

CMOS-6 1.0 Micron CMOS Gate Array

Description

CMOS-6 is NEC's well-established channelless gate array family. The CMOS-6 family comprises 17 masters, which are available in a wide variety of package types including thin packages (T-QFP), QFP with heatspreader and PGA.

The CMOS-6 family is designed for cost effective solutions in low end, low gate count applications to be used in all market segments. In addition, specific master steps are tuned for low gate count in combination with high pin count.

The CMOS-6 libraries give immediate access to over 300 functions, a wide set of interface blocks, RAM, ROM and commonly used mega macros like UART and DMA controller. The standard library has been characterised also for extended operation voltage starting at 2.7 V. Therefore this 5 V technology can be used also in the field of typical 3 V applications.

Features

- O 1.0 μ m (drawn) CMOS process
- O Sea-of-gates
- O Extended voltage range (2.7 V ~ 5.5 V)
- O Extensive block library
- O Mega macro support
- O High Speed / High Density RAM, ROM
- O Variable output drive (4.5 to 24 mA)
- O Supports scan test methodology
- O High pin count
- O Wide range of package options

Product Outline

Family		CMOS-6A/6S	CMOS-6				
Metalization layers (Al.)		2 metal layers	3 metal layers				
Gate Count Rai	nge (raw)	2k - 70k	42k - 177k				
Utilisation (Mini	mum)	65% for 2 metal layers	s, 80% for 3 metal layers				
Toggle Frequer	ncy (Min.)	120	MHz				
	Internal gate	0.27 ns (F/O = 1, I = 0 mm); 0	0.40 ns (F/O = 2, I = 2 mm) ^{Note1}				
Delay time	Input buffer	1.0 ns (F/O	= 2, l = 2 mm)				
	Output buffer	2.0 ns (C	2.0 ns (C L = 15 pF)				
Consumed	Internal gate	8 µW/M	/Hz/Cell				
Power	Input buffer	46 μW/MHz/Cell (C	MOS, normal buffer)				
	Output buffer	0.78 mW/MHz/	Cell (C _L = 15 pF)				
Power supply v	oltage	5V ±10% (CMOS), 5V ±5% (TTL), extended voltage range starting at 2.7V					
Operating temperature		-40 to +85°C					
Interface level		CMOS level, TTL level					
Technology		Channelless (Sea-of-Gates) 1.0 µm Silicon gate CMOS					

Note1 : 2-input NAND power gate

Master Line-Up

This 1.0μ sea-of-gates technology offers 17 masters starting at 2k up to 177k raw gates, achieving a utilisation of minimum 65% for two-

layer and 80% for three-layer devices. The 13 masters of CMOS-6A/6S are using two metal layers. The CMOS-6 family provides four masters with high gate count and three metal layers.

CMOS-6 Master Table

Sub-Family	CMOS-6					CMOS-6S			
Metal Layers	3				2				
Master Name	65658 65664 65672 65676				65611	65621	65625	65643	65653
Raw Gates	42240	72576	119232	177408	1836	3484	5312	13416	25488
PAD Count*	220 288 368 448				80	100	120	176	236

Sub-Family	CMOS-6A										
Metal Layers		2									
Master Name	65630	65630 65636 65640 65646 65650 65654 65656									
Raw Gates	5376	8000	11520	16240	21120	30720	40480	70272			
PAD Count*	84	100	120	140	160	192	220	288			

Note: * = 16 Pads are reserved for VDD/GND pins. Please refer to detailed master/package description in Design Manual.

Design Tool Support

NEC supports its ASIC products with a comprehensive CAD system that significantly reduces the time and expense usually associated with the development of semicustom devices.

NEC's OpenCAD[™] Design System - a unified design package for front-to-back-end - allows designers to combine tools from the CAE industry's most popular third-party vendors and from NEC's offer of powerful proprietary software tools.

The OpenCAD[™] integration system supports tools for schematic capture, logic synthesis, floorplanning, automatic test pattern generation (ATPG), full timing simulation, accelerated fault-grading and advanced place-and-route algorithms. These advanced CAD tools help ensure accurate designs.

Placement and Routing is performed in the European headquarter in Düsseldorf (Germany), which allows quick and flexible handling of specific design demands leading to significantly reduced turn-around-times.

Macrofunctions

The CMOS-6 Gate Array family offers an extensive library of primitives, complex functions and RAM/ROM blocks. In addition to

these macros the following mega macros are available or under development:

Function	Compatible Device
DMA Controller	μPD71037
Serial Control Unit (USART)	μPD71051
μ PD71051 Programmable Timer / Counter	μPD71054
Parallel Interface Unit	μPD71055
Interrupt Control Unit	μPD71059
UART	NS16C450
UART with FIFO	NS16550A
I ² C-Bus Interface	I ² C

The usage of these macrofunctions is fully supported by NEC's OpenCAD[™] Design System.

Block Library

The CMOS-6 family offers a variety of blocks, among others combination gates, counters, shift registers and scan macros which can be used for scan path design. In addition, memory blocks such as RAM and ROM are provided. The usage of RAM can be optimised for density or speed. The low-power blocks are designed for gate count reduction; the number of cells are fewer than that of the standard block, contributing to lower power consumption and higher efficiency. Many combinations of

different buffers and interface types are available to optimise for system requirements.

Special clock drivers can be used for clock distribution.

I/O Buffer

Buffer Type	Options and possible combinations
Input Buffer	Pull-Up 50 k $\Omega,$ 5 k Ω / Pull-Down 50 k Ω Schmitt Trigger Input / TTL Level / High Fanout (Clock Driver)
Output Buffer, Bidirectional I/O-Buffer	Drive Ability: 4.5, 9, 13.5, 18, 24 mA / TTL Level ^(note 1) / Open Drain / Pull-Up 50 k Ω , 5 k Ω / Pull-Down 50 k Ω / Tri-State / Low Noise / Oscillator Buffer / Osc. Buffer 32 kHz

(note 1) TTL Output buffers are only available in CMOS-6 and CMOS-6A, but not in CMOS-6S

Memory Blocks

Type (Function)	Operation	Bit range	Word range
High density single port RAM	Asynchronous	4 to 40	128 to 4k
High speed single port RAM	Asynchronous	4 to 40	32 to 512
High speed dual port RAM	Asynchronous	4 to 40	32 to 512
Standard ROM	Asynchronous	4 to 32	128 to 8k

Replacement of CMOS-6V/6X

The new introduced CMOS-6S masters cover a range of 1836 raw gates at 64 I/O signals up to 25488 raw gates providing 220 signal pins The new masters can be seen as a shrinked version of the former CMOS-6V/6X masters. The combination of small masters using a high pad count is realised in CMOS-6S using a 100 μ m pad pitch. As a result, this new family provides smaller die sizes at a higher pin count than the former families CMOS-6V/6X.

Packaging

The CMOS-6 Family supports a variety of different master package combinations. The wide range of packages includes also thin packages (T-QFP, L-QFP) and QFP with heatspreader, improve the to thermal characteristics. Pin restricted designs with small gate count can be realised by the suitable choice of master and package. For information concerning mounting, quality and reliability refer NEC's dedicated please to documentation.

Sub-Family		CMOS-6				CMOS-6S					
Package Type	No. of Pins	Pitch [mm]	65658	65664	65672	65676	65611	65621	65625	65643	65653
QFP	44	0.80					~	~	~		
	52	1.00					~	v	V		
	64	1.00					~	~	~		
	80	0.80						~	~		
	100	0.65	~						~		
	120	0.80	~	~	~						
	136	0.65	 ✓ 	v	~					~	
	160	0.65	~	~	~	~				~	
	184	0.65	~	~	~	~					0
QFP (FP)	100	0.50	~						~		
	120	0.50	~	~	~						
	144	0.50	 ✓ 	~	 ✓ 					~	

CMOS-6 Package Availability (Note: O = Under development

 = Available)

CMOS-6

Sub Family				CMC					CMOS 6	c	
Package Type	No. of	Pitch		CIVIC	JS-0				01003-0	<u> </u>	
r dokage rype	Pins	[mm]	65658	65664	65672	65676	65611	65621	65625	65643	65653
QFP (FP)	160	0.50	~	~	~	~				~	
	176	0.50	~	~	~	~		_		~	~
	208	0.50	~	~	~	~				-	V
	240	0.50		~	~	~		_			
	304	0.50			~	~		_			
QFP (HSP)	160	0.65	~	~	~	-					
QFP-FP (HSP)	208	0.50	V	v	V	~					0
	304	0.50	-		~	-					
TQFP (FP)	48	0.50			•		0	0			
	64	0.50					0	0	0		
	80	0.50						0	0		
	100	0.50	~						0		
	120	0.40	~								
LQFP (FP)	144	0.50	 ✓ 		~					0	
PLCC	68		 ✓ 								
	84		~								
PGA	132		~	~	~	~					
	176		 ✓ 	~	~	~					
	208		~	~	~	~					
	280			~	~	~					
	364				~	~					
B/L PGA	528					~					
				·							
Sub-Family							CMOS-6	A			
Package Type	No. of	Pitch	65620	65636	6564	0 654	346 6	5650	65654	65656	65662
	Pins	[mm]	03030	03030	0304	0 030	040 0	3030	03034	03030	03002
QFP	44	0.80	 ✓ 	 ✓ 	 ✓ 		/	/			
	52	1.00	 ✓ 	 ✓ 	 ✓ 		/	 	/		
	64	1.00	 ✓ 	 ✓ 	 ✓ 		/	 	/		
	80	0.80	 ✓ 	 ✓ 	 ✓ 		/	 	/		
	100	0.65	 ✓ 	 ✓ 	 ✓ 		/	 	/	v	
	120	0.80	 ✓ 		 ✓ 	v	/	v	/	v	 ✓
	136	0.65					/	v	/	v	 ✓
	160	0.65						v	/	v	 ✓
	184	0.65							/	v	 ✓
QFP (FP)	100	0.50		 ✓ 	 ✓ 		/	 	/	v	
	120	0.50			 ✓ 		/	/	/	v	 ✓
	144	0.50					/			v	 ✓
	160	0.50						v	/	v	 ✓
	1/6	0.50						~	~	v	~
	208	0.50								v	~
	240	0.50									 ✓
QFP (HSP)	160	0.65								/	/
	160	0.50								0	<u> </u>
	1/6	0.50								0	<u> </u>
	200	0.50	<u> </u>							v	v
1QFP (FP)	40	0.50	∕								
	04	0.50	✓	/	/						
	80	0.50	✓		/						
	100	0.50		<u> </u>		V				v	
	120	0.40			<u> </u>		, ,	<u> </u>		/	
	144	0.50						v	<u> </u>	v	0
PLUU	84							V			

~

~

~

V

~

~

イ イ

~

マ マ ~

ン ン ン

PGA

72

132

176

208 280

Absolute Maximum Ratings

NEC

Power supply voltage, V_{DD}	-0.5 to 6.5 V
Input voltage, V _I	-0.5 to V _{DD} + 0.5 V
Output voltage, V _O	-0.5 to V _{DD} + 0.5 V
Output current I _O	
@ I _{OL(MIN)} = 4.5 mA	< 10 mA
@ I _{OL(MIN)} = 9.0 mA	< 20 mA
@ I _{OL(MIN)} = 13.5 mA	< 30 mA
@ I _{OL(MIN)} = 18.0 mA	< 40 mA
@ I _{OL(MIN)} = 24.0 mA	< 60 mA
Operating temperature, T _{OPT}	-40 to +85°C
Storage temperature, T _{STG}	-65 to +150°C

Input/Output Capacitance

 $V_{DD}=V_{I}=0$ V; f=1 Mhz ; $T_{A} = +25$ °C.

Terminal	Symbol	Тур	Max	Unit
Input	C _{IN}	10	20	pF
Output	C _{OUT}	10	20	pF
I/O	C _{I/O}	10	20	pF

Note:

(1) Values do not include package pin capacitance.

Power Consumption

Description	Limits	Unit
Internal Cell (@ 5 V supply voltage)	8	µW/MHz
Input block (FI01)	46	µW/MHz
Output block (F002 @ 15 pF)	780	µW/MHz

Recommended Operating Conditions

		СМОЗ	6 Level	TTL-Level ⁽¹⁾		TTL-Le		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Uni
Power supply voltage	V _{DD}	4.5	5.5	4.75	5.25	4.5	5.5	V
Ambient temperature	T _A	-40	+85	0	70	-40	+85	°C
Low-level input voltage	V _{IL}	0	0.3 V _{DD}	0	0.8	-0.5	0.77	V
High-level input voltage	V _{IH}	0.7 V _{DD}	V _{DD}	2.2	V _{DD}	2.29	V _{DD}	V
Input rise or fall time	t _R , t _F	0	200	0	200	0	200	ns
Input rise or fall time, Schmitt	t _R , t _F	0	10	0	10	0	10	ms
Positive trigger voltage	V _P	1.8	4.0	1.2	2.4	1.15	2.54	V
Negative trigger voltage	V _N	0.6	3.1	0.6	1.8	0.59	1.85	ms
Hysteresis voltage	V _H	0.3	1.5	0.3	1.5	0.27	1.5	ms

(1) $\pm\,5\%$ supply voltage tolerance and 0..70° ambient temperature

(2) \pm 10% supply voltage tolerance and -40..85° ambient temperature

AC Characteristics

 $V_{DD} = 5 V \pm 0.5 V$; $T_j = -40 \text{ to } +125^{\circ}\text{C}$

Parameter Toggle frequency Delay time		Symbol f _{TOG}	Min 120	Тур	Max	Unit MHz	Conditions D-F/F; F/O = 2
			2-input NAND (F322)	t _{PD}		270	
		t _{PD}		500		ps	F/O = 2; L = 2mm
	Input buffer (FI01)	t _{PD}		1000		ps	F/O = 2; L = 2mm
	Output buffer (FO01)	t _{PD}		2000		ps	C _L = 15 pF
Output rise time (FO01)		t _R		1.54		ns	C _L = 15 pF; 10-90%
Output fall time (FO01)		t _F		1.42		ns	C _L = 15 pF; 10-90%

DC Characteristics

(V_{DD}= 5 V ± 0.5 V; T_a = -40 to +85°C) and (V_{DD} = 5 V ± 0.25 V; T_a = 0 to +70°C)

Parameter		Symbol	Min	Тур	Max	Unit	Conditions
Quiescent current							
	CMOS-6	I _{DDS}		0.1	280	μΑ	$V_I = V_{DD}$ or GND
	CMOS-6A	I _{DDS}		0.1	100	μA	$V_I = V_{DD}$ or GND
	CMOS-6S	I _{DDS}		0.1	tbd.	μA	$V_I = V_{DD}$ or GND
Off-state output leakage current		I _{OZ}			±10	μA	$V_0 = V_{DD}$ or GND
Output sink short circuit current		I _{OS}			-250	mA	V _O =GND

DC Characteristics

 $V_{DD} = 5 \text{ V} \pm 0.5 \text{ V}; \ \text{T}_{a} = -40 \text{ to } +85^{\circ}\text{C}$

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input leakage current						
Regular	I _I		±10 ⁻⁵	±10	μA	$V_I = V_{DD}$ or GND
50 kΩ pull-up	l _i	-45	-131	-320	μA	V _I = GND
5 kΩ pull-up	I _I	-0.35	-1.0	-2.20	mA	V _I = GND
50 kΩ pull-down	I _I	45	131	320	μA	$V_{I} = V_{DD}$
Pull-up resistor						
50 kΩ pull-up	R _{PU}	17.2	38.2	100.0	kΩ	
5 kΩ pull-up	R _{PU}	2.5	5.0	12.9	kΩ	
50 kΩ pull-down	R _{PD}	17.2	38.2	100.0	kΩ	
Low-level output current						
4.5 mA (CMOS)	I _{OL}	4.50			mA	$V_{OL} = 0.4 V$
9.0 mA (CMOS)	I _{OL}	9.00			mA	V _{OL} = 0.4 V
13.5 mA (CMOS)	I _{OL}	13.50			mA	V _{OL} = 0.4 V
18.0 mA (CMOS)	I _{OL}	18.00			mA	V _{OL} = 0.4 V
24.0 mA (CMOS)	I _{OL}	24.00			mA	V _{OL} = 0.4 V
Low-level output voltage	V _{OL}			0.1	V	I _{OL} =0 mA
High-level output current						
4.5 mA (CMOS)	I _{OL}	-2.50			mA	$V_{OH} = V_{DD} - 0.4 V$
9.0 mA (CMOS)	I _{OL}	-5.00			mA	V _{OH} = V _{DD} - 0.4 V
13.5 mA (CMOS)	I _{OL}	-7.50			mA	V _{OH} = V _{DD} - 0.4 V
18.0 mA (CMOS)	I _{OL}	-10.00			mA	V _{OH} = V _{DD} - 0.4 V
24.0 mA (CMOS)	I _{OL}	-14.00			mA	V _{OH} = 2.4 V
High-level output voltage	V _{OH}	V _{DD} -0.1			V	I _{OH} =0 mA

DC Characteristics

 $V_{DD} = 5 V \pm 0.25 V; T_a = 0 \text{ to } +70^{\circ}\text{C}$

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input leakage current						
Regular	I _I		±10 ⁻⁵	±10	μA	$V_I = V_{DD}$ or GND
50 kΩ pull-up	I _I	-55	-131	-238	μA	V _I = GND
5 kΩ pull-up	I _I	-0.42	-1.0	-1.72	mA	V _I = GND
50 kΩ pull-down	I _I	55	131	238	μA	$V_{I} = V_{DD}$
Pull-up resistor						
50 kΩ pull-up	R _{PU}	22.1	38.2	86.4	kΩ	
5 kΩ pull-up	R _{PU}	3.1	5.0	11.3	kΩ	
50 kΩ pull-down	R _{PD}	22.1	38.2	86.4	kΩ	
Low-level output current						
4.5 mA (CMOS)	I _{OL}	4.98			mA	V _{OL} = 0.4 V
9.0 mA (CMOS)	I _{OL}	9.96			mA	V _{OL} = 0.4 V
13.5 mA (CMOS)	I _{OL}	14.94			mA	V _{OL} = 0.4 V
18.0 mA (CMOS)	I _{OL}	19.92			mA	V _{OL} = 0.4 V
9.0 mA (TTL)	I _{OL}	9.0			mA	V _{OL} = 0.4 V
18.0 mA (TTL)	I _{OL}	18.0			mA	V _{OL} = 0.4 V
Low-level output voltage						
CMOS buffers	V _{OL}			0.1	V	I _{OL} =0 mA
TTL buffers	V _{OL}			0.1	V	I _{OL} =0 mA
High-level output current						
4.5 mA (CMOS)	I _{OL}	-2.63			mA	$V_{OH} = V_{DD} - 0.4 V$
9.0 mA (CMOS)	I _{OL}	-5.27			mA	$V_{OH} = V_{DD} - 0.4 V$
13.5 mA (CMOS)	I _{OL}	-7.90			mA	$V_{OH} = V_{DD} - 0.4 V$
18.0 mA (CMOS)	I _{OL}	-10.53			mA	V _{OH} = V _{DD} - 0.4 V
9.0 mA (TTL)	I _{OL}	-0.50			mA	V _{OH} = 2.4 V
18.0 mA (TTL)	I _{OL}	-1.00			mA	V _{OH} = 2.4 V
High-level output voltage						
CMOS buffers	V _{OH}	V _{DD} -0.1			V	$I_{OH} = 0 \text{ mA}$
TTL buffers	V _{OH}	2.6			V	I _{OH} =0 mA

Publications

This data sheet contains specifications, package information, and operational data for the CMOS-6 gate array family. Additional design information is available in NEC's ASIC selection guide, CMOS-6 block library and design manual. Please ask your local NEC Design Center.