Quick Start Guide

MP1900A USB3.1 Test Solution

Signal Quality Analyzer-R MP1900A Series

Contents

1. Introduction

- 2. Compliance Test Overview
- 3. Rx Compliance Test
 - Calibration Procedure
 - Rx Link Training (Put DUT into Loopback Mode)
 - BER and JTOL Test
- 4. Appendix

Outline

Digital devices are handling huge data volumes due to the spread of the IoT and cloud computing services, resulting in increased use of faster and serial interfaces between devices. The USB interface used for connecting these digital devices is switching to USB3.1 Gen2 supporting speeds of 10 Gbit/s for transmitting large data volumes faster and is also adopting the smaller Type-C connector.

The Anritsu Signal Quality Analyzer-R MP1900A series is a high speed BERT supporting USB3.1 receiver testing and compliance patterns to control DUT test modes.

MP1900A Strengths

All-in-one support for both high-speed network interfaces and bus interfaces

Signal Quality

- Low Jitter/Clean Eye
- 10Tap Emphasis for Tx
- High sensitivity
- 12 dB variable CTLE for Rx
- Jitter/Noise source

Scalability

- 32 Gbit/s NRZ up to 16 channels
- 112 Gbit/s PAM4 (56 Gbaud) up to 4 channels
- Same USB3.1, PCIe-G4/G5, Thunderbolt Test configuration
- Analyzability
 - Supports PCIe-G5 bit rate (32G NRZ)
 - USB/PCIe-G4 Link Training (Negotiation)
 - USB/PCIe-G4 LTSSM analysis
- Usability
 - All-in-One: Control PC, noise source, Emphasis, CTLE, CDR, etc.
 - New GUI/touch screen

USB3.1 Solution Advantages

USB Receiver Test Solution

Jitter Signal Generation, Tolerance Measurement

All-in-one solution supporting high-reproducibility measurement

- Protocol aware and all-in-one USB3.1 Rx test solution
- Wideband BERT 2.4 to 32.1 Gbit/s supporting not only USB but also PCIe and Thunderbolt
- High-quality waveforms with low Intrinsic Jitter, high-reproducibility measurement using highsensitivity ED
- Link Training and LTSSM Analysis functions for solving link issues
- Send and receive LFPS and LBPM signals
- Insert and identify Skip Ordered Set
- Jitter Addition (SJ, RJ, BUJ, SSC) and Tolerance measurements
- Fully automated Compliance and Jitter Tolerance tests

Contents

1. Introduction

2. Compliance Test Overview

- 3. Rx Compliance Test
 - Calibration Procedure
 - Rx Link Training (Put DUT into Loopback Mode)
 - BER and JTOL Test
- 4. Appendix

Flow of Rx Compliance Test

Rx Compliance Test Recommended Equipment List (1/2)

Model Number	Name	Qty.	Option	Remarks
MP1900A	Signal Quality Analyzer-R	1		
MU181000B	12.5 GHz Synthesizer	1		
MU181500B	Jitter Modulation Source	1		
MU195020A	21G/32G bit/s SI PPG	1	010, 011	
MU195040A	21G/32G bit/s SI ED	1	010, 011, 022	
MU195050A	Noise Generator	1		
J1510A	Pick Off Tee	2		When MU195050A not installed
J1551A	Coaxial skew matched cable 0.8 m, K- connector	2		
J1624A	Coaxial cable 0.3 m	4		Standard cable of MU181000B and MU181500B

Rx Compliance Test Recommended Equipment List (2/2)

Model Number	Name	Option	Remarks
MX183000A- PL022	USB Link Training		
MX183000A- PL001	Jitter Tolerance		
-	Oscilloscope		At least 16 GHz bandwidth and sample rate of 80 GS/s
USB31CET*	USB3.1 USB (10 GT/s) Type-C Electrical Test Fixture Kit		Compliance Test Fixture For Type-C
USB31AET*	USB3.1 USB (10 GT/s) Type-A and Micro-B Electrical Test Fixture Kit		Compliance Test Fixture For Type-A and Micro-B

*Sold by USB-IF http://www.usb.org/developers/estoreinfo/

Compliance Test Overview: MP1900A Connections

• There are two ways to combine the test signal and LFPS.

Using MU195050A (recommended configuration for simple cable connection using combiner circuit in MU195050A)

Using Pick Off Tee

Compliance Test Overview: Calibration for Rx Test

The main purpose of <u>Calibration</u> is to calibrate the Emphasis, Amplitude and Jitter settings to meet USB3.1 requirements.

- Calibrate the Amplitude, Emphasis, Jitter, Eye Height, and Eye Width of the BERT output as specified by the standard.
- Automated Calibration
 - Please contact our sales representative for automated calibration software.

Compliance Test Overview: Rx Test

The main purpose of the Compliance **<u>Rx Test</u>** is to verify that the Device Under Test (DUT) meets the USB3.1 Jitter Tolerance requirements.

- MX183000A PL022 USB Link Training and PL001 Jitter Tolerance
 - Put DUT into Loopback Mode > Jitter Tolerance Test \geq

BER Measurement

Compliance Test Overview: Long/Short Channel Test

This Compliance Test requires that both the Long Channel and Short Channel tests^{*1} are passed by performing the same test with the two fixtures.

*1 For more details, refer to Appendix A

- Rx Test
 - This test requires switching the connection at Long Channel fixture and Short Channel fixture.
- Tx Test
 - Use of the waveform analysis software SigTest channel emulation function does not require switching the Long Channel connection.

Contents

- 1. Introduction
- 2. Compliance Test Overview

3. <u>Rx Compliance Test</u>

- Calibration Procedure
- Rx Link Training (Put DUT into Loopback Mode)
- BER and JTOL Test
- 4. Appendix

Calibration Procedure: Hardware Setup

Connector Type	Speed	items	Connection
	Con1	Amplitude, Emphasis	Direct
	Geni	Jitter (RJ, SJ)	Direct
Type-C		Amplitude, Emphasis	Direct
	Gen2	Jitter (RJ, SJ)	Direct
		Eye Width, Eye Height	Fixture A-1
		Amplitude, Emphasis	Direct
	Gen1	Jitter (RJ, SJ)	
		Eye Height	<u>Fixture A-5</u>
туре-А		Amplitude, Emphasis	Direct
	Gen2	Jitter (RJ, SJ)	Direct
		Eye Width, Eye Height	Fixture A-2
		Amplitude, Emphasis	Direct
	Gen1	Jitter (RJ, SJ)	
		Eye Height	
Micro-B		Amplitude, Emphasis	Direct
	Gon2	Jitter (RJ, SJ)	Direct
	Genz	CLB Select	
		Eye Width, Eye Height	<u>Fixture A-2</u>

*For details, refer to Appendix A

*Test fixtures sold by USB-IF

http://www.usb.org/developers/estoreinfo/

Direct Connection

With Calibration Fixture

Calibration Procedure: Calibration Settings

Table 1 lists typical settings when calibrating the test signal using the MP1900A. Tables 2 and 3 also list the respective SJ settings for the receiver test.

Table 1 Calibration Results Summary

	Singl Amplitud	e-End de (V p-p)	Pre-Cursor1	Post-Cursor1	RJ	SJ	SSC
	Long Channel	Short Channel	(dB)	(dB)	(ps p-p)	(UI p-p)	550
Gen1	0.500	0.630	_	-3.0	36	Table 2	Down
Gen2	0.490	0.700	2.3	-0.9	14.0	Table 3	5000 ppn

Table 2 SJ Calibration Results for Gen1

SJ Frequency	Setting (UI p-p)
50 MHz	0.200
30 MHz	0.200
20 MHz	0.200
10 MHz	0.200
4.9 MHz	0.200
2 MHz	0.200
1 MHz	0.500
500 kHz	2.000

Table 3 SJ Calibration Results for Gen2

SJ Frequency	Setting (UI p-p)
100 MHz	0.170
50 MHz	0.170
30 MHz	0.170
15 MHz	0.170
7.5 MHz	0.170
4 MHz	0.370
2 MHz	0.870
1 MHz	2.030
500 kHz	4.760

Incitsu envision : ensure

Rx Link Training: Link Training and Status State Machine (LTSSM) (1/2)

- Different state machine sequence for each generation

Rx Link Training: Link Training and Status State Machine (LTSSM) (2/2)

Equipment Setup Link Training Run Test Gra	aph Report	Electrical Idle
USB 3.1 Specification Gen2 (10.0 GT/s)	LTSSM State	Start Link Training Not Wait For The LFPS Signal
	Linkup Speed	LTSSM Log
Polling.LFPS Polling.Idle	SKP Count (Received)	Start BER Measurement
Polling.LFPS Plus Configuration	Ske Count (Transmitted)	Send Ping.LFPS
Polling.Port Match Active		Compliance CP9
Polling.Port Config Polling.RxEQ		Option

MX183000A-PL022 USB Link Training Setting Screen – Link Training by auto-negotiation

Rx Link Training: Host DUT Connection Diagram <u>Type-C Host DUT</u>

Rx Link Training: Device DUT Connection Diagram <u>Type-C Device DUT</u>

Rx Link Training: DUT Setup

One of the following procedures is required at the Host DUT before Link Training from the BERT. This is not required for the Device DUT.

- 1. Use the open-source HSETT software at the USB I/F.
- 2. Start the Host DUT in the BIOS Mode.

Rx Link Training: 1 – Host DUT Setup Using HSETT (1/3)

- The HSETT^{*1} software puts devices, hosts and hubs into the appropriate test modes. Download the HSETT software from the following link^{*1} and use the following procedure to install it in the DUT.
- Before installing HSETT, disable User Account Control (UAC) in Windows.
- Choose Start → Control Panel → User Accounts and Family Safety → User Accounts → Change User Account Control settings.
- Set the Settings Bar to [Never notify]. Click [OK] and restart the computer.
- Start the downloaded HSETT and follow the instructions.

- *1 Download link: <u>http://www.usb.org/developers/tools/</u>
 - HSETT 32-bit version
 - HSETT 64-bit version

Rx Link Training: 1 – Host DUT Setup Using HSETT (2/3)

• Run HSETT on the Host DUT and follow the procedure below.

Rx Link Training: 1 – Host DUT Setup Using HSETT (3/3)

- Pressing the [Test] button as described on the previous slide displays the xHCI HS Electrical Test Tool – Host Test screen shown on the right.
- The settings are correct when transitioning to the Loopback Mode is supported by performing Link Training in this condition.

xHCI HS Electrical Test Tool - Host Test		
Select Downstream Device	Host Port Control	_
NONE VID 0x2109, PID 0x750, Address 1, Port 2	Port Control	Port
	Status Window	Isconnect Notify
Enumerate Bus		
Downstream Device Control Address NONE	EXECUTE	Return To Main

Rx Link Training: 2 – Host DUT Setup Using BIOS Mode

• In addition to the method using HSETT, it is also possible to transition to the Loopback Mode by booting the Host DUT in the BIOS Mode.

Rx Link Training: Software Control (1/3)

MP1900A USB Link Training	Setup and Execution
Implications Selector Device Best Standard Sert Utity Implications Implications	 Open the MP1900A application selector. Click MX183000A.

Rx Link Training: SW Control (2/3)

MP1900A USB Link Training	Setup and Execution
MX183000A - USB Link Training Image: Constraint of the product of	3. Go to the [Link Training] tab via the MX183000A USB Link Training application and select the target link speed at [USB 3.1 Specification].
Polling.LFPS Polling.dle Start BER Polling.LFPS Polling. Polling.LFPS Polling. Polling.Port Polling. Polling.Active Start BER Match Active Timeout Timeout	4. With the DUT disconnected from the fixture, click the [Start Link Training] button to display Waiting for DUT connection.
Polling.Port Config Polling.RxEQ Option	5. Start LTSSM by connecting the DUT to the fixture.

Rx Link Training: Software Control (3/3)

MP1900A USB Link Training	Setup and Execution
MX183000A - USB Link Training COperate MP1900A File Setup Equipment Setup Link Training Run Test Graph Report Outputting Test Pattern USB 3.1 Specification Image: Compace Setup Gen2 (10.0 GT/s) Image: Compace Setup Rx.Detect Loopback Polling.LFPS Polling.Idle Polling.LFPS Polling.Idle Polling.LFPS Polling. Polling.LFPS Polling. Polling.Prot Polling. Polling.Port Polling. Polling.Port Polling.RxEQ Polling.Port Polling.RxEQ	6. Confirm that [LTSSM State] displays Loopback_Active.

Rx Link Training: Waveforms at Gen2 Training

- Refer to Appendix-D for details about the LTSSM State Transition.
- Handshaking using the LFPS signal is required to establish a link between USB devices.
- The device sends the LFPS signal at power-on. The host sends the LFPS signal on detecting the connector connection.
- The MP1900A starts Link Training using the LFPS signal output from the DUT as the trigger.

Rx Link Training: Waveforms at Gen1 Training

- Gen1 Training on Gen2 DUT
 - Based on the USB3.1 specifications, the DUT must continue operation and switch to the SuperSpeed Mode.

Rx Link Training: LTSSM Log (1/2)

- Checking State Machine Status with LTSSM Log Function

MX183000A - USB Link Training		×
Setup Help		Operate MP1900A
quipment Setup Link Training Run Test	t Graph Report Out	putting Test Pattern
JSB 3.1 Specification		Unlink
en2 (10.0 GT/s)		OTIMIK
	LTSSM State LOOPBACK ACTIVE	LFPS Signal
x.Detect Loopback		
¥ 1	Linkup Speed 10.0 G1/s	LISSM Log
	128b/132b	
Polling.LFPS OPolling.Idle		Start BER
	SKP Count (Received) 352608	Measurement
Y T	SKP Count (Transmitted) 352610	Configure
Polling.LFPS Polling.		Sand Ding LEDS
Plus Configuration		Send Ping.LFPS
↓ ↑		Test Pattern
Polling Port Polling		Compliance -
Match Active		CP9 -
T		Timeout
Polling.Port Polling.RxEQ		
		Option

Rx Link Training: LTSSM Log (2/2)

IX183000A - USB Link Training	
e Setup Help	Operate MP1900A
quipment Setup Link Training Run Test Graph Report	Training Started
USB 3.1 Specification	
en2 (10.0 GT/s) 🔹	Stop
	Not Wait For The
Rx.Detect (Loopback) LTSSM State POLLING_LFPS_SC	D1 LFPS Signal
Linkup Speed LFPS	LTSSM Log
✓ ↑	
128b/132b	Chart DED
Polling.LFPS Polling.Idle SKP Count (Paceived) 0	Start BER Measurement
Ju A Ski Count (Neceived)	medsurement
SKP Count (Transmitted) 0	Configure
Polling. Polling.	Send Ping LEPS
Plus Configuration	ocha ringierro
V 1	Test Pattern
Polling Port Polling	Compliance 👻
Match Active	
	CF3 *
V T	Timeout
Polling.Port	Ameour
Config Polling.RXEQ	Option

Example of LTSSM Log with Polling State Timeout

BER and JTOL Test: BER Measurement (1/2)

– BER Measurement Settings

- Set the following parameters at the BER Measurement setting display.
 - Cycle: Single
 - EC Threshold: 1
 - Gating Time for Gen1: 60*
 - Gating Time for Gen2: 120*
- Put a checkmark in [Configure].
- Click [Start BER Measurement].

*Defined in Compliance Test specifications

BER and JTOL Test: BER Measurement (2/2)

- Compliance Test Pass Criteria
- If the total error count is ≤1, the DUT passes the test at that SJ frequency.
- Repeat BER measurement by changing the SJ frequency from 500 kHz to 100 MHz.
- The DUT must pass at all SJ frequencies to pass the Rx Compliance Test.

The DUT fails the Compliance Test if the total error count is >1.

•

BER and JTOL Test: Automatic Compliance Test (1/4)

– Automatic Jitter Compliance Test Setting

MX1830	00A - USB	Link Trai	ining									×
File Se	tup Help)					_				Operate M	P1900A
Equipme	nt Setup	Link Tra	aining Ru	n Test	Graph	Repor	t		Electric	al Idle		
Check Unchec	AII k AII								Deta	il	Run Test	
No.	Jitter Fre	q. [Hz]	Mask	[UI]	Upper Li	imit [UI]	Lower Lim	it [UI]	Meas. [L	I] M	eas. Judge	E ^
☑ 1	100,00	00,000	0	.170		0.170		0.170				
☑ 2	50,00	00,000	0	.170		0.170		0.170				
☑ 3	30,00	00,000	0.170		0.170			0.170				=
☑ 4	15,00	00,000	0.170		0.170			0.170				
☑ 5	7,50	00,000	0.170		0.170			0.170				
☑ 6	4,00	00,000	0.370		0.370			0.370				
7	2,00	00,000	0.870		0.870			0.870				-
•												•
Jitter Freq.[Hz] 10 🖉 Add		dd	Save Open			l I	Bit Rate	5 000000 Obie	1-			
Mask [UI] 4.760								GDI	/s			
Upper Limit [11] 4 760 Delete Title USB3.1_G						SB3.1_Gen	2_10G_(Compliar				
Lower l	Limit [UI]		4.760	All	Clear							
Upper Ratio 1.000 Å Lower Ratio 1.000 Å			Measurement Sequence From higher Freq. side				JTOL Settings					

Click the [Run Test] tab.

•

Click the [JTOL Settings] button to set the Jitter Tolerance test parameters.

BER and JTOL Test: Automatic Compliance Test (2/4)

• Set the following parameters at the JTOL Setting display.

1

- Unit: Error Count
- Error Threshold:
- Gen1 Gating Timer: 60*
- Gen2 Gating Timer: 120*
- Click the [Close] button to finish this setting.
- *Defined in the Compliance Test specifications This Compliance Test requires at least 10 minutes.

JTOL Settings
Detection Search Type
Unit Error Count Auto Search OFF
Error Threshold (Count) Greater than 1 - Meas.Type NRZ -
BER for JTOL Estimation $1.0 + E_{-}$ E- $15 + E_{-}$
Search
Direction Search Upwards Log 🔹
Jitter Freq. Range Freq. ≤ 100kHz 100kHz < Freq. ≤ 1MHz 1MHz < Freq. ≤ 10MHz 10MHz < Freq.
Ratio 0.20 x 0.20 x 0.20 x 0.20 x
Timer [s]
Frequency setup Frequency setup
Waiting 2 Amplitude setup
Settling 2
Gating 120
BER and JTOL Test: Automatic Compliance Test (3/4)

• Load the appropriate mask file for the target generation :

• Confirm that the DUT is in the Loopback Mode and click the [Run Test] button.

envision: ensure

quipm	ent Setup Link Tra	aining Run Test G	raph Report		Electrical I	dle	
Chec Unche	k All ck All				Detail	Run Test	
No.	Jitter Freq. [Hz]	Mask [UI] Up	per Limit [UI]	Lower Limit [UI]	Meas. [UI]	Meas. Judge	E ^
▼ 1	100,000,000	0.170	0.170	0.170			
✓ 2	50,000,000	0.170	0.170	0.170			
V 3	30,000,000	0.170	0.170	0.170			E
₹ 4	15,000,000	0.170	0.170	0.170			
▼ 5	7,500,000	0.170	0.170	0.170			
<mark>▼ 6</mark>	4.000.000	0.370	0.370	0.370			
		a al cfila	0.870	0.870			-
Jitter Upper Lower	Freq.[Hz] Mask [UI] Limit [UI]	10 Add 4.760 Delete 4.760 All Cleat	Save Title U	Open SB3.1_Gen2_10G_C	Compliar	Rate 5.000000 Gbi	⊧ t/s

Click [Due Test] to start

37

BER and JTOL Test: Automatic Compliance Test (4/4)

– Jitter Compliance Test Results

• Move to the [Report] tab and click [Make HTML/CSV] to create a report.

BER and JTOL Test: Jitter Margin Test (1/2)

- Both the Compliance Test and Jitter Margin Test are important to test the DUT.
- Load the appropriate xml setup file for the target generation, or set the following parameters at the JTOL Setting display.

_	Unit:	Error Count
_	Error Threshold:	1
_	Gating Timer:	6
_	Direction Search:	Upwards Linear
_	100 kHz < Freq. < 1 MHz:	0.300
_	1 MHz < Freq. < 10 MHz:	0.030
_	10 MHz < Freq. :	0.01

BER and JTOL Test: Jitter Margin Test (2/2)

- Load the appropriate mask for the target generation.
 - Gen1
 - C:¥Anritsu¥MX183000A¥Mask
 - USB3.0-5G.mask
 - Gen2
 - C:¥Anritsu¥MX183000A¥Mask
 - USB3.1-10G.mask

- Confirm that the DUT is in the Loopback Mode and click the [Run Test] button.
- Move to the [Report] tab and click [Make HTML/CSV] to create the report.

Contents

- 1. Introduction
- 2. Compliance Test Overview
- 3. Rx Compliance Test
 - Calibration Procedure
 - Rx Link Training (Put DUT into Loopback Mode)
 - BER and JTOL Test

4. <u>Appendix</u>

Appendix A-0: Fixture Topologies – Type-C CC Jumpers

- Only use one jumper.
- Set jumper on CC1 if SMAs are connected to Tx1/Rx1.
- Set jumper on CC2 if SMAs are connected to Tx2/Rx2.
- When using the Full Breakout, connect CC to Vbus for devices, or connect CC to GND for hosts.

Appendix A-1: Calibration Topologies – Type-C Gen2

- Set jumpers as shown in Appendix A-0.
- Ensure the Tx port number used in CLB is the same as the Rx port number used in the mock board (Tx1 CLB: Rx1 Mock/Tx2 CLB: Rx2 Mock)
- There is no fixture calibration for Type-C Gen1.

USB3.1 (10 GT/s) Type-C[™] Electrical Test Fixture Kit

Appendix A-2: Calibration Topologies – Type-A, micro-B Gen2

USB3.1 (10 GT/s) Type-A and Micro-B Electrical Test Fixture Kit

Host

- Rx to Scope BERT to Tx 2" Mock Host -Fixture CLB 1m Cable Device & Captive Cable Rx to Scope BERT to Tx Devic Mock Device CLB Fixture 1m Cable
- Hold the root of the micro-B connector firmly when plugging/unplugging cables, mockup boards, and DUTs

Appendix A-3: Calibration Topologies – Type-A, micro-B Gen1

Ancitsu envision : ensure

Appendix A-4: Receiver Test Topologies – Type-C Gen2

Host BERT to Tx Host 1m Cable Tx to BERT Device Device CLB 1m 1 Cable Tx to BERT Captive Cable Device BERT to Rx Tx to BERT

USB3.1 (10 GT/s) Type-C[™] Electrical Test Fixture Kit

- Connect jumpers as shown in Appendix A-0.
- Ensure the Tx port number used in the CLB is the same as the Tx port number used in the fixture

(Tx1 CLB: Tx1 fixture/ Tx2 CLB: Tx2 fixture)

 Similarly, for captive fixture, ensure the same port number is used for both Tx and Rx ports. (Tx1: Rx1 or Tx2: Rx2)

Appendix A-5: Receiver Test Topologies – Type-A, micro-B Gen2

USB3.1 (10 GT/s) Type-A and Micro-B Electrical Test Fixture Kit

• Hold the root of the micro-B connector firmly when plugging/unplugging cables, mockup boards, and DUTs.

Appendix A-6: Receiver Test Topologies – Type-C Short Channel

BERT to Rx Full Breakout Tx1 Tx to BERT 5V (device only) Host/Device

USB3.1 (10 GT/s) Type-C[™] Electrical Test Fixture Kit

- Set jumpers as shown in Appendix A-0.
- For Full Breakout, ensure the same port number is used for both Tx and Rx ports. (Tx1: Rx1 or Tx2: Rx2)

Appendix B-0: SigTest Templates for Rx

• Gen1

SigTest* Software <u>Version 3.2.11.2</u> or higher

Test #	Description	Rx SigTest Folder	SigTest Template File Name
TD.1.8	Rj Calibration	USB_3_5GB	USB_3_5Gb_CP1.dat
TD.1.9	Rj Calibration (Type-C)	USB_3_5GB	USB_3_5Gb_CP1_Rj_Cal_Type_C.dat
TD1.8	Sj Calibration	USB_3_5GB	USB_3_5Gb_CP0_RjIN_SjCal.dat
TD.1.9	Sj Calibration (Type-C)	USB_3_5GB	USB_3_5Gb_CP0_RjIN_SjCal_Type_C.dat
TD.1.8	EW/EH Calibration	USB_3_5GB	USB_3_5Gb_CP0_RjIN.dat

*Software download link

http://www.usb.org/developers/tools/

Appendix B-1: SigTest Templates for Rx

• Gen2

SigTest* Software Version 4.0.23.3 or higher

Test #	Description	Rx SigTest Folder	SigTest Template File Name
TD.1.10	Rj Calibration	USB_3_10GB	USB_3_10Gb_Rj_Cal.dat
TD.1.10	Rj Calibration (Type-C)	USB_3_10GB	USB_3_10Gb_Sj_Cal.dat
TD.1.10	Sj Calibration	USB_3_10GB	USB_3_10Gb_CP9_Rx_CAL_CTLE_N5dB.dat

*Software download link http://www.usb.org/developers/tools/ Appendix C-0: Calibration Procedure Overview – Emphasis and Amplitude

- First, calibrate Swing and Deemphasis without test channel.
- Emphasis and Amplitude are calibrated using 64 ones (1s) followed by 64 zeros (0s) followed by 128 bits of a 1010 clock pattern.
 - C:¥Anritsu¥MP1900A¥AppServers¥bin¥Pattern Files¥USB
 - 64ones_64zeros_128bit10.ptn

Appendix C-1: Calibration Procedure Overview – Emphasis and Amplitude

- Take the difference between Ch1 and Ch2 (channel combination of differential pair depends on oscilloscope)
- Before starting any test or data acquisition, heat-run and calibrate the oscilloscope, and use de-skewed cables.

Oscilloscope Settings

	Vertical Scale	Horizontal Scale	Sample Rate	Bandwidth	Record Length
Gen1	Set to full screen without clipping	4 ns (enough to capture >1 pattern sequence)	40 GS/s	16 GHz	4 kpts (enough to capture >1 pattern sequence)
Gen2	Set to full screen without clipping	2 ns (enough to capture >1 pattern sequence)	80 GS/s	16 GHz	4 kpts (enough to capture >1 pattern sequence)

Appendix C-2: Calibration Procedure Overview – Emphasis and Amplitude

- Pre-shoot and De-emphasis are derived from three measurements: Va, Vb, and Vc.
- Amplitude is measured towards the end of the toggle section.
- Adjust Amplitude, Pre-shoot and De-emphasis at the BERT until reaching the target value.
- Calibrate three Tx EQ points.
 - ➢ Pre = 2.2 dB, Post = −1.0 dB
 - ➢ Pre = 2.2 dB, Post = −3.0 dB
 - ➢ Pre = 2.2 dB, Post = −5.0 dB

Emphasis and Amplitude Target Values

	Differential Amplitude p-p Pre-shoot De-emph			
Gen1	800 mV	-	-3.0 to 0.3/+0 dB	
Gen2	800 mV	2.2 ±0.1 dB	-1.0 ±0.1 dB -3.0 ±0.1 dB -5.0 ±0.1 dB	

Appendix C-3: Calibration Procedure Overview – RJ

- Calibrate RJ using a Nyquist pattern.
 - Gen1: CP1
 - C:¥Anritsu¥MP1900A¥AppServers¥bin¥Pattern Files¥USB
 - CP1.ptn
 - Gen2: CP10
 - C:¥Anritsu¥MP1900A¥AppServers¥bin¥Pattern Files¥USB
 - CP10.ptn
- Set the oscilloscope to the values in the table.
- Set Emphasis to 0.
 - Pre-shoot = 0 dB, De-emphasis = 0 dB
- Set SSC to OFF and all other Jitter sources to ON but set to zero.
- Capture a single waveform and save the waveform file.

Oscilloscope Settings

	Vertical Scale	Horizontal Scale	Bandwidth	Sample Rate	Record Length
Gen	1 Set to full screen without clipping	100 µs	16 GHz	40 GS/s	> 16 Mpts*
Gen	2 Set to full screen without clipping	50 µs	16 GHz	80 GS/s	> 16 Mpts*

*For Gen1 5 GT/s: 1 UI = [1/5GT/s] = 200 ps (200 ps/UI) x (2M UI) = 400 µs 400 µs x 40 GS/s = 16 M

*For Gen2 10 GT/s: 1 UI = [1/10 GT/s] = 100 ps (100 ps/UI) x (2M UI) = 200 µs 200 µs x 80 GS/s = 16 M

Appendix C-4: Calibration Procedure Overview – RJ

- Measure RJ using SigTest* Software Version
 4.0.23.2 or higher (for Gen2) and SigTest Software
 Version 3.2.11.3 (for Gen1).
- The analysis result is RJ(RMS) in SigTest.
- Adjust RJ at the BERT until reaching the target value.

RJ Target Value

	Random Jitter
Gen1	2.42 ±10% ps RMS (30.8 ±10% ps p-p)
Gen2	1.0 +0/–0.1 ps RMS

*Software download link

http://www.usb.org/developers/tools/

Incitsu envision : ensure

Appendix C-5: Calibration Procedure Overview – SJ

- Capture the CP0/CP9 waveform.
 - Gen1: CP0
 - C:¥Anritsu¥MP1900A¥AppServers¥bin¥Pattern Files¥USB
 - CP0_RD+.ptn
 - Gen2: CP9
 - C:¥Anritsu¥MP1900A¥AppServers¥bin¥Pattern Files¥USB
 - CP9.ptn
- Set Emphasis to 0.
 - Pre-shoot = 0 dB, De-emphasis = 0 dB
- Set SSC to OFF and all other Jitter sources to ON but set to zero.
- Select the template by referring to Appendix-B.

SJ Target Value

	SJ Frequency (MHz)	Amplitude (ps)
	0.5	400 ±10%
	1	200 ±10%
	2	100 ±10%
Con1	4.9	40 ±10%
Gent	10	40 ±10%
	20	40 ±10%
	33	40 ±10%
	50	40 ±10%
	0.5	476 ±10%
	1	203 ±10%
	2	87 ±10%
	4	37 ±10%
Gen2	7.5	17 ±10%
	15	17 ±10%
	30	17 ±10%
	50	17 ±10%
	100	17 ±10%

Appendix C-6: Calibration Procedure Overview – SJ

- First, measure SJ Baseline using SigTest.
- The analysis result is Max Peak to Peak Jitter (ps) in SigTest.
- Adjust SJ at the BERT until <u>SJ SJ Baseline</u> reaches the target value.

🛄 Ful	l Test Results - Gen2SjCalibra	tion_Ger	2_10G_SJ6_	Wavefo	rm.bin	Ξ.	21	200.0	23
<u>Si</u> 2	stest Full Test Result	Pass	<u>s /</u> Input Equal	izatio	Sample (XUI) unused	CTI.	E DFE	Tap 1	m¥ mV
0	Vorst Total Eye Violatio	<u>ns</u> ()	<u>Number Pa</u> D	ssing	Eyes	0	Number 	Failing Ey	<u>es</u>
0	Data Rate (GB/s)		Min Time 96.21796	<u>Betwee</u>	n Crossover	s (ps	<u>n</u>		
0	Mean Unit Interval (ps) 99.9999973	0	Max Unit 0.00	Interv	<u>al (ps)</u>	0	Min Unit	i Interval	(<u>ps)</u>
JIT	TER STATS Min Eye Wid	lth (ps)	66.08398	Jitter	(Per Edg		<u>,</u>		
	<u>1;at Q Value of</u> -7.03000		<u>Dj dd</u>			Me	easur	ed SJ	
	33.91601		15.84592		7	0	1.28521		
0	Mean Median Peak Jitter 0.00000	0 ^(ps)	Max_Median	i Peak	Jitter (ps)	0	Min Media 0.00000	an Peak Ji	tter (p:
0	Mean Peak to Peak Jitter 0.00000	<u>(ps)</u>	<u>Max Peak t</u> 30.47318	o Peak	Jitter (ps	ò	Min Peak 0.00000	to Peak J	litter (r
	TRANSITION EYE STA	<u>18</u>			<u>non tr</u>	ANSI	TION EYE	<u>STATS</u>	
Mi	i <mark>n Eye Height (mV)</mark> 541.5477	3		Mi	n Eye Heigh	nt (m\	<u>()</u> 499.707	98	
0	Min Voltage -0.55744	<u>Max Vo</u> 0.56431	<u>ltage</u>	0	<u>Min Voltag</u> -0.52880	<u>e</u>	0	<u>Max Volt</u> a 0.52561	<u>nge</u>
	Min Top Margin	<u>Min Bo</u>	ttom Margin		<u>Min Top Ma</u>	<u>rgin</u>	-	Min Bott	om Margi
\circ	0.22887	-0.2426	8	0	0.21348		0	-0.21623	
0	Worst Number Violation		View PTM	Report		<u>Wc</u>	erst Numbe	er Violati	on
	•		Ties un	c nepor	•	0			

Appendix C-7: Calibration Procedure Overview – Select CLB Gen2 <u>Gen2</u>

- The Eye Height and Eye Width calibration procedures are different for Gen1 and Gen2.
- Refer to Appendix-A for the Calibration Channel to use.
- Apply calibrated SJ and RJ values with SSC enabled.
- Capture three CP9 waveforms.
- Select the template by referring to Appendix-B.
- The analysis result is Eye Height (mV) in SigTest.
- Measure with all three Compliance Load Board variants (5.6", 7.1", & 8.1").
- Choose the Compliance Load Board achieving the results closest to 70 mV EH (usually 5.6").

With Calibration Fixture

Appendix C-8: Calibration Procedure Overview – Eye Width Gen2

- Capture three CP9 waveforms.
- Select the template by referring to Appendix-B.
- The analysis result is Min Eye Width (ps) in SigTest.
- Choose the De-emphasis setting giving the closest to 48 ps.
- Try the following steps until reaching the target Eye Width value.
 - If the width is too big, then add a second SJ tone at 87 MHz and adjust until the width target is met.
 - If an 87-MHz tone is used, hold it at the same magnitude for each SJ frequency.
 - If the width is too small, reduce the 100-MHz SJ tone until the reaching the target width.
 - If the 100-MHz SJ tone is reduced, the SJ targets at every other frequency are reduced by the same amount in ps.
- Try the following steps until reaching the target Eye Width value.

Eye Width Target Value (Gen2)

Appendix C-9: Calibration Procedure Overview – Eye Height Gen2

- Capture the CP9 waveform.
- Select the template by referring to Appendix-B.
- The analysis result is Eye Height (mV) in SigTest.
- Adjust amplitude at the BERT until reaching the target Eye height.

Eye Height Target Value (Gen2)

Appendix C-10: Calibration Procedure – Eye Height Gen1 micro-B/Type-A

<u>Gen1</u>

- There is no fixture calibration for Type-C Gen1.
- Use the Calibration Channel by referring to Appendix-A.
- Capture three CP0 waveforms and average the result.
- Select the template by referring to Appendix-B.
- The analysis result is Eye Height (mV) in SigTest.
- Adjust amplitude at the BERT until reaching the target Eye height value.

With Calibration Fixture

Eye Height Target Value (Gen1)

	Eye Height
Gen1 Type- A	180 mV +5/–0 mV
Gen1 micro -B	145 mV +5/–0 mV

Appendix C-11: Calibration Procedure – TJ Gen1 micro-B/Type-A

<u>Gen1</u>

- There is no fixture calibration for Type-C Gen1.
- Use the Calibration Channel by referring to Appendix-A.
- Capture three CP0 waveforms and average the result.
- Select the template by referring to Appendix-B.

TJ Target Value (Gen1)

	LT
Gen1	90 ps +5/–0 ps

Appendix C-12: Calibration Procedure – Short Channel Amplitude

- There is no calibration fixture calibration for short channel.
- Short channel amplitude is calibrated using 64 ones (1s) followed by 64 zeros (0s) followed by 128 bits of a 1010 clock pattern.
 - C:¥Anritsu¥MP1900A¥AppServers¥bin¥Pattern Files¥USB
 - 64ones_64zeros_128bit10.ptn
- Set Emphasis to 0.
 - Pre-shoot = 0 dB, De-emphasis = 0 dB
- Set SSC to OFF and all other Jitter sources to ON but set to zero.
- Adjust Amplitude to provide a maximum peak to peak differential voltage of 1200 mV +0/–20 mV using the clock portion of the pattern for measurement.

Amplitude for Short Channel	Target Value
-----------------------------	--------------

	Differential Amplitude p-p	
Gen1	1200 mV +0/–20 mV	
Gen2	1200 mV +0/–20 mV	

Appendix D-0: Rx Link Training

Negotiation (Handshake) Signals

- LFPS (Low Frequency Periodic Signaling)
 - Polling.LFPS Logic 0, Logic 1
 - SCD (SuperSpeedPlus Capability Declaration) SCD1, SCD2
 - ► LBPM (LFPS Based PWM Message) LBPM CAP, LBPM RDY
- Training Sequences
 - > TSEQ
 - ≻ TS1
 - ➤ TS2

Appendix D-1: Rx Link Training

Negotiation (Handshake) Signals

*for Polling.LFPS, tRepeat determines Logic0 or Logic1

- Logic Representation of Polling.LFPS

Appendix D-2: Rx Link Training

Negotiation (Handshake) Signals

*for SCD1/SCD2, trepeat determines Logic0 or Logic1

Inritsu envision : ensure

Appendix D-3: Rx Link Training

Negotiation (Handshake) Signals

- Logic Representation of LBPM

*for LBPM CAP/RDY, tBurst determines Logic0 or Logic1

Appendix D-4: Rx Link Training

Negotiation (Handshake) Signals

b1~0: LBPM Type	b3~2: LBPM Subtype	
	PHY Rate	
00: PHY Capability	00: 5Gbps	b7~b4: Reserved (0000)
	01: 10Gbps	
01: PHY Ready	Reserved (00)	

Anritsu envision : ensure

Appendix E-0: Compliance Patterns (CPs)

- Different CP sequence per Generation:
 - i. Gen1: CP0 (1st pattern) \rightarrow CP8 (last pattern)
 - ii. Gen2: CP0 (1st pattern) → CP15 (last pattern)

Appendix E-1: Compliance Patterns (CPs)

Appendix E-2: Compliance Patterns (CPs)

Appendix E-3: Compliance Patterns (CPs)

Appendix E-4: Compliance Patterns (CPs)

Appendix E-5: Compliance Patterns (CPs)

Appendix E-6: Compliance Patterns (CPs)

Appendix E-7: Compliance Patterns (CPs)

Appendix E-8: Compliance Patterns (CPs)

2018-3 MG

G No. MP1900A_SUB3.1-E-T-1-(1.00)