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Abstract: We derive a sufficient condition for realizing meta-stable de Sitter vacua

with small positive cosmological constant within type IIB string theory flux compact-

ifications with spontaneously broken supersymmetry. There are a number of ‘lamp

post’ constructions of de Sitter vacua in type IIB string theory and supergravity.

We show that one of them – the method of ‘Kähler uplifting’ by F-terms from an

interplay between non-perturbative effects and the leading α′-correction – allows for

a more general parametric understanding of the existence of de Sitter vacua. The

result is a condition on the values of the flux induced superpotential and the topo-

logical data of the Calabi-Yau compactification, which guarantees the existence of

a meta-stable de Sitter vacuum if met. Our analysis explicitly includes the stabi-

lization of all moduli, i.e. the Kähler, dilaton and complex structure moduli, by the

interplay of the leading perturbative and non-perturbative effects at parametrically

large volume.
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1 Introduction & Motivation

String theory is a candidate for a fundamental theory of nature, providing at the

same time a UV-finite quantum theory of gravity and unification of all forces and

fermionic matter. Mathematical consistency requires string theory to live in a ten

dimensional space-time, and a description of our large four-dimensional physics thus

necessitates compactification of the additional six dimensions of space.

The need for compactification confronts us with two formidable consequences:

Firstly, even given the known internal consistency constraints of string theory, there

are unimaginably large numbers of 6d manifolds available for compactification. Sec-

ondly, many compact manifolds allow for continuous deformations of their size and

shape while preserving their defining properties (such as topology, vanishing curva-

ture, etc) – these are the moduli, massless scalar fields in 4d. This moduli problem

is exacerbated if we wish to arrange for low-energy supersymmetry in string theory,

as compactifications particularly suitable for this job – Calabi-Yau manifolds – tend

to come with hundreds of complex structure and Kähler moduli.

Therefore, a very basic requirement for string theory to make contact with low-

energy physics is moduli stabilization – the process of rendering the moduli fields very

massive. Moreover, as supersymmetry is very obviously broken – and so far has not

been detected – ideally, moduli stabilization should tolerate or even generate super-

symmetry breaking. And finally, the process should produce a so-called meta-stable

de Sitter (dS) vacuum with tiny positive cosmological constant, so as to accommo-

date the observational evidence for the accelerated expansion of our universe by dark

energy [1–3].

The task of moduli stabilization and supersymmetry breaking has recently met

with considerable progress, which is connected to the discovery of an enormous num-

ber [4–8] of stable and meta-stable 4d vacua in string theory. The advent of this

landscape [7] of isolated, moduli stabilizing minima marks considerable progress in

the formidable task of constructing realistic 4d string vacua.

There are several methods of moduli stabilization. The first one uses supersym-

metric compactifications of string theory on a Calabi-Yau manifold, and the strong

gauge dynamics of gaugino condensation in the ‘racetrack’ mechanism to stabilize

the dilaton and several of the bulk volume and complex structure moduli [9–11].

Recently, this method has been applied to supersymmetric compactifications of M-

theory on G2-manifolds, where the structure of the manifolds allows for the racetrack

superpotential to generically depend on all the moduli of the compactification [12].

The second, more recent, method relies on the use of quantized closed string

background fluxes in a given string compactification. These flux compactifications

can stabilize the dilaton and the complex structure moduli of type IIB string theory
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compactified on a Calabi-Yau orientifold supersymmetrically [5]. The remaining

volume moduli are then fixed supersymmetrically by non-perturbative effects, e.g.

gaugino condensation on stacks of D7-branes [6]. The full effective action of such

fluxed type IIB compactifications on Calabi-Yau orientifolds was derived in [13].

In type IIA string theory on a Calabi-Yau manifold all geometric moduli can be

stabilized supersymmetrically by perturbative means using the larger set of fluxes

available [14].

If the moduli are stabilized supersymmetrically, parametrically small and con-

trolled supersymmetry breaking can happen, e.g, by means of inserting an anti-D3-

brane into a warped throat of the Calabi-Yau [6], by D-terms originating in magnetic

flux on a D7-brane [15], or dynamically generated F-terms of a matter sector [16].

This process is known as ‘uplifting’ and allows for dS vacua with extremely small

vacuum energy by means of fine-tuning the O(100) independent background fluxes

available in a typical Calabi-Yau compactification [4, 6]. Very recently, the use of

internal F2 gauge flux on a CY threefold in heterotic string theory has been used

to stabilize all geometric moduli except the dilaton and one Kähler modulus in a

supersymmetric Minkowski vacuum [17, 18].

Alternatively, in non-Calabi-Yau flux compactifications of type IIB or IIA string

theory, all geometric moduli can be stabilized perturbatively in a non-supersymmetric

way using a combination of background fluxes, D-branes, orientifold planes, and neg-

ative curvature. Examples here are flux compactifications of type IIB with 3-form

fluxes on a product of Riemann surfaces [19], type II compactifications with general-

ized fluxes on manifolds of SU(3) (see, e.g., the reviews [20, 21]), as well as of type

IIA with fluxes on a product of two 3d nil manifolds [22]. The ingredients used typi-

cally lead to scalar potential dominated by three perturbative terms with alternating

signs, which depend as varying power laws on the dilaton and the geometric moduli.

Such a ‘3-term structure’ structure generically allows for tunable dS vacua [19, 22].

Supersymmetry is generically broken in these perturbative mechanisms of moduli

stabilization at a high scale, which typically is the Kaluza-Klein(KK)-scale.

Finally, in type IIB flux compactifications on Calabi-Yau manifolds there are

constructions of a ‘hybrid’ type, where fluxes fix the complex structure moduli and

the dilaton supersymmetrically, but the volume moduli are stabilized non-super-

symmetrically by an interplay of non-perturbative effects on D7-brane stacks and

the leading perturbative correction at O(α′3) in type IIB [23], or by perturbative

corrections to the Kähler potential alone. Examples for the latter consist of the

Large-Volume-Scenario (LVS) [24], stabilization by perturbative corrections to the

Kähler potential of the volume moduli alone [25–27] which are uplifted by D7-brane

D-terms [28], and the method of ‘Kähler uplifting’ [29, 30].

For ‘Kähler uplifted’ dS vacua, an interplay between the leading perturbative cor-

– 3 –



rection at O(α′3) and a non-perturbative effect in the superpotential serves to gener-

ate a dS vacuum with supersymmetry spontaneously broken by an F-term generated

in the volume moduli sector. For some recent reviews on flux compactifications and

the associated questions of the landscape of string vacua and string cosmology en-

suing from the meta-stable dS vacua, with a much more complete list of references,

please see [21, 31, 32].

‘Kähler uplifting’ has the benefit of generating meta-stable dS vacua in terms

of just background 3-form fluxes, D7-branes and the leading perturbative O(α′3)-

correction, data which are completely encoded in terms of the underlying F-theory

compactification on a fluxed Calabi-Yau fourfold. In addition, supersymmetry is

spontaneously broken at a scale of order of the inverse Calabi-Yau volume, measured

in string units this is typically ∼ MGUT here, and still below the KK-scale), by an

F-term generated in the volume moduli sector. No extra anti-branes, D-terms or

F-term generating matter fields are needed or involved. The existing analysis of

these models consists of including manifestly the dilaton and one complex structure

modulus [29].

Therefore, in this paper we develop a rigorous analytical understanding of ‘Kähler

uplifting’ driven by the leading O(α′3) correction to the Kähler potential of the

volume moduli. Our derivation will be carried out in the presence of an arbitrary

number h2,1 of complex structure moduli. A large value of 3-cycles h2,1 = O(100) is

a prerequisite to use the associated 3-form fluxes for the required fine-tuning of the

cosmological constant.

Note the relationship between the supersymmetric KKLT-type AdS vacua [6]

(prior to uplifting) with the flux superpotential tuned small, the SUSY-breaking

LVS-type AdS vacua [24] (again, prior to uplifting), and the SUSY-breaking ‘Kähler

uplifted’ AdS/dS vacua [29, 30] (inherently liftable to dS by the pure moduli sec-

tor itself) discussed here. These three classes of moduli stabilizing vacua are three

branches of solutions in the same low-energy 4d N = 1 supergravity arising from

type IIB compactified on a Calabi-Yau orientifold with D7-branes.

In section 2, we will review the method of ‘Kähler uplifting’ and analytically

derive the existence of the meta-stable dS vacuum for the volume modulus of a

one-parameter Calabi-Yau compactification with h1,1 = 1 Kähler modulus, and then

extend this to the case of several Kähler moduli h1,1 > 1 explicitly. The interplay of

perturbative and non-perturbative effects implies for h1,1 = 1 that here a structure

of two terms with alternating signs is sufficient to approximate the volume modulus

scalar potential and its tunable dS vacuum. This contrasts with the ‘3-term structure’

generically necessary in purely perturbatively stabilized situations [19, 22]. For h1,1 >

1 a ‘3-term structure’ reappears for the additional h1,1− 1 blow-up Kähler moduli of

a ‘swiss cheese’ Calabi-Yau.
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Finally, we will show that we can express the existence of the meta-stable dS

vacuum for the volume modulus in terms of a sufficient condition on the microscopic

parameters. These are consisting of the fluxes, the D7-brane configuration, and

the Euler number of the Calabi-Yau governing the perturbative O(α′3)-correction,

which are all in turn determined by the underlying F-theory compactification on

an elliptically fibred Calabi-Yau fourfold. Thus, the result amounts to a sufficient

condition for the existence of meta-stable dS vacua in terms of purely F-theory

geometric and topological data which can be satisfied for a sizable subclass of all 4d

N = 1 F-theory compactifications, instead of just single ‘lamp post’ models. We also

check that our sufficient condition satisfies the necessary condition for meta-stable

dS vacua in 4d N = 1 supergravity given in [33].

Section 3 includes the dilaton into a full analytical treatment of the combined dS

minimum. We show that supersymmetry breaking happens predominantly in the

volume modulus direction, and explicitly determine the shift of the dilaton away

from its flux-stabilized supersymmetric locus as suppressed by inverse powers of the

volume of the Calabi-Yau.

Section 4 extends the analysis by including an arbitrary number of complex struc-

ture moduli with unspecified dependence in the Kähler and superpotential. We then

show that the shift of the complex structure moduli and the dilaton in general is

suppressed by inverse powers of the volume, and that the dilaton and all complex

structure moduli generically are fixed at positive-definite masses. Finally, we esti-

mate the backreaction of the shifted dilaton and complex structure moduli onto the

volume modulus. The ensuing shift of the stabilized volume is generically found to

be small and suppressed by inverse powers of the volume. This crucially extends the

sufficient condition for the existence of dS vacua in type IIB F-theory compactifica-

tions to a large class of ‘swiss cheese’ style fluxed Calabi-Yau compactifications with

arbitrary h1,1 < h2,1.

In section 5, we apply our methods to a simple toy model where the Kähler and

superpotential of complex structure moduli are approximated by the structure found

in a torus compactification. We verify the general results of the previous sections, and

show that the shifts of the moduli and the backreaction effects are either independent

of the number of complex structure moduli h2,1, or decreasing as an inverse power of

h2,1. We conclude in section 6.

While this paper was being finished, we became aware of [34], whose section 2

contains overlapping results with our section 2. The main results of section 2 and 3

here have first been presented in talk by one of the authors in [35]. Additionally, we

find numerical disagreement concerning the values of x in section 2 permissible for a

meta-stable dS vacuum of T compared to the results for the same quantity given in

section 2 of [34] due to an approximation used between eq.s (16) and (17) ibid.
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2 ‘Kähler uplifting’ – a meta-stable dS vacuum for the Kähler

modulus

We will start with reviewing the structure of ’Kähler uplifted’ dS vacua in type

IIB flux compactifications on an orientifolded CY threefold [29]. We will at first

restrict ourselves to one-parameter models with h1,1 = 1 and h2,1 > 1 so that the

Euler number χ = 2(h1,1 − h2,1) < 0 (which will be shown to be part of the the

sufficient condition for the existence dS vacua). Later, we will extend the analysis

given here to all so-called swiss-cheese Calabi-Yau threefolds with arbitrary h1,1 > 1

and h2,1 > h1,1, giving a strong indication that the mechanism discussed here works

for all threefolds with χ < 0.

For type IIB compactifications on Calabi-Yau orientifolds with 3-form fluxes and

D7-branes the effective 4d N = 1 supergravity of the moduli sector is determined

by [5, 13, 23, 36]

K = −2 ln

(
V̂ + α′3

ξ̂

2

)
− ln(S + S̄)− ln

(
−i
∫
CY3

Ω̄ ∧ Ω

)
, (2.1)

W = W0 +
∑
i

Aie
−aiTi , with W0 =

1

2π

∫
CY3

G(3) ∧ Ω . (2.2)

Note, that this 4d N = 1 supergravity has three branches of vacua. Firstly, we

may look for vacua where |W0 � 1 is tuned small. Then supersymmetric solutions

DIW = 0 (with I running over all h1,1 Kähler moduli, h2,1 complex structure moduli,

and the dilaton S) stabilizing all moduli, with 4-cycle volumes ReTi >> 1, are possi-

ble including the α′-correction discussed above [6]. On swiss-cheese style Calabi-Yau

manifolds, a second branch of solutions are the SUSY-breaking AdS vacua of the

Large-Volume-Scenario which work for arbitrary W0 [24], and the third branch con-

sists of the ‘Kähler uplifted’ solutions studied below, where typically |W0|−O(1 . . . 10)

to get dS vacua.

For one-parameter models we have V̂ = γ(T + T̄ )3/2 and we set α′ := 1. Here

γ =
√

3/(2
√
κ) , (2.3)

ξ̂ = − ζ(3)

4
√

2 (2π)3
χ (S + S̄)3/2 , (2.4)

and κ denotes the self-intersection number of the single Kähler modulus T in terms

of the Poincare-dual 2-cycle volume modulus v of the underlying N = 2 theory prior

to orientifolding. The volume of 1-parameter CY threefolds is then given by [13]
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V̂ =
κ

6
v3 ≡ γ (T + T̄ )3/2 , ReT =

1

3
∂vV̂ . (2.5)

The flux-superpotential W0 is determined by the integral over the holomorphic 3-

form Ω of the Calabi-Yau and the 3-form flux G(3) [36]. The Kähler potential K and

superpotential W determine the F -term scalar potential to be

V = eK
(
Kab̄DaWDbW − 3|W |2

)
(2.6)

with DaW = Wa+KaW , and a runs over the dilaton S, the single Kähler modulus T

and the h2,1 complex structure moduli Ui. We will now stabilize the Kähler modulus

T = t+ iτ , (2.7)

(τ denotes its axion) using the interplay between the leading perturbative α′ correc-

tion ξ̂ to the Kähler potential [23] and non-perturbative corrections to the superpo-

tential. For now, we assume the dilaton S and the complex structure moduli Ui to be

stabilized already. Thus, we have to find local stable minima of the scalar potential

descending from eq.s (2.1) assuming DSW = DUi
W = 0.

Following [23, 29, 30] we can write the resulting scalar potential in the following

form

V (T ) = eK
(
KT T̄DTWDTW − 3|W |2

)
(2.8)

= eK

(
KT T̄

[
WTWT + (WT ·WKT + c.c)

]
+ 3ξ̂

ξ̂2 + 7ξ̂V̂ + V̂2

(V̂ − ξ̂)(ξ̂ + 2V̂)2
|W |2

)
.

Here KT T̄ denotes the T T̄ -component of the inverse of the Kahler metric (KIJ̄)−1

where I, J run over all fields involved.

The non-trivial task is to find stationary points of V (T ) with respect to t. It is

straightforward to show that the axionic direction has an actual minimum at τ = 0.

The Kähler potential does not depend on τ and the exponential in eq. (2.1) introduces

trigonometric functions sin(aτ) and cos(aτ) into V (T ). Then it can be shown that

Vτ = 0 for τ = nπ/a for n ∈ Z. We restrict to the case τ = 0 so that after insertion

of WT we obtain

V (t) = eK

(
KT T̄

[
a2A2e−2at + (−aAe−atWKT + c.c)

]
+ 3ξ̂

ξ̂2 + 7ξ̂V̂ + V̂2

(V̂ − ξ̂)(ξ̂ + 2V̂)2
|W |2

)
.

(2.9)
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2.1 Approximating the scalar potential V (T ) in the large volume limit

In [29], it was shown that one can get de Sitter minima for T at parametrically large

volume V̂ ' O(100 . . . 1000) and weak string coupling gS ' 0.1. The stable minimum

is realized at ξ̂/(2V̂) ' 0.01 so small that neglecting higher orders in the α′ expansion

is well justified. This can be constructed under the following conditions

• Put a stack ofN ' O(30 . . . 100) D7-branes on the single 4-cycle that undergoes

gaugino condensation.1 The parameter A is assumed to be O(1).

• Choose the flux induced superpotential W0 ' O(−30) and the parameter

ξ̂ ' O(10). Note that a W0 of this rather large magnitude does not induce

problematic back reactions, as in type IIB the fluxes are imaginary self-dual

(ISD) and of (1,2) or (0,3) type which limitates the back reaction to the warp

factor.

In this setup, one typically obtains a minimum at T ' O(40) so that the non-

perturbative contribution to the superpotential Ae−aT is small enough to also trust

the Ansatz for the non-perturbative superpotential.

We now want to give a parametric understanding of this scenario by approximat-

ing the scalar potential eq. (2.9) under the constraint of the typical values of the

parameters a,A,W0, ξ̂, γ. We use the condition ξ̂/(2V̂) ' 0.01 and the validity of the

non-perturbative superpotential:

V̂ � ξ̂, |W0| � Ae−at . (2.10)

Under these approximations, the Kähler Potential and its derivatives simplify in

the following way:

1For example, the 2-parameter model P4
11169 was shown in [37] to have an F-theory lift contain-

ing an E8 ADE-singularity for the condensing gauge group, giving a rank of 30. In general, the

achievable rank of the gauge groups is limited for compact CY fourfolds, due to the compactness

interfering with enforcing an ADE-singularity of arbitrarily high rank along a given divisor. Still,

on compact F-theory fourfolds very large gauge groups with very large ranks can be generated, e.g.

in [38] F-theory was compactified to 4d on a compact fourfold to yield a gauge group with 251

simple factors, the largest of which was SO(7232).
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K = −2 ln

(
V̂ +

ξ̂

2

)
' −2 ln

(
V̂
)
,

KT =
−3γ2/3 3

√
V̂

V̂ + ξ̂
2

' −3γ2/3

V̂2/3
,

(KT T̄ )−1 = γ−4/3

3
√
V̂(4V̂2 + ξ̂V̂ + 4ξ̂2)

12(V̂ − ξ̂)
' V̂

4/3

3γ4/3
. (2.11)

Also the last term of eq. (2.9) simplifies under the approximation eq. (2.10). Imple-

menting eq. (2.10), the scalar potential eq. (2.9) becomes

V (t) ' e−2at(3aA2 + a2A2t)

6γ2t2
+
aAe−atW0

2γ2t2
+

3W 2
0 ξ̂

64
√

2γ3t9/2
. (2.12)

We also neglect the term ∝ e−2at since it is suppressed by one more power of e−at

compared to the second term in eq. (2.12) and obtain a ‘2-term structure’ for the

scalar potential

V (t) ' aAe−atW0

2γ2t2
+

3W 2
0 ξ̂

64
√

2γ3t9/2
. (2.13)

Note that the flux-superpotential is negative, W0 < 0, so that the two terms have

opposite sign and a minimum is in principle allowed. Eq. (2.13) is a drastic simpli-

fication of the rather complicated scalar potential eq. (2.9) that allows us to extract

an analytic condition on the parameters to obtain a meta-stable de Sitter vacuum.

Factorizing eq. (2.13), we can write it in terms of two characteristic variables x = a ·t
and C

V (x) ' −W0a
3A

2γ2

(
2C

9x9/2
− e−x

x2

)
, C =

−27W0ξ̂a
3/2

64
√

2γA
. (2.14)

The overall constant in eq. (2.14) does not influence the extrema of this potential.

For completeness, we mention that the stationary point in the axionic direction τ = 0

is always a minimum since the mass

Vττ = −a
3Ae−atW0

2γ2t2
> 0 if W0 < 0 . (2.15)

The mass matrix Vij for i, j ∈ {t, τ} is diagonal since the mixed derivative Vtτ vanishes

at τ = 0.

Note, that it is the presence of the exponential factor in the negative term with

the slower inverse power-law dependence on x, which renders this term as a ‘negative
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middle term’ in terms of the analysis of [22]. Here, however, this term shuts down

exponentially fast for large enough x. This combined behavior of being a power-law

at small x and an exponential at larger x is responsible for the fact, that a ‘2-term’

combination with a single positive inverse power-law term is enough to obtain a

tunable dS vacuum.

2.2 A sufficient condition for meta-stable de Sitter vacua

To calculate extrema of eq. (2.14) we need to calculate the first and second derivative

with respect to x (V ′ = ∂V
∂x

)

V ′(x) =
−W0a

3A

2γ2

1

x11/2

(
C − x5/2(x+ 2)e−x

)
, (2.16)

V ′′(x) =
−W0a

3A

2γ2

1

x13/2

(
11

2
C − x5/2(x2 + 4x+ 6)e−x

)
. (2.17)

Solving for an extremum V ′(x) = 0 yields

x5/2(x+ 2)e−x = C (2.18)

which cannot be solved explicitly in an analytic way. Plotting the approximate

expression eq. (2.14) of V (x) for different values of the constant C in figure 1 we

observe the following behavior:

We see that with growing C we first obtain an AdS minimum. This minimum

breaks supersymmetry since

FT '
−3W0

2tV̂
6= 0 . (2.19)

Then at some point the minimum transits to dS, and for even larger C the potential

eventually develops a runaway in the x direction. We can analytically calculate the

window for C where we obtain a meta-stable de Sitter vacuum by identifying:

• Lower bound on C: V (xmin) = V ′(xmin) = 0

• Upper bound on C: V ′(xmin) = V ′′(xmin) = 0

In both cases we have to solve two equations for two variables {xmin, C}. For

instance, one can use eq. (2.18) to replace Cex in V (x) = 0 for the lower and in

V ′′(x) = 0 for the upper bound which gives equations maximally quadratic in x and

then use eq. (2.18) again to calculate C. In both cases, there exists only one solution

with xmin > 0.
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-0.00001

0

0.00001

0.00002

0.00003

0.00004

x

VHxL C � 3.58

C � 3.65

C � 3.76

C � 3.87

C � 3.97

Figure 1. The approximate 2-term scalar potential V (x) from eq. (2.14) for different

values of C.

• Lower bound on C:

{xmin, C} = {5
2
, 225

8

√
5
2
e−

5
2} ' {2.5, 3.65}

• Upper bound on C:

{xmin, C} ' {3+
√

89
4

, 3.89} ' {3.11, 3.89}

The region close to {xmin, C} is the one relevant for obtaining a small positive cos-

mological constant suitable for describing the late-time accelerated expansion of the

universe. For a = 2π/100 the lower bound on x corresponds to a volume V̂ ' 100 so

we are indeed at parametrically large volume. The allowed window for C to obtain

meta-stable de Sitter vacuum is approximately

3.65 .
−27W0ξ̂a

3/2

64
√

2γA
. 3.89 (2.20)

In sections 3 and 4, we will show that fullfilling condition eq. (2.20) is still sufficient

to obtain a meta-stable minimum of the scalar potential when all the remaining

moduli fields of the Calabi-Yau, i.e. the dilaton and the complex structure moduli,

are included in the stabilization analysis. Hence, this is truly a sufficient condition for

meta-stable de Sitter vacua and no tachyonic instabilities occur by including further

moduli, contrary to the standard KKLT scenario [39, 40].
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2.3 h1,1 > 1

We will now proceed to show explicitly that the above argument can be extended to

the full class of all Calabi-Yau threefolds with h1,1 > 1 arbitrary and χ < 0 which

are of ‘swiss cheese’ type. A ‘swiss cheese’ type Calabi-Yau is characterized by a

classical volume given by

V̂ =
h1,1∑
I=1

1

6
κIII (vI)3 = γ (T + T̄ )3/2 −

h1,1∑
i=2

γi (Ti + T̄i)
3/2 (2.21)

where κ ≡ κ111 > 0, κiii < 0 for i = 2 . . . h1,1 and

t ≡ ReT =
1

3
∂vV̂ and γ =

√
3

2
√
κ

(2.22)

ti ≡ ReTi =
1

3
∂viV̂ and γi =

√
3

2
√
−κiii

∀ i = 2 . . . h1,1 .

This structure allows us to invert and get

vI = 2
√

2γI
√
tI . (2.23)

Thus the classical volume of such Calabi-Yaus has a (+ − − − . . .) signature in

intersection number space. We will look for dS vacua which satisfy ReTi � ReT for

i = 2 . . . h1,1 such that V̂ ∼ γ (T + T̄ )3/2, such the h1,1 − 1 blow-up Kähler moduli

form the ‘holes’ of the ‘swiss cheese’. This entails choosing the ai for i = 2 . . . h1,1

of the nonperturbative superpotential effects on the associated 4-cycles such that

ai � a ≡ a1 while enforcing aiti > 1 to maintain the validity of the one-instanton

approximation.

We will again determine the leading terms in ξ̂/V̂ as before. The scalar potential

reads

V = eK
(
KTI T̄J

[
aIaJAIAJe

−a(TI+T̄J ) + (−aIAIe−aTIWKTJ + c.c)
]

+3ξ̂
ξ̂2 + 7ξ̂V̂ + V̂2

(V̂ − ξ̂)(ξ̂ + 2V̂)2
|W |2

)
. (2.24)

Guided by eq. (2.13), we extract the terms linear in ξ̂ and in e−aTI , suppressing

terms which are of order e−a(T+T̄J ) or ξ̂e−aTI as they are subleading in the limit we

are considering. We will see that we are forced to keep terms of order e−a(Ti+T̄j) as

these will turn out to be of a relevant order in ξ̂/V̂ once the condition of the minimum

is imposed. Using the fact that KTI = KT̄I for our choice of V̂ , the relevant part of

the potential thus reads

V = −W0

V̂2
KTI T̄J

(
aIAIe

−aTIKT̄J + c.c
)

+
3ξ̂W 2

0

4V̂3
. (2.25)

– 12 –



We have

KT = KT̄ = −3
√

2γ
√
t

V̂
+O

(
ξ̂

V̂

)
, KTi = KT̄i =

3
√

2γi
√
ti

V̂
+O

(
ξ̂

V̂

)
(2.26)

and the inverse Kähler metric can be found [41] to be

KTI T̄J = −2

9
(2V̂ + ξ̂)κIJKv

K +
4V̂ − ξ̂
V̂ − ξ̂

tItJ . (2.27)

Now we can apply our limit ξ̂/V̂ � 1, use that the κIJK = κIII are diagonal, and

implement that ti � t for i = 2 . . . h1,1. We then find using eq. (2.23) that

KT T̄ = −4

9
V̂κv + 4t2 = −4

9
V̂ 3

4γ2
2
√

2γ
√
t+ 4t2 '

√
2

3
V̂
√
t

γ

KT T̄i = 4 tit (2.28)

KTiT̄i = −4

9
V̂κiiivi + 4t2i = −4

9
V̂ −3

4γ2
i

2
√

2γi
√
ti +O(1) ' 2

√
2

3
V̂
√
ti
γi

while KTiT̄j = 4titj � O(vI V̂) can be dropped in this limit. Plugging eq.s (2.26) and

(2.28) into the potential eq. (2.25), we get

V =
4W0

V̂2

(
atAe−at cos(aτ) +

h1,1∑
i=2

aitiAie
−aiti cos(aiτi)

)
+

3ξ̂W 2
0

4V̂3

+
h1,1∑
i=2

4

3

aiA
2
i

V̂2

√
ti
γi
e−2aiti

[
V̂√
2

+ 3γi
√
ti(aiti + 1)

]
. (2.29)

The cross terms ∼ KT T̄i are relevant to obtain the correct sign of the axion terms

in the first round bracket. The terms ∼ e−2aiti look subleading. However, at the

prospective minimum one can show that e−at ∼ e−aiti ∼ ξ̂/V̂ . This implies, that

the terms ∼ e−2aiti are in fact ∼ ξ̂2/V̂3 (including the factor of V̂ in the rectangular

bracket) and are thus of relevant order for minimization.

This potential has a full minimum at at ' aiti ' 3 for i = 2 . . . h1,1, and τ = τi = 0,

if the quantity C defined in eq. (2.14) satisfies a structurally similar bound on C as

in the one-parameter case discussed above. However, the numerical interval of C-

values allowed by the metastability conditions increases slowly with h1,1. The size

of C ∼ |W0| for given ξ̂, intersection numbers, and gauge group ranks. As the

maximum size of |W0| is given by the maximum available fluxes, this implies an

upper bound on h1,1 as the flux is limited by the tadpole constraint quantified by

the Euler characteristic of the F-theory elliptic fourfold. The magnitude of χCY4 can

be easily as large as O(104), so this is not a particularly strong bound.
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Thus we expect this minimum to persist for all ‘swiss cheese’ Calabi-Yau threefolds

of arbitrary h1,1 > 1. Moreover, the way how the additional Kähler moduli enter

the leading terms of the scalar potential implies that the inclusion of dilaton and

complex structure stabilization discussed in the subsequent chapters will also extend

to the h1,1 > 1 case by virtue of its viability for the first Kähler modulus. Finally, as

the quantity κIJKv
K is a matrix with signature (1, h1,1 − 1) (one plus and the rest

minus) [42], we expect the overall sign structure of eq.s (2.26) and (2.28) to persist

even for general non-‘swiss cheese’ type Calabi-Yau threefolds. As this will lead to a

potential with the same basic structure as eq. (2.29) we may expect this mechanism

of stabilizing all Kähler moduli directly into a dS vacuum via ‘Kähler uplifting’ to

extend to all Calabi-Yau threefolds with χ < 0.

2.4 F-theory interpretation

Eq. (2.20) forms a crucial result of our analysis. It represents an explicit condition

relating two topological properties of the CY threefold, the self-intersection number

κ of its volume modulus, and its Euler characteristic χ (via ξ̂ = ξ̂(χ)), to the flux

superpotential and the rank of condensing D7-brane gauge group. 2

Let us briefly comment here on the link to F-theory. Type IIB warped flux com-

pactifications on an O7-orientifolded CY threefold with D3- and D7-branes with

varying axio-dilaton can be described as the Sen limit of F-theory compactified on

an elliptically fibred CY fourfold. The CY threefold then is the double-cover of the

base of the elliptic fibration under the orientifold projection in the Sen limit [43]. The

F-theory description unifies the different objects of the CY threefold, the O7-plane

and the D7-branes including the non-abelian gauge theories into the geometry and

topology of the elliptically fibred CY fourfold. In particular, points in the base of the

fibration, where the torus fibre of the Weierstrass model degenerates via a vanishing

1-cycle, describe D7-branes. In consequence, D7-brane stacks with their non-abelian

gauge groups are geometrized into the notion of ADE-type singularities at the points

in the base where the torus fibre degenerates. The type IIB 3-form fluxes H(3) and

F(3), in turn, descend from a single 4-form flux G(4) on the F-theory fourfold. Finally,

the Euler characteristic χ, and h1,1, h2,1 are completely determined in terms of the

topological data of the fourfold.

Using this information, we immediately see that the sufficient condition for the

existence of ’Kähler uplifted’ dS vacua in type IIB becomes particularly elegant

criterion in the underlying F-theory construction in so far, as the relation eq. (2.20)

places a constraint on the geometry and topology of the fourfold and the 4-form flux

G(4):

2This verifies the numerical evidence fount in [29], indicating that one can trade of larger W0

for smaller ξ̂ and still obtain a de Sitter minimum. This now is obvious from eq. (2.20).
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• The data entering W0, ξ, and γ(κ), which consists of χ, h2,1, the intersection

number(s), and the periods of the threefold, are completely determined in terms

of the topological data of the fourfold, and the 4-form flux G(4).

• The rank of the D7-brane gauge group entering a is determined by the ADE sin-

gularity enforced at the degeneration point of the Weierstrass model describing

the elliptic fibration.

Thus, the sufficient condition eq. (2.20) represents a purely geometrical and topolog-

ical constraint on the fourfold in F-theory except for the constraint on G(4).

2.5 The necessary curvature condition

The discussion so far has constituted a sufficient condition for the existence of meta-

stable ’Kähler uplifted’ dS vacua in type IIB on a CY orientifold. Let us pause

here for a moment, and compare this condition to the necessary condition of positive

sectional curvature of the Kähler potential which [33] derived from a general 4d

N = 1 supergravity argument. The statement there is that a meta-stable dS vacuum

cannot exist unless the sectional curvature of the full Kahler potential of a given

model

λ ≡ 2gīG
iḠ −Rīmn̄G

iḠGmGn̄ > 0 (2.30)

is positive, where

gī ≡ ∂i∂̄̄K, Gi ≡ e−G/2F i, G = K + ln |W |2 , (2.31)

and Rīmn̄(gī) is the Riemann tensor of the scalar manifold. For our case of the lead-

ing order O(α′3) correction breaking no-scale and supplying the dominant direction

of supersymmetry breaking FT (this will be shown in the subsequent sections), this

condition is equivalent to [33]

ξ̂

8V
>

2 〈V 〉
105m2

3/2

. (2.32)

We do now see that satisfying the sufficient condition given here implies satisfaction

of eq. (2.32), as

m2
3/2 ≡ eK |〈W 〉|2 ' eK |〈W0〉|2 > 0 (2.33)

is guaranteed always in the minimum due to |〈W0〉| ∼ O(1)� |e−a〈T 〉|, while tuning

W0 allows 〈V 〉 ' 0 to O(10−h
2,1

).

Note that satisfying eq. (2.32) requires ξ̂ > 0 for true dS vacua, which fixes the

sign of ξ̂ and thus χ. This is consistent with the extremum conditions eq.s (2.18),

(2.15) together with definition of C in eq. (2.14), as they too dictate W0 < 0⇔ ξ̂ > 0.
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〈t〉 m2
t m2

τ m2
3/2

exact 43.0 9.8 · 10−4 2.5 · 10−3 1.3 · 10−2

approx. 39.8 1.4 · 10−3 3.4 · 10−3 1.9 · 10−2

Table 1. Numerical results for the minimum 〈t〉, the moduli masses m2
t , m

2
τ and the

gravitino mass m2
3/2. The exact results are obtained numerically from eq. (2.9) for W0 =

−32.35, the approximate results from eq.s (2.13) and eq. (2.15) for W0 = −37.73. The

masses where determined by diagonalization of the Hessian of the relevant scalar potential,

and multiplying the eigenvalues with KT T̄ for canonical normalization of the kinetic terms.

We can rewrite eq. (2.32) by inserting the 2-term potential of eq.(2.14) and the

gravitino mass m2
3/2 ' (W0/V̂)2:

1 >
2

35

(
2− 9e−xx5/2

C

)
. (2.34)

The only remaining parameters are x and C. This allows us to check the necessary

curvature condition at the upper limit for {x,C} = {3.11, 3.89}, i.e. where the

meta-stable dS minimum becomes a saddelpoint in the t-direction, see section 2.2.

We find

1 >
1

140

(
9
√

89− 83
)
' 0.014 . (2.35)

We do not necessarily expect eq. (2.32) to be violated since this is a necessary condi-

tion, i.e. a dS vacuum does not have to exist even though the inequality is fullfilled.

However, eq. (2.35) is far from being saturated which suggests that the space of ac-

tually meta-stable dS vacua may be significantly smaller than the space of candidate

vacua allowed by the necessary condition.

2.6 Numerical example

Let us display our above analysis with a numerical example from [29]:

a =
2π

100
, W0 = −32.35, A = 1, γ =

√
3

2
√

5
, ξ̂ = 7.98 . (2.36)

The choice for γ is that for the quintic CP4
1,1,1,1,1 which has intersection number

κ = 5. The meta-stable minimum of the exact potential eq. (2.9) lies at t = 43 so

that indeed the approximations in eq. (2.10) are well justified.

ξ̂

V̂
' 0.03� 1,

Ae−at

|W0|
' 0.002� 1 . (2.37)
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Figure 2. Dashed curve: the exact potential with parameters W0 = −32.35. Solid curve:

the approximate potential with parameters W0 = −37.73, C = 3.652.

In figure 2, we compare the exact potential eq. (2.10) to the approximate potential

eq. (2.14) for the parameters eq. (2.36).

We see that the two curves agree sufficiently to justify the parametric understand-

ing drawn out of the 2-term potential eq. (2.14). The minimum of the approximate

potential is located at t ' 40. We give a summary of the numerical results for the

moduli VEVs and masses in table 1.

3 Stabilization of the Kähler modulus and the dilaton

We now include S = s+ iσ explicitly into our analysis. Our strategy will be to first

determine the supersymmetric locus for S and then include the backreaction from

volume stabilization using perturbation theory in the small expansion parameter

ξ̂

V̂
. 0.1 (3.1)

for typical models. We will use the same logic in section 4 for incorporating the

complex structure moduli.

The flux-superpotential has the form W0 = C1 − C2 · S, where the C1 and C2 are

functions of the complex structure moduli, and the 3-form fluxes. In this section we
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still assume the complex structure moduli to be integrated out supersymmetrically.

The Kähler- and superpotential are given as

K = KK +Kgs , with KK = −2 ln

(
γ(T + T̄ )3/2 +

ξ

2
(S + S̄)3/2

)
,

Kgs = − ln
(
S + S̄

)
,

W = C1 − C2 · S + Ae−aT . (3.2)

Notice that there is a mixing in the Kähler potential due to the S dependence of

the parameter ξ̂ controlling the α′ correction. The VEV of s has to be chosen large

enough, so the string coupling gS ≡ 1/〈s〉 stays parametrically small. The scalar

potential can be organized in the following way:

V (T, S) = V (T ) + V (T,S) + V (S), with

V (T ) = eK

(
KT T̄

[
WTWT + (WT ·WKT + c.c)

]
+ 3ξ̂

ξ̂2 + 7ξ̂V̂ + V̂2

(V̂ − ξ̂)(ξ̂ + 2V̂)2
|W |2

)
,

V (T,S) = eK
(
KT S̄DTWDSW + c.c

)
,

V (S) = eK
(
KSS̄|DSW |2

)
. (3.3)

The term V (T,S) is due to the mixing of T and S in the Kähler potential.

It was shown in [29] numerically, that eq. (3.3) possesses a meta-stable de Sitter

vacuum in the large volume limit eq. (2.10) with the dilaton being stabilized close to

the supersymmetric minimum DSW = 0. We now obtain an analytic understanding

of these features using an expansion of eq. (3.3) in ξ̂/V̂ and Ae−at/|W0|.

3.1 Approximating the scalar potential V (T, S) in the large volume limit

We can calculate V (T ) using our results from section 2 and the replacements

W0 −→ C1 − C2S ,

ξ̂ −→ ξ(2s)3/2 ,

eKK −→ eKKeKgs '
(

2sV̂2
)−1

, (3.4)
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to obtain the two term potential

V (T ) ' 1

2s

(
aAe−at [(C1 − C2s) cos(aτ) + C2σ sin(aτ)]

2γ2t2

+
3ξs3/2 [(C1 − C2s)

2 + C2σ
2]

2

32γ3t9/2

)
. (3.5)

To derive V (T,S) and V (S) we have to approximate KT S̄ which we find to be 1-st

order and KSS̄ which is a 0-th order term:

V (T,S) '
(C1 + C2s)

[
s3/2(−7C1 + 5C2s)ξ + 8Ae−atγt3/2 cos(aτ)

]
64 s γ3t9/2

− 7C2
2

√
s ξ σ2

64 γ3t9/2
+
Ae−atC2 σ sin(aτ)

8 s γ2t3
, (3.6)

V (S) ' 1

2sV̂2

[
(C1 + C2s)

2 + C2
2σ

2
]
. (3.7)

We see that in this approximate expression for the scalar potential the field s is

to 0-th order stabilized by a quadratic potential (C1 + C2s)
2 if we neglect terms

that are suppressed either by ξ or e−at relative to the quadratic potential. The

supersymmetric locus is

s0 = −C1

C2

> 0 ⇒ C1C2 < 0. (3.8)

The shift of s to this supersymmetric minimum due to the 1-st order terms V (T )

and V (T,S) will be calculated in section 3.3 to first order. The extremum of t to 1-st

order is governed by V (T ) only since V (T,S) ∝ DSW and DSW equals zero to 0-th

order so that V (T,S) is actually a 2-nd order term. Finally, the axion field derivatives

Vτ and Vσ can be minimized for τ = nπ/a for n ∈ Z and σ = 0. As in section 2, we

restrict to τ = 0.

3.2 Moduli Masses

Using the approximate scalar potential V (t, s, τ, σ) of eq. (3.3) we can calculate the

mass matrix of the moduli as the second derivative with respect to the real fields.

The second derivatives mixing real and imaginary parts vanish exactly at the axionic

VEVs τ = σ = 0 so the mass matrix is block diagonal.

Vij =


Vtt Vts 0 0

Vst Vss 0 0

0 0 Vττ Vτσ
0 0 Vστ Vσσ

 (3.9)
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Since Vtt and Vts are 1-st order and Vss is 0-th order, the eigenvalues of eq. (3.9) are

Vtt and Vss to 1-st and 0-th order, respectively.

Next, we note that the kinetic terms of the moduli fields are highly non-canonical.

The kinetic part of the lagrangian reads as

L = KSS̄∂µS∂
µS̄ +KT T̄∂µT∂

µT̄ +KT S̄

(
∂µT∂

µS̄ + c.c
)

. (3.10)

We expand the moduli around their minima in small fluctuations, S = 〈S〉+ δS and

T = 〈T 〉+δT . Inserting this, we see that in the limit of small fluctuations we get the

KIJ̄(〈S〉, 〈T 〉) to be constants. In general, one has to diagonalize the Kähler metric

and then canonically normalize the kinetic terms in the rotated basis of fluctuations,

but here we find that in our limit ξ̂/V̂ � 1 an expansion of the inverse Kähler metric

KIJ̄ shows us that KST̄ is O(ξ̂/V̂) compared to KT T̄ and KSS̄.

Thus, differentiating eq. (3.3) and evaluating at s = s0 and t = tmin, we find for

the physical masses

m2
t ' KT T̄

∣∣
ξ=0

Vtt =
4t2

3
Vtt

'
−32atAe−atC2γt

3/2(a2t2 + 4at+ 6) + 297ξC2
1

√
−C1

C2

48γ3t9/2

∣∣∣∣
t=tmin

∼ ξ̂

V̂3
, (3.11)

m2
s ' KSS̄

∣∣
ξ=0

Vss = 4s2 Vss '
−C1C2

2γ2t3

∣∣∣∣
t=tmin

∼ 1

V̂2
, (3.12)

m2
τ ' KT T̄

∣∣
ξ=0

Vττ '
(at)3AC2

2γ2

e−at

γ2t3

∣∣∣∣
t=tmin

∼ ξ̂

V̂3
, (3.13)

m2
σ ' KSS̄

∣∣
ξ=0

Vσσ '
−C1C2

2γ2t3

∣∣∣∣
t=tmin

∼ 1

V̂2
. (3.14)

Here we have used that for our dS solutions with 〈V 〉 ' 0 the product at ' 3 is

roughly constant. In this approximation the fields s and σ have the same mass

which expresses that they are in the same chiral multiplet and supersymmetry is

unbroken in the S direction to 0-th order. Note, that s, τ and σ are manifestly

positive in our approximation. t could become tachyonic if the exponential term in

eq. (3.11) gets larger than the term proportional to ξ. Since m2
t ∝ V ′′(x) of eq. (2.17),

a tachyonic direction in t corresponds to a saddle-point of the potential V (x) which

is equivalent to violating the upper bound on C eq. (2.20) as discussed in section 2.2.

3.3 Deviation of s from the SUSY minimum and SUSY breaking

In this section, we want to analyze the effect of the 1-st order terms δV (1) ≡ V (T ) +

V (T,S) on the 0-th order potential V (0) ≡ V (S) that stabilizes s in a supersymmetric
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minimum s0 = −C1/C2. We will calculate the shift δs/s0 from the supersymmetric

minimum s0 due to the 1-st order terms δV (1) and show that it is indeed small,

i.e. O(ξ̂/V̂). Furthermore, we will show that naturally there appears a hierarchy

m2
t � m2

s and show that supersymmetry is predominantly broken in the T direction,

i.e. FT � FS where

Fi = eK/2DiW . (3.15)

Expanding eq. (3.3) to first non-vanishing order for zero axionic VEVs τ = σ = 0

in δs yields

V (t, s) = V (0)(t, s0) +
1

2
V (0)
s,s (t, s0)(δs)2 + δV (1)(t, s0) + δV (1)

s (t, s0)δs+ . . . . (3.16)

Since s = s0 + δs should still be a minimum of the full potential we demand

∂V

∂(δs)
= 0 ⇔ δs =

−δV (1)
s (t, s0)

V
(0)
s,s (t, s0)

. (3.17)

We see from eq. (3.5) and eq. (3.6) that the term δV
(1)
s (t, s0) involves terms propor-

tional to ξ and e−at. The latter can be replaced using the condition eq. (2.18) for

the minimum in t at s = s0:

e−at =
27ξ̂ C1

16V̂ Aat (2 + at)
. (3.18)

This yields a function whose t dependence is given by an overall factor V̂−3 and a

rational function in at = x. Since we are interested in de Sitter minima with almost

vanishing positive cosmological constant we can set x ' 5/2 according to section 2.2.

The mass term m2
s is obtained solely from V (S) so its t-dependence is given by an

overall V̂−2 scaling from the overall factor eK in the scalar potential. So finally for

the shift we indeed obtain a number of O(1) times our expansion parameter:

δs

s0

' 93

20

ξ̂

V̂
= 4.65

ξ̂

V̂
. (3.19)

Thus, we have shown that it is consistent to assume the dilaton s to be stabilized

approximately supersymmetrically since the 1-st order potential δV (1) only has a 1-st

order effect on the position of its minimum. Note that the sufficient condition on C

for meta-stable de Sitter vacua as it is written down in eq. (2.20), holds for the exact
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minimum of s. If we approximate s by the supersymmetric minimum s0 or to 1-st

order by s0 + δs this will slightly change the bounds in eq. (2.20).

We can also use eq. (3.18) to bring m2
t into an expression that scales like ξ̂/V̂3.

Setting again x ' 5/2 we obtain the following hierarchy between the moduli masses

m2
t

m2
s

' (at)2

5 s0

· ξ̂
V̂

(3.20)

and hence m2
t � m2

s parametrically.

Finally, let us calculate the supersymmetry breaking terms FT and FS. The

direction FT has a non-vanishing 0-th order contribution

FT ' −
3C1√

−2C1/C2 tV̂
. (3.21)

As expected, the first non-vanishing contribution to FS is 1-st order. Other than

terms ∝ ξ̂/V̂2 we have to add a term ∝ (s− s0)/V̂ that we evaluate at s = s0 + δs.

Inserting eq. (3.19) we get

FS ' −
9C1ξ̂

10
√

2 V̂2 (−C1/C2)3/2
' −FT ·

3 t C2

10C1

· ξ̂
V̂

(3.22)

so supersymmetry is predominantly broken in the T direction which is what one

would expect since t is stabilized in a minimum with spontaneously broken super-

symmetry.

The gravitino mass can be approximated to 0-th order to

m2
3/2 = eK |W |2 ' − 2C1C2

V̂2
= − C1C2

4γ2t3
∼ 10−4 . . . 10−3 (3.23)

which is of order ∼M2
GUT for typical volumina.

We note that m3/2 < ms ,mσ which renders the supersymmetric starting point

for them a self-consistent approximation. Moreover, the KK scale here is given for a

single volume modulus (i.e. no anisotropies are possible) as

mKK =
1

R
∼ 1

V̂1/6
(3.24)

while he gravitino mass as well as the moduli masses scale at least ∼ 1/V̂ . Therefore,

the use of a 4d effective supergravity description is justified, although the separation

m3/2

mKK

∼ 1

V̂5/6
(3.25)

will typically be only of O(10−2) here.

– 22 –



〈t〉 〈s〉 m2
t m2

s m2
τ m2

σ

ex. 33.3 7.89 8.2 · 10−5 2.3 · 10−3 2.1 · 10−4 1.3 · 10−3

appr. 32.3 7.92 8.9 · 10−5 2.6 · 10−3 2.3 · 10−4 1.5 · 10−3

|FT | |FS| m2
3/2

ex. 1.3 · 10−3 3.3 · 10−4 8.3 · 10−4

appr. 1.4 · 10−3 2.1 · 10−4 1.2 · 10−3

Table 2. Numerical results for the VEVs in units of MP , mass spectrum and SUSY

breaking in units of M2
P , for the parameters of eq. (3.27). The exact results are obtained

from the full potential for C1 = −13.743, the approximate results are obtained from the

approximate potential eq. (3.5)-(3.7) for C1 = −13.926. In both cases, the field VEVs are

calculated by numerical minimization of the respective potential while the moduli masses

are the eigenvalues of the second derivative matrix times a factor from canonical field

normalization (see text).

We have succeeded now in determining the combined scalar potential of the volume

modulus T and the dilaton S in a fully analytical form to first order in a perturbation

expansion around the supersymmetric locus for S. The resulting full minimum is a

tunable dS minimum of the same form and type as found in the previous section for

T alone, and it is perturbatively stable under the inclusion of the dynamics of the

dilaton S.

3.4 Numerical example

Here, we will shortly compare our previous analytic results for combined T , S stabi-

lization to the exact results that one obtains by analyzing the full scalar potential.

For concreteness, we will again use the numerical example of [29]. In this example

(see eq. (2.36)), we had to fix the constants W0 and ξ̂ which are now given by the

flux constants C1 and C2 to 0-th order via

W0 = 2C1, ξ̂ = ξ

(
−2C1

C2

)3/2

. (3.26)

For comparison, we choose a set of parameters from section 4.1 of [29], i.e.

a =
2π

100
, A = 1, γ =

√
3

2
√

5
, ξ = 0.17133, C1 = −13.743, C2 = 1.4 . (3.27)

The choice for γ and ξ again corresponds to the quintic CP4
1,1,1,1,1. For this choice of

parameters we have W0 = −27.49, s0 = 9.9 and ξ̂ = 14.9.

We find the minimum in the t direction of the full potential to lie at t ' 30.

Hence, our expansion parameters are small:
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Figure 3. The approximate potential as a function of t and s. Parameter choice were

C1 = −13.926, C2 = 1.4.

ξ̂

V̂
' 0.08� 1,

Ae−at

|W0|
' 0.006� 1 . (3.28)

Figure 3 compares the shape of the full potential and the approximate potential,

while table 2 presents a summary of the numerical results. The moduli masses show

best agreement in the axionic sector.

This finishes our numerical analysis. Having included the dilaton manifestly, we

are now led to the inclusion of the remaining fields missing so far in the full analysis,

the complex structure moduli, to which we now turn.

4 Inclusion of complex structure moduli: general analysis

We will now go the final step and include an arbitrary number h2,1 of complex

structure moduli Ui = ui + iνi into our stabilization analysis. A commonly used

example of a Calabi-Yau 3-fold with one Kähler modulus are smooth hypersurfaces

in CP4, for instance the quintic CP4
1,1,1,1,1. In this case, we generically have O(100)

complex structure moduli so the Euler number of our Calabi-Yau 3-fold will be of

the order
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χ = 2(h1,1 − h2,1) ∼ O(−200) . (4.1)

The analysis of the previous sections led us to expect the leading α′ correction to

the Kähler potential to be ξ̂ = O(10). This needs the dilaton Re(S) = g−1
S to be at

weak coupling:

ξ̂ = − ζ(3)

4
√

2 (2π)3
χ (2 s)3/2 ' 0.5 g

−3/2
S ⇒ gS ' O(0.1) . (4.2)

Finding meta-stable minima of an effective scalar potential of O(100) complex scalar

fields is in general a challenging and cumbersome task. A further difficulty enters by

the fact that the explicit form of the Kähler potential and the superpotential

K = KK +Kgs +Kc.s., with KK = −2 ln

(
γ(T + T̄ )3/2 +

ξ̂(S)

2

)
,

Kgs = − ln
(
S + S̄

)
,

Kc.s. = − ln

(
−i
∫
CY3

Ω̄(Ūi) ∧ Ω(Ui)

)
, (4.3)

W = C1(Ui)− C2(Ui) · S + Ae−aT , (4.4)

of the complex structure sector are only known explicitly for some special Calabi-Yau

threefolds [44]. Note that we neglect the dependence of A on the complex structure

sector and assume it to be constant.

Similar to eq. (3.3), we can split the full scalar potential into four parts

V = V (T ) + V (T,S) + V (S) + V (U) (4.5)

where V (T ) contains the F-terms of T and the −3|W |2 term and V (S) and V (U) are

the F-terms of S and the Ui, respectively and V (T,S) mixes the F-terms of T and S.

The first three terms of (4.5) are given in (3.3) while V (U) is given by

V (U) = eKKUiŪjDUi
WDUj

W . (4.6)

From our analysis in section 3, we expect a meta-stable minimum of the effective

scalar potential which includes the complex structure moduli to have the following

properties: The complex structure moduli should be stabilized approximately in

a supersymmetric minimum like the dilaton since they enter the scalar potential

similarly. They are even further decoupled from the SUSY breaking Kähler modulus
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since there is no mixing term in the Kähler potential for the complex structure

moduli. We will show in section 4.1 that the deviation is in general a 1-st order

effect and hence the fields are stabilized supersymmetrically to 0-th order.

4.1 Deviation of s and ui from the SUSY minimum

In this section, we repeat the analysis of section 3.3 for the additional inclusion of the

complex structure moduli. The 1-st order terms of the scalar potential include terms

that are proportional to either e−at or ξ̂ so we write it as a perturbance δV (1) =

V (T ) + V (T,S) of the 0-th order scalar potential V (0) = V (S) + V (U). Expanding

this to first non-vanishing order in ~θ = (s, ui) around the supersymmetric minimum
~θ0 = (s0, u0i) gives

V = V (0) +
1

2
(~θ − ~θ0)︸ ︷︷ ︸

δ~θ

V
(0)
~θ0 ~θ0

(~θ − ~θ0) + δV (1) + δV
(1)
~θ0

(~θ − ~θ0) + . . . , (4.7)

where subscript ~θ0 denotes differentiating with respect to ~θ, evaluated at ~θ0. Notice,

that we again only expand around the real parts of the moduli fields since the su-

persymmetric minimum for all axionic VEVs equal to zero is an exact minimum of

the scalar potential. Demanding δ~θ to still be a minimum of V we get an expression

for δ~θ in terms of 0-th order terms that is similar to eq. (3.17):

Vδ~θ = 0 ⇔ δ~θ = −
(
V

(0)
~θ0 ~θ0

)−1

· δV (1)
~θ0

. (4.8)

We will now estimate the correction δ~θ for a general complex structure sector to be

of the order ξ̂/V̂ multiplied with terms depending onKc.s., W0 and derivatives of these

expressions with respect to s and ui. First, let us note that the matrix V
(0)
~θ0 ~θ0

has to be

positive definite. It is not sufficient to demand the weaker condition of Breitenlohner-

Freedman vacuum stability [45] since we are spontaneously breaking supersymmetry

in the T direction to obtain a de Sitter vacuum. Hence the feature of AdS space that

keeps a tachyon from exponentially rolling down a negative definite V
(0)
~θ0 ~θ0

is absent

in our case. To analyze the scaling of V
(0)
~θ0 ~θ0

with respect to our expansion parameter

ξ̂/V̂ only the overall factor eK is relevant since there is otherwise no t dependence in

V (0). Hence

V
(0)
~θ0 ~θ0
∼ V̂−2 . (4.9)

To analyze the scaling of δV
(1)
~θ0

with respect to ξ̂/V̂ , we have to build the deriva-

tives of V (T ) and V (T,S) with respect to s and ui respectively and evaluate at the

supersymmetric minimum. Note that it is not a priori clear that since V (T,S) scales
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with ξ̂/V̂3 this also applies to the derivative of VTS with respect to ~θ. For the deriva-

tives of V (T ), we can replace the term proportional to e−at by an expression in ξ̂/V̂
using the t minimum condition eq. (2.18) after differentiation. Furthermore, we use

V (T ) ' 0 at the minimum of t, i.e. de Sitter, and at ' 5/2 to obtain

V (T )
s =

3

16 s2
eKc.s.(3W0 + 2s(W0)s)W0

ξ̂

V̂3
,

V (T )
ui

=
3

8 s
eKc.s.(W0)uiW0

ξ̂

V̂3
. (4.10)

To calculate the derivatives of V (T,S), note that V (T,S) in eq. (3.6) can be brought

into the form

V (T,S) = −eKc.s.DSW0

(
(DSW0 s− 3W0) ξ̂

2V̂3
+

2Ae−at

V̂2

)
∼ ξ̂2

V̂4
, (4.11)

by using the identities for the 0-th order covariant derivative and the superpotential

DSW0 = −C1 + C2s

2 s
,

W0 = C1 − C2s , (4.12)

to replace the parameters C1 and C2 in eq. (3.6). Differentiating with respect to ~θ

and afterwards setting DSW0 = 0 and replacing terms proportional to e−at using

eq. (2.18), only the following term survives:

V
(T,S)
~θ0

=
33

20
eKc.s.W0(DSW0)~θ0

ξ̂

V̂3
. (4.13)

After calculating the derivatives (DSW0)s and (DSW0)ui we finally obtain

δV (1)
s0

=
3W0

80 s2
eKc.s. (37W0 − 12s (W0)s)

ξ̂

V̂3
,

δV (1)
ui0

=
3W0

20 s
eKc.s. (11s (W0)S ui − 3 (W0)ui)

ξ̂

V̂3
. (4.14)

We conclude that δV
(1)
~θ0

scales as a product of W0 and an expression of derivatives

of W0. Both terms scale linearly in the flux quanta of G(3). We also expect V
(0)
~θ0 ~θ0

to scale quadratically in the flux quanta of G(3), due to differentiating twice with

respect to ~θ. So finally going back to eq. (4.8) we indeed obtain
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δ~θi ∼
ξ̂

V̂
(4.15)

to be a 1-st order perturbation of the supersymmetric minimum ~θ0. The scaling of

δ~θ described in eq. (4.15) induces the scaling of the covariant derivatives in ~θ

DiW ' (DiW0)~θ0 · δ~θ ∼
ξ̂

V̂
for i = s, u1, . . . , uh2,1 , (4.16)

since DiW = 0 at 0-th order and all components of δ~θ scale with ξ̂/V̂ . For the Fi
terms, this implies a scaling ∝ ξ̂/V̂2.

Note that our analysis does not take into account a possible dependence of δ~θ

on h2,1. This implies the potential caveat that a perturbative expansion of the shift

from the supersymmetric minimum in ξ̂/V̂ might not be consistent for large h2,1, as

we will now discuss. The parts of the scalar potential V (T ) and V (T,S) depend on

U1, . . . , Uh2,1 via the flux superpotential W0. Hence, when we calculate the deviation

of the 0-th order supersymmetric VEV of the dilaton or a complex structure modulus

along the lines of section 3.3 to 1-st order we might expect the deviation to depend

on the number of fields that are supersymmetrically stabilized. In the worst case,

one could expect the deviation to grow with the number of fields included such that

the 1-st order deviation would eventually become of the same order as the 0-th order

VEV which would make our perturbative expansion valid only up to certain number

of fields included. This is what one could expect naively, since a growing number of

fields could ’pull away’ the supersymmetrically stabilized fields from their VEVs via

δV (1) the stronger the more fields are included.

However, we will give here a short argument why we expect no such deleterious

dependence of the shifts δ~θ on h2,1 to arise. Upon inspection of eq. 4.8 concerning

the ui = ReUi we see that we can approximate the mass matrix V
(0)
~θ0~θ0

entering there

by two extreme cases within which we will typically find realistic examples.

Consider first the non-generic case, where V
(0)
~θ0~θ0
∼ 〈µ2〉diag(O(1), . . . ,O(1)) is

roughly diagonal, where µ denotes the common mass scale assumed for this non-

generic case. Now we note that δV
(1)
~θ0
∼ |(W0)~θ0| and from the 3-cycle decomposition

of the CY threefold we have

W0 =
1

2π

∫
CY3

G(3) ∧ Ω ∼
h2,1∑
i=1

(∫
Ai

G(3)

∫
Bi

Ω +

∫
Bi

G(3)

∫
Ai

Ω

)

=
h2,1∑
i=1

(
Ni Π

i(Uj) + M i Ui
)
. (4.17)

Here the Πi(Uj) denote the periods of the CY, the complex structure coordinates

Poincare dual to the Ua. At a generic point in the interior of moduli space of a
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generic CY we expect the periods, in being the dual complex structures, to have the

same sizes as the Ui, and thus δV
(1)
~θ0
∼ |(W0)~θ0| will be roughly constant in h2,1. For

our first case of a roughly diagonal mass matrix this implies that the shifts δ~θ are

roughly constant in h2,1.

Now consider the 2nd generic case of a non-diagonal mass matrix which we ap-

proximate by V
(0)
~θ0~θ0

∼ 〈µ2〉O(1) ∀i, j = 1 . . . h2,1. In this case, each row on the LHS

of eq. (4.18), which is eq. (4.8) before inversion, contains a sum over all δ~θi with

roughly equally sized coefficients.

V
(0)
~θ0 ~θ0
· δ~θ = −δV (1)

~θ0
(4.18)

Now as V
(0)
~θ0~θ0

has roughly equal sized entries everywhere, eq. (4.18) should have a

solution

δ~θ ∼
〈

1

µ2

〉
1

h2,1
(4.19)

for the shifts of the complex structure moduli, where µ denotes the mass scale of

the eigenvalues of a mass matrix with roughly equal entries everywhere. As a given

tree-level mass matrix V
(0)
~θ0~θ0

for a given model will in general fall in between these

two extreme cases, we expect no positive power of h2,1 to appear in the shifts δ~θ.

We will supplement this line of thinking by an explicit example based on T 6. This

is presented in section 5, and we will show there that, in fact, the dependence is

harmless as there we will have δs ∼ const., and δ~u ∼ 1/h2,1.

4.2 Backreaction on the Kähler modulus

We will now derive an expression for the 1-st order shift in δt of the Kähler modulus

due to 2-nd order terms in the scalar potential. δt will then be used to calculate the

perturbance of the mass m2
t ' KT T̄ · V (T )

tt due to these 2-nd order terms.

Splitting eq. (4.5) into 1-st order V (T ) and 2-nd order δV (2) = V (T,S) +V (S) +V (U)

terms we can perform an expansion in δt along the lines of eq. (3.16)-(3.17) in δt and

obtain

δt = −(δV (2))t

V
(T )
tt

. (4.20)

The scaling of V (S) and V (U) is (ξ̂/V̂)2 from the |DiW |2 term, times an 1/V̂2 from

the overall factor eK . Evaluating V (T,S) to 2-nd order we can make use of eq. (4.11)

in only keeping terms linear in DSW0. So we get

δV (2) ∼ ξ̂2

V̂4
. (4.21)
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which additionally depends quadratically on the flux quanta. Effectively, all t de-

pendence of δV (2) is captured in an overall factor 1/V̂4 so that differentiating with

respect to t will just give an overall factor ∝ −1/t. The expression for V
(T )
tt was cal-

culated in eq. (3.11). It scales quadratically in the flux quanta since it is proportional

to W 2
0 . Inserting into eq. (4.20), we obtain

δt

t
=
ξ̂∆

V̂
, (4.22)

where ∆ is a function which is O(1) in the fluxes, whose overall sign and dependence

on h2,1 and hence the smallness of δt/t is in general unknown.

We can expand the perturbed mass m̃2
t

m̃2
t = m2

t + (∂tm
2
t ) δt+

1

2
(∂2
tm

2
t ) δt

2 + . . .

=
5W 2

0

4s V̂2
· ξ̂
V̂
eKc.s.

1− 31

2

ξ̂∆

V̂
+O

(
ξ̂∆

V̂

)2
 . (4.23)

So if ∆ is negative it cannot cause a tachyonic direction in t. However, if ∆ is

positive, only values of ∆ that are smaller than roughly O(10) can be allowed to

keep the spectrum tachyon free. Due to its constant scaling in the fluxes we typically

expect ∆ = O(1).

Let us pause here again to discuss a possible dependence of the expansion on

h2,1. Once it is shown that the dilaton and complex structure moduli are stabilized

supersymmetrically with a 1-st order deviation one expects this to induce a 2-nd

order term in the potential. This is due to the quadratic dependence of V (S) and

V (U) on the respective F-terms and the structure of V (T,S) which is a 1-st order term

times FS. Since V (T ) is a 1-st order term we expect an effective 1-st order correction

on the stabilization of t. A correction of the VEV of t induces a correction in m2
t

which could in the worst-case create a tachyonic direction in t.

Similar to the situation discussed above for the deviation of the dilaton and the

complex structure moduli from the supersymmetric minimum, there is the danger

that the correction to m2
t will be negative and scale with positive powers of h2,1.

Then, a non-tachyonic t direction would only be possible up to a certain upper

bound on h2,1. Note, that in case the correction to m2
t is positive, a scaling with

h2,1 would even increase m2
t and make this direction more stable in the end. We will

investigate the second order effect on the stabilization of t, i.e. the backreaction on

the Kähler modulus in section 4.2.

At this point, we have succeeded now in determining the combined scalar poten-

tial of the volume modulus T ,the dilaton S, and an arbitrary number h2,1 of complex
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structure moduli Ui in a fully analytical form to first order in a perturbation expan-

sion around the supersymmetric locus for the S, Ui. The resulting full minimum is a

tunable dS minimum of the same form and type as found in the previous section for T

or T and S, and it is perturbatively stable under the inclusion of the dynamics of the

dilaton S and all Ui (with certain caveats, as there may be non-generic dependence

on h2,1 in the coefficients of the perturbation expansion).

5 Inclusion of complex structure moduli: concrete toy ex-

ample

We will now work out the dependence of the 1-st order deviation from the super-

symmetric minimum and the 2-nd order Kähler modulus backreaction on h2,1 for a

concrete choice of the Kähler potential and superpotential for the complex structure

sector. Our guiding example will be the complex structure of a (possible orbifolded)

T 6 orientifold compactification.

We will show that here the 1-st order shifts from the supersymmetric minimum are

actually either independent of h2,1 or even decrease with negative powers of h2,1 for

our specific choice of Kc.s. and W0. Furthermore, we will show that the backreaction

on the Kähler modulus will not introduce a tachyon. This means that our construc-

tion: a Kähler modulus stabilized by the interplay of the leading α′ correction and

non-perturbative effects together with approximately supersymmetrically flux stabi-

lized dilaton and complex structure moduli can contain meta-stable de Sitter vacua

for an arbitrary large value of h2,1 in this toy model. We will show this by explicitly

calculating the minima of the scalar potential for the Kähler modulus, the dilaton

and h2,1 complex structure moduli.

Our guidance from the example of T 6 gives us an ansatz for complex structure

sector

Kc.s. = − ln

(
−i
∫
CY3

Ω̄ ∧ Ω

)
= −

h2,1∑
i=1

ln
(
Ui + Ūi

)
, (5.1)

W0 = c1 +
h2,1∑
i=1

d1iUi − (c2 +
h2,1∑
i=1

d2iUi) · S , (5.2)

with the flux constants ci, dij ∈ R. The structure above has been found for the var-

ious orientifolded orbifolds of T 6 discussed in [40]. The toroidal orbifold-orientifold

are orbifold limits of non-trivial CY threefolds, yet at the orbifold point they pre-

serve the simple structure of Kahler potential of the untwisted complex structure
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moduli inherited from T 6, which enables us to do explicit calculations. Explicating

the arguments of the previous chapter on a general CY threefold compactification

requires knowledge of the periods of the threefold, which in general is not available.

5.1 The supersymmetric minimum for the dilaton and the complex struc-

ture moduli

We now want to calculate the position of the supersymmetric VEVs of the dilaton

and complex structure moduli which corresponds to their 0-th order VEV when the

Kähler modulus is included in the stabilization. We have the DiW = Wi + KiW

that follow from eq.s (5.1), (5.2):

DSW = −c1 +
∑

i d1iUi + (c2 +
∑

i d2iUi) S̄

S + S̄
,

DUi
W = −

c1 +
∑

j 6=i d1jUj − d1iŪi + (c2 +
∑

j 6=i d2jUj − d2iŪi)S

Ui + Ūi
. (5.3)

To obtain the supersymmetric minima we need to solve

Re(DSW ) = Re(DUi
W ) = 0 , (5.4)

Im(DSW ) = Im(DUi
W ) = 0 . (5.5)

We see that due to ci ∈ R setting νi ≡ Im(Ui) and σ ≡ Im(S) to zero will always be

a solution of the eq.s (5.5).

5.1.1 Solving for real parts

We now have to solve the equations

−c1 +
∑

i d1iui + (c2 +
∑

i d2iui) s

2 s
= 0 ,

−
c1 +

∑
j 6=i d1juj − d1iui − (c2 +

∑
j 6=i d2juj − d2iui) s

2ui
= 0 . (5.6)

In general, an analytic solution of these h2,1 + 1 non-linear equations is difficult

to obtain. However, if we restrict the flux parameters to d1i = d2i ≡ di the h2,1

equations Re(DUi
W ) = 0 obtain a symmetric structure in diui. The solution will

always respect the condition

d1u1 = d2u2 = · · · = dh2,1uh2,1 ≡ du . (5.7)
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Hence, the h2,1 equations Re(DUi
W ) = 0 are all equivalent and effectively only two

equations remain:

−c1 + h2,1 du+ (c2 + h2,1 du) s

2 s
= 0 ,

−c1 + (h2,1 − 2) du− (c2 + (h2,1 − 2) du) s

2ui
= 0 . (5.8)

Now, finding solutions for s and du as functions of c1, c2 and h2,1 reduces to solving a

quadratic equation. The detailed form of these expressions is not instructive for our

analysis. If instead we solve for the flux constants c1 and c2 as a function of s, du

and h2,1

c1 = −(h2,1 − 1 + s) du , (5.9)

c2 = −1− s+ h2,1s

s
du , (5.10)

and insert this result into eq. (5.2) we find

W0 = 2 du (1− s) . (5.11)

This now tells us how to explicitly construct supersymmetric minima for the fields

s and ui that fullfill our sufficient condition eq. (2.20) for de Sitter vacua: We choose

W0 and ξ̂ (and hence s) so that eq. (2.20) is fullfilled. Then eq. (5.11) fixes the value

of du and eq.s (5.9) and eq. (5.10) determine c1 and c2. For every complex structure

modulus, only the product diui is fixed and the VEVs of the ui can be chosen by

adjusting the parameters di. Note that for s = 1 the superpotential eq. (5.11)

vanishes. We are not interested in this peculiar VEV of the dilaton since we demand

small string coupling, i.e. s ' O(10). So from now on we will always assume s > 1.

5.1.2 Solving for imaginary parts

We now solve the eq.s (5.5) for a more general choice of νi 6= 0. However, we still

restrict to σ = 0 so the real and imaginary parts of the complex structure moduli

fields decouple:

Im(DSW ) = −
∑

i d1iνi + (
∑

i d2iνi) s

2s
= 0 ,

Im(DUi
W ) = −

∑
i d1iνi − (

∑
i d2iνi) s

2ui
= 0 . (5.12)
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In this case the h2,1 equations Im(DUi
W ) = 0 are manifestly the same other than in

the case Re(DUi
W ) = 0 where those terms were just highly symmetric. Clearly the

two equations are solved by

∑
i

d1iνi =
∑
i

d2iνi = 0 . (5.13)

These two equations leave h2,1 − 2 of the νi undetermined and in the special case

d1i = d2i that was considered in the previous subsection this degeneracy is even

increased to h2,1− 1. This corresponds to h2,1− 1 flat axionic directions in the scalar

potential so we should observe exactly this number of massless axions in our following

analysis.

5.2 Approximating the scalar potential V (T, S, Ui) in the large volume

limit

In the following, we restrict Kc.s. and W0 to be of the form that we specified in

eq. (5.1) and eq. (5.2). Then, the parts V (T ), V (T,S) and V (S) are obtained from

eq. (3.5)-(3.7) by the replacements

C1 −→ c1 +
∑
i

d1iUi ,

C2 −→ c2 +
∑
i

d2iUi ,

eKK+Kgs −→ eKK+Kgs+Kc.s. . (5.14)

With these replacements calculating V (T ), V (T,S) and V (S) in dependence of the real

field components of T , S and Ui is straightforward. The only complication arises

from the fact that C1 and C2 are complex now in contrast to section 3 where they

were assumed to be real.

The Kähler metric of the complex structure sector is diagonal and hence is the

inverse

KUiŪj = diag
(
(Ui + Ūi)

2
)
. (5.15)

With DUi
W already calculated in eq. (5.3) we can write down the scalar potential

for the complex structure sector:
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V (U) =eK
∑
i

[c1 +
∑
j 6=i

d1juj − d1iui − (c2 +
∑
j 6=i

d2juj − d2iui) s+ (
∑
j

d2jνj)σ

]2

+

[∑
j

d1jνj − (
∑
j

d2jνj) s− (c2 +
∑
j 6=i

d2juj − d2iui)σ

]2
 . (5.16)

5.3 Moduli masses

We now want to find extrema of the scalar potential V and check if the second

derivative Vij is a positive definite matrix. This is the case if all eigenvalues of

Vij, i.e. the moduli masses are positive. We will calculate analytic expressions for

the moduli masses, show that they are always positive for the real parts and never

negative for the imaginary parts (axions) of the moduli fields in this section. Thus

we can exclude tachyonic directions in the scalar potential.

At first, we find that setting all imaginary parts of the moduli to zero

τ = σ = νi = 0 (5.17)

is a solution of

Vτ = Vσ = Vνi = 0 . (5.18)

This is the same axionic behavior that we found in section 3 for τ and σ. We again

find that the components of Vij that mix real and imaginary components vanish for

this solution, i.e.

Vij =



Vtt Vts Vtuj−2
0 0 0

Vst Vss Vsuj−2
0 0 0

Vui−2t Vui−2s Vui−2uj−2
0 0 0

0 0 0 Vττ Vτσ Vτνj−2

0 0 0 Vστ Vσσ Vσνj−2

0 0 0 Vνi−2τ Vνi−2σ Vνi−2νj−2


. (5.19)

In our approximation V̂ � ξ̂, the real components s and ui are stationary points

to 0-th order of V (U) + V (S) while t is a stationary point of the first order term V (T )

which was analyzed in section 2. Solving

Vs = Vui = 0 (5.20)
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for s and ui is equivalent to solving eq. (5.4) which we already did in section 5.1.1.

We had found a solution by setting the flux constants d1i = d2i = di so that the

minima fullfilled condition eq. (5.7), i.e. the product diui = du for all ui. We can

write the scalar potential manifestly as a function of diui if we write the exponential

of the Kähler potential

eKc.s. =
1∏
i 2ui

=

∏
i di∏

i 2diui
≡ D∏

i 2diui
(5.21)

and all other terms in V already appear manifestly as functions of diui. This simplifies

the evaluation of the (2h2,1 + 4) × (2h2,1 + 4) matrix Vij at the stationary points

diui = du. After building the second derivative of V with respect to at least one

diui we have to set the diui = du. Thus, all entries of Vij will be mostly equal for

differentiating with respect to different ui, up to proportionality to di, dj or didj at

the stationary point. The same story holds for the axions which are set to diνi = 0

after differentiating. For mixed ui and νi components we get

Vtui = di

(
d2V

dt d(diui)

) ∣∣∣∣
diui=du

≡ diVt du ,

Vsui = diVs du ,

Vτνi = di

(
d2V

dτ d(diνi)

) ∣∣∣∣
diνi=0

≡ diVτ dν ,

Vσνi = diVσ dν . (5.22)

For the pure νi components of Vij we get

Vνiνj = didj

(
d2V

d(diνi) d(djνj)

) ∣∣∣∣
diνi=djνj=0

≡ didjVdν dν (5.23)

which basically also holds for the pure ui components with the additional subtlety

that the diagonal components i = j differ from the off-diagonals i 6= j which we

choose to parameterize in the following way:

Vuiuj = didj

(
d2V

d(diui) d(djuj)

) ∣∣∣∣
diui=djuj=du

≡

{
d2
i (Vdu du + Ṽdu du) i = j

didjVdu du i 6= j
. (5.24)

The different form of Vνiνj and Vuiuj can be anticipated from eq. (5.16). V (U) is a

function of the form
∑

k gk(
∑

l s
k
l xl) with skl = 1 for the xl representing the axionic

fields νi and with
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skl =

{
−1 l = k

1 l 6= k
(5.25)

for the xl representing the ui. The slightly more complicated structure of V (U) with

respect to the ui is the reason for the two different results in eq. (5.24).

Thus, the calculation of Vij effectively reduces to the calculation of two matrices,

one for the real parts and one for the imaginary parts of the moduli fields. The

matrix for the real parts is of the following type:


Vtt Vts d1Vt du . . . dh2,1Vt du
Vst Vss d1Vs du . . . dh2,1Vs du

d1Vt du d1Vs du d2
1(Vdu du + Ṽdu du) . . . d1dh2,1Vdu du

...
...

...
. . .

...

dh2,1Vt du dh2,1Vs du dh2,1d1Vdu du . . . d2
h2,1(Vdu du + Ṽdu du)

 . (5.26)

For the imaginary parts, we have the same structure except the Ṽdν dν term equals

zero.

We now want to obtain the eigenvalues of these two matrices to 0-th order. All

terms involving a t or τ derivative are proportional to either e−at or ξ̂ and are therefore

neglected. The expressions for the eigenvalues are in general rather cumbersome so we

simplify again by setting di ≡ d for all i. According to section 5.1.1, this corresponds

to demanding the VEVs of the ui to have the same values. The eigenvalues are then

given by

m2
1,2 =

1

2

[
Vss + (h2,1Vuu + Ṽuu)±

(
(Vss − (h2,1Vuu + Ṽuu))

2 + 4h2,1Vsu

)1/2
]
,

(5.27)

m2
i =Ṽuu =

d2(s− 1)2

(2u)h2,1 2s γ2t3
, for i = 3, . . . , h2,1 + 1 . (5.28)

Note, that we consider the masses of the moduli before canonical normalization.

However, the squared masses of the canonically normalized fields will have the same

overall sign as those of the unnormalized fields due to positive definiteness of the

Kähler metric KIJ .

It is obvious that the mass m2
i in eq. (5.28) is manifestly positive whereas it is

more difficult to see this analytically for m2
1,2 since it is a rather complicated function

of s, u and h2,1. For m2
1 we find that it is a sum of two positive terms but for m2

2

positivity is not obvious. However, for typical VEVs s and u we can plot m2
2 as a

function of h2,1 and show that it is indeed positive, see figure 4. This is of course not
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a strict argument that m2
1,2 is never negative. For our analysis though, it is sufficient

to show that for every h2,1 we can choose moduli VEVs which are consistent with

our framework, as for instance weak string coupling, which yield positive m2
1,2.

0 20 40 60 80

0

1. ´ 10-6

2. ´ 10-6

3. ´ 10-6

4. ´ 10-6

h2,1

m2
2 u = 1�4

u = 1�3

u = 1�2

Figure 4. (2u)h
2,1 ·m2

2 as a function of h2,1 for s = 10 and three different VEVs of the

complex structure moduli.

In the axionic sector we obtain the eigenvalues

m2
1 =Vσσ =

d2u2[h2,1 + 1 + 2(h2,1(h2,1 − 1)− 1)s+ (h2,1(h2,1 − 1)2 + 1)s2]

(2u)h2,1 8s3 γ2t3
, (5.29)

m2
2 =h2,1Vνν =

d2h2,1[h2,1(s− 1)2 + (s+ 1)2]

(2u)h2,1 8s γ2t3
, (5.30)

m2
i =0, for i = 3, . . . , h2,1 + 1 . (5.31)

The axion masses simplify significantly due to Ṽνν = Vσν = 0 at the supersym-

metric minimum. Indeed, we find h2,1 − 1 massless axions as we had anticipated at

the end of section 5.1.2. The positivity of m2
1 and m2

2 is obvious from eq. (5.29) and

eq. (5.30).

In [46] it was shown that for every unfixed axionic direction one gets a tachyonic

direction in the real components of the moduli fields if all moduli are stabilized su-

persymmetrically. Note that this is not in contradiction with the fact that the masses

eq. (5.27) and eq. (5.28) are positive which we have seen above. The crucial difference
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to the setting in [46] is that we are not stabilizing all fields supersymmetrically, i.e.

supersymmetry is spontaneously broken in the T direction and so the argument of

[46] does not apply in our case.

The presence of massless axions per se does not constitute a serious failure of

the moduli stabilization procedure, since axions couple only derivatively to all other

fields at the perturbative level, and they are expected to receive a potential from

non-perturbative gauge theory effects at some lower scale. A more general choice of

fluxes, and/or having a CY threefold more general than T 6 will in general lift all of

these axions, too.

5.4 Deviation of s and ui from the SUSY minimum

In this section, we apply the analysis of section 4.1 to our explicit T 6-based toy

example for the complex structure sector eq.s (5.1),(5.2). Restricting ourselves again

ourselves again to the case di = d, we expand around the supersymmetric 0-th order

minimum ~θ0 = (s0, u0) for s and ui. Then δ~θ is given by eq. (4.8). The matrix V
(0)
~θ0 ~θ0

is written down in eq. (5.26) if one eliminates the row and column that includes

the derivatives with respect to t. Performing the matrix operations of eq. (4.8) one

obtains

δ~θ = (δs, δu, . . . , δu) . (5.32)

With δV
(1)
~θ0

= (δV
(1)
s0 , δV

(1)
u0 , . . . , δV

(1)
u0 ) the components of δ~θ are given by

δs =
h2,1δV

(1)
u0 Vsu − δV (1)

s0 (h2,1Vuu + Ṽuu)

Vss(h2,1Vuu + Ṽuu)− h2,1V 2
su

, (5.33)

δu =
δV

(1)
s0 Vsu − δV

(1)
u0 Vss

Vss(h2,1Vuu + Ṽuu)− h2,1V 2
su

, (5.34)

so essentially there is a non-trivial mixing between δV
(1)
s0 and δV

(1)
u0 .

Now we are at the point where we can investigate the h2,1 dependence of δ~θ.

Inserting all necessary second derivatives of V in eq. (5.33) and eq. (5.34) and re-

placing the constants c1 and c2 according to the supersymmetric minimum conditions

eq. (5.9) and eq. (5.10) we get
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δs

s0

=− 3(s0 − 1)2(47s2
0 − 40s0 + 37)

80(s2
0 + 1)2

· ξ̂
V̂

+O
(

1

h2,1

)
, (5.35)

δu

u0

=− 3(s0 − 1)2(47s2
0 − 40s0 + 37)

80(s2
0 + 1)2

· ξ̂

h2,1V̂
+O

(
1

(h2,1)2

)
. (5.36)

Also terms proportional to e−at have been replaced using eq. (2.18). We see that

δs has a constant asymptotic behavior in h2,1 whereas δu decreases with 1/h2,1.

Most importantly, neither δs nor δu grow with positive powers of h2,1 This is a very

crucial point in our analysis since as mentioned above h2,1 = O(100) often appears

in common realistic examples of the Calabi-Yau space like the quintic.

Of course, the specified Kähler potential and superpotential of eq. (5.1) and

eq. (5.2) strictly speaking only hold for toroidal compact spaces. However, this

semi-realistic construction still gives us an example for a possible h2,1 dependence of

the deviations from the supersymmetric minimum.

5.5 Backreaction on the Kähler modulus

We now apply the analysis of section 4.2 to our example eq. (5.1) and eq. (5.2). We

calculate δV (2) = V (T,S) + V (S) + V (U) by expanding to first non-vanishing order in

s0+δs and u0+δu and replacing c1 and c2 by the supersymmetric minimum condition

eq. (5.9) and eq. (5.10). This yields

V (T,S) ' −33d(2u0)−h
2,1
W0[(s0 − 1)u0 δs+ h2,1s0(s0 + 1) δu]

40s2
0V̂2

· ξ̂
V̂
,

V (S) ' d2(2u0)−h
2,1

[(s0 − 1)u0 δs+ h2,1s0(s0 + 1) δu]2

2s3
0V̂2

,

V (U) ' d2h2,1(2u0)−h
2,1

[(s0 + 1)u0 δs− (h2,1 − 2)(s0 − 1)s0 δu]2

2s3
0V̂2

. (5.37)

Knowing the leading order behavior of δs and δu in h2,1 from eq. (5.35) and

eq. (5.36), we hence expect V (T,S) and V (S) to grow maximally O(1) and V (U) to

grow maximally O(h2,1). The dependence of δs equals the dependence of ∆ on h2,1

since m2
t ∝ W 2

0 and W0 is independent of h2,1, see eq. (5.11).

If we insert the values of δs and δu calculated in the previous section, the O(h2,1)

contribution to V (U) cancels to zero. Note, that we cannot directly insert equa-

tions (5.35) and (5.36) but have to take the expressions where e−at is not replaced

yet. The replacement has to be performed after differentiation of δV (2) with respect
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to t since those two operations do not commute. Hence, we are left with an O(1)

expression for ∆ which interestingly does not depend on d and u, i.e. ∆ = ∆(s, h2,1).

∆ is a rational function where the numerator and denominator are both polynomials

of degree four in s and degree two in h2,1.
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Figure 5. ∆ for different values of s.

We plot ∆ for typical values of s as a function of h2,1 in figure 5. By taking the

limit s, h2,1 →∞, one can show ∆ < 0.6. Furthermore, for s & 5, ∆ is negative with

|∆| < 1.2. Hence, we conclude that ∆ is always in a region where according to our

analysis at the end of section 4.2, it does not induce a tachyonic direction in t.

We conclude by noting that our exemplary construction eq. (5.1) and eq. (5.2)

has passed both potential caveats: it maintains small first-order shifts of the super-

symmetrically stabilized moduli and limits the backreaction on the Kähler modulus

VEV.

6 Conclusions

‘Kähler uplifting’ has the benefit of generating meta-stable dS vacua in terms of just

background 3-form fluxes, D7-branes and the leading perturbative O(α′3)-correction,

which data are completely encoded in terms of the underlying F-theory compactifi-

cation on a fluxed Calabi-Yau fourfold. In addition, supersymmetry is spontaneously
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broken (typically ∼MGUT here, which is below the KK scale) by an F-term generated

in the volume moduli sector. No extra anti-branes, D-terms or F-term generating

matter fields are needed or involved.

Here, we have developed a rigorous analytical understanding of ‘Kähler uplifting’

driven by the leading O(α′3) correction to the Kähler potential of the volume moduli.

Our derivation was carried out in the presence of an arbitrary number h2,1 of complex

structure moduli. A large value of 3-cycles h2,1 = O(100) is a prerequisite to use the

associated 3-form fluxes for the required fine-tuning of the cosmological constant.

We have derived the existence of meta-stable dS vacua in so-called ‘swiss cheese’

type Calabi-Yau compactifications of negative Euler characteristic with an arbitrary

number h1,1 of Kähler moduli. The interplay of perturbative and non-perturbative

effects in generating this dS minimum implies for one-parameter models with h1,1 = 1

that here a structure of two terms with alternating signs is sufficient to approximate

the volume modulus scalar potential and its tunable dS vacuum. This contrasts

with the ‘3-term structure’ generically necessary in purely perturbatively stabilized

situations [19, 22]. For h1,1 > 1 a ‘3-term structure’ reappears for the additional

h1,1 − 1 blow-up Kähler moduli of a ‘swiss cheese’ Calabi-Yau.

Exploiting this ‘2-term structure’ (or, alternatively, the ‘3-term structure’ for

h1,1 > 1), we have shown that we can express the existence of the meta-stable dS

vacuum for the volume modulus in terms of a sufficient condition on the microscopic

parameters. These are consisting of the fluxes, the D7-brane configuration, h1,1, and

the Euler number of the Calabi-Yau governing the perturbative O(α′3)-correction,

which are all in turn determined by the underlying F-theory compactification on an

elliptically fibred Calabi-Yau fourfold. Thus, the result amounts to a sufficient condi-

tion for the existence of meta-stable dS vacua in terms of purely F-theory geometric

and topological data which can be satisfied for a sizable subclass of all 4d N = 1

F-theory compactifications, instead of just single ‘lamp post’ models.

Our sufficient condition survives both explicit inclusion of dilaton stabilization by

fluxes as well as an arbitrary number of complex structure moduli. Supersymmetry

breaking happens predominantly in the volume modulus direction, and explicitly

determine the shift of the dilaton and all complex structure moduli away from their

flux-stabilized supersymmetric locus as suppressed by inverse powers of the volume

of the Calabi-Yau.

Finally, we have estimated the backreaction of the shifted dilaton and complex

structure onto the volume modulus. The ensuing shift of the stabilized volume is

generically found to be small and suppressed by inverse powers of the volume.

In conclusion, we have developed a sufficient condition for the existence of meta-

stable dS vacua in terms of, ultimately, purely F-theory data which can be satisfied

for the sizable class of fluxed ‘swiss cheese’ type Calabi-Yau compactifications with
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arbitrary h1,1 < h2,1.
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