S32K144 PMSM SINGLE-SHUNT SOLUTION

JASON YANG NOV 2019

SECURE CONNECTIONS FOR A SMARTER WORLD

CONFIDENTIAL AND PROPRIETARY

Agenda

- Hardware Overview
- S32K144 Motor Control Peripherals
 TRGMUX, FTM, PDB, ADC
- Dual-Shunt Solution
- Single-Shunt Solution
 - Basic mechanism
 - Double-switch PWM generation
 - Timing and synchronization
 - Software execution time
 - Issues and solution

HARDWARE OVERVIEW

MTRDEVKSPNK144: 3-phase PMSM Development Kit

- 32-bit NXP S32K144 controller board
- 3-phase low-voltage power stage DEVKIT-MOTORGD based on SMARTMOS[®] MC34GD3000 pre-driver
- Supports low-voltage PMSM motors
- DC-bus overvoltage, overcurrent and undervoltage fault detection
- Demo software (Rev1.3) created in S32 Design Studio for Arm[®]
- FreeMASTER visualization/configuration support
- Quick Start Guide and Schematic available
- Application note coming soon

Connections

FTM3 – PWM output to GD3000

ADC0_CH4 – Phase A current sampling

ADC1_CH15 – Phase B current sampling

ADC1_CH6 – DC bus current sampling

ADC1_CH7 – DC bus voltage sampling

LPSPI0 – Interface with GD3000

LPUART1 – Interface with PC FreeMaster

PTE10 – INT input from GD3000

GPIO for Buttons; GPIO for enable/reset GD3000 GPIO for TRGMUX output GPIO for RGB LED GPIO for software debug 4 CONFIDENTIAL AND PROPRI

3-Phase Inverter Circuit

Current Sampling Circuit (Dual Shunt)

6 CONFIDENTIAL AND PROPRIETARY (V1 - V2) * 10 = (Vout - 2.5V) (for Single Shunt)

S32K144 MOTOR CONTROL PERIPHERALS

S32K144

- ARM Cortex M4 Core, 80MHz with FPU
- 4K I/D Cache
- FTM generates 3 pairs of complementary PWMs with flexible synchronization mechanism
- TRGMUX: FTM can trigger PDB timer start
- ADC sampling can be triggered by PDB with multiple delays;
- LPSPI is used to control GD3000
- LPUART is used for FreeMaster communication

Digital

Components

5V Analogue

Components

Clock Settings Summary

SOSC				
SOSC Clock [Hz] 800000 SOSC Clock Div1 [Hz] 8000000 SOSC Clock Div2 [Hz] 8000000	8 MHz 8 MHz 8 MHz			
SPLL				
SPLL Clock [Hz] 16000000 SPLL Clock Div1 [Hz] 80000000	160 MHz 80 MHz			
SPLL Clock Div2 [Hz] 4000000	40 MHz			
RUN Mode				
Core Clock [Hz] 80000000 Bus Clock [Hz] 4000000	80 MHz			
Slow Clock [Hz] 2666666666666666	26.667 MHz			

Peripheral functional clocks						
4000000	40 MHz					
4000000	40 MHz					
0	0 Hz					
0	0 Hz					
8000000	8 MHz					
8000000	8 MHz					
8000000	80 MHz					
0	0 Hz					
4000000	40 MHz					
4000000	40 MHz					
0	0 Hz					
0	0 Hz					
0	0 Hz					
4000000	40 MHz					
4000000	40 MHz					
0	0 Hz					
	clocks 40000000 0 0 8000000 8000000 8000000 8000000	40000000 40 MHz 40000000 40 MHz 0 0 Hz 0 0 Hz 8000000 8 MHz 8000000 8 MHz 8000000 80 MHz 8000000 80 MHz 0 0 Hz 40000000 40 MHz 40000000 40 MHz				

FTM: Complementary PWM with deadtime

Deadtime insertion is enabled for channel n and (n+1) when DTENx=1 and DTVAL[5:0] is not zero in the register COMBINE.

Deadtimes are a 5bit multiple of the system clock with a configurable prescaler (1, 4, 16). (12.5ns to $6,4\mu$ s)

Deadtimes apply to the rising edge

Trigger output connections

PDB connections

15 CONFIDENTIAI

DUAL-SHUNT SOLUTION

Current Sensing with Shunt Resistors

Shunt resistors voltage drop measured

SW calculation of all 3 phase currents needed

- Phase (e.g. Phase A) current sensing possible only when bottom switch (transistor + diode) is conducting
- Dual-sampling required

SINGLE-SHUNT SOLUTION

BASIC MECHANISM

Current Sensing for Single Shunt – Phase B current

Current Sensing for Single Shunt – Phase C current

Phase B Current Sensing Point

Current Sensing for Single Shunt – Double Switch PWM

Current Sensing for Single Shunt – Double Switch

Too narrow for ADC sampling. Need Adjust PWM Waveform.

Adjust PhA and PhC Center Pulse Width to create enough delta time between PhA and PhB PWM edges.

25 CONFIDENTIAL AND PROPRIETARY

Current Sensing - Calculation

- Phase currents reconstruction according to Phase PWM signals (sectors 1..6)
- ► 3rd phase current calculated from 2 measured phases:

DOUBLE-SWITCH PWM GENERATION

Double Switch PWM Generation

1)Use two 25uS simple PWM to create one 50uS double-switch PWM;

2) Enable FTM3 reload interrupt in MCU initialization;

3) Update CnV registers with two sets of values in FTM3 reload ISR. One set of CnV values for even cycle ISR and the other for odd cycle ISR. For example, to generate 30% duty PWM: Even cycle: pwm_cycle_cnt==0 means it's an even cycle increment pwm_cycle_cnt++; write 100 to C0V and write 700 to C1V; FTM_PWMLOAD_LDOK=1;
Odd cycle: pwm_cycle_cnt==1 means it's an odd cycle increment pwm_cycle_cnt++; write 1300 to C0V and write 1900 to C1V; FTM_PWMLOAD_LDOK=1;

4) The CnV registers update occurred at the next reload point

5) Combine even cycle and odd cycle together to create a 50uS period double-switch PWM.

Double Switch PWM Synchronization with FTM_INIT_TRIG

29 CONFIDENTIAL AND PROPRIETARY

TIMING AND SYNCHRONIZATION

Single-Shunt Timing Chart

1. FTM3 configured in edge mode, combine mode, 25uS period; After writing LDOK bit, the new values will be effective at next reload point (FTM counter wrap from MOD to CNTIN).

2. FTM3 Reload interrupt enabled; and in its ISR, PWM registers CnV are updated for next period;

3. Software will enable FTM3 Init Trigger at certain point;

4. FTM3 Init Trig start LPIT0_CH0 and PDB1 through TRGMUX settings;

5. Use LPIT0_CH0 ISR to disable FTM3 Init Trig

6. PDB1 timer start and trigger ADC1 sampling: sample ADC1_Ch6 4 times for DC bus current; sample ADC1_Ch7 1 time for DC bus voltage;

7. When all ADC results ready, ADC1 ISR occurred, calculate phase A/B/C currents, run FOC, calculate PWM edges, and PDB1 pre-trigger delays; Update PDB1 registers;

8. PDB1 ISR occurred in the last 25uS window. Re-enable FTM3 Init Trig, update PWM edges with new values;

Disable FTM Init Trig Output 9. Within the 25uS window, FTM3 CnV registers are updated twice, 1st is at the beginning in FTM3 Reload ISR, 2nd is in PDB1 ISR; 2nd time will take effect even though the LDOK is already written in the Reload ISR.

31 CONFIDENTIAL AND PROPRIETARY

FOC execution time is 72uS without optimization; FOC execution time is 43.5uS with highest level compiler optimization;

Oscilloscope Captured Signals

Channel Labels	s		+0.8 ms		+0.9 ms	
FTM3_INIT_TRIG						
PhA_PWM						
PhB_PWM						
PhC_PWM						
PDB_PreTrig						
Software Exe Time						
FTM3 Reload ISR						
PhA_PWMPhB_PWMPhC_PWMPDB_PreTrigSoftware Exe TimeFTM3 Reload ISR Or PDB ISR						

SOFTWARE EXECUTION TIME

Software Execution Time

	S32K144 Single Shunt	S32K144 Dual Shunt
Board Buttons	2.6uS	1.3uS
MEAS_Get3PhCurrent	5.3uS	5.1uS
FaultDetection	4.7uS	4.3uS
CalcOpenLoop() AMCLIB_BemfObsrvDQ() AMCLIB_TrackObsrv() Mode Identification	17.7uS	15.4uS
FocSlowLoop()	8.8uS	7.2uS
FocFastLoop()	13.3uS	11.9uS
ACTUATE_SetDutycycle()	3.9uS	2.9uS
LED and FMSTR_Recorder	1.3uS	1.3uS
Total (with FocSlowLoop)	57.6	49.4
Total (without FocSlowLoop)	48.8	42.2

PDB TRIGGER TIMING OFFSET

MCU PWM_H output to PhA MOSFET output delay: 0.23uS; Dead time 0.39uS;

Software set PDB1 pretrigger **0.5uS** before MCU PWM_H transition edge.

Minimum ADC sample width: 1.5uS;

GATE DRIVE

t _{onh}	 High-side turn on time Transition time from 1.0 V to 10 V, Load: C = 500 pF, Rg = 0, (Figure 7) 	-	20	35	ns	(42)
t _{d_onh}	 High-side turn on delay Delay from command to 1.0 V, (<u>Figure 7</u>) 	130	265	386	ns	(43)
t _{OFFH}	 High-side turn off time Transition time from 10 V to 1.0 V, Load: C = 500 pF, Rg = 0, (Figure 8) 	-	20	35	ns	(42)
t _{D_OFFH}	 High-side turn off delay Delay from command to 10 V, (<u>Figure 8</u>) 	130	265	386	ns	(43)

ISSUES AND SOLUTION

Issue – Current Measurement And Calculation

- Current sampling values (1.6A) don't match the results by current probe (2.5A);
- This issue was resolved by removing the C16 capacitor on GD3000 EVB.
- This capacitor create a low pass filter causing ADC not able to sample the accurate DC bus current value.

ADC Measurement: +/-1.6A

Current Probe: +/-2.5A

Variable Watch			🗢 🕂 🗙
Name	Value	Unit	
On/Off	Run	ENUM	
Speed Required	200	[Rpm]	
Speed FOC loop	0	[Rpm]	
Mode	manual	ENUM	
Position Mode	tracking	ENUM	
State	Run	ENUM	
Event	e_run	ENUM	
Clear Faults	-	ENUM	

Faults Handling

Encountered following faults during debug:

la/lb/lc/ldcb over-current: Change the current limits values set in configuration header file.

Udcb Lo:

Maybe the power supply voltage is pulled low by transient big current. Properly increase the power supply current limit.

GD3000:

Adjust the resistor on PCB to change the over-current limit value

PDB1:

PDB1 sequence error, maybe ADC conversion is not completed while a new PDB pre-trigger occurred.

Current Loop Parameters

Motor 1: PMSM	0					Tuning Mode	e: Expert 🗸		
ntroduction Param	eters Current Loop	Speed Loop	Sensors	Sensorless	Control Struc	Output File	App Control		
		Curre	ent Control	Loop					
 Loop Parameters 	L	—— — D av	xis Recurrent P	I Controller	— — Q axis	PI Controller	- Recurrent —		
Sample Time	0.00015 [sec]	D_C	CC1sc	0.17184078	a_cc	1sc	0.28893531		
FD E	150 [Hz] 1 [-]	D_0	CC2sc	-0.12187591	Q_CC	2sc	-0.23097606		
- Current PI Contro	oller Limits							This is the max allowed DW/M duty	00
Output limit	80 [%]								00
 DC-bus voltage II 	R filter settings —								
IIR Cut-off freq	100 [Hz]								
Update	Target		Reload Data		ſ	Store Data			
			annen hans a						

SECURE CONNECTIONS FOR A SMARTER WORLD