for the C Oscilloscope Program

SCOPE.C Example program source file.

SCOPE.H Example program header file.

SCOPE.RC Example program resource file.

SCOPE.DEF Example program module definitions file.

SCOPE.ICO Example program icon file.
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
VCSCP32.MAK Windows 98SE/Me/2000/XP/NT project file for Microsoft
Visual C++.

BCSCP32.IDE Windows 98SE/Me/2000/XP/NT project file for Borland C
Integrated Development Environment.

Table 17 Program Files for the C Oscilloscope Program
75

76

3 Programming with SICL
Building the Project File This section shows how to create the
project file for this example using Microsoft Visual C. You can
also load the makefile directly from the C:\Program
Files\Agilent\IO Libraries\c\samples\scope
subdirectory, if you desire. If you are using another language
tool, choose the appropriate project file or makefile from the
c\samples\scope subdirectory.

To compile and link the example program with Microsoft Visual
C:

1 Select File | New from the menu and select Project from the
list box that appears. Then click OK.

2 The New Project dialog box is displayed. Type the name you
want for the project in the edit box labeled Project Name.
Then, select Application from the Project Type list box. Select
the directory location for the project in the Directory list box
and click the Create button.

3 The Project Files dialog box is now displayed. Double-click the
source files scope.c, scope.rc, and scope.def to add them to
the project. Also add sicl32.lib from the SICL c directory.
Then, click the Close button.

4 Select Project | Settings from the menu and click the C\C++
button. Select Code Generation from the Category list box. Then,
select Multithreaded Using DLL from the Use Run-Time Library list
box and click OK.

5 Select Tools | Options from the menu and click the Directories
button in the Options dialog box. Select Include Files from the
Show Directories for: list box and click the Add button. Then,
type \SICL\C and click OK.

6 Select Project | Build to build the application.

If there are no errors reported, you can execute the program by
selecting Project | Execute. An application window will open.
Several commands are available from the Actions menu, and any
results or output will be printed in the program window. To end
the program, select File | Exit from the program menu.

Program Overview You may want to view the program with an
editor as you read through this section. The entire program is
not listed here because of its length. This program illustrates
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
specific SICL features and programming techniques and is not
meant to be a robust Windows application. See the SICL online
Help for detailed information on the SICL features used in this
program.

Custom Error Handler The oscilloscope program defines a
custom error handler that is called whenever an error occurs
during a SICL call. The handler is installed using ionerror
before any other SICL function call is made, and will be used for
all SICL sessions created in the program.

void SICLCALLBACK my_err_handler(INST id, int
 error)
 {
 ...
 sprintf(text_buf[num_lines++], “session id=%d,
 error = %d:%s”, id, error, eterrstr(error));

 sprintf(text_buf[num_lines++], “Select ‘File |
 Exit’ to exit program!”);...

 // If error is from scope, disable I/O actions
 // by graying out menu picks.
 if (id == scope) {
 ... code to disallow further I/O requests
 from user
 }
 }

The error number is passed to the handler, and igeterrstr is
used to translate the error number into a more useful
description string. If desired, different actions can be taken
depending on the particular error or id that caused the error.

Locks SICL allows multiple applications to share the same
interfaces and devices. Different applications may access
different devices on the same interface, or may alternately
access the same device (a shared resource). If your program will
be executing along with other SICL applications, you may want
to prevent another application from accessing a particular
interface or device during critical sections of your code. SICL
provides the ilock/iunlock functions for this purpose.
77

78

3 Programming with SICL
void get_data (INST id)
 {
 ... non-SICL code

 /* lock device to prevent access from other
 applications */
 ilock(scope);

 ...

 SICL I/O code to program scope and get data

 /* release the scope for use by other
 applications */
 iunlock(scope);

 ... non-SICL code
 }

Lock the interface or device with ilock before critical sections
of code, and release the resource with iunlock at the end of the
critical section. Using ilock on a device session prevents any
other device session from accessing the particular device. Using
ilock on an interface session prevents any other session from
accessing the interface and any device connected to the
interface.

Formatted I/O SICL provides extensive formatted I/O
functionality to help facilitate communication of I/O commands
and data. The example program uses a few of the capabilities of
the iprintf/iscanf/ipromptf functions and their derivatives.

The iprintf function is used to send commands. As with all of
the formatted I/O functions, the data is actually buffered. In this
call, the \n at the end of the format:

 iprintf(id,”:waveform:preamble?\n”);

causes the buffer to be flushed and the string to be output. If
desired, several commands can be formatted before being sent
and then all commands outputted at once. The formatted I/O
buffers are automatically flushed whenever the buffer fills (see
isetbuf) or when an iflush call is made.
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
When reading data back from a device, the iscanf function is
used. To read the preamble information from the oscilloscope,
use the format string “%,20f\n”:

iscanf(id,”%,20f\n”,pre);

This string expects to input 20 comma-separated floating point
numbers into the pre array.

To upload the oscilloscope waveform data, use the string
“%#wb\n”. The wb indicates that iscanf should read word-wide
binary data. The # preceding the data modifer tells iscanf to get
the maximum number of binary words to read from the next
parameter (&elements):

iscanf(id,”%#wb\n”,&elements,readings);

The read will continue until an EOI indicator is received or the
maximum number of words have been read.

Interface Sessions Sometimes it may be necessary to control
the GPIB bus directly instead of using SICL commands. This is
accomplished using an interface session and interface-specific
commands. This example uses igetintfsess to get a session for
the interface to which the oscilloscope is connected. (If you
know which interface is being used, it is also possible to just use
an iopen call on that interface.)

Then, igpibsendcmd is used to send some specific command
bytes on the bus to tell the printer to listen and the oscilloscope
to send its data. The igpibatnctl function directly controls the
state of the ATN signal on the bus.

void print_disp (INST id)
 {
 INST gpib0intf ;
 ...

 gpib0intf = igetintfsess(id);
 ...

 /* tell oscilloscope to talk and printer to
 listen. The listen command is formed by adding
 32 to the device address of the device to be a
79

80

3 Programming with SICL
 listener. The talk command is formed by adding
 64 to the device address of the device to be a
 talker. */

 cmd[0] = (unsigned char)63 ; // 63 is unlisten
 cmd[1] = (unsigned char)(32+1) ; /* printer at
 addr 1,make it a listener */
 cmd[2] = (unsigned char)(64+7) ; /* scope at
 addr 7,make it a talker */
 cmd[3] = ‘\0’; /* terminate the string */

 length = strlen (cmd) ;

 igpibsendcmd(gpib0intf,cmd,length);
 igpibatnctl(gpib0intf,0);

 ...
 }

SRQs and iwaithdlr Many instruments are capable of using
the service request (SRQ) signal on the GPIB bus to signal the
controller that an event has occurred. If an application needs to
respond to SRQs, an SRQ handler must be installed with the
ionsrq call. All SRQ handlers are called whenever an SRQ
occurs.

In the example handler, the oscilloscope status is read to verify
that the oscilloscope asserted SRQ, and then the SRQ is cleared
and a status message is displayed. If the oscilloscope did not
assert SRQ, the handler prints an error message.

void SICLCALLBACK my_srq_handler(INST id)
 {
 unsigned char status;

 /* make sure it was the scope requesting
 service */
 ireadstb(id,&status);

 if (status &= 64) {
 /* clear the status byte so the scope can
 assert SRQ again if needed. */
 iprintf(id,”*CLS\n”);
 sprintf(text_buf[num_lines++], “id = %d, SRQ
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
 received!, stat=0x%x”, id,status);
 } else {
 sprintf(text_buf[num_lines++],
 “SRQ received, but not from the scope”);
 }
 InvalidateRect(hWnd, NULL, TRUE);
 }

In the routine that commands the oscilloscope to print its
display, the oscilloscope is set to assert SRQ when printing is
finished. While the oscilloscope is printing, the example
program has the application suspend execution. SICL provides
the function iwaithndlr that will suspend execution and wait
until either an event occurs that would call a handler, or a
specified timeout value is reached.

In the example, interrupt events are turned off with iintroff so
that all interrupts are disabled while interrupts are being set
up. Then, the SRQ handler is installed with ionsrq. Code to
program the oscilloscope to print and send an SRQ is next, then
the call to iwaithdlr, with a timeout value of 30 seconds. When
the oscilloscope finishes printing and sends the SRQ, the SRQ
handler will be executed and then iwaithdlr will return. A call
to iintron re-enables interrupt events.

void print_disp (INST id)
 {
 ...

 iintroff();
 ionsrq(id,my_srq_handler);/* Not supported on
 82335 */

 /* tell the scope to SRQ on ‘operation
 complete’ */
 iprintf(id,”*CLS\n”);
 iprintf(id,”*SRE 32 ; *ESE 1\n”) ;

 /* tell the scope to print */
 iprintf(id,”:print ; *OPC\n”) ;

 ... code to tell the scope to print
81

82

3 Programming with SICL
 /* wait for SRQ before continuing program */
 iwaithdlr(30000L);
 iintron();

 sprintf (text_buf[num_lines++],”Printing
 complete!”) ;
 ...
 }

Example: Oscillosope Program (Visual Basic)

This Visual Basic example program uses SICL to get and plot
waveform data from an Agilent 54601A (or compatible)
oscilloscope. This routine is called each time the
cmdGetWaveform command button is clicked.

Program Files The oscilloscope example files are located in the
C:\Program Files\Agilent\IO
Libraries\vb\samples\scope subdirectory, if IO Libraries
was installed to the default directory. The files are listed in the
following table.

Loading and Running the Program Follow these steps to load
and run the SCOPE sample program:

1 Connect an Agilent 54601A oscilloscope to your interface.

2 Run Visual Basic 6.0.

3 Open the project file scope.vbp by selecting File | Open Project
from the Visual Basic menu.

4 The SICL Visual Basic declaration file sicl32.bas module
must be added to your VB project. To add this module to your
project, from the menu select Project | Add Module, select the
Existing tab, browse to the vb\ directory under the IO
Libraries install directory, select sicl32.bas, and click Open.

Table 18 Files Used for the Oscilloscope Example Program

SCOPE.FRM Visual Basic source for the SCOPE example program.

SCOPE.MAK Visual Basic project file for the SCOPE example program.
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
5 Edit the scope.frm file to set the scope_address constant to
the address of your oscilloscope. To do this:

a If a Project Tree is not already visible, select View | Project
Explorer from the Visual Basic menu.

b Under Forms, right-click scope.frm and select View Code.

c Edit the following line so the address is set to the address
of the oscilloscope:

 Private Const scope_address = "gpib0,7" '
 Address of SCOPE

6 Run the program by pressing the F5 key or the by clicking the
RUN button on the Visual Basic Toolbar.

7 Press the Waveform button to get and display the waveform.

8 Press the Integral button to calculate and display the integral.

9 After performing these steps, you can create a standalone
executable (.exe) version of this program by selecting File |
Make scope.exe... from the Visual Basic menu.

Program Overview You may want to view the program with an
editor as you read through this section. The entire program is
not listed here because of its length. This program illustrates
specific SICL features and programming techniques and is not
meant to be a robust Windows application. See the SICL online
Help for detailed information on the SICL features used in this
program.

Table 19 Functions of the Example Program

Listing Description

CmdGetWaveform_Click Subroutine that is called when the
cmdGetWaveform command button is pressed.
The command button is labeled Waveform.
83

84

3 Programming with SICL
On Error This Visual Basic statement enables an error
handling routine within a procedure. In this
example, an error handler is installed starting at
label ErrorHandler within the
cmdOutputCmd_Click subroutine.
The error handling routine is called any time an
error occurs during the processing of the
cmdGetWaveform_Click procedure. SICL errors
are handled in the same way that Visual Basic
errors are handled with the On Error statement.

CmdGetWaveform.Enabled The button that causes the
cmdGetWaveform_Click routine to be called is
disabled when code is executing inside
cmdOutputCmd_Click. This is good programming
style.

iopen An iopen call is made to open a device session for
the oscilloscope. The device address for the
oscilloscope is in the scope_address string.In this
example, the default address is "gpib0,7." The
interface name gpib0 is the name given to the
interface with the IO Config utility. The bus
(primary) address of the oscilloscope follows, in
this case 7. You may want to change the
scope_address string to specify the correct
address for your configuration.

igetintfsess igetintfsess is called to return an interface
session id for the interface to which the
oscilloscope instrument is connected. This
interface session will be used by the following
iclear call to send an interface clear to reset
theinterface.

iclear The iclear function is called to reset the interface.

itimeout itimeout is called to set the timeout value for the
oscilloscope's device session to 3 seconds.

Table 19 Functions of the Example Program

Listing Description
Agilent SICL User’s Guide

Programming with SICL 3

Agilent SICL User’s Guide
ivprintf The ivprintf function is called four times to set up
the oscilloscope and then request the
oscilloscope's preamble information. In each case
Chr$(10) is appended to the format string passed
as the second argument to ivprintf. This tells
ivprintf to flush the formatted I/O write buffer
after writing the string specified in the format
string.

ivscanf The ivscanf function is called to read the
oscilloscope's preamble information into the
preamble array. The preamble array is passed as
the third parameter to ivscanf. This passes the
address of the first element of the preamble array
to the ivprintf SICL function.

ivprintf ivprintf is called to prompt the oscilloscope for its
waveform data. Again, Chr$(10) is appended to
the format string passed as the second argument
to ivprintf. This tells ivprintf to flush the formatted
I/O write buffer after writing the string specified
in the format string.

iread iread is called to read in the oscilloscope's
waveform. The waveform is read in as a specified
number of bytes. The format string passed as the
third parameter to iread specifies that a maximum
of 2010 Byte values be read into the Byte array. A
null value, vbNull, is passed as the fourth value
and a Long variable, actual, returns the number of
bytes actually read. 0& may also be used for a null
value.

iclose The iclose subroutine closes the scope_id
device session for the oscilloscope as well as the
intf_id interface session obtained with
igetintfsess.

cmdGetWaveform.Enabled The button that causes the
cmdGetWaveform_Click routine to be called is
re-enabled when execution inside
cmdGetWaveform_Click is finished. This allows
the program to get another waveform.

Table 19 Functions of the Example Program

Listing Description
85

86

3 Programming with SICL
Exit Sub This Visual Basic statement causes the
cmdGetWaveform_Click subroutine to be exited
after normal processing has completed.

errorhandler: This label specifies the beginning of the error
handler that was installed for this subroutine. This
handler is called whenever a run-time error
occurs.

Error$ This Visual Basic function is called to get the error
message for the error. The error returned is the
most recent run-time error when no argument is
passed to the function.

iclose The iclose subroutine is called inside the error
handler to close the scope_id device session for
the oscilloscope as well as the intf_id interface
session obtained with igetintfsess.

CmdGetWaveform.Enabled This re-enables the button that causes the
cmdGetWaveform_Click routine to be called. This
allows the program to get another waveform.

Exit Sub This Visual Basic statement causes the
cmdGetWaveform_Click subroutine to be exited
after processing an error in the subroutine's error
handler.

Table 19 Functions of the Example Program

Listing Description
Agilent SICL User’s Guide

Agilent E2094 SICL User’s Guide for Windows
Agilent SICL User’s Guide
4
Using SICL with GPIB

This chapter shows how to open a communications session and
communicate with GPIB devices, interfaces, or controllers. The
example programs in this chapter can be found in the following
locations, if the Agilent IO Libraries were installed in the
default directory:

For C/C++: C:\Program Files\Agilent\IO
Libraries\c\samples\

For Visual Basic: C:\Program Files\Agilent\IO
Libraries\vb\samples\

This chapter includes:

• Introduction to GPIB Interfaces

• Using GPIB Device Sessions

• Using GPIB Interface Sessions

• Using GPIB Commander Sessions

• Writing GPIB Interrupt Handlers
87Agilent Technologies

4 Using SICL with GPIB
Introduction to GPIB Interfaces
88
This section provides an introduction to using SICL with the
GPIB interface, including:

• GPIB Interfaces Overview

• Selecting a GPIB Communications Session

• SICL GPIB Functions
GPIB Interfaces Overview
This section provides an overview of GPIB interfaces, including
typical hardware configuration, using IO Config, and example
configurations using SICL.
Typical GPIB Interface
As shown in the following figure, a typical GPIB interface
consists of a Windows PC with one or more GPIB cards (PCI
and/or ISA) cards installed in the PC and one or more GPIB
instruments connected to the GPIB cards via GPIB cable. I/O
communication between the PC and the instruments is via the
GPIB cards and the GPIB cable. This figure shows GPIB
instruments at addresses 3 and 5.
Agilent SICL User’s Guide

Using SICL with GPIB 4

Agilent SICL User’s Guide
Configuring GPIB Interfaces

5

82350 GPIB Card #1

Windows PC

3

3

GPIB InstrumentsGPIB Cable

82350 GPIB Card #2

GPIB Interface (82350 PCI GPIB Cards)
An IO interface can be defined as both a hardware interface
and as a software interface. The purpose of the IO Config utility
is to associate a unique interface name with a hardware
interface.

The IO Libraries use an Interface Name or Logical Unit
Number to identify an interface. This information is passed in
the parameter string of the iopen function call in a SICL
program. IO Config assigns an Interface Name and Logical Unit
Number to the interface hardware, as well as other necessary
configuration values for an interface when the interface is
configured. See the Agilent IO Libraries Installation and
Configuration Guide for Windows for information on IO
Config.
89

90

4 Using SICL with GPIB
Example: GPIB (82350) Interface

The GPIB interface system in the following figure consists of a
Windows PC with two 82350 GPIB cards connected to three
GPIB instruments via GPIB cables. For this system, the IO
Config utility has been used to assign GPIB card #1 a SICL name
of gpib0 and to assign GPIB card #2 a SICL name of gpib1. With
these names assigned to the interfaces, the SICL addressing is
as shown in the figure. Since unique names have been assigned
by IO Config, you can use the iopen command to open the I/O
paths shown.
Agilent SICL User’s Guide

Using SICL with GPIB 4
Selecting a GPIB Communications Session
Agilent SICL User’s Guide
When you have determined the GPIB system is set up and
operating correctly, you can start programming with the SICL
functions. First, you must determine what type of
communications session to use.

The three types of communications sessions are device,
interface, and commander. To use a device session, see “Using
GPIB Device Sessions”; to use an interface session, see “Using
GPIB Interface Sessions”; to use a commander session, see
“Using GPIB Commander Sessions” in this chapter.
SICL GPIB Functions
Table 20 SICL GPIB Functions

Function Name Action

igpibatnctl Sets or clears the ATN line.

igpibbusaddr Changes bus address.

igpibbusstatus Returns requested bus data.

igpibgett1delay Returns the current T1 setting for the interface.

igpibllo Sets bus in Local Lockout Mode.

igpibpassctl Passes active control to specified address.

igpibppoll Performs a parallel poll on the bus.

igpibppollconfig Configures device for PPOLL response.

igpibppollresp Sets PPOLL state.

igpibrenctl Sets or clears the REN line.

igpibsendcmd Sends data with ATN line set.

igpibsett1delay Sets the T1 delay value for this interface.
91

4 Using SICL with GPIB
Using GPIB Device Sessions
92
A device session allows you direct access to a device without
knowing the type of interface to which it is connected. The
specifics of the interface are hidden from the user.

SICL Functions for GPIB Device Sessions

This section shows how some SICL functions are implemented
for GPIB device sessions. The data transfer functions work only
when the GPIB interface is the Active Controller. Passing
control to another GPIB device causes this device to lose active
control.

Addressing GPIB Devices

To create a device session, specify the interface logical unit or
symbolic name and a particular device logical address in the
addr parameter of the iopen function. The interface logical unit
and symbolic name are set by running the IO Config utility.

Table 21 SICL Functions for GPIB Sessions

Function Description

iwrite Causes all devices to untalk and unlisten. It sends this controller’s
talk address followed by unlisten and then the listen address of the
corresponding device session. Then, it sends the data over the bus.

iread Causes all devices to untalk and unlisten. It sends an unlisten, then
sends this controller’s listen address followed by the talk address of
the corresponding device session. Then, it reads the data from the
bus.

ireadstb Performs a GPIB serial poll (SPOLL).

itrigger Performs an addressed GPIB group execute trigger (GET).

iclear Performs a GPIB selected device clear (SDC) on the device
corresponding to this session.
Agilent SICL User’s Guide

Using SICL with GPIB 4

Agilent SICL User’s Guide
Opening IO Config To open IO Config, open the Agilent IO
Libraries Control (IO icon on the taskbar) and click Run IO Config.
See the Agilent IO Libraries Installation and Configuration
Guide for Windows for information on the IO Config utility.

Primary and Secondary Addresses SICL supports both primary
and secondary addressing on GPIB interfaces. The primary
address must be between 0 and 30 and the secondary address
must be between 0 and 30. The primary and secondary
addresses correspond to the GPIB primary and secondary
addresses. Some example GPIB addresses for device sessions
are:

VXI Mainframe Connections For connections to a VXI
mainframe via an E1406 Command Module (or equivalent), the
primary address passed to iopen corresponds to the address of
the Command Module, and the secondary address must be
specified to select a specific instrument in the card cage.

Secondary addresses of 0, 1, 2, ... 30 correspond to VXI
instruments at logical addresses of 0, 8, 16, ... 240, respectively.
See “GPIB Device Session Examples” for an example program to
communicate with a VXI mainframe via the GPIB interface.

Examples to open a device session with a GPIB device at bus
address 16 follow.

C example:

INST dmm;
dmm = iopen (“gpib0,16”);

Visual Basic example:

Dim dmm As Integer
dmm = iopen (“gpib0,16”)

Table 22 GPIB Primary and Secondary Addresses

GPIB,7 A device address corresponding to the device at primary address 7.

gpib0,3,2 A device address corresponding to the device at primary address 3,
secondary address 2.
93

94

4 Using SICL with GPIB
GPIB Device Sessions and Service Requests There are no
device-specific interrupts for the GPIB interface, but GPIB
device sessions do support Service Requests (SRQs). On the
GPIB interface, when one device issues an SRQ, the library
informs all GPIB device sessions that have SRQ handlers
installed.

This is an artifact of how GPIB handles the SRQ line. The
interface cannot distinguish which device requested service.
Therefore, the library acts as if all devices require service. The
SRQ handler can retrieve the device’s status byte by using the
ireadstb function. For more information, see “Writing GPIB
Interrupt Handlers” in this chapter.

GPIB Device Session Examples

This section provides C language and Visual Basic language
example programs for GPIB device sessions.

Example: GPIB Device Session (C) This example opens two
GPIB communications sessions with VXI devices (via a VXI
Command Module). Then, a scan list is sent to a switch and
measurements are taken by the multimeter every time a switch
is closed.

/* hpibdev.c
This example program sends a scan list to a
switch and, while looping, closes channels and
takes measurements. */

#include <sicl.h>
#include <stdio.h>

main()
 {
 INST dvm;
 INST sw;
 double res;
 int i;
Agilent SICL User’s Guide

Using SICL with GPIB 4

Agilent SICL User’s Guide
 #if defined(__BORLANDC__) &&
 !defined(__WIN32__)
 _InitEasyWin(); /*Required for Borland
 EasyWin*/
 #endif

 /* Log message and terminate on error */
 ionerror (I_ERROR_EXIT);

 /* Open the multimeter and switch sessions*/
 dvm = iopen (“gpib0,9,3”);
 sw = iopen (“gpib0,9,14”);
 itimeout (dvm, 10000);
 itimeout (sw, 10000);

 /*Set up trigger*/
 iprintf (sw, “TRIG:SOUR BUS\n”);

 /*Set up scan list*/
 iprintf (sw,”SCAN (@100:103)\n”);
 iprintf (sw,”INIT\n”);

 for (i=1;i<=4;i++)
 {
 /* Take a measurement */
 iprintf (dvm,”MEAS:VOLT:DC?\n”);

 /* Read the results */
 iscanf (dvm,”%lf”,&res);

 /* Print the results */
 printf (“Result is %lf\n”,res);

 /* Trigger to close channel */
 iprintf (sw, “TRIG\n”);
 }

 /* Close the multimeter and switch sessions */
 iclose (dvm);
 iclose (sw);

 /* This call is a no-op for WIN32 programs*/
 _siclcleanup();
95

96

4 Using SICL with GPIB
 return 0;
 }

Example: GPIB Device Session (Visual Basic) This example
opens two GPIB communications sessions with VXI devices (via
a VXI Command Module). Then, a scan list is sent to a switch
and measurements are taken by the multimeter every time a
switch is closed.

Option Explicit
''
‘ gpibdv.bas
' This example program sends a scan list to a
‘ switch and while looping closes channels and
‘ takes measurements.
'''

Sub Main()

 Dim dvm As Integer
 Dim sw As Integer
 Dim res As Double
 Dim i As Integer
 Dim argcount As Integer

 'Open the multimeter and switch sessions
 '"gpib0" is the SICL Interface name as defined
 'in: Start | Programs | Agilent IO Libraries |
 'IO Config
 'Change this to the SICL Name you have defined

 dvm = iopen("gpib0,9,3")
 sw = iopen("gpib0,9,14")

 ' set timeouts
 Call itimeout(dvm, 10000)
 Call itimeout(sw, 10000)

 ' Set up trigger
 argcount = ivprintf(sw, "TRIG:SOUR BUS" +
 Chr$(10))
Agilent SICL User’s Guide

Using SICL with GPIB 4

Agilent SICL User’s Guide
 ' Set up scan list
 argcount = ivprintf(sw, "SCAN (@100:103)" +
 Chr$(10))
 argcount = ivprintf(sw, "INIT" + Chr$(10))

 'Display Form1 and print voltage measurements
 'default form, (Name) "Form1", containing no
 ‘ controls)

 Form1.Show

 For i = 1 To 4
 'Take a measurement
 argcount = ivprintf(dvm, "MEAS:VOLT:DC?" +
 Chr$(10))

 ' Read the results
 argcount = ivscanf(dvm, "%lf", res)

 ' Print the results
 Form1.Print "Result is " + Format(res)

 ' Trigger switch
 argcount = ivprintf(sw, "TRIG" + Chr$(10))
 Next i

 ' Close the sessions
 Call iclose(dvm)
 Call iclose(sw)

 ' Tell SICL to cleanup for this task
 Call siclcleanup

End Sub
97

4 Using SICL with GPIB
Using GPIB Interface Sessions
98
Interface sessions allow direct, low-level control of the
specified interface, but the programmer must provide all bus
maintenance settings for the interface and must know the
technical details about the interface. Also, when using interface
sessions, interface-specific functions must be used. Thus, the
program cannot be used on other interfaces and becomes less
portable.
SICL Functions for GPIB Interface Sessions
This section describes how some SICL functions are
implemented for GPIB interface sessions.

Table 23 Implementing SICL Functions for GPIB

Function Description

iwrite Sends the specified bytes directly to the interface without
performing any bus addressing. The iwrite function always clears
the ATN line before sending any bytes, thus ensuring that the GPIB
interface sends the bytes as data, not as command bytes.

iread Reads the data directly from the interface without performing any
bus addressing.

itrigger Performs a broadcast GPIB group execute trigger (GET) without
additional addressing. Use this function with igpibsendcmd to send
a UNL followed by the appropriate device addresses. This will allow
the itrigger function to be used to trigger multiple GPIB devices
simultaneously. Passing the I_TRIG_STD value to the ixtrig function
also causes a broadcast GPIB group execute trigger (GET). There
are no other valid values for the ixtrig function.

iclear Performs a GPIB interface clear (pulses IFC), which resets the
interface.
Agilent SICL User’s Guide

Using SICL with GPIB 4

Agilent SICL User’s Guide
Addressing GPIB Interfaces

To create an interface session on your GPIB system, specify the
particular interface logical unit or symbolic name in the addr
parameter of the iopen function. The interface logical unit and
symbolic name are set by running the IO Config utility.

Opening IO Config To open IO Config, open the Agilent IO
Libraries Control (on the taskbar) and click Run IO Config. See
the Agilent IO Libraries Installation and Configuration Guide
for Windows for information on the IO Config utility. Example
interface addresses follow.

These examples open an interface session with the GPIB
interface.

C example:

INST hpib;
hpib = iopen (“hpib”);

Visual Basic example:

Dim hpib As Integer
hpib = iopen (“hpib”)

GPIB Interface Sessions Interrupts There are specific interface
session interrupts that can be used. See “Writing GPIB
Interrupt Handlers” in this chapter for more information.

Table 24 Interface Names

GPIB An interface symbolic name.

hpib An interface symbolic name.

gpib2 An interface symbolic name.

IEEE488 An interface symbolic name.

7 An interface logical unit.
99

100

4 Using SICL with GPIB
GPIB Interface Sessions and Service Requests GPIB interface
sessions support Service Requests (SRQs). On the GPIB
interface, when one device issues an SRQ, the library will
inform all GPIB interface sessions that have SRQ handlers
installed. For more information, see “Writing GPIB Interrupt
Handlers” in this chapter.
GPIB Interface Session Examples
This section provides C language and Visual Basic language
example programs for GPIB interface sessions.

Example: GPIB Interface Session (C)

/* gpibstat.c
This example retrieves and displays GPIB bus
status information. */

#include <stdio.h>
#include <sicl.h>

main()
 {
 INST id; /* session id */
 int rem; /* remote enable */
 int srq; /* service request */
 int ndac; /* not data accepted */
 int sysctlr; /* system controller */
 int actctlr; /* active controller */
 int talker; /* talker */
 int listener; /* listener */
 int addr; /* bus address */

 #if defined(__BORLANDC__) &&
 !defined(__WIN32__)
 _InitEasyWin(); /* Required for Borland
 EasyWin programs */
 #endif

 /* exit process if SICL error detected */
 ionerror(I_ERROR_EXIT);
Agilent SICL User’s Guide

Using SICL with GPIB 4

Agilent SICL User’s Guide
 /* open GPIB interface session */
 id = iopen(“gpib0”);

 itimeout (id, 10000);

 /* retrieve GPIB bus status */
 igpibbusstatus(id, I_GPIB_BUS_REM, &rem);
 igpibbusstatus(id, I_GPIB_BUS_SRQ, &srq);
 igpibbusstatus(id, I_GPIB_BUS_NDAC, &ndac);
 igpibbusstatus(id, I_GPIB_BUS_SYSCTLR,
 &sysctlr);
 igpibbusstatus(id, I_GPIB_BUS_ACTCTLR,
 &actctlr);
 igpibbusstatus(id, I_GPIB_BUS_TALKER,
 &talker);
 igpibbusstatus(id, I_GPIB_BUS_LISTENER,
 &listener);
 igpibbusstatus(id, I_GPIB_BUS_ADDR, &addr);

 /* display bus status */
 printf(“%-5s%-5s%-5s%-5s%-5s%-5s%-5s%-5s\n”,
 REM”, “SRQ”,“NDC”, “SYS”, “ACT”,
 “TLK”,“LTN”,“ADDR”);
 printf(“%2d%5d%5d%5d%5d%5d%5d%6d\n”, rem, srq,
 ndac, sysctlr, actctlr, talker, listener,
 addr);

 /* This call is no-op for WIN32 programs.*/
 _siclcleanup();

 return 0;
 }

Example: GPIB Interface Session (Visual Basic)

‘gpibstat.bas
‘ The following example retrieves and displays
‘ GPIB bus status information.

Sub main ()
 Dim id As Integer‘ session id
 Dim remen As Integer‘ remote enable
 Dim srq As Integer‘ service request
 Dim ndac As Integer‘ not data accepted
101

102

4 Using SICL with GPIB
 Dim sysctlr As Integer‘ system controller
 Dim actctlr As Integer‘ active controller
 Dim talker As Integer‘ talker
 Dim listener As Integer‘ listener
 Dim addr As Integer‘ bus address
 Dim header As String‘ report header
 Dim values As String‘ report output

 ‘ Open GPIB interface session
 id = iopen(“gpib0”)
 Call itimeout(id, 10000)

 ‘ Retrieve GPIB bus status
 Call igpibbusstatus(id, I_GPIB_BUS_REM, remen)
 Call igpibbusstatus(id, I_GPIB_BUS_SRQ, srq)
 Call igpibbusstatus(id, I_GPIB_BUS_NDAC, ndac)
 Call igpibbusstatus(id, I_GPIB_BUS_SYSCTLR,
 sysctlr)
 Call igpibbusstatus(id, I_GPIB_BUS_ACTCTLR,
 actctlr)
 Call igpibbusstatus(id, I_GPIB_BUS_TALKER,
 talker)
 Call igpibbusstatus(id, I_GPIB_BUS_LISTENER,
 listener)
 Call igpibbusstatus(id, I_GPIB_BUS_ADDR, addr)

 ‘ Display form1 and print results
 form1.Show
 form1.Print “REM”; Tab(7); “SRQ”; Tab(14);
 “NDC”;
 Tab(21);“SYS”; Tab(28); “ACT”; Tab(35); “TLK”;
 Tab(42); “LTN”; Tab(49);“ADDR” form1.Print
 remen;
 Tab(7); srq; Tab(14); ndac; Tab(21);sysctlr;
 Tab(28); actctlr; Tab(35); talker; Tab(42);
 listener; Tab(49); addr

 ‘ Tell SICL to clean up for this task
 Call siclcleanup

End Sub
Agilent SICL User’s Guide

Using SICL with GPIB 4
Using GPIB Commander Sessions
Agilent SICL User’s Guide
Commander sessions are intended for use on GPIB interfaces
that are not the active controller. In this mode, a computer that
is not the controller is acting like a device on the GPIB bus. In a
commander session, the data transfer routines only work when
the GPIB interface is not the active controller.
SICL Functions for GPIB Commander Sessions
This section describes how some SICL functions are
implemented for GPIB commander sessions.

Table 25 SICL Functions for GPIB Commander Sessions

Function Description

iwrite If the interface has been addressed to talk, the data is written
directly to the interface. If the interface has not been addressed
to talk, it will wait to be addressed to talk before writing the data.

iread If the interface has been addressed to listen, the data is read
directly from the interface. If the interface has not been
addressed to listen, it will wait to be addressed to listen before
reading the data.

isetstb Sets the status value that will be returned on a ireadstb call (that
is, when this device is SPOLLed). Bit 6 of the status byte has a
special meaning. If bit 6 is set, the SRQ line will be set. If bit 6 is
clear, the SRQ line will be cleared.
Addressing GPIB Commanders
To create a commander session on your GPIB interface, specify
the particular interface logical unit or symbolic name in the
addr parameter followed by a comma and the string cmdr in
the iopen function.

The interface logical unit and symbolic name are set by running
the IO Config utility. To open IO Config, open the Agilent IO
Libraries Control (IO icon on the taskbar) and click Run IO Config.
103

104

4 Using SICL with GPIB
See the Agilent IO Libraries Installation and Configuration
Guide for Windows for information on the IO Config utility.
Example GPIB addresses for commander sessions follow.

These examples open a commander session with the GPIB
interface.

C example:

INST gpib;
gpib = iopen (“gpib0,cmdr”);

Visual Basic example:

Dim gpib As Integer
gpib = iopen (“gpib0,cmdr”)

GPIB Commander Sessions Interrupts There are specific
commander session interrupts that can be used. See “Writing
GPIB Interrupt Handlers” in the following section for more
information.

Table 26 Addressing GPIB Commanders

GPIB,cmdr A commander session with the GPIB interface.

gpib0,cmdr A commander session with the gpib0 interface.

7,cmdr A commander session with the interface at logical unit 7.
Writing GPIB Interrupt Handlers
This section provides some additional information for writing
interrupt handlers for GPIB applications in SICL.

Multiple I_INTR_GPIB_TLAC Interrupts

This interrupt occurs whenever a device has been addressed to
talk or untalk, or a device has been addressed to listen or
unlisten. Due to hardware limitations, your SICL interrupt
handler may be called twice in response to any of these events.
Agilent SICL User’s Guide

Using SICL with GPIB 4

Agilent SICL User’s Guide
Your GPIB application should be written to handle this
situation gracefully. This can be done by keeping track of the
current talk/listen state of the interface card and ignoring the
interrupt if the state does not change.

Handling SRQs from Multiple GPIB Instruments

GPIB is a multiple-device bus and SICL allows multiple device
sessions open at the same time. On the GPIB interface, when
one device issues a Service Request (SRQ), the library will
inform all GPIB device sessions that have SRQ handlers
installed.

This is an artifact of how GPIB handles the SRQ line. The
underlying GPIB hardware does not support session-specific
interrupts like VXI does. Therefore, your application must
reflect the nature of the GPIB hardware if you expect to reliably
service SRQs from multiple devices on the same GPIB interface.

It is vital that you never exit an SRQ handler without first
clearing the SRQ line. If the multiple devices are all controlled
by the same process, the easiest technique is to service all
devices from one handler. The pseudo-code for this follows. This
algorithm loops through all the device sessions and does not
exit until the SRQ line is released (not asserted).

while (srq_asserted) {
serial_poll (device1)
if (needs_service) service_device1
serial_poll (device2)
if (needs_service) service_device2
...
check_SRQ_line
}

Example: Servicing Requests (C) This example shows a SICL
program segment that implements this algorithm. Checking the
state of the SRQ line requires an interface session. Only one
device session needs to execute ionsrq because that handler is
invoked regardless of which instrument asserted the SRQ line.
Assuming IEEE-488 compliance, an ireadstb is all that is
needed to clear the device’s SRQ.
105

106

4 Using SICL with GPIB
Since the program cannot leave the handler until all devices
have released SRQ, it is recommended that the handler do as
little as possible for each device. The previous example assumed
that only one iscanf was needed to service the SRQ. If lengthy
operations are needed, a better technique is to perform the
ireadstb and set a flag in the handler. Then, the main program
can test the flags for each device and perform the more lengthy
service.

Even if the different device sessions are in different processes,
it is still important to stay in the SRQ handler until the SRQ line
is released. However, it is not likely that a process that only
knows about Device A can do anything to make Device B release
the SRQ line.

In such a configuration, a single unserviced instrument can
effectively disable SRQs for all processes attempting to use that
interface. Again, this is a hardware characteristic of GPIB. The
only way to ensure true independence of multiple GPIB
processes is to use multiple GPIB interfaces.

/* Must be global */
INST id1, id2, bus;

void handler (dummy)
INST dummy;
 {
 int srq_asserted = 1;
 unsigned char statusbyte;

 /* Service all sessions in turn until no one is
 requesting service */
 while (srq_asserted) {
 ireadstb(id1, &statusbyte);
 if (statusbyte & SRQ_BIT)
 {
 /* Actual service actions depend upon the
 application */
 iscanf(id1, “%f”, &data1);
 }
 ireadstb(id2, &statusbyte);
 if (statusbyte & SRQ_BIT){
 iscanf(id2, “%f”, &data2);
Agilent SICL User’s Guide

Using SICL with GPIB 4

Agilent SICL User’s Guide
 }
 igpibbusstatus(bus, I_GPIB_BUS_SRQ,
 &srq_asserted);
 }
 }

main() {
 /* Device sessions for instruments */
 id1 = iopen(“gpib0, 17”);
 id2 = iopen(“gpib0, 18”);

 /* Interface session for SRQ test */
 bus = iopen(“gpib0”);

 /* Only one handler needs to be installed */
 ionsrq(id1, handler);
 .
 .
107

108

4 Using SICL with GPIB
Agilent SICL User’s Guide

Agilent E2094 SICL User’s Guide for Windows
Agilent SICL User’s Guide
5
Using SICL with VXI

This chapter shows how to use SICL to communicate over the
VXIbus. The example programs in this chapter can be found in
the following locations, if the Agilent IO Libraries were installed
in the default directory:

For C/C++: C:\Program Files\Agilent\IO
Libraries\c\samples\

For Visual Basic: C:\Program Files\Agilent\IO
Libraries\vb\samples\

This chapter includes:

• Introduction to VXI Interfaces

• Programming VXI Message-Based Devices

• Programming VXI Register-Based Devices

• Programming VXI Interface Sessions

• Miscellaneous VXI Interface Programming
109Agilent Technologies

5 Using SICL with VXI
Introduction to VXI Interfaces
110
This section provides an introduction to using SICL with the
VXI interface, including:

• VXI Interfaces Overview

• VXI Communications Sessions

• VXI Device Types

• SICL Functions for VXI
Agilent SICL User’s Guide

Using SICL with VXI 5
VXI Interfaces Overview
Agilent SICL User’s Guide
This section provides an overview of VXI interfaces, including
typical hardware configuration, using IO Config, and example
configuration using SICL.
Typical VXI Interface
As shown in the following figure, a typical VXI interface
consists of one of two main hardware configurations: E1406A
Command Module or E8491B IEEE-1394 to VXI Module.

• The E1406A Command Module version consists of a
Windows PC with an 82350 (or equivalent) GPIB card and a
VXI mainframe with an E1406A Command Module and one
or more VXI instruments. I/O communication from the PC to
the VXI instruments is via the GPIB card, GPIB cable, and
E1406A Command Module.

• The E8491B Module version consists of a Windows PC with
an IEEE-1394 OHCI-Compliant (FireWire) PC card and a VXI
mainframe with an E8491B IEEE-1394 to VXI Module and
one or more VXI instruments. I/O communication from the
PC to the VXI instruments is via the PC card, IEEE-1394 to
VXI cable, and E8491B Module.
111

112

5 Using SICL with VXI
Configuring VXI Interfaces

82359 GPIB Card

Windows PC

. . .

VXI Interfaces

E
1
4
0
6
A

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

. .

VXI Mainframe

GPIB

. . .

E
8
4
9
1
B

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

. .
IEEE-1394 OHCI-

Compliant
 PC Card

IEEE-1394
to VXI
An IO interface can be defined as both a hardware interface
and as a software interface. The purpose of the IO Config utility
is to associate a unique interface name with a hardware
interface.

The IO Libraries use an Interface Name or Logical Unit
Number to identify an interface. This information is passed in
the parameter string of the iopen function call in a SICL
program. IO Config assigns an Interface Name and Logical Unit
Number to the interface hardware, as well as other necessary
configuration values for an interface when the interface is
Agilent SICL User’s Guide

Using SICL with VXI 5

Agilent SICL User’s Guide
configured. See the Agilent IO Libraries Installation and
Configuration Guide for Windows for information on IO
Config.

Example: VXI (E1406A) Interface

The VXI interface system in the following figure consists of a
Windows PC with an 82350 GPIB card that connects to an
E1406A Command Module in a VXI Mainframe. The VXI
mainframe includes one or more VXI instruments. The E1406A
is configured for primary address 9 and logical address (LA) 0.
The three VXI instruments shown have logical addresses 8, 16,
and 24.

The IO Config utility has been used to assign the 82350 GPIB
card a SICL name of gpib0. With these names assigned to the
interfaces, the SICL addressing is as shown in the figure. For
information on the E1406A Command Module, see the Agilent
E1406A Command Module User’s Guide. For information on
VXI instruments, see the applicable VXI Instrument User’s
Guide.
113

114

5 Using SICL with VXI
Example: VXI (E8491) Interface

The VXI interface system in the following figure consists of a
Windows PC with an E8491 PC card that connects to an E8491B
IEEE-1394 to VXI Module in a VXI Mainframe. The VXI
mainframe includes one or more VXI instruments. For this
system, the three VXI instruments shown have logical addresses
8, 16, and 24.

The IO Config utility has been used to assign the E8491 PC card
a SICL name of vxi. With this name assigned to the interface,
you can use the SICL addressing shown in the figure. For
Agilent SICL User’s Guide

Using SICL with VXI 5

Agilent SICL User’s Guide
information on the E8491B module, see the Agilent E8491B
User’s Guide. For information on VXI instruments, see the
applicable VXI Instrument User’s Guide.
E8491 PC Card

Windows PC

. . .

Interface SICL Name

SICL Name

"vxi"

SICL Addressing

iopen ("vxi,24")

VXI Interface (E18491B IEEE-1394 to VXI Module)

Open IO path to VXI instrument at logical address 24 using
E8491 PC Card and E8491 IEEE-1394 to VXI Module

E
8
4
9
1
B

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

V
X
I

I
n
s
t
r

. .

VXI MainframeIEEE-1394 to VXI

LA 8 LA 24 LA 16
115

5 Using SICL with VXI
VXI Communications Sessions
116
Before you begin programming your VXI system, ensure that the
system is set up and operating correctly. To begin programming
a VXI system, you must first determine the type of
communication session to be used. The two types of supported
VXI communication sessions follow. Commander Sessions are
not supported with VXI interfaces.

• Device Session. A VXI device session allows direct access to
a device regardless of the type of interface to which the
device is connected.

• Interface Session. A VXI interface session allows direct,
low-level control of the specified interface that provides full
control of the activities on a given interface, such as VXI.

Device sessions are the recommended method for
communicating while using SICL, since they provide the highest
level of programming, best overall performance, and best
portability.
VXI Device Types
There are two different types of VXI devices: message-based
and register-based. To program a VXIbus system that is mixed
with both message-based and register-based devices, open a
communications session for each device in the system and
program as shown in the following sections.

Message-Based Devices

Message-based devices have their own processors that allow
them to interpret high-level Standard Commands for
Programmable Instruments (SCPI) commands. When using
SICL, place the SCPI command within the SICL output function
call and the message-based device then interprets the SCPI
command.
Agilent SICL User’s Guide

Using SICL with VXI 5

Agilent SICL User’s Guide
Register-Based Devices

Register-based devices typically do not have their own
processor to interpret high-level commands and therefore
accept only binary data. You can use the following methods to
program register-based devices:

• Interpreted SCPI. Use the SICL iscpi interface and program
using high-level SCPI commands. Interpreted SCPI (I-SCPI)
interprets high-level SCPI commands and sends the data to
the instrument. I-SCPI is supported over LAN, but register
programming (imap, ipeek, ipoke, etc) is not supported over
LAN. I-SCPI runs on a LAN server in a LAN-based system.

• Direct Register programming. Do register peeks and pokes
and program directly to the device’s registers with the vxi
interface.

• Compiled SCPI. Use the C-SCPI product and program with
high-level SCPI commands (achieve higher throughput as
well).

• Command Module. Use a Command Module to interpret the
high-level SCPI commands. The gpib interface is used with a
Command Module. A Command Module may also be accessed
over a LAN using a LAN-to-GPIB gateway.
SICL Functions for VXI Interfaces
A summary of VXI-specific functions follows. Using these VXI
interface-specific functions means that the program cannot be
used on other interfaces and, therefore, becomes less portable.
These functions will work over a LAN-gatewayed session if the
server supports the operation.
117

118

5 Using SICL with VXI
Table 27 SICL Functions for VXI Interfaces

Function Name Action

ivxibusstatus
ivxigettrigroute
ivxirminfo

ivxiservants
ivxitrigoff
ivxitrigon

ivxitrigroute
ivxiwaitnormop
ivxiws

Returns requested bus status information
Returns the routing of the requested trigger line
Returns information about VXI devices

Identifies active servants
De-asserts VXI trigger line(s)
Asserts VXI trigger line(s)

Routes VXI trigger lines
Suspends until normal operation is established
Sends a word-serial command to a device
Programming VXI Message-Based Devices
Message-based devices have their own processors which allow
them to interpret high-level SCPI commands. When using SICL,
place the SCPI command within the SICL output function call
and the message-based device interprets the SCPI command.
SICL functions used for programming message-based devices
include iread, iwrite, iprintf, iscanf, etc.
NOTE If a message-based device has shared memory, you can access the
device’s shared memory with register peeks and pokes. See
“Programming VXI Register-Based Devices” for information on register
programming.
VXI Message-Based Device Functions

This section describes how some SICL functions are
implemented for VXI device sessions for message-based devices.
Agilent SICL User’s Guide

Using SICL with VXI 5

Agilent SICL User’s Guide
Table 28 VXI Device Functions

Function name Action

iwrite Sends data to a (message-based) servant using the
byte-serial write protocol and the byte available word-serial
command.

iread Reads data from a (message-based) servant using the
byte-serial read protocol and the byte request word-serial
command.

ireadstb Performs a VXI readSTB word-serial command.

itrigger Sends word-serial trigger to specified message-based
device.

iclear Sends word-serial device clear to specified message-based
device.

ionsrq Can be used to catch SRQs from message-based devices.
Addressing VXI Message-Based Devices
To create a VXI device session, specify the interface symbolic
name or logical unit and a device’s address in the addr
parameter of the iopen function. The interface symbolic name
and logical unit are set by running the IO Config utility. To open
IO Config, click the Agilent IO Libraries Control and then click
Run IO Config. See the Agilent IO Libraries Installation and
Configuration Guide for Windows for information on IO
Config.

Addressing Guidelines

Primary address must be between 0 and 255. The primary
address corresponds to the VXI logical address and specifies
the address in the A16 space of the VXI device. SICL supports
only primary addressing on the VXI device sessions. Specifying
a secondary address causes an error.

Some example addresses for VXI device sessions follow. These
examples use the default symbolic name specified during the
system configuration. To change the name listed, you must also
119

120

5 Using SICL with VXI
change the symbolic name or logical unit specified during the
configuration. The name used in the SICL program must match
the logical unit or symbolic name specified in the system
configuration. Other possible interface names are VXI, vxi, etc.

An example of opening a device session with the VXI device at
logical address 64 follows.

INST dmm;
dmm = iopen (“vxi,64”);

Example: VXI Message-Based Device Session (C)

This example program opens a communication session with a
VXI message-based device and measures the AC voltage. The
measurement results are then printed.

/* vximdev.c
This example program measures AC voltage on a
multimeter and prints out the results */

#include <sicl.h>
#include <stdio.h>

main()
 {
 INST dvm;
 char strres[20];

 /* Print message and terminate on error */
 ionerror (I_ERROR_EXIT);

 /* Open the multimeter session */
 dvm = iopen (“vxi,24”);
 itimeout (dvm, 10000);

Table 29 Addressing VXI Instruments

vxi,24 A device address corresponding to the device at primary address 24
on the vxi interface.

vxi,128 A device address corresponding to the device at primary address
128 on the vxi interface.
Agilent SICL User’s Guide

Using SICL with VXI 5

Agilent SICL User’s Guide
 /* Initialize dvm */
 iwrite (dvm, “*RST\n”, 5, 1, NULL);

 /* Take measurement */
 iwrite (dvm,”MEAS:VOLT:AC? 1, 0.001\n”, 23, 1,
 NULL);

 /* Read measurements */
 iread (dvm, strres, 20, NULL, NULL);

 /* Print the results */
 printf(“Result is %s\n”, strres);

 /* Close the multimeter session */
 iclose(dvm);

 }

Example: VXI Message-Based Device Session (Visual Basic)

'''
' vximdev.bas
' This example program opens a communication
‘ session with a VXI message-based device and
‘ measures the DC voltage. Then measurement
' results are printed.

'''

Sub Main()

 Dim id As Integer
 Dim strres As String * 80 'Fixed-length String
 Dim actual As Long

 ' Open the instrument session

 ' "vxi" is the SICL Interface name as defined
 ‘ in:
 'Start | Programs | Agilent IO Libraries | IO
 ‘ Config
 '"216" is the instrument logical address.
 'Change these to the SICL Name and logical
 ‘ address for your instrument

 id = iopen("vxi,216")
121

122

5 Using SICL with VXI
 ' Set timeout to 10 seconds
 Call itimeout(id, 10000)

 ' Initialize dvm
 Call iwrite(id, "*RST" + Chr$(10), 6, 1, 0&)

 ' Take measurement
 Call iwrite(id, "MEAS:VOLT:DC? 1, 0.001" + _
 Chr$(10), 23, 1, 0&)

 ' Read result
 Call iread(id, strres, 80, 0&, actual)

 ' Display the results
 MsgBox "Result is: " + strres, vbOKOnly, _
 "DVM DCV Result"

 ' Close the instrument session
 Call iclose(id)

 ' Tell SICL to clean up for this task
 Call siclcleanup

End Sub
Programming VXI Register-Based Devices
You can use one or more of the following methods to
communicate with VXI register-based devices.

• iI-SCPI Interface Programming. Use the SICL iscpi
interface and program using SCPI commands. The iscpi
interface interprets the SCPI commands and allows direct
communication with register-based devices. This method is
supported over LAN. Agilent VISA must be installed to use
the iscpi interface.

• Direct Register Programming. Use the vxi interface to
program directly to the device’s registers with a series of
register peeks and pokes. This method can be very
time-consuming and difficult. This method is not supported
over LAN.
Agilent SICL User’s Guide

Using SICL with VXI 5

Agilent SICL User’s Guide
• Compiled SCPI Programming. The Compiled SCPI (C-SCPI)
product is a programming language that can be used with
SICL to program register-based devices using SCPI
commands. Because Compiled SCPI interprets SCPI
commands at compile time, Compiled SCPI can be used to
achieve high throughput of register-based devices. See the
applicable C-SCPI documentation for programming
information.

• Command Module Programming. You can use a Command
Module to communicate with VXI devices via GPIB. The
Command Module interprets the high-level SCPI commands
for register-based instruments and sends low-level
commands over the VXIbus backplane to the instruments.
See Chapter 4, “Using SICL with GPIB” for details on
communicating via a Command Module.
Addressing VXI Register-Based Devices
To create a device session, specify the interface symbolic name
or logical unit and a device’s address in the addr parameter of
the iopen function. The interface symbolic name and logical
unit are set by running the IO Config utility. To open IO Config,
click the Agilent IO Libraries Control IO icon on the taskbar and
then click Run IO Config. See the Agilent IO Libraries
Installation and Configuration Guide for Windows for
information on IO Config.

Functions Not Supported

Because VXI register-based devices do not support the word
serial protocol and other features of message-based devices, the
following SICL functions are not supported with register-based
device sessions unless you use the iscpi interface. All other
123

124

5 Using SICL with VXI
functions will work with all VXI devices (message-based,
register-based, etc.). Use the i?peek and i?poke functions to
communicate with register-based devices.

Addressing Guidelines

The primary address corresponds to the VXI logical address
and must be between 0 and 255. SICL supports only primary
addressing on VXI device sessions. Specifying a secondary
address causes an error. Some example addresses for VXI
device sessions follow.

These examples use the default symbolic name specified during
the system configuration. To change the name listed, you must
also change the symbolic name or logical unit specified during
the configuration. The name used in your SICL program must
match the logical unit or symbolic name specified in the system
configuration. Other possible interface names are VXI, vxi, etc.

Table 30 Unsupported Functions

Category Functions Not Supported

Non-formatted I/O iread, iwrite, itermchr

Formatted I/O iprintf, iscanf, ipromptf, ifread, ifwrite, iflush,
isetbuf, isetubuf

Device/Interface Control iclear, ireadstb, isetstb, itrigger

Service Requests igetonsrq, ionsrq

Timeouts igettimeout, itimeout

VXI Specific ivxiws

Table 31 Addressing Guidelines

iscpi,32 A register-based device address corresponding to the device at
primary address 32 on the iscpi interface.

vxi,24 A device address corresponding to the device at primary address 24
on the vxi interface.
Agilent SICL User’s Guide

Using SICL with VXI 5

Agilent SICL User’s Guide
An example of opening a device session with the VXI device at
logical address 64 follows.

INST dmm;
dmm = iopen (“vxi,64”);

vxi,128 A device address corresponding to the device at primary address
128 on the vxi interface.

Table 31 Addressing Guidelines
125

5 Using SICL with VXI
Programming Using the I-SCPI Interface
126
The Interpreted SCPI (I-SCPI or iscpi) interface allows you to
program register-based instruments with high-level SCPI
commands. To program using the iscpi interface, open a device
session with a specific register-based instrument and then
program using the SICL functions such as iprintf, iscanf, and
ireadstb.
Using the I-SCPI Interface
To use the iscpi interface, you must first have configured the
system with the IO Config utility to include iscpi as an
interface. See the Agilent IO Libraries Installation and
Configuration Guide for Windows for information on IO
Config. When opening the device session, you will need to
specify iscpi as the interface type in the SICL iopen call.

The iscpi interface includes drivers for most Agilent
register-based devices. These drivers are located in the VISA
directory specified during the Agilent IO Libraries installation
(default is C:\Program Files\VISA\Win95\bin (Windows
98SE/Me) or C:\Program Files\VISA\Winnt\bin
(Windows 2000/XP/NT). See the C:\Program
Files\VISA\Winxx\bin\iscpinfo.txt file for a list of
currently supported register-based devices.
I-SCPI SICL Functions
The iscpi interface is used to program VXI register-based
instruments. However, the VXI specific and register-based
specific SICL functions such as ivxiws, imap, and ipeek are not
Agilent SICL User’s Guide

Using SICL with VXI 5

Agilent SICL User’s Guide
necessary and are not implemented for the iscpi interface. The
following table describes how some SICL functions are
implemented for iscpi device sessions.

Addressing Guidelines

For a SICL application that accesses VXI devices using GPIB
and a Command Module, you can port your application to use
the iscpi interface and directly access the VXI backplane
without the use of the Command Module. Do this by changing
the iopen function to use the iscpi interface followed by the
device’s logical address.

The simplest way to address a register-based device using the
Interpreted SCPI (I-SCPI or iscpi) interface is to specify the
interface logical unit or symbolic name and a device logical
address in the addr parameter of the iopen function. I-SCPI
automatically configures your system according to combining
rules that determine how instruments are set up relative to
other VXI instruments. For example:

dmm=iopen (“iscpi,24”);

Table 32 SCPI SICL Functions

Function Name Action

iwrite Sends the SCPI commands to the register-based instrument
driver’s input buffer. The driver will interpret the command
and do register peeks and pokes. If the command is a query,
the driver puts data into its output buffer.

iread Reads the data from the register-based instrument driver’s
output buffer.

ireadstb Performs the equivalent of a serial poll (SPOLL).

itrigger Performs quivalent of addressed group execute trigger
(GET).

iclear Performs the equivalent of a device clear (DCL) on the
device corresponding to this session.
127

128

5 Using SICL with VXI
Generally, when an iopen is performed, an instrument is
formed consisting of all devices at logical addresses contiguous
to the base logical address passed in the address string. For
example, if you open an instrument at logical address 24 with
the next logical address at 25, the iscpi interface searches for an
instrument driver that supports the devices found.

For control of logical addresses used to form a particular
instrument, you can use an explicit list in the logical address
portion of the iopen call. Define the instrument by adding a
colon after the interface symbolic name, followed by the
backplane name as specified in the IO Config utility (backplane
is the symname of the VXI backplane SICL driver, usually vxi).
Then, add the instrument logical addresses enclosed within
parentheses and separated by commas.

This example combines instruments at logical address 24 and
25 to form one instrument. The logical addresses of these
instruments do not have to be contiguous.

dmm=iopen (“iscpi:vxi,(24,25)”);

To specify an instrument driver to use for a specific set of
logical addresses, add the instrument driver name within
brackets. This allows you to create your own instrument drivers
or you can form unique virtual instrument combinations. For
example:

dmm=iopen (“iscpi,24[E1326]”);

To specify an instrument driver plus the instruments grouped
together to form the instrument, use the following form. The
iopen call will run faster if you specify an instrument driver
name since it does not have to search through all the instrument
drivers for a match.

dmm=iopen (“iscpi[E1326]:vxi,(24,25)”);

The directory location specified during the SICL installation is
searched for a matching instrument driver.
Agilent SICL User’s Guide

Using SICL with VXI 5

Agilent SICL User’s Guide
I-SCPI Interrupts and Service Requests

The iscpi interface does not support interrupts, so the SICL
ionintr function is not implemented for iscpi device sessions.
There are no device-specific interrupts for the iscpi interface.

iscpi device sessions support Service Requests (SRQ) in the
same manner as GPIB. When one device issues an SRQ, all iscpi
device sessions that have SRQ handlers installed will be
informed. This is an emulation of how GPIB handles the SRQ
line.

The interface cannot distinguish which device requested
service, so iscpi acts as if all devices require service. Your SRQ
handler can retrieve the device’s status byte by using the
ireadstb function. The status byte can be used to determine if
the instrument needs service.

It is good practice to ensure that a device is not requesting
service before leaving the SRQ handler. The easiest technique
for this is to service all devices from one handler.

The iscpi interface was designed to closely simulate control of
register-based instruments using a Command Module via GPIB.
When an iopen is performed, I-SCPI searches for an instrument
driver consisting of all the devices at logical addresses
contiguous to the base logical address.

If no instrument driver supports the list of contiguous logical
addresses, the device with the highest logical address will be
removed and the search process repeated. This continues until
the driver is found or this list is exhausted. If no instrument
driver is found, the iopen call will fail.

Once an iopen is successful, I-SCPI runs in an infinite loop
waiting to parse SCPI commands for the instrument. A separate
process is created for each instrument that is opened.

Example: I-SCPI Interface Session

This example program opens a communication session with a
VXI register-based device with the iscpi interface and then uses
SCPI commands to measure the AC voltage and print out the
results.
129

130

5 Using SICL with VXI
/* vxiiscpi.c
This example program measures AC voltage on a
multimeter and prints out the results */

#include <sicl.h>
#include <stdio.h>

main()
 {
 INST dvm;
 char strres[20];

 /* Print message and terminate on error */
 ionerror (I_ERROR_EXIT);

 /* Open the multimeter session */
 dvm = iopen (“iscpi,24”);
 itimeout (dvm, 10000);

 /* Initialize dvm */
 iwrite (dvm, “*RST\n”, 5, 1, NULL);

 /* Take measurement */
 iwrite (dvm,”MEAS:VOLT:AC? 1, 0.001\n”, 23, 1,
 NULL);

 /* Read measurements */
 iread (dvm, strres, 20, NULL, NULL);

 /* Print the results */
 printf(“Result is %s\n”, strres);

 /* Close the multimeter session */
 iclose(dvm);
 }
Agilent SICL User’s Guide

Using SICL with VXI 5
Programming Directly to Registers
Agilent SICL User’s Guide
When communicating with register-based devices, you must
either send a series of peeks and pokes directly to the device’s
registers or use a command interpreter to interpret the
high-level SCPI commands. Command interpreters include the
iscpi interface, Agilent Command Module, Agilent B-Size
Mainframe (built-in Command Module), or Compiled SCPI
(C-SCPI).

When sending a series of peeks and pokes to the device’s
registers, use the following process. This procedure is only used
on register-based devices that are not using the iscpi interface.
Note that programming directly to the registers is not
supported over LAN.

• Map memory space into your process space.

• Read the register’s contents using i?peek.

• Write to the device registers using i?poke.

• Unmap the memory space.
Mapping Memory Space for Register-Based Devices
When using SICL to communicate directly to the device’s
registers, you must map a memory space into the process space
by using the SICL imap function:

imap (id, map_space, pagestart, pagecnt,
 suggested);

This function maps space for the interface or device specified
by the id parameter. pagestart, pagecnt, and suggested indicate
the page number, number of pages, and a suggested starting
location respectively. map_space determines the memory
location to map the space to.

Due to hardware constraints on given devices or interfaces, not
all address spaces may be implemented. In addition, there may
be a maximum number of pages that can be simultaneously
mapped.
131

132

5 Using SICL with VXI
If a request is made that cannot be granted due to hardware
constraints, the process will hang until the desired resources
become available. To avoid this, use the isetlockwait with the
flag parameter set to 0 and thus generate an error instead of
waiting for the resources to become available. You may also use
the imapinfo function to determine hardware constraints
before making an imap call. Some valid map_space choices
follow.

Some example imap function calls follow.

/* Map to the VXI device vm starting at
 pagenumber 0 for 1 page */

base_address = imap (vm, I_MAP_VXIDEV, 0, 1,
 NULL);

Table 33 Mapping Memory Space

Function Description

I_MAP_A16 Maps in VXI A16 address space (device or interface
sessions, 64K byte pages).

I_MAP_A24 Maps in VXI A24 address space (device or interface
sessions, 64K byte pages).

I_MAP_A32 Maps in VXI A32 address space (device or interface
sessions, 64K byte pages).

I_MAP_VXIDEV Maps in VXI A16 device registers (device session only, 64
bytes).

I_MAP_EXTEND Maps in VXI device extended memory address space in A24
or A32 address space (device sessions only).

I_MAP_SHARED Maps in VXI A24/A32 memory that is physically located on
the computer (sometimes called local shared memory,
interface sessions only).

I_MAP_AM |
address modifer

Maps in the specified region (address modifer) of VME
address space. See the “Communicating with VME
Devices” section later in this chapter for more information
on this map space argument.
Agilent SICL User’s Guide

Using SICL with VXI 5

Agilent SICL User’s Guide
/* Map to A32 address space (16 Mbytes) */
ptr = imap (id, I_MAP_A32, 0x000, 0x100,
 NULL);

/* Map to device’s A24 or A32 extended memory */
ptr=imap (id, I_MAP_EXTEND, 0, 1, 0);

/* Map to computer’s A24 or A32 shared memory */
ptr=imap (id, I_MAP_SHARED, 0, 1, 0);

Use the following table to determine which map-space
argument to use with a SICL imap/iunmap function. All
accesses through the *_D32 map windows can only be 32-bit
transfers. The application software must do a 32-bit assignment
to generate the access and only accesses on 32-bit boundaries
are allowed. If 8- or 16-bit accesses to the device are also
necessary, a normal I_MAP_A16/24/32 map must also be
requested.

Table 34 Mapping Memory Space

imap/iunmap
(map-space argument)

Widths VME Data Access Mode

I_MAP_A16 D8,D16 Supervisory

I_MAP_A24 D8,D16 Supervisory

I_MAP_A32 D8,D16 Supervisory

I_MAP_A16_D32 D32 Supervisory

I_MAP_A24_D32 D32 Supervisory

I_MAP_A32_D32 D32 Supervisory
Reading and Writing Device Registers
When you have mapped the memory space, use the SICL i?peek
and i?poke functions to communicate with register-based
instruments. With these functions, you need to know which
register you want to communicate with and the register’s offset.
See the instrument’s user’s manual for a description of the
registers and register locations. An example using iwpeek
follows.
133

134

5 Using SICL with VXI
id = iopen (“vxi,24”);
addr = imap (id, I_MAP_VXIDEV, 0, 1, 0);
reg_data = iwpeek (addr + 4);

Be sure you use the iunmap function to unmap the memory
space when the space is no longer needed. This frees the
mapping hardware so it can be used by other processes.
Example: VXI Register-Based Programming (C)
This example program opens a communication session with a
register-based device connected to the address entered by the
user. The program then reads the Id and Device Type registers
and prints the register contents.

/* vxirdev.c
The following example prompts the user for an
instrument address and then reads the id
register and device type register. The contents
of the register are displayed.*/

#include <stdio.h>
#include <stdlib.h>
#include <sicl.h>

void main (){
 char inst_addr[80];
 char *base_addr;
 unsigned short id_reg, devtype_reg;
 INST id;

 /* get instrument address */
 puts (“Please enter the logical address of the
 register-based instrument, for example,
 vxi,24 : \n”);
 gets (inst_addr);

 /* install error handler */
 ionerror (I_ERROR_EXIT);

 /* open communication session with instrument
 */
 id = iopen (inst_addr);
 itimeout (id, 10000);
Agilent SICL User’s Guide

Using SICL with VXI 5

Agilent SICL User’s Guide
 /* map into user memory space */
 base_addr = imap (id, I_MAP_VXIDEV, 0, 1,
 NULL);

 /* read registers */
 id_reg = iwpeek ((unsigned short *)(base_addr
 + 0x00));
 devtype_reg = iwpeek ((unsigned short
 *)(base_addr + 0x02));

 /* print results */
 printf (“Instrument at address %s\n”,
 inst_addr);

 printf “ID Register = 0x%4X\n Device Type
 Register =0x%4X\n”, id_reg, devtype_reg);

 /* unmap memory space */
 iunmap (id, base_addr, I_MAP_VXIDEV, 0, 1);

 /* close session */
 iclose (id);}
135

5 Using SICL with VXI
Programming VXI Interface Sessions
136
VXI interface sessions allow direct low-level control of the
interface. However, the programmer must provide all bus
maintenance for the interface and have considerable knowledge
of the interface. When using interface sessions, you must use
interface-specific functions, which means the program cannot
be used on other interfaces and becomes less portable.
VXI Interface Sessions Functions
The following table describes how some SICL functions are
implemented for VXI interface sessions. I-SCPI interface
sessions only support service requests and locking (ionsrq,
ilock, and iunlock).

Table 35 Implementing SICL Function for VXI

Function Name Action

iwrite and iread Not supported for VXI interface sessions. Returns the
I_ERR_NOTSUPP error.

iclear Causes the VXI interface to perform a SYSREST on interface
sessions. This causes all VXI devices to reset. If the iscpi
interface is being used, the iscpi instrument will be
terminated.

If this happens, a No Connect error message occurs and you
must reopen the iscpi communications session. All servant
devices cease to function until the VXI resource manager
runs and normal operation is re-established.
Addressing VXI Interface Sessions
To create an interface session on a VXI system, specify the
interface symbolic name or logical unit in the addr parameter
of the iopen function. The interface symbolic name and logical
unit are set by running the IO Config utility. To open IO Config,
click the Agilent IO Libraries Control IO icon on the taskbar and
Agilent SICL User’s Guide

Using SICL with VXI 5

Agilent SICL User’s Guide
then click Run IO Config. See the Agilent IO Libraries
Installation and Configuration Guide for Windows for
information on IO Config.

Addressing Guidelines

Some example addresses for VXI interface sessions follow.
These examples use the default symbolic name specified during
the system configuration. To change the name listed, you must
also change the symbolic name or logical unit specified during
the configuration.

The name used in your SICL program must match the logical
unit or symbolic name specified in the system configuration.
Other possible interface names are VXI, vxi, etc. The only
interface session operations supported by I-SCPI are service
requests and locking.

This example opens an interface session with the VXI interface.

INST vxi;
vxi = iopen (“vxi”);

Example: VXI Interface Session (C)

This example program opens a communication session with the
VXI interface and uses the SICL interface-specific ivxirminfo
function to get information about a specific VXI device. This
information comes from the VXI resource manager and is only
valid as of the last time the VXI resource manager was run.

/* vxiintr.c
The following example gets information about a
specific vxi device and prints it out. */

Table 36 Symbolic Interface Names

vxi An interface symbolic name.

iscpi An interface symbolic name.
137

138

5 Using SICL with VXI
#include <stdio.h>
#include <sicl.h>

void main () {
 int laddr;
 struct vxiinfo info;
 INST id;

 /* get instrument logical address */
 printf (“Please enter the logical address of
 the register-based instrument, for example,
 24 : \n”);
 scanf (“%d”, &laddr);

 /* install error handler */
 ionerror (I_ERROR_EXIT);

 /* open a vxi interface session */
 id = iopen (“vxi”);
 itimeout (id, 10000);

 /* read VXI resource manager information for
 specified device*/
 ivxirminfo (id, laddr, &info);

 /* print results */
 printf (“Instrument at address %d\n”, laddr);
 printf (“Manufacturer’s Id = %s\n Model =
 %s\n”, info.manuf_name, info.model_name);

 /* close session */
 iclose (id);
 }
Agilent SICL User’s Guide

Using SICL with VXI 5
Miscellaneous VXI Interface Programming
Agilent SICL User’s Guide
This section provides other information for programming via
the VXI interface, including:

• Communicating with VME Devices

• VXI Backplane Memory I/O Performance

• Using VXI-Specific Interrupts
Communicating with VME Devices
Although VXI is an extension of VME, VME is not easy to use in
a VXI system. Since the VXI standard defines specific
functionality that would be custom designs in VME, some
resources required for VME custom design are actually used by
VXI. Therefore, there are certain limitations and requirements
when using VME in a VXI system.
NOTE VME is not an officially supported interface for SICL and is not supported
over LAN.
Use these processes when using VME devices in a VXI
mainframe:

• Declaring Resources

• Mapping VME Memory

• Reading and Writing Device Registers

• Unmapping Memory

Declaring Resources

The VXI Resource Manager does not reserve resources for VME
devices. Instead, a configuration file is used to reserve
resources for VME devices in a VXI system. Use the VXI Device
Configurator to edit the DEVICES file (or edit the file directly)
to reserve resources for VME devices. The VXI Resource
139

140

5 Using SICL with VXI
Manager reads this file to reserve the VME address space and
VME IRQ lines. The VXI Resource Manager then assigns the VXI
devices around the already reserved VME resources.

For VME devices requiring A16 address space, the device’s
address space should be defined in the lower 75% of A16
address space (addresses below 0xC000). This is necessary
because the upper 25% of A16 address space is reserved for VXI
devices.

For VME devices using A24 or A32 address space, use A24 or
A32 address ranges just higher than those used by your VXI
devices. This will prevent the VXI Resource Manager from
assigning the address range used by the VME device to any VXI
device. (The A24 and A32 address range is software
programmable for VXI devices.)

Mapping VME Memory

SICL defaults to byte, word, and longword supervisory access to
simplify programming VXI systems. However, some VME cards
use other modes of access that are not supported in SICL.
Therefore, SICL provides a map parameter that allows you to
use the access modes defined in the VMEbus Specification. See
the VMEbus Specification for information on these access
modes.
NOTE Use care when mixing VXI and VME devices. You must know the VME
address space and offset within that address space the VME devices use.
VME devices cannot use the upper 16K of the A16 address space since
this area is reserved for VXI instruments.

When accessing VME or VXI devices via an embedded controller, current
versions of SICL use the “supervisory data” address modifiers 0x2D, 0x3D,
and 0x0D for A16, A24, and A32 accesses, respectively. (Some older
versions of SICL use the “non-privileged data” address modifiers.)
Use the I_MAP_AM | address modifer map space argument in
the imap function to specify the map space region (address
modifer) of VME address space. See the VMEbus Specifications
Agilent SICL User’s Guide

Using SICL with VXI 5

Agilent SICL User’s Guide
for information on values to use as the address modifier. If the
controller does not support the specified address mode, the
imap call will fail (see table in the next section).

This maps A24 non-privileged data access mode:

prt = imap (id, (I_MAP_AM | 0x39), 0x20, 0x4,
 0);

This maps A32 non-privileged data access mode:

prt = imap (id, (I_MAP_AM | 0x09), 0x20, 0x40,
 0);

This table lists VME access modes supported on
Hewlett-Packard controllers.

Reading and Writing Device Registers

After you have mapped the memory space, use the SICL i?peek
and i?poke functions to communicate with the VME devices.
With these functions, you need to know the register to
communicate with and the register’s offset.

See the instrument’s user’s manual for descriptions of registers
and register locations. This is an example using iwpeek:

id = iopen (“vxi”);
addr = imap (id, (I_MAP_AM | 0x39), 0x20, 0x4,
 0);
reg_data = iwpeek ((unsigned short *)(addr +
 0x00));

Table 37 VME Mapping Support

 A16
 D08 D16 D32

 A24
 D08 D16 D32

 A32
 D08 D16 D32

Supervisory data X X X X X X X X X

Non-Privileged data
141

142

5 Using SICL with VXI
Unmapping Memory Space

Make sure you use the iunmap function to unmap the memory
space when it is no longer needed. This frees the mapping
hardware so it can be used by other processes.

VME Interrupts

There are seven VME interrupt lines that can be used. By
default, VXI processing of the IACK value will be used. However,
if you configure VME IRQ lines and VME Only, no VXI
processing of the IACK value will be done. That is, the IACK
value will be passed to a SICL interrupt handler directly.

Example: VME Interrupts (C)

This ANSI C example program opens a VXI interface session
and sets up an interrupt handler. When the I_INTR_VME_IRQ1
interrupt occurs, the function defined in the interrupt handler
is called. The program then writes to the registers, causing the
I_INTR_VME_IRQ1 interrupt to occur.

You must edit this program to specify the starting address and
register offset of your specific VME device. This example
program also requires the VME device to be using
I_INTR_VME_IRQ1, and the controller to be the handler for the
VME IRQ1.

/* vmedev.c
 This example program opens a VXI interface
session and sets up an interrupt handler. When
the specified interrupt occurs, the procedure
defined in the interrupt handler is called. You
must edit this program to specify starting
address and register offset for your specific
VME device. */

#include <stdio.h>
#include <stdlib.h>
#include <sicl.h>

#define ADDR “vxi”
Agilent SICL User’s Guide

Using SICL with VXI 5

Agilent SICL User’s Guide
void handler (INST id, long reason, long
secval){
printf (“Got the interrupt\n”);
}

void main ()
 {
 unsigned short reg;
 char *base_addr;
 INST id;

 /* install error handler */
 ionerror (I_ERROR_EXIT);

 /* open an interface communications session */
 id = iopen (ADDR);
 itimeout (id, 10000);

 /* install interrupt handler */
 ionintr (id, handler);
 isetintr (id, I_INTR_VME_IRQ1, 1);

 /* turn interrupt notification off so that
 interrupts are not recognized before the
 iwaithdlr function is called*/
 iintroff ();

 /* map into user memory space */
 base_addr = imap (id, I_MAP_A24, 0x40, 1,
 NULL);

 /* read a register */
 reg = iwpeek((unsigned short *)(base_addr +
 0x00));

 /* print results */
 printf (“The registers contents were as
 follows: 0x%4X\n”, reg);

 /* write to a register causing interrupt */
 iwpoke ((unsigned short *)(base_addr + 0x00),
 reg);

 /* wait for interrupt */
 iwaithdlr (10000);
143

144

5 Using SICL with VXI
 /* turn interrupt notification on */
 iintron ();

 /* unmap memory space */
 iunmap (id, base_addr, I_MAP_A24, 0x40, 1);

 /* close session */
 iclose (id);
 }
VXI Backplane Memory I/O Performance
SICL supports two different memory I/O mechanisms for
accessing memory on the VXI backplane.

Using Single Location Peek/Poke

Single location peek/poke or direct memory dereference is the
most efficient in programs that require repeated access to
different addresses. On many platforms, the peek/poke
operations are actually macros which expand to direct memory
dereferencing.

An exception is Windows platforms, where ipeek/ipoke are
implemented as functions since (under certain conditions) the
compiler will attempt to optimize a direct dereference and
cause a VXI memory access of the wrong size.

For example, when masking the results of a 16-bit read in an
expression:

data = iwpeek(addr) & 0xff;

Table 38 VXI Supported Memory I/O Mechanisms

Single location peek/poke and
direct memory dereference

imap, iunmap, ibpeek, iwpeek, ilpeek,
ibpoke, iwpoke, ilpoke, value = *pointer,
*pointer = value

Block memory access imap, iunmap, ibblockcopy, iwblockcopy,
ilblockcopy, ibpushfifo, iwpushfifo,
ilpushfifo ibpopfifo, iwpopfifo, ilpopfifo
Agilent SICL User’s Guide

Using SICL with VXI 5

Agilent SICL User’s Guide
the compiler will simplify this to an 8-bit read of the contents of
the addr pointer. This would cause an error when attempting to
read memory on a VXI card that did not support 8-bit access.
When iwpeek is implemented as a function, the correct size
memory access is guaranteed.

Using Block Memory Access

The block memory access functions provide the highest possible
performance for transferring large blocks of data to or from the
VXI backplane. Although these calls have higher initial overhead
than the ipeek/ipoke calls, they are optimized on each platform
to provide the fastest possible transfer rate for large blocks of
data.

These routines may use DMA, which is not available with
ipeek/ipoke. For small blocks, the overhead associated with the
block memory access functions may actually make these calls
longer than an equivalent loop of ipeek/ipoke calls.

The block size at which the block functions become faster
depends on the particular platform and processor speed.

Example: VXI Memory I/O (C)

An example follows that demonstrates the use of simple and
block memory I/O methods in SICL.

/*
siclmem.c
This example program demonstrates the use of
simple and block memory I/O methods in SICL. */

#include <sicl.h>
#include <stdlib.h>
#include <stdio.h>

#define VXI_INST “vxi,24”

void main () {
 INST id;
 unsigned short *memPtr16;
 unsigned short id_reg;
145

146

5 Using SICL with VXI
 unsigned short devtype_reg;
 unsigned short memArray[2];
 int err;

 /* Open a session to the instrument */
 id = iopen(VXI_INST);

 /* ============== Simple memory I/O==========
 = iwpeek()
 = direct memory dereference

 On many platforms, the ipeek/ipoke operations
 are actually macros which expand to direct
 memory dereferencing. The exception is on
 Microsoft Windows platforms where ipeek/ipoke
 are implemented as functions.

 This is necessary because under certain
 conditions, the compiler will attempt to
 optimize a direct dereference and cause a VXI
 memory access of the wrong size. For example,
 when masking the results of a 16-bit read in a
 expression:

 data = iwpeek(addr) & 0xff;

 the compiler will simplify this to an 8-bit
 read of the contents of the addr pointer. This
 would cause an error when attempting to read
 memory on a VXI card that did not support 8-bit
 access. */

 /* Map into memory space */
 memPtr16 = (unsigned short *)imap(id,
 I_MAP_VXIDEV, 0, 1, 0);

/* ============ Using Peek ================= */

 /* Read instrument id register contents */
 id_reg = iwpeek(memPtr16);

 /* Read device type register contents */
 id_reg = iwpeek(memPtr16+1);
Agilent SICL User’s Guide

Using SICL with VXI 5

Agilent SICL User’s Guide
 /* Print results */
 printf(“ iwpeek: ID Register = 0x%4X\n”,
 id_reg);
 printf(“ iwpeek: Device Type Register =
 0x%4X\n”, devtype_reg);

 /* Use direct memory dereferencing */
 id_reg = *memPtr16;
 devtype_reg = *(memPtr16+1);

 /* Print results */
 printf(“dereference: ID Register = 0x%4X\n”,
 id_reg);
 printf(“dereference: Device Type Register =
 0x%4X\n”, devtype_reg);

 /* =============== Block Memory I/O ==========
 = iwblockcopy
 = iwpushfifo
 = iwpopfifo

 These commands offer the best performance for
 reading and writing large data blocks on the
 VXI backplane. For this example, we are only
 moving 2 words at a time. Normally, these
 functions would be used to move much larger
 blocks of data. */

 /* ======== Demonstrate Block Read ======== */

 /* Read the instrument id register and device
 type register into an array. */

 err = iwblockcopy(id, memPtr16, memArray, 2,
 0);

 /* Print results */
 printf(“ iwblockcopy: ID Register = 0x%4X\n”,
 memArray[0]);
 printf(“ iwblockcopy: Device Type Register =
 0x%4X\n”, memArray[1]);

 /* ======= Demonstrate popfifo =============*/
147

148

5 Using SICL with VXI
 /* Do a popfifo of the Id Register */
 err = iwpopfifo(id, memPtr16, memArray, 2, 0);

 /* Print results */
 printf(“ iwpopfifo: 1 ID Register = 0x%4X\n”,
 memArray[0]);
 printf(“ iwpopfifo: 2 ID Register = 0x%4X\n”,
 memArray[1]);

 /* ============ Cleanup and Exit ==========*/

 /* Unmap memory space */
 iunmap(id, (char *)memPtr16, I_MAP_VXIDEV, 0,
 1);

 /* Close instrument session */
 iclose(id);
 }
Using VXI-Specific Interrupts
Example: VXI Interrupt Actions (C)

This pseudo-code describes the actions performed by SICL
when a VME interrupt arrives and/or a VXI signal register write
occurs.

VME Interrupt arrives:
get iack value

send I_INTR_VME_IRQ?

is VME IRQ line configured VME only

if yes then
 exit
do lower 8 bits match logical address of one of
our servants?
if yes then
 /* iack is from one of our servants */
 call servant_signal_processing(iack)
else
 /* iack is from non-servant VXI or VME device*/
 send I_INTR_VXI_VME interrupt to interface
Agilent SICL User’s Guide

Using SICL with VXI 5

Agilent SICL User’s Guide
 sessions

Signal Register Write occurs:
get value written to signal register
send I_INTR_ANY_SIG
do lower 8 bits match logical address of one of
our servants?
if yes then
 /* Signal is from one of our servants */
 call Servant_signal_processing(value)
else
 /* Stray signal */
 send I_INTR_VXI_UKNSIG to interface sessions
 servant_signal_processing (signal_value)
/* Value is form one of our servants */
is signal value a response signal?
If yes then
 process response signal
exit
/* Signal is an event signal */
is signal an RT or RF event?
 if yes then
/* A request TRUE or request FALSE arrived */
 process request TRUE or request FALSE event
 generate SRQ if appropriate
exit
is signal an undefined command event?
if yes then
 /* Undefined command event */
 process an undefined command event
exit
/* Signal is a user-defined or undefined event
*/
send I_INTR_VXI_SIGNAL to device sessions for
this device
exit
149

150

5 Using SICL with VXI
Example: Processing VME Interrupts (C)

/* vmeintr.c
This example uses SICL to cause a VME interrupt
from an E1361 register-based relay card at
logical address 136.*/

#include <sicl.h>

static void vmeint (INST, unsigned short);
static void int_setup (INST, unsigned long);
static void int_hndlr (INST, long, long);
int intr = 0;
main() {
 int o; INST id_intf1;
 unsigned long mask = 1;

 ionerror (I_ERROR_EXIT);
 iintroff ();
 id_intf1 = iopen (“vxi,136”);
 int_setup (id_intf1, mask);
 vmeint (id_intf1, 136);
 /* wait for SRQ or interrupt condition */
 iwaithdlr (0);

 iintron ();
 iclose (id_intf1);
 }
 static void int_setup(INST id, unsigned long
 mask) {
 ionintr(id, int_hndlr);
 isetintr(id, I_INTR_VXI_SIGNAL, mask);
 }
 static void vmeint (INST id, unsigned short
 laddr) {
 int reg;
 char *a16_ptr = 0;

 reg = 8;
 a16_ptr = imap (id, I_MAP_A16, 0, 1, 0);
Agilent SICL User’s Guide

Using SICL with VXI 5

Agilent SICL User’s Guide
 /* Cause uhf mux to interrupt: */
 iwpoke ((unsigned short *)(a16_ptr + 0xc000 +
 laddr * 64 + reg), 0x0);
 }
 static void int_hndlr (INST id, long reason,
 long sec) {
 printf (“VME interrupt: reason: 0x%x, sec:
 0x%x\n”, reason,sec);
 intr = 1;
 }
151

152

5 Using SICL with VXI
Agilent SICL User’s Guide

Agilent E2094 SICL User’s Guide for Windows
Agilent SICL User’s Guide
6

Using SICL with RS-232

This chapter shows how to open a communications session and
communicate with a device via an RS-232 connection. The
example programs in this chapter can be found in the following
locations, if the Agilent IO Libraries were installed in the
default directory:

For C/C++: C:\Program Files\Agilent\IO
Libraries\c\samples\

For Visual Basic: C:\Program Files\Agilent\IO
Libraries\vb\samples\

The chapter includes:

• Introduction to RS-232 Interfaces

• Using RS-232 Device Sessions

• Using RS-232 Interface Sessions
153Agilent Technologies

6 Using SICL with RS-232
Introduction to RS-232 Interfaces
154
This section provides an introduction to using SICL with the
RS-232 interface, including:

• ASRL (RS-232) Interfaces Overview

• Selecting an RS-232 Communications Session

• RS-232 SICL Functions
ASRL (RS-232) Interface Overview
This section provides an overview of RS-232 interfaces,
including typical hardware configuration, using IO Config, and
example configuration using SICL.

Typical RS-232 Interface

As shown in the following figure, a typical ASRL (RS-232)
interface consists of a Windows PC with one or more RS-232
COM Ports. Each COM port can be connected to one, and only
one, Serial instrument via an RS-232 cable.
Agilent SICL User’s Guide

Using SICL with RS-232 6

Agilent SICL User’s Guide
Configuring RS-232 Interfaces

RS-232 COM Port 1

Windows PC Serial
Instruments

RS-232 Cable

RS-232 COM Port 2

ASRL Interface (RS-232 COM Ports)
An IO interface can be defined as both a hardware interface
and as a software interface. The purpose of the IO Config utility
is to associate a unique interface name with a hardware
interface.

The IO Libraries use an Interface Name or Logical Unit
Number to identify an interface. This information is passed in
the parameter string of the iopen function call in a SICL
program. IO Config assigns an Interface Name and Logical Unit
Number to the interface hardware, as well as other necessary
configuration values for an interface when the interface is
configured. See the Agilent IO Libraries Installation and
Configuration Guide for Windows for information on IO
Config.
155

156

6 Using SICL with RS-232
Example: Configuring RS-232 Interface

The ASRL (RS-232) interface system in the following figure
consists of a Windows PC with two RS-232 COM ports, each of
which is connected to a single Serial instrument via RS-232
cables. The IO Config utility has been used to assign COM Port 1
a SICL name of COM1 and to assign COM Port 2 a SICL name of
COM2. Since unique names have been assigned by IO Config, you
can now use the SICL iopen command to open the IO paths to
the GPIB instruments as shown in the figure.
RS-232 Communications Sessions

RS-232 COM Port 1

Windows PC Serial
Instruments

RS-232 CableInterface SICL Names

RS-232 COM Port 2

SICL Name

 "COM1"

 "COM2"

SICL Addressing

iopen ("COM1,488")
iopen ("COM2,488")

ASRL Interface (RS-232 COM Ports)

Open IO path to Serial instrument using COM Port 1
Open IO path to Serial instrument using COM Port 2
RS-232 is a Serial interface that is widely used for
instrumentation. Although RS-232 is slow in comparison to
GPIB or VXI, its low cost makes it an attractive solution in many
Agilent SICL User’s Guide

Using SICL with RS-232 6

Agilent SICL User’s Guide
situations. Because SICL for Windows uses the RS-232 facilities
built into the Windows operating system, controlling RS-232
instruments is easy.

After you have configured your system for RS-232
communications, you can start programming using the SICL
functions. Using SICL to communicate with a device via RS-232
is similar to using SICL to communicate via the GPIB interface.
To use SICL, you must first determine the type of
communications session required. An RS-232 communications
session can be either a device session or an interface session.
Commander sessions are not supported on RS-232.

Device Sessions

For direct access to a device, communication is with a device
session. An RS-232 device session should be used when sending
commands and receiving data from an instrument.

Interface Sessions

SICL also allows interface-specific actions, such as setting
device addresses or other interface-specific characteristics. To
do this, you communicate with an interface session. Setting
interface characteristics (such as the baud rate) must be done
with an interface session.

With RS-232, only one device is connected to the interface, so it
may seem like extra work to have both device sessions and
interface sessions. However, structuring the code so that
interface-specific actions are isolated from actions on the
device itself makes programs easier to maintain. This is
especially important if you want to use a program with a similar
device on a different interface, such as GPIB.
157

6 Using SICL with RS-232
RS-232 SICL Functions
158
Table 39 The iserialctrl Functions

Function Name Action

iserialctrl Sets the following characteristics of the RS-232
interface:

Table 40 iserialctrl Sets the State for these RS-232 Characteristics

Request Characteristic Settings

I_SERIAL_BAUD Data rate 2400, 9600, etc.

I_SERIAL_PARITY Parity I_SERIAL_PAR_NONE
I_SERIAL_PAR_IGNORE
I_SERIAL_PAR_EVEN
I_SERIAL_PAR_ODD
I_SERIAL_PAR_MARK
I_SERIAL_PAR_SPACE

I_SERIAL_STOP Stop bits / frame I_SERIAL_STOP_1
I_SERIAL_STOP_2

I_SERIAL_WIDTH Data bits / frame I_SERIAL_CHAR_5
I_SERIAL_CHAR_6
I_SERIAL_CHAR_7
I_SERIAL_CHAR_8

I_SERIAL_READ_BUFS
Z

Receive buffer size Number of bytes

I_SERIAL_DUPLEX Data traffic I_SERIAL_DUPLEX_HALF
I_SERIAL_DUPLEX_FULL

I_SERIAL_FLOW_CTRL Flow control I_SERIAL_FLOW_NONE
I_SERIAL_FLOW_XON
I_SERIAL_FLOW_RTS_CT
S
I_SERIAL_FLOW_DTR_D
SR
Agilent SICL User’s Guide

Using SICL with RS-232 6

Agilent SICL User’s Guide
I_SERIAL_READ_EOI EOI indicator for reads I_SERIAL_EOI_NONE
I_SERIAL_EOI_BIT8
I_SERIAL_EOI_CHAR |
(n)

I_SERIAL_WRITE_EOI EOI indicator for writes I_SERIAL_EOI_NONE
I_SERIAL_EOI_BIT8

I_SERIAL_RESET Interface state (none)

Table 41 iserialstat

Function Name Action

iserialstat Gets the following information about the RS-232
interface:

Table 42 iserialstat Captures Status for these RS-232 Characteristics

Request Characteristic Value

I_SERIAL_BAUD Data rate 2400, 9600, etc.

I_SERIAL_PARITY Parity I_SERIAL_PAR_*

I_SERIAL_STOP Stop bits / frame I_SERIAL_STOP_*

I_SERIAL_WIDTH Data bits / frame I_SERIAL_CHAR_*

I_SERIAL_DUPLEX Data traffic I_SERIAL_DUPLEX_*

I_SERIAL_MSL Modem status
lines

I_SERIAL_DCD
I_SERIAL_DSR
I_SERIAL_CTS
I_SERIAL_RI
I_SERIAL_TERI
I_SERIAL_D_DCD
I_SERIAL_D_DSR
I_SERIAL_D_CTS

Table 40 iserialctrl Sets the State for these RS-232 Characteristics

Request Characteristic Settings
159

160

6 Using SICL with RS-232
I_SERIAL_STAT Misc. status I_SERIAL_DAV
I_SERIAL_TEMT
I_SERIAL_PARITY
I_SERIAL_OVERFLOW
I_SERIAL_FRAMING
I_SERIAL_BREAK

I_SERIAL_READ_BUFS
Z

Receive buffer size Number of bytes

I_SERIAL_READ_DAV Data available Number of bytes

I_SERIAL_FLOW_CTRL Flow control I_SERIAL_FLOW_*

I_SERIAL_READ_EOI EOI indicator for
reads

I_SERIAL_EOI*

I_SERIAL_WRITE_EOI EOI indicator for
writes

I_SERIAL_EOI*

Table 43 Other RS-232 Functions

Function Name Action

iserialmclctrl Sets or Clears the modem control lines. Modem control lines
are either I_SERIAL_RTS or I_SERIAL_DTR.

iserialmclstat Gets the current state of the modem control lines.

iserialbreak Sends a break to the instrument. Break time is 10 character
times, with a minimum time of 50 milliseconds and a
maximum time of 250 milliseconds.

Table 42 iserialstat Captures Status for these RS-232 Characteristics

Request Characteristic Value
Using RS-232 Device Sessions
An RS-232 device session allows direct access to a device,
regardless of the type of interface to which the device is
connected. The specifics of the interface are hidden from the
user.
Agilent SICL User’s Guide

Using SICL with RS-232 6

Agilent SICL User’s Guide
Addressing an RS-232 Device

To create a device session, specify the interface logical unit or
symbolic name, followed by a device logical address of 488. The
device address of 488 tells SICL that communication is with a
device that uses the IEEE-488.2 standard command structure.

For other interfaces (such as GPIB), SICL supports the concept
of primary and secondary addresses. However, for RS-232, the
only primary address supported is 488. SICL does not support
secondary addressing on RS-232 interfaces.
NOTE If a device does not “speak” IEEE-488.2, you can still use SICL to
communicate with the device. However, some SICL functions that work
only with device sessions may not operate correctly. See “SICL Functions
for RS-232 Device Sessions” for details.
The interface logical unit and symbolic name are defined by
running the IO Config utility. To open IO Config, click the
Agilent IO Libraries Control IO icon on the taskbar and then
click Run IO Config. See the Agilent IO Libraries Installation and
Configuration Guide for Windows for information on IO
Config.

Some example addresses for RS-232 device sessions:

COM1,488
serial,488

Examples of opening a device session with an RS-232 device:

• C example:

INST dmm;
dmm = iopen (“com1,488”);

• Visual Basic example:

Dim dmm As Integer
dmm = iopen (“com1,488”
161

162

6 Using SICL with RS-232
SICL Functions for RS-232 Device Sessions

This section describes how some SICL functions are
implemented for RS-232 device sessions. There are specific
device session interrupts that can be used.

Table 44 SICL Functions for RS-232 Device Sessions

Function Description

iprintf, iscanf, ipromptf SICL’s formatted I/O routines depend on the concept
of an EOI indicator. Since RS-232 does not define an
EOI indicator, SICL uses the newline character (\n) by
default.

You cannot change this with a device session.
However, you can use the iserialctrl function with an
interface session. See “SICL Functions for RS-232
Interface Sessions” in this chapter for details.

ireadstb Sends the IEEE 488.2 command *STB? to the
instrument, followed by the newline character (\n). It
then reads the ASCII response string and converts it to
an 8-bit integer. This will work only if the instrument
understands this command.

itrigger Sends the IEEE 488.2 command *TRG to the
instrument, followed by the newline character (\n).
This will work only if the instrument understands this
command.

iclear Sends a break, aborts any pending writes, discards any
data in the receive buffer, resets any flow control
states (such as XON/XOFF), and resets any error
conditions. To reset the interface without sending a
break, use: iserialctrl (id, I_SERIAL_RESET, 0)

ionsrq Installs a service request handler for this session.
Service requests are supported for both device
sessions and interface sessions. See “SICL Functions
for RS-232 Interface Sessions” in this chapter for
details.
Agilent SICL User’s Guide

Using SICL with RS-232 6

Agilent SICL User’s Guide
Example Device Session Programs

This section contains two example programs for RS-232
interface device session programming.

Example: RS-232 Device Session (C)

This example program takes a measurement from a DVM using a
SICL device session. This example program was tested with a
34401A Digital Voltmeter. When you run the program with a
Serial connection to the 34401A, be sure that DTR/DSR flow
control is set for the Serial port. Otherwise, the program will
appear not to work.

/* ser_dev.c
This example program takes a measurement from a
DVM using a SICL device session.*/

#include <sicl.h>
#include <stdio.h>
#include <stdlib.h>

#if !defined(WIN32)
#define LOADDS __loadds
#else
#define LOADDS
#endif

void SICLCALLBACK LOADDS error_handler (INST id,
 int error) {

 printf (“Error: %s\n”, igeterrstr (error));
 exit (1);
 }

main()
 {
 INST dvm;
 double res;

 #if defined(__BORLANDC__) &&
 !defined(__WIN32__
 _InitEasyWin();/*Required for Borland
 EasyWin*/
 #endif
163

164

6 Using SICL with RS-232
 /* Log message and terminate on error */
 ionerror (error_handler);

 /* Open the multimeter session */
 dvm = iopen (“COM1,488”);
 itimeout (dvm, 10000);

 /* Prepare the multimeter for measurements */
 iprintf (dvm,”*RST\n”);
 iprintf (dvm,”SYST:REM\n”);

 /* Take a measurement */
 iprintf (dvm,”MEAS:VOLT:DC?\n”);

 /* Read the results */
 iscanf (dvm,”%lf”,&res);

 /* Print the results */
 printf (“Result is %f\n”,res);

 /* Close the voltmeter session */
 iclose (dvm);

 /* This call is a no-op for WIN32 programs */
 _siclcleanup();

 return 0;
 }

Example: RS-232 Device Session (Visual Basic)

This example program takes a measurement from a DVM using a
SICL device session. This example program was tested with a
34401A Digital Voltmeter. When you run the program with a
Serial connection to the 34401A, be sure that DTR/DSR flow
control is set for the Serial port. Otherwise, the program will
appear not to work.

Option Explicit
'''
' ser_dev.bas
' This example program takes a measurement from
‘ a DVM using a SICL RS-232 device session.
'''
Agilent SICL User’s Guide

Using SICL with RS-232 6

Agilent SICL User’s Guide
Sub Main()

 Dim dvm As Integer
 Dim res As Double
 Dim argcount As Integer

 ' Open the multimeter session
 ' "COM1" is the SICL Interface name as defined
 ‘ in:
 ' Start | Programs | Agilent IO Libraries | IO
 ‘ Config
 ' Change this to the SICL Name you have defined
 dvm = iopen("COM1,488")

 ' Set timeout to 10 sec
 Call itimeout(dvm, 10000)

 ' Prepare the multimeter for measurements
 argcount = ivprintf(dvm, "*RST" + Chr$(10),
 0&)
 argcount = ivprintf(dvm, "SYST:REM" +
 Chr$(10), 0&)

 ' Take a measurement
 argcount = ivprintf(dvm, "MEAS:VOLT:DC?" +
 Chr$(10))

 ' Read the results
 argcount = ivscanf(dvm, "%lf", res)

 ' Print the results
 MsgBox "Result is " + Format(res),
 vbExclamation

 ' Close the multimeter session
 Call iclose(dvm)

 ' Tell SICL to cleanup for this task
 Call siclcleanup

End Sub
165

6 Using SICL with RS-232
Using RS-232 Interface Sessions
166
RS-232 interface sessions can be used to get or set the
characteristics of the RS-232 interface. Examples of some of
these characteristics are baud rate, parity, and flow control.
There are specific interface session interrupts that can be used.

Addressing RS-232 Interfaces

To create an interface session on RS-232, specify the interface
logical unit or symbolic name in the addr parameter of the
iopen function. The interface logical unit and symbolic name
are defined by running the IO Config utility. To open IO Config,
click the Agilent IO Libraries Control IO icon on the taskbar and
then click Run IO Config. See the Agilent IO Libraries
Installation and Configuration Guide for Windows for
information on IO Config. Some example addresses for RS-232
interface sessions follow.

These examples open an interface session with the RS-232
interface.

• C example:

INST intf;
intf = iopen (“COM1”);

• Visual Basic example:

Dim intf As Integer
intf = iopen (“COM1”)

SICL Functions for RS-232 Interface Sessions

This section describes how some SICL functions are
implemented for RS-232 interface sessions.

Table 45 Sample RS-232 Addresses

COM1 An interface symbolic name

serial An interface symbolic name

1 An interface logical unit
Agilent SICL User’s Guide

Using SICL with RS-232 6

Agilent SICL User’s Guide
Table 46 Implementing Some SICL Functions for RS-232

Functions Description

iwrite, iread All I/O functions (non-formatted and formatted) work the
same as for device sessions. However, it is recommended
that all I/O be performed with device sessions to make your
programs easier to maintain.

ixtrig Provides a method of triggering using either the DTR or RTS
modem status line. This function clears the specified
modem status line, waits 10 milliseconds, then sets it
again. Specifying I_TRIG_STD is the same as specifying
I_TRIG_SERIAL_DTR.

itrigger Pulses the DTR modem control line for 10 milliseconds.

iclear Sends a break, aborts any pending writes, discards any data
in the receive buffer, resets any flow control states (such as
XON/XOFF), and resets any error conditions. To reset the
interface without sending a break, use: iserialctrl (id,
I_SERIAL_RESET, 0)

ionsrq| Installs a service request handler for this session. The
concept of service request (SRQ) originates from GPIB. On a
GPIB interface, a device can request service from the
controller by asserting a line on the interface bus.

RS-232 does not have a specific line assigned as a service
request line. However, you can assign one of the modem
status lines (RI, DCD, CTS, or DSR) as the service request
line by running the IO Config utility.

Any transition on the designated service request line will
cause an SRQ handler in your program to be called. (Be sure
not to set the SRQ line to CTS or DSR if you are also using
that line for hardware flow control.)

Service requests are supported for both device sessions
and interface sessions. When the designated SRQ line
changes state, the RS-232 driver calls all SRQ handlers
installed by either device sessions or interface sessions.
167

168

6 Using SICL with RS-232
iserialctrl Sets the characteristics of the Serial interface. The
following requests are clarified:

I_SERIAL_DUPLEX: The duplex setting determines whether
data can be sent and received simultaneously. Setting full
duplex allows simultaneous send and receive data traffic.
Setting half duplex (the default) will cause reads and writes
to be interleaved, so that data is flowing in only one
direction at any given time. (The exception to this is if
XON/XOFF flow control is used.)

I_SERIAL_READ_BUFSZ: The default read buffer size is
2048 bytes.

I_SERIAL_RESET: Performs the same function as the iclear
function on an interface session, except that a break is not
sent.

iserialstat Gets the characteristics of the Serial interface. The
following requests are clarified:

I_SERIAL_MSL: Gets the state of the modem status line.
Because of the way Windows supports RS-232, the
I_SERIAL_RI bit will never be set. However, the
I_SERIAL_TERI bit will be set when the RI modem status
line changes from high to low.

I_SERIAL_STAT: Gets the status of the transmit and receive
buffers and the errors that have occurred since the last time
this request was made. Only the error bits
(I_SERIAL_PARITY, I_SERIAL_OVERFLOW,
I_SERIAL_FRAMING, and I_SERIAL_BREAK) are cleared.
The I_SERIAL_READ_DAV and I_SERIAL_TEMT bits reflect
the status of the buffers at all times.

I_SERIAL_READ_DAV: Gets the current amount of data
available for reading. This shows how much data is in
Windows’ receive buffer, not how much data is in the buffer
used by the formatted input functions such as iscanf.

iserial-mclctrl Controls the modem control lines RTS and DTR. If one of
these lines is being used for flow control, you cannot set
that line with this function.

Table 46 Implementing Some SICL Functions for RS-232
Agilent SICL User’s Guide

Using SICL with RS-232 6

Agilent SICL User’s Guide
iserial-mclstat Determines the current state of the modem control lines. If
one of these lines is being used for flow control, this
function may not give the correct state of that line.

Table 46 Implementing Some SICL Functions for RS-232
169

170

6 Using SICL with RS-232
Example Interface Sessions Programs

This section contains two example programs for RS-232
interface device session programming.

Example: RS-232 Interface Session (C)

/*ser_intf.c
This program gets the current configuration of
the serial port, sets it to 9600 baud, no
parity, 8 data bits, and 1 stop bit, and prints
the old configuration.*/

#include <stdio.h>
#include <sicl.h>

main()
 {
 INST intf; /* interface session id */
 unsigned long baudrate, parity, databits,
 stopbits;
 char *parity_str;

 #if defined(__BORLANDC__) &&
 !defined(__WIN32__)
 _InitEasyWin(); /* reqd for Borland
 EasyWin*/
 #endif

 /* Log message and exit program on error */
 ionerror (I_ERROR_EXIT);

 /* open RS-232 interface session */
 intf = iopen (“COM1”);
 itimeout (intf, 10000);

 /* get baud rate, parity, data and stop bits */
 iserialstat (intf, I_SERIAL_BAUD, &baudrate);
 iserialstat (intf, I_SERIAL_PARITY, &parity);
 iserialstat (intf, I_SERIAL_WIDTH, &databits);
 iserialstat (intf, I_SERIAL_STOP, &stopbits);

 /* determine string to display for parity */
 if (parity == I_SERIAL_PAR_NONE) parity_str =
 “NONE”;
Agilent SICL User’s Guide

Using SICL with RS-232 6

Agilent SICL User’s Guide
 else if (parity == I_SERIAL_PAR_ODD)
 parity_str = “ODD”;
 else if (parity == I_SERIAL_PAR_EVEN)
 parity_str = “EVEN”;
 else if (parity == I_SERIAL_PAR_MARK)
 parity_str = “MARK”;
 else /*parity == I_SERIAL_PAR_SPACE*/
 parity_str = “SPACE”;

 /* set to 9600,NONE,8,1 */
 iserialctrl (intf, I_SERIAL_BAUD, 9600);
 iserialctrl (intf, I_SERIAL_PARITY,
 I_SERIAL_PAR_NONE);
 iserialctrl (intf, I_SERIAL_WIDTH,
 I_SERIAL_CHAR_8);
 iserialctrl (intf, I_SERIAL_STOP,
 I_SERIAL_STOP_1);

 /* Display previous settings */
 printf(“Old settings: %5ld,%s,%ld,%ld\n”,
 baudrate, parity_str, databits, stopbits);

 /* close port */
 iclose (intf);

 /* This call is a no-op for WIN32 programs. */
 _siclcleanup();

 return 0;
 }

Example: RS-232 Interface Session (Visual Basic)

Option Explicit
'''
' set_intf.bas
' This program (1) gets the current
‘ configuration of the ' serial port; (2) sets
‘ it to 9600 baud, no parity, 8 data bits, and 1
‘ stop bit;(3) prints the old configuration
'''

Sub Main()
171

172

6 Using SICL with RS-232
 Dim intf As Integer
 Dim baudrate As Long
 Dim parity As Long
 Dim databits As Long
 Dim stopbits As Long
 Dim parity_str As String
 Dim msg_str As String

 ' open RS-232 interface session
 ' "COM1" is the SICL Interface name as defined
 ‘ in:
 ' Start | Programs | Agilent IO Libraries | IO
 ‘ Config
 ' Change this to the SICL Name you have
 ‘ defined in IO Config

 intf = iopen("COM1")

 Call itimeout(intf, 10000)

 ' get baud rate, parity, data bits, and stop
 ‘ bits
 Call iserialstat(intf, I_SERIAL_BAUD,
 baudrate)
 Call iserialstat(intf, I_SERIAL_PARITY,
 parity)
 Call iserialstat(intf, I_SERIAL_WIDTH,
 databits)
 Call iserialstat(intf, I_SERIAL_STOP,
 stopbits)

 ' determine string to display for parity
 Select Case parity
 Case I_SERIAL_PAR_NONE
 parity_str = "NONE"
 Case I_SERIAL_PAR_ODD
 parity_str = "ODD"
 Case I_SERIAL_PAR_EVEN
 parity_str = "EVEN"
 Case I_SERIAL_PAR_MARK
 parity_str = "MARK"
Agilent SICL User’s Guide

Using SICL with RS-232 6

Agilent SICL User’s Guide
 Case Else
 parity_str = "SPACE"
 End Select

 ' set to 9600,NONE,8, 1
 Call iserialctrl(intf, I_SERIAL_BAUD, 9600)

 Call iserialctrl(intf, I_SERIAL_PARITY,_
 I_SERIAL_PAR_NONE)
 Call iserialctrl(intf, I_SERIAL_WIDTH,_
 I_SERIAL_CHAR_8)
 Call iserialctrl(intf, I_SERIAL_STOP,
 I_SERIAL_STOP_1)

 ' display previous settings
 msg_str = "Old settings: " & _
 Str$(baudrate) & "," & _
 parity_str & "," & _
 Str$(databits) & "," & _
 Str$(stopbits)
 MsgBox msg_str, vbExclamation

 ' close port
 Call iclose(intf)

 ' Tell SICL to cleanup for this task
 Call siclcleanup

End Sub
173

174

6 Using SICL with RS-232
Agilent SICL User’s Guide

Agilent E2094 SICL User’s Guide for Windows
Agilent SICL User’s Guide
7
Using SICL with LAN

This chapter shows how to open a communications session and
communicate with devices over a Local Area Network (LAN).
The example programs in this chapter can be found in the
following locations, if the Agilent IO Libraries were installed in
the default directory:

For C/C++: C:\Program Files\Agilent\IO
Libraries\c\samples\

For Visual Basic: C:\Program Files\Agilent\IO
Libraries\vb\samples\

 The chapter includes:

• LAN Interfaces Overview

• Using LAN_gatewayed Sessions

• Using LAN Interface Sessions

• Using Locks, Threads, and Timeouts
175Agilent Technologies

7 Using SICL with LAN
Introduction to LAN Interfaces
176
This section provides an introduction to using SICL with Local
Area Network (LAN) interfaces, including:

• LAN Interfaces Overview

• Configuring LAN Client Interfaces

• Configuring LAN Server Interfaces
Agilent SICL User’s Guide

Using SICL with LAN 7
LAN Interfaces Overview
Agilent SICL User’s Guide
A LAN extends control of instrumentation beyond the limits of
typical instrument interfaces. LAN is only supported with
32-bit SICL on Windows 98SE, Windows Me, Windows 2000,
Windows XP, and Windows NT 4.0. LAN is only supported with
32-bit Visual Basic version 4.0 and above. Also, the GPIO
interface is not supported with SICL over LAN.

The LAN software provided with SICL allows instrumentation
control over a LAN. By using standard LAN connections,
instrument control can be driven from a computer that does not
have a special interface for instrument control. To start or stop
the LAN server, see the Agilent IO Libraries Installation and
Configuration Guide for Windows.
LAN Client/Server Model
The LAN software provided with SICL uses the client/server
model of computing. Client/server computing refers to a model
where an application, the client, does not perform all the
necessary tasks of the application itself. Instead, the client
makes requests of another computing device, the server, for
certain services. Examples that you may have in your workplace
include shared file servers, print servers, or database servers.

The use of LAN for instrument control also provides other
advantages associated with client/server computing, such as
resource sharing by multiple applications/people within an
organization, or distributed control, where the computer
running the application controlling the devices need not be in
the same room (or even the same building) as the devices.
177

7 Using SICL with LAN
LAN Hardware Architecture
178
As shown in the following figure, a LAN client computer system
makes SICL requests over the network to a LAN server, a
Windows PC, or an E5810 LAN/GPIB Gateway).
The LAN server is connected to the instrumentation or devices
that must be controlled. Once the LAN server has completed the
requested operation on the instrument or device, the LAN
Agilent SICL User’s Guide

Using SICL with LAN 7

Agilent SICL User’s Guide
server sends a reply to the LAN client. This reply contains any
requested data and status information that indicates whether
the operation was successful.

The LAN server acts as a gateway between the LAN that the
client system supports, and the instrument-specific interface
that the device supports. Due to the LAN server’s gateway
functionality, we refer to devices or interfaces that are accessed
via one of these LAN-to-instrument_interface gateways as being
a LAN-gatewayed device or a LAN-gatewayed interface.
LAN Software Architecture
As shown in the following figure, the client system contains the
LAN client software and the LAN software (TCP/IP) needed to
access the server (gateway). The gateway contains the LAN
server software, LAN (TCP/IP) software, and the instrument
driver software needed to communicate with the client and to
control the instruments or devices connected to the gateway.
Application

SICL

LAN Client

TCP

IP

LAN Interface

Client SICL System Server (Gateway) Instrument

LAN Server

 TCP
 Instrument
 IP Driver

LAN Interface

Instrument
Firmware

GPIB bus (or other)
179

7 Using SICL with LAN
LAN Networking Protocols
180
The LAN software is built on top of standard LAN networking
protocols. There are two LAN networking protocols provided
with the Agilent IO Libraries software. You can use one or both
of these protocols when configuring your systems (via Agilent
IO Libraries configuration) to use SICL over LAN.

• SICL-LAN Protocol is a networking protocol developed by
Agilent Technologies. This LAN networking protocol is the
default choice in the Agilent IO Libraries configuration when
configuring the LAN client. The SICL LAN protocol supports
SICL operations over LAN/GPIB Gateways (e.g., E5810) and
PCs running the Agilent LAN Server. It supports GPIB,
RS-232, and USB interfaces.

• VXI-11 (TCP/IP Instrument Protocol) is a networking
protocol developed by the VXIbus Consortium based on the
SICL LAN Protocol that permits interoperability of LAN
software from different vendors who meet the VXIbus
Consortium standards.

When using either of these networking protocols, the LAN
software uses the TCP/IP protocol suite to pass messages
between the LAN client and the LAN server. The server accepts
device I/O requests over the network from the client and then
proceeds to execute those I/O requests on a local interface
(GPIB, etc.).

By default, the LAN client supports both protocols by
automatically detecting the protocol the server is using. When a
SICL iopen call is performed, the LAN client driver first tries to
connect using the SICL-LAN protocol. If that fails, the driver
will try to connect using the VXI-11 protocol.

If you want to control the protocol used, you can configure
more than one LAN client interface and set each interface to a
different protocol. The protocol used will then depend on the
interface you are connecting through. Thus, you can have more
than one SICL-LAN and/or VXI-11 interface configured for your
system.
Agilent SICL User’s Guide

Using SICL with LAN 7

Agilent SICL User’s Guide
In SICL, the programmer can override the configuration
settings by specifying the protocol in the iopen string. Some
examples are:

• iopen("lan[machineName]:gpib0,1") will use the configured
default protocol. If AUTO is configured, SICL-LAN protocol
will be attempted. If that is not supported, VXI-11 protocol
will be used.

• iopen("lan;auto[machineName]:gpib0,1") will automatically
select the protocol (SICL-LAN if available and VXI-11
otherwise).

• iopen("lan;sicl-lan[machineName]:gpib0,1") will use
SICL-LAN protocol.

• iopen("lan;vxi-11[machineName]:gpib0,1") will use VXI-11
protocol.

The LAN client also supports TCP/IP socket reads and writes.
To open a socket session, use
iopen("lan,socketNbr[machineName]"). For example,
iopen("lan,7777[machineName]") will open a socket connection
for socket number 7777 on 'machineName.'

When you have configured VISA LAN client interfaces, you can
then use the interface name specified during configuration in
an iopen call of your program. However, the LAN server does
not support simultaneous connections from LAN clients using
the SICL-LAN Protocol and from LAN clients using VXI-11
(TCP/IP Instrument Protocol).

There are four LAN servers that can be used with SICL: the
E2050 LAN/GPIB Gateway, E5810 LAN/GPIB Gateway, an HP
Series 700 computer running HP-UX, or a PC running Windows
98SE/Me/2000/XP/NT. To use this capability, the LAN server on
the PC must have a local GPIB, RS-232, and/or USB interface
configured for I/O.
LAN Clients and Threads
You can use multi-threaded designs (where SICL calls are made
from multiple threads) in WIN32 SICL applications over LAN.
However, only one thread is permitted to access the LAN driver
at a time. This sequential handling of individual threads by the
181

182

7 Using SICL with LAN
LAN driver prevents multiple threads from colliding or
overwriting one another. Requests are handled sequentially
even if they are intended for different LAN servers.

Use multiple processes to process concurrent threads
simultaneously with SICL over LAN. see Chapter 3,
“Programming with SICL” for more information on using
threads in SICL applications. Also, see “Using Locks and
Threads Over LAN” in this chapter for information on using
locks in multi-threaded applications.
LAN Servers
SICL includes software required to allow a Windows
98SE/Me/2000/XP/NT PC to act as a
LAN-to-instrument_interface gateway. To use this capability,
the PC must have a local interface configured for I/O. The
supported interfaces are GPIB, RS-232, and USB with the
SICL-LAN Protocol, and GPIB with the VXI-11 Protocol. The
LAN server does not support VXI operations with either
protocol.

Timing of operations performed remotely over a network will be
different from timing of operations performed locally. The
extent of the timing difference will, in part, depend on the
bandwidth of, and the traffic on, the network being used.
SICL LAN Configuration and Performance
As with other client/server applications on a LAN, when
deploying an application that uses SICL over LAN,
consideration must be given to the performance and
configuration of the network to which the client and server will
be attached. If the network to be used is not a dedicated LAN or
otherwise isolated via a bridge or other network device, current
use of the LAN must be considered.

Depending on the amount of data to be transferred over the
LAN via the SICL application, performance problems could be
experienced by the SICL application or other network users if
Agilent SICL User’s Guide

Using SICL with LAN 7

Agilent SICL User’s Guide
sufficient bandwidth is not available. This is not unique to SICL
over LAN, but is a general design consideration when deploying
any client/server application.

If you have questions concerning the ability of your network to
handle SICL traffic, consult with your network administrator or
network equipment providers. If you are connecting to a VXI-11
device, you can configure a VXI-11 interface (rather than AUTO)
in IO Config and connect through it to achieve slightly better
iopen performance.

If an attempt is made to iopen a session on a LAN host that is
turned off or not connected to the network, it may take up to
several minutes for the iopen to return a failure. This delay is
not affected by any of the timeout parameters that can be
configured in SICL or by the IO Config utility.
SICL LAN Functions
This table summarizes the SICL functions for the LAN interface.

Table 47 SICL LAN Functions

Function Name Action

ilantimeout Sets LAN timeout value.

ilangettimeout Returns LAN timeout value.

igetgatewaytype Indicates whether the session is via a LAN gateway.
183

7 Using SICL with LAN
Configuring LAN Client Interfaces
184
An IO interface can be defined as both a hardware interface
and as a software interface. The purpose of the IO Config utility
is to associate a unique interface name with a hardware
interface.
Using IO Config
The IO Libraries use an Interface Name or Logical Unit
Number to identify an interface. This information is passed in
the parameter string of the viOpen function call in a VISA
program or in the iopen function call in a SICL program. IO
Config assigns an Interface Name and Logical Unit Number to
the interface hardware, as well as other necessary
configuration values for an interface when the interface is
configured. See the Agilent IO Libraries Installation and
Configuration Guide for Windows for details on IO Config.

Example: Configuring LAN Client (Gateway) Interface

The LAN client interface system in the following figure consists
of a Windows PC with a LAN card, an E5810 LAN/GPIB
gateway, two GPIB instruments, and an RS-232 instrument. For
this system, the IO Config utility has been used to assign the
LAN card a SICL name of lan.

With this name assigned to the interface, SICL addressing is as
shown in the figure. Since a unique name has been assigned by
IO Config, you can now use the iopen command to open the I/O
paths to the GPIB instruments as shown in the figure.
Agilent SICL User’s Guide

Using SICL with LAN 7

Agilent SICL User’s Guide
Example: Configuring LAN Client (LAN) Interface

The LAN client interface system in the following figure consists
of a Windows PC with a LAN card and three LAN instruments.
Instrument1 and instrument2 are VXI-11.2 (GPIB Emulation)
instruments and instrument3 is a VXI-11.3 LAN instrument.
185

186

7 Using SICL with LAN
For this system, the IO Config utility has been used to assign the
LAN card a SICL name of lan. For the addressing examples,
instrument1 has been addressed by its machine name,
instrument 2 has been addressed by its IP address, and
instrument3 by its LAN name (inst0).

Since unique names have been assigned by IO Config, you can
now use the iopen command to open the I/O paths to the GPIB
instruments as shown in the figure.
5

LAN Card

Windows PC LAN InstrumentsInterface SICL Names

SICL Name

 "lan"

SICL Addressing (Using LAN Client)

iopen ("lan [instrument1]:gpib0,5")
iopen ("lan [1.2.3.4]:gpib0,3")
iopen ("lan [instrument3]:inst0")

LAN Client (LAN)

Open IO path to LAN instrument at address 5
Open IO path to LAN instrument at address 3
Open IO path to LAN instrument3

LAN

instrument1 machine name

gpib0,5

3

1.2.3.4 IP address

gpib0,3

instrument3

inst0

VXI-11.2
 GPIB Emulation

VXI-11.2
 GPIB Emulation

VXI-11.3
 LAN instrument
Agilent SICL User’s Guide

Using SICL with LAN 7
Configuring LAN Server Interfaces
Agilent SICL User’s Guide
An IO interface can be defined as both a hardware interface
and as a software interface. The purpose of the IO Config utility
is to associate a unique interface name with a hardware
interface.
Using IO Config
The IO Libraries use an Interface Name or Logical Unit
Number to identify an interface. This information is passed in
the parameter string of the viOpen function call in a VISA
program or in the iopen function call in a SICL program. IO
Config assigns an Interface Name and Logical Unit Number to
the interface hardware, as well as other necessary
configuration values for an interface when the interface is
configured. See the Agilent IO Libraries Installation and
Configuration Guide for Windows for details on IO Config.

Example: Configuring LAN Server Interface

The LAN Server interface system in the following figure consists
of a Windows PC acting as a LAN client, a second PC acting as a
LAN server, and a GPIB instrument. The IO Config utility has
been used to assign the LAN card a SICL name of lan. Also, the
GPIB card in the LAN server PC has been assigned SICL name
of gpib0. The LAN server PC has been assigned a name of
machine2. Since unique names have been assigned by IO Config,
you can now use the iopen command to open the IO paths to the
GPIB instruments as shown in the figure.
187

7 Using SICL with LAN
188 Agilent SICL User’s Guide

Using SICL with LAN 7
Using LAN-gatewayed Sessions
Agilent SICL User’s Guide
This section provides guidelines to using LAN-gatewayed
Sessions, including:

• Addressing Guidelines

• SICL Function Support

• Example Programs
Addressing Guidelines
Communicating with a device over a LAN via a
LAN-to-instrument_interface gateway preserves the
functionality of the gatewayed-interface, with a few exceptions.
Thus, most operations over an interface (such as GPIB
connected directly to your controller), can also be performed
over a remote interface via the LAN gateway.

The only portions of your application that must be changed are
the addresses passed to the iopen calls (unless those addresses
are stored in a configuration file, in which case no changes to
the application itself are required). The address used for a local
interface must have a LAN prefix added so the SICL software
knows to direct the request to a LAN server on the network.
Creating a LAN-gatewayed Session
To create a LAN-gatewayed session, specify the LAN’s interface
logical unit or interface name, the IP address or hostname of the
server machine, and the address of the remote interface or
device in the addr parameter of the iopen function. The
interface logical unit and interface name are defined by running
the IO Config utility.

To open the the IO Config utility, click the Agilent IO Libraries
Control IO icon on the taskbar and then click Run IO Config. See
the Agilent IO Libraries Installation and Configuration Guide
for Windows for information on running IO Config.
189

190

7 Using SICL with LAN
Example: LAN-gatewayed Addressing

Some examples of LAN-gatewayed addresses follow. If you are
using the IP address of the server machine rather than the
hostname, you must use the bracket (not the comma) notation.

lan,128.10.0.3:gpib (Incorrect)
lan[128.10.0.3]:gpib (Correct)

Table 48 Examples of LAN Addressing

Address Description

lan[instserv]:GPIB,7 A device address corresponding to the device
at primary address 7 on the GPIB interface
attached to the machine named instserv. The
default LAN protocol set when the LAN
interface was configured with IO Config will
be used.

lan;vxi-11[instserv]:GPIB,7 A device address corresponding to the device
at primary address 7 on the GPIB interface
attached to the machine named instserv. The
VXI-11 protocol (TCP/IP Instrument protocol)
will be used.

lan;sicl-lan [instserv]:GPIB,7 A device address corresponding to the device
at primary address 7 on the GPIB interface
attached to a machine named instserv. The
SICL-LAN protocol will be used.

lan;auto[instserv]:GPIB,7 A device address corresponding to the device
at primary address 7 on the GPIB interface
attached to a machine named instserv. The
SICL-LAN protocol will be used if the server
supports it. Otherwise, the VXI-11protocol will
be used.

lan;default[instserv]:GPIB,7 A device address corresponding to the device
at primary address 7 on the GPIB interface
attached to a machine named instserv. The
default LAN protocol set when the lan
interface was configured with IO Config will
be used. This is the same as not specifying a
protocol.
Agilent SICL User’s Guide

Using SICL with LAN 7

Agilent SICL User’s Guide
lan[instserv.agilent.com]:gpib,7 A device address corresponding to the device
at primary address 7 on the gpib interface
attached to the machine named instserv in
the agilent.com domain. (Fully qualified
domain names may be used.)

lan1[128.10.0.3]:GPIB0,3,2 A device address corresponding to the device
at primary address 3, secondary address 2, on
the GPIB0 interface attached to the machine
with IP address 128.10.0.3.

lan1[instserv]:GPIB2 An interface address corresponding to the
GPIB2 interface attached to the machine
named instserv.

30,instserv:gpib,3,2 A device address corresponding to the device
at primary address 3, secondary address 2, on
the gpib interface attached to the machine
named instserv. (30 is the default logical unit
for LAN.)

lan[instserv]:GPIB,cmdr A commander session with the GPIB interface
attached to the machine named instserv
(assuming the server supports GPIB
commander sessions).

lan[instserv]:COM1 An interface address corresponding to the
RS-232 COM1 interface attached to the
machine named instserv.

lan[instserv]:COM1,488 A device address corresponding to an RS-232
device attached to the machine named
instserv.

lan[instserv]:usb0[2391::1031::
SN_041001::0]

A device address corresponding to a USB
device attached to the machine named
instserv.

lan[instserv]:UsbDevice1 A device address corresponding to a USB
device attached to the machine named
instserv. The alias name UsbDevice1 is
defined on the machine named instserv.

Table 48 Examples of LAN Addressing
191

7 Using SICL with LAN
SICL Function Support
192
This table shows the relationship between the address passed to
iopen, the session type returned by igetsesstype, the interface
type returned by igetintftype, and the value returned by
igetgatewaytype.

Table 49 Relationships Between SICL Functions

Address Session Type Interface Type Gateway Type

lan I_SESS_INTF I_INTF_LAN I_INTF_NONE

lan[instserv]:gpib0 I_SESS_INTF I_INTF_GPIB I_INTF_LAN

lan[instserv]:gpib0,7 I_SESS_DEV I_INTF_GPIB I_INTF_LAN

gpib0 I_SESS_INTF I_INTF_GPIB I_INTF_NONE

gpib0,7 I_SESS_DEV I_INTF_GPIB I_INTF_NONE
Remote Interface Support
A gatewayed-session to a remote interface provides the same
SICL function support as if the interface was local, with the
following exceptions or qualifications.

For the igetdevaddr, igetintftype, and igetsesstype functions
to be supported with the VXI-11 (TCP/IP Instrument Protocol),
the remote address strings must follow the VXI-11 naming
conventions – gpib0, gpib1, etc. For example:

Table 50 Exceptions to Remote Interface Support

Type of Functions SICL Functions NOT Supported

SICL functions not
supported over LAN
using either protocol

iblockcopy, imap, imapinfo, ipeek, ipoke,
ipopfifo,ipushfifo, iunmap, iblockmovex, imapx,
iunmapx, ipeekx, ipokex, iunmapx

SICL functions, in
addition to those listed
above, not supported
with the VXI-11 protocol

All RS-232/serial specific functions
igetlu, ionintr, isetintr, igetintfsess, igetonintr,
igpibgett1delay, igpibppoll,
igpibppollconfig, igpibppollresp, igpibsett1delay
Agilent SICL User’s Guide

Using SICL with LAN 7

Agilent SICL User’s Guide
gpib0,7
gpib1,7,2
gpib2
vxi0, vxi1, etc. (for example: vxi0,8 or vxi0)

However, since the interface names at the remote server may be
configurable, this is not guaranteed. Correct behavior of
iremote and iclear depend on the correct address strings being
used. When iremote is executed over the VXI-11 protocol,
iremote also sends the LLO (local lockout) message in addition
to placing the device in the remote state.
LAN Timeout Functions
Any of the following functions may timeout over LAN, even
those functions that cannot timeout over local interfaces. (See
“Using Timeouts with LAN” in this chapter for more details.)
These functions all cause a request to be sent to the server for
execution.

These SICL functions perform as follows with LAN-gatewayed
sessions.

All GPIB specific functions
All RS-232/serial specific functions
iabort, iclear, iclose, iflush, ifread, ifwrite, igetintfsess, ilocal, ilock, ionintr, ionsrq,
iopen, iprintf, ipromptf, iread, ireadstb, iremote, iscanf, isetbuf, isetintr, isetstb,
isetubuf, itrigger, iunlock, iversion, iwrite, ixtrig

Table 51 How SICL Functions Perform for LAN Gatewayed Devices

idrvrversion Returns the version numbers from the server.

iwrite, iread actualcnt may be reported as 0 when some bytes were
transferred to or from the device by the server. This can happen
if the client times out while the server is in the middle of an I/O
operation.
193

7 Using SICL with LAN
Example Programs
194
Two example programs for LAN-gatewayed sessions follow, one
for C Language and one for Visual Basic.

Example: LAN-gatewayed Session (C) This example program
opens a GPIB device session via a LAN-to-GPIB gateway. This
example is the same as the example in Chapter 4 - Using SICL
with GPIB, except the addresses passed to the iopen calls are
modified. The addresses in this example assume a machine with
hostname instserv is acting as a LAN-to-GPIB gateway.

/* landev.c
This example program sends a scan list to a
switch and while looping closes channels and
takes measurements.*/

#include <sicl.h>
#include <stdio.h>

main(){

 INST dvm;
 INST sw;
 double res;
 int i;

 /* Print message and terminate on error */
 ionerror (I_ERROR_EXIT);

 /* Open the multimeter and switch sessions */
 dvm = iopen (“lan[instserv]:gpib0,9,3”);
 sw = iopen (“lan[instserv]:gpib0,9,14”);
 itimeout (dvm, 10000);
 itimeout (sw, 10000);

 /*Set up trigger*/
 iprintf (sw, “TRIG:SOUR BUS\n”);

 /*Set up scan list*/
 iprintf (sw,”SCAN (@100:103)\n”);
 iprintf (sw,”INIT\n”);
Agilent SICL User’s Guide

Using SICL with LAN 7

Agilent SICL User’s Guide
 for (i=1;i<=4;i++) {
 /* Take a measurement */
 iprintf (dvm,”MEAS:VOLT:DC?\n”);

 /* Read the results */
 iscanf (dvm,”%lf”, &res);

 /* Print the results */
 printf (“Result is %f\n”,res);
 /*Trigger to close channel*/
 iprintf (sw, “TRIG\n”);
 }

 /* Close the multimeter and switch sessions */
 iclose (dvm);
 iclose (sw);
 }

Example: LAN-gatewayed Session (Visual Basic)

This example program opens a GPIB device session via a
LAN-to-GPIB gateway.

Option Explicit
'''
' landev.bas
' This example program opens a GPIB device
‘ session via a LAN-to-GPIB gateway. The
‘ addresses in this example assume a machine
‘ with hostname 'instserv' is acting as a
‘ LAN-to-GPIB gateway.
'''

Sub Main()

 Dim dvm As Integer, sw As Integer
 Dim nargs As Integer, I As Integer
 Dim actual As Long
 Dim res As String * 20

 ' Set up an error handler within this
 ‘ subroutine that will get called if a SICL
 ' error occurs.
195

196

7 Using SICL with LAN
 On Error GoTo ErrorHandler

 ‘Open the multimeter and switch sessions
 dvm = iopen("lan[intserv]:gpib0,9,3")
 sw = iopen("lan[intserv]:gpib0,9,14")
 Call itimeout(dvm, 10000)
 Call itimeout(sw, 10000)

 ' set up the trigger
 nargs = iwrite(sw, "TRIG:SOUR BUS" + Chr$(10)
 + Chr$(0), 14, 1, actual)

 ' set up scan list
 nargs = iwrite(sw, "SCAN (@100:103)" +
 Chr$(10) + Chr$(0), 15, 1, actual)
 nargs = iwrite(sw, "INIT" + Chr$(10) +
 Chr$(0), 5, 1, actual)

 For I = 1 To 4 Step 1
 ' Take a measurement
 nargs = iwrite(dvm, "MEAS:VOLT:DC?" +
 Chr$(10)+ Chr$(0), 14, 1, actual)

 ' Read the results
 nargs = iread(dvm, res, 20, 0&, actual)

 ‘ Print the results
 MsgBox "Channel " & I & " result: " + res &
 vbCrLf

 ' Trigger switch
 nargs = iwrite(sw, "TRIG" + Chr$(10) +
 Chr$(0), 5, 1, actual)
 Next I

 Call iclose(dvm)
 Call iclose(sw)

 Exit Sub

ErrorHandler:

 ' Display the error message in the txtResponse
 ‘ TextBox.

 MsgBox "*** Error : " + Error$
Agilent SICL User’s Guide

Using SICL with LAN 7

Agilent SICL User’s Guide
 ' Close the device session if iopen was
 ‘ successful.

 If dvm <> 0 Then
 Call iclose(dvm)
 End If

 If sw <> 0 Then
 Call iclose(sw)
 End If

End Sub
197

7 Using SICL with LAN
Using LAN Interface Sessions
198
The LAN interface, unlike most other supported SICL
interfaces, does not allow for direct communication with
devices via interface commands. LAN interface sessions, if used
at all, will typically be used only for setting the client-side LAN
timeout. (See “Using Timeouts with LAN” in this chapter.)
Addressing LAN Interface Sessions
To create a LAN interface session, specify the interface logical
unit or interface name in the addr parameter of the iopen
function. The interface logical unit and interface name are
defined by running the IO Config utility.

To open the the IO Config utility, click the Agilent IO Libraries
Control IO icon on the taskbar and then click Run IO Config. See
the Agilent IO Libraries Installation and Configuration Guide
for Windows for information on running IO Config. Some
examples of LAN interface addresses follow.

Table 52 LAN Interface Address Examples

lan A LAN interface address using the interface name lan.

30 A LAN interface address using the logical unit 30. (30 is the default
logical unit for LAN.)
SICL Function Support
These SICL functions are not supported over LAN interface
sessions and return I_ERR_NOTSUPP.

These SICL functions perform as follows with LAN interface
sessions.

All GPIB specific functions
All serial specific functions
All formatted I/O routines
iwrite, iread, ilock, iunlock, isetintr, itrigger, ixtrig,
ireadstb, isetstb, imapinfo, ilocal, iremote
Agilent SICL User’s Guide

Using SICL with LAN 7

Agilent SICL User’s Guide
Table 53 SICL Functions for LAN Interface Sessions

iclear Performs no operation, returns I_ERR_NOERROR.

ionsrq Performs no operation against LAN gateways for SICL, returns
I_ERR_NOERROR.

ionintr Performs no operation, returns I_ERR_NOERROR.

igetluinfo Returns information about local interfaces only. Does not return
information about remote interfaces that are being accessed via a
LAN-to-instrument_interface gateway.
199

7 Using SICL with LAN
Using Locks, Threads, and Timeouts
200
This section gives guidelines to use locks, threads, and timeouts
over LAN, including:

• Using Locks and Threads Over LAN

• Using Timeouts Over LAN
Using Locks and Threads Over LAN
If two or more threads are accessing the same device or
interface using two or more different sessions over LAN and are
using SICL locks to synchronize access, some scenarios may
cause timeouts, or may “hang” an application that does not use
timeouts.

Scenarios to Avoid

For proper operation, all threads that use their own sessions to
access the same device or interface should use the same string
to identify the device or interface in their calls to iopen.
Therefore, the following scenarios should be avoided.

• Using a hostname to identify the remote host in one call to
iopen while using an alias or IP address to identify the same
host in another call to iopen.

• Using a device symbolic name, or alias, in one call to iopen
(such as ”dmm,” where “dmm” equals “gpib,1”) while using
the fully specified device name (such as “gpib,1”) in another
call.

• Using a remote interface’s logical unit (such as “7”) in one
call while using the remote interface’s symbolic name (such
as “gpib”) in another.

• Using igetintfsess to open an interface session (which
internally uses the logical unit to identify the remote
interface) while opening the interface with its symbolic name
for another session.
Agilent SICL User’s Guide

Using SICL with LAN 7

Agilent SICL User’s Guide
Recommended Usage

You can avoid each scenario by always using the same strings to
identify the same device or interface in multi-threaded
applications. You can also use the igetintfsess function if other
sessions use the logical unit to specify the interface instead of
the interface’s symbolic name.

If any thread uses ilock and iunlock to synchronize access to a
particular device or interface, all threads accessing that same
device or interface using a different session must also use ilock
and iunlock. WIN32 synchronization techniques may also be
used to ensure that a thread does not attempt I/O (iread/iwrite,
etc.) to a device already locked via a different session from a
different thread within the same process.

If a session has an interface locked, and if a different thread
using its own session attempts to lock a device on that interface,
the device lock will be held off either until the interface is
unlocked by the other thread, or until a timeout occurs on the
device lock. This is different from how ilock works on other
interfaces (where a lock on a device when the device’s interface
is already locked will not hold off the ilock operation, but rather
will hold off any subsequent I/O to the device).
Using Timeouts with LAN
The client/server architecture of the LAN software requires use
of two timeout values: one for the client and one for the server.
The server’s timeout value is the SICL timeout value specified
with the itimeout function. The client’s timeout value is the
LAN timeout value, which may be specified with the
ilantimeout function.

Client/Server Operation

When the client sends an I/O request to the server, the timeout
value specified with itimeout or with the SICL default is passed
with the request. The server uses that timeout in performing the
I/O operation, just as if that timeout value had been used on a
local I/O operation.
201

202

7 Using SICL with LAN
If the server’s operation is not completed in the specified time,
the server sends a reply to the client that indicates that a
timeout occurred, and the SICL call made by the application
returns I_ERR_TIMEOUT.

When the client sends an I/O request to the server, it starts a
timer and waits for the reply from the server. If the server does
not reply in the time specified, the client stops waiting for the
reply from the server and returns I_ERR_TIMEOUT to the
application.

LAN Timeout Functions

The ilantimeout and ilangettimeout functions can be used to
set or query the current LAN timeout value. They work much
like the itimeout and igettimeout functions. The use of these
functions is optional, however, since the software will calculate
the LAN timeout based on the SICL timeout in use and the
configuration values set via the IO Config utility.

Once ilantimeout is called by the application, the automatic
LAN timeout adjustment is turned off.

A timeout value of 1 used with the ilantimeout function has
special significance, causing the LAN client to not wait for a
response from the LAN server. However, the timeout value of 1
should be used only in special circumstances and should be
used with extreme caution.

Default LAN Timeout Values

The IO Config utility specifies two timeout-related configuration
values for the LAN software. These values are used by the
software to calculate timeout values if the application has not
previously called ilantimeout.
Agilent SICL User’s Guide

Using SICL with LAN 7

Agilent SICL User’s Guide
Timeout Algorithm

Once ilantimeout is called, the software no longer sends the
Server Timeout value to the server and no longer attempts to
determine a reasonable client-side timeout. It is assumed that
the application itself wants full control of timeouts, both client
and server.

Also, ilantimeout is per process. That is, all sessions going out
over the network are affected when ilantimeout is called. If the
application has not called the ilantimeout function, timeouts
are adjusted via the following algorithm:

• The SICL timeout, which is sent to the server for the current
call, is adjusted if it is currently infinity (0). In that case it
will be set to the Server Timeout value.

• The LAN timeout is adjusted if the SICL timeout plus the
Client Timeout Delta is greater than the current LAN
timeout. In that case the LAN timeout will be set to the SICL
timeout plus the Client Timeout Delta.

• The calculated LAN timeout only increases as necessary to
meet the needs of the application, but never decreases. This
avoids the overhead of readjusting the LAN timeout every
time the application changes the SICL timeout.

Table 54 LAN Software Timeout Values

Server Timeout Timeout value passed to the server when an application
either uses the SICL default timeout value of infinity or
sets the SICL timeout to infinity (0). Value specifies the
number of seconds the server will wait for the
operation to complete before returning
I_ERR_TIMEOUT.

A value of 0 in this field will cause the server to be sent
a value of infinity if the client application also uses the
SICL default timeout value of infinity or sets the SICL
timeout to infinity (0).

Client Timeout Delta Value added to the SICL timeout value (server’s timeout
value) to determine the LAN timeout value (client’s
timeout value). Value specifies the number of seconds.
203

204

7 Using SICL with LAN
• The first iopen call used to set up the server connection uses
the Client Timeout Delta specified via the IO Config utility
for portions of the iopen operation. The timeout value for
TCP connection establishment is not affected by the Client
Timeout Delta.

To change the defaults:

1 Exit any LAN applications for SICL to be reconfigured.

2 Run the IO Config utility. (Click the Agilent IO Libraries
Control and then click Run IO Config.)

3 Change the Server Timeout and/or Client Timeout Delta
value(s).

4 Restart the LAN applications for SICL.

Timeouts in Multi-threaded Applications

To manually set the client-side timeout in an application using
multiple threads, be aware that ilantimeout may itself timeout
due to contention for the LAN subsystem where multiple
threads in an application are simultaneously using SICL over
LAN.

Thus, if multiple threads are using SICL over LAN at the same
time and LAN timeouts are expected by the application, it is
recommended that ilantimeout be called when no other LAN
I/O is occurring, such as immediately after session creation
(iopen).

If the no-wait value is used and multiple threads are attempting
I/O over the LAN, I/O operations using the no-wait option will
wait for access to the LAN for 2 minutes. If another thread is
using the LAN interface for greater than 2 minutes, the no-wait
operation will timeout.

Timeout Configurations to Be Avoided

The LAN timeout used by the client should always be set greater
than the SICL timeout used by the server. This avoids the
situation where the client times out while the server continues
Agilent SICL User’s Guide

Using SICL with LAN 7

Agilent SICL User’s Guide
to attempt the request, potentially holding off subsequent
operations from the same client. This also avoids having the
server send unwanted replies to the client.

The SICL timeout used by the server should generally be less
than infinity. Having the LAN server wait less than forever
allows the LAN server to detect network problems or clients
that have ceased operation abruptly, and subsequently release
resources associated with those clients, such as locks.

Using the smallest possible value for your application will
maximize the server’s responsiveness to dropped connections,
including the client application being terminated abnormally.
Setting a value less than infinity is done by setting the Server
Timeout configuration value via the IO Config utility.

Even if your application uses the SICL default of infinity, or if
itimeout is used to set the timeout to infinity, by setting the
Server Timeout value to some reasonable number of seconds,
the server will be allowed to timeout, detect network trouble,
and release resources.

Application Terminations and Timeouts

If an application is stopped in the middle of a SICL operation
performed at the LAN server, the server continues to try the
operation until the server’s timeout is reached. By default, the
LAN server associated with an application that is using a
timeout of infinity and is stopped may not discover that the
client is no longer running for 2 minutes. For a server other
than the LAN server on HP-UX, Windows
98SE/Me/2000/XP/NT, or the E5810, check that server’s
documentation for its default behavior.

If itimeout is used by the application to set a long timeout
value, or if both the LAN client and LAN server are configured
to use infinity or a long timeout value, the server may appear
“hung.” If this situation occurs, the LAN client (via the Client
Timeout Delta value set with the IO Config utility) or the LAN
server (via its Server Timeout value) may be configured to use a
shorter timeout value.
205

206

7 Using SICL with LAN
If long timeouts must be used, the server may be reset. A LAN
server may be reset by logging into the server system and
stopping the LAN server that is running. The latter procedure
will affect all clients connected to the server. See “Appendix B:
Troubleshooting SICL Programs” for more details. Also, see the
documentation on the server you are using for methods to reset
the server.
Agilent SICL User’s Guide

Agilent E2094 SICL User’s Guide for Windows
Agilent SICL User’s Guide
8
Using SICL with USB

This chapter provides guidelines for SICL programming of USB
instruments that conform to USBTMC (Universal Serial Bus
Test and Measurement Class) and/or USBTMC-USB488
(Universal Serial Bus Test and Measurement Class, Subclass
USB488 Specification).

The chapter contents are:

• USB Interfaces Overview

• Communicating with a USB Instrument Using SICL
207Agilent Technologies

8 Using SICL with USB
USB Interfaces Overview
208
USBTMC/USBTMC-USB488 instruments are detected and
automatically configured by the Agilent IO Libraries when they
are plugged into the computer. The Agilent IO Libraries
Installation and Configuration Guide for Windows describes
the USB instrument configuration process in more detail.
NOTE Do not confuse the Agilent 82357 USB/GPIB Interface with a USBTMC
device. The 82357 is automatically configured as a GPIB interface, not as a
USBTMC device, when it is plugged into the computer. Only
USBTMC/USBTMC-USB488 devices will be configured as USB devices by
the Agilent IO Libraries.
Agilent SICL User’s Guide

Using SICL with USB 8
Communicating with a USB Instrument Using SICL
Agilent SICL User’s Guide
Each USBTMC device can be uniquely identified by a set of four
parameters. These parameters are described in the following
table.

When a USBTMC instrument is attached to the computer, the
Agilent IO Libraries automatically configures a USB interface
with the name usb0 if one does not already exist. (See the
Agilent IO Libraries Installation and Configuration Guide for
Windows for more details.) A dialog box is also displayed,
showing an “alias” name (which you can change) and the four
unique USB parameters for the device.

To establish communications with a USB device using SICL, you
can use either the full SICL resource string for the device or use
the alias. Using the alias is recommended, for reasons described
below.

Using the full SICL resource string to open a USB instrument,
the iopen call would look like this:

id = iopen("usb0[2391::1031::SN_001001::0]");

Since in this example the USBTMC Interface number has the
default value of 0, it does not have to be specified. The iopen
call would then look like this:

Table 55 USBTMC Device Parameters

Parameter Data Type Example Value Default Value

Manufacturer ID 16-bit unsigned
integer

2391 n/a

Model Code 16-bit unsigned
integer

1031 n/a

Serial Number String (128
characters max)

SN_001001 n/a

USBTMC
Interface Number

8-bit unsigned
integer

0 0
209

210

8 Using SICL with USB
id = iopen("usb0[2391::1031::SN_001001]");

Following is a summary of the components of this call.

This string uniquely identifies the USB device. The values
needed for the resource string are displayed in a dialog box
when the device is plugged into the computer. The same values
can also be obtained by running IO Config and selecting the
USB Interface in the Configured Interfaces list box, and then
clicking Edit.

To simplify the way a USB device is identified, SICL also
provides an alias name which can be used in place of this
resource string. The first USB device that is plugged in is
assigned a default alias name of UsbDevice1. Additional devices
are assigned aliases of UsbDevice2, UsbDevice3, etc. You can
modify the default alias name to one of your choosing at the
time a device is plugged in, or by running the IO Configuration
program and editing the USB interface.

Although the case of an alias name is preserved, case is ignored
when the alias is used in place of the full resource string in an
iopen call. For example, UsbDevice1, usbdevice1 and
USBDEVICE1 all refer to the same device.

Using the alias name, an iopen call would look like this:

id = iopen("UsbDevice1");

As you can see, this is much simpler than having to use the full
resource string for a USB device.

Table 56 Summary of Full-String iopen Call

Value Description

usb0 the SICL name for the USB interface

2391 Manufacturer ID

1031 Model Code

SN_001001 Serial Number

0 USBTMC Interface Number
Agilent SICL User’s Guide

Using SICL with USB 8

Agilent SICL User’s Guide
Using the alias name in a program also makes it more portable.
For example, two identical USB function generators have
different resource strings because they have different serial
numbers. If these function generators are used in two different
test systems and you use the full resource string to access the
function generator in the test program, you cannot use that
same program for both test systems, since the function
generators’ full resource strings are different. By using the alias
name in the program, however, you can use the same program
in both test systems. All you need to do is make sure the same
alias name is used for the function generator in both systems.
Operations Supported on All USBTMC Devices
The following USB-specific SICL functions can be used on all
USBTMC and USBTMC-USB488 device sessions. (See the SICL
online Help file for specific information on these functions.)

Interrupts are not supported on USBTMC or on
USBTMC-USB488 devices.

Table 57 Operations Supported on All USBTMC Devices

Function Name Action

iusbctrl Used to set parameters affecting the USB device.

iusbgetcapabilities Returns a structure containing capabilities information
about the USB device.

iusbgetinfo Returns a structure containing general information about
the USB device.

iusbstat Used to retrieve the settings of parameters affecting the
USB device.
Operations Supported Only on USBTMC-USB488 Devices
The iusbgetcapabilities function can be used to determine if a
device supports the USBTMC-USB488 protocol. See the SICL
online Help file for specific information on this function and the
definition of the structure that it returns. If the bcdUSB488
211

212

8 Using SICL with USB
structure element is non-zero, the device implements the
USBTMC-USB488 protocol. The intf488Capabilities and
dev488Capabilities bit masks in this structure provide the
details of what the device supports (e.g. REN Control,
Triggering, SCPI commands, etc.)

SRQ's (ionsrq) and triggers (itrigger) are supported only on
USBTMC-USB488 devices. They are not supported on USBTMC
devices that do not implement the USBTMC-USB488 protocol.

On USBTMC-USB488 devices that support REN control, the
following state diagram shows how state transitions are made
using various SICL functions.
Agilent SICL User’s Guide

Using SICL with USB 8

Agilent SICL User’s Guide
The following SICL functions are used to control the
Remote/Local state transitions in USBTMC-USB488 devices
sessions. (See the SICL Online Help file for specific information
on these functions.)
213

214

8 Using SICL with USB
Table 58 SICL Functions for Remote/Local State Transition

Function Name Action

igpibllo Locks out the front panel interface of the device (if REN is
true).

igpibibrenctl

iremote

Sets the REN (remote enable) state:
 igpibrenctl(id, 0) sets REN false.
 igpibrenctl(id, 1) sets REN true.
 iremote(id) sets REN true.

ilocal Enables the front panel interface of the device.

iremote Sets the device REN (remote enable) state to true.
NOTE Although igpibllo and igpibrenctl are documented as GPIB-specific
functions that are only valid on interface sessions, these functions can be
called on USBTMC-USB488 device sessions.
Agilent SICL User’s Guide

Agilent E2094 SICL User’s Guide for Windows
Agilent SICL User’s Guide
Appendix A: SICL Library Information
215Agilent Technologies

A Appendix A: SICL Library Information
SICL Library Information
216
This appendix provides information on SICL software files and
system interaction in Windows 98SE, Windows Me, Windows
2000, Windows XP, and Windows NT. This information can be
used as a reference for removing SICL from a system, if
necessary. The appendix contents are:

• File System Information

• Porting to Visual Basic

• RS-232 Cabling Information
File System Information
This section describes SICL file system information for
Windows 98SE, Windows Me, Windows 2000, Windows XP, and
Windows NT.
Windows 98/Windows Me
File Location

All SICL files are installed in the base directory specified by the
person who installs SICL, with the exception of several common
files that Windows must be able to locate. On Windows 98SE
and Windows Me, the following files are copied to the Windows
subdirectory.
Agilent SICL User’s Guide

Appendix A: SICL Library Information A

Agilent SICL User’s Guide
The Registry

SICL places the following key in the Windows 98SE or Windows
Me registry under HKEY_LOCAL_MACHINE:

Software\Agilent\IO Libraries\CurrentVersion

Also, if the LAN Server is configured, the following key will be
created under HKEY_LOCAL_MACHINE if it did not previously
exist:

Software\Microsoft\Windows\CurrentVersion\
217

218

A Appendix A: SICL Library Information
 RunServices

SICL Configuration Information

SICL configuration information is stored in the Windows 98SE
or Windows Me registry under the Software\Agilent\IO
Libraries\CurrentVersion branch under
HKEY_LOCAL_MACHINE.
Agilent SICL User’s Guide

Appendix A: SICL Library Information A
Windows NT/Windows 2000/Windows XP
Agilent SICL User’s Guide
File Location

All SICL files are installed in the base directory specified by the
person who installs SICL, with the exception of several common
files that Windows must be able to locate. On Windows NT and
Windows 2000, the following files are copied to the Windows
subdirectory. On Windows XP, the files are copied to Winnt.
219

220

A Appendix A: SICL Library Information
The Registry

SICL places the following keys in the Windows NT registry
under HKEY_LOCAL_MACHINE:

• Software\Agilent\IO Libraries\CurrentVersion

• System\CurrentControlSet\Control\GroupOrderList

• System\CurrentControlSet\Control\
ServiceOrderList

• System\CurrentControlSet\Services\hp341i32

• System\CurrentControlSet\Services\EventLog\
Application\SICL Log

• System\CurrentControlSet\Services\EventLog\
System\hp341i32

SICL Configuration Information

SICL configuration information is stored in the Windows NT or
Windows 2000 registry under the Software\Agilent\IO
Libraries\CurrentVersion branch under
HKEY_LOCAL_MACHINE.
Agilent SICL User’s Guide

Appendix A: SICL Library Information A
Porting to Visual Basic
Agilent SICL User’s Guide
This section shows how to program SICL applications in Visual
Basic version 4.0 or later. For SICL applications written in an
earlier Visual Basic version than version 4.0 (for example,
version 3.0), you can port your SICL applications to Visual
Basic version 4.0 or later.

Porting SICL applications to Visual Basic 4.0 or later is a matter
of adding the SICL32.BAS declaration file (rather than the
SICL.BAS file) to each project that calls SICL for Visual Basic
4.0 or later programs. There may also be changes in functions
when passing null pointers for strings to SICL functions. For
example, in Visual Basic version 3.0, the preceding ByVal
keyword was used as follows:

ivprintf(id, mystring, ByVal 0&)

In Visual Basic version 4.0 or later, you only need to pass the 0&
null pointer because version 4.0 or later knows this is by
reference:

ivprintf(id, mystring, 0&)

Once you have added the SICL32.BAS declaration file to each
project and removed ByVal keywords preceding null pointers
for strings, your SICL applications will run correctly with Visual
Basic 4.0 or later.
RS-232 Cabling Information
This section lists several general purpose RS-232 cables and
adapters. Consult your instrument’s operating manual for
information on the status lines used for handshaking.

Cable/Adapter Part Numbers

In the following table, recommended cables and adapters are
shown in boldface type. Other cables are listed since they may
work better than the recommended cable/adapter in some
applications. In the table, “a” and “b” are defined as:
221

222

A Appendix A: SICL Library Information
• [a] One of four adapters in the 34399A RS-232 Adapter Kit.
Kit includes four adapters to go from DB9 Female Cable
(34398A) to PC/Printer DB25 Male or Female, or to modem
DB9 Female or DB25 Female.

• [b] Part of 34398A RS-232 Cable Kit. Kit comes with RS-232,
9-pin Female to 9-pin Female Null modem/printer cable and
one adapter 9-pin Male to 25-pin Female (part number
5181-6641). The adapter is also located in the 34399A RS-232
Adapter Kit.
Table 59 RS-232 Interface Types and Matching Part Numbers

Instrument Connector Computer/Printer
Connector

Cable
Part Number

Adapter Part Number Length

9-Pin Male 25-Pin Male 24542H
24542U
F1047-80002 [b]

none
5181-6641 [a]
5181-6641 [a]

3m (9ft 10in)
3m (9ft 10in)
2.5m (8ft 2.5in)

9-Pin Male 25-Pin Female 24542G
24542U
F1047-80002 [b]

none
5181-6640 [a]
5181-6640 [a]

3m (9ft 10in)
3m (9ft 10in)
2.5m (8ft 2.5in)

9-Pin Male 9-Pin Male 24542U
24542H & 24542M
F1047-80002 [b]

none
none
none

3m (9ft 10in)
6m (19ft 10in)
2.5m (8ft 2.5in)

9-Pin Male 25-Pin Female 24542M
24542U
F1047-80002 [b]

none
5181-6642 [a]
5181-6642 [a]

3m (9ft 10in)
3m (9ft 10in)
2.5m (8ft 2.5in)

9-Pin Male 9-Pin Female 24542U
F1047-80002 [b]

5181-6639 [a]
5181-6639 [a]

3m (9ft 10in)
2.5m (8ft 2.5in)

25-Pin Female 25-Pin Female 24542G 5181-6642 [a] 3m (9ft 10in)

25-Pin Female 9-Pin Female 24542G
24542M

5181-6639 [a]
none

3m (9ft 10in)
3m (9ft 10in)

25-Pin Female 25-Pin Male 17255D
C2913A
24542G

none
none
5181-6641 [a]

1.2m (3ft 11in)
1.2m (3ft 11in)
3m (9ft 10in)
Agilent SICL User’s Guide

Appendix A: SICL Library Information A
25-Pin Female 25-Pin Female 13242G
17255M
C2914A
24542G

none
none
none
5181-6640 [a]

5m (16ft 8in)
1.5m (4ft 11in)
1.2m (3ft 11in)
3m (9ft 10in)

25-Pin Female 9-Pin Male 24542G
24542U
F1047-80002 [b]

none
5181-6640 [a]
5181-6640 [a]

3m (9ft 10in)
3m (9ft 10in)
2.5m (8ft 2.5in)

Table 59 RS-232 Interface Types and Matching Part Numbers

Instrument Connector Computer/Printer
Connector

Cable
Part Number

Adapter Part Number Length
Agilent SICL User’s Guide 223

224

A Appendix A: SICL Library Information
Figure 1 Cable/Adapter Pinouts

Instrument 92219J Cable PC

TX
RX
RTS
CTS
DSR
GND
DTR

TX
RX
RTS
CTS
DSR
GND
DTR

 DB25 DB25 DB25 DB25
 Female Male Female Male

1
2
3
4
5
6
7
20

1
2
3
4
5
6
7
20

NOTE: The 92219J is directional. This cable may work
 differently when swapped end-to-end.
Agilent SICL User’s Guide

Appendix A: SICL Library Information A
Figure 2 13242G Cable

Instrument 13242G Cable PC/Printer

TX
RX
RTS
CTS
DSR
GND
CD
SCD

SRTS
DTR

Shield
TX
RX
CD
DTR

GND
RTS
SRTS

SCD
CTS
DSR

 DB25 DB25 DB25 DB25
 Female Male Male Female

1
2
3
4
5
6
7
8
12
11
19
20

1
2
3
8
20

7
4
19
11
12
5
6

Agilent SICL User’s Guide 225

226

A Appendix A: SICL Library Information
Figure 3 24542U Cable

Instrument 24542U Cable PC

DCD
RX
TX
DTR
GND
DSR
RTS
CTS
RI

 DB9 DB9 DB9 DB9
 Male Female Female Male

1
2
3
4
5
6
7
8
9

DCD
RX
TX
DTR
GND
DSR
RTS
CTS
RI

1
2
3
4
5
6
7
8
9

Agilent SICL User’s Guide

Appendix A: SICL Library Information A

Agilent SICL User’s Guide
Figure 4 F1047-80002 Cable
227

228

A Appendix A: SICL Library Information
Figure 5 24542G/H Cable

Instrument 24542G/H Cable PC

DCD
RX
TX
DTR
GND
DSR
RTS
CTS
RI

24542H DB9 DB9 DB25 DB25
 Male Female Female Male

1
2
3
4
5
6
7
8
9

TX
RX
RTS
CTS
DSR
GND
DCD
DTR

2
3
4
5
6
7
8
20

24542G DB9 DB9 DB25 DB25
 Male Female Male Female
Agilent SICL User’s Guide

Appendix A: SICL Library Information A

Agilent SICL User’s Guide
Figure 6 24542 Modem Cable

Instrument 24542M Modem Cable Modem

DCD
RX
TX
DTR
GND
DSR
RTS
CTS
RI

 DB9 DB9 DB25 DB25
 Male Female Male Female

1
2
3
4
5
6
7
8
9

DCD
RX
TX
DTR
GND
DSR
RTS
CTS
RI

8
3
2
20
7
6
4
5
22
229

230

A Appendix A: SICL Library Information
Figure 7 C2913A/2914A Cable

Instrument C2913A/C2914A Cable PC

TX
RX
RTS
CTS
DSR
GND
DTR

C2913A DB25 DB25 DB25 DB25
 Female Male Female Male

1
2
3
4
5
6
7
20

TX
RX
RTS
CTS
DSR
GND
DTR

1
2
3
4
5
6
7
20

C21914A DB25 DB25 DB25 DB25
 Female Male Male Female
Agilent SICL User’s Guide

Appendix A: SICL Library Information A
Figure 8 Typical Mouse Adapter

Instrument Typical Mouse Adapter PC

DCD
RX
TX
DTR
GND
DSR
RTS
CTS
RI

 DB9 DB9 DB25 DB25
 Female Male Female Male

1
2
3
4
5
6
7
8
9

TX
RX
RTS
CTS
DSR
GND
DCD
DTR
RI

2
3
4
5
6
7
8
20
22

A mouse adapter works well as a 9-pin to 25-pin adapter with a PC.
Agilent SICL User’s Guide
Figure 9 5181-6641 Adapter (Black)

Instrument F1047-80002 Cable 5181-6641 Adapter (Black) PC

DCD
RX
TX
DTR
GND
DSR
RTS
CTS
RI

 DB9 DB9 DB9 DB9 DB25 DB25
 Male Female Female Male Female Male

1
2
3
4
5
6
7
8
9

TX
RX
RTS
CTS
DSR
GND
DCD
DTR

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

2
3
4
5
6
7
8
20
231

232

A Appendix A: SICL Library Information
Figure 10 5181-6640 Adapter (White)

Figure 11 5181-6642 Adapter (Gray)

Instrument F1047-80002 Cable 5181-6640 Adapter (White) PC

DCD
RX
TX
DTR
GND
DSR
RTS
CTS
RI

 DB9 DB9 DB9 DB9 DB25 DB25
 Male Female Female Male Male Female

1
2
3
4
5
6
7
8
9

TX
RX
RTS
CTS
DSR
GND
DCD
DTR

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

2
3
4
5
6
7
8
20

Instrument F1047-80002 Cable 5181-6642 Adapter (Gray) PC

DCD
RX
TX
DTR
GND
DSR
RTS
CTS
RI

 DB9 DB9 DB9 DB9 DB25 DB25
 Male Female Female Male Male Female

1
2
3
4
5
6
7
8
9

TX
RX
RTS
CTS
DSR
GND
DCD
DTR
RI

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

2
3
4
5
6
7
8
20
22
Agilent SICL User’s Guide

Appendix A: SICL Library Information A

Agilent SICL User’s Guide
Figure 12 5181-6639 Adapter (Black)

Instrument F1047-80002 Cable 5181-6639 Adapter (Black) Modem

DCD
RX
TX
DTR
GND
DSR
RTS
CTS
RI

 DB9 DB9 DB9 DB9 DB9 DB9
 Male Female Female Male Male Female

1
2
3
4
5
6
7
8
9

DCD
RX
TX
DTR
GND
DSR
RTS
CTS
RI

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

Figure 13 5181-6641 Adapter (Black)

Instrument 24542U Cable 5181-6641 Adapter (Black) PC

DCD
RX
TX
DTR
GND
DSR
RTS
CTS
RI

 DB9 DB9 DB9 DB9 DB25 DB25
 Male Female Female Male Female Male

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

TX
RX
RTS
CTS
DSR
GND
DCD
DTR

1
2
3
4
5
6
7
8
9

2
3
4
5
6
7
8
20
233

234

A Appendix A: SICL Library Information
Figure 14 5181-6640 Adapter (White)

Figure 15 5181-6642 Adapter (Gray)

Instrument 24542U Cable 5181-6640 Adapter (White) PC/Printer

DCD
RX
TX
DTR
GND
DSR
RTS
CTS
RI

 DB9 DB9 DB9 DB9 DB25 DB25
 Male Female Female Male Female Male

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

TX
RX
RTS
CTS
DSR
GND
DCD
DTR

1
2
3
4
5
6
7
8
9

2
3
4
5
6
7
8
20

Instrument 24542U Cable 5181-6642 Adapter (Gray) Modem

DCD
RX
TX
DTR
GND
DSR
RTS
CTS
RI

 DB9 DB9 DB9 DB9 DB25 DB25
 Male Female Female Male Female Male

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

TX
RX
RTS
CTS
DSR
GND
DCD
DTR
RI

1
2
3
4
5
6
7
8
9

2
3
4
5
6
7
8
20
22
Agilent SICL User’s Guide

Appendix A: SICL Library Information A
Figure 16 5181-6639 Adapter (Black)

Instrument 24542U Cable 5181-6639 Adapter (Black) Modem

DCD
RX
TX
DTR
GND
DSR
RTS
CTS
RI

 DB9 DB9 DB9 DB9 DB9 DB9
 Male Female Female Male Male Female

DCD
RX
TX
DTR
GND
DSR
RTS
CTS
RI

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

Agilent SICL User’s Guide 235

236

A Appendix A: SICL Library Information
Agilent SICL User’s Guide

Agilent E2094 SICL User’s Guide for Windows
Agilent SICL User’s Guide
Appendix B: Troubleshooting SICL
Programs
237Agilent Technologies

B Appendix B: Troubleshooting SICL Programs
Troubleshooting SICL Programs
238
This chapter contains a description of SICL error codes and
provides guidelines for troubleshooting common problems with
SICL. The chapter contents are:

• SICL Error Codes

• Common Windows Problems

• Common RS-232 Problems

• Common GPIO Problems

• Common LAN Problems
SICL Error Codes
When you install a default SICL error handler such as
I_ERROR_EXIT or I_ERROR_NOEXIT with an ionerror call, a
SICL internal error message is logged. To view these messages:

• On Windows 98SE or Windows Me, start the Message Viewer
utility by clicking the Agilent IO Libraries Control (on the
taskbar) and then clicking Run Message Viewer. You must start
the Message Viewer utility before you execute a program for
error messages to be logged.

• On Windows 2000, XP, or NT, SICL logs internal messages as
Windows NT events that you can view by clicking the Agilent
IO Libraries Control (on the taskbar) and then clicking Run
Event Viewer. Both system and application messages can be
logged to the Event Viewer from SICL. SICL messages are
identified by SICL LOG or by the driver name (such as
hp341i32 for the GPIB driver).

For C programs, you can use ionerror to install a custom error
handler. The error handler can call igeterrstr with the given
error code and the corresponding error message string will be
Agilent SICL User’s Guide

Appendix B: Troubleshooting SICL Programs B

Agilent SICL User’s Guide
returned. See Chapter 3 - Programming with SICL for more
information on error handlers. This table summarizes SICL
error codes and messages.
Table 60 List of SICL Error Codes

Error Code Error String Description

I_ERR_ABORTED Externally aborted A SICL call was aborted by external means.

I_ERR_BADADDR Bad address The device/interface address passed to iopen does
not exist. Verify that the interface name is the one
assigned with IO Config.

I_ERR_BADCONFIG Invalid configuration An invalid configuration was identified when calling
iopen.

I_ERR_BADFMT Invalid format Invalid format string specified for iprintf or iscanf.

I_ERR_BADID Invalid INST The specified INST id does not have a
corresponding iopen.

I_ERR_BADMAP Invalid map request The imap call has an invalid map request.

I_ERR_BUSY Interface is in use by non-SICL
process

The specified interface is busy.

I_ERR_DATA Data integrity violation The use of CRC, Checksum, and so forth imply
invalid data.

I_ERR_INTERNAL Internal error occurred SICL internal error.

I_ERR_INTERRUPT Process interrupt occurred A process interrupt (signal) has occurred in your
application.

I_ERR_INVLADDR Invalid address The address specified in iopen is not a valid address
(for example, ”hpib,57”).

I_ERR_IO Generic I/O error An I/O error has occurred for this communication
session.

I_ERR_LOCKED Locked by another user Resource is locked by another session (see
isetlockwait).

I_ERR_NESTEDIO Nested I/O Attempt to call another SICL function when current
SICL function has not completed (WIN16). More
than one I/O operation is prohibited.

I_ERR_NOCMDR Commander session is not active or
available

Tried to specify a commander session when it is not
active, available, or does not exist.
239

B Appendix B: Troubleshooting SICL Programs
I_ERR_NOCONN No connection Communication session has never been
established, or connection to remote has been
dropped.

I_ERR_NODEV Device is not active or available Tried to specify a device session when it is not
active, available, or does not exist.

I_ERR_NOERROR No Error No SICL error returned; function return value is zero
(0).

I_ERR_NOINTF Interface is not active Tried to specify an interface session when it is not
active, available, or does not exist.

I_ERR_NOLOCK Interface not locked An iunlock was specified when device was not
locked.

I_ERR_NOPERM Permission denied Access rights violated.

I_ERR_NORSRC Out of resources No more system resources available.

I_ERR_NOTIMPL Operation not implemented Call not supported on this implementation. The
request is valid, but not supported on this
implementation.

I_ERR_NOTSUPP Operation not supported Operation not supported on this implementation.

I_ERR_OS Generic O.S. error SICL encountered an operating system error.

I_ERR_OVERFLOW Arithmetic overflow Arithmetic overflow. The space allocated for data
may be smaller than the data read.

I_ERR_PARAM Invalid parameter The constant or parameter passed is not valid for
this call.

I_ERR_SYMNAME Invalid symbolic name Symbolic name passed to iopen not recognized.

I_ERR_SYNTAX Syntax error Syntax error occurred parsing address passed to
iopen. Make sure you have formatted the string
properly. White space is not allowed.

I_ERR_TIMEOUT Timeout occurred A timeout occurred on the read/write operation.
The device may be busy, in a bad state, or you may
need a longer timeout value for that device. Check
also that you passed the correct address to iopen.

Table 60 List of SICL Error Codes

Error Code Error String Description
240 Agilent SICL User’s Guide

Appendix B: Troubleshooting SICL Programs B
I_ERR_VERSION Version incompatibility The iopen call has encountered a SICL library that
is newer than the drivers. Need to update drivers.

Table 60 List of SICL Error Codes

Error Code Error String Description
Agilent SICL User’s Guide 241

B Appendix B: Troubleshooting SICL Programs
Common Windows Problems

Common RS-232 Problems

Table 61 Windows Errors

Windows 98SE and Windows Me

Subsequent Execution of SICL
Application Fails

If you terminate a program using the Task Manager, or if a program has an
abnormal termination, some drivers may not unload from memory. This could
cause subsequent attempts to execute the I/O program to fail. To recover from
this situation, you must restart (reboot) Windows 98SE/Me.

Windows 2000, XP, and NT

Program Appears to Hang and Cannot Be
Stopped

Check that an itimeout value has been set for all SICL sessions in your program.
Otherwise, when an instrument does not respond to a SICL read or write, SICL
will wait indefinitely in the SICL kernel access routine, preventing the application
from being stopped.

To stop the application, click the “toaster” button in the upper-left corner of the
window and then close the window. After a few seconds, an End Task dialog box
appears. Press the End Task button to stop the application.

Formatted I/O Using %F Causes
Application Error

Verify $(cvarsdll) is used when compiling the application, and either
$(guilibsdll) for Windows applications or $(conlibsdll) for console
applications when linking your application.

Also, the %F format character for iprintf only works with languages that use
MSVCRT.DLL, MSVCRT20.DLL, or MSVCRT40.DLL for their run-time library.

Some versions of Visual C/C++ and Borland C/C++ use their own versions of
the run-time library. They cannot share global data with SICL’s version of the
run-time library and, therefore, cannot use %F.
242
Unlike GPIB, special care must be taken to ensure that RS-232
devices are correctly connected to the computer. Verifying the
configuration first may save many hours of debugging time.
Agilent SICL User’s Guide

Appendix B: Troubleshooting SICL Programs B

Agilent SICL User’s Guide
Common GPIO Problems

Table 62 Common RS-232 Problems

No Response from Instrument Be sure the RS-232 interface is configured to match the instrument. Check the
Baud Rate, Parity, Data Bits, and Stop Bits. Also, be sure you are using the correct
cabling. See Appendix A - SICL Library Information for RS-232 cabling information.

If you are sending several commands at once, try sending commands one at a
time either by inserting delays or by single-stepping the program.

Data Received from Instrument is
Garbled

Check the interface configuration. Install an interrupt handler in your program that
checks for communication errors.

Data Lost During Large Transfers Check:
Flow control setting match
Full/half duplex for 3-wire connections
Cabling is correct for hardware handshaking
Because the GPIO interface has such flexibility, most initial
problems come from cabling and configuration. There are many
configuration fields in the IO Config utility that must be
configured for GPIO. For example, no data transfers will work
correctly until the handshake mode and polarity have been
correctly set. A GPIO cable can have up to 50 wires and you may
need to solder your own plug to at least one end. It is important
to ensure correct hardware configuration before you begin
troubleshooting the software.

If you are porting an existing 98622 application, the hardware
task is simplified. The cable connections are the same and many
IO Config fields closely approximate 98622 DIP switches. For a
new application, an individual with good hardware skills should
become familiar with the E2075 cabling and handshake
behavior. In either case, you may want to read the Agilent
E2075 GPIO Interface Card Installation Guide.

Some GPIO-specific reasons for certain SICL errors follow.
Many of these errors can also be caused by non-GPIO problems.
For example, “Operation not supported” will happen on any
interface if you execute igetintfsess with an interface ID.
243

244

B Appendix B: Troubleshooting SICL Programs
Bad Address (for iopen)

This indicates iopen did not succeed because the specified
address (symbolic name) did not correspond to a correctly
configured entry in IO Config. If iopen fails, be sure the
interface is properly configured. IO Config establishes an entry
for the GPIO card in the Windows 98SE/2000/NT registry.

We strongly encourage you to let IO Config handle all registry
maintenance for SICL. However, you can edit registry entries
manually. If you manually change the registry and enter an
improper configuration value, the failed iopen may send a
diagnostic message to the Message Viewer (Windows 98SE/Me)
or Event Viewer (Windows 2000/XP/NT).

For example:

HPe2074: GPIO config, bad read_clk entry
ISA card in slot #0 NOT INITIALIZED (Invalid
parameter)

In this case, you must correct the configuration data in the
registry. The recommended procedure is to use IO Config,
remove the incorrect interface name, and create a Configured
Interface with legal values selected from the IO Config utility’s
dialog boxes.

Operation Not Supported

The E2075 has several modes. Certain operations are valid in
one mode, and not supported in another. Two examples are:

igpioctrl(id, I_GPIO_AUX, value);

This operation applies only to the Enhanced mode of the data
port. Auxiliary control lines do not exist when the interface is in
98622 Compatibility mode.

igpioctrl(id, I_GPIO_SET_PCTL, 1);

This operation is allowed only in Standard-Handshake mode.
When the interface is in Auto-Handshake mode (the default),
explicit control of the PCTL line is not possible.
Agilent SICL User’s Guide

Appendix B: Troubleshooting SICL Programs B

Agilent SICL User’s Guide
No Device

This error indicates PSTS checks were set for read/write
operations and a false state of the PSTS line was detected.
Enabling and disabling PSTS checks is done with:

igpioctrl(id, I_GPIO_CHK_PSTS, value);

If the check seems to be reporting the wrong state of the PSTS
line, correct the PSTS polarity bit via the IO Config utility. If the
PSTS check is functioning properly and this error is generated,
some problem with the cable or the peripheral device is
indicated.

Bad Parameter

If the interface is in 16-bit mode, the number of bytes requested
in an iread or iwrite function must be an even number.
Although you probably view 16-bit data as words, the syntax of
iread and iwrite requires a length specified as bytes.
Common LAN Problems
General Troubleshooting Techniques

NOTE Both the LAN client and LAN server may log messages to the Message
Viewer (Windows 98SE/Me) or Event Viewer (Windows 2000/XP/NT)
under certain conditions, whether or not an error handler has been
registered.
Before SICL over LAN can function, the client must be able to
talk to the server over the LAN. You can use the following
techniques to determine if the problem is a general network
problem or is specific to the LAN software provided with SICL.

Using the ping Utility

If the application cannot open a session to the LAN server for
SICL, the first diagnostic to try is the ping utility. This utility
allows you to test general network connectivity between client
and server machines.
245

246

B Appendix B: Troubleshooting SICL Programs
Using ping looks something like the following, where each line
after the Pinging line is an example of a packet successfully
reaching the server.

>ping instserv.hp.com

Pinging instserv.hp.com[128.10.0.3] with 32
bytes of data:Reply from 128.10.0.3:bytes=32
 time=10ms TTL=255
Reply from 128.10.0.3:bytes=32 time=10ms
 TTL=255
Reply from 128.10.0.3:bytes=32 time=10ms
 TTL=255
Reply from 128.10.0.3:bytes=32 time=10ms
 TTL=225

However, if ping cannot reach the host, a message similar to the
following is displayed that indicates the client was unable to
contact the server. In this case, you should contact your
network administrator to determine if there is a LAN problem.
When the LAN problem has been corrected, you can retry your
SICL application over LAN.

Pinging instserv.hp.com[128.10.0.3] with 32
bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.
LAN Client Problems
iopen Fails - Syntax Error

In this case, iopen fails with the error I_ERR_SYNTAX. If using
the “lan,net_address” format, ensure that the net_address is a
hostname, not an IP address. If you must use an IP address,
specify the address using the bracket notation, lan[128.10.0.3],
rather than the comma notation lan,128.10.0.3.
Agilent SICL User’s Guide

Appendix B: Troubleshooting SICL Programs B

Agilent SICL User’s Guide
iopen Fails - Bad Address

An iopen fails with the error I_ERR_BADADDR, and the error
text is core connect failed: program not registered. This indicates the
LAN server for SICL has not registered itself on the server
machine. This may also be caused by specifying an incorrect
hostname. Ensure that the hostname or IP address is correct
and, if so, check the LAN server’s installation and configuration.

iopen Fails - Unrecognized Symbolic Name

The iopen fails with the error I_ERR_SYMNAME, and the error
text is bad hostname, gethostbyname() failed. This indicates the
hostname used in the iopen address is unknown to the
networking software. Ensure that the hostname is correct and,
if so, contact your network administrator to configure your
machine to recognize the hostname. The ping utility can be used
to determine if the hostname is known to your system. If ping
returns with the error Bad IP address, the hostname is not known
to the system.

iopen Fails - Timeout

An iopen fails with a timeout error. Increase the Client Timeout
Delta configuration value via the IO Config utility. See Chapter
8 - Using SICL with LAN for more information.

iopen Fails - Other Failures

An iopen fails with some error other than those already
mentioned. Try the steps at the beginning of this section to see if
the client and server can talk to one another over the LAN. If
the ping and rpcinfo procedures work, check any server error
logs that may be available for further clues. Check for possible
problems such as a lack of resources at the server (memory,
number of SICL sessions, etc.).
247

248

B Appendix B: Troubleshooting SICL Programs
I/O Operation Times Out

An I/O operation times out even though the timeout being used
is infinity. Increase the Server Timeout configuration value via
the IO Config utility. Also, ensure the LAN client timeout is
large enough if ilantimeout is used. See Chapter 8 - Using SICL
with LAN for more information.

Operation Following a Timed Out Operation Fails

An I/O operation following a previous timeout fails to return or
takes longer than expected. Ensure the LAN timeout being used
by the system is sufficiently greater than the SICL timeout being
used for the session in question. The LAN timeout should be
large enough to allow for the network overhead in addition to
the time that the I/O operation may take.

If ilantimeout is used, you must determine and set the LAN
timeout manually. Otherwise, ensure the Client Timeout Delta
configuration value is large enough (via the IO Config utility).
See Chapter 8 - Using SICL with LAN for more information.

iopen Fails or Other Operations Fail Due to Locks

An iopen fails due to insufficient resources at the server or I/O
operations fail because some other session has the device or
interface locked. LAN server connections for SICL from
previous clients may not have terminated properly. Consult
your server’s troubleshooting documentation and follow the
instructions for cleaning up any previous server processes.
LAN Server Problems
SICL LAN Application Fails - RPC Error

After starting the LAN server, a SICL LAN application fails and
returns a message similar to the following:

RPC_PROG_NOT_REGISTERED
Agilent SICL User’s Guide

Appendix B: Troubleshooting SICL Programs B

Agilent SICL User’s Guide
There is a short (approximately 5 second) delay between
starting the LAN server and the LAN server being registered
with the Portmapper. Try running the SICL LAN application
again.

rpcinfo Does Not List 395180 or 395183

A rpcinfo query fails to indicate that program 395180 (SICL
LAN Protocol) or 395183 (TCP/IP Instrument Protocol) is
available on the server. If you have not yet started the LAN
server, do so now. See the Agilent IO Libraries Installation and
Configuration Guide for Windows for details on how to start
the LAN server. If you have started the LAN server, try rpcinfo
again after a few seconds to ensure the LAN server had time to
register itself.

iopen Fails

An iopen fails when you run your application, but rpcinfo
indicates the LAN server is ready and waiting. Ensure the
requested interface has been configured on the server. See the
Agilent IO Libraries Installation and Configuration Guide for
Windows for information on using IO Config to configure
interfaces for SICL.

LAN Server Appears “Hung”

The LAN server appears “hung” (possibly due to a long timeout
being set by a client on an operation that will never succeed).
Login to the LAN server and stop the hung LAN server process.
To stop the LAN server, see the Agilent IO Libraries
Installation and Configuration Guide for Windows.

This action will affect all connected clients, even those that may
still be operational. If informational logging has been enabled
using the IO Config utility, connected clients can be determined
by log entries in the Message Viewer (Windows 98SE/Me) or
Event Viewer (Windows 2000/XP/NT) utility.
249

250

B Appendix B: Troubleshooting SICL Programs
rpcinfo Fails - cannot contact portmapper

An rpcinfo returns the message rpcinfo: can’t contact portmapper:
RPC_SYSTEM_ERROR - Connection refused.

If the LAN server is not running, start it. If the LAN server is
running, stop the currently running LAN server and then
restart it.

Use Ctrl+Alt+Del to display a task list. Ensure that both LAN
Server and Portmap are not running before restarting the LAN
server. See the Agilent IO Libraries Installation and
Configuration Guide for Windows for details to start and stop
the LAN server.

rpcinfo Fails - program 395180 is not available

An rpcinfo -t server_hostname 395180 1 returns the following
message:

rpcinfo: RPC_SYSTEM_ERROR - Connection refused
program 395180 version 1 is not available

Ensure that the LAN server program is running on the server.

Mouse “Hung” When Stopping LAN Server

After attempting to stop a LAN server via either Ctrl+C or the
Windows 98SE/Me/2000/XP/NT x-button (in the upper-right
hand corner of the window), the mouse may appear to be
“hung.” Press any keyboard key and the LAN server will stop
and the mouse will again be operational.
Agilent SICL User’s Guide

Agilent E2094 SICL User’s Guide for Windows
Agilent SICL User’s Guide
Glossary

address

A string uniquely identifying a particular interface or a
device on that interface.

bus error

An action that occurs when access to a given address fails,
either because no register exists at the given address, or the
register at the address refuses to respond.

bus error handler

Programming code executed when a bus error occurs.

commander session

A session that communicates to the controller of this bus.

controller

A computer used to communicate with a remote device such
as an instrument. In the communications between the
controller and the device, the controller is in charge of, and
controls, the flow of communication (that is, does the
addressing and/or other bus management).

controller role

A computer acting as a controller communicating with a
device.
251Agilent Technologies

252

Glossary
device

A unit that receives commands from a controller. Typically a
device is an instrument but could also be a computer acting
in a non-controller role, or another peripheral such as a
printer or plotter.

device driver

A segment of software code that communicates with a device.
It may either communicate directly with a device by reading
and writing registers, or it may communicate through an
interface driver.

device session

A session that communicates as a controller specifically with
a single device, such as an instrument.

handler

A software routine used to respond to an asynchronous
event such as an error or an interrupt.

instrument

A device that accepts commands and performs a test or
measurement function.

interface

A connection and communication medium between devices
and controllers, including mechanical, electrical, and
protocol connections.

interface driver

A software segment that communicates with an interface. It
also handles commands used to perform communications on
an interface.
Agilent SICL User’s Guide

Glossary

Agilent SICL User’s Guide
interface session

A session that communicates and controls parameters
affecting an entire interface.

interrupt

An asynchronous event requiring attention out of the normal
flow of control of a program.

lock

A state that prohibits other users from accessing a resource,
such as a device or interface.

logical unit

A logical unit is a number associated with an interface. In
SICL, a logical unit uniquely identifies an interface. Each
interface on the controller must have a unique logical unit.

mapping

An operation that returns a pointer to a specified section of
an address space, and makes the specified range of addresses
accessible to the requester.

non-controller role

A computer acting as a device communicating with a
controller.

process

An operating system object containing one or more threads
of execution that share a data space. A multi-process system
is a computer system that allows multiple programs to
execute simultaneously, each in a separate process
environment. A single-process system is a computer system
that allows only a single program to execute at a given point
in time.
253

254

Glossary
register

An address location that controls or monitors hardware.

session

An instance of a communications channel with a device,
interface, or commander. A session is established when the
channel is opened with the iopen function and is closed with
a corresponding call to iclose.

SRQ

Service Request. An asynchronous request (an interrupt)
from a remote device indicating that the device requires
servicing.

status byte

A byte of information returned from a remote device showing
the current state and status of the device.

symbolic name

A name corresponding to a single interface or device. This
name uniquely identifies the interface or device on this
controller. If there is more than one interface or device on
the controller, each interface or device must have a unique
symbolic name.

thread

An operating system object that consists of a flow of control
within a process. A single process may have multiple threads
that each have access to the same data space within the
process. However, each thread has its own stack and all
threads may execute concurrently with each other (either on
multiple processors, or by time-sharing a single processor).
Multi-threaded applications are only supported with 32-bit
SICL.
Agilent SICL User’s Guide

Index
A
addressing device sessions, 36
addressing RS-232 devices, 161
addressing RS-232 interfaces, 166
addressing VXI message-based

devices, 119
Agilent

telephone numbers, 14
web site, 14

asynchronous events,
enabling/disabling, 61

asynchronous events, handling, 60

B
Borland C++ compilers, using, 34
Borland compilers, using, 21
buffers, formatted I/O, 47, 55
building SICL applications, 32

C
C applications, compiling, 33
command module, 117
commander session, 35
common LAN problems, 245
communications sessions, opening, 35
compiled SCPI (C-SCPI), 117
compiling C applications, 33
configuring RS-232 interfaces, 155

D
device session, 35
device sessions, addressing, 36
device sessions, RS-232, 157
device types, VXI, 116
DLLs, C applications, 32
Agilent SICL User’s Guide
E
error handlers

using in Visual Basic, 67
error handlers, using in C, 64
error handling, 63
Event Viewer, 63
Event Viewer utility, 238
255

Index
examples
C Example Program Code, 16
Configuring LAN Client (Gateway)

Interface, 184
Configuring LAN Client (LAN)

Interface, 185
Configuring LAN Server Interface, 187
Configuring RS-232 Interface, 156
Creating a Commander Session, 39
Device Locking (C), 71
Device Locking (Visual Basic), 73
Error Handlers (Visual Basic), 68
Formatted I/O (Visual Basic), 54
GPIB (82350) Interface, 90
GPIB Device Session (C), 94
GPIB Device Session (Visual Basic), 96
GPIB Interface Session (C), 100
GPIB Interface Session (Visual

Basic), 101
Installng an Error Handler (C), 65
I-SCPI Interface Session, 129
LAN-gatewayed Addressing, 190
LAN-gatewayed Session (C), 194
LAN-gatewayed Session (Visual

Basic), 195
Non-Formatted I/O (C), 57
Non-Formatted I/O (Visual Basic), 59
Opening a Device Session, 37
Opening an Interface Session, 38
Oscillosope Program (C), 74
Oscillosope Program (Visual Basic), 82
Processing VME Interrupts (C), 150
RS-232 Device Session (Visual

Basic), 164
RS-232 Interface Session (C), 170
RS-232 Interface Session (Visual

Basic), 171
Servicing Requests (C), 105
Visual Basic Program Example

Code, 24
VME Interrupts (C), 142
VXI Interface Session (C), 137
VXI Interrupt Actions (C), 148
VXI Memory I/O (C), 145
VXI Message-Based Device Session

(C), 120
VXI Register-Based Programming

(C), 134
Writing an Error Handler (C), 66
256
F
formatted I/O

buffers, 47, 55
C applications, 40
conversion, 40, 49
related functions, 48
Visual Basic applications, 49
Visual Basic functions, 56

G
gateway, 179
getting started using C, 16
getting started using Visual Basic, 23
glossary, 251
GPIB

handling SRQs, 105
interface sessions, 98
interrupt handlers, 104
multiple interrupts, 104
primary/secondary addresses, 93
VXI mainframe connections, 93

GPIB commander sessions, 103
interrupts, 104

GPIB communications sessions,
selecting, 91

GPIB device sessions, service requests, 94
GPIB device sessions, SICL functions, 92
GPIB device sessions, using, 92
GPIB devices, addressing, 92
GPIB interface sessions

service requests, 100
GPIB interface sessions, interrupts, 99
GPIB interface sessions, SICL functions, 98
GPIB Interfaces, configuring, 89
GPIB interfaces, introduction, 88
GPIB SICL functions, 91
GPIO

problems, 243

H
handling errors, 63

I
I/O commands, sending, 39
instrument, definition, 128
interface session, 35
interface sessions, RS-232, 157, 166
interpreted SCPI (I-SCPI), 117
interrupt handlers, 61
interrupts, 60
IO Config, 187
IO Config utility, 19, 37, 93, 119, 136,

161, 243
IP address, 186
I-SCPI interface, 122

L
LAN

application terminations/timeouts, 205
client/server model, 177
clients and threads, 181
default timeout values, 202
gateway, 179
hardware architecture, 178
interface sessions, 198
interface sessions, SICL functions, 198
IP address, 186
IP addresses, 190
Lan-gatewayed sessons, 189
locks, 200
networking protocols, 180
servers, 182
SICL configuration, 182
SICL performance, 182
SICL-LAN protocol, 180
software architecture, 179
TCP/IP instrument protocol, 180
TCP/IP protocol, 179
threads, 200
timeout functions, 202
timeouts, 201
timeouts in multi-threaded

applications, 204
Using the ping Utility, 245
VXI-11 protocol, 180

LAN interface sessions, 198
SICL functions, 198

LAN interfaces, overview, 176
LAN-gatewayed sessions, 189
libraries, C applications, 32
locking

multi-user environment, 71
Agilent SICL User’s Guide

Index
locks
actions, 70
locking multi-user environment, 71

locks, using, 69

M
Message Viewer, 63
Message Viewer utility, 238
message-based devices,

programming, 118
message-based devices, VXI, 116

N
non-formatted I/O, 57

O
opening communications sessions, 35
overview, guide, 10
overview, SICL, 11

P
peeks and pokes, register, 117
porting to Visual Basic, 221
programming VXI register-based

devices, 122

R
register peeks and pokes, 117
register-based devices, 116
register-based devices, programming, 122
RS-232

common problems, 242
communications sessions, 156
device sessions, 160
device sessons, 157
interface sessions, 157, 166
interface sessions, SICL functions, 166
SICL functions, 158

RS-232 cabling
cable/adapter part numbers, 221
cable/adapter pinouts, 224

RS-232 device sessions
SICL function support, 162

RS-232 devices, addressing, 161
Agilent SICL User’s Guide
RS-232 interfaces, addressing, 166
RS-232 interfaces, configuring, 155
RS-232 interfaces, introduction, 154

S
selecting GPIB communications

sessions, 91
sending I/O commands, 39
SICL

description, 12
GPIB functions, 91
GPIB interface sessions, 98
SICL declaration file, 32

SICL applications, building, 32
SICL error codes, 238
SICL error messages, logging, 63
SICL functions, GPIB device sessions, 92
SICL functions, VXI interfaces, 117
SICL overview, 11
SICL programs, troubleshooting, 238
SICL system information

Windows 95/98/Me, 216
Windows NT/2000, 219

SICL-LAN protocol, 180
SRQ handlers, 61
SRQs, 60
status byte, 94, 129

T
Task Manager, 242
TCP/IP instrument protocol, 180
TCP/IP protocol, 179
troubleshooting

common GPIO problems, 243
common LAN problems, 245
common Windows problems, 242
LAN client problems, 246
LAN server problems, 248
RS-232 problems, 242
SICL

error codes, 238
SICL programs, 238
U
USB

communicating with instruments using
SICL, 209

interfaces overview, 208
using GPIB commander sessions, 103
using GPIB interface sessions, 98
using RS-232 interface sessions, 166
using VXI interface sessions, 136

V
VISA, 11
Visual Basic 6.0, porting to, 23
Visual Basic applications, running, 34
Visual Basic, porting, 221
Visual C++ compilers, using, 33
VME devices

communicating with, 139
declaring resources, 139
interrupts, 142
mapping VME memory, 140
reading/writing to device registers, 141
unmapping memory space, 142

VXI
backplane memory I/O

performance, 144
block memory access, 145
command module, 123
compiled SCPI, 123
device types, 116
I-SCPI interface, 122
message-based devices, 116
message-based devices,

addressing, 119
programming message-based

devices, 118
register programming, 122
register-based devices, VXI, 116
register-based instrument drivers, 126
SICL function support, 144
single location peek/poke, 144

VXI interface sessions, 136
VXI interfaces, SICL functions, 117
VXI-11 protocol, 180
257

Index
W
Windows applications, thread support, 34

X
XON/XOFF, 167
258
 Agilent SICL User’s Guide

	Agilent SICL User’s Guide for Windows
	Introduction
	What’s in This Guide?
	SICL Overview
	Introducing VISA and SICL

	SICL Description
	SICL Support
	SICL Users
	SICL Documentation

	If You Need Help

	Getting Started with SICL
	Getting Started Using C
	C Example Program Code
	C Example Code Description
	sicl.h
	INST
	ionerror
	iopen
	itimeout
	iprintf and ipromptf
	iclose and _siclcleanup

	Compiling the C Example Program
	Running the C Example Program
	Where to Go Next

	Getting Started Using Visual Basic
	Porting to Visual Basic 6.0
	Visual Basic Program Example Code
	Visual Basic Example Code Description
	id
	iopen
	itimeout
	iwrite and iread
	iclose and _siclcleanup

	Building and Running the VB Example Program
	Where to Go Next

	Programming with SICL
	Building a SICL Application
	Including the SICL Declaration File
	Libraries for C Applications and DLLs
	Compiling and Linking C Applications
	Microsoft Visual C++ Compilers
	Borland C++ Version 4.0 Compilers

	Loading and Running Visual Basic Applications
	Thread Support for 32-bit Windows Applications
	Opening a Communications Session
	Opening a Communications Session
	Device Sessions
	Addressing Device Sessions
	Examples: Opening a Device Session

	Interface Sessions
	Addressing Interface Sessions
	Examples: Opening an Interface Session

	Commander Sessions
	Addressing Commander Sessions
	Examples: Creating a Commander Session

	Sending I/O Commands
	Formatted I/O in C Applications
	Formatted I/O Conversion
	Format Flags
	Field Width
	. Precision
	, Array Size
	Argument Modifier
	Format Codes
	Example: Formatted I/O (C)
	Format Strings
	Formatted I/O Buffers
	Related Formatted I/O Functions

	Formatted I/O in Visual Basic Applications
	Formatted I/O Conversion
	Format Flags
	Field Width
	. Precision
	, Array Size
	Argument Modifier
	Format Codes
	Format Strings
	Formatted I/O Buffers
	Related Formatted I/O Functions

	Non-Formatted I/O
	iread Function
	iwrite Function
	Example: Non-Formatted I/O (C)
	Example: Non-Formatted I/O (Visual Basic) ' nonfmt.bas ' The following subroutine measures AC voltage ‘ on a multimeter and prints the results.

	Handling Asynchronous Events
	SRQ Handlers
	Interrupt Handlers
	Temporarily Disabling/Enabling Asynchronous Events

	Handling Errors
	Logging SICL Error Messages
	Using the Event Viewer
	Using the Message Viewer

	Using Error Handlers in C
	ionerror Function
	Example: Installng an Error Handler (C)
	Example: Writing an Error Handler (C)

	Using Error Handlers in Visual Basic
	Example: Error Handlers (Visual Basic)

	Using Locks
	What are Locks?
	Lock Actions
	Locking in a Multi-User Environment
	Example: Device Locking (C)
	Example: Device Locking (Visual Basic)

	Additional Example Programs
	Example: Oscillosope Program (C)
	Program Files
	Building the Project File
	Program Overview
	Custom Error Handler
	Locks
	Formatted I/O
	Interface Sessions
	SRQs and iwaithdlr

	Example: Oscillosope Program (Visual Basic)
	Program Files
	Loading and Running the Program
	Program Overview

	Using SICL with GPIB
	Introduction to GPIB Interfaces
	GPIB Interfaces Overview
	Typical GPIB Interface
	Configuring GPIB Interfaces
	Example: GPIB (82350) Interface

	Selecting a GPIB Communications Session
	SICL GPIB Functions
	Using GPIB Device Sessions
	SICL Functions for GPIB Device Sessions
	Addressing GPIB Devices
	Opening IO Config
	Primary and Secondary Addresses
	VXI Mainframe Connections
	GPIB Device Sessions and Service Requests

	GPIB Device Session Examples
	Example: GPIB Device Session (C)
	Example: GPIB Device Session (Visual Basic)

	Using GPIB Interface Sessions
	SICL Functions for GPIB Interface Sessions
	Addressing GPIB Interfaces
	Opening IO Config
	GPIB Interface Sessions Interrupts
	GPIB Interface Sessions and Service Requests

	GPIB Interface Session Examples
	Example: GPIB Interface Session (C)
	Example: GPIB Interface Session (Visual Basic)

	Using GPIB Commander Sessions
	SICL Functions for GPIB Commander Sessions
	Addressing GPIB Commanders
	GPIB Commander Sessions Interrupts

	Writing GPIB Interrupt Handlers
	Multiple I_INTR_GPIB_TLAC Interrupts
	Handling SRQs from Multiple GPIB Instruments
	Example: Servicing Requests (C)

	Using SICL with VXI
	Introduction to VXI Interfaces
	VXI Interfaces Overview
	Typical VXI Interface
	Configuring VXI Interfaces
	Example: VXI (E1406A) Interface
	Example: VXI (E8491) Interface

	VXI Communications Sessions
	VXI Device Types
	Message-Based Devices
	Register-Based Devices

	SICL Functions for VXI Interfaces
	Programming VXI Message-Based Devices
	VXI Message-Based Device Functions

	Addressing VXI Message-Based Devices
	Addressing Guidelines
	Example: VXI Message-Based Device Session (C)
	Example: VXI Message-Based Device Session (Visual Basic)

	Programming VXI Register-Based Devices
	Addressing VXI Register-Based Devices
	Functions Not Supported
	Addressing Guidelines

	Programming Using the I-SCPI Interface
	Using the I-SCPI Interface
	I-SCPI SICL Functions
	Addressing Guidelines
	I-SCPI Interrupts and Service Requests
	Example: I-SCPI Interface Session

	Programming Directly to Registers
	Mapping Memory Space for Register-Based Devices
	Reading and Writing Device Registers
	Example: VXI Register-Based Programming (C)

	Programming VXI Interface Sessions
	VXI Interface Sessions Functions
	Addressing VXI Interface Sessions
	Addressing Guidelines
	Example: VXI Interface Session (C)

	Miscellaneous VXI Interface Programming
	Communicating with VME Devices
	Declaring Resources
	Mapping VME Memory
	Reading and Writing Device Registers
	Unmapping Memory Space
	VME Interrupts
	Example: VME Interrupts (C)

	VXI Backplane Memory I/O Performance
	Using Single Location Peek/Poke
	Using Block Memory Access
	Example: VXI Memory I/O (C)

	Using VXI-Specific Interrupts
	Example: VXI Interrupt Actions (C)
	Example: Processing VME Interrupts (C)

	Using SICL with RS-232
	Introduction to RS-232 Interfaces
	ASRL (RS-232) Interface Overview
	Typical RS-232 Interface

	Configuring RS-232 Interfaces
	Example: Configuring RS-232 Interface

	RS-232 Communications Sessions
	Device Sessions
	Interface Sessions

	RS-232 SICL Functions
	Using RS-232 Device Sessions
	Addressing an RS-232 Device
	SICL Functions for RS-232 Device Sessions
	Example Device Session Programs
	Example: RS-232 Device Session (C)
	Example: RS-232 Device Session (Visual Basic)

	Using RS-232 Interface Sessions
	Addressing RS-232 Interfaces
	SICL Functions for RS-232 Interface Sessions
	Example Interface Sessions Programs
	Example: RS-232 Interface Session (C)
	Example: RS-232 Interface Session (Visual Basic)

	Using SICL with LAN
	Introduction to LAN Interfaces
	LAN Interfaces Overview
	LAN Client/Server Model
	LAN Hardware Architecture
	LAN Software Architecture
	LAN Networking Protocols
	LAN Clients and Threads
	LAN Servers
	SICL LAN Configuration and Performance
	SICL LAN Functions

	Configuring LAN Client Interfaces
	Using IO Config
	Example: Configuring LAN Client (Gateway) Interface
	Example: Configuring LAN Client (LAN) Interface

	Configuring LAN Server Interfaces
	Using IO Config
	Example: Configuring LAN Server Interface

	Using LAN-gatewayed Sessions
	Addressing Guidelines
	Creating a LAN-gatewayed Session
	Example: LAN-gatewayed Addressing

	SICL Function Support
	Remote Interface Support
	LAN Timeout Functions
	Example Programs
	Example: LAN-gatewayed Session (C)
	Example: LAN-gatewayed Session (Visual Basic)

	Using LAN Interface Sessions
	Addressing LAN Interface Sessions
	SICL Function Support

	Using Locks, Threads, and Timeouts
	Using Locks and Threads Over LAN
	Scenarios to Avoid
	Recommended Usage

	Using Timeouts with LAN
	Client/Server Operation
	LAN Timeout Functions
	Default LAN Timeout Values
	Timeout Algorithm
	Timeouts in Multi-threaded Applications
	Timeout Configurations to Be Avoided
	Application Terminations and Timeouts

	Using SICL with USB
	USB Interfaces Overview
	Communicating with a USB Instrument Using SICL
	Operations Supported on All USBTMC Devices
	Operations Supported Only on USBTMC-USB488 Devices

	Appendix A: SICL Library Information
	SICL Library Information
	File System Information
	Windows 98/Windows Me
	File Location
	The Registry
	SICL Configuration Information

	Windows NT/Windows 2000/Windows XP
	File Location
	The Registry
	SICL Configuration Information

	Porting to Visual Basic
	RS-232 Cabling Information
	Cable/Adapter Part Numbers

	Appendix B: Troubleshooting SICL Programs
	Troubleshooting SICL Programs
	SICL Error Codes
	Common Windows Problems
	Common RS-232 Problems
	Common GPIO Problems
	Bad Address (for iopen)
	Operation Not Supported
	No Device
	Bad Parameter

	Common LAN Problems
	General Troubleshooting Techniques
	Using the ping Utility

	LAN Client Problems
	iopen Fails - Syntax Error
	iopen Fails - Bad Address
	iopen Fails - Unrecognized Symbolic Name
	iopen Fails - Timeout
	iopen Fails - Other Failures
	I/O Operation Times Out
	Operation Following a Timed Out Operation Fails
	iopen Fails or Other Operations Fail Due to Locks

	LAN Server Problems
	SICL LAN Application Fails - RPC Error
	rpcinfo Does Not List 395180 or 395183
	iopen Fails
	LAN Server Appears “Hung”
	rpcinfo Fails - cannot contact portmapper
	rpcinfo Fails - program 395180 is not available
	Mouse “Hung” When Stopping LAN Server

	Glossary
	address
	bus error
	bus error handler
	commander session
	controller
	controller role
	device
	device driver
	device session
	handler
	instrument
	interface
	interface driver
	interface session
	interrupt
	lock
	logical unit
	mapping
	non-controller role
	process
	register
	session
	SRQ
	status byte
	symbolic name
	thread

	Index

