Product Introduction

DFS Radar Pattern MX370073A / MX370073B

Vector Signal Generator MG3710A

DFS Radar Pattern MX370073A (to be discontinued in May 2019) DFS Radar Pattern MX370073B

Installing the DFS Radar Pattern MX370073A/MX370073B option in the Vector Signal Generator MG3710A supports output of FCC 06-96 (Released: June 30, 2006), FCC 13-22 (Released: February 20, 2013) and Japan MIC (Reference: TELEC-T403 (V12.1)) DFS test signals. Output of complex combinations of pulse, chirp and hopping signals required to support the DFS tests is made easy just by selecting combination files supplied with the MX370073A.

- ✓ The MX370073A and MX370073B support both FCC and Japan MIC (TELEC) Standards.
- ✓ One MG3710A supports pulse, chirp and hopping signals.
- ✓ External PC not required. Simply selecting prepared waveform pattern outputs various signals using MG3710A built-in Sequence function.
- ✓ The MX370073B supports 5.3 GHz band solid-state radar waveform patterns* under consideration for addition to Japan MIC Standard.

*:Waveform patterns created based on information published in November 2018 by Ministry of Internal Affairs and Communications (5 GHz band WLAN test group).

DFS Test Setup (Example)

One MG3710A supports pulse, chirp and hopping signals.
 PC not required.

Difference between MX370073A and MX370073B

✓: Supported

Model	Vector Signal Generator		Note
	MG3710A	MG3700A (discontinued)	
MX370073A (to be discontinued in May 2019)	✓	✓	
МХ370073В	✓		 Only for MG3710A Includes all waveform patterns offered by MX370073A Includes 5.3 GHz band solid-state radar waveform patterns* now under consideration for addition to Japan MIC Standard

Sequence Function and Combination File

Sequence Function

This standard function switches and outputs multiple waveform patterns continuously.

Standards-compliant test signals can be created by combining complex patterns of pulse, chirp, hopping, and null signal waveforms.

Clicking "Sequence Restart" on the right starts output of the DFS test signal according to the standards.

Combination File:

Users can output pulse, chirp and hopping signals for DFS tests easily just by selecting a combination file with this sequence information. Sequence function: [Mode] > (Page2) [F7: Sequence Mode]

5G1		1.000 000 000 00	GHz -14	4.00 dBm	RF		Sequence Restart
	Sequence Progress						Play Mode <u>Auto</u> Manual Repeat Mode
Index	Package Name	Pattern Name	Repeat	Frequency Offset	Level	_≜∥	Continuous Single
3	DFS_Pattern	Burst-3ms	35	U Hz	0.00 dB		
4	DFS_behhyou4	Freq_+2M	1	U Hz	0.00 dB	_	4
ບ 6	DES habbyout	Burst-Jms	24	0 Hz	0.00 dB	_	Pattern Trigger
7	DES Dettorn	Purot=3mo	6	0 Hz	0.00 dB	_	. accomingger
, 9	DES bobbyou4	Erog +1M	1	0.112	0.00 dB	_	
9	DES Pattern	Burst-3ms	12	0 Hz	0.00 dB		
10	DFS behhvou4	Freq -8M	1	0 Hz	0.00 dB		
11	DFS Pattern	Burst-3ms	13	0 Hz	0.00 dB		
12	DFS Pattern	Burst-100ms	97	0 Hz	0.00 dB		
1 ∩ ↓	DEC D-44	D	0		D DD JD		
ARB On	13 N	Power A: Of B: Of	Meter if	BER Stop 0.000EH 0	000 0 % /0		

Switches and outputs multiple waveform patterns continuously.

DFS Radar Pattern List (MX370073A / MX370073B)

DFS Radar Pattern List (MX370073A/MX370073B)

Simple output just by selecting combination file.

Supports 40 variable signal types - 20 times each for main test and retest. Selecting in order supports tests with random conditions

For FCC Standard

Supported software: MX370073A, MX370073B

Test N	No.	Package	Combination File Name	Note	File Size [MB]	
	Type 0	RadarType0	ShortPulse0	Fixed Pulse Radar Signals. 1 pattern.		
Short Pulse	T	De de Tour e 1	Test A: ShortPulse1A-01 ~ ShortPulse1A-23	Variable Pulse Radar Signals. 23 patterns each.		
	туре т	RadarType1	Test B: ShortPulse1B-01 ~ ShortPulse1B-15	Variable Pulse Radar Signals. 15 patterns each.		
Radar	Type 2	RadarType2	ShortPulse2-01 to ShortPulse2-40			
די די	Type 3	RadarType3	ShortPulse3-01 to ShortPulse3-40	40 patterns each.	791	
	Type 4	RadarType4	ShortPulse4-01 to ShortPulse4-40		(All MX370073B)	
Long Pulse Radar	Type 5	RadarType5	LongPulse-01 to LongPulse-40	Variable Charp Radar Signals. 40 patterns each.		
		RadarType6_20M	Hopping_20M-01 to Hopping_20M-40	Frequency Hopping Radar Signals. 40 patterns each. For 20 MHz/ch.		
Frequency Hopping Radar		RadarType6_40M	Hopping_40M-01 to Hopping_40M-40	Frequency Hopping Radar Signals. 40 patterns each. For 40 MHz/ch.		
	туре о	RadarType6_80M	Hopping_80M-01 to Hopping_80M-40	Frequency Hopping Radar Signals. 40 patterns each. For 80 MHz/ch.		
		RadarType6_160M*	Hopping_160M-01 to Hopping_160M-40	Frequency Hopping Radar Signals. 40 patterns each. For 160 MHz/ch.		

DFS Radar Pattern List (MX370073A/MX370073B)

- Simple output just by selecting combination file.
- Supports 40 variable signal types 20 times each for main test and retest. Selecting order supports tests with random conditions.

For Japan MIC Standard (Reference: TELEC-T403)

Supported software: MX370073A, MX370073B

Test (TELEC-	No. -T403)	Package	Combination File Name	Note	File Size [MB]	
Appended Table 1	Type 1 Type 2	DFS_behhyoudai1gou-1_2	behhyou_dai1gou-1 behhyou_dai1gou-2			
<u>Type 1</u> Type 2		DES babbyoudai2gou 1.2.2	behhyou_dai2gou-1	[─] Fixed Pulse Radar Signals ─1 pattern each		
Type 2 Type 3	Type 2 Type 3		behhyou_dai2gou-2	_		
Appended Type 4		DFS_behhyoudai2gou-4	behhyou2-4-1 to behhyou2-4-40			
Таріе 2 Турє Турє	Type 5	DFS_behhyoudai2gou-5	behhyou2-5-1 to behhyou2-5-40	Variable Pulse Radar Signals 40 patterns each		
	Туре 6	DFS_behhyoudai2gou-6	behhyou2-6-1 to behhyou2-6-40		791	
Appended Table 3	Туре 1	DFS_behhyoudai3gou	behhyou3-1 to behhyou3-40	Variable Chirp Radar Signals 40 patterns each	(All	
Appended Table 4 Type 1	DFS_behhyoudai4gou		behhyou4-01 to behhyou4-40	Frequency Hopping Radar Signals 40 patterns each For DUT 20 MHz detection bandwidth	MX370073B)	
	Type 1	DFS_	DFS_behhyoudai4gou_40M	behhyou4-01_40M ~ behhyou4-40_40M	Frequency Hopping Radar Signals 40 patterns each For DUT 40 MHz detection bandwidth	
		DFS_behhyoudai4gou_80M	behhyou4-01_80M ~ behhyou4-40_80M	Frequency Hopping Radar Signals 40 patterns each For DUT 80 MHz detection bandwidth		
		DFS_behhyoudai4gou_160M*	behhyou4-01_160M ~ behhyou4-40_160M	Frequency Hopping Radar Signals 40 patterns each For DUT 160 MHz detection bandwidth		

DFS Radar Pattern List (MX370073A/MX370073B)

For Japan MIC Standard (signal additions under investigation) Supported software: MX370073B

Test No.	Package	Combination File Name	Note	File Size [MB]
		n01_variable_W53 to n07_variable_W53	 Twenty 5.3 GHz band solid-state radar waveform patterns Based on specifications (at November 2018) 	791
None	W53_DFS_Radar_Pattern	n08_chirp_W53 to n20_chirp_W53	published by Ministry of Internal Affairs and Communications (5 GHz band WLAN test group)	(ALL MX37007 3B)

- ✓ These waveform patterns are not included currently in the standard (at December 2018). They are the candidates expected to be adopted by the Ministry of Internal Affairs and Communications.
- ✓ Waveform patterns created based on information published in November 2018 by Ministry of Internal Affairs and Communications (5 GHz band WLAN test group).

DFS Test Signals for FCC and Japan MIC Standards

DFS Test Signals for FCC 06-96 and FCC 13-22 (1/4)

Supported software: MX370073A, MX370073B

Test Objects

Test Items	Radar Type	Chapter Number
	0	6.1
	1	6.1
Short Pulse Radar	2	6.1
	3	6.1
	4	6.1
Long Pulse Radar	5	6.2
		6.3 (20 MHz) ^{*1}
	C	6.3 (40 MHz) ^{*2}
Frequency Hopping Radar	б	6.3 (80 MHz) ^{*3}
		6.3 (160 MHz) ^{*4}

*1: Frequency Hopping Bandwidth = 20 MHz

*2: Frequency Hopping Bandwidth = 40 MHz

*3: Frequency Hopping Bandwidth = 80 MHz

*4: Frequency Hopping Bandwidth = 160 MHz (Available only for the MG3710A.).

DFS Test Signals for FCC 06-96 and FCC 13-22 (2/4)

Supported software: MX370073A, MX370073B

Short Pulse Radar

Used for combining randomly extracted combinations of pulse width, pulse repetition frequency and continuous pulse count at each repetition cycle

Radar Type	Pulse Width (W) [µs]	Pulse Repetition Interval (PRI) [µs]	Pulse Per Burst for each PRI (PPB)
0	1	1428	18
1	1	518 to 3066	18 to 102
l	Ι	(1 µs step)	(1 step)
2	1 to 5	150 to 230	23 to 29
2	(1 µs step)	(1 µs step)	(1 step)
2	6 to 10	200 to 500	16 to 18
5	(1 µs step)	(1 µs step)	(1 step)
л	11 to 20	200 to 500	12 to 16
4	(1 µs step)	(1 µs step)	(1 step)

*See slides 16 and 18 for signal images.

PRI: Pulse Repetition Interval

DFS Test Signals for FCC 06-96 and FCC 13-22 (3/4)

Supported software: MX370073A, MX370073B

Long Pulse Radar: Chirp Signal

Used for combining randomly extracted combinations of pulse width, chirp width, pulse repetition frequency, continuous pulse count and burst count at each repetition cycle. However, the chirp frequency band is within the occupied frequency band.

Radar Type	Pulse Width	Pulse Repetition	Pulse Per Burst
	(W) [µs]	Interval (PRI) [µs]	for each PRI (PPB)
5	50 to 100	1000 to 2000	1 to 3
	(1 µs step)	(1 μs step)	(1 step)

*See slides 19 and 20 for signal images.

PRI: Pulse Repetition Interval

DFS Test Signals for FCC 06-96 and FCC 13-22 (4/4)

Supported software: MX370073A, MX370073B

Frequency Hopping Radar

Hopping is performed at each 0.333 kHz hopping time interval. The hopping frequency can be selected randomly from 475 waves at 1 MHz intervals between 5250 and 5724 MHz. The 9 pulses in every burst are at the same frequency. However, the pulse pattern for the 20 or 40 MHz frequency band detected by the Rx module within the frequency hopping band is output as the test signal.

Radar Type	Pulse Width	Pulse Repetition	Pulse Per Burst
	(W) [µs]	Interval (PRI) [µs]	for each Hopping
6	1	333	9

*See slides 21 and 22 for signal images.

PRI: Pulse Repetition Interval

DFS Test Signals for Japan MIC Standard (1/8)

Reference: TELEC-T403 Supported software: MX370073A, MX370073B

Test Objects

Test Items	Frequency	Test signal	Test No.				
Carrier Sanca (2)		Fixed Dulce Padar Signals	Table No. 1 Type. 1				
	5.5 GHZ	Fixed Pulse Radar Signals	Table No. 1 Type. 2				
			Table No. 2 Type. 1				
		Fixed Pulse Radar Signals	Table No .2 Type. 2				
			Table No. 2 Type. 3				
			Table No. 2 Type. 4				
		Variable Pulse Radar Signals	Table No. 2 Type. 5				
			Table No. 2 Type. 6				
	5.6 GHz	Chirp Radar Signals	Table No. 3 Type. 1				
Carrier Serise (5)			Table No. 4 Type. 1 (20 MHz) ^{*1}				
			Table No. 4 Type. 1				
		Fraguanay Hanning Padar Signals	(40 MHz) ^{*2}				
			Table No. 4 Type. 1				
			(80 MHz) ^{*3}				
			Table No. 4 Type. 1				
	(160 MHz) ^{*4}						
	*1: Frec	quency Hopping Bandwidth = 20 MHz					
	*3: Frec	μ uency hopping Bandwidth = 40 MHz					

*4: Frequency Hopping Bandwidth = 160 MHz (Available only for the MG3710A.).

DFS Test Signals for Japan MIC Standard (2/8) Reference: TELEC-T403

Supported software: MX370073A, MX370073B

Fixed Pulse Radar Signals: (Table No.1 Type.1, 2) Fixed Pulse Radar Signals: (Table No.2 Type.1, 2, 3)

Test No.		Pulse Width (W) [µs]	Pulse Repetition Frequency (PRF) [Hz]	Pulse Per Burst for each PRF (PPB)	Repetition Interval [s]
Table No 1	Type. 1	1	700	18	15
Table No I	Type. 2	2.5	260	18	15
	Type. 1	0.5	720	18	15
Table No.2	Type. 2	1	700	18	15
	Type. 3	2	250	18	15

DFS Test Signals for Japan MIC Standard (3/8) Reference: TELEC-T403 Supported software: MX370073A, MX370073B

Variable Pulse Radar Signals: (Table No. 2 Type. 4, 5, 6)

Used for combining randomly extracted combinations of pulse width, pulse repetition frequency and continuous pulse count at each repetition cycle

Te	est No.	Pulse Width (W) [µs]	Pulse Repetition Frequency (PRF) [Hz]	Pulse Per Burst for each PRF (PPB)	Repetition Interval [s]
	Type. 4	1 to 5 (1 μs step)	4347 to 6667 (1 Hz step)	23 to 29 (1 step)	15
Table No. 2	Type. 5	6 to 10 (1 μs step)	2000 to 5000 (1 Hz step)	16 to 18 (1 step)	15
	Type .6	11 to 20 (1 µs step)	2000 to 5000 (1 Hz step)	12 to 16 (1 step)	15

PRF: Pulse Repetition Frequency

DFS Test Signals for Japan MIC Standard (4/8)

Reference: TELEC-T403 Supported software: MX370073A, MX370073B

Variable Pulse Radar Signals: (Table No. 2 Type 4, 5, 6)

DFS Test Signals for Japan MIC Standard (5/8)

Reference: TELEC-T403 Supported software: MX370073A, MX370073B

Chirp Radar Signals: (Table No. 3)

Used for combining randomly extracted combinations of pulse width, chirp width, pulse repetition frequency, continuous pulse count and burst count at each repetition cycle. However, the chirp frequency band is within the occupied frequency band.

Example for chirp signal (zoomed-in)

Test No.		Pulse Width (W) [µs]	Pulse Repetition Frequency (PRF) [Hz]	Pulse Per Burst for each PRF (PPB)	Repetition Interval [s]
Table No. 3	Type. 1	50 to 100 (1 µs step)	500 to 1000 (1 Hz step)	1 to 3 (1 step)	12

PRF: Pulse Repetition Frequency

DFS Test Signals for Japan MIC Standard (6/8)

Reference: TELEC-T403 Supported software: MX370073A, MX370073B

12 Sec Start 0 0 0 Burst 1 Burst 2 Burst 3 Burst 4 Burst N Burst Interval **PRI#1 PRI#2** ! PRI#3 W W W **Total Burst Length** W: Pulse Width PRI: Pulse Repetition Interval

Chirp Radar Signals: (Table No. 3)

DFS Test Signals for Japan MIC Standard (7/8)

Reference: TELEC-T403 Supported software: MX370073A, MX370073B

Frequency Hopping Radar Signals: (Table No. 4)

Hopping is performed at each 3 ms hopping time interval. The hopping frequency can be selected randomly from 475 waves at 1 MHz intervals between 5250 and 5724 MHz. The 9 pulses output every 3 ms are at the same frequency. However, the pulse pattern for the 20, 40, 80 or 160 MHz frequency band detected by the Rx module within the frequency hopping band is output as the test signal.

Example for hopping signal (zoomed-in)

Test No).	Pulse Width (W) [µs]	Pulse Repetition Frequency (PRF) [Hz]	Pulse Per Hopping for each PRF (PPB)	Repetition Interval [s]
Table No. 4	Type. 1	1	3,000	9	10

PRF: Pulse Repetition Frequency

DFS Test Signals for Japan MIC Standard (8/8) Reference: TELEC-T403

Supported software: MX370073A, MX370073B

Frequency Hopping Radar Signals: (Table No. 4)

DFS Test Signals for Japan MIC Standard (signal additions under investigation)

(1/2)

Supported software: MX370073B

Test Objects

Test Items	Frequency	Test signals	Test No.
Carrier Sense	5.3 GHz	 Twenty 5.3 GHz band solid-state radar waveform patterns Based on specifications (at November 2018) published by Ministry of Internal Affairs and Communications (5 GHz band WLAN test group). 	None

- These waveform patterns are not included currently in the standard (at December 2018). They are the candidates expected to be adopted by the Ministry of Internal Affairs and Communications.
- ✓ Waveform patterns created based on information published in November 2018 by Ministry of Internal Affairs and Communications (5 GHz band WLAN test group).

DFS Test Signals for Japan MIC Standard (signal additions under investigation)

(2/2)

Supported software: MX370073B

No.	Short Pulse (µs)	Blank 1 (µs)	Long Pulse (µs)	Blank 2 (µs)	α^{*1}	γ*²	B ^{*3}	Pulse Repetition Frequency (PRF) [Hz]	Continuous Pulse Count	Repetition Interval [s]
1	2.5	0	0	3028	_	_	_	330	10	15.0
2	1	0	0	1063	_	-	_	940	27	15.0
3	1	0	0	1329	_	_	_	752	21	15.0
4	2	0	0	3844	_	-	-	260	10	15.0
5	2	0	0	2379	_	_	_	420	15	15.0
6	1	0	0	892	_	-	_	1120	32	15.0
7	1	0	0	1189	-	-	-	840	24	15.0
8	1	72	64	825	0	1.48	1.2	1040	28	15.0
9	1	72	64	1065	0	1.48	1.2	832	23	15.0
10	1	108	100	2291	0	1.48	1.67	400	20	15.0
11	1	108	100	2916	0	1.48	1.67	320	30	15.0
12	1	72	64	2762	0.45	1.48	2	345	10	15.0
13	1	40	32	1031	0.45	1.48	2	906	26	15.0
14	1	40	32	1252	0.45	1.48	2	755	22	15.0
15	0.5	20	20	585	0.1	1.48	2	1600	10	15.0
16	0.5	20	20	585	0.89	1.48	2	1600	10	15.0
17	5	200	200	2928	0.1	1.48	1	300	10	15.0
18	5	200	200	2928	0.89	1.48	1	300	10	15.0
19	15	400	400	4185	0.1	1.48	1	200	15	15.0
20	15	400	400	4185	0.89	1.48	1	200	15	15.0

- *1: Variable determining ratio of Linear and Non-linear frequency components
- *2: Variable determining curvature of non-linear components *3: Frequency sweep width

/INCITES envision : ensure

[Supplement] What is DFS: Dynamic Frequency Selection?

Japan MIC Standard (Reference: TELEC-T403) specifies use of frequency bands from 5.3 GHz (5.26/5.28/5.30/5.32 GHz) and 5.6 GHz (5.50/5.52/5.54/5.56/5.58/5.60/5.62/5.64/5.66/5.68/5.70 GHz) for the WLAN 5 GHz band. Since these are the same frequency bands as used by meteorological radar^{Note} and marine radar, these pulse signals are obliged to use Dynamic Frequency Selection (DFS) technology.

FCC 06-96 requires the same tests for 5.25 to 5.35 GHz and 5.47 to 5.725 GHz.

Note: Weather radar locates precipitation by transmitting pulse bursts every second. Interference from wireless LAN can be mistaken for precipitation. Therefore, use DFS to confirm the absence of weather radar before starting operation.

2018-12 MJM

No. MX370073A-E-L-1-(4.00)