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1. Introduction

About twenty-six years ago, Calogero [4] developed a novel scheme for approximating the
eigenvalues of differential operators - an approach that was shown to be very effective in several
applications (see e.g. [3, 5, 6]). Shortly thereafter, Mitropolski et al. [17] devised a mathe-
matically rigorous projection-algebraic framework for Calogero’s method, which also expanded
its applicability to a wider range of problems involving differentiable operators. The combined
approach of these researchers, which we shall refer to as the CMPS scheme, appears capable of
very effectively and efficiently generating approximate solutions to many dynamical equations
of mathematical physics. Since the the pioneering work on the CMPS method, there have been
several investigations of the range of applicability and convergence properties of this scheme,
such as Calogero & Franco [6], Samoylenko [22], Calogero [5], Luśtyk [13, 14], Luśtyk & Bihun
[15] and Bihun & Luśtyk [3]; all of which have provided glimpses of the effectiveness of the
CMPS method for specific applications. However, several fundamental numerical analytic issues
have not as yet been adequately resolved in the literature for extensive classes of differential
operator equations, which means there are many outstanding questions concerning the efficacy
of the CMPS scheme.

We take a major step here in addressing the unanswered questions by investigating the
existence, convergence, realizability and stability of the CMPS method for differential operator
equations of the form

(1.1) Au = f(u),

where f : X → Y is a (nonlinear) continuous mapping between Banach (function) spaces X and
Y . Here A : X → Y is a closed linear differential map, representable as

(1.2) A :=
m∑
|β|=0

aβ(x)
∂β

∂xβ

in an open region Ω ⊂ Rq with smooth coefficients aβ ∈ C∞(Ω; R), where q,m belong to the set
N of natural numbers (positive integers), defined on domA ⊂ X and satisfying the condition
imA = Y , which is trivially the case when imA = Y . The notation used here is of the standard
multi-index form, with β := (β1, . . . , βq) ∈ Zq+, where Z+ is the set of nonnegative integers, and
|β| := β1 + · · ·+ βq.

Projection based methods for constructing approximate solutions to systems of equations of
various types have proven to be remarkably effective, efficient and robust for many applica-
tions [4, 7, 9, 11, 17, 18, 21, 24, 26]. A special class of these methods, usually referred to as
the projection-algebraic approach, has been the focus of considerable research attention in the
numerical analysis community over the last three decades, largely as a result of its inherent
suitability to solving problems related to differential operator equations. An important contri-
bution in this line of research was the 1983 paper of Calogero [4] describing a new method for
calculating eigenvalues of linear differential operators on Hilbert spaces, which was subsequently
(in 1988) given a projection-algebraic framework [17] that appears to be especially promising for
numerous applications to dynamical systems arising in mathematical physics. Among the inves-
tigations that should also be noted in the development and applications of projection-algebraic
schemes is the earlier work of Casas [7] and the more recent contribution of Wei & Norman
[26]. Several studies of the efficiency and accuracy of the CMPS scheme have underscored and
provided further evidence of the considerable potential of this approach. Among these are the
investigations of Samoylenko [22] and Lustyk [13] indicating that the CMPS converges very
rapidly in several applications, and a number of papers confirming the excellent approximation
characteristics for a variety of classical initial/boundary-value problems, including those involv-
ing the nonhomogeneous heat equation [3, 13, 14, 15]. However, as mentioned above there are
many fundamental questions concerning the CMPS approach that have not been satisfactorily
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resolved for a wide range of differential operator problems. Our intention here is to both further
develop and refine the CMPS, and to answer most of these questions.

Our investigation in this paper is organized as follows. In Section 2, we formulate realizability,
solvability and convergence criteria for the CMPS approach, and establish necessary conditions
for these properties to obtain for this projection-algebraic scheme in a rather general context.
Our methods of proof of these conditions build upon the work in [3, 14, 15, 17], and rely
critically on a recent extension by Prykarpatsky [19, 20] of the Leray-Schauder fixed point
theorem. Next, in Section 3, we employ a suitable closure of the universal enveloping algebra of
the Heisenberg-Weil algebra (which comprises the Lie algebraic core of the CMPS method) for
the constructive functional-interpolation component of the scheme (in terms of finite-dimensional
quasi-representations), and show how this specificity leads to an enhanced convergence analysis
for the scheme when the function f is assumed to be constant. We also show that in the
special case when Lagrangian projectors and Lagrangian interpolation are applicable, we obtain
even better convergence characteristics. The efficacy of the CMPS scheme is demonstrated by
applying it to a substantial differential operator problem in Section 4. We conclude in Section
5 with some brief observations about our results and indications of related future research
directions.

2. Functional-operator aspects of the CMPS scheme in Banach spaces

Consider the nonlinear operator equation (1.1), where A : X → Y is a closed surjective
linear differential operator defined on domA ⊂ X (not necessarily dense), and f : X → Y is
an arbitrary nonlinear continuous mapping from the Banach space X to the Banach space Y
with domain dom f = Dr(0) ∩ domA ⊂ X (here Dr(0) ⊂ X is the closed disk of radius r > 0
centered at zero). Let us assume that this equation satisfies the following properties:

i) the mapping is A-compact, that is for any bounded sets U ⊂ domf and V ⊂ Y the closure
f(U ∩A−1(V )) ⊂ Y is compact;

ii) the dim kerA ≥ 1;
iii) there exist positive numbers kf < kA ∈ R+, defined as and satisfying

(2.1) k−1
A := sup

‖v‖Y =1
inf

u∈domA
{‖u‖X : Au = v} <∞, kf := sup

u∈Dr(0)

1
r
‖f(u)‖ <∞.

If X̃N ⊂ X̃N+1 ⊂ X and ỸN ⊂ ỸN+1 ⊂ Y, N ∈ Z+, are suitable finite-dimensional Banach
subspaces, and P

(x)
N : X → X̃N , N ∈ Z+, and P

(y)
N : Y → ỸN , N ∈ Z+, are the corresponding

projectors, one considers the following sequence of equations

(2.2) P
(y)
N AũN = P

(y)
N f(ũN )

on elements ũN ∈ X̃N , N ∈ Z+, which are suitable approximations to a solution of equation
(1.1) that is being sought. These solutions are, in general, non-unique, as dim kerA ≥ 1.The
projection method is often called realizable if the set M ⊂ X of solutions to equation (1.1) is
nonempty, and for sufficiently large N ∈ Z+ there are nonempty setsMN ⊂ X̃N of solutions to
equations (2.2). The method is called convergent if it is realizable and satisfies the property

(2.3) lim
N→∞

sup
ũN∈M̃N

inf
u∈M

||ũN − u||X = 0.

Obviously, the realizability criteria of the projection method and its convergence are extremely
important when it comes to applications, so we shall first address these properties. The solv-
ability aspect shall be disposed of using the recent generalization of the Leray-Schauder fixed
point theorem for mappings between Banach spaces in [19, 20], where the following result was
proved concerning the solution set M of the nonlinear operator equation (1.1).

Theorem 2.1. Let conditions i) and ii), formulated above, hold. Then, owing to the condition
dim kerA ≥ 1, equation (1.1) possesses a nonempty solution setM, whose topological dimension
satisfies dimM≥ dim kerA− 1.
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In the sequel, we shall assume that all of the hypotheses of Theorem 2.1 are fulfilled. Then
the following result characterizes the realizability of the projection method (2.2).

Theorem 2.2. Let conditions i), ii) be fulfilled and additionally

(2.4) lim
N→∞

sup
v∈imA∩im f

||P (y)
N v − v||Y = 0.

Then for all sufficiently integers N ∈ Z+ the solution sets M̃N ⊂ X̃N are nonempty and the
convergence condition (2.3) holds.

Proof. Define

(2.5) k
(N)
f := sup

ũN∈Dr(0)

1
r
||P (y)

N f(ũN )||ỸN
,

and

(2.6) k
(N),−1
A := sup

ṽN∈ỸN

1
||ṽN ||ỸN

inf
ũN∈P

(x)
N (domA)

{||ũN ||X̃N
: P (y)

N AũN = ṽN}.

We can then choose an integer N0 ∈ Z+ such that dim ker(P (y)
N0
A) ≥ 1, and

(2.7) kf ≤ k
(N0)
f < k

(N0)
A ≤ kA.

Then based on expressions (2.5) and (2.6) from condition (2.7), we obtain the following inequal-
ities for all N ≥ N0:

(2.8) kf ≤ k
(N)
f < k

(N)
A ≤ kA

But this means that, owing to the generalized Leray-Schauder type fixed point theorem [19, 20],
the sequence of equations (2.3) possesses solutions for all N ≥ N0; that is, all solution sets
M̃N ⊂ X̃N , N ≥ N0 are nonempty, and the projection method itself is realizable.

Now choose ε > 0 and consider the neighborhood

(2.9) Uε(M) := {u ∈ dom f : inf
ū∈M⊂dom f

||ū− u||X < ε.

It is evident that the closed set dom f r Uε(M) does not contain solutions to equation (1.1),
and for some αε > 0 we have

(2.10) inf
ū∈dom frUε(M)

||Au− f(u)||Y = αε > 0.

Choose now, based on (2.4), an integer Nε ∈ Z+ such that

(2.11) sup
u∈dom f

(||Au− P (y)
N Au||Y + ||f(u)− P (y)

N f(u)||Y ) < αε

for all N ≥ Nε. Then for all u ∈ dom f r Uε(M), the following inequality

||P (y)
N Au− P (y)

N f(u)||Y ≥ ||Au− f(u)||Y−
−(||Au− P (y)

N Au||Y + ||f(u)− P (y)
N f(u)||Y ) > αε − αε = 0,

holds. Hence, we have the embeddings M̃N ⊂ Uε(M) for all N ≥ Nε. Finally, by choosing ε > 0
small enough, we can insure that the condition M̃N ⊂ Uε(M) for all N ≥ Nε is equivalent to
that of convergence for (2.3), thus completing the proof. �

In the case when the sequences of subspaces X̃N ⊂ X̃N+1 ⊂ X,N ∈ Z+ and ỸN ⊂ ỸN+1 ⊂
Y,N ∈ Z+, are Hilbert spaces and, moreover

(2.12) ∪N∈Z+X̃N = X, ∪N∈Z+ ỸN = Y,

with orthogonal projectors P (x)
N : X → X̃N , P

(y)
N : Y → ỸN , N ∈ Z+, the norms ||P (x)

N || = 1,
||P (x)

N || = 1, N ∈ Z+,and for all u ∈ X, v ∈ Y we have
4



(2.13) lim
N→∞

||u− P (x)
N u||Y = 0, lim

N→∞
||v − P (y)

N v||Y = 0.

If we assume further that conditions (2.3), (2.4) are fulfilled and dim kerA ≥ 1, then we obtain
the following analog of Theorem 2.2 for realizability of the projection-algebraic scheme for the
nonlinear operator equation (1.1) in Hilbert spaces.

Theorem 2.3. For all sufficiently large N ∈ Z+ , the solution sets M̃N ⊂ X̃N are nonempty
and the convergence condition (2.2) holds.

Proof. It is clear that we need only verify the condition (2.4). Having assumed the contrary,
one can find a subsequence of indices Nk ∈ Z+ for k ∈ Z+, as well as elements uk ∈ dom f, k ∈
Z+, for which there exists ε > 0 such that

(2.14) ||P (y)
Nk
f(uk)− f(uk)||Y > ε.

Since for all k ∈ Z+ the elements f(uk) ∈ imA, owing to the A-compactness of the mapping
f : dom f → Y , we must have limk→∞ f(uk) = v ∈ Y. Making use of the limits (2.13), we obtain:

limk→∞ ||P
(y)
Nk
f(uk)− f(uk)||Y ≤ limk→∞ ||P

(y)
Nk
f(uk)− P

(y)
Nk
v̄||Y +

+ limk→∞ ||P
(y)
Nk
v̄ − v̄||Y + limk→∞ ||v̄ − f(uk)||Y = 0,

contradicting the initial inequality (2.14), and proving the theorem. �
If the mapping f : dom f ⊂ X → Y is constant, the operator A : domA ⊂ X → Y is densely

defined and imA = Y, and one can obtain additional convergence conditions for the CMPS
scheme for equation (1.1), which we investigate in what follows.

3. Functional-interpolation properties of the CMPS method

3.1. Lie-algebraic preliminaries. Here we present some preliminaries from the theory of Lie
algebraic structures [23] and the Lagrangian interpolation concepts [1] necessary for our further
exposition of the scheme. We assume here, for brevity, that the mapping f : X → Y is a constant
function, and note that the more general case can be disposed of in an entirely analogous way
requiring only the essentially obvious additional details. It also shall be assumed that the
differential operator A(x; ∂) : X → Y belongs to a suitable operator closure of the universal
enveloping algebra U(g) of the Heisenberg-Weil algebra g = ⊕1≤j≤qgj , gj := {xj , ∂xj , 1}, j =
1, ..., q, of differential operations [10, 23]. Here xj : X → X is the operator of multiplication on
the independent variable xj ∈ R, ∂xj represents partial differentiation with respect to variable
the xj , 1 ≤ j ≤ q, and 1 : X → X is the identity operator. The Lie bracket of the Lie algebra
g is defined to be the standard commutator: [a, b] := a · b − b · a for any elements a, b ∈ U(g),
where ” · ” denotes the usual superposition of operators.

As mentioned above, when using the projection-algebraic method (CMPS), we try to find the
corresponding representations of all elements involved in (1.2) - both functions and operators [17].
We define a sequence of linear mappings Φ(x)

N := π
(x)
N P

(x)
N : X → XN , Φ(y)

N := π
(y)
N P

(y)
N :→ YN ,

N ∈ Zq+, where P
(x)
N : X → X̃N ⊂ X and P

(y)
N : Y → ỸN ⊂ Y are suitable projection

operators defined on finite-dimensional functional subspaces X̃N ⊂ X, N ∈ Zq+, and ỸN ⊂ Y,
N ∈ Zq+, respectively, of vector-function polynomials in the variables xj ∈ R, 1 ≤ j ≤ q, and
π

(x)
N : X̃N 
 XN , π

(y)
N : ỸN 
 XN are the corresponding isomorphisms between functional

subspaces X̃N ⊂ X , ỸN ⊂ Y, and corresponding finite-dimensional Euclidean spaces XN , YN ,
respectively, satisfying the following conditions: dim X̃N = dimXN = dimYN = dim ỸN for all
N ∈ Zq+. In order to define the projectors P (x)

N : X → X̃N ⊂ X and P
(y)
N : Y → ỸN ⊂ Y more

precisely, we consider a lattice Θ of an open cube Ω := K ⊂ Rq with nodes that are mesh points
with respect to variables x ∈ K ⊂ Rq, that is

(3.1) Θ := {x(i) ∈ Ω : (i) ∈ Zq+}.
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Then, by definition,

(3.2) P
(x)
N u :=

∑
(i)

L(i)(x)u(x(i)), P
(y)
N v :=

∑
(i)

L(i)(x)v(x(i)),

for arbitrary continuous functions u ∈ X̃N ⊂ X and v ∈ ỸN ⊂ Y, where the L(i)(x) :=
⊗1≤j≤qlj(xj |x(i)), (i) ∈ Zq+,are basis Lagrange polynomials, normalized by the unity operator:

(3.3)
∑
(i)

L(i)(x) := I := ⊗1≤j≤q1j ,

where ⊗ is the usual tensor product of vectors.
Let S(j)

N , D
(j)
N and I

(j)
N ∈ Hom(XN ;YN ), j = 1, . . . , q, N ∈ Zq+, be the corresponding matrix

quasi-representations [17] of the Heisenberg-Weil algebra basis with respect to the Lagrange
interpolation mappings (3.2). Then problem (1.1) can be represented as the following sequence
of linear algebraic vector equations:

(3.4) ANuN = fN , ,

whereAN := A(SN ;DN ) is defined as a special selection [16] of the set-valued mapping Φ(y)
N AΦ(x),−1

N :
XN → YN , uN := Φ(x)

N u ∈ XN , fN := Φ(y)
N f ∈ YN , N ∈ Zq+.

The sequence of algebraic vector equations (3.4) is the key ingredient for studying the con-
struction of approximate solutions to the differential-operator equation (1.1) using the CMPS.

3.2. Convergence analysis. We now consider two families of finite-dimensional functional
subspaces X̃N ⊂ X and ỸN ⊂ Y for N ∈ Z+, that are chosen as described above:

X̃N ⊂ X̃N+1, ỸN ⊂ ỸN+1,(3.5)

∪N∈Z+X̃N = X, ∪N∈Z+ ỸN = Y

Assume, for brevity, that the region Ω ⊂ Rq is bounded. Then for the space X := Lp(Ω;R)
and domain domA = W

(m+s)
p (Ω) and imA = W

(s)
p (Ω) ⊂ Lp(Ω;R) := Y, p > q, s > 0, we have

expressions

X̃N := P
(x)
N W (m+s)

p (Ω),(3.6)

ỸN := P
(y)
N W (s)

p (Ω),

where the P (x)
N are linear operators defined on the space of continuous functions on Ω ⊂ Rq. It

is well known that the operators P (x)
N and P

(y)
N are projectors satisfying the conditions

(3.7) P
(x)
N P

(x)
N = P

(x)
N , P

(y)
N P

(y)
N = P

(y)
N

for all N ∈ Z+.
Consider now for each N ∈ Z+ the following equation

(3.8) P
(y)
N AũN = P

(y)
N f

on an element ũN ∈ X̃N , for which as N →∞
(3.9) lim

N→∞
‖AũN − f‖Y = 0,

where mapping f : X → Y is a constant element of the space Y . It is evident that equation
(3.8) possesses a unique solution ũN ∈ X̃N , if the following equality holds for each N ∈ Z+:

(3.10) P
(y)
N AX̃N= Ỹ N .

But (3.10) is equivalent to the existence of the inverse finite-dimensional operator

(3.11) P
(y)
N AP

(x)
N := AN : X̃N → ỸN
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for every N ∈ Z+.
The concept of an arbitrary limiting-dense family of subspaces of a Banach space shall prove

useful in the sequel.

Definition 3.1. A family of subspaces {BN ⊂ B : N ∈ Z+} is called limiting-dense in B, if for
each g ∈ B,

(3.12) ρ(g,BN ) := inf
w̃N∈BN

‖g − w̃N‖B → 0

as N →∞.

In order to continue with our analysis, we shall need the following convergence theorem for
our approximation process, which is a slight generalization of the corresponding result in [12].

Theorem 3.2. Let the linear operator A : X → Y with a dense domain domA ⊂ X be
invertible and satisfy the condition imA = Y, where X and Y are Banach spaces. Assume also
that a family of subspaces

{
AX̃N ∈ Y : N ∈ Z+

}
is limiting-dense and projection operators

P
(y)
N : Y → ỸN ⊂ Y satisfy the condition

(3.13) ‖P (y)
N ‖ ≤ c

(y)
N

for some positive sequence c(y)
N ∈ R+, N ∈ Z+. Then for each element f ∈ Y , equations

(3.14) P
(y)
N Au = P

(y)
N f

have the unique solutions ũN ∈ X̃N for all N ∈ Z+, where

(3.15) lim
N→∞

‖AũN − f‖Y = 0,

iff
i) condition (3.10) is satisfied;
ii) there exists a positive sequence τ (y)

N ∈ R+, N ∈ Z+, such that

(3.16) ‖P (y)
N ṽN‖ỸN

≥ τ (y)
N ‖ṽN‖Y , lim

N→∞
(c(y)
N /τ

(y)
N )<∞

for each element ṽN ∈ AX̃N , N ∈ Z+;
iii) the limit supremum satisfies

(3.17) lim
N→∞

[(
1 + (c(y)

N /τ
(y)
N )
)
ρ(f,AX̃N )

]
= 0

for every f ∈ Y.

Proof. First, assume that for each element f ∈ Y equation P (y)
N Au = P

(y)
N f, N ∈ Z+, has the

unique solution ũN ∈ X̃N , and that ‖AũN − f‖Y → 0 as N →∞. Then, it follows from

ρ(f,AX̃N ) = inf
wN∈AX̃N

‖f − w̃N‖Y ≤ ‖f −AũN‖Y

that limN→∞ ρ(f,AX̃N ) = 0, so the family of subsets
{
AX̃N ∈ Y : N ∈ Z+

}
is limiting-dense

in Y. Choose N ∈ Z+ and consider P (y)
N Au = f̃N ∈ ỸN . It is clear that there exists an element

f ∈ Y for which P
(y)
N f = f̃N , ensuring, owing to the hypotheses, the existence of a unique

solution ũN ∈ X̃N . But this is tantamount to P (y)
N AX̃N = ỸN , which proves condition i).

Since the mapping P
(y)
N : Y → ỸN ⊂ Y is a projector, one can consider its restriction

P̄
(y)
N := P

(y)
N |AX̃N

: AX̃N → ỸN for each N ∈ Z+. It follows from (3.13) that the operator

P̄
(y)
N : AX̃N ⊂ Y → ỸN , is a bounded injective mapping. Consequently, the Banach inverse
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operator theorem [2, 10, 25] implies that there exists the bounded inverse operator P̄ (y),−1
N :

ỸN → AX̃N ⊂ Y.
Let now ũN ∈ X̃N be the corresponding approximate solution of the equation PNAu = PNf.

Then, AũN = P̄
(y),−1
N PNf , whence from condition (3.15) one concludes that

(3.18) lim
N→∞

‖P̄ (y),−1
N PNf − f‖Y = 0

for any f ∈ Y , which means that limN→∞ P̄
(y),−1
N PNf = f for every given element f ∈ Y.

Hence, making use of the classical Banach-Steinhaus theorem [1, 2, 10, 25] we obtain that

(3.19) sup
N∈Z+

‖P̄ (y),−1
N P

(y)
N ‖Y ≤ c

(y) <∞

for some c(y) ∈ R+. Thus, for each element w̃N = P
(y)
N jN w̃N ∈ ỸN , where jN : ỸN → Y is the

corresponding imbedding operator, one finds that

(3.20) ‖P̄ (y),−1
N w̃N‖Y = ‖P̄ (y),−1

N P
(y)
N jN w̃N‖Y ≤ ‖P̄ (y),−1

N PN‖Y ‖jN w̃N‖Y ≤ c(y)‖jN‖‖w̃N‖Y

for all N ∈ Z+. But this means that the norm of the operator P̄ (y),−1
N : ỸN → AX̃N ⊂ Y is

bounded for all N ∈ Z+, that is

(3.21) ||P̄ (y),−1
N || ≤ c(y)||jN ||.

Choose now an arbitrary element ṽN ∈ AX̃N ⊂ Y and calculate w̃N := P̄
(y)
N ṽN ∈ ỸN . Then,

making use of the inequality (3.21), we obtain

(3.22) ‖ṽN‖Y = ‖P̄ (y),−1
N w̃N‖Y ≤ c(y)‖jN‖‖w̃N‖Y := τ

(y),−1
N ‖PN ṽN‖ỸN

,

where the quantities τ (y),−1
N := c(y)‖jN‖ > 0 are bounded for all N ∈ Z+.This means that the

condition ii) is fulfilled for each element ṽN ∈ AX̃N , that is ‖P (y)
N ṽN‖ ≥ τ (y)

N ‖ṽN‖Y , N ∈ Z+.
To prove the sufficiency of conditions i) − iii) we shall argue as follows: Let us solve the

equation PNAu = PNf for N ∈ Z+, whose solution ũN ∈ X̃N is unique, and can be represented
as

(3.23) ũN = A−1P̄
(y),−1
N PNf,

where, as above, the linear mapping P̄
(y)
N := P

(y)
N |AX̃N

: AX̃N → ỸN is the corresponding

restriction upon AX̃N ⊂ Y of the projection operator P (y)
N : Y → Y on the subspace ỸN ⊂ Y.

Owing to condition ii), we have ‖P̄ (y)−1
N ‖Y ≤ τ (y),−1

N , and the norm ‖P̄ (y),−1
N P

(y)
N ‖ ≤ c

(y)
N τ

(y),−1
N

for all N ∈ Z+. Whence, for any element w̃N ∈ AX̃N ⊂ Y we compute that

(3.24)

‖AũN − f‖Y = ‖P̄ (y),−1
N PNf − f‖Y ≤

≤ infw̃N∈AX̃N

(
‖P̄ (y),−1

N PNf − P̄ (y),−1
N P

(y)
N w̃N‖Y + ‖w̃N − f‖Y

)
≤

≤ infw̃N∈AX̃N

(
‖P̄ (y),−1

N PNf − P̄ (y),−1
N P

(y)
N w̃N‖Y + ‖w̃N − f‖Y

)
≤

≤ infw̃N∈AX̃N

(
c

(y)
N τ

(y),−1
N + 1

)
ρ(f, w̃N ) =

(
c(y)τ

(y),−1
N + 1

)
ρ(f,AX̃N ),

where we took into account that P̄ (y),−1
N P

(y)
N w̃N = w̃N for all w̃N ∈ AX̃N ⊂ Y. Then assumption

iii) implies the existence of the limit limN→∞ ‖AũN − f‖Y = 0 for an arbitrary element f ∈ Y,
so the proof is complete. �

Remark. We note here that an (alternative) analog of Theorem 3.2, was stated in [12].
There is an obvious corollary that follows directly from the proof of Theorem 3.2 in the

case when dim X̃N = dim ỸN < ∞ for all N ∈ Z+, to wit, we see that condition i) in form
(3.10) follows from ii). Moreover, we have the next result about the convergence of the solutions
ũN ∈ X̃N to an element u ∈ X as N →∞.
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Theorem 3.3. Let the hypotheses of Theorem 3.2 be fulfilled; in particular, the closed operator
A : X → Y is surjective (so that ‖A−1‖ <∞ owing to the classical results [2, 10, 25] concerning
closed operators). Then the sequence of solutions ũN ∈ X̃N of the equations P (y)

N Au = P
(y)
N f as

N → ∞ are approximations - that converge - in the norm ‖ · ‖X to a solution of the equation
Au = f.

Proof. Assume that uN ∈ XN is a solution to the equation P (y)
N AuN = P

(y)
N f for all N ∈ Z+.

Then one can estimate the difference (u − ũN ) ∈ X in the norm in the Banach space X as
follows:

(3.25) ‖ũN − u‖X = ‖ũN −A−1f‖X = ‖A−1AũN −A−1f‖X =
= ‖A−1(AũN − f)‖X ≤ ‖A−1‖ ‖AũN − f‖Y .

Then, in virtue of the inequality (3.24), we conclude that limN→∞ ‖AũN − f‖Y = 0. As the
inverse operator A−1 is closed and, therefore bounded, the right-hand side of inequality (3.25)
tends to zero as N →∞. Consequently, limN→∞ ‖ũN − u‖X = 0, and the proof is complete. �

3.3. A special case: Lagrangian interpolation. To continue our investigation of the ef-
fectiveness of the CMPS method for approximating solutions to linear differential operator
equations , we once again assume that Ω := K ⊂ Rq is a q-dimensional cube. We also the
finite-dimensional functional subspaces X̃N ∈ X and ỸN ∈ Y for N ∈ Z+, making use of the
Lagrange projection operators described above.

Let X := Lp(K; R), domA = W
(m+s)
p (K; R), Y := Lp(K; R), imA = W

(s)
p (K; R), p > q,

s ≥ 1, and s− q/p > 0. It follows from the Sobolev imbedding theorem [1] that W (m)
p (K; R) ⊂

C(K; R). So, we can construct the suitable subspaces ỸN ⊂ Y, N ∈ Z+, as follows:

(3.26) ỸN = P
(y)
N W (s)

p (K; R),

where the projector P (y)
N : Y → ỸN is the classical Lagrange interpolation operator, defined as

(3.27) P
(y)
N f(x) :=

N(α)∑
(α)∈Zq

+

f(x(α))l(α)(x),

where N(α) :=
q

Π
j=1

αj , x(α) ∈ K are suitable nodes in the cube K ⊂ Rq, (α) ∈ Zq+ is the usual

multi-index, and

(3.28) l(α)(x) := Πq
j=1lαj (xj), l(α)(x(β)) = δ(α),(β),

are basic q-dimensional Lagrange polynomials. As we have chosen the subspaces X̃N ∈ X and
ỸN ∈ Y to be finite-dimensional, condition (3.10) follows from ii) of Theorem 3.2. We shall
need the inequality

(3.29) ‖P (y)
N ṽN‖ỸN

≥ τ (y)
N ‖ṽN‖Y

for all ṽN ∈ AX̃N ∈ Y, where τ (y)
N < ∞, N ∈ Z+. Condition (3.29) means that the projector

P
(y)
N is invertible on the subspace AX̃N ⊂ Y, since it is evident that kerP (y)

N = {0} . Now from
the definition ṽN = Aw̃N , where w̃N ∈ X̃N , and from the fact that the operator A : X → Y is
invertible on domA, it also follows that ker(P (y)

N A) = {0} . Additionally, we conclude from the
fact that dim X̃N = dim ỸN that im (P (y)

N A)|X̃N
= ỸN .
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Consider now the subspace C(K; R) of continuous functions on the cube K ⊂ Rq and the
corresponding Lagrange interpolation projector (3.27), whose nodes are roots of Hermite’s poly-
nomials. We define

δN := min
1≤k≤q,1≤j≤Nk

{(x(j+1)
k − x(j)

k ) : 1 ≤ j ≤ Nk} N := Πq
j=1Nj ,(3.30)

λ
(y)
N := ||P (y)

N || ≤ c
(1)
q (K)(logN)q,

where c(1)
q (K) > 0 for all N ∈ Z+. Let the functional x∗ ∈ C∗(K; R), x ∈ K, be defined as

(3.31) x∗(f) := f(x)

for any function f ∈ C(K;R). Then, as it is well known [1] for the interpolation with nodes
chosen as roots of Hermite’s polynomials, we have

(3.32) ||x∗P (y)
N ||C∗(K;R) =

N(α)∑
α∈Zq

+

|lα(x)| := λ
(y)
N(α) ≤ c

(2)
q (K)N(α)−s(logN(α))q

for all x ∈ K and N(α) ∈ Z+. Whence, from Jackson’s inequality [1] for each function f ∈
C(s)(K; R) we also have

(3.33) EN [f ] ≤ c(2)
q N(α)−s||f (s)||C(K;R).

where we have set N := N(α) to simplify the notation. Thus, making use of (3.32) and (3.33)
for f ∈ C(s)(K; R), we obtain the estimate

|(x∗P (y)
N )(f)− x∗(f)| := |P (y)

N f(x)− f(x)| ≤

≤
N(α)∑
α∈Zq

+

|lα(x)| |f(xα)− pN (xα) + pN (xα)− f(x)|(3.34)

≤ c(3)
q (K)(logN(α))qN(α)−s||f (s)||C(K;R),

where c(3)
q (K) := c

(1)
q (K)c(2)

q (K) <∞, and pN is the best approximating polynomial of degree
N ∈ Z+ on the cube K ⊂ Rq. Assuming now that differential operator (1.2) is bounded as an
operator A : C(s+m)(K; R) → C(s)(K; R), and for s ≥ 1 the Kato-Rellich condition [10]

(3.35) ||u||p,m+s ≤ c(4)
q (K)(||Au||p,s + ||u||p,s)

holds for some constant c(4)
q > 0 and every u ∈ W

(m+s)
p (K; R), then employing the estimate

(3.34) from the inequality (3.35), we obtain the existence of a positive constant τ (y)
N such that

the main inequality (3.29) holds. Accordingly it follows Theorem 3.2 that there exist a unique
solution to equation (3.14) in the subspaces X̃N ⊂ W

(m+s)
p (K; R) for each N ∈ Z+, which

approximates an exact solution to the differential equation (1.1). This means, that the system
of finite-dimensional functional equations

(3.36) ÃN ũN := P (y)
q AP

(x)
N ũN = f̃N := P

(y)
N f

for all N ∈ Z+ may be represented in an equivalent form as a general system of the algebraic
vector equations

(3.37) ANuN = fN ,

where uN := π
(x)
N ũN , fN := π

(y)
N f̃N , and AN := π

(y)
N ÃNπ

(x),−1
N , with π

(x)
N : X̃N → XN ' RN ,

π
(y)
N : ỸN → YN ' RN being the corresponding canonical isomorphisms [14, 17] between finite–

dimensional subspaces for all N ∈ Z+. Thus, we have proved the following result.
10



Theorem 3.4. Let the differential operator (1.2) be invertible and satisfy condition (3.35) for
some s ≥ 1. Then there exists a unique solution u ∈ W

(m+s)
p (K; R) of equation (1.1), which

is the limit of approximating solutions to finite-dimensional equations (3.37), constructed by
means of the CMPS .

As for the effective construction of finite-dimensional operators AN : XN → YN , N ∈ Z+,
we use the functional-algebraic properties of discrete approximations of Heisenberg-Weil algebra
basis operators g(q) := ⊕

1≤j≤q
{1, xj , ∂/∂xj}, which were discussed above and studied extensively

in [15, 14, 17]. Then expression (3.37) becomes the usual system of algebraic vector equations,
whose matrix AN : XN → YN , owing to the homomorphism property [23] of the universal
algebra U(g) representations, has the form

(3.38) AN =
m∑
|β|=0

aβ(SN )Dβ
N ,

where SN andDN : XN → XN are the corresponding finite-dimensional tensor quasi-representations
of basis elements (or generators) of the Heisenberg-Weil algebra g(q). Solving equations (3.37)
with matrices (3.38), we obtain vector solutions uN ∈ XN ' RN , which generate the desired
approximate functional solutions ũN := π

(x),−1
N uN ∈ X̃N ⊂ X of equation (1.1). The CMPS can

also be adapted to systems with boundary and initial conditions, but we shall not pursue this
matter here.

4. Illustrative Examples

We now consider a couple of examples that serve to illustrate the efficiency and effectiveness
of our projective-algebraic scheme in the case of some evolution equations in partial derivatives.

4.1. Example 1. First, we apply the CMPS to the following linear parabolic evolution (heat)
equation of the second order in two space dimensions:

(4.1) ut = uxx + uyy + t2 sin(x+ y),

where u ∈ C1(0, T ;W 2
2 (Ω; R)), t ∈ (0, T ) ⊂ R+, (x, y) ∈ Ω := {(x, y) ∈ R2 : ϕ(x, y) :=

x2 + y2 − 1 ≤ 0}, with the (initial) Cauchy data

(4.2) ut=0+ = g(x, y) := 1− x2 − y2, (x, y) ∈ Ω,

and the boundary condition

(4.3) u|∂Ω := 0.

The problem (4.1)-(4.3) is well posed, and we can apply our to projection-algebraic approach
as delineated in the preceding sections. It is convenient to first make the following solution
transformation: u := ϕv, where the function v ∈ C1(0, T ;W 2

2 (Ω; R) ∩ L∞(Ω; R)) satisfies
the condition (4.3). Now we take the smallest square D := [−1, 1]2 satisfying the condition
Ω ⊂ D. Making use of suitable mesh points with nodes {x(1), x(2), ..., x(nx)} ∈ [−1, 1] and
{y(1), y(2), ..., y(ny)} ∈ [−1, 1], where nx, ny ∈ Z+ are sufficiently large nodal quantities.

For the projection-algebraic approximation scheme to be applied to equation (4.1), we shall
use, as described above, the following Heisenberg-Weil algebra quasi-representations in finite-
dimensional Euclidean vector spaces Enx and Eny , respectively:

x→ S(nx) := {x(k)δjk : 1 ≤ j, k = nx}, 1→ 1(nx) := {δjk : 1 ≤ j, k ≤ nx},

∂/∂x→ Z(nx) := {δkj
nx∑
s 6=j

(x(j) − x(s))−1 + (1− δkj)(x(k) − x(j))−1 : 1 ≤ j, k ≤ nx},(4.4)
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and

y → S(ny) := {y(k)δjk : 1 ≤ j, k ≤ ny}, 1→ 1(ny) := {δjk : 1 ≤ j, k ≤ ny},

∂/∂y → Z(ny) := {δkj
ny∑
s 6=j

(y(j) − y(s))−1 + (1− δkj)(y(k) − y(j))−1 : 1 ≤ j, k ≤ ny},(4.5)

where δkj is the Kronecker delta. These representations can be used to construct the following
tensor products, acting as matrix operators in the Euclidean finite-dimensional vector space
Enx×ny := Enx × Eny :

S̃(x) := S(nx) ⊗ 1(ny), S̃(y) := 1(nx) ⊗ S(ny), 1̃ := 1(nx) ⊗ 1(ny),(4.6)

Z̃(x) := Z(nx) ⊗ 1(ny), Z̃(y) := 1(nx) ⊗ Z(ny).

Concerning the function v ∈ C1(0, T ;W 2
2 (Ω; R)∩L∞(Ω; R)), one obtains easily from (4.1)-(4.3)

and (4.6) the following discrete set of nonuniform linear Cauchy problems:

(4.7) dvn/dt = Ãnvn + t2fn, vn|t=0+ = gn,

where

Ãn := (1̃− S̃2
(x) − S̃

2
(y))
−1[−41̃− 4(S̃(x)Z̃(x) + S̃(y)Z̃(y)] + (Z̃2

(x) + Z̃2
(y)),(4.8)

fn := (1̃− S̃2
(x) − S̃

2
(y))
−1 sin(S̃(x) + S̃(y))Q

−1
n ūn, gn := Q−1

n ūn,

with ūn := ū(nx) ⊗ ū(ny), ū(nx) := (1, 1, ..., 1)ᵀ ∈ Enx , ū(ny) := (1, 1, ..., 1)ᵀ ∈ Eny , ᵀ denoting
the transpose, and

(4.9) Qn := {δkj
nx∏
s 6=j

(x(j) − x(s)) : 1 ≤ k, j ≤ nx} ⊗ {δkj
ny∏
s 6=j

(y(j) − y(s)) : 1 ≤ k, j ≤ ny}.

Once we have found solutions un(t) ∈ Enx×ny , t ∈ (0, T ), to the discrete set of Cauchy problems
(4.7), we obtain for all sufficiently large n ∈ Z+ the Lagrange interpolated approximate solutions

(4.10) ũn(x, y; t) =< q(nx)(x)⊗ q(ny)(y), un(t) >Enx×ny∈W 2
2 (Ω; R),

where, by definition, polynomial vectors

(4.11) q(nx)(x) := {
nx∏
s6=j

(x− x(s)) : 1 ≤ j ≤ nx}ᵀ, q(ny)(y) := {
ny∏
s 6=j

(y − y(s)) : 1 ≤ j ≤ ny}ᵀ,

for all (x, y) ∈ Ω.
As an example, we have solved the discrete Cauchy problem (4.7) using a fourth-order Runge-

Kutta scheme for nx = ny = 20, with the time interval (0, T = 3) mesh taken as h := 10−4.
The resulting solutions at times t = 0.0, t = 1.501 and t = 2.99 are presented in Fig. 1, where
the continuous curves represent isotherms (u = constant level curves) for various values of time
t. Here the lighter grey regions correspond to higher temperatures, and the darker grey regions
indicate lower temperatures. Observe that the solution appears to be equal to zero on the
straight line {(x, y) ∈ Ω : x+ y = 0} - a property that can be inferred directly from the Cauchy
problem (4.1)-(4.3).

4.2. Example 2. Next we consider the normalized heat equation in one space dimension subject
to simple Cauchy data; namely:

(4.12) ut = uxx, u|t=0+ := sinx,

where t ∈ (0, T ) ⊂ R+ and x ∈ [−2π, 2π] ⊂ R. This problem has the unique bounded solution
u ∈ C∞(0, T ;L∞(R; R)) of the form

(4.13) u(x; t) = e−t sinx
12



Figure 1. Temperature distribution in terms of isotherms at t = 0, 1.501, 2.99
for Example 1

for all x ∈ R. The discrete approximation of (4.12) analogous to that of Example 1 in the
finite-dimensional Euclidean space Enx has the form

(4.14) dun/dt = Z̃2
(x)un, un|t:=0+ := gn,

where gn := sin(S̃(x))Q−1
n ūn = {sinx(i)

nx∏
j 6=i

(x(i) − x(j))−1 : 1 ≤ i ≤ nx}ᵀ ∈ Enx , nx ∈ Z+.

The problem (4.14) was solved approximately using the projection-algebraic approach to obtain
discrete approximations and a fourth-order Runge-Kutta method for t ∈ (0, 1) with time interval
mesh h = 10−1 and spatial mesh obtained using nx = 50. The result is presented in Fig.
2. Observe that the approximate bounded solution obtained via the CMPS, namely ũn ∈
C∞(0, T ;L∞(R; R)), nx ∈ Z+, is very close to the exact solution (4.13) and, as expected, it is
almost zero at points πm ∈ Z, −2 ≤ m ≤ 2.

5. Concluding Remarks

In the course of this paper, we have formulated and proved precise realizability, solvability
and convergence criteria for the CMPS projection-algebraic scheme for approximating solutions
of (1.1) under rather mild restrictions. Moreover, we have at least provided strong indications
of the effectiveness, efficiency and robustness of the CMPS scheme (implemented in algorithmic
form) by applying it to an interesting nontrivial example of a system of the type (1.1). Naturally,
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Figure 2. Temperature distribution for Example 2

to further demonstrate the potential this scheme as an applied tool for numerical investigation
of systems arising in practice, one needs to show how it can be modified to treat approximation
problems corresponding to systems (1.1) involving auxiliary specifications such as more or less
standard boundary and initial conditions, and even possibly free boundary conditions. The
required modifications of the CMPS approach for these types of problems, although far from
obvious, are rather straightforward, and we intend to deal with them shortly in our future work.
In a more dynamical vein, analogous results for the CMPS scheme can also be obtained for
evolution equations in partial derivatives such as in the form du/dt − Au = f, where u ∈ X,
f ∈ Y and the parameter t ∈ R+. We are planning to address approximation of solutions of
these types of evolution equations via the CMPS approach in a later investigation.
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