

Navigating the MIR Market: Applications, Products, and Developments

Gary Spingarn

MIR Product Manager – gspingarn@hamamatsu.com

Index

- Why are infrared measurements important? (pt. 2)
- Common applications
- Detector technologies
- Light sources
- Developments from Hamamatsu

~3 µm to 20 µm for the purposes of this presentation

Molecular Energy States

https://micro.magnet.fsu.edu/primer/java/jablonski/jabintro/index.html

Molecular Vibration

Absorption Bands

Source: HITRAN database

Measurement Example

Optical absorption in action

Wavelength (μ m)

Methane Example

HAMAMATSU PHOTON IS OUR BUSINESS

Source: spectraplot.com

- When there is heat there is radiation
- Medical, industrial, and semiconductor spaces have critical dependence on process monitoring
- IR readings are a good choice for "cooler" substrates

http://www.sun.org/encyclopedia/black-body-radiation

Applications

11 © Hamamatsu Photonics K.K. and its affiliates All Rights Reserved. CONFIDENTIAL AND PROPRIETARY

Fourier Transform Infrared (FTIR)

<u>https://www.researchgate.net/figure/Schematic-diagram-of-FTIR_fig4_292788248</u>

Fourier Transform Infrared (FTIR)

• Different chemical structures yields different absorption characteristics

Non-Dispersive Infrared (NDIR)

HAMAMATSU PHOTON IS OUR BUSINESS

- No spectral data, but focuses on the concentration of one gas
- If you have a reference channel, ratio of voltages correlates to concentration
- PPM sensitivity possible

PHOTON IS OUR BUSINESS

Temperature Sensing

- Detectors sensitive in the MIR can be integrated for temperature measurements
- Emissivity of materials, differing characteristics for emitting thermal energy
- If someone has a fever, peak radiance is in the MIR

273 K = 32 F 311 K = 100 F

Pyrometer

- Monitor temperatures at a distance, monitor a process
- Process monitoring stops problems before they happen, overheating materials = defects.
- Proper optics and calibration involved

- Molecules have vibrational interactions with IR light, which are unique and have a spectral "fingerprint"
- Tight absorption bands allow high sensitivity measurements
- NDIR and FTIR can identify and quantify certain species
- Avoid potential sources of interference
- High accuracy temperature readings for "cooler" temperatures, critical for certain processes

- Complex space to navigate for detectors
- Developing market for light sources
- High demand for technical skills electronics, physics, and optics
- Associated with higher cost

Detector Technologies

PHOTON IS OUR BUSINESS

- Using a room temperature detector at 10X the cost of a drop in replacement
- Using too much cooling when plenty of power is available, higher cost paid
- Difficulties with noise, hindering sensitivity
- Improper readout design
- Unable to run at desired speeds/frequencies

HAMAMATSU

D* (Specific Detectivity) – sometimes also called sensitivity

•
$$\frac{\sqrt{Area*Bandwidth(f)}}{NEP}$$
 , $cm * \sqrt{Hz}/W$

- Compare detectors with different areas
- Differs with wavelength
- Speed, rise time
- Temperature dependence, Thermoelectric (TEC) cooling
- Linearity

 Like most compound semiconductor detectors, cooling can yield more desirable performance

Effects of Cooling

- Usually TEC element in can package but sometimes LN2 dewar
- Lower noise (higher D*) and increase in shunt resistance
- TEC is a fixed cost that can add hundreds per stage of cooling
- Price and complexity vs. performance

Sensitivity temperature characteristics (P13894-011MA/-211MA)

- Low cost
- Consistent sensitivity curve, independent of wavelength
- Versatile

- Although curve is consistent, D* is relatively low
- Cannot perform high frequency, rise time on the order of milliseconds

Principle of solid state solution

- Different materials yield different band gaps
- Design also has impact and may be proprietary

Semiconductor materials of focus

- Lead Selenium/Sulfide (PbS/PbSe)
- Mercury Cadmium Telluride (MCT)
- Indium Arsenide Antimonide (InAsSb)
- All with multiple possible vendors

https://electricalvoice.com/material-classification-based-energy-band-diagram/

- Low cost
- Good D* to about ~6 micron

- Not RoHS compliant
- Sensitive to temperature changes
- Extra noise makes high accuracy measurements difficult
- Limited response in the longer wavelengths

Source: Teledyne Judson

- High D* with immersion lens
- Industry standard for high accuracy FTIR
- High speed
- Detection out to 20+ micron with multi-TEC cooling

- Not RoHS compliant but exceptions due to lack of long wavelength options
- Unit to unit variability, variable spatial uniformity
- Managed by limiting operation in linearity curve, limiting dynamic range
- Uncooled detectors are expensive

- RoHS compliant
- High speed
- Low-cost uncooled detectors New option for temperature readings!
- Much more consistent
 manufacturing

- Marginally less sensitive, lower D*
- Cannot reach longer wavelengths 14 micron is the current limit

Setup Example

PHOTON IS OUR BUSINESS

Photovoltaic (No bias)

- Typically used for higher accuracy measurements
- Doesn't require bias on detector but requires amplifier for voltage output
- Sensitivity/shunt resistance and unit to unit consistency are significant

Photoconductive (Bias)

- Typically used for higher speed, high light power at impact
- · Bias on detector
- Leakage current leads to higher noise ratio

Thermopile	InAsSb			
 Cheap and versatile, mostly used for temperature measurements Flat sensitivity curve but relatively low performance versus solid state Slow by comparison (millisecond rise times) 	 RoHS compliant Uncooled detectors now available at lower cost Dual-channel is a great choice for NDIR gas analysis May have lower D* and currently capped at 14 micron response 			
МСТ	PbS/PbSe			
 High D* and main choice for applications that require 20+ micron detection 	 High D* at lower cost versus other solid state detectors 			
 Unit to unit variability, can cause issues in certain applications Uncooled detectors are expensive 	 Sensitivity changes with ambient temperature, can be contribute noise Limited response for longer wavelengths 			

Light Sources

30 © Hamamatsu Photonics K.K. and its affiliates All Rights Reserved. CONFIDENTIAL AND PROPRIETARY

Light Sources – Thermal Sources

 Incandescent and full IR lamps, utilizing blackbody light principle

Strengths

- Low cost
- Can withstand high current inputs, achieving higher output
- Broad output, can utilize filters

Challenges

- High power requirements
- Shorter lifetimes
- Extreme heat can create design difficulties

Source: Newport

© Hamamatsu Photonics K.K. and its affiliates All Rights Reserved. CONFIDENTIAL AND PROPRIETARY 32

Light Sources - LED

• Solid state material for light generation instead of detection

Strengths

- Low cost (though it's more than comparable thermal)
- Long lifetime
- Low power requirements, great for portable NDIR
- Peak emission wavelength (example 4.3 micron)

- Not suitable for multiple gases
- Low output power
- Typically suited for high frequency modulation and low duty cycle

Quantum cascade lasers

様式-LHJ-Q0068A

Hamamatsu Photonics K.K. and its affiliates All Rights Reserved. CONFIDENTIAL AND PROPRIETARY
 33

What is going on in the active core region? Multiple Quantum wells (MQWs)

- Much higher output power
- A laser, not a dispersive source
- DFB structure (single wavelength grating) provides tight linewidth that can achieve parts per trillion in gas analysis
- Also useful for observing isotopes and vibrational states

- Cost is very high versus alternatives, this is specialized technology
- Requires expertise and accessories to perform measurements
- 500+ mA injection current required

Quantum Cascade Laser (QCL)

Developments from Hamamatsu

© Hamamatsu Photonics K.K. and its affiliates All Rights Reserved. CONFIDENTIAL AND PROPRIETARY 37

- Cost has always been a problem for optical technology, price is commonly a barrier to larger markets
- MIR LEDs are not quite efficient although they are have low power consumption, higher output is typically needed
- InAsSb has a short cutoff, limiting applications especially involving organic molecules
- Using optical components requires high proficiency in electronics, user friendly modules can mitigate this problem

New Low Cost Option

- Proprietary design yields high performance at room temperature!
- Ceramic package (surface mount) and filters, less than half the cost of TO can!
- Units ready for CO2 and CH4/light hydrocarbons
- Ceramic package for LED also drives down cost
- Dual channel for reference method (1000x the speed and 10x the sensitivity)

High Flux LED

- Low output power has been a challenge in the past
 - Originally ~0.3 mW with QCW 50% duty cycle
 - Improved to 1 mW!
- Material structure innovations have led to a massive increase in output
- Still lower power consumption and long lifetimes if modulated
- Same form factor
- More power = more sensitivity and less stress on optics, calibration, electronics noise etc.

Type no.	Peak emission wavelength λp ^{*4}			Radiant flux ¢e ^{*4}	
	Min. (µm)	Typ. (µm)	Max. (µm)	Min. (mW)	Typ. (mW)
L15893-0330M	3.1	3.3	3.4	1.1	1.9
L15894-0390M	3.8	3.9	4.1	1.0	1.7
L15895-0430M	4.1	4.3	4.4	0.6	1.0

*4: IF=80 mA, QCW mode

© Hamamatsu Photonics K.K. and its affiliates All Rights Reserved. CONFIDENTIAL AND PROPRIETARY 41

Type II Superlattice InAsSb

- Proprietary layering scheme yields new characteristics
- High D* and sensitive out to 14 micron
- Currently available in LN2 dewar but TEC cooling coming soon
- Finally an alternative to MCT

Doc .No. K02-19016

HAMAMATSU PHOTON IS OUR BUSINES

Setup Example

PHOTON IS OUR BUSINESS

Customization, Module, and ASIC Capabilities

- A large share of our business is custom engineering
- Some modules already standardized
- ASIC to match your specific design
- Integration of light source, electronics and detector in a single package
- Changes such as:
 - Additional TEC stages
 - Window material
 - Amplifier specifications

InGaAs Humidity Sensor

2 Block diagram

Module Integration

PHOTON IS OUR

Design

Simulation

Testing

Evaluation

Join Us for 10 Weeks of FREE Photonics Webinars (17 Topics)

Week #	# Weekly Topics		Talk #1 Date	Talk #2 Date			
1	Introduction to Photodetectors		26-May-20	28-May-20			
2	Emerging Applications - LiDAR & Flow Cytometry	2	2-Jun-20	4-Jun-20			
3	Understanding Spectrometer	2	9-Jun-20	11-Jun-20			
1 Weeks Break							
4	Specialty Products – Introduction to Light Sources & X-Ray	2	23-Jun-20	25-Jun-20			
5	Introduction to Image Sensors	2	30-Jun-20	02-Jul-20			
1 Weeks Break							
6	Specialty Products – Laser Driven Light Sources	2	14-Jul-20	16-Jul-20			
7	Image Sensor Circuits and Scientific Camera	2	21-Jul-20	23-Jul-20			
8	Mid-Infrared (MIR) Technologies & Applications	2	28-Jul-20	30-Jul-20			
1 Weeks Break							
9	Photon Counting Detectors – SiPM and SPAD	1	11-Aug-20				
10	Using SNR Simulation to Select a Photodetector	1	18-Aug-20				

To register for other webinars or hear previous webinar recordings, please visit link below: <u>https://www.hamamatsu.com/us/en/news/event/2020/20200526220000.html</u>

www.hamamatsu.com

References

- <u>https://www.hamamatsu.com/resources/pdf/ssd/e06_handbook_compound_semico_nductor.pdf</u>
- https://www.hamamatsu.com/us/en/support/resources/technical-notes/index.html
- <u>https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Text</u> <u>book_Maps/Map%3A_Physical_Chemistry_(McQuarrie_and_Simon)/13%3A_Mole</u> <u>cular_Spectroscopy/13.05%3A_Vibrational_Overtones</u>
- <u>https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Text</u> <u>book_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Spectr</u> <u>oscopy/Vibrational_Spectroscopy/Infrared_Spectroscopy/Infrared%3A_Interpretatio</u> n
- Spectraplot.com
- <u>https://goldensteingroup.com/our-research/wavelength-modulation-spectroscopy/</u>
- <u>https://energyeducation.ca/encyclopedia/Band_gap</u>
- <u>http://www.teledynejudson.com/products/lead-selenide-detectors</u>
- <u>https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Text</u> <u>book_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Spectr</u> <u>oscopy/Vibrational_Spectroscopy/Infrared_Spectroscopy/How_an_FTIR_Spectrom</u> <u>eter_Operates</u>
- <u>https://www.newport.com/f/infrared-elements</u>
- <u>https://www.researchgate.net/figure/Schematic-diagram-of-FTIR_fig4_292788248</u>
- <u>https://orgchemboulder.com/Spectroscopy/irtutor/alkenesir.shtml</u>
- <u>https://electricalvoice.com/material-classification-based-energy-band-diagram/</u>
- https://micro.magnet.fsu.edu/primer/java/jablonski/jabintro/index.html
- <u>http://www.sun.org/encyclopedia/black-body-radiation</u>