NXP AUTOMOTIVE

Technical Training and Cross Selling Camp

S32K1XX SECURITY AND FLASH PROTECTION

王云川

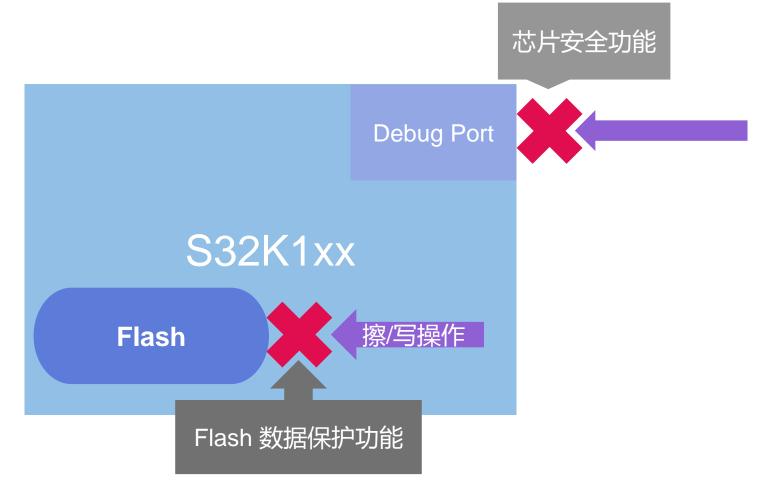
APPLICATION ENGINEER

DEC 2019

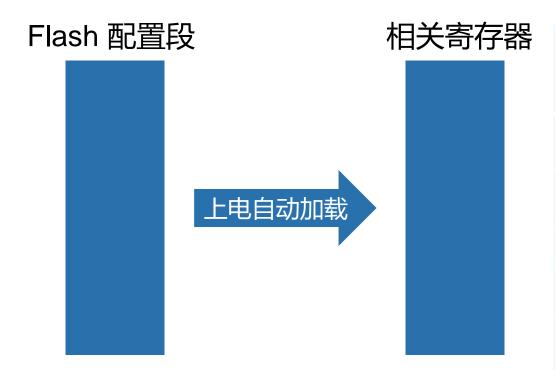
SECURE CONNECTIONS FOR A SMARTER WORLD

提纲

- ·芯片安全和Flash数据保护功能介绍
- 配置芯片安全功能
- ·开启Flash数据保护


01.

芯片安全和Flash数据保护功能介绍


S321xx芯片安全和Flash数据保护功能

- 芯片安全功能: 关闭调试口的功能, 切断外部访问芯片的路径
- · Flash数据保护功能:关闭设定Flash区域的擦写权限

配置段与相关寄存器

Flash配置段地址	长度 (Bytes)	位域功能	初始化的寄存器
0x0_0400 - 0x0_0407	8	Backdoor key 配置段	
0x0_0408 - 0x0_040B	4	P-Flash保护配置段	FPROT0-3
0x0_040F	1	D-Flash保护配置段	FDPROT
0x0_040E	1	E-Flash保护配置段	FEPROT
0x0_040D	1	Flash配置段(详见芯片手册)	FOPT
0x0_040C	1	Flash安全功能配置	FSEC

02。配置芯片安全功能

FSEC寄存器配置

Bit	7	6	5	4	3	2	1	0
	KEY	/EN	ME	EN	FSL	ACC	SI	EC

• KEYEN: backdoor 使能

• MEEN: mass erase使能

· FSLACC: 工厂失效分析访问码

· SEC: 芯片安全功能使能

芯片永久加锁

设置情况	可使用权限		
芯片处于安全状态,Mass erase和工厂失效分析访问权限功能开启。	NXP 可以使用工厂失效分析码对芯片进行失效分析、 关闭芯片的安全功能和访问Flash数据。		
芯片处于安全状态,工厂失效分析访问权 限功能关闭。	NXP 可以使用工厂失效分析码对芯片进行失效分析、 关闭芯片的安全功能,但是无法访问Flash中的数据。 只能通过工厂失效分析码擦除全部Flash		

03。 开启Flash数据保护功能

Flash数据保护区域划分说明

• PFlash: 32的区域

• DFlash: 8个区域

• EFlash: 8个区域

Eg: 对于512k的Pflash,每个区域为16KB

Region	Start Address	End Address
0	0x0000_0000	0x0000_3FFF
1	0x0000_4000	0x0000_7FFF
2	0x0000_8000	0x0000_BFFF
31	0x0007_C000	0x007_FFFF

开启Flash数据保护的方式

- ·配置Flash配置段:
- 应用代码中直接配置寄存器: 只能将未保护的区域设置为保护

SECURE CONNECTIONS FOR A SMARTER WORLD