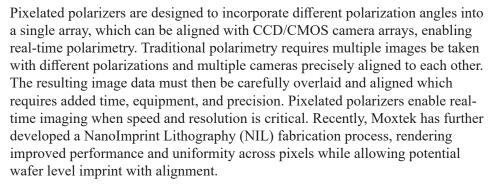

Pixelated Polarizers

PIX Series Datasheet

Four State Pixelated Polarizer Array

Applications

- Polarimetry and 3D Cameras
- Biometric Facial Recognition
- Polarization Microscopy
- Polarized Fiber-Optic Probes
- Remote Sensing
- Interferometry
- Pollution Detection
- Micro and Nano Optics


Standard Product Options			
Product Name	Pixel Pitch	Pixel Size	
PIX055C	5.5µm	4.5µm	
PIX058C	5.86µm	4.86µm	
PIX065C	6.5µm	5.5µm	
PIX074C	7.4µm	6.4µm	
PIX080C	8.0µm	7.0µm	
PIX088C	8.8µm	7.8µm	
PIX090C	9.0µm	8.0µm	
PIX098C	9.8µm	8.8µm	
PIX100C	10.0µm	9.0µm	
PIX150C	15.0µm	14.0µm	
PIX156C	15.6μm	14.6µm	
PIX300C	30.0µm	29.0µm	

See page 2 for Dimension details.

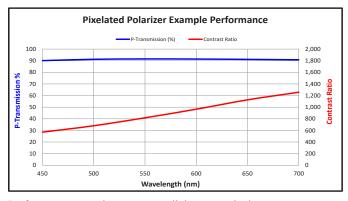
Standard products are four state pixelated polarizers with a visible AR Coating.

Contact Moxtek for custom options.

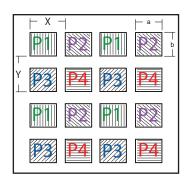
See OPT-DATA-1011 for size and mounting options

Features	Benefits	
Nanowire® Technology	Superior Transmission and Contrast	
	±20° AOI Without Depolarization	
	Wavelength and AOI Independent	
	Visible and IR Wavelengths	
	Broadband Visible and IR Wavelengths	
NIL Pixelation	User Defined Pixel Geometries and Layouts	
	Uniform Cross-Pixel Performance	
	Potential Wafer-Level Imprint with Alignment	
Inorganic	High Heat Resistance	

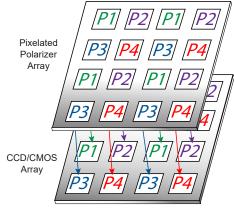
General Specifications


Visible Options	IR Options
Wavelength Range: 400-700nm (400-	3-5μm, 8-12μm
2500nm upon request)	
Substrate Type: Display Grade Glass	Silicon
<i>Thickness</i> : 0.7 ± 0.07 mm	$0.675 \pm 0.095 mm$
Index of Refraction: 1.5198 (435.8nm)	3.421 (10.33µm)
1.5078 (643.8nm)	3.427 (4.132µm)
<i>Thermal Expansion:</i> 31.7 x 10 ⁻⁷ /°C (0-300°C	C) 2.6×10^{-6} C
AOI (Angle of Incidence): $0^{\circ} \pm 20^{\circ}$	$0^{\circ} \pm 20^{\circ}$
AR Coating: Depending on	Depending on
operation wavelength	operation wavelength
Maximum Temperature: 200°C, >5,000 hours	200°C, >5,000 hours
Transmission Axis (TA): Referenced to long sid	e Referenced to long side
<i>TA Tolerance</i> : ± 1°	±1°
RoHS: Compliant	Compliant
Transmission: >80% @ 632nm at pix	tel Contact Moxtek for
center	information
Contrast Ratio: >200:1 @ 632nm at pix	tel Contact Moxtek for
center	information

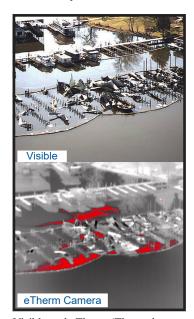
Do not touch or clean the wire-grid polarizer surface otherwise the polarizer will be damaged.

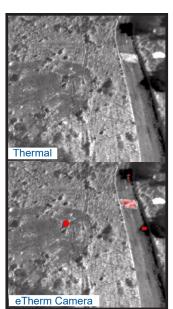


Standard Dimensional Specifications

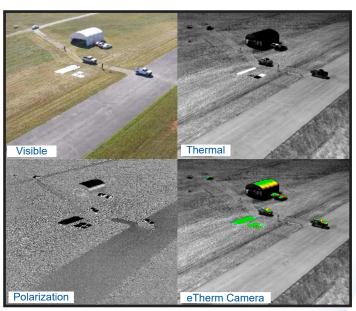

Polarizer Pixel Pitch (X, Y): See page 1 for Standard Product Options Polarizer Pixel Size (a, b): See page 1 for Standard Product Options

Performance assuming no cross talk between pixels. Performance data was taken from sample evaluations. Some part-to-part variation is expected.


Typical layout of a 4-state pixelated polarizer array.


Pixelated polarizer aligned to camera array.

Application Examples of Quantitative Thermal Polarization Imaging


Pixelated polarizers are designed to align with CCD/CMOS camera arrays to create imaging polarimeters, which map a scene of interest using the polarization state of light instead of color as in traditional cameras. Polarization provides high contrast information about surface features such as shape, shading, and roughness. Traditional methods require combining and precisely aligning data from two separate images which requiring added time, equipment, and space. The pixelated polarizer, when attached to an image sensor, enables a number of different types of images to be obtained simultaneously as illustrated in the figures below. Photos courtesy of Polaris Sensor Technologies and taken with Pyxis LWIR camera (PolarisSensor.com).

Visible and eTherm (Thermal + Polarization) images identifying oil spill after a marina fire near Huntsville, AL.

Thermal and eTherm images for target identification.

Visible, Thermal, Polarization and processed eTherm images showing different data products in a target identification application.

Photos courtesy of Polaris Sensor Technologies and taken with Pyxis LWIR camera (PolarisSensor.com).

For warranty and ordering information, please visit www.moxtek.com.

