Product Introduction

/inritsu

MX370108A/MX269908A LTE IQproducer

MG3710A Vector Signal Generator

MS2690A/MS2691A/MS2692A/MS2830A Signal Analyzer MG3710A Vector Signal Generator

MS269xA-020, MS2830A-020/021 Vector Signal Generator option for MS269xA/MS2830A Signal Analyzer

MX370108A/MX269908A LTE IQproducer

MX370108A-001/MX269908A-001 LTE-Advanced FDD Option

* MX370108A-001 supports MG3700A Vector Signal Generator

Product Introduction

MG3710A Vector Signal Generator

MS269xA Signal Analyzer

MS2830A Signal Analyzer

Version 2.01

ANRITSU CORPORATION

Discover What's Possible™

Slide 1

What is LTE IQproducer?

The LTE IQproducer is PC software for generating waveform patterns in compliance with the 3GPP LTE FDD specifications in the 3GPP TS36.211, TS36.212, and TS36.213. Installing the MX370108A-001 /MX269908A-001 LTE-Advanced FDD option supports output of signals in compliance with the LTE-Advanced FDD standards.

The software runs under Windows installed in the MG3710A, MS2690A/91A/92A-020, MS2830A-020/021. It outputs modulation signals by selecting generated waveform patterns. The main frame requires a license.

LTE IQproducer

- Generating waveform patterns using LTE IQproducer => <u>The main frame requires a license</u>. The unlicensed software will run on the PC to test waveform pattern generation but an unlicensed SG cannot output signals

because it does not recognize the waveform patterns.

- Generating waveform patterns using EDA Tools (C, MATLAB, Microwave Office) => Free license

• MATLAB® is a registered trademark of The MathWorks, Inc.

• Windows® is a registered trademark of Microsoft Corporation in the USA and other countries.

Discover What's Possible™

Slide 2

What is LTE IQproducer?

MX370108A-001 LTE-Advanced FDD Option: for MG3710A MX269908A-001 LTE-Advanced FDD Option: for MS269xA-020, MS2830A-020/021

Installing the MX370108A-001 /MX269908A-001 supports output of signals in compliance with the LTE-Advanced FDD standards.

Example of Vector Signal Generator series LTE-Advanced Carrier Aggregation Function

Vector Signal Generator	Vector Signa	al Generator	Vector Signal Generator (Option for Signal Analyzer
Carrier Aggregation Series	MG3710A*1	MG3700A*1	MS2690A series Opt. 020*2	MS2830A Opt. 020/021*2
Intra-band contiguous Carrier Aggregation, Intra-band non-contiguous Carrier Aggregation	√ (1 unit)	√ (1 unit)	√ (1 unit)	√ (1 unit)
Inter-band non-contiguous Carrier Aggregation	✓ (2 RF 1 unit ^{*3} , or 1 RF 2 units)	√ (2 units)	√ (2 units)	√ (2 units)

*1: MX370108A LTE IQproducer and MX370108A-001 LTE-Advanced FDD Option installed.

*2: MX269908A LTE IQproducer and MX269908A-001 LTE-Advanced FDD Option installed.

*3: MG3710A-062(2.7GHz)/064(4GHz)/066(6GHz) 2nd RF Option installed.

What is LTE IQproducer?

MX370108A-001 LTE-Advanced FDD Option: for MG3710A

- MG3710A Vector Signal Generator
 - One Unit Supports Carrier Aggregation Modes -

The MG3710A supports an upper frequency limit of 6 GHz and an internal RF modulation bandwidth of 120 MHz as well as up to two RF output connectors.

As a result, one unit supports LTE-Advanced carrier aggregation modes.

Example: MG3710A Supports Carrier Aggregation

Slide 4

Features–LTE IQproducer

- Easy Setup
- Frame Structure Display for Channel Allocation and OFDM Symbol Power Confirmation
- Supports Spatial Multiplexing and Tx Diversity
- Generates Random Access Preamble Signals
- Sounding Reference Signal Setting
- Virtual Resource Block Type Setting
- Number of Antennas Setting
- UL Control Information Setting to UL-SCH
- Simple Parameter Setting
- Various Displays
 - •CCDF
 - •Spectrum
 - •Time Domain
- Simple and Convenient Clipping/Filtering

Main Screen

LTE IQproducer supports two setting screens:

"Easy Setup Screen" and "Normal Setup Screen".

• Easy Setup Screen

Rasy Setup (LTE FDD)
🐂 🖳 📶 🏩 🎥 🚵 🛒 🖾 🚟 💽 🔀 Normal Setup 🔝
System LTE Test Type BS Test/FRC(UL)
FRC(UL) A1-1 Bandwidth 5MHz Cell ID 0 Roll Off 0 Ts Filter Ideal
PUSCH
Start Number 0 nRNTI 0 hex Modulation QPSK UL-SCH
DMRS for
Group Off Sequence Off Delta ss 0 n(1)_DMRS 0 n(2)_DMRS 0
Sounding
SRS Off SRS 0
Pattern Setting
Package LTE_FDD
Export File Name FRC_A1-1_05M Comment Calculation & Load Calculation & Play

Normal Setup Screen

ITE IOproducer for MC2710					
File Edit Face Cature Transfer Catting	Cimulation				
File Edit Easy Setup Transfer Setting	<u>Simulation</u>				
🔁 🖻 📈 🎽			R	Easy Setup	
E-Common ^	Common			PUSCH #0	
🖻 Uplink	System	LTE		Data Status	Enable
Subframe #0	Number of Antennas	1		nRNTI	0000
E-PUSCH #0	Diversity Method			Modulation Scheme	64QAM
- Demodulation RS for	Precoding Method			Data Type	UL-SCH
Subframe #1	Number of Layers			Start Number of RB	0
	Number of Code words	1		Number of RBs	15
E-POSCH #0	Codebook Index	-		Power Boosting	0.000 dB
- Demodulation KS for	NID(1)	0		UL-SCH	
E Subtrame #2	NID(2)	0		Transport Block Size	11064
E PUSCH #0	Cell ID	0		Data Type	PN9fix
Demodulation RS for	Number of Frames	1		RV Index	0
😑 Subframe #3	Oversampling Ratio	2		HARQ-ACK	
- PUSCH #0	Sampling Rate	30.72	MHz	Data Status	Disable
- Demodulation RS for	Bandwidth	10	MHz	Data Type	ACK
-Subframe #4	Downlink/Uplink	Uplink		Total Number of Coded Bits	2
E-PUSCH #0	Cyclic Prefix	Normal		RI	D'auto
Demodulation BS for	Subcarrier Spacing	15	KHZ	Data Status	Disable
Subframe #5	Number of OFDM symbols per slot	/	7.	Data Type	1(100)
E-Subirane #5	Roll Off Length	0	IS	Total Number of Coded Bits	2
E-POSCH #0	Filter	144-41		CQI-PMI Data Otatua	Disable
- Demodulation RS for	Pall Off	Ideal		Data Status	Disable
Subtrame #6	Romon	0.0		Data Timo	Ph/06y
E-PUSCH #0				Total Number of Coded Rite	FINSIN
- Demodulation RS for			H	Total Number of Coded Bits	04
🖻 Subframe #7					
- PUSCH #0					
Demodulation RS for					
-Subframe #8					
⊨-PUSCH #0					
Demodulation RS for					
-Subframe #9					
*	•				

*Read the "MX3701xxA IQproducer" and "MX269xxxA series Software" Brochure for detail parameter setting range.

Discover What's Possible™

Slide 6

Easy Setup Screen

Because it is limited to major parameters, it generates waveform patterns using simple operation. Moreover, touch-panel operation is supported when IQproducer is executed on the MG3710A.

Use "Normal Setup function" for detailed parameter settings.

Discover What's Possible™

Slide 7

Easy Setup Screen: LTE-Advanced

		Test Type
Carrier Aggregation Mode	Heasy Setup (LTE FDD)	Test Type
Carrier Aggregation Mode	📄 🍋 📶 🏩 🎥 🚵 💥 🖾 🕷 🕼 Normal Setup 🔚	BS Test
Intra-band Inter-band	System LTE-Advanced Test Type Statute BS Test/FRC(UL)	E-UTRA Test Models
		FRC(UL)
Component Carrier	Carrier Aggregation Mode Intra-band	
Intra-band		
Component Carrier: #0 to #4	Component Carrier Status Bandwidth Cell ID Gain Freq Offset Phase Delay BS Test/FRC(UL) (MHz) (dB) (MHz) (deg) (TS)	
Inter-band	0 2 5 7 0.00 -10.2000 0 0 AI-1	
Band: #0, #1	$1 \qquad \boxed{2} \qquad 5 \qquad 2 \qquad 0.00 -5.1000 \qquad 0 \qquad 0 \qquad \boxed{111}$	
Component Carrier: #0 to #4	2 M 5 3 0.00 0.0000 0 0 APT	
[Setup Item]	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Status, Bandwidth, Cell ID, Gain		
Frequency Offset, Phase, Delay	Pattern Setting	
	Package LTE-A_FDD	
	Event File Name SCCc EPC/UII)	
	E-UTRA Test Models Setup	Screen
	BS Test/E-UTRA Test Models	×
FRC(UL) A1-1 Bandwidth 5MHz Cell ID 1	Length 0 Ts Filter Ideal	D 1 Roll Off 0 Ts Filter Ideal
PUSCH		
Start Number 0 nRNTI 0000 hex Modulation	on QPSK UL-SCH OK	Cancel
DMRS for PUSCH		
Group Off Sequence Off Delta ss 0 n	n(1)_DMRS n(2)_DMRS	
Sounding		
SRS Off SRS Subframe 0		
OK		
LTE-Adva	anced Easy Setup Screen (Example: FRC(UL))	est Modes)

Discover What's Possible™

Slide 8

Normal Setup Screen

Generates test model and RMC (Reference Measurement Channel) waveform patterns used for LTE base station TRx tests and FRC (Fixed Reference Channel) waveform patterns used for LTE UE TRx tests.

*Read the "MX3701xxA IQproducer" and "MX269xxxA series Software" Brochure for detail parameter setting range.

Discover What's Possible™

Slide 9

Normal Setup Screen: Easy Setup Parameter

Using Easy Setup Menu sets typical parameter values as a batch for 3GPP-defined test signals. Change only the required parts to use.

The Easy Setup Menu sets typical parameter values for 3GPP-defined test signals as a batch.

Discover What's Possible™

Slide 10

Normal Setup Screen: Easy Setup Parameter

BS Test / E-UTRA Test Models

Easy Setup I	iransfer	Setting <u>S</u> imulation			
BS Test 🔸	E-U1	'RA Test Models 🔸	E-TM1.1		BW = 1.4MHz
UE Test 🕨	FRC	•	E-TM1.2	•	BW = 3MHz
1		Common	E-TM2	•	BW = 5MHz
link		Number of Antenna	E-TM3.1	•	BW = 10MHz
^r erence signal		Diversity Method	E-TM3.2	•	BW = 15MHz
СН		Precoding Methoc	E-TM3.3	•	BW = 20MHz
	2	Alumber of Lavore	1	-	1 11 1200

BS Test / FRC

Easy Setup Ir	ansfer	Setting Simulation					
BS Test 🔸	E-U	TRA Test Models 🔸	SCOR ALL ATRU	0			F.,
UE Test 🔸	FRC	•	FRC(QPSK, R=1/3)	•	A1-1 🕨	BW = 1.4MHz	
1		Common	FRC(16QAM, R=2/3)	+	A1-2 🕨	BW = 3MHz	
ilink		Number of Antenna	FRC(QPSK 1/3)		A1-3 🕨	BW = 5MHz	
ference signal		Diversity Method	FRC(16QAM 3/4)		A1-4 +	BW = 10MHz	
ан		Precoding Methoc	FRC(64QAM 5/6)		A1-5 🕨	BW = 15MHz	
nchronization sig		Number of Layers	PRACH Test Preambles	+1	Zadon-Ci	BW = 20MHz	
bframe #0		Number of Code v	FRC(Scenario 1)	+	Power Boo	sung	_
PCFICH		Codebook Index	ERC(Scenario 2)		Secondary	synchroniz	
PD CCI I HO		NID(1)	(NC(OCENARIO Z)	1	Data Statu	s	

UE Test / RMC(DL) / FRC

Easy Setup Ir	ansfer Setting	Simulation		
BS Test 🔸		134 ACOA	ATATS	
UE Test 🔸	RMC(DL) ▶	FRC(Receiver Requirements)	•	BW = 1.4MHz
	RMC(UL) >	FRC(Tx Characteristics)	•	BW = 3MHz
link 👘	Numbe	FRC(Maximum input level)	•	BW = 5MHz
erence signal	Divers	FRC(QPSK, R=1/3)	•	BW = 10MHz
ЭН	Precou	FRC(16QAM, R=1/2)	•	BW = 15MHz
nchronization sig	Numb	FRC(64QAM, R=3/4)	•	BW = 20MHz
oframe #0	Numb	FRC(Single PRB)	+T	-ower boos
PCFICH	Codet	EBC(buc optoppo porto)		Secondary s
	NID(1)	FRC(two antenna ports)		Data Status
	NID(2)	FRC(four antenna ports)		Data Type
	Cell ID_	FRC(FDD)	*	Power Boost

UE Test / RMC(UL)

Easy Setup I	ransfer Setting	Simulation		
BS Test 🔸			TH	Time Clipping
UE Test 🔸	RMC(DL) 🕨		11	bornar J
1	RMC(UL) ▸	Full RB(QPSK)	•	BW = 1.4MHz
ilink	Numbe	Full RB(16QAM)	•	BW = 3MHz
ference signal	Divers	Partial RB(QPSK)	•	BW = 5MHz
СН	Precou	Partial RB(16QAM)	•	BW = 10MHz
nchronization sig	Numbe	ar of Layers		BW = 15MHz
bframe #0	Numbe	ar of Code words		BW = 20MHz
	Codah	nak Inday		

Discover What's Possible™

Normal Setup Screen: LTE-Advanced

This screen is used to set detailed parameters, such as the carrier aggregation mode and component carriers for LTE-Advanced waveforms.

Carrier Aggregation Mode

Intra-band

Component Carrier #0 to #4

Inter-band

Band #0, #1 Component Carrier #0 to #4

Generated Channels

Downlink

Reference Signal Primary Synchronization Signal Secondary Synchronization Signal PBCH (P-BCH) PCFICH PDCCH (Downlink control channel information) PDSCH (DL-SCH) Subframe #0 to #9 PHICH **Uplink** PUCCH (Uplink control channel information) PUSCH (UL-SCH) Demodulation RS for PUCCH/PUSCH

Sounding RS Random Access Preamble

Random Access Pream

Normal Setup Screen

*Read the "MX3701xxA IQproducer" and "MX269xxxA series Software" Brochure for detail parameter setting range.

Discover What's Possible™

Slide 12

Normal Setup Screen: LTE-Advanced Easy Setup Parameter

Example: E-UTRA Test Modes Setup

Selecting target signals at the Easy Setup Parameter function of the Normal Setup Screen supports batch setting of parameters matching component carriers with standards.

Select Component Carriers × Easy Setup Transfer Setting Simulation BS Test E-UTRA Test Models 🕨 CCDE TH A Time Clipping -FRC(QPSK, R=1/3) UE Test 🔸 A1-1 🕨 BW = 1.4MHzFRC ъI \square Component Carrier #0 FRC(16OAM, R=2/3) A1-2 🕨 BW = 3MHzCommo FRC(QPSK 1/3) A1-3 🕨 BW = 5MHz⇒onent Carrier #0 System. Component Carrier #1 Carrier Aggregati FRC(16QAM 3/4) ilink. A1-4 🕨 BW = 10MHzDownlink/Uplink Component Carrier #2 Subframe #0 FRC(64QAM 5/6) A1-5 🕨 BW = 15MHzPUSCH #0 рага туре PRACH Test Preambles BW = 20MHz $\mathbf{\nabla}$ Component Carrier #3 Resource anocation type -Demodulation RS FRC(Scenario 1) Start Number of RB Subframe #1 FRC(Scenario 2) Component Carrier #4 Number of RBs Subframe #2 OK. Cancel Simple operation by selecting target signals and component carriers as batch

Select Component Carrier Screen

*Read the "MX3701xxA IQproducer" and "MX269xxxA series Software" Brochure for detail parameter setting range.

Frame Structure Screen

Clicking the [Frame Structure] icon opens the Frame Structure screen. It is useful for checking the power of each OFDM symbol and channel allocation status and.

Discover What's Possible™

Slide 14

Frame Structure

Frame Structure Screen (Channel Allocation)

Any test pattern can be generated due to channel allocation of PDSCH, PUCCH and PUSCH in RB units.

Downlink (PDSCH number: 25 at setting)

Discover What's Possible™

Slide 15

/inritsu

Supports Spatial Multiplexing and Tx Diversity

MIMO signal parameters (Spatial Multiplexing/Tx Diversity) for downlink can be set by setting the number of received antennas to 2 or 4 at the Common Parameter Setting screen.

Number of Antennas parameter setting

Spatial Multiplexing (Example of two antennas)

Channel capacity and data rate doubled

Diversity Methodpa parameter setting

Tx Diversity (Example of two antennas)

Coverage at cell edge upgraded by improving reliability for fading signals and lowering available SNR

Discover What's Possible™

Slide 16

/inritsu

Random Access Preamble Setting

Random Access Preamble signal parameters for frequency hopping and power ramping can be set when Random Access Preamble is selected at Uplink Parameter Setting.

Random Access Preamble Parameter Setting

Discover What's Possible™

Slide 17

Sounding Reference Signal Setting

SRS (Sounding Reference Signal) ON with Uplink parameter setting sets Sounding RS parameters.

Discover What's Possible™

Slide 18

Virtual Resource Block Type Setting

Downlink signal Subframe #0 to #9 can select [Distributed] with Virtual Resource Block Type.

/inritsu

MX370108A/MX269908A-E-L-1

Slide 19

Discover What's Possible™

Number of Antennas Setting

The Frame Structure display changes according to the Number of Antennas set using the Common parameter setting.

Discover What's Possible™

Slide 20

UL Control Information Setting for UL-SCH

The UL-SCH UL Control Information (HARQ-ACK, RI, CQI-PMI) parameters are set at Uplink signal PUSCH #0 to #9.

Data Type Parameter Setting at PUSCH #0 to #9

Discover What's Possible™

Slide 21

Simple Parameter Setting Function

n_cs is set automatically by setting the demodulation RS for PUSCH parameter.

n_cs Setting Parameter Setting

Demodulation RS for PUSCH		
Data Type	Base Sequence	
Group Hopping	Disable	
Sequence Hopping	Disable	
Delta ss	0	
Base Sequence Group Number u	0	
Base Sequence Number v	0	
n_cs Setting	Auto 💌	
n(1)_DMRS	Auto	
n(2)_DMRS	Manual	

Demodulation RS for PUSCH				
Data Type	Base Sequence			
Group Hopping	Disable			
Sequence Hopping	Disable			
Delta ss	0			
Base Sequence Group Number u	0			
Base Sequence Number v	0			
n_cs Setting	Auto			
n(1)_DMRS	0			
n(2)_DMRS	0			
Cyclic Shift for 1 st				
n_cs	4			
alpha	2.09440			
Cyclic Shift for 2nd				
n_cs	10			
alpha	5.23599			
Cyclic Shift n_cs is set automatically.				

Discover What's Possible™

Slide 22

Waveform Generation: Calculation

After setting parameters, click the [Calculation] icon to generate the waveform pattern.

Discover What's Possible™

Calculation & Load & Play

After setting parameters, click the [Calculation] icon to generate the waveform pattern.

Calculation:

Generates a waveform pattern after parameters are set. /Calculation/

Calculation & Load:

After waveform generation is finished, the created waveform pattern is loaded into the MG3710A waveform memory. /Calculation/ > /Load/

/Calculation/ > /Load

Calculation & Play:

After waveform generation is finished, the created waveform pattern is loaded and selected at the MG3710A waveform memory.

/Calculation/ > /Load/ > /Select/

Discover What's Possible™

Slide 24

File size of waveform patterns

/incitcu

The presence/absence of the ARB Memory Expansion (option) and Baseband Signal Combination Function (option) is selected. Selecting the ARB Memory Expansion (option) and the Baseband Signal Combination Function (option) generates a bigger waveform pattern, while selecting the Baseband Signal Combination Function (option) generates a waveform pattern. If an uninstalled option is selected, sometimes the created waveform pattern may not be usable. Set the combination of installed options based on the following setting items.

Items	Combinations of Options	Th
Memory 64M samples	None] foi
	Option48	
Memory 64M samples $\times 2$	and	
	Option 78	
	Option45	1
Memory 256M samples	or	Me
	Option 75	Me
	Option 45 and Option 48	Ont
Memory 256M samples $\times 2$	or	N N
	Option 75 and Option 78	Me
	Option46	Me
Memory 1024M samples	or	Opt
	Option 76	Me
	Option 46 and Option 48	
Memory 1024M samples $\times 2$	or	Me
	Option 76 and Option 78	Opt

The maximum size of the generated waveform pattern for each of the setting items is shown below.

 Items	Maximum Size
Memory 64M samples	64M samples
 Memory 64M samples \times 2 (With Option 48, 78)	128M samples
Memory 256M samples	256M samples
Memory 256M samples \times 2 (With Option 48, 78)	512M samples
 Memory 1024M samples	512M samples
Memory 1024M samples × 2 (With Option48, 78)	512M samples

File size of waveform patterns

MS2830A:

Select whether the ARB memory expansion option 256Msamples is installed.

Selecting With Option27 (Memory 256M samples) supports creation of larger waveform patterns. If the ARB memory expansion option is not installed, the generated waveform pattern may not be able to be used. Waveform patterns cannot be created with a size greater than 64M samples when Without Option27 (Memory 256M samples) is selected. Select either according to the presence of ARB memory expansion option.

Model	Items	ARB Memory Expansion
MS2830A	With Option27 (Memory 256M samples)	1 GB
	Without Option27 (Memory 256M samples)	$256 \mathrm{MB}$

MS269xA:

ARB Memory Expansion (option) is not available for MS269xA. Only Memory 256M samples, 1 GB is available.

Discover What's Possible™

Slide 26

<u>/inritsu</u>

United States

Anritsu Company 1155 East Collins Blvd., Suite 100, Richardson, TX 75081, U.S.A. Toll Free: 1-800-267-4878 Phone: +1-972-644-1777 Fax: +1-972-671-1877

Canada

Anritsu Electronics Ltd. 700 Silver Seven Road, Suite 120, Kanata, Ontario K2V 1C3, Canada Phone: +1-613-591-2003 Fax: +1-613-591-1006

• Brazil

Anritsu Eletrônica Ltda. Praça Amadeu Amaral, 27 - 1 Andar 01327-010 - Bela Vista - São Paulo - SP - Brazil Phone: +55-11-3283-2511 Fax: +55-11-3288-6940

Mexico

Anritsu Company, S.A. de C.V. Av. Ejército Nacional No. 579 Piso 9, Col. Granada 11520 México, D.F., México Phone: +52-55-1101-2370 Fax: +52-55-5254-3147

United Kingdom

Anritsu EMEA Ltd. 200 Capability Green, Luton, Bedfordshire, LU1 3LU, U.K. Phone: +44-1582-433200 Fax: +44-1582-731303

France

Anritsu S.A. 12 avenue du Québec, Bâtiment Iris 1- Silic 612, 91140 VILLEBON SUR YVETTE, France Phone: +33-1-60-92-15-50 Fax: +33-1-60-46-10-65

• Germany

Anritsu GmbH Nemetschek Haus, Konrad-Zuse-Platz 1 81829 München, Germany Phone: +49-89-442308-0 Fax: +49-89-442308-55

• Italy

Anritsu S.r.I. Via Elio Vittorini 129, 00144 Roma, Italy Phone: +39-6-509-9711 Fax: +39-6-502-2425

Sweden Anritsu AB

Annisu AD Borgarfjordsgatan 13A, 164 40 KISTA, Sweden Phone: +46-8-534-707-00 Fax: +46-8-534-707-30

• Finland

Anritsu AB Teknobulevardi 3-5, FI-01530 VANTAA, Finland Phone: +358-20-741-8100 Fax: +358-20-741-8111

Denmark

Anritsu A/S (Service Assurance) Anritsu AB (Test & Measurement) Kay Fiskers Plads 9, 2300 Copenhagen S, Denmark Phone: +45-7211-2200 Fax: +45-7211-2210

Russia

Anritsu EMEA Ltd. Representation Office in Russia

Tverskaya str. 16/2, bld. 1, 7th floor. Russia, 125009, Moscow Phone: +7-495-363-1694 Fax: +7-495-935-8962

• United Arab Emirates Anritsu EMEA Ltd.

Dubai Liaison Office P O Box 500413 - Dubai Internet City Al Thuraya Building, Tower 1, Suit 701, 7th Floor Dubai, United Arab Emirates Phone: +971-4-3670352 Fax: +971-4-3688460

• India

Anritsu India Private Limited

2nd & 3rd Floor, #837/1, Binnamangla 1st Stage, Indiranagar, 100ft Road, Bangalore - 560038, India Phone: +91-80-4058-1300 Fax: +91-80-4058-1301

Specifications are subject to change without notice.

Singapore

Anritsu Pte. Ltd. 60 Alexandra Terrace, #02-08, The Comtech (Lobby A) Singapore 118502 Phone: +65-6282-2400 Fax: +65-6282-2400

• P.R. China (Shanghai)

Anritsu (China) Co., Ltd. Room 1715, Tower A CITY CENTER of Shanghai, No.100 Zunyi Road, Chang Ning District, Shanghai 200051, P.R. China Phone: +86-21-6237-0898 Fax: +86-21-6237-0899

• P.R. China (Hong Kong)

Anritsu Company Ltd. Unit 1006-7, 10/F., Greenfield Tower, Concordia Plaza, No. 1 Science Museum Road, Tsim Sha Tsui East, Kowloon, Hong Kong, P.R. China Phone: +852-2301-4980 Fax: +852-2301-3545

Japan

Anritsu Corporation 8-5, Tamura-cho, Atsugi-shi, Kanagawa, 243-0016 Japan Phone: +81-46-296-1221 Fax: +81-46-296-1238

Korea

Anritsu Corporation, Ltd.

502, 5FL H-Square N B/D, 681 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400 Korea Phone: +82-31-696-7750 Fax: +82-31-696-7751

Australia

Anritsu Pty. Ltd. Unit 21/270 Fentree Gully Road, Notting Hill, Victoria 3168, Australia Phone: +61-3.9558-8177 Fax: +61-3-9558-8255

Taiwan

Anritsu Company Inc. 7F, No. 316, Sec. 1, NeiHu Rd., Taipei 114, Taiwan Phone: +886-2-8751-1816 Fax: +886-2-8751-1817

