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Chapter 1

Introduction

1.1 Computerized Tomography

Computed tomography (CT) is a method of reconstructing a multidimensional signal from

its projections in the lower dimensional space. The word tomography means ‘reconstruction

from projections’ (from Greek tomos - slice)[Roe92]. One of the most common projection

operations we come across is the formation of shadows. A shadow is a 2D projection of a 3D

object formed due to visible light. Shadows are dependent on the internal properties of the

3D object (in this case, transparency or opacity). Hence, shadows can be used to study the

internal properties of the object. Also, given a large number of shadows taken from different

directions, we can reconstruct the given 3D object in a way such that the reconstructed

object reflects the internal properties in question. In practical applications, x-rays, gamma

rays, electrons or positrons are used instead of light to study the internal properties of the

object. These physical agents (like x-rays, gamma rays) are called probes. When the probe

is outside the object we call the technique, transmission tomography and if the probe is

inside the object the term emission tomography is used.

There are a numerous applications of computed tomography in fields as diverse as med-

ical imaging, seismology, non-destructive testing of industrial products, radio astronomy.
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Perhaps, its use in medical imaging for purposes such as noninvasive diagnostics, surgical

planning, etc., made it as famous as it is today. For a reader more inquisitive on the appli-

cations of tomography, we direct him/her to [KS88].

Typically, based on the geometry of the physical agents, three different types of tomo-

graphies are identified - parallel beam tomography, fan beam tomography and cone beam

tomography. In this document, we explore the need for cone beam tomography, methods

of achieving it and the problems that need to be solved that would make it more applica-

ble to different fields that use tomography. But, for completeness and for later references

during cone beam tomography discussion, we briefly elucidate parallel beam and fan beam

tomographies.

1.1.1 Parallel Beam Tomography

In parallel beam tomography, a parallel beam of rays intersect the object of interest. The

parallel beam is inclined at an angle θ to the x-axis, and each ray M can be characterized

by its perpendicular distance, t to the origin (figure 1.1). Now a line integral is performed

along the line Mθ,t and is denoted by

Pθ(t) =

�

Mθ,t

f(x, y)ds (1.1)

where s is along the direction of the ray. Pθ(t) is called the Radon transform of f(x, y). For

each θ, {Pθ(t)|θ ∈ [0, π)} gives a complete collection of 1-D projections of the 2-D object

f(x, y). Using a parametric representation t = xcos(θ)+ysin(θ), we can write the projections

as

Pθ(t) =

� �

�2

f(x, y)δ(xcos(θ) + ysin(θ)− t)dxdy (1.2)

Computed tomography deals with the reconstruction of f(x, y) from Pθ(t). Two basic meth-

ods are used, (1) Filtered Back-Projection and (2) Fourier Slice Method. We show the
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equations of Filtered Back-Projection as they are necessary for understanding the material

of this survey. It can be shown that, [Dea83] in two dimensions, the inverse Radon transform

is reduced to:

f(x, y) =
1

2π

� π

0

� ∞

−∞

1

x.Θ− l

∂Pθ(l)

∂l
dldθ (1.3)

where Θ = (cos(θ), sin(θ)) and x = (x, y). Assuming ∂Pθ(l)/∂l exists and is continuous, it

Figure 1.1: Parallel beam projection
Courtesy: Hiriyannaiah, [Hir97]

can be shown that

f(x, y) =
1

2π2

� π

0

� ∞

−∞
Pθ(l)H�(x.θ − l)dldθ (1.4)

where H�(l) = 1/�2 for |l| < � and H�(l) = 1/l2 otherwise. Since equation 1.4 is in the form

of convolution, this method is also called convolution back projection.
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1.1.2 Fan Beam Tomography

In parallel beam tomography, the source and the detector are translated for each angle θ.

This leads to large scanning times, which is particularly unwanted in medical diagnostics.

Fan beam tomography offers solutions to some of these problems. In this configuration (figure

1.2), the source beam is collimated so that a thin, planar fan beam of rays originate from

the source and pass through the object of interest before reaching the detector array. This

is repeated for multiple angles by rotating the source around the object. Reconstructing

Figure 1.2: Fan beam projection
This figure shows a particular configuration of fan beam system called the equiangular fan

beam system. Courtesy: Hiriyannaiah, [Hir97]

from fan beam projections is an extension of the concept of reconstructing from parallel

beam projections. If we replace (t, θ) by generalized sampling coordinates, (ζ, η), we get the
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equation for reconstruction. It is given by the formula [Hor78]:

f(r, φ) =
1

4π2
lim
�→0

� �
Pθ(l − t)H�(t)J(l, θ, ζ, η)dζdη (1.5)

where J is the Jacobian of the transformation from (ζ, η) space to (l, θ) space. It is given

by:

J =
∂t

∂ζ

∂θ

∂η
− ∂θ

∂ζ

∂l

∂η
(1.6)

The above equation for reconstruction can be simplified to the convolution form.

1.2 Motivation for Cone Beam Tomography

Cone beam tomography is a 3D extension of the 2D fan beam tomography.. For generating

cone beam projections, we essentially use the same setup as that of the fan beam, with the

exception of the collimator. In this case, we remove the collimator. Cone beam tomography

helps in generating 3D reconstructed images easily. Usually, in computed tomography, 3D

images are formed by stacking 2D slices. Since, these slices, in practice are of finite width,

there is a huge problem of spatial resolution in reconstructing 3D images using these slices.

Smith [Smi90b] observes that though it is possible to improve spatial resolution by over-

lapping cross-sections, it, unfortunately, results in increasing the dose to the patient. Also,

it is extremely difficult to obtain data for reconstruction of objects that change their state

rapidly. When scanning patients, one has to make sure that they do not move, which is

highly unlikely. If they move, motion artifacts are formed. In monetary terms, this would

result in higher costs as fewer patients can be scanned in a given amount of time. These

problems can be avoided by using cone beam tomography.

Another major reason for using cone beam tomography is its effectiveness in SPECT

(Single Photon Emission Computed Tomography). A small photon count in SPECT results

in data with large statistical uncertainty, which can be reduced by employing cone beam
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tomography. SPECT is very attractive, especially in medical diagnostics, because, in some

instances, “SPECT can reveal diseases before structural damage has been done”[Smi90a].

1.3 Organization of the Report

The report is organized as follows. Chapter 2 describes the problem of reconstruction from

cone beam projections and introduces a major problem that plagues cone beam tomography,

namely, the long object problem. In chapter 3, we explore the existing approaches and their

limitations for both reconstruction and the long object problem. Unsolved problems are

discussed in chapter 4. The report concludes with chapter 5.
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Chapter 2

Problem Description and Background

2.1 Reconstruction from Cone-beam Projections

We pointed out earlier that cone beam tomography is a 3D extension of 2D fan beam to-

mography. This might lead to the conclusion that cone beam data could be reconstructed

by using the well-understood, well-documented theories of fan beam and parallel beam re-

construction. However, Smith [Smi87] argues that fan beam theory cannot be used, as,

data from vertices of one circle can be reconstructed. It was also shown that parallel beam

theory cannot be applied for cone beam reconstruction owing to the fact that “a complete

one-dimensional family of integrals” is not known [Smi85]. Hence it was generally accepted

that newer functions for reconstruction have to be developed.

The problem of reconstruction from cone beam data is defined and a “convolution type”

equation for reconstruction is given below [Smi87]. If, f = f(x) is the three dimensional

object to be reconstructed, and if the support of f is a sphere of radius R, then, a function

F can be defined as

F (β, l) =
1

π
lim
�→0

� ∞

−∞
H�(l − t)f̆(β, t)dt (2.1)

where, H�(t) = 1/�2 for |t| < � and −1/t2 otherwise. In the above equation, β ∈ S2/2 and f̆
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is the three dimensional Radon transform of the object given by

f̆(β, l) =

� ∞

−∞

� ∞

−∞
f(lβ + sβ⊥1 + tβ⊥2)dsdt (2.2)

where β, β⊥1 and β⊥2 are three orthonormal vectors. Now f can be obtained from the

following proposition:

f(x) =
1

4π3

�

S2/2

lim
�→0

� R

−R

F (β, l)H�(x.β − l)dldβ (2.3)

The above equation holds only if F is known in the set {(β, l) : β ∈ S2

2 , |l| < R}. The above

equation is of the form of convolution and forms the basis for many efficient approaches.

These approaches will be discussed in chapter 3.

2.1.1 Completeness

Completeness is determining whether the information that is contained within some geometry

of vertices is enough to perform reconstruction without artifacts. From the above set of

equations, we know that if for any geometry, it is possible to obtain F , then we can perform

artifact-free reconstruction. This is specified in the completeness condition, which states

[Smi90b]

If on every plane that intersects the object there lies a vertex, then one has

complete information about the object.

Some of the examples of complete geometries are sine on the cylinder, Baseball etc. Examples

of incomplete geometries are circle, Straight line etc. This shows that only some of these

geometries can be used for scanning. This forms the basis for designing the systems for

projecting the rays.
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2.2 Long Object Problem

One of the most desirable properties of data collection is scanning only the region of interest

(ROI) without having to scan the whole object. This is particularly desirable in medical

applications as this would avoid unnecessary radiation to the patient. This problem is called

the long object problem. The intent in the long object problem is to reconstruct a central

ROI of a long object when the helical path extends only in object’s immediate vicinity.

Traditionally, the reconstructed problems with truncated cone beam data related to helical

scan are divided into short object problem and long object problem. Reconstructing a whole

object having a bounded support in the axial direction when the helical path extends a little

bit above and below the object support forms the short object problem where as in the long-

object problem one aims at reconstructing a central region of interest (ROI) of a long object

having an unbounded support [KND00]. The short object problem and the long object

problem are illustrated in figure 2.1. It is clear to see that the long object problem is more

difficult to solve than the short object problem. Even as of today, there is no satisfactory

method to solve the long object problem in terms of quality and computational complexity.

Formally, the long object problem can be formulated as follows [KND98]. Let f(x) be

an object that contains the ROI, where x = (x, y, z)T . The object is supported inside an

infinite cylinder x2 + y2 = Q2, the central axis of which coincides with the z-axis. The aim

of the long object problem is to reconstruct f(x) over a central ROI given by

Ω = {x|x2 + y2 ≤ Q2, zmin ≤ z ≤ zmax} (2.4)

Recent approaches to solve the long object problem and their limitations are given in the

next chapter.

11



Figure 2.1: Long object problem
(a) Short object problem (b) Long object problem. Courtesy: Kudo et al, [KND00]
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Chapter 3

Existing Approaches and their

Limitations

3.1 Reconstruction from Cone-beam Projections

In chapter 2, we showed the equation for inversion of 3D Radon transform. This is the

most direct method that is similar to the standard filtered back projection we perform in

two dimensions. However, in three dimensions, this algorithm is computationally very ex-

pensive, which requires O(N5) operations for recovering N3 volume from N3 samples of

Radon transform. Marr et. al [MCL81] factorized the 3D Radon transform into 2D Radon

transforms. This results in a computational complexity of O(N4). In [ZG92], the authors

propose a backprojection algorithm by inverting the Radon transform in the frequency do-

main. However, the computational complexity of this algorithm is very high. In [Dus96],

Dusaussoy describes a volumetric image reconstruction algorithm that has a computational

complexity of O(N3 log N). The technique uses Fourier transform for the inversion of the

Radon transform we saw in chapter 2. The method is a direct implementation of the slice

theorem for plane integrals. In this algorithm the spectral data that lie on concentric circles

are bilinearly interpolated on to the sides of the concentric cubes. This is a generalization
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of 2D Fourier image reconstruction. Though this method reduces the computational com-

plexity to a great extent, the reconstruction quality is not great. Also, there have been no

tests to analyze the noise properties of the reconstructed images and the effects of scatter

and beam hardening in experimental cone beam data. Also, this method takes a lot more

time for rebinning than the standard Grangeat algorithm[Gra91].

There are many algorithms with complexity O(N3 log N) [AD94],[SFS97]. However most

of these algorithms are based on the factorization of the 3D Radon transform in to a pair of

2D Radon transforms. This factorization relies on angularly separability of sampling pattern

of the parameter space, which is an unrealistic assumption. A native 3D algorithm that does

not rely on factorization was proposed by Basu et. al [BB02]. The algorithm uses a hierarchi-

cal decomposition of the 3D Radon transform to recursively decompose the backprojection

operation. Though the method reduces the computational complexity and provides a recon-

struction with a high quality, it still has to be combined with a 2D reprojection algorithm to

compute the 2D Radon transforms that arise from Smith transformation from cone beam to

3D Radon data. Another O(N3 log N) algorithm was proposed by Kudo and Saito [KS96].

They reduce the computational complexity by using the subsampled Radon space for recon-

struction. They argue that this process will not decrease the quality of reconstruction as the

Radon space was oversampled to start with. They tested their method against [AD94] and

they claim that their method is 2.3 times faster than the latter. This amount of savings is

specially significant when reconstructing volumes of dimensions 5123.

In [BKS+00], Bluder et. al., compare multirow Fourier reconstruction (MFR) [SFS97]

algorithm and advanced single slice rebinning (ASSR) [KSK00] method to identify a practical

and efficient approximate cone beam method to extend its potential for medical use. The

parameters that were used for comparison are image artifacts, spatial resolution, contrast

resolution, and image noise. They found that the ASSR method is more practical and efficient

and was providing image quality comparable to that of a single-row scanning system even

with a 46 row detector. They also observed that both the algorithms tolerate any table feed
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below the maximum value associated to the detector height.

Wang and Ning [WN99] propose a reconstruction algorithm for circle-plus-arc data ac-

quisition geometry. We know from the completeness condition that only certain types of

data acquisition geometries would guarantee us complete reconstruction. The circle-plus-arc

geometry is shown in figure 3.1. In this geometry, the object is bounded within the sphere of

radius R, which is concentric with the circle-plus-arc orbit. γmin is the minimum cone angle

and δmin is the minimum spanning angle of the arc orbit. This data acquisition scheme can

Figure 3.1: Circle plus arc geometry
Courtesy: Wang et. al, [WN99]

provide a complete set of projection data. The authors are of the opinion that this system

can be designed in practice, but a little mechanical modification was required.
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In [WVC99], Wang et. al. propose iterative tomography for reconstruction from in-

complete data. They use Expectation-Maximization (EM) and Algebraic Reconstruction

Technique (ART) in their algorithm. This algorithm also reduces the artifacts. The novelty

of their approach is the introduction of a projection mask and computation of a 3D spatially

varying relaxation factor. This allows for beam divergence and data truncation. Another

important work in this field was proposed by Hiriyanniah et. al [HSR96]. They propose a

projection onto convex sets (POCS) for handling incomplete data. They demonstrate the

effectiveness of the algorithm for circular trajectories, but claim that the method is basically

geometry independent. ART was used by Mueller et. al. [MYW99] for reconstruction of

low contrast objects. They experiment with cone angles greater than 200 and use ART and

the concept of depth dependent interpolation kernel to reduce the aliasing artifacts. In fact,

ART was used to calculated the weights of the depth dependent interpolation kernel. But

there still needs to be a lot of research done in the area of low-contrast object reconstruction

for practical applicability.

Several authors have explored the possibility of reconstruction through MIMD comput-

ers. Most notable among those are [LPCA98] and [RFCS96]. The former experiment the

possibilities of parallelization if basic operators (local vs global) and parallelization of recon-

struction algorithms. The latter partitions the volume into variable width slabs and sends

the each slab to the workstation. While the methods are different, they agree on the benefits

of parallel implementation, namely,

• Computation of realistic-sized images

• Reduction in computation times with respect to the number of processors.

Other interesting implementations can be found in [MMW96] and [SP96].
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3.2 Long Object Problem

As we said before, long object problem is of great interest in the computed tomography

research community for the advantages it offers. Some of the important publications in this

field have been reviewed here. Schaller et. al. [SNS+00] propose a technique of virtual object

to solve the long object problem. In this method, they introduce a virtual object fφ(x) for

each azimuth angle φ in the image space, such that the virtual object has the property of

being equal to the true object f(x) in some ROI Ωm. They show that the Radon transformed

data can be calculated for the parallel projection of fφ(x) onto the meridian plane of angle

φ for each φ. In this manner, they can perform “exact” reconstruction of f(x). Though the

computational complexity of this algorithm is less, the quality of reconstruction is outside

the bounds of satisfaction.

In [KND00], Kudo et. al., propose an Quasi-exact algorithm whose overall structure is

in the form of filtered backprojection. This is derived by extending the triangulation of

Grangeat’s formula [Gra91]. One advantage of this approach is that it does not require

two circular scans at the ends of the helical paths, which were inseparable from the other

approaches. While the approach shows some promise in terms of reconstruction quality, the

computational complexity is a discouraging. The complexity is far greater than that for the

Feldkamp [FDK84] algorithms.

Zhao and Wang [ZW00] proposed a Feldkamp-type reconstruction algorithm from the

wavelet perspective. The advantage is that the algorithms could be used for either global or

local reconstruction. The novelty of the work lies in identifying the fundamental relationship

between the wavelet transform and Feldkamp algorithm. The authors also report that a 3D

ROI can be reconstructed without severe artifacts. This could help in solving the long object

problem. However, the research is still in the preliminary stage and refinements are necessary

for it to solve the long object problem.

In [LTS00] Lauritsch et. al. hypothesize that using local ROI’s would help in increasing
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the quality of the reconstruction in the long object problem. They design an algorithm

based on this hypothesis. As a part of their algorithm they take the derivative of the Radon

data for different local ROIs that are adapted to the scan path. They make sure that the

contributing cone beams are not contaminated by object information outside the local ROI.

This method though it made a headway in improving the reconstruction quality, the com-

putational complexity is extremely high. The authors propose to perform 1D convolutions

in order to decrease the computations, but it still has to have lesser computations for any

practical applications. We discuss more about long object problem in the chapter Unsolved

Problems.
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Chapter 4

Unsolved Problems

4.1 Long Object Problem

Long object problem is a problem that has been plaguing researchers in the computed to-

mography community for the past several years. Many algorithms have been proposed, but

none of them have been able to solve this problem, although, it must be said that research

in the past couple of years has been very fruitful. In chapter 3, we saw some important

contributions to the solution of this problem. Kudo et. al observe [KND00] that long object

problem “is a challenging problem for which solutions are currently under investigation by

researchers”. Sourbelle et. al [SLT+02] compare different algorithms and come to conclusion

that all these techniques lead to reconstructions with very poor spatial resolution. One rea-

son for the degradation in spatial resolution is probably due to interpolations in computing

radon derivatives and inversion.

4.2 Low Contrast Object Reconstruction

It has been a general notion in many fields that most researchers always try to solve problems

solved by other people, maybe, by other techniques, but largely ignore the unsolved problems
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for various reasons. Low contrast object reconstruction would form a fine example of that.

Most researchers in computed tomography always design their systems and test them for

high-contrast objects [MYW99]. High contrast may not always be satisfied, wherein the

technique might fail or give substandard results. One of the major advantages of solving

this problem would be in the field of automatic diagnosis. Presently, an expert is needed to

interpret the results of a reconstruction. This is partly because, the reconstructions are poor

in case of low contrast and needs a human expert to classify them. Solving the problem of

low contrast reconstruction would make it much easier to develop algorithms to classify the

reconstructed data. It could also help the medical expert make better decisions.
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Chapter 5

Conclusions

In this report, we presented a brief survey on the advances in cone beam tomography. Cone

beam tomography is advantageous for many reasons, few of which are i)convenience, ii)better

3D reconstruction iii)lesser radiation dose. However, many more innovations have to take

place before cone beam tomography may become truly useful. Recent approaches for solving

various problems and some of their limitations are discussed. In this report we have also

identified some unsolved problems and gave reasons as to why they have to be solved.
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