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Preface

There was a time when I was sure this book would never be fi nished. Believe it or not, 
I began working on it about 18 years ago, and for a long time it seemed that each year 
left me farther from completion (a consequence of working in a rapidly changing fi eld). 
Several things conspired to fi nally make this book a reality. Ron Hershel, the closest 
person to a mentor I have known, gave me sage advice on writing a book: Don’t try to 
write it all at once – instead, write and publish pieces of your book as journal articles 
over time, then collect them up when you have written enough. That advice has served 
me well, especially since I have been writing a quarterly column for Microlithography 
World since 1992. That approach helped me fi nish my fi rst book, Inside PROLITH: A 
Comprehensive Guide to Optical Lithography Simulation, in 1997.

While I enjoyed fi nishing and publishing Inside PROLITH, my ambition was to write 
a more comprehensive university textbook on the topic of semiconductor lithography. I 
have been teaching a graduate level class on optical lithography at the University of Texas 
at Austin since 1991, using handouts in place of a real book. Each year I strove to add 
more material to make those notes more complete. But I ran into the same problem as 
before – new material in this quickly changing fi eld was needed at a faster rate than I 
was writing.

I solved this problem in two ways. First, I began to focus solely on fundamental prin-
ciples needed to understand the science of lithography. While lithography practice changes 
quickly, the fundamental principles underlying that practice do not. The result, though, 
is that this book has very little ‘practical’ advice, that is, descriptions of best practices in 
the industry. While such practical descriptions can be very useful, they also become dated 
very quickly. I hope that by focusing on fundamentals this book might be useful to the 
reader many years after it is purchased.

Secondly, I quit my job and worked on this book full-time (well, almost full time) for 
the fi nal year before its completion. I hope that this admission doesn’t scare off the earnest 
would-be author, but the reality was, for me at least, that dedicated effort was required 
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to complete the project. Much of the material contained herein is, of course, a tutorial 
review of the published literature on lithography and related sciences. But a signifi cant 
portion is new work, having never before been published. Thus, I hope that this book will 
contribute to the body of lithography literature mostly as a convenient repository of a 
useful portion of the collective knowledge in this fi eld, but also as a repository for the 
information contained in various notebooks, fi les and scraps of paper scattered around 
my cluttered offi ce.

While the length of the fi nal book surprised even me, still, there are many fascinating 
and important topics in lithography that have been excluded for lack of space. In particu-
lar, rigorous treatment of electromagnetic scattering through the topography of a photo-
mask is extremely important in lithography today, but goes without even a mention in 
the book. With respect to photoresist, etch resistance, spin coat rheology, adhesion, shelf 
life and quality control, resist formulations and defects all receive short shrift, and nothing 
is mentioned of top surface imaging or the various multilayer and nontraditional resist 
schemes. For those interested in imaging tools, the topics of geometrical optics, lens 
design, aberration measurement and tool component functions such as alignment, auto-
focus, stage motion, etc., are essentially ignored. The world of mask making is left to 
other books, as are the topics of chip design and design for manufacturability, despite 
their obvious impact on the fi eld of lithography. Metrology, especially critical dimension 
metrology, is extremely important to lithography, since data from these measurements 
drive much of our knowledge of how lithography behaves. However, even though metrol-
ogy deserves an entire chapter, I have left it out almost completely. Surprisingly to some, 
I have chosen not to cover an aspect of lithography very dear to me – lithography simula-
tion. While the use of simulation is illustrated throughout the book, and of course a sci-
entifi c description of lithography must necessarily serve as the foundation of a lithographic 
simulator, I have avoided the topic of the numerical solutions to the equations presented 
in the book as well as to the topics of model speed, accuracy and calibration. Finally, 
there is no effort to describe research into next generation lithography technologies, and 
no description of the many lithographic approaches that don’t use projection optical 
imaging. Despite these glaring omissions, I still might be criticized for making the book 
too long, with too many topics, for use as a university text. I can only say that I have 
successfully covered most of the information contained in the book in a one semester 
course, with only the usual amount of grumbling from the affected students.

I am indebted to many, many people for their help with this book. In the 24 years that 
I have worked in the fi eld of lithography I have been taught by many, many people. I 
couldn’t possible begin to count, let alone recount, the published works that have so 
greatly contributed to my understanding in this fi eld. In fact, I will here issue a blanket 
apology to all those whose important works I have relied on but did not include in the 
references in the book. The lack of proper references is, I think, the biggest failure of this 
work, though I hope to be forgiven based on its format as a university textbook. I would 
also like to thank the students at the University of Texas at Austin and at Notre Dame 
whom I punished with early drafts of this book. Their feedback and experiences, good 
and bad, helped me to greatly improve the material and make it more suitable for the 
classroom.

There are many people who helped by reviewing chapters and providing feedback: 
Gary Bernstein, John Biafore, Robert Bunch, Jeff Byers, John Kulp and John Petersen 
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among others that I am sure I am forgetting. I would especially like to thank Warren 
Grobman who carefully read every chapter in the book and provided invaluable feedback, 
and Trey Graves who bravely defi ed Finman’s Law of Mathematics and re-derived many 
of the equations in Chapters 2 and 3. I am indebted to Chris Sallee and KLA-Tencor for 
allowing me the use of the lithography simulator PROLITH, which I employed exten-
sively in generating many of the fi gures found throughout the book.

As a fi nal note, I encourage the interested reader to visit the web page for this book: 
www.lithoguru.com/textbook. There I will post errata and other information that might 
be useful to the reader, and information that might prove valuable to the professor inter-
ested in using this text as the basis for a university course.

 Chris A. Mack
Austin, Texas

 June, 2007



1
Introduction to Semiconductor 

Lithography

The fabrication of an integrated circuit (IC) involves a great 
variety of physical and chemical processes performed on a 
semiconductor (e.g. silicon) substrate. In general, the various 
processes used to make an IC fall into three categories: fi lm 
deposition, patterning and semiconductor doping. Films of 
both conductors (such as polysilicon, aluminum, tungsten and 
copper) and insulators (various forms of silicon dioxide, silicon 
nitride and others) are used to connect and isolate transistors 
and their components. Selective doping of various regions of 
silicon allows the conductivity of the silicon to be changed 
with the application of voltage. By creating structures of these 
various components, millions (or even billions) of transistors can be built and wired 
together to form the complex circuitry of a modern microelectronic device. Fundamental 
to all of these processes is lithography, i.e. the formation of three-dimensional (3D) relief 
images on the substrate for subsequent transfer of the pattern into the substrate.

The word lithography comes from the Greek lithos, meaning stones, and graphia, 
meaning to write. It means quite literally writing on stones. In the case of semiconductor 
lithography, our stones are silicon wafers and our patterns are written with a light-
sensitive polymer called a photoresist. To build the complex structures that make up a 
transistor and the many wires that connect the millions of transistors of a circuit, lithog-
raphy and etch pattern transfer steps are repeated at least 10 times, but more typically 25 
to 40 times to make one circuit. Each pattern being printed on the wafer is aligned to the 
previously formed patterns as slowly the conductors, insulators and selectively doped 
regions are built up to form the fi nal device.

The importance of lithography can be appreciated in two ways. First, due to the large 
number of lithography steps needed in IC manufacturing, lithography typically accounts 
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2 Fundamental Principles of Optical Lithography

for about 30 % of the cost of manufacturing a chip. As a result, IC fabrication factories 
(‘fabs’) are designed to keep lithography as the throughput bottleneck. Any drop in output 
of the lithography process is a drop in output for the entire factory. Second, lithography 
tends to be the technical limiter for further advances in transistor size reduction and thus 
chip performance and area. Obviously, one must carefully understand the trade-offs 
between cost and capability when developing a lithography process for manufacturing. 
Although lithography is certainly not the only technically important and challenging 
process in the IC manufacturing fl ow, historically, advances in lithography have gated 
advances in IC cost and performance.

1.1 Basics of IC Fabrication

A semiconductor is not, as its name might imply, a material with properties between an 
electrical conductor and an insulator. Instead, it is a material whose conductivity can be 
readily changed by several orders of magnitude. Heat, light, impurity doping and the 
application of an electric fi eld can all cause fairly dramatic changes in the electrical con-
ductivity of a semiconductor. The last two can be applied locally and form the basis of a 
transistor: by applying an electric fi eld to a doped region of a semiconductor material, 
that region can be changed from a good to a poor conductor of electricity, or vice versa. 
In effect, the transistor works as an electrically controlled switch, and these switches can 
be connected together to form digital logic circuits. In addition, semiconductors can be 
made to amplify an electrical signal, thus forming the basis of analog solid-state 
circuits.

By far the most common semiconductor in use is silicon, due to a number of factors 
such as cost, formation of a stable native oxide and vast experience (the fi rst silicon IC 
was built in about 1960). A wafer of single-crystal silicon anywhere from 75–300 mm in 
diameter and about 0.6–0.8 mm thick serves as the substrate for the fabrication and inter-
connection of planar transistors into an IC. The most advanced circuits are built on 200- 
and 300-mm-diameter wafers. The wafers are far larger than the ICs being made so that 
each wafer holds a few hundred (and up to a few thousand) IC devices. Wafers are pro-
cessed in lots of about 25 wafers at a time, and large fabs can have throughputs of greater 
than 10 000 wafers per week. The cycle time for making a chip, from starting bare silicon 
wafers to a fi nished wafer ready for dicing and packaging, is typically 30–60 days. Semi-
conductor processing (or IC fabrication) involves two major tasks:

• Creating small, interconnected 3D structures of insulators and conductors in order to 
manipulate local electric fi elds and currents

• Selectively doping regions of the semiconductor (to create p–n junctions and other 
electrical components) in order to manipulate the local concentration of charge 
carriers

1.1.1 Patterning

The 3D microstructures are created with a process called patterning. The common sub-
tractive patterning process (Figure 1.1) involves three steps: (1) deposition of a uniform 
fi lm of material on the wafer; (2) lithography to create a positive image of the pattern 
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that is desired in the fi lm; and (3) etch to transfer that pattern into the wafer. An additive 
process (such as electroplating) changes the order of these steps: (1) lithography to create 
negative image of the pattern that is desired; and (2) selective deposition of material into 
the areas not protected by the lithographically produced pattern. Copper is often patterned 
additively using the damascene process (named for a unique decorative metal fi ll process 
applied to swords and developed in Damascus about 1000 years ago).

Deposition can use many different technologies dependent on the material and the 
desired properties of the fi lm: oxide growth (direct oxidation of the silicon), chemical 
vapor deposition (CVD), physical vapor deposition (PVD), evaporation and sputtering. 
Common fi lms include insulators (silicon dioxide, silicon nitride, phosphorous-doped 
glass, etc.) and conductors (aluminum, copper, tungsten, titanium, polycrystalline silicon, 
etc.). Lithography, of course, is the subject of this book and will be discussed at great 
length in the pages that follow. Photoresists are classed as positive, where exposure to 
light causes the resist to be removed, and negative, where exposed patterns remain after 
development. The goal of the photoresist is to resist etching after it has been patterned 
so that the pattern can be transferred into the fi lm.

1.1.2 Etching

Etch involves both chemical and mechanical mechanisms for removal of the material not 
protected by the photoresist. Wet etch, perhaps the simplest form of etch, uses an etchant 
solution such as an acid that chemically attacks the underlying fi lm while leaving the 
photoresist intact. This form of etching is isotropic and thus can lead to undercutting as 
the fi lm is etched from underneath the photoresist. If anisotropic etching is desired (and 
most always it is), directionality must be induced into the etch process. Plasma etching 
replaces the liquid etchant with a plasma – an ionized gas. Applying an electric fi eld 
causes the ions to be accelerated downward toward the wafer. The resulting etch is a mix 
of chemical etching due to reaction of the fi lm with the plasma and physical sputtering 
due to the directional bombardment of the ions hitting the wafer. The chemical nature of 
the etch can lead to good etch selectivity of the fi lm with respect to the resist (selectivity 
being defi ned as the ratio of the fi lm etch rate to the resist etch rate) and with respect 
to the substrate below the fi lm, but is essentially isotropic. Physical sputtering is very 
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Figure 1.1 A simple subtractive patterning process
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directional (etching is essentially vertical only), but not very selective (the resist etches 
at about the same rate as the fi lm to be etched). Reactive ion etching combines both effects 
to give good enough selectivity and directionality – the accelerated ions provide energy 
to drive a chemical etching reaction.

The photoresist property of greatest interest for etching is the etch selectivity, which is 
dependent both on the photoresist material properties and the nature of the etch process 
for the specifi c fi lm. Good etch processes often have etch selectivities in excess of 4 (for 
example, polysilicon with a novolac resist), whereas poor selectivities can be as low as 
1 (for example, when etching an organic bottom antirefl ection coating). Etch selectivity 
and the thickness of the fi lm to be etched determine the minimum required resist thick-
ness. Mechanical properties of the resist, such as adhesion to the substrate and resistance 
to mechanical deformation such as bending of the pattern, also play a role during 
etching.

For an etch process without perfect selectivity, the shape and size of the fi nal etched 
pattern will depend on not only the size of the resist pattern but its shape as well. Consider 
a resist feature whose straight sidewalls make an angle q with respect to the substrate 
(Figure 1.2). Given vertical and horizontal etch rates of the resist RV and RH, respectively, 
the rate at which the critical dimension (CD) shrinks will be

 
d

d
H V

CD

t
R R= +2( cot )θ  (1.1)

Thus, the rate at which the resist CD changes during the etch is a function of the resist 
sidewall angle. As the angle approaches 90°, the vertical component ceases to contribute 
and the rate of CD change is at its minimum. In fact, Equation (1.1) shows three ways to 
minimize the change in resist CD during the etch: improved etch selectivity (making both 
RH and RV smaller), improved anisotropy (making RH/RV smaller) and a sidewall close to 
vertical (making cotq smaller).

The example above, while simple, shows clearly how resist profi le shape can affect 
pattern transfer. In general, the ideal photoresist shape has perfectly vertical sidewalls. 
Other nonideal profi le shapes, such as rounding of the top of the resist and resist footing, 
will also affect pattern transfer.

Resist

RH

RV

q

Figure 1.2 Erosion of a photoresist line during etching, showing the vertical and horizontal 
etch rate components
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1.1.3 Ion Implantation

Selective doping of certain regions of the semiconductor begins with a patterning step 
(Figure 1.3). Regions of the semiconductor that are not covered by photoresist are exposed 
to a dopant impurity. p-type dopants like boron have three outer shell electrons and when 
inserted into the crystal lattice in place of silicon (which has four outer electrons) create 
mobile holes (empty spots in the lattice where an electron could go). n-type dopants such 
as phosphorous, arsenic and antimony have fi ve outer electrons, which create excess 
mobile electrons when used to dope silicon. The interface between p-type regions and n-
type regions of silicon is called a p–n junction and is one of the foundational structures 
in the building of semiconductor devices.

The most common way of doping silicon is with ion implantation. The dopant is ionized 
in a high-vacuum environment and accelerated into the wafer by an electric fi eld (voltages 
of hundreds of kilovolts are common). The depth of penetration of the ions into the wafer 
is a function of the ion energy, which is controlled by the electric fi eld. The force of the 
impact of these ions will destroy the crystal structure of the silicon, which then must be 
restored by a high-temperature annealing step, which allows the crystal to reform (but 
also causes diffusion of the dopant). Since the resist must block the ions in the regions 
where dopants are not desired (that is, in the regions covered by the resist), the resist 
thickness must exceed the penetration depth of the ions.

Ion implantation penetration depth is often modeled as a Gaussian distribution of 
depths, i.e. the resulting concentration profi le of implanted dopants follows a Gaussian 
shape. The mean of the distribution (the peak of the concentration profi le) occurs at a 
depth called the projected range, Rp. The standard deviation of the depth profi le is called 
the straggle, ∆Rp. For photoresists, the projected range varies approximately linearly with 
implant energy, and inversely with the atomic number of the dopant (Figure 1.4a). A more 
accurate power-law model (as shown in Figure 1.4a) is described in Table 1.1. The 
straggle varies approximately as the square root of implant energy, and is about indepen-
dent of the dopant (Figure 1.4b). For higher energies (1 MeV and above), higher atomic 
number dopants produce more straggle. When more detailed predictions are needed, 
Monte Carlo implantation simulators are frequently used.

Resist
Lithography

Ion Implantation

Resist
Strip

Wafer

Dopant
Ions

Figure 1.3 Patterning as a means of selective doping using ion implantation
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In order to mask the underlying layers from implant, the resist thickness must be set 
to at least

 resist thickness R m R≥ +p p∆  (1.2)

where m is set to achieve a certain level of dopant penetration through the resist. For 
example, if the dopant concentration at the bottom of the resist cannot be more than 10−4 
times the peak concentration (a typical requirement), then m should be set to 4.3. While 
the resolution requirements for the implant layers tend not to be challenging, often the 
thickness required for adequate stopping power does pose real challenges to the lithogra-
pher. Carbonization of the resist during high energy and high dose implantation (as well 
as during plasma etching) can also result in a fi lm that is very diffi cult to strip away at 
the end.

1.1.4 Process Integration

The combination of patterning and selective doping allows the buildup of the structures 
required to make transistors. Figure 1.5 shows a diagrammatical example of a pair of 
CMOS (complementary metal oxide semiconductor) transistors. Subsequent metal layers 
(up to 10 metal levels are not uncommon) can connect the many transistors into a full 
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Figure 1.4 Measured and fi tted ion implantation penetration depths for boron, phosphorous 
and arsenic in AZ 7500 resist: (a) projected range and (b) straggle. Symbols are data1 and 
curves are power-law fi ts to the data as described in Table 1.1. For the straggle data, the 
empirical model fi t is ∆Rp = 4.8E0.5 where E is the ion energy in keV and ∆Rp is the straggle 
in nm

Table 1.1 Empirical model of ion implanted projected 
range (Rp, in nm) into photoresist versus ion energy (E, in 
keV) as Rp = aEb

Dopant Coeffi cient a Power b

Boron 26.9 0.63
Phosphorous 5.8 0.80
Arsenic 0.49 1.11
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circuit and the fi nal metal layer will provide connections to the external pins of the device 
package.

Many lithographic levels are required to fabricate an IC, but about 1/3 of these levels 
are considered ‘critical’, meaning that those levels have challenging lithographic require-
ments. Which levels are critical depends on the process technology (CMOS logic, DRAM, 
BiCMOS, etc.). The most common critical levels of a CMOS process are active area, 
shallow trench isolation (STI), polysilicon gate, contact (between metal 1 and poly) and 
via (between metal layers), and metal 1 (the fi rst or bottom most metal layer). For a large 
logic chip with 10 layers of metal, the fi rst three will be ‘1×’, meaning the dimensions 
are at or nearly at the minimum metal 1 dimensions. The next three metal layers will be 
‘2×’, with dimensions about twice as big as the 1× metal levels. The next few metal levels 
will be 4×, with the last few levels as large as 10×. For a DRAM device, some of the 
critical levels are known as storage, isolation, wordline and bitline contact (see Figure 
1.6 for example design patterns for these four levels).

1.2 Moore’s Law and the Semiconductor Industry

The impact of semiconductor ICs on modern life is hard to overstate. From computers to 
communication, entertainment to education, the growth of electronics technology, fueled 

Silicon Wafer

p-welln-well

p+p+

Oxide Polysilicon Metal

n+n+

Figure 1.5 Cross section of a pair of CMOS transistors showing most of the layers through 
metal 1

(a)  Storage (b) Isolation (c) Wordline (d)  Bitline Contact

Figure 1.6 Critical mask level patterns for a 1-Gb DRAM chip2. Each pattern repeats in both 
x and y many times to create the DRAM array
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by advances in semiconductor chips, has been phenomenal. The impact has been so pro-
found that it is now often taken for granted: consumers have come to expect increasingly 
sophisticated electronics products at ever lower prices, and semiconductor companies 
expect growth and profi ts to improve continually. The role of optical lithography in these 
trends has been, and will continue to be, vital.

The remarkable evolution of semiconductor technology from crude single transistors 
to billion-transistor microprocessors and memory chips is a fascinating story. One of the 
fi rst ‘reviews’ of progress in the semiconductor industry was written by Gordon Moore, 
a founder of Fairchild Semiconductor and later Intel, for the 35th anniversary issue of 
Electronics magazine in 1965.3 After only 6 years since the introduction of the fi rst com-
mercial planar transistor in 1959, Moore observed an astounding trend – the number of 
electrical components per IC chip was doubling every year, reaching about 60 transistors 
in 1965. Extrapolating this trend for a decade, Moore predicted that chips with 64 000 
components would be available by 1975! Although extrapolating any trend by three orders 
of magnitude can be quite risky, what is now known as Moore’s Law proved amazingly 
accurate.

Some important details of Moore’s remarkable 1965 paper have become lost in the lore 
of Moore’s Law. First, Moore described the number of components per IC, which included 
resistors and capacitors, not just transistors. Later, as the digital age reduced the predomi-
nance of analog circuitry, transistor count became a more useful measure of IC complex-
ity. Further, Moore clearly defi ned the meaning of the ‘number of components per chip’ 
as the number which minimized the cost per component. For any given level of manu-
facturing technology, one can always add more components – the problem being a reduc-
tion in yield and thus an increase in the cost per component. As any modern IC manufacturer 
knows, cramming more components onto ICs only makes sense if the resulting manufac-
turing yield allows costs that result in more commercially desirable chips. This ‘minimum 
cost per component’ concept is in fact the ultimate driving force behind the economics 
of Moore’s Law.

Consider a very simple cost model for chip manufacturing as a function of lithographic 
feature size. For a given process, the cost of making a chip is proportional to the area of 
silicon consumed divided by the fi nal yield of the chips. Will shrinking the feature sizes 
on the chip result in an increase or decrease in cost? The area of silicon consumed will 
be roughly proportional to the feature size squared. But yield will also be a function of 
feature size. Assuming that the only yield limiter will be the parametric effects of reduced 
feature size, a simple yield model might look something like

 Yield Cost
w

Yield
w w= − ∝− −1 0

2 22
2

e ,( ) / σ  (1.3)

where w is the feature size (which must be greater than w0 for this model), w0 is the ulti-
mate resolution (feature size at which the yield goes to zero), and s is the sensitivity of 
yield to feature size. Figure 1.7 shows this yield model and the resulting cost function for 
arbitrary but reasonable parameters.

But minimizing cost is not really the goal of a semiconductor fab – it is maximizing 
profi t. Feature size affects total profi t in two ways other than chip cost. The number of 
chips per wafer is inversely proportional to the area of each chip, thus increasing the 
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number of chips that can be sold (that is, the total possible throughput of chips for the 
fab). Also, the value of each chip is often a function of the feature size. Smaller transistors 
generally run faster and fi t in smaller packages – both desirable features for many applica-
tions. Assuming the price that a chip can be sold for is inversely proportional to the 
minimum feature size on the chip, an example profi t model for a fab is shown in Figure 
1.8. The most important characteristic is the steep falloff in profi t that occurs when trying 
to use a feature size below the optimum. For the example here, the profi t goes to zero if 
one tries to shrink the feature size by 10 % below its optimum value (unless, of course, 
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Figure 1.7 A very simple yield and cost model shows the feature size that minimizes chip 
cost (w0 = 65 nm, s = 10 nm). Lowest chip cost occurs, in this case, when w = 87 nm, corre-
sponding to a chip yield of about 90 %

Figure 1.8 Example fab profi t curve using the yield and cost models of Figure 1.7 and 
assuming the value of the chip is inversely proportional to the minimum feature size. For this 
example, maximum profi t occurs when w = 80 nm, even though the yield is only 65 %
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the yield curve can be improved). It is a diffi cult balancing act for a fab to try to maximize 
its profi t by shrinking feature size without going too far and suffering from excessive 
yield loss.

In 1975, Moore revisited his 1965 prediction and provided some critical insights into 
the technological drivers of the observed trends.4 Checking the progress of component 
growth, the most advanced memory chip at Intel in 1975 had 32 000 components (but 
only 16 000 transistors). Thus, Moore’s original extrapolation by three orders of magni-
tude was off by only a factor of 2. Even more importantly, Moore divided the advances 
in circuit complexity among its three principle components: increasing chip area, decreas-
ing feature size, and improved device and circuit designs. Minimum feature sizes were 
decreasing by about 10 % per year (resulting in transistors that were about 21 % smaller 
in area, and an increase in transistors per area of 25 % each year). Chip area was increas-
ing by about 20 % each year (Figure 1.9). These two factors alone resulted in a 50 % 
increase in the number of transistors per chip each year. Design cleverness made up 
the rest of the improvement (33 %). In other words, the 2× improvement = 
(1.25)(1.20)(1.33).

Again, there are important details in Moore’s second observation that are often lost in 
the retelling of Moore’s Law. How is ‘minimum feature size’ defi ned? Moore explained 
that both the linewidths and the spacewidths used to make the circuits are critical to 
density. Thus, his density-representing feature size was an average of the minimum line-
width and the minimum spacewidth used in making the circuit. Today, we use the equiva-
lent metric, the minimum pitch divided by 2 (called the minimum half-pitch). Unfortunately, 
many modern forecasters express the feature size trend using features that do not well 
represent the density of the circuit. Usually, minimum half-pitch serves this purpose 
best.

By breaking the density improvement into its three technology drivers, Moore was 
able to extrapolate each trend into the future and predict a change in the slope of his 
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Figure 1.9 Moore’s Law showing (a) an exponential increase (about 15 % per year) in the 
area of a chip, and (b) an exponential decrease (about 11 % per year) in the minimum feature 
size on a chip (shown here for DRAM initial introduction)
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observation. Moore saw the progress in lithography allowing continued feature size 
shrinks to ‘one micron or less’. Continued reductions in defect density and increases in 
wafer size would allow the die area trend to continue. But in looking at the ‘device and 
circuit cleverness’ component of density improvement, Moore saw a limit. Although 
improvements in device isolation and the development of the MOS transistor had con-
tributed to greater packing density, Moore saw the latest circuits as near their design 
limits. Predicting an end to the design cleverness trend in 4 or 5 years, Moore predicted 
a change in the slope of his trend from doubling every year, to doubling every 2 years.

Moore’s prediction of a slowdown was both too pessimistic and too generous. The 
slowdown from doubling each year had already begun by 1975 with Intel’s 16-Kb 
memory chip. The 64-Kb DRAM chip, which should have been introduced in 1976 
according to the original trend, was not available commercially until 1979. However, 
Moore’s prediction of a slowdown to doubling components every 2 years instead of every 
year was too pessimistic. The 50 % improvement in circuit density each year due to feature 
size and die size was really closer to 60 % (according to Moore’s retelling of the story5), 
resulting in a doubling of transistor counts per chip every 18 months or so (Figure 1.10). 
Offsetting the curve to switch from component counts to transistor counts and beginning 
with the 64-Kb DRAM in 1979, the industry followed the ‘new’ Moore’s Law trend 
throughout the 1980s and early 1990s.

After 40 years, extrapolation of Moore’s Law now seems less risky. In fact, predictions 
of future industry performance have reached such a level of acceptance that they have 
been codifi ed in an industry-sanctioned ‘roadmap’ of the future. The National Technology 
Roadmap for Semiconductors (NTRS)6 was fi rst developed by the Semiconductor Indus-
try Association in 1994 to serve as an industry-standard Moore’s Law. It extrapolated then 
current trends to the year 2010, where 70-nm minimum feature sizes were predicted to 
enable 64-Gb DRAM chip production. This offi cial industry roadmap has been updated 
many times, going international in 1999 to become the ITRS, the International Technol-
ogy Roadmap for Semiconductors.
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a semiconductor chip over time (shown here for DRAM initial introduction)
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Ultimately, the drivers for technology development fall into two categories: push and 
pull. Push drivers are technology enablers, those things that make it possible to achieve 
the technical improvements. Moore described the three push drivers as increasing chip 
area, decreasing feature size and design cleverness. Pull drivers are the economic drivers, 
those things that make it worthwhile to pursue the technical innovations. Although the 
two drivers are not independent, it is the economic drivers that always dominate. As Bob 
Noyce, cofounder of Intel, wrote in 1977 ‘.  .  .  further miniaturization is less likely to be 
limited by the laws of physics than by the laws of economics.’7

The economic drivers for Moore’s Law are extraordinarily compelling. As the dimen-
sions of a transistor shrink, the transistor becomes smaller, faster, consumes less power 
and in many cases is more reliable. All of these factors make the transistor more desirable 
for virtually every possible application. But there is more. Historically, the semiconductor 
industry has been able to manufacture silicon devices at an essentially constant cost per 
area of processed silicon. Thus, as the devices shrink, they enjoy a shrinking cost per 
transistor. As many have observed, it is a life without tradeoffs (unless, of course, you 
consider the stress on the poor engineers trying to make all of this happen year after year). 
Each step along the roadmap of Moore’s Law virtually guarantees economic success. 
Advances in lithography, and in particular optical lithography, have been critical enablers 
to the continued rule of Moore’s Law.

The death of optical lithography has been predicted so often by industry pundits, incor-
rectly so far, that it has become a running joke among lithographers. In 1979, conventional 
wisdom limited optical lithography to 1-mm resolution and a 1983 demise (to be sup-
planted by electron-beam imaging systems).8 By 1985, the estimate was revised to 0.5-mm 
minimum resolution and a 1993 replacement by x-ray lithography.9 The reality was quite 
a bit different. In 2006, optical lithography was used for 65-nm production (about 90-nm 
half-pitch). It seems likely that optical lithography will be able to manufacture devices 
with 45-nm half-pitch, and experts hedge their bets on future generations. Interestingly, 
the resolution requirements of current and future lithography processes are not so aggres-
sive that they cannot be met with today’s technology – electron beam and x-ray lithogra-
phy have both demonstrated resolution to spare. The problem is one of cost. Optical 
lithography is unsurpassed in the cost per pixel (one square unit of minimum resolution) 
when printing micron-sized and submicron features on semiconductor wafers. To keep 
the industry on Moore’s Law well into the 21st century, advances in optical lithography 
must continue.

1.3 Lithography Processing

Optical lithography is basically a photographic process by which a light-sensitive polymer, 
called a photoresist, is exposed and developed to form 3D relief images on the substrate. 
In general, the ideal photoresist image has the exact shape of the designed or intended 
pattern in the plane of the substrate, with vertical walls through the thickness of the resist. 
Thus, the fi nal resist pattern should be binary: parts of the substrate are covered with resist 
while other parts are completely uncovered. This binary pattern is needed for pattern 
transfer since the parts of the substrate covered with resist will be protected from etching, 
ion implantation, or other pattern transfer mechanism.
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The general sequence of processing steps for a typical optical lithography process is: 
substrate preparation, photoresist spin coat, post-apply bake, exposure, post-exposure 
bake, development and postbake. Metrology and inspection followed by resist strip are 
the fi nal operations in the lithographic process, after the resist pattern has been transferred 
into the underlying layer. This sequence is shown diagrammatically in Figure 1.11, and 
most of these steps are generally performed on several tools linked together into a con-
tiguous unit called a lithographic cluster or cell (Figure 1.12). A brief discussion of each 

Coat PEB DevelopmentExposure
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Prebake
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Coat with Photoresist
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Etch, Implant, etc.

Strip Resist

Post-exposure Bake

Figure 1.11 Example of a typical sequence of lithographic processing steps, illustrated for 
a positive resist

Figure 1.12 Iconic representation of the integration of the various lithographic process steps 
into a photolithography cell. Many steps, such as chill plates after the bake steps, have been 
omitted
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step is given below, pointing out some of the practical issues involved in photoresist 
processing. More fundamental and theoretical discussions on these topics will be provided 
in subsequent chapters.

1.3.1 Substrate Preparation

Substrate preparation is intended to improve the adhesion of the photoresist material to 
the substrate and provide for a contaminant-free resist fi lm. This is accomplished by one 
or more of the following processes: substrate cleaning to remove contamination, dehydra-
tion bake to remove water and addition of an adhesion promoter. Substrate contamination 
can take the form of particulates or a fi lm and can be either organic or inorganic. Particu-
lates result in defects in the fi nal resist pattern, whereas fi lm contamination can cause 
poor adhesion and subsequent loss of linewidth control. Particulates generally come from 
airborne particles or contaminated liquids (e.g. dirty adhesion promoter). The most effec-
tive way of controlling particulate contamination is to eliminate their source. Since this 
is not always practical, chemical/mechanical cleaning is used to remove particles. Organic 
fi lms, such as oils or polymers, can come from vacuum pumps and other machinery, body 
oils and sweat, and various polymer deposits leftover from previous processing steps. 
These fi lms can generally be removed by chemical, ozone, or plasma stripping. Similarly, 
inorganic fi lms, such as native oxides and salts, can be removed by chemical or plasma 
stripping. One type of contaminant – adsorbed water – is removed most readily by a 
high-temperature process called a dehydration bake.

A dehydration bake, as the name implies, removes water from the substrate surface by 
baking at temperatures of 200 to 400 °C for up to 60 minutes. The substrate is then allowed 
to cool (preferably in a dry environment) and coated as soon as possible. It is important 
to note that water will re-adsorb on the substrate surface if left in a humid (nondry) envi-
ronment. A dehydration bake is also effective in volatilizing organic contaminants, further 
cleaning the substrate. Often, the normal sequence of processing steps involves some type 
of high-temperature process immediately before coating with photoresist, for example, 
thermal oxidation. If the substrate is coated immediately after the high-temperature step, 
the dehydration bake can be eliminated. A typical dehydration bake, however, does not 
completely remove water from the surface of silica substrates (including silicon, polysili-
con, silicon dioxide and silicon nitride). Surface silicon atoms bond strongly with a 
monolayer of water forming silanol groups (SiOH) and bake temperatures in excess of 
600 °C are required to remove this fi nal layer of water. Further, the silanol quickly reforms 
when the substrate is cooled in a nondry environment. As a result, the preferred method 
of removing this silanol is by chemical means.

Adhesion promoters are used to react chemically with surface silanol and replace the 
—OH group with an organic functional group that, unlike the hydroxyl group, offers good 
adhesion to photoresist. Silanes are often used for this purpose, the most common being 
hexamethyl disilizane (HMDS).10 (As a note, HMDS adhesion promotion was fi rst devel-
oped for fi berglass applications, where adhesion of the resin matrix to the glass fi bers is 
important.) The HMDS can be applied by spinning a diluted solution (10–20 % HMDS 
in cellosolve acetate, xylene, or a fl uorocarbon) directly on to the wafer and allowing the 
HMDS to spin dry (HMDS is quite volatile at room temperature). If the HMDS is not 
allowed to dry properly, dramatic loss of adhesion will result. Although direct spinning 
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is easy, it is only effective at displacing a small percentage of the silonal groups. By far 
the preferred method of applying the adhesion promoter is by subjecting the substrate to 
HMDS vapor at elevated temperatures and reduced pressure. This allows good coating 
of the substrate without excess HMDS deposition, and the higher temperatures cause more 
complete reaction with the silanol groups. Once properly treated with HMDS, the sub-
strate can be left for up to several days without signifi cant re-adsorption of water. Per-
forming the dehydration bake and vapor prime in the same oven gives optimum 
performance. Such vapor prime systems are often integrated into the wafer processing 
tracks used for the subsequent steps of resist coating and baking.

A simple method for testing for adsorbed water on the wafer surface, and thus the 
likelihood of resist adhesion failure, is to measure the contact angle of a drop of water. 
If a drop of water wets the surface (has a low contact angle), the surface is hydrophilic 
and the resist will be prone to adhesion failure during development. For a very hydro-
phobic surface, water will have a large contact angle (picture water beading up on a waxed 
automobile). Contact angles can be easily measured on a primed wafer using a goniome-
ter, and should be in the 50–70° range for good resist adhesion11 (see Figure 1.13).

1.3.2 Photoresist Coating

A thin, uniform coating of photoresist at a specifi c, well-controlled thickness is accom-
plished by the seemingly simple process of spin coating. The photoresist, rendered into 
a liquid form by dissolving the solid components in a solvent, is poured onto the wafer, 
which is then spun on a turntable at a high speed producing the desired fi lm. (For the 
case of DNQ/novolac resists, the resist solutions are often supersaturated, making them 
prone to precipitation.) Stringent requirements for thickness control and uniformity and 
low defect density call for particular attention to be paid to this process, where a large 
number of parameters can have signifi cant impact on photoresist thickness uniformity and 
control. There is the choice between static dispense (wafer stationary while resist is dis-
pensed) or dynamic dispense (wafer spinning while resist is dispensed), spin speeds and 
times, and accelerations to each of the spin speeds. Also, the volume of the resist dis-
pensed and properties of the resist (such as viscosity, percent solids and solvent composi-
tion) and the substrate (substrate material and topography) play an important role in the 
resist thickness uniformity. Further, practical aspects of the spin operation, such as exhaust, 
ambient temperature and humidity control, resist temperature, spin cup geometry, point-
of-use fi ltration and spinner cleanliness often have signifi cant effects on the resist fi lm. 
Figure 1.14a shows a generic photoresist spin coat cycle. At the end of this cycle, a thick, 
solvent-rich fi lm of photoresist covers the wafer, ready for post-apply bake. By the end 

q

Figure 1.13 A water droplet on the surface of the wafer indicates the hydrophobicity of the 
wafer: the left-most drop indicates a hydrophilic surface, the right-most drop shows an 
extremely hydrophobic surface. The middle case, with a contact angle of 70°, is typically 
about optimum for resist adhesion
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of the post-apply bake, the fi lm can have a thickness controlled to within 1–2 nm across 
the wafer and wafer-to-wafer.

The rheology of resist spin coating is complex and yet results in some simple, and 
seemingly unexpected, properties of the fi nal resist fi lm. Spinning results in centrifugal 
forces pushing the liquid photoresist toward the edge of the wafer where excess resist is 
fl ung off. The frictional force of viscosity opposes this centrifugal force. As the fi lm thins, 
the centrifugal force (which is proportional to the mass of the resist on the wafer) 
decreases. Also, evaporation of solvent leads to dramatic increases in the viscosity of the 
resist as the fi lm dries (as the resist transitions from a liquid to a solid, the viscosity can 
increase by 7–10 orders of magnitude). Eventually the increasing viscous force exceeds 
the decreasing centrifugal force and the resist stops fl owing. This generally occurs within 
the fi rst second of the spin cycle (often before the wafer has fully ramped to its fi nal spin 
speed). The remaining portion of the spin cycle causes solvent evaporation without mass 
fl ow of the resist solids. The separation of the spin cycle into a very quick radial mass 
fl ow (coating stage) followed by a long evaporation of solvent (drying stage) provides 
for some of the basic and important properties of spin coating. Since the overall spin time 
is much longer than the coating stage time, the fi nal thickness of resist is virtually inde-
pendent of the initial volume of resist dispensed onto the wafer above a certain threshold. 
For laminar fl ow of air above the spinning wafer, the amount of drying (mass transfer of 
solvent) will be proportional to the square root of the spin speed. And since most of the 
thinning of the resist comes from the drying stage, the fi nal thickness of the resist will 
vary inversely with the square root of the spin speed. Finally and most importantly, both 
the coating stage and drying stage produce a fi lm whose thickness is not dependent on 
the radial position on the wafer.

Although theory exists to describe the spin coat process rheologically,12,13 in practical 
terms the variation of photoresist thickness and uniformity with the process parameters 
are determined experimentally. The photoresist spin speed curve (Figure 1.14b) is an 
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essential tool for setting the spin speed to obtain the desired resist thickness. As mentioned 
above, the fi nal resist thickness varies as one over the square root of the spin speed (w) 
and is roughly proportional to the liquid photoresist viscosity (n) to the 0.4–0.6 power:

 thickness ∝ ν
ω

0 4

0 5

.

.
 (1.4)

For a given desired resist thickness, the appropriate spin speed is chosen according to the 
spin curve. However, there is a limited range of acceptable spin speeds. Speeds less than 
1000 rpm are harder to control and do not produce uniform fi lms. If the spin speed is too 
high, turbulent airfl ow at the edge of the wafer will limit uniformity. The onset of turbu-
lence depends on the Reynolds number Re, which for a rotating disk is

 Re = ω
ν

r

air

2

 (1.5)

where r is the wafer radius, nair is the kinematic viscosity of air (about 1.56 × 10−5 m2/s 
at standard conditions). The onset of turbulence begins for Reynolds numbers of about 
300 000.14,15 Instabilities in the fl ow, in the form of spiral vortices, can occur at Reynolds 
numbers as low as 100 000 without careful design of the spin coat chamber. [Note that 
sometimes the square root of the expression (1.5) is used as the Reynolds number, so that 
the threshold for turbulence is 550.] For a 300-mm wafer, this means the maximum spin 
speed is on the order of 2000 rpm. If the desired resist thickness cannot be obtained over 
the acceptable range of spin speeds, a different viscosity resist formulation can be chosen. 
Typical resist viscosities range from 5 to 35 cSt (1 Stoke = 1 cm2/s). As a point of refer-
ence, water has a viscosity of about 1 cSt at room temperature.

Unfortunately, the forces that give rise to uniform resist coatings also cause an unwanted 
side effect: edge beads. The fl uid fl ow discussion above described a balance of the cen-
trifugal and viscous forces acting on the resist over the full surface of the wafer. However, 
at the edge of the wafer, a third force becomes signifi cant. Surface tension at the resist–air 
interface results in a force pointing inward perpendicular to the resist surface. Over most 
of the wafer, this force is pointing downward and thus does not impact the force balance 
of spinning plus friction. However, at the edge of the wafer, this force must point inward 
toward the center of the wafer (Figure 1.15). The extra force adding to the viscous force 
will stop the fl ow of resist sooner at the edge than over the central portion of the wafer, 
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Figure 1.15 A balance of spin-coat forces at the wafer edge leads to the formation of a 
resist edge bead
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resulting in an accumulation of resist at the edge. This accumulation is called an edge 
bead, which usually exists within the outer 1–2 mm of the wafer and can be 10–30 times 
thicker than the rest of the resist fi lm.

The existence of an edge bead is detrimental to the cleanliness of subsequent wafer 
processing. Tools which grab the wafer by the edge will fl ake off the dried edge bead, 
resulting in very signifi cant particulate contamination. Consequently, removal of the edge 
bead is required. Within the spin-coat chamber and immediately after the resist spin 
coating is complete, a stream of solvent (called an EBR, edge bead remover) is directed 
at the edge of the wafer while it slowly spins. Resist is dissolved off the edge and over 
the outer 1.5–2 mm of the wafer surface.

1.3.3 Post-Apply Bake

After coating, the resulting resist fi lm will contain between 20 and 40 % solvent by weight. 
The post-apply bake (PAB) process, also called a softbake or a prebake, involves drying 
the photoresist after spin coat by removing most of this excess solvent. The main reason 
for reducing the solvent content is to stabilize the resist fi lm. At room temperature, an 
unbaked photoresist fi lm will lose solvent by evaporation, thus changing the properties 
of the fi lm with time. By baking the resist, the majority of the solvent is removed and the 
fi lm becomes stable at room temperature. There are four major effects of removing solvent 
from a photoresist fi lm: (1) fi lm thickness is reduced; (2) post-exposure bake and develop-
ment properties are changed; (3) adhesion is improved; and (4) the fi lm becomes less 
tacky and thus less susceptible to particulate contamination. Typical post-apply bake 
processes leave between 3 and 10 % residual solvent in the resist fi lm (depending on resist 
and solvent type, as well as bake conditions), suffi ciently small to keep the fi lm stable 
during subsequent lithographic processing.

Unfortunately, there can be other consequences of baking photoresists. At temperatures 
greater than about 70 °C, the photosensitive component of a typical resist mixture, called 
the photoactive compound (PAC), may begin to decompose. Also, the resin, another 
component of the resist, can cross-link and/or oxidize at elevated temperatures. Both of 
these effects are undesirable. Thus, one must search for the optimum post-apply bake 
conditions that will maximize the benefi ts of solvent evaporation and minimize the detri-
ments of resist decomposition. For chemically amplifi ed resists, residual solvent can sig-
nifi cantly infl uence diffusion and reaction properties during the post-exposure bake, 
necessitating careful control over the post-apply bake process. Fortunately, these modern 
resists do not suffer from signifi cant decomposition of the photosensitive components 
during post-apply bake.

There are several methods that can be used to bake photoresists. The most obvious 
method is an oven bake. Convection oven baking of conventional photoresists at 90 °C 
for 30 minutes was typical during the 1970s and early 1980s, but currently the most 
popular bake method is the hot plate. The wafer is brought either into intimate vacuum 
contact with or close proximity to a hot, high-mass metal plate. Due to the high thermal 
conductivity of silicon, the photoresist is heated to near the hot plate temperature quickly 
(in about 5 seconds for hard contact, or about 20 seconds for proximity baking). The 
greatest advantage of this method is an order of magnitude decrease in the required bake 
time over convection ovens, to about 1 minute, and the improved uniformity of the bake. 
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In general, proximity baking is preferred to reduce the possibility of particle generation 
caused by contact with the backside of the wafer.

When the wafer is removed from the hot plate, baking continues as long as the wafer 
is hot. The total bake process cannot be well controlled unless the cooling of the wafer 
is also well controlled. In other words, the bake process should be thought of in terms of 
an integrated thermal history, from the start of the bake till the wafer has suffi ciently 
cooled. As a result, hot plate baking is always followed immediately by a chill plate 
operation, where the wafer is brought in contact or close proximity to a cool plate (kept 
at a temperature slightly below room temperature). After cooling, the wafer is ready for 
its lithographic exposure.

1.3.4 Alignment and Exposure

The basic principle behind the operation of a photoresist is the change in solubility of the 
resist in a developer upon exposure to light. In the case of the standard diazonaphthoqui-
none positive photoresist, the PAC, which is not soluble in the aqueous base developer, 
is converted to a carboxylic acid on exposure to UV light in the range of 350–450 nm. 
The carboxylic acid product is very soluble in the basic developer. Thus, a spatial varia-
tion in light energy incident on the photoresist will cause a spatial variation in solubility 
of the resist in developer.

Contact and proximity lithography are the simplest methods of exposing a photoresist 
through a master pattern called a photomask (Figure 1.16). Contact lithography offers 
reasonably high resolution (down to about the wavelength of the radiation), but practical 
problems such as mask damage (or equivalently, the formation of mask defects) and 
resulting low yield make this process unusable in most production environments. Proxim-
ity printing reduces mask damage by keeping the mask a set distance above the wafer 
(e.g. 20 mm). Unfortunately, the resolution limit is increased signifi cantly. For a mask–
wafer gap of g and an exposure wavelength of l,

 Resolution ∼ gλ  (1.6)

Because of the high defect densities of contact printing and the poor resolution of proxim-
ity printing, by far the most common method of exposure is projection printing.

Projection lithography derives its name from the fact that an image of the mask is pro-
jected onto the wafer. Projection lithography became a viable alternative to contact/
proximity printing in the mid-1970s when the advent of computer-aided lens design and 

Contact Proximity Projection

Figure 1.16 Lithographic printing in semiconductor manufacturing has evolved from contact 
printing (in the early 1960s) to projection printing (from the mid-1970s to today)
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improved optical materials and manufacturing methods allowed the production of lens 
elements of suffi cient quality to meet the requirements of the semiconductor industry. In 
fact, these lenses have become so perfect that lens defects, called aberrations, play only 
a small role in determining the quality of the image. Such an optical system is said to be 
diffraction-limited, since it is diffraction effects and not lens aberrations which, for the 
most part, determine the shape of the image.

There are two major classes of projection lithography tools – scanning and step-and-
repeat systems. Scanning projection printing, as pioneered by the Perkin-Elmer company,16 
employs refl ective optics (i.e. mirrors rather than lenses) to project a slit of light from the 
mask onto the wafer as the mask and wafer are moved simultaneously past the slit. Expo-
sure dose is determined by the intensity of the light, the slit width and the speed at which 
the wafer is scanned. These early scanning systems, which use polychromatic light from 
a mercury arc lamp, are 1 : 1, i.e. the mask and image sizes are equal. Step-and-repeat 
cameras (called steppers for short), fi rst developed by GCA Corp., expose the wafer one 
rectangular section (called the image fi eld) at a time and can be 1 : 1 or reduction. These 
systems employ refractive optics (i.e. lenses) and are usually quasi-monochromatic. Both 
types of systems (Figure 1.17) are capable of high-resolution imaging, although reduction 
imaging is best for the highest resolutions in order to simplify the manufacture of the 
photomasks.

Scanners replaced proximity printing by the mid-70s for device geometries below 4 to 
5 mm. By the early 1980s, steppers began to dominate as device designs pushed to 2 mm 
and below. Steppers have continued to dominate lithographic patterning throughout the 
1990s as minimum feature sizes reached the 250-nm levels. However, by the early 1990s 
a hybrid step-and-scan approach was introduced by SVG Lithography, the successor to 
Perkin-Elmer. The step-and-scan approach uses a fraction of a normal stepper fi eld (for 
example, 26 × 8 mm), then scans this fi eld in one direction to expose the entire 4× reduc-
tion mask (Figure 1.18). The wafer is then stepped to a new location and the scan is 
repeated. The smaller imaging fi eld simplifi es the design and manufacture of the lens, but 
at the expense of a more complicated reticle and wafer stage. Step-and-scan technology 
is the technology of choice today for below 250-nm manufacturing.

Mask

Wafer

Scanner Reduction Stepper

Figure 1.17 Scanners and steppers use different techniques for exposing a large wafer with 
a small image fi eld
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Resolution, the smallest feature that can be printed with adequate control, has two basic 
limits: the smallest image that can be projected onto the wafer, and the resolving capability 
of the photoresist to make use of that image. From the projection imaging side, resolution 
is determined by the wavelength of the imaging light (l) and the numerical aperture (NA) 
of the projection lens according to the Rayleigh resolution criterion:

 Resolution
NA

∝ λ
 (1.7)

Lithography systems have progressed from blue wavelengths (436 nm) to UV (365 nm) 
to deep-UV (248 nm) to today’s mainstream high-resolution wavelength of 193 nm (see 
Figure 1.19 and Table 1.2). In the meantime, projection tool numerical apertures have 
risen from 0.16 for the fi rst scanners to amazingly high 0.93 NA systems producing fea-
tures well under 100 nm in size. In addition, immersion lithography, where the bottom of 
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Figure 1.18 In step-and-scan imaging, the fi eld is exposed by scanning a slit that is about 
25 × 8 mm across the exposure fi eld

Figure 1.19 The progression of l/NA of lithographic tools over time (year of fi rst commercial 
tool shipment)



22 Fundamental Principles of Optical Lithography

the lens is immersed in a high refractive index fl uid such as water, enables numerical 
apertures greater than one, with the fi rst such ‘hyper NA’ tools available in 2006.

The main imaging lens of a stepper or scanner is the most demanding application of 
commercial lens design and fabrication today. The needs of microlithographic lenses are 
driving advances in lens design software, spherical and aspherical lens manufacturing, 
glass production and lens metrology. There are three competing requirements of litho-
graphic lens performance – higher resolution, large fi eld size and improved image quality 
(lower aberrations). Providing for any two of these requirements is rather straightforward 
(for example, a microscope objective has high resolution and good image quality but over 
a very small fi eld). Accomplishing all three means advancing the state-of-the-art in optics. 
The fi rst stepper in 1978 employed an imaging wavelength of 436 nm (the g-line of the 
mercury spectrum), a lens numerical aperture of 0.28 and a fi eld size of 14 mm in diameter. 
Today’s tools use an ArF excimer laser at 193 nm, a lens with a numerical aperture of 
0.93 dry, and up to 1.35 with water immersion, and a fi eld size of 26 × 33 mm. The 
‘hyper-NA’ lens systems (NA > 1) are catadioptric, employing both mirrors and refractive 
lenses in the optical system. As might be expected, these modern high-performance 
imaging systems are incredibly complex and costly.

Before the exposure of the photoresist with an image of the mask can begin, this image 
must be aligned with the previously defi ned patterns on the wafer. This alignment process, 
and the resulting overlay of the two or more lithographic patterns, is critical since tighter 
overlay control means circuit features can be packed closer together. Closer packing of 
devices through better overlay is nearly as critical as smaller devices through higher reso-
lution in the drive toward more functionality per chip. Along with alignment, wafer focus 
is measured at several points so that each exposure fi eld is leveled and brought into proper 
focus.

Another important aspect of photoresist exposure is the standing wave effect. Mono-
chromatic light, when projected onto a wafer, strikes the photoresist surface over a range 
of angles, approximating plane waves. This light travels down through the photoresist 
and, if the substrate is refl ective, is refl ected back up through the resist. The incoming 
and refl ected light waves interfere to form a standing wave pattern of high and low light 
intensity at different depths in the photoresist. This pattern is replicated in the photoresist, 
causing ridges in the sidewalls of the resist feature as seen in Figure 1.20. As pattern 
dimensions become smaller, these ridges can signifi cantly affect the quality of the feature. 
The interference that causes standing waves also results in a phenomenon called swing 
curves, the sinusoidal variation in linewidth with changing resist thickness. These detri-

Table 1.2 The change in projection tool specifi cations over time

First Stepper (1978) Immersion Scanner (2006)

Wavelength 436 nm 193 nm
Numerical Aperture 0.28 1.2
Field Size 10 × 10 mm 26 × 33 mm
Reduction Ratio 10 4
Wafer Size 4″ (100 mm) 300 mm
Throughput 20 wafers per hour (0.44 cm2/s) 120 wafers per hour (24 cm2/s)
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mental effects are best cured by coating the substrate with a thin absorbing layer called 
a bottom antirefl ective coating (BARC) that can reduce the refl ectivity of the substrate as 
seen by the photoresist to much less than 1 %.

1.3.5 Post-exposure bake

One method of reducing the standing wave effect is called the post-exposure bake (PEB).17 
The high temperatures used (100–130 °C) cause diffusion of the photoactive compound, 
thus smoothing out the standing wave ridges (Figure 1.21). It is important to note that 
the detrimental effects of high temperatures on photoresist, as discussed above concerning 
PAB, also apply to the PEB. Thus, it becomes very important to optimize the bake condi-
tions. Also, the rate of diffusion of the exposure products is dependent on the PAB condi-
tions – the presence of solvent enhances diffusion during a PEB. Thus, a low-temperature 
post-apply bake results in greater diffusion for a given PEB temperature.

For a conventional resist, the main importance of the PEB is diffusion to remove stand-
ing waves. For another class of photoresists, called chemically amplifi ed resists, the PEB 
is an essential part of the chemical reactions that create a solubility differential between 
exposed and unexposed parts of the resist. For these resists, exposure generates a small 
amount of a strong acid that does not itself change the solubility of the resist. During the 

(a) (b) (c)

Figure 1.20 Photoresist pattern on a silicon substrate (i-line exposure pictured here) showing 
prominent standing waves

Figure 1.21 Diffusion during a post-exposure bake is often used to reduce standing waves. 
Photoresist profi le simulations as a function of the PEB diffusion length: (a) 20 nm, (b) 40 nm 
and (c) 60 nm
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post-exposure bake, this photogenerated acid catalyzes a reaction that changes the solubil-
ity of the polymer resin in the resist. Control of the PEB is extremely critical for chemi-
cally amplifi ed resists.

1.3.6 Development

Once exposed, the photoresist must be developed. Most commonly used photoresists 
employ aqueous bases as developers. In particular, tetramethyl ammonium hydroxide 
(TMAH) is used in concentrations of 0.2–0.26 N. Development is undoubtedly one of the 
most critical steps in the photoresist process. The characteristics of the resist–developer 
interactions determine to a large extent the shape of the photoresist profi le and, more 
importantly, the linewidth control.

The method of applying developer to the photoresist is important in controlling the 
development uniformity and process latitude. In the past, batch development was the 
predominant development technique. A boat of some 10–20 wafers or more is developed 
simultaneously in a large beaker, usually with some form of agitation. With the push 
toward in-line processing in the late 1970s, however, other methods have become preva-
lent. During spin development wafers are spun, using equipment similar to that used for 
spin coating, and developer is poured onto the rotating wafer. The wafer is also rinsed 
and dried while still spinning. Spray development uses a process identical to spin develop-
ment except the developer is sprayed, rather than poured, on the wafer by a nozzle that 
produces a fi ne mist of developer over the wafer (Figure 1.22). This technique reduces 
developer usage signifi cantly and gives more uniform developer coverage.

Another in-line development strategy is called puddle development. Again using devel-
opers specifi cally formulated for this process, the developer is poured onto a slowly 
spinning wafer that is then stopped and allowed to sit motionless for the duration of the 
development time. The wafer is then spin rinsed and dried. Note that all three in-line 
processes can be performed in the same piece of equipment with only minor modifi ca-
tions, and combinations of spray and puddle techniques are frequently used. Puddle 
development has the advantage of minimizing developer usage but can suffer from devel-
oper depletion – clear regions (where most of the resist is being dissolved) result in 
excessive dissolved resist in the developer, which depletes the developer and slows down 
development in these clear regions relative to dark regions (where most of the resist 
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Figure 1.22 Different developer application techniques are commonly used
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remains on the wafer). When this happens, the development cycle is often broken up into 
two shorter applications of the puddle in what is called a double-puddle process.

1.3.7 Postbake

The postbake (not to be confused with the post-exposure bake that comes before develop-
ment) is used to harden the fi nal resist image so that it will withstand the harsh environ-
ments of implantation or etching. The high temperatures used (120–150 °C) will cross-link 
the resin polymer in the photoresist, thus making the image more thermally stable. If the 
temperature used is too high, the resist will fl ow causing degradation of the image. The 
temperature at which fl ow begins is essentially equal to the glass transition temperature 
of the resist and is a measure of its thermal stability. In addition to cross-linking, the 
postbake can remove residual solvent, water, and gasses, and will usually improve adhe-
sion of the resist to the substrate. Removal of these volatile components makes the resist 
more vacuum compatible, an important consideration for ion implantation.

Other methods are also used to harden a photoresist image. Exposure to high intensity 
deep-UV light cross-links the resin at the surface of the resist forming a tough skin around 
the pattern. Deep-UV hardened photoresist can withstand temperatures in excess of 
200 °C without dimensional deformation. Plasma treatments and electron beam bombard-
ment have also been shown to effectively harden photoresist. Commercial deep-UV 
hardening systems are available and widely used. Most of these hardening techniques are 
used simultaneously with high-temperature baking.

1.3.8 Measure and Inspect

Either before or after the postbake step, some sample of the resist patterns are inspected 
and measured for quality control purposes. Critical features and test patterns are measured 
to determine their dimensions (called a critical dimension, CD) and the overlay of 
the patterns with respect to previous lithographically defi ned layers. Wafers can also be 
inspected for the presence of random defects (such as particles) that may interfere with 
the subsequent pattern transfer step. This step of measurement and inspection is called 
ADI, after develop inspect, as opposed to measurements taken after pattern transfer, which 
are called fi nal inspect (FI).

Inspection and measurement of the wafers before pattern transfer offer a unique 
opportunity: wafers (or entire lots) that do not meet CD or overlay specifi cations can be 
reworked. When a wafer is reworked, the patterned resist is stripped off and the wafers 
are sent back to the beginning of the lithography process. Wafers that fail to meet speci-
fi cations at FI (after pattern transfer is complete) cannot be reworked and must be 
scrapped instead. Since reworking a wafer is far more cost-benefi cial than scrapping a 
wafer, signifi cant effort is put into verifying the quality of wafers at ADI and reworking 
any wafers that have potential lithography-limited yield problems.

1.3.9 Pattern Transfer

After the small patterns have been lithographically printed in photoresist, these patterns 
must be transferred into the substrate. As discussed in section 1.1.1, there are three basic 
pattern transfer approaches: subtractive transfer (etching), additive transfer (selective 
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deposition) and impurity doping (ion implantation). Etching is the most common pattern 
transfer approach. A uniform layer of the material to be patterned is deposited on the 
substrate. Lithography is then performed such that the areas to be etched are left unpro-
tected (uncovered) by the photoresist. Etching is performed either using wet chemicals 
such as acids, or more commonly in a dry plasma environment. The photoresist ‘resists’ 
the etchant and protects the material covered by the resist. When the etching is complete, 
the resist is stripped leaving the desired pattern etched into the deposited layer. Additive 
processes are used whenever workable etching processes are not available, for example, 
for copper interconnects (copper does not form volatile etching by-products, and so is 
very diffi cult to etch in a plasma). Here, the lithographic pattern is used to open areas 
where the new layer is to be grown (by electroplating, in the case of copper). Stripping 
of the resist then leaves the new material in a negative version of the patterned photoresist. 
Finally, doping involves the addition of controlled amounts of contaminants that change 
the conductive properties of a semiconductor. Ion implantation uses a beam of dopant 
ions accelerated at the photoresist-patterned substrate. The resist blocks the ions, but the 
areas uncovered by resists are embedded with ions, creating the selectively doped regions 
that make up the electrical heart of the transistors. For this application, the ‘stopping 
power’ of the resist (the minimum thickness of resist required to prevent ions from passing 
through) is the parameter of interest.

1.3.10 Strip

After the imaged wafer has been pattern transferred (e.g. etched, ion implanted, etc.), the 
remaining photoresist must be removed. There are two classes of resist stripping tech-
niques: wet stripping using organic or inorganic solutions, and dry (plasma) stripping. A 
simple example of an organic stripper is acetone. Although commonly used in laboratory 
environments, acetone tends to leave residues on the wafer (scumming) and is thus unac-
ceptable for semiconductor processing. Most commercial organic strippers are phenol-
based and are somewhat better at avoiding scum formation. However, the most common 
wet strippers for positive photoresists are inorganic acid-based systems used at elevated 
temperatures.

Wet stripping has several inherent problems. Although the proper choice of strippers 
for various applications can usually eliminate gross scumming, it is almost impossible to 
remove the fi nal monolayer of photoresist from the wafer by wet chemical means. It is 
often necessary to follow a wet strip by a plasma ‘descum’ step to completely clean the 
wafer of resist residues.18 Also, photoresist which has undergone extensive hardening (e.g. 
deep-UV hardening) and been subjected to harsh processing conditions (e.g. high-energy 
ion implantation) can be almost impossible to strip chemically. For these reasons, plasma 
stripping has become the standard in semiconductor processing. An oxygen plasma is 
highly reactive toward organic polymers but leaves most inorganic materials (such as are 
mostly found under the photoresist) untouched.

Problems

1.1. When etching an oxide contact hole with a given process, the etch selectivity com-
pared to photoresist is found to be 2.5. If the oxide thickness to be etched is 140 nm 
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and a 50 % overetch is used (that is, the etch time is set to be 50 % longer than that 
required to just etch through the nominal oxide thickness), what is the minimum 
possible photoresist thickness (that is, how much resist will be etched away)? For 
what reasons would you want the resist to be thicker than this minimum?

1.2. For a certain process, a 300-keV phosphorous implant is masked well by a 1.0-mm-
thick photoresist fi lm.
(a) For this implant process, how many multiples of the straggle does this resist 

thickness represent?
(b) If the implant energy is increased to 450 keV, how much should the photoresist 

thickness be increased?
(c) If the dopant is also changed to arsenic (with the energy at 450 keV), what resist 

thickness will be needed?
1.3. A photoresist gives a fi nal resist thickness of 320 nm when spun at 2800 rpm.

(a) What spin speed should be used if a 290-nm-thick coating of this same resist is 
desired?

(b) If the maximum practical spin speed for 200-mm wafers is 4000 rpm, at what 
thickness would a lower viscosity formulation of the resist be required?

1.4. Resolution in optical lithography scales with wavelength and numerical aperture 
according to a modifi ed Rayleigh criterion:

 
R k

NA
= 1

λ

where k1 can be thought of as a constant for a given lithographic approach and 
process. Assuming k1 = 0.35, plot resolution versus numerical aperture over a range 
of NAs from 0.5 to 1.0 for the common lithographic wavelengths of 436, 365, 248, 
193 and 157 nm. From this list, what options (NA and wavelength) are available for 
printing 90-nm features?

References

 1 Glawischnig, H. and Parks, C.C., 1996, SIMS and modeling of ion implants into photoresist, 
Proceedings of the 11th International Conference on Ion Implantation Technology, 579–582.

 2 Wong, A.K., Ferguson, R., Mansfi eld, S., Molless, A., Samuels, D., Schuster, R. and Thomas, 
A., 2000, Level-specifi c lithography optimization for 1-Gb DRAM, IEEE Transactions on 
Semiconductor Manufacturing, 13, 76–87.

 3 Moore, G.E., 1965, Cramming more components onto integrated circuits, Electronics, 38, 
114–117.

 4 Moore, G.E., 1975, Progress in digital integrated electronics, IEDM Technical Digest, 21, 
11–13.

 5 Moore, G.E., 1995, Lithography and the future of Moore’s law, Proceedings of SPIE: Optical/
Laser Microlithography VIII, 2440, 2–17.

 6 The National Technology Roadmap for Semiconductors, 1994, Semiconductor Industry Asso-
ciation (San Jose, CA).

 7 Noyce, R., 1977, Microelectronics, Scientifi c American, 237, 63–69.
 8 Tobey, A.C., 1979, Wafer stepper steps up yield and resolution in IC lithography, Electronics, 

52, 109–112.
 9 Lyman, J., 1985, Optical lithography refuses to die, Electronics, 58, 36–38.



28 Fundamental Principles of Optical Lithography

10 Collins, R.H. and Deverse, F.T., 1970, U.S. Patent No. 3,549,368.
11 Levinson, H.J., 2005, Principles of Lithography, second edition, SPIE Press (Bellingham, WA), 

p. 59.
12 Meyerhofer, D., 1978, Characteristics of resist fi lms produced by spinning, Journal of Applied 

Physics, 49, 3993–3997.
13 Bornside, D.E., Macosko, C.W. and Scriven, L.E., 1989, Spin coating: one-dimensional model, 

Journal of Applied Physics, 66, 5185–5193.
14 Kobayashi, R., 1994, 1994 review: laminar-to-turbulent transition of three-dimensional bound-

ary layers on rotating bodies, Journal of Fluids Engineering, 116, 200–211.
15 Gregory, N., Stuart, J.T. and Walker, W.S., 1955, On the stability of three-dimensional bound-

ary layers with application to the fl ow due to a rotating disk, Philosophical Transactions of 
the Royal Society of London Series A, 248, 155–199.

16 Markle, D.A., 1974, A new projection printer, Solid State Technology, 17, 50–53.
17 Walker, E.J., 1975, Reduction of photoresist standing-wave effects by post-exposure bake, 

IEEE Transactions on Electron Devices, ED-22, 464–466.
18 Kaplan, L.H. and Bergin, B.K., 1980, Residues from wet processing of positive resists, Journal 

of The Electrochemical Society, 127, 386–395.



2
Aerial Image Formation – 

The Basics

Projection printing means projecting the image of a photomask (also called a reticle) onto 
a resist-coated wafer. Projection imaging tools are sophisticated reduction cameras with 
stages that allow, through a combination of stepping or stepping and scanning motions, 
exposure of many (reduced) copies of a mask pattern onto a large wafer. The image of 
the mask that is projected into the photoresist defi nes the information content used by 
the photoresist to form the fi nal resist image. Understanding the limits and capabilities 
of projection imaging is the fi rst step in understanding the limits and capabilities of 
lithography.

The imaging process is a well-studied optical phenomenon. We will begin at the most 
basic level with a mathematical description of light, followed by the theory of image 
formation. The impact of partial coherence will then be added. In the following chapter, 
nonideal and vector descriptions of image formation will be added to the basic description 
provided here.

2.1 Mathematical Description of Light

A mathematical description of light must, of course, begin with Maxwell’s equations. 
However, these fundamental equations can be quite cumbersome and general solutions 
under diverse boundary conditions almost always entail detailed numerical calculations. 
However, under some circumstances a simplifi ed form of Maxwell’s equations, in par-
ticular what is called the wave equation, can be used and often allows reasonably compact 
solutions. In the case of imaging theory, decomposing an arbitrary wave into a summation 
of plane waves provides the simplest approach for calculating the images projected into 
a photoresist-coated wafer.

Fundamental Principles of Optical Lithography: The Science of Microfabrication. Chris Mack.
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2.1.1 Maxwell’s Equations and the Wave Equation

Light is an electromagnetic wave with coupled electric and magnetic fi elds traveling 
through space and the materials that occupy that space. Maxwell’s equations describe two 
fundamental, coupled fi elds, the electric fi eld E (units of volts per meter) and the magnetic 
fi eld H (units of amperes per meter), both vector quantities. Further, the effect of these 
fi elds on a material can give rise to four other quantities: three vectors, the electric dis-
placement D (units of coulomb per square meter), the magnetic induction B (units of 
tesla, or webers per square meter) and the electric current density J (units of amps per 
square meter), and the scalar electric charge density r (units of coulomb per cubic meter). 
These six quantities are related by the four Maxwell’s equations (shown here in MKS or 
SI units):
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where the standard curl and divergence operators are used (see Appendix B). The fi rst 
two equations above show how a time-varying electric fi eld (or displacement) causes a 
change in the magnetic fi eld (or induction), and vice versa. The second two equations 
show how static charge affects the electric and magnetic fi elds (the last equation set to 
zero is a statement that there are no magnetic monopoles and therefore no net magnetic 
charge). A combination of Ampere’s law and Gauss’s law leads to the continuity equation, 
an expression of the conservation of electrical charge.

Additionally, the properties of the materials involved provide relationships between the 
current density and the electric fi eld, the electric displacement and the electric fi eld, and 
the magnetic induction and the magnetic fi eld. In general, these relationships can be quite 
complicated, but in many circumstances they become simple. If the material that the 
electromagnetic radiation is propagating through is moving slowly relative to the speed 
of light, and the fi elds involved are time-harmonic (a concept that will be defi ned below), 
then the three material equations become
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where s is the conductivity of the material, e is its dielectric constant (sometimes called 
the electrical permittivity) and m is its magnetic permeability, all of which are frequency 
dependent. Over the range of electric and magnetic fi eld strengths of interest here, these 
three material properties can be considered constants. The fi rst of the three material equa-
tions in Equation (2.2) is the differential form of Ohm’s law. Note that for perfectly 
transparent materials (also called dielectrics), s = 0. Thus, absorption in a material is 
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related to the generation of current density under the infl uence of an electric fi eld (i.e. 
conduction). Also, in general, the materials of interest to the lithographer are nonmagnetic, 
and thus m = m0, the magnetic permeability of free space.

Consider a further simplifi cation where the materials involved are homogeneous (the 
three material properties are not a function of position). In that case, the three material 
properties s, e and m, become simple numbers (scalars), rather than tensors. By using 
these material relationships, the fi rst two Maxwell’s equations can be rewritten in terms 
of electric and magnetic fi elds only.
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The goal now will be to take these two coupled fi rst-order differential equations and create 
two noncoupled second-order equations. When these materials are free of charge (r = 0), 
∇ · E = 0 so that

 ∇ = ∇ ∇⋅ − ∇ × ∇ × = −∇ × ∇ ×2 E E E E( ) ( ) ( )  (2.4)

Taking the curl of one of Equation (2.3) and substituting in the other,
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As a fi nal simplifi cation, for a nonabsorbing medium (s = 0), these equations become 
classic wave equations:
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where v = 1 εµ , the velocity of the wave. Letting e0 and m0 be the values of these mate-
rial properties in vacuum, the speed of light in vacuum is then c = 1 0 0ε µ . These con-
stants have values of

 c = 2.99792458 × 108 m/s
 e0 = 8.8541878 × 10−12 farads/m (1 farad = 1 coulomb/volt) = 1/(4pc2) × 107 farads/m
 m0 = 4p × 10−7 henries/m (1 henry = 1 weber/amp = 1 volt-second/amp)

From this, the refractive index of a material can be defi ned as the ratio of the speed of 
light in vacuum to that in the material:

 n
c

v
≡ = εµ

ε µ0 0

 (2.7)
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It is sometimes useful to defi ne the dielectric constant and magnetic permeability relative 
to the free-space values:

 ε ε
ε

µ µ
µr r,≡ ≡

0 0

 (2.8)

so that

 n = ε µr r  (2.9)

And since we are mostly concerned with nonmagnetic materials with mr = 1, the refractive 
index will generally be just the square root of the relative dielectric constant of the mate-
rial (remembering that we have so far only looked at materials where s = 0).

2.1.2 General Harmonic Fields and the Plane Wave in a Nonabsorbing Medium

Since the electric and magnetic fi elds are related to each other (the magnetic fi eld is always 
perpendicular to the electric fi eld and both fi elds are always perpendicular to the direction 
of propagation, as will be proven in section 2.1.3) and since photoresist reacts chemically 
to the magnitude of the electric fi eld only, we can usually describe light by considering 
just the electric fi eld. A general harmonic electric fi eld vector E (due to monochromatic 
light of frequency w) at any point P and time t can be described by a deceptively simple-
looking sinusoidal equation:

 E A( )P t P t P, = ( )cos( ( ))ω + Φ  (2.10)

where A is the amplitude (like the electric fi eld, a vector) and Φ is the phase, both of 
which are position dependent, in general, and will depend on initial and boundary condi-
tions. As an example of one form of Equation (2.10), consider a ‘plane wave’ of light 
traveling in the +z direction. The term plane wave refers to the shape of the wavefront, 
i.e. the shape of the function Φ(P) = constant. Thus, a plane wave traveling in the +z 
direction would require a constant phase (and, consequently, a constant amplitude) in the 
x–y plane. Such a plane wave would be described by the equation

 E P t A t kz( ), = cos( )ω δ− +  (2.11)

where k is a constant called the propagation constant or the wave number and d is a phase 
offset.

How does the wave represented by Equation (2.11) propagate? We can think of the 
wave as having a certain shape, and this shape travels through time. Thus, this wave will 
have the given shape at all points in space and time such that wt − kz = constant, giving 
the same electric fi eld. In other words, the wavefront (a plane in this case) travels through 
space and time according to

 z z
k

t− 0 = ω
 (2.12)

where z0 is a constant corresponding to the position of the plane wave at t = 0. This is 
simply a plane of light traveling in the +z direction at speed w/k. Thus, since

 v
c

n k
= = ω

 (2.13)
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and since c = wl/2p (a general property of waves), we obtain

 k n= =ω εµ π λ2 /  (2.14)

where l remains the vacuum wavelength of the light. This relationship of the propagation 
constant to refractive index assumes a nonabsorbing medium (s = 0). In the section below, 
the propagation of a plane wave will be expanded to include absorption.

2.1.3 Phasors and Wave Propagation in an Absorbing Medium

Although Equation (2.10) completely describes an arbitrary time-harmonic electro-
magnetic fi eld, a more compact and convenient representation is possible based on 
the assumption that the frequency of the light does not change (quite a good assump-
tion under normal optical conditions). A sinusoid can be related to a complex 
exponential by

 E A U( )P t P t P P i t, e= ( ) cos( ( )) Re{ ( ) }ω ω+ = −Φ  (2.15)

where

 U(P) = A(P)e−iΦ(P)

and U(P) is called the phasor representation of the sinusoidal electric fi eld E(P,t). Notice 
that this phasor representation shows no time dependence. Study of the basic behavior of 
light has shown that the time dependence of the electric fi eld typically does not change 
as light travels, interferes and interacts with matter. Thus, suppressing the time depen-
dence and expressing the electric fi eld as a phasor have become quite common in the 
mathematical analysis of optical systems. Fields that satisfy this assumption are called 
time-harmonic fi elds.

Separating out the time dependence for a time-harmonic wave makes evaluation of the 
time derivatives in Maxwell’s equations straightforward. Using Equation (2.15) in Equa-
tion (2.5), and showing only the electric fi eld for simplicity,
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Since every term in this equation contains the oscillatory e−iwt, the time dependence can 
be suppressed by dividing this term out.

 ∇ = − −2 2U U Uω εµ ωµσi  (2.17)

Finally, this equation can be put into a standard form, known as the Helmholtz 
equation:

 ∇ + =2 2 0U U( ) ( )P k P  (2.18)

where

 k2 = w2em + iwms

The use of the symbol k in the Helmholtz equation is not coincidental. If s = 0 (no 
absorption), k becomes the propagation constant defi ned in Equation (2.14). Thus, the 
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Helmholtz equation defi nes a complex propagation constant that accounts for absorption. 
Likewise, a complex refractive index can be defi ned.
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Defi ning the complex refractive index in terms of real and imaginary parts,

 n = +n iκ  (2.20)

allows for the real and imaginary parts of the refractive index to be expressed in terms 
of the electrical and magnetic properties of the material as well as the frequency of 
oscillation:
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Note that when s = 0, k = 0 and n = n. For weakly absorbing materials, s/ew << 1 and 
Equations (2.21) can be approximated as
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Again assuming a nonmagnetic material, this weakly absorbing material will have an 
imaginary part that will be well approximated as
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and Z0 is called the characteristic impedance of free space.
Since converting back to the time domain involves taking the real part of the phasor, 

the sign of the phase in U(P) and in the time-dependent term could just as easily have 
been chosen to be positive rather than negative. This (arbitrary) sign convention is not 
consistent among authors and there is no absolute standard. The sign convention repre-
sented by Equation (2.15) is used by Goodman1 and in other standard optics textbooks 
dealing with imaging. Using this convention, a plane wave traveling in the +z direction 
[i.e. Equation (2.11)] would be written as

 U P A ikz( ) = e  (2.24)

(where the phase offset d has been ignored). This negative phase sign convention of 
Equation (2.15) is the most common for imaging applications. Unfortunately, many pub-
lications and textbooks in the area of thin fi lm interference effects and coatings use the 



 Aerial Image Formation – The Basics 35

positive phase sign convention. For this thin fi lm sign convention, Equation (2.24) would 
represent a plane wave traveling in the −z direction. Lithography requires both imaging 
calculations and thin fi lm interference calculations. As such, both of these competing 
‘standard’ sign conventions are often seen in lithography literature, though the negative 
sign convention of Equation (2.15) will be used throughout this book.

Equation (2.24) describes a plane wave traveling in the +z direction. Generalizing to 
an arbitrary direction, let us fi rst defi ne the propagation vector k as the propagation con-
stant multiplied by a unit vector pointing in the direction of propagation. Any point in 
space (x,y,z) is described by its position vector r, a vector pointing from the origin to 
the point (x,y,z). The phasor representation of the electric fi eld of the plane wave is then 
given by

 U x y z A Ai ik x y z( ) ( ), , e e= =⋅ + +k r α β γ  (2.25)

where a, b and g are called the direction cosines of the propagation. As we shall see later 
in this chapter, the z-axis will coincide with the optical axis of an imaging system, so that 
the z-direction will be the main direction of light propagation. Thus, it will be convenient 
to defi ne the direction of propagation using spherical coordinates about the z-axis. Letting 
q be the direction k makes with the z-axis and f be the angle that the k–z plane makes 
with the x-axis, the direction cosines become
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Another interesting and common solution to the wave equation is the spherical wave. 
For this wave, the wavefront is a sphere and the amplitude of the electric fi eld is inversely 
proportional to the distance from the center of the sphere. In the equation below,

 U r
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r

ikr

( ) = e
 (2.27)

the spherical waves are propagating outward from r = 0, so that the spherical wave can 
be thought of as emanating from a point source of light located at r = 0.

It is useful to derive some important properties of the plane wave. The time derivative 
of the fi eld of a plane wave can be related to its spatial derivative with respect to the 
direction of propagation. Considering a plane wave traveling in the +z direction, as given 
by Equation (2.11), but applied to the magnetic fi eld:
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Of course, an analogous equation applies to the electric fi eld as well. The curl of the 
electric fi eld for this plane wave becomes
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These two equations can now be inserted into the second Maxwell equation, using the 
material property to relate B to H. The result, separated for each vector component, 
becomes
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Equations (2.30) can be integrated directly. Ignoring the constant of integration (any 
constant background electric or magnetic fi eld will not concern us here),
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where Z is called the characteristic impedance of the material. This gives a very important 
result. For a plane harmonic wave traveling through an isotropic material such that the 
material equations (2.2) apply, the electric and magnetic fi elds are related to each other 
by a multiplicative constant. Thus, knowing either one of these quantities is suffi cient to 
determine the other. Moreover, it is the x-component of the magnetic fi eld that is related 
to the y-component of the electric fi eld, and vice versa. In other words, the electric fi eld 
is always perpendicular to the magnetic fi eld, and both are perpendicular to the direction 
of propagation. If Z is real, meaning that there is no absorption, the electric and magnetic 
fi elds will be in phase with each other.

2.1.4 Intensity and the Poynting Vector

When determining the intensity (also called irradiance†) transmitted into a material, it is 
very important to understand the exact defi nition of intensity. By defi nition, the intensity 
of light I is the magnitude of the (time averaged) Poynting vector, the energy per second 
crossing a unit area perpendicular to the direction of propagation of the light. The 
Poynting vector S is given by

 S E H= ×  (2.32)

where E is the electric fi eld, and H is the magnetic fi eld. (The derivation of this defi nition 
of intensity, not presented here, calculates the work performed by the electric and mag-
netic fi elds on the electrons surrounding the atoms of the medium.2)

For quasi-monochromatic time-harmonic fi elds, as represented by Equation (2.15), it 
will be convenient to express them as
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†By international standard, intensity is defi ned as power per unit solid angle while irradiance is power per unit area. 
However, the older nomenclature of intensity as power per unit area is still common (used in the classic textbook by Born and 
Wolf, for example), and will be used throughout this book.
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where U* is the complex conjugate of U. Using these equations, the cross product of the 
electric and magnetic fi elds becomes

 S E H U V U V U V U V= × = × + × + × + ×− +1

4
2 2[ ]e * * * *ei t i tω ω  (2.34)

Taking the time average of the Poynting vector is straightforward. For times much longer 
than the period of oscillation of the wave, the time harmonic terms will average to zero. 
Thus,

 S U V U V U V= × + × = ×1
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1

2
[ ] Re{ }* * *  (2.35)

To apply Equation (2.35) to a specifi c case, consider the monochromatic plane wave 
traveling in the z-direction. Remembering that electric and magnetic fi elds are perpendicu-
lar to each other and the direction of propagation, and using the results of Equation (2.31),
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Using the phasor expression for the plane wave, Equation (2.24),
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Thus, replacing Re{w/k} with the speed of the wave from Equations (2.7) and (2.13), the 
intensity of the plane wave becomes
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Since in general our media will be nonmagnetic (so that m = m0), this fi nal expression 
for intensity says that the intensity, within a multiplicative factor, is equal to the magnitude 
of the phasor electric fi eld squared times the real part of the refractive index of the 
medium. Throughout this book, we will often have occasion to describe the intensity rela-
tive to some incoming wave, and so the multiplicative constant, 1/(2cm0), will most often 
be ignored. And since throughout the rest of this book electric fi elds will always be 
expressed in phasor form, our general form for intensity will become

 I n E= 2  (2.39)

2.1.5 Intensity and Absorbed Electromagnetic Energy

The Poynting vector describes the fl ow of electromagnetic energy density. But the true 
purpose of knowing the intensity of light is to understand its impact on materials, which 
in our case means the impact of light on a photoresist. While the photochemistry of resists 
will be discussed in Chapters 5 and 6, suffi ce it to say here that the quantity of interest 
will be the electromagnetic energy absorbed by a material. Consider a monochromatic 
plane wave traveling through a uniform material of complex refractive index n. Separating 
the real and imaginary parts of the refractive index,
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 E A A Aikz i z z i nz= = = −e e e e/ / /2 2 2π λ πκ λ π λn ( )  (2.40)

The intensity can then be written, from Equation (2.39),

 I nA Iz z= =− −2 4
0( )e e/πκ λ α  (2.41)

where I0 = I(z = 0) and a is the absorption coeffi cient of the material, given by

 α πκ
λ

= 4
 (2.42)

Equation (2.41) is the familiar Lambert law of absorption, empirically verifi ed for homo-
geneous materials.

The imaginary part of the refractive index was related previously to the electrical and 
magnetic properties of the material in Equation (2.21). For a weakly absorbing material, 
such as a photoresist, the absorption coeffi cient becomes, from Equation (2.23)
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Thus, absorption of electromagnetic energy results from the conductivity of the material 
at the frequency of the electromagnetic radiation. The electromagnetic wave gives energy 
to the electrons of the atoms of the material in proportion to its conductivity, in the form 
of absorbed photons of light.

2.2 Basic Imaging Theory

Using the basic understanding of light from the previous section, and especially the phasor 
representation of a plane wave, we are now ready to examine the behavior of an optical 
imaging system. Consider the generic projection system shown in Figure 2.1. It consists 
of a light source, a condenser lens, the mask, the objective lens and fi nally the resist-
coated wafer. The combination of the light source and the condenser lens is called the 
illumination system. In optical design terms, a lens is a system of (possibly many) lens 
elements. Each lens element is an individual piece of glass (refractive element) or a mirror 

Light Source

Condenser Lens

Mask

Objective Lens
Wafer

Figure 2.1 Block diagram of a generic projection imaging system
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(refl ective element) or other optical element. The purpose of the illumination system is 
to deliver light to the mask (and eventually into the objective lens) with suffi cient inten-
sity, the proper directionality and spectral characteristics, and adequate uniformity across 
the fi eld (i.e. across the mask). The mask consists of a transparent substrate on which a 
pattern has been formed. This pattern changes the transmittance of the light and in its 
simplest form is just an opaque fi lm. The light then passes through the clear areas of the 
mask and diffracts on its way to the objective lens. The purpose of the objective lens is 
to pick up a portion of the diffraction pattern and project an image onto the wafer which, 
one hopes, will resemble the mask pattern (or, more correctly, the desired pattern as 
expressed in the original design data).

2.2.1 Diffraction

The fi rst and most basic phenomenon occurring in projection imaging is the diffraction 
of light. Diffraction is usually thought of as the bending of light as it passes through an 
aperture, which is certainly an appropriate description for diffraction by a lithographic 
mask. More correctly, diffraction theory simply describes how light propagates, including 
the effects of the surroundings (boundaries). Maxwell’s equations describe how electro-
magnetic waves propagate, but result in partial differential equations of vector quantities 
which, for general boundary conditions, are extremely diffi cult to solve without the aid 
of a powerful computer and sophisticated numerical algorithms. A simpler approach is 
applicable to the propagation of light within a homogenous medium (for example, describ-
ing how light travels from the photomask to the objective lens of our imaging system). 
This simple approach leads to the development of diffraction integrals derived from the 
Helmholtz equation (2.18). While the derivation of these diffraction integrals will not 
be presented here, some historical background will help to put their usefulness in 
perspective.

A simple interpretation of the physical principle behind diffraction is best captured by 
Huygens’ principle. First described by the famous Dutch scientist Christian Huygens in 
his 1690 Treatise on Light, any wavefront can be thought of as a collection of radiating 
point sources (Figure 2.2). The new wavefront at some later time can be constructed by 
summing up the wavefronts from all of the radiated spherical waves. As Figure 2.2 shows, 
one result of these self-luminous wavefront points is the apparent bending of light around 
an opaque edge – an example of diffraction. In 1818, Augustin-Jean Fresnel formed a 

Diffraction by a Slit Plane Wave Propagation 

Figure 2.2 Pictorial representation of Huygens’ principle, where any wavefront can be 
thought of as a collection of point sources radiating spherical waves
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mathematical theory of diffraction by turning this summation into an integral and account-
ing for the phase of the light when adding together the propagating spherical waves. He 
also included an empirical obliquity factor to keep these radiating spherical waves from 
propagating backwards as readily as forward. This scalar diffraction theory was put on a 
more rigorous footing by the Prussian mathematician and physicist Gustav Kirchhoff in 
1882, who required the diffracting waves to satisfy the Helmholtz equation and conserva-
tion of energy, thus deriving Fresnel’s previously empirical obliquity term. Fresnel’s dif-
fraction integral is in fact a simplifi cation of Kirchhoff’s formulation for the case when 
the distance away from the diffracting plane (that is, the distance from the mask to the 
objective lens) is much greater than the wavelength of light. Finally, if the distance to the 
objective lens is very large, or if the mask is illuminated by a spherical wave which 
converges to a point at the entrance to the objective lens, Fresnel diffraction simplifi es 
to Fraunhofer diffraction (named for Joseph von Fraunhofer, who used a lens to create 
the far-fi eld diffraction pattern). Comparison of these different diffraction regions is given 
in Figure 2.3.

In order to establish a mathematical description of diffraction by a mask, we must fi rst 
describe the electric fi eld transmittance of a mask pattern tm(x,y), where the mask is in 
the x–y plane and tm(x,y) has in general a magnitude, phase and vector direction. An exact 
calculation of the mask transmittance requires a solution to Maxwell’s equations for the 
given materials and physical structure of the mask and for a specifi c incident light wave. 
As we shall see in the sections below, any arbitrary incident illumination can be conve-
niently broken up into a summation of plane waves of different polarizations and propaga-
tion directions. Thus, the transmittance of different polarizations of incident light as a 
function of the incident angle of light is required.

In some circumstances, however, a simpler approach will prove adequate. For cases 
where the feature sizes on the mask are larger than about 2l and where the topography 
on the mask (for example, the thickness of a chrome absorber) is less than about l/2, it 
is possible to ignore diffraction by the topography of the mask and simply assume that 
the mask transmittance is a perfect shadow of the mask. In other words, the transmittance 
directly below a specifi c feature on the mask is assumed to be the same as the transmit-
tance under an infi nitely large area of that material. At an edge between two materials, 
the transmittance of the boundary is assumed to be a step function between the transmit-
tances of the two materials. This assumed transmittance function is called the Kirchhoff 

Fresnel
Diffraction 

Region
(z » w)

Kirchhoff
Diffraction Region

(z > /2)

Fraunhofer
Diffraction 

Region
(z » w2/ )p

l

l

Figure 2.3 Comparison of the diffraction ‘regions’ where various approximations become 
accurate. Diffraction is for a slit of width w illuminated by light of wavelength l, and z is the 
distance away from the mask
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boundary condition. Note that under this assumption, the transmittance for each polariza-
tion is assumed to be the same, so that incident polarization can be ignored when employ-
ing the Kirchhoff boundary condition. Also, the effect of incident angle can be treated 
very simply in the case of the Kirchhoff boundary condition, as will be discussed in 
section 2.3.

For a simple chrome-glass mask, the mask E-fi eld transmittance for a normally incident 
plane wave of illumination under the Kirchhoff boundary condition assumption is binary: 
tm(x,y) is 1 under the glass and 0 under the chrome. Let the x′–y′ plane be the diffraction 
plane, that is, the entrance to the objective lens, and let z be the distance from the mask 
to this diffraction plane. We will also assume monochromatic light of wavelength l and 
that the entire system is in a medium of refractive index n. Defi ning the spatial frequen-
cies of the diffraction pattern (which are simply scaled coordinates in the x′–y′ plane) as 
fx = nx′/(zl) and fy = ny′/(zl), the electric fi eld of our diffraction pattern, Tm(fx,fy), is given 
by the Fraunhofer diffraction integral:

 T f f E x y t x y x yx y
i f x f yx y

m i m
2, , , e d d( ) ( )= ( ) ( )− +

−∞

∞

−∞

∞

∫∫ π  (2.44)

where Ei is the electric fi eld incident on the mask (and is just 1 for our unit amplitude, 
normally incident plane wave). For many scientists and engineers, this equation should 
be quite familiar – it is simply a Fourier transform. Thus, the diffraction pattern (i.e. the 
electric fi eld distribution as it enters the objective lens) is just the Fourier transform of 
the mask pattern transmittance (the electric fi eld directly under the mask). This is the 
principle behind an extremely useful approach to imaging called Fourier optics (for more 
information, consult Goodman’s classic textbook1).

Figure 2.4 shows two mask patterns – one an isolated space, the other a series of equal 
lines and spaces – both infi nitely long in the y-direction (the direction out of the page). 
The resulting one-dimensional mask fi eld transmittance functions, tm(x), look like a square 
pulse and a square wave, respectively. The Fourier transforms for normally incident plane 
wave illumination (Ei = 1) are easily computed directly from Equation (2.44) or found in 
tables or textbooks (see Problem 2.4) and are also shown in Figure 2.4. The isolated space 

fx
00

Mask

0
1

Tm( fx)

tm(x)

(a) (b)

Figure 2.4 Two typical mask patterns, (a) an isolated space and (b) an array of equal lines 
and spaces, and the resulting Fraunhofer diffraction patterns assuming normally incident 
plane wave illumination. Both tm and Tm represent electric fi elds
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gives rise to a sinc function (sin(x)/x) diffraction pattern, and the equal lines and spaces 
yield discrete diffraction orders:
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where d is the Dirac delta function, w is the spacewidth and p is the pitch (the linewidth 
plus the spacewidth). The delta function is the mathematical representation of a point of 
light. (As a review, the properties of the delta function are discussed in Appendix C.)

It is interesting to consider how different these two diffraction patterns are. The isolated 
space results in a continuous distribution of energy in the form of a sinc function. The 
dense array of spaces produces discrete points of light, whose brightness follows the sinc 
function envelop (that is, the diffraction pattern of just one of its spaces). To visualize 
how this happens, consider the intermediate cases of two or three spaces of equal width, 
separated by lines of the same width. Figure 2.5 shows the intensity of the diffraction 
patterns (electric fi eld amplitude squared) for these cases. For the multiple space cases, 
diffraction patterns from adjacent spaces interfere with each other, producing narrow 
interference fringes. The greater the number of spaces, the greater the interference is and 
thus the narrower the peaks. As the number of spaces in the array approaches infi nity, the 
fringes become infi nitely narrow points of light.

Let’s take a closer look at the diffraction pattern for equal lines and spaces. At the 
center of the objective lens entrance ( fx = 0), the diffraction pattern has a bright spot called 
the zero order. The zero order is the light that passes through the mask and is not bent. 
To either side of the zero order are two peaks called the fi rst diffraction orders. These 
peaks occur at spatial frequencies of ±1/p, where p is the pitch of the mask pattern (line-
width plus spacewidth). Since the position of these diffraction orders relative to the zero 

0.0

0.2

0.4

0.6

0.8

1.0

–3 –2 –1 0 1 2 3

w fx

In
te

ns
ity

Figure 2.5 Magnitude of the diffraction pattern squared (intensity) for a single space (thick 
solid line), two spaces (thin solid line) and three spaces (dashed lines) of width w. For the 
multiple-feature cases, the linewidth is also equal to w
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order depends on the mask pitch, their relative positions contain information about the 
pitch. It is this information that the objective lens will use to reproduce the image of the 
mask. In fact, in order for the objective lens to form a true image of a pattern of lines and 
spaces, at least two diffraction orders must be captured by the objective lens and used to 
form the image. In addition to the fi rst order, there can be many higher orders, with the 
jth order occurring at a spatial frequency of j/p.

While in principle the number of diffraction orders (the range of values of j) is infi nite, 
only some of these orders are capable of propagating from the mask to the lens. If a wave 
has a spatial frequency such that

 f fx y
2 2 1+ >

λ
 (2.46)

these waves are said to evanescent. This condition is equivalent to a wave whose direction 
cosines have a2 + b2 > 1 so that the direction cosine g is imaginary. The amplitudes of 
these evanescent waves decay exponentially as
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Thus, for practical purposes, diffraction patterns need only be considered out to spatial 
frequencies less than the onset of evanescent waves.

Summarizing, given a mask in the x–y plane described by its electric fi eld transmission 
tm(x,y) multiplied by the incident electric fi eld Ei(x,y), the electric fi eld Tm as it enters the 
objective lens (the x′–y′ plane) is given by

 T f f E x y t x yx ym i m, , ,( ) { ( ) ( )}=F  (2.48)

where the symbol F represents the Fourier transform and fx and fy are the spatial frequen-
cies and are simply scaled coordinates in the x′–y′ diffraction plane. Often, tm(x,y) is 
approximated as the shadow transmittance of the mask using the Kirchhoff boundary 
condition. For normally incident plane wave illumination, Ei = 1.

2.2.2 Fourier Transform Pairs

Some important diffraction patterns can now be calculated. Table 2.1 shows several 
common 1D functions of some interest to lithographers, as well as their Fourier trans-
forms. These transform pairs can be applied to different problems with the addition of 
two important theorems. If F{g(x,y)} = G(fx,fy), the shift theorem of the Fourier transform 
says

 F{ ( )} ( ) ( )g x a y b G f fx y
i f a f bx y− − = − +, , e 2π  (2.49)

where a and b are constants. In other words, a shift in position of the mask produces a 
linear phase variation across the diffraction pattern. The similarity theorem of the Fourier 
transform is
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Table 2.1 1D Fourier transform pairs useful in lithography
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This theorem shows that making a pattern smaller (a, b < 1) spreads the diffraction pattern 
to higher spatial frequencies. Finally, by recognizing that the Fourier transform is a linear 
operation (see Problem 2.7), superposition of known Fourier transform pairs can be used 
to build more complicated functions.

Another important general transform that is extremely useful in lithography is the 
generalized repeating pattern. Consider a two-dimensional pattern that repeats in x and y 
with pitches px and py, respectively. Let tr(x,y) be the transmittance of a single repeating 
unit such that the transmittance is nonzero only in the range −px/2 < x < px/2 and −py/2 
< y < py/2. The total transmittance of the mask is then
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where the ‘⊗’ symbol denotes convolution. Letting Tr( fx, fy) be the Fourier transform of 
the isolated repeating unit transmittance, the Fourier transform of Equation (2.51) gives
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Thus, any repeating pattern produces a diffraction pattern made up of delta functions 
(diffraction orders). The amplitudes of the diffraction orders are given by the Fourier 
transform of the isolated repeating unit mask pattern.

2.2.3 Imaging Lens

We are now ready to describe what happens next and follow the diffracted light as it 
enters the objective lens. In general, the diffraction pattern extends throughout the x′–y′ 
plane. However, the objective lens, being only of fi nite size, cannot collect all of the light 
in the diffraction pattern. Typically, lenses used in microlithography are circularly sym-
metric and the entrance to the objective lens can be thought of as a circular aperture. Only 
those portions of the mask diffraction pattern that fall inside the aperture of the objective 
lens go on to form the image. Of course, we can describe the size of the lens aperture by 
its radius, but a more common and useful description is to defi ne the maximum angle of 
diffracted light that can enter the lens. Consider the geometry shown in Figure 2.6. Light 
passing through the mask is diffracted at various angles. Given a lens of a certain size 
placed at a certain distance from the mask, there is some maximum angle of diffraction, 
qmax, for which the diffracted light just makes it into the lens. Light emerging from the 
mask at larger angles misses the lens and is not used in forming the image. The most 
convenient way to describe the size of the lens aperture is by its numerical aperture, 

Aperture
x y( ’, ’ )-plane

Object
Plane

max

Objective
Lens

Entrance
PuPil

q

Figure 2.6 The numerical aperture is defi ned as NA = n  sin  qmax where qmax is the maximum 
half-angle of the diffracted light that can enter the objective lens, and n is the refractive index 
of the medium between the mask and the lens
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defi ned as the sine of the maximum half-angle of diffracted light that can enter the lens 
times the index of refraction of the surrounding medium, n.

 NA n= sin maxθ  (2.53)

Besides the diffraction plane, it is important to defi ne the entrance pupil of the objective 
lens. Despite the simplicity of the single-lens diagram in Figure 2.6, the diffraction plane 
(also called the pupil plane or aperture plane) is actually buried inside the lens in most 
cases. The entrance pupil (or opening) is spherical in shape and is the image of the diffrac-
tion plane as seen from the entrance of the lens. The diffraction plane can be constructed 
simply as the geometric projection of the spherical entrance pupil onto a plane. (Likewise, 
the exit pupil is the image of the aperture plane as viewed from the exit side of the lens.) 
Thus, one can easily express the spatial frequency in terms of the angle of diffraction:
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with, of course, an equivalent expression for the y-direction. Alternately, the spatial fre-
quencies can be related to the direction cosines as defi ned in Equation (2.25):
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Using this description, the maximum spatial frequency that can enter the objective lens 
is given by NA/l.

Clearly, the numerical aperture is going to be quite important. A large numerical aper-
ture means that a larger portion of the diffraction pattern is captured by the objective lens. 
For a small numerical aperture, much more of the diffracted light is lost. In fact, we can 
use this viewpoint to defi ne resolution, at least from the limited perspective of image 
formation. Consider the simple case of a mask pattern of equal lines and spaces. As we 
have seen, the resulting diffraction pattern is a series of discrete diffraction orders. In 
order to produce an image that even remotely resembles the original mask pattern, it is 
necessary for the objective lens to capture the zero order and at least one higher diffrac-
tion order. If the light illuminating the mask is a normally incident plane wave (the only 
type of illumination we have discussed so far), the diffraction pattern will be centered in 
the objective lens (more on this topic will be covered in section 2.3.1). Since the positions 
of the ±1st diffraction orders in frequency space are given by ±1/p, the requirement that 
a lens must capture these diffraction orders to form an image puts a lower limit on the 
pitch that can be imaged. Thus, the smallest pitch (pmin) that still produces an image will 
put the fi rst diffraction order at the outer edge of the objective lens:
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If we let R represent the resolution element (the linewidth or the spacewidth) of our equal 
line/space pattern, the resolution will be given by

 R
NA

= 0 5.
λ

 (2.57)
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This classic equation is often called the theoretical resolution of an imaging system. 
Note that several very specifi c assumptions were made in deriving this resolution equa-
tion: a mask pattern of equal lines and spaces was used, and the illumination was a single 
wavelength normally incident plane wave (called coherent illumination). In reality, this 
equation defi nes the pitch resolution, the smallest pitch that can be imaged, for normally 
incident plane waves. For other features, for example an isolated line, there is no clear 
resolution cutoff. For other types of illumination, this cutoff will change. As a result, this 
approximate resolution expression is often generalized as

 R k
NA

= 1
λ

 (2.58)

Such resolution equations are best interpreted as scaling equations, with k1 as the scaled 
resolution. See Chapter 10 for a more thorough discussion of resolution.

2.2.4 Forming an Image

To proceed further, we must now describe how the lens affects the light entering it. 
Obviously, we would like the image to resemble the mask pattern. Since diffraction 
gives the Fourier transform of the mask, if the lens could give the inverse Fourier trans-
form of the diffraction pattern, the resulting image would resemble the mask pattern. 
In fact, lenses are designed to behave precisely in this way. We can defi ne an ideal 
imaging lens as one that produces an image at the focal plane that is identically equal to 
the Fourier transform of the light distribution entering the lens. A property of the Fourier 
transform is

 F F{ { ( )}} ( )g x y g x y, ,= − −  (2.59)

Thus, one Fourier transform (diffraction) followed by a second Fourier transform (focus-
ing by the imaging lens) produces an image that is a 180° rotated version of the original. 
It is common to defi ne an image coordinate system that is rotated by 180° so that this 
rotation can be ignored. In the rotated image coordinate system, the focusing behavior of 
the imaging lens is described as a simple inverse Fourier transform.

It is the goal of lens designers and manufacturers to create lenses as close as possible 
to this ideal. Does an ideal lens produce a perfect image? No. Because of the fi nite size 
of the lens aperture, only a portion of the diffraction pattern enters the lens. Thus, even 
an ideal lens cannot produce a perfect image unless the lens is infi nitely big. Since in the 
case of an ideal lens the image is limited only by the diffracted light that does not make 
it through the lens, we call such an ideal system diffraction limited.

In order to write our fi nal equation for the formation of an image, let us defi ne the 
objective lens pupil function P (a pupil is just another name for an aperture) as the trans-
mittance of the lens from the entrance pupil to the exit pupil. The pupil function of an 
ideal lens simply describes what portion of light makes it through the lens: it is one inside 
the aperture and zero outside.
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Thus, the product of the pupil function and the diffraction pattern describes the light 
transmitted through the objective lens, that is, the light at the exit pupil. Combining this 
with our description of how a lens behaves gives us our fi nal expression for the electric 
fi eld at the image plane (that is, at the wafer):

 E x y T f f P f fx y x y( ) { ( ) ( )}, , ,m= −F 1  (2.61)

where the symbol F −1 represents the inverse Fourier transform. The aerial image is 
defi ned as the intensity distribution in air at the wafer plane and is simply the square of 
the magnitude of the electric fi eld (see section 2.1.3).

Consider the full imaging process (Figure 2.7). First, light passing through the mask 
is diffracted. The diffraction pattern can be described as the Fourier transform of the 
electric fi eld at the bottom of the mask. Since the objective lens is of fi nite size, only a 
portion of the diffraction pattern actually enters the lens. The numerical aperture defi nes 
the maximum angle of diffracted light that enters the lens and the pupil function is used 
to mathematically describe this behavior. Finally, the effect of the lens is to take the 
inverse Fourier transform of the light exiting the lens to give an image which (one hopes) 
resembles the mask pattern. If the lens is ideal, the quality of the resulting image is only 
limited by the amount of the diffraction pattern collected. This type of imaging system is 
called diffraction limited.

2.2.5 Imaging Example: Dense Array of Lines and Spaces

Again referring to the simplifi ed case of an infi nite array of lines and spaces, the diffrac-
tion pattern is made up of discrete diffraction orders, points of light represented mathe-
matically as delta functions. The image of such a pattern is calculated as the inverse 
Fourier transform of the diffraction orders that make it through the lens (those with spatial 
frequencies less than NA/l). The inverse Fourier transform of a delta function is just 1, 
so that a point source in the pupil plane of the lens produces a plane wave at the wafer 

Objective
Lens

Mask 
(Object)

Wafer
(Image)

Entrance Pupil

Exit Pupil

Figure 2.7 Formation of an aerial image: a pattern of lines and spaces produces a diffraction 
pattern of discrete diffraction orders (in this case, three orders are captured by the lens). The 
lens turns these diffraction orders into plane waves projected onto the wafer, which interfere 
to form the image
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plane. Letting N be the largest diffraction order that passes through the lens, and using 
the dense space diffraction pattern of Equation (2.45),
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The term ei2pjx/p represents the electric fi eld of a unit-amplitude plane wave spread out 
over the focal plane, whose incident angle when striking the focal plane is given by the 
angle of the jth diffraction order (sin q = jl/p). The amplitude of this plane wave is aj, the 
amplitude of the jth diffraction order. The electric fi eld image at the wafer plane is 
the sum (the interference) of the various plane waves reaching the wafer. This interpreta-
tion of the line/space image result is extremely useful. As Equation (2.52) shows, any 
repeating pattern on the mask will produce a diffraction pattern made up of delta functions 
(point sources) called diffraction orders. Each diffraction order in turn produces one plane 
wave striking the wafer. The summation (interference) of all of the plane waves produces 
the image. This is sometimes called plane wave decomposition, since the image is decom-
posed into plane wave basis functions.

Since the diffraction pattern for this case is centered in the entrance pupil, Equation 
(2.62) can be simplifi ed using Euler’s theorem.
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The zero order, given by a0, provides a DC offset to the electric fi eld. Each pair of dif-
fraction orders, ±1, ±2, etc., provides a cosine at harmonics of the pitch p. For the case 
of equal lines and spaces, the diffraction order amplitudes become
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 (2.64)

A graph of this diffraction pattern for ±3 orders is given in Figure 2.8.
Consider the case of lines and spaces where N = 1 (that is, the lens captures the zero 

order and the ±1 orders). The electric fi eld image is then
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and the intensity image is
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For equal lines and spaces, the image becomes
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It is useful to interpret each term in Equation (2.67) physically. The zero order contrib-
utes a DC bias to the fi nal image, seen as the fi rst term on the right-hand side of Equation 
(2.67). The second term represents the interference of the zero order with the fi rst orders 
and contains the main cosine function that determines the overall shape of the aerial 
image. The fi nal cosine-squared term represents the interference of the +1 order with the 
−1 order. Since the distance between these orders is 2/p in spatial frequency space, this 
term contributes a frequency-doubled sinusoid to the image.

As a note, the image calculations above perform a scalar addition of the electric fi elds 
of the zero and fi rst orders. That is, the vector directions of the electric fi elds of each 
plane wave interfering at the wafer plane are assumed to be parallel. For the case where 
this is not true, a full vector treatment of the image calculation, as given in Chapter 3, is 
required.

The number of diffraction orders captured by the objective lens determines the quality 
and characteristics of the resulting aerial image. If the numerical aperture of the lens is 
increased (or if the wavelength is decreased), increasing numbers of diffracted orders can 
be captured and used to form the image. Each added diffraction order contains informa-
tion that improves the quality of the aerial image (Figure 2.9).

2.2.6 Imaging Example: Isolated Space

Consider now the image of an isolated space under coherent illumination. Taking the 
inverse Fourier transform of the portion of the diffraction pattern [from Equation (2.45)] 
that makes it through the lens,
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Figure 2.8 Graph of the diffraction pattern for equal lines and spaces plotted out to ±3rd 
diffraction orders. For graphing purposes, the delta function is plotted as an arrow, the height 
equal to the amplitude multiplier of the delta function
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Breaking up the complex exponential into a sine and cosine using Euler’s identity, any 
odd part of the function will integrate to zero. Thus, keeping only the even part,
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Using a trigonometric identity,
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This integral can be expressed in terms of the commonly tabulated Sine integral (Si) to 
give the fi nal image intensity:
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where

 Si d( )
sinθ

θ

= ∫
z

z
z

0

2.2.7 The Point Spread Function

A common method of characterizing the resolving capability of an imaging system is to 
consider the smallest possible contact hole that can be printed. (The term ‘contact’ hole 
refers to the use of this small hole in ICs for making electrical contact between two metal 
layers separated by an insulator.) Consider a mask pattern of an isolated rectangular hole 
in a chrome (totally dark) background. Now let that hole shrink to an infi nitesimal pinhole. 
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Figure 2.9 Aerial images for a pattern of equal lines and spaces of width w as a function 
of the number of diffraction orders captured by the objective lens (coherent illumination). N 
is the maximum diffraction order number captured by the lens
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As the hole shrinks, the intensity of light reaching the wafer becomes infi nitesimally 
small, but we shall normalize out this effect and consider only the shape of the resulting 
aerial image. Thus, as the contact hole shrinks to a pinhole, the transmittance of the pho-
tomask becomes a delta function. The diffraction pattern, then, is just 1, a plane wave 
uniformly fi lling the pupil of the objective lens.

For uniform fi lling of the entrance pupil, the resulting image is the inverse Fourier 
transform of the pupil function. The result for an ideal circular aperture is

 E x y P f f
J

x y( ) ( )
( )

, ,= { } =−F 1 1 2πρ
πρ

 (2.73)

where J1 is the Bessel function of the fi rst kind, order one, and r is the radial distance 
from the center of the image normalized by multiplying by NA/l. The intensity aerial 
image of a pinhole, when normalized in this way, is called the point spread function (PSF) 
of the optical system.
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2

2( )πρ
πρ

 (2.74)

The PSF (also called the Airy disk, after George Biddle Airy) is a widely used metric of 
imaging quality for optical system design and manufacture and is commonly calculated 
for lens designs and measured on fabricated lenses using special bench-top equipment. 
Figure 2.10 shows a graph of the ideal PSF.

How wide is the PSF? For large contact holes, the normalized intensity at a position 
corresponding to the mask edge (that is, at the desired contact hole width) is about 0.25–
0.3. If we use this intensity range to measure the width of the PSF, the result is a contact 
hole between 0.66 and 0.70 l/NA wide. Thus, this width represents the smallest possible 
contact hole that could be imaged with a conventional chrome on glass (i.e. not phase-
shifted) mask. If the contact hole size on the mask approaches or is made smaller than 
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Figure 2.10 Ideal point spread function (PSF), the normalized image of an infi nitely small 
contact hole. The radial position is normalized by multiplying by NA/l
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this value, the printed image is controlled by the PSF, not by the dimensions of the mask! 
Making the contact size on the mask smaller only reduces the intensity of the image peak. 
Thus, this width of the PSF, the ultimate resolution of a chrome on glass (COG) contact 
hole, is a natural resolution of the imaging system.

The PSF can also be interpreted using linear systems theory. For the coherent illumina-
tion discussed so far, the Fourier transform of the electric fi eld image is equal to the pupil 
function multiplied by the Fourier transform of the mask transmittance.

 F{ ( )} ( ) ( )E x y T f f P f fx y x y, , ,m=  (2.75)

Thus, the electric fi eld image is linear in Fourier space, with the pupil function serving 
the role of the system transfer function. In real space, applying the convolution theorem 
of the Fourier transform to Equation (2.75) gives

 E x y t x y P f fx y( ) ( ) { ( )}, , ,m
1= ⊗ −F  (2.76)

The inverse Fourier transform of the pupil function, as we saw above, is just the electric 
fi eld PSF. Thus, for coherent illumination, the electric fi eld image is the electric fi eld mask 
transmittance convolved with the electric fi eld PSF.

In linear systems theory, the electric fi eld PSF would be called the impulse response 
of the imaging system. An infi nitely small pinhole on the mask produces a delta function 
or ‘impulse’ of light as the object, so that the PSF, being the image of that impulse object, 
is called the impulse response of the imaging system. For fi elds, the Green’s function 
plays the equivalent role of the impulse response and the PSF will sometimes be referred 
to as a Green’s function.

2.2.8 Reduction Imaging

The above discussion makes a useful simplifying assumption – that the imaging system 
is 1×, or unit magnifi cation, so that the dimensions of the mask patterns are nominally 
the same as those of the image being produced. In reality, most imaging tools used in 
lithography are 4× to 10× reduction systems (with 4× the most common), so that the mask 
is made 4× to 10× bigger than the desired pattern sizes on the wafer. Fortunately, this 
reduction can be accounted for by a simple scaling relationship so that imaging with 
reduction is treated mathematically the same as for a 1× system. For a reduction ratio R, 
all lateral (x and y) dimensions at the wafer are equal to the mask dimensions divided by 
R. Additionally, the sine of the angles of diffraction are R times greater on the wafer side 
(exit side) of the lens compared to the mask side (entrance side). Thus, the common 
numerical aperture used to describe the size of the lens is more properly defi ned as the 
exit pupil numerical aperture, the entrance pupil NA being R times smaller (Figure 2.11). 
Likewise, spatial frequencies on the wafer side are R times larger than spatial frequencies 
on the mask side (a property of any good imaging system known as the Abbe sine 
condition):

 n Rnw w m msin sinθ θ=  (2.77)

One can readily see that diffraction calculations using the mask dimensions and the 
mask side numerical aperture produce the same results as calculations using the mask 
scaled to wafer dimensions when using the wafer side NA. Additionally, all longitudinal 



54 Fundamental Principles of Optical Lithography

(z, the focus direction) dimensions at the wafer are reduced by approximately R2 compared 
to focus variations at the mask (see Chapter 3 for a more exact description).

Reduction (or magnifi cation) in an imaging system adds an interesting complication. 
Light entering the objective lens can be assumed to leave the lens with no loss in energy 
(the lossless lens assumption). However, if there is reduction or magnifi cation in the lens, 
the intensity distribution of the light entering will be different from that leaving since the 
intensity is the energy spread over a changing area. The result is a radiometric correction 
well known in optics.3 Conservation of energy requires that the amplitude of the electric 
fi eld passing through the pupil at a wafer-side diffraction angle qw (corresponding to an 
angle at the mask side of qm) be modifi ed by the radiometric correction
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where R is the reduction factor (for example, 4.0 for a 4× reduction imaging tool, see 
Figure 2.12) and Equation (2.77) was used to covert mask-side angles to the wafer side. 
This radiometric correction can be incorporated directly into the lens pupil function in 
terms of the wafer-side spatial frequencies:
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Note that for R of about four and higher, the radiometric correction can be well approxi-
mated as
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The existence of this radiometric correction phenomenon gives rise to an interesting 
question about image intensity normalization. In essence, for aerial image normalization, 
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Refractive index on 
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Refractive index on 
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Stop
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Figure 2.11 An imaging lens with reduction R scales both the lateral dimensions and the 
sine of the angles by R
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there are two choices: wafer level and mask level normalization. For example, one could 
defi ne a unit relative intensity as the intensity obtained at the wafer for a large open-fi eld 
exposure (blank glass mask in the reticle plane). Alternatively, one could defi ne the unit 
intensity as the intensity transmitted by a large open area on a mask (and suitably multi-
plied by the reduction ratio squared to take the area change between mask and wafer into 
account). If the radiometric correction is ignored, then these normalization approaches 
are identical by invocation of the ‘lossless lens’ approximation: the energy leaving the 
mask is 100 % transmitted to the wafer and thus the intensity just below the mask is 
identical to the intensity striking the wafer for a blank quartz mask. However, if the 
radiometric correction is taken into account, this simple, intuitive relationship no longer 
holds (see Figure 2.13). Conservation of energy requires that, for a system with magnifi -
cation or reduction, the intensity of light will change from one side of the lens to the other 
if that light is traveling at a non-normal direction. As a result, when the radiometric cor-
rection is taken into account, the calculated aerial images will be different for a system 
with a nonunit reduction ratio depending on whether mask-side or wafer-side normaliza-
tion is used. The location of the energy sensor on the imaging tool, whether at the mask 
plane or the wafer plane, dictates which normalization scheme is most appropriate (most 
lithographic imaging tools have their dose sensors at the wafer plane).

More importantly than intensity normalization, the radiometric correction impacts the 
shape and quality of an aerial image. By increasing the pupil transmittance for high spatial 
frequencies, the radiometric correction can actually improve image quality for some 
masks and illuminators by making the higher-frequency diffraction orders (which carry 
the information about the smallest features on the mask) brighter.

Of course, the purpose of reduction in imaging has nothing to do with the radiometric 
correction. Masks are made larger by some multiple in order to simplify the making of 
the mask. Making masks with features that are 4× bigger than on the wafer is far easier 
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Figure 2.12 A plot of the radiometric correction as a function of the wafer-side diffraction 
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than making 1× features on the mask. However, there are two important trade-offs with 
increasing reduction ratio. For a given image fi eld size, the physical dimensions of the 
mask grow as the reduction ratio. For a 25 × 25 mm image fi eld and a 4× mask, the result-
ing mask size would need to accommodate a 100 × 100 mm region. If the reduction ratio 
were made larger, the mask size could become too large to handle effectively, especially 
with respect to maintaining proper registration of the features over the larger mask area. 
Additionally, higher reduction ratios lead to more complex lens designs (the symmetry 
of 1× imaging leads to the simplest lens designs).

2.3 Partial Coherence

Although we have completely described the behavior of one simple, ideal imaging system, 
we must add an important complication before we describe the operation of a projection 
system for lithography. So far, we have assumed that the mask is illuminated by spatially 
coherent light. Coherent illumination means simply that the light striking the mask arrives 
from only one direction. We have further assumed that the coherent illumination on the 
mask is normally incident. But real lithographic tools use a more complicated form of 
illumination, where light strikes the mask from a range of angles.

(As a note, the coherence described here is a spatial coherence, as opposed to the 
related but different concept of temporal coherence. Spatial coherence can be thought of 
as the phase relationship between light at two points in space at one instance in time. 
Temporal coherence looks at light at one point in space but at different times. While 
temporal coherence often entails spatial coherence, the existence of spatial coherence 
usually does not imply anything about the temporal coherence of the light. Unfortunately, 
most technical literature will refer to one or the other of these properties as simply ‘coher-
ence’. Thus, in this book, coherence means spatial coherence unless specifi cally described 
otherwise.)
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2.3.1 Oblique Illumination

For spatially coherent illumination (a plane wave of illumination normally incident on 
the mask), diffraction resulted in a pattern that was centered in the entrance to the objec-
tive lens. What would happen if we changed the direction of the illumination so that the 
plane wave struck the mask at some angle q ′? While the incident electric fi eld will still 
have a magnitude of 1, the phase of this plane wave will vary linearly across the mask. 
For a plane wave tilted relative to the x-axis,

 E x y i x
i

/, e( ) sin= ′2π θ λ  (2.81)

Under the Kirchhoff boundary condition assumption, the effect is simply to shift the 
position of the diffraction pattern with respect to the lens aperture (in terms of spatial 
frequency, the amount shifted is ′ = ′fx sin / ),θ λ  as seen in Figure 2.14 (see Problem 2.16). 
Recalling that only the portion of the diffraction pattern passing through the lens aperture 
is used to form the image, it is quite apparent that this shift in the position of the diffrac-
tion pattern can have a profound effect on the resulting image. Letting ′ ′f fx y and  be the 
shift in the spatial frequency due to the tilted illumination, Equation (2.61) becomes
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The impact of shifting the diffraction pattern within the objective lens pupil on the 
quality of the resulting image is hard to generalize. In some cases, the result might be 
loss of an important diffraction order that otherwise would have made it through the lens. 
In another case, the shift might enable an otherwise lost diffraction order to be captured. 
The impact will be dependent on the incident angle, the mask pattern (for example, the 
pitch) and on the spatial frequency cutoff, NA/l. Although the lithographic impact is 
complicated, some general rules will be developed in Chapter 10.

One of the most important lithographic consequences of tilting the illumination is a 
change in the resolution. Equation (2.57) showed that for normally incident illumination, 
the smallest half-pitch that could be imaged was 0.5l/NA. By tilting the illumination so 

Diffraction Pattern

Lens Aperture

Mask Pattern 
(Equal Lines and Spaces)

Figure 2.14 The effect of changing the angle of incidence of plane wave illumination on 
the diffraction pattern is simply to shift its position in the lens aperture. A positive illumination 
tilt angle is depicted here
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that the zero order of light just passes through the right edge of the lens, the pitch can be 
reduced until the −1st order just passes through the left edge of the lens. Thus, the distance 
between diffraction orders (1/p) is equal to the diameter of the lens (2NA/l) and the 
smallest half-pitch becomes

 R
NA

= 0 25.
λ

 (2.83)

Tilting the illumination has the potential for improving resolution by a factor of 2.

2.3.2 Partially Coherent Illumination

If the illumination of the mask is composed of light coming from a range of angles rather 
than just one angle, the illumination is called partially coherent. If one angle of illumina-
tion causes a shift in the diffraction pattern, a range of angles will cause a range of shifts, 
resulting in broadened diffraction orders (Figure 2.15). The most common type of partially 
coherent source (called a ‘conventional’ source) provides a uniform range of angles illu-
minating the mask, with each angle having equal intensity. One can characterize the range 
of angles used for the illumination in several ways, but the most common is the partial 
coherence factor, s (also called the degree of partial coherence, the pupil fi lling function, 
or just the partial coherence). The partial coherence is defi ned as the sine of the half-angle 
of the illumination cone divided by the objective lens numerical aperture:

 σ θ= =n

NA

source diameter

lens diameter

sin( )max  (2.84)

(where a wafer-side equivalent illumination angle is used, calculated from the Abbe sine 
condition). It is thus a measure of the angular range of the illumination relative to the 
angular acceptance of the lens. As we shall see in section 2.3.7, the illumination system 
creates an image of the light source at the objective lens pupil. Thus, a conventional illu-
mination source will appear as a circle of uniform intensity when imaged into the pupil 

Mask Pattern 
(Equal Lines and Spaces)

Diffraction Pattern

Lens Aperture

Figure 2.15 The diffraction pattern is broadened by the use of partially coherent illumination 
(plane waves over a range of angles striking the mask)
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(Figure 2.16). Another form of the defi nition of the partial coherence factor of a conven-
tional source is the diameter of the source disk divided by the diameter of the objective 
lens aperture. Finally, if the range of angles striking the mask extends from −90 to 90° 
(that is, all possible angles), the illumination is said to be incoherent. Table 2.2 helps 
defi ne the terminology of spatial coherence. Note that the maximum partial coherence 
factor (assuming the mask remains in air) is R/NA, where R is the reduction ratio. Thus, 
perfectly incoherent illumination is possible only in the limit of very small numerical 
apertures. However, from an imaging perspective any partial coherence factor greater than 
2 is essentially incoherent and is usually treated as such.

An arbitrarily shaped illumination source can be described as an extended source, where 
the source shape is divided into a collection of individual point sources. Each point is a 
source of spatially coherent illumination, producing a plane wave striking the mask at 
one angle, and resulting in an aerial image given by Equation (2.82). Two point sources 
from the extended source, however, do not interact coherently with each other. Thus, the 
contributions of these two sources must be added to each other incoherently (that is, the 
intensities are added together). Illumination systems for lithographic tools are carefully 
designed to have this property. If two spatially separated points on the source were phase-
related, light from those points would interfere at the mask plane, creating nonuniform 
illumination (the phenomenon of speckle is an example of such coherent interaction of 
source points).

The full aerial image is determined by calculating the coherent aerial image from each 
point on the source, and then integrating the intensity over the source (an approach known 
as the Abbe method of partially coherent image calculation). The source can be defi ned 

–1st 0th +1st –1st 0th +1st

Lens Aperture Lens Aperture

)a( (b)

Figure 2.16 Top-down view of the lens aperture showing the diffraction pattern of a line/
space pattern when partially coherent illumination is used: (a) s = 0.25; and (b) s = 0.5

Table 2.2 Partial coherence types (conventional illumination)

Illumination Type Partial Coherence Factor Source Shape

Coherent s = 0 Point source
Incoherent s = ∞ Infi nite size source
Partially Coherent 0 < s < ∞ (but generally 0 < s < 1) Circular disk-shaped source
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by a source function, S f fx y( , ),′ ′  which is just the intensity of the source as a function of 
position (or angle). The total intensity of the image is then
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I x y f f S f f f f
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x y
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, d
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Often, the pupil coordinates ( fx, fy) are normalized in the same way as the partial coher-
ence factor, creating pupil coordinates in ‘sigma’ space. These coordinates are
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In sigma coordinates, the lens pupil is always the unit circle. Also, the source shape func-
tion S can be conveniently normalized as
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so that

 I x y I x y Sx y x y x ytotal , , , , , d d( ) ( ) ( )= ′ ′ ′ ′ ′ ′∫∫ σ σ σ σ σ σ�  (2.88)

The examples of Figure 2.16 illustrate an important diffi culty in calculating images 
with partially coherent illumination. In Figure 2.16a, all of the zero and fi rst diffraction 
orders are captured. When Equation (2.85) is evaluated, the aerial image for each source 
point, I x y f fx y( , , , ),′ ′  will be identical, being made up of three diffraction orders. Thus, the 
partially coherent image is equal to the coherent image. For the case shown in Figure 
2.16b, however, there is a very different result. For some source points, only one of the 
fi rst orders is captured and thus a different image results.

This idea can be expressed more clearly using Figure 2.17. Again showing a case of 
imaging equal lines and spaces where only the zero and the two fi rst diffraction orders 
are captured, the black region in the fi gure shows all of the source points where three 

–1st order +1st order0th order

Figure 2.17 Example of dense line/space imaging where only the zero and fi rst diffraction 
orders are used. Black represents three-beam imaging, lighter and darker grays show the area 
of two-beam imaging
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diffraction orders are captured. This region of the source produces ‘three beam’ imaging, 
equal to the coherent aerial image of Equation (2.66). The gray areas, however, result in 
only the zero order and one fi rst order captured by the lens (the light gray area forms an 
image from the 0 and +1st orders, the dark gray area forms an image from the 0 and −1st 
orders). These areas form a ‘two-beam’ image, given by

 I x a a a a x p( ) cos( )= + +0
2

1
2

0 12 2π /  (2.89)

The fi nal image will be a weighted average of the two-beam and three-beam images, 
where the weights are their respective source intensity fractions. Thus, for the case of a 
uniform intensity source shape and a repeating pattern of lines and spaces, the solution 
to the partially coherent imaging integrals of Equation (2.85) becomes a geometry problem 
of calculating the overlapping areas of the various circles for the source and the lens.

This approach, often called the Kintner method,4 is readily solvable for the case of a 
circularly shaped source. Every image takes the form of

 I x s I s I s I( ) = + +− − −1 1 2 2 3 3beam beam beam  (2.90)
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The weights si take on different values for different regimes of pitch and partial coherence, 
as given in Table 2.3, and always add up to 1. This table makes use of the following 
values (making sure that the inverse tangent is defi ned over the range from 0 to p):
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Table 2.3 Kintner weights for conventional source imaging of small lines and spaces

Regime Description s1 s2 s3

λ σ
pNA

≤ −1
All three-beam imaging 0 0 1

1 1 2− ≤ ≤ −σ λ σ
pNA

Combination of two- and 
three-beam imaging

0 2g 1 − 2g

1 12− ≤ ≤σ λ
pNA

Combination of one-, two- 
and three-beam imaging

h + 2g − 1 2(1 − g − h) h

1 1≤ ≤ +λ σ
pNA

Combination of one- and 
two-beam imaging

2g   − 1 2(1 − g ) 0

1+ ≤σ λ
pNA

Only the zero order is 
captured, all one-beam

1 0 0
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2.3.3 Hopkins Approach to Partial Coherence

H.H. Hopkins reformulated the Abbe extended source method for partially coherent image 
calculations in an interesting and occasionally useful way.5,6 Equation (2.82) gives the 
electric fi eld for a single source point by shifting the diffraction pattern relative to a fi xed 
pupil. A change of variables will show that this is exactly equivalent to fi xing the diffrac-
tion pattern and shifting the pupil by the same amount:
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where only one dimension is shown for simplicity. Calculating the image intensity for 
this single source point as the product of the electric fi eld and its complex conjugate,
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The next step in the Abbe extended source method is to integrate over all of the source 
points as in Equation (2.85) or (2.88). The critical step in the Hopkins formulation is to 
change the order of integration and to integrate over the source fi rst, before carrying out 
the inverse Fourier transform integrals of Equation (2.95). Since only the pupil functions 
in Equation (2.95) depend on the source point, The integration over the source gives an 
intermediate variable

 TCC f f P f f P f f S f fx x x x x x x x( ( ) *( ) ( ), d� � �) = + ′ + ′ ′ ′
−∞

∞

∫  (2.96)

so that

 I x TCC f f T f T f f fx x x x
i f f x

x
x x
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xx

−∞

∞

∫  (2.97)



 Aerial Image Formation – The Basics 63

The intermediate variable TCC in Equation (2.96) is called the transmission cross-
coeffi cient. It has the useful property of being independent of the mask transmittance 
function – it depends only on the pupil function and the source shape. For applications 
where the pupil and source functions are fi xed, but images must be calculated for a wide 
range for different masks, precalculation of the TCC function can greatly speed up image 
calculations. Optical proximity correction (OPC), discussed in Chapter 10, is one example 
where this approach becomes useful. Physically, the TCC can be thought of as an 
intensity-based description of how two separate pupil points interact when forming an 
image. Of course, the one-dimensional formulations above can be easily extended to 
two dimensions.

2.3.4 Sum of Coherent Sources Approach

An approximate solution to the Hopkins imaging equations called Sum of Coherent 
Sources (SOCS) provides extremely fast computation times and is thus very useful for 
some imaging calculation like those used for optical proximity correction.7 To begin, 
we will convert the fi nal Hopkins equation (2.97) from the spatial frequency domain 
to the spatial domain. From the defi nition of the Fourier transform of the mask 
transmittance,

 T f t x x T f t x xx
i f x

x
i f xx x

m m m me d , * e d( ) ( ) ( ) ( )= ∗ =−

−∞

∞

−∞

∞

∫ ∫2 2π π� �
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Also, noting that the electric fi eld point spread function is the Fourier transform of the 
pupil function,

 h x P f fx
i f x

x
x( ) ( )= −

−∞

∞

∫ e d2π  (2.99)

and defi ning the mutual coherence function as the Fourier transform of the normalized 
source shape,

 J x S f fx
i f x

x
x

0
2( ) ( )= −

−∞

∞

∫ � e dπ  (2.100)

the Hopkins imaging integral can be converted to an integration over x (that is, an integra-
tion over the image plane) rather than an integration over the pupil plane:

 I x J x x h x x h x x t x t x x x( ) ( ) ( ) *( ) ( ) ( )= ′ − ′′ − ′ − ′′ ′ ′′ ′ ′′
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Defi ning a function W that depends only on the source and the pupil,

 W a b J a b h a h b( ) ( ) ( ) *( ), = −0  (2.102)

this new Hopkins integral becomes

 I x W x x x x t x t x x x( ) ( ) ( ) ( )= − ′ − ′′ ′ ′′ ′ ′′
−∞

∞

−∞
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So far, there is no real advantage to this formulation of the Hopkins imaging equation. 
Let us now propose an interesting decomposition for W as the weighted sum of its 
eigenvectors fn:

 W a b a bn n n
n

( ) ( ) ( ), *=
=

∞

∑λ φ φ
1

 (2.104)

where ln is the eigenvalue for the eigenvector fn. Expressed in this way, the Hopkins 
integral becomes
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Thus, for a given source shape and pupil function, a set of eigenvectors and eigenvalues 
can be determined, each eigenvector playing the role of a coherent PSF-like function. 
These eigenvectors are then convolved with the mask transmittance function to give an 
electric fi eld at the wafer plane. Converting to intensity, the weighted sum of these image 
components becomes the total image. The eigen functions also have the convenient prop-
erty of being orthogonal to each other. Note that for the case of coherent illumination, 
J0(x) = 1, l1 = 1, f1 = h(x) and ln = 0 for n > 1. In fact, one simple decomposition is to 
let each n represent a coherent point on the source, so that ln is the intensity of the source 
point and fn is just the coherent PSF with a phase tilt corresponding to the position of 
that source point. Thought of in this way, Equation (2.105) is just an expression of the 
Abbe extended source formulation expressed as convolutions in the image plane rather 
than products in the pupil plane.

Of course, for any real calculation of an image using this approach, the infi nite sum-
mation must be cut off at some number N:

 I x x t xn
n

N

n( ) ( ) ( )≈ ⊗
=

∑λ φ
1

2
m  (2.106)

where higher values of N lead to greater accuracy in the calculation. The key insight into 
the use of SOCS is to fi nd a set of eigen functions that allows N to be minimized. Letting 
each term in the summation represent one source point often requires hundreds of terms 
to produce the desired accuracy. By cleverly choosing a different set of eigen functions, 
the required number of terms in the summation can be reduced by an order of magnitude 
or so. However, since a new set of eigen functions and eigenvalues must be determined 
every time the source or the pupil function is changed, this approach tends to be used 
only for cases where the source and pupil are fi xed and images for a large number of 
mask patterns must be determined.
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2.3.5 Off-Axis Illumination

Off-axis illumination refers to any illumination shape that signifi cantly reduces or elimi-
nates the ‘on-axis’ component of the illumination, that is, the light striking the mask at 
near normal incidence (Figure 2.14). By tilting the illumination away from normal inci-
dence, the diffraction pattern of the mask is shifted within the objective lens. While all 
the reasons why this is desirable are not yet obvious (resolution is one benefi t, but another 
involves depth of focus, a concept not yet discussed), there are many lithographic applica-
tions where off-axis illumination is preferred. The most popular illumination shapes, 
besides the conventional disk shape, are annular illumination, some form of quadrupole 
illumination, and dipole illumination, although many other shapes are used for special 
applications (see Chapter 10).

The idealized source shapes pictured in Figure 2.18 can be thought of as ‘top-hat’ illu-
minators: the intensity is one inside the source shape and zero outside of it. However, 
since these source shapes are created using a variety of optical components, the real source 
distributions of a real projection tool can be signifi cantly more complicated. Figure 2.19 
shows some actual measured source shapes from two different production lithographic 
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Figure 2.18 Conventional illumination source shape, as well as the most popular off-axis 
illumination schemes, plotted in spatial frequency coordinates. The outer circle in each 
diagram shows the cutoff frequency of the lens

Figure 2.19 Examples of measured annular source shapes (contours of constant intensity) 
from two different lithographic projection tools showing a more complicated source distribu-
tion than the idealized ‘top-hat’ distributions
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exposure tools. While both of these source shapes are annular, they exhibit a gradual 
falloff of intensity with pupil radius rather than a sharp cutoff, and a fi ne structure that is 
specifi c to the optical method of generating the shape.

In many cases, the real source shape can be approximated by the ‘designed’ source 
shape (the idealized top-hat illumination) convolved with an illumination point spread 
function, to account for the fi nite resolution of the illumination system. Often, the illu-
mination point spread function can reasonably be approximated as a Gaussian.

2.3.6 Imaging Example: Dense Array of Lines and Spaces Under 
Annular Illumination

Off-axis illumination, with annular illumination being a common example, is most often 
used to push the resolution limits of small, dense patterns. Thus, for the case of a dense 
array of lines and spaces, these small features will generally only admit the zero and ±fi rst 
diffraction orders through the lens (Figure 2.20). As before, the image will depend on the 
fraction of the fi rst order that is captured by the lens, and whether this fraction results in 
only two-beam imaging, or a combination of two-beam and three-beam imaging.

While a full Kintner-like solution is certainly possible (see section 2.3.2), here we will 
develop a simplifi ed approximate solution that will be reasonably accurate whenever the 
width of the annulus is small. For such a case, the fraction g of the fi rst order that passes 
through the lens will be8
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 (2.107)

where s is the radial position of the center of the annulus in s -coordinates. Using the 
notation of Equation (2.90), the fi nal image will be the weighted sum of one-beam, two-
beam and three-beam images, with weights given in Table 2.4.

2.3.7 Köhler Illumination

In the descriptions of imaging above, the mask was always illuminated by a plane wave, 
either normally or obliquely incident. Also, in the drawings and analyses of the diffraction 
patterns given above, the assumption was made that the mask pattern was positioned 

+1st Order
–1st Order

Lens Pupil

Figure 2.20 Annular illumination example where only the 0th and ±1st diffracted orders 
pass through the imaging lens
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directly on the optical axis (the center line running through the middle of the lens). The 
mask and the resulting image fi eld, however, are reasonably large so that imaging takes 
place for mask features that are a long way from the optical axis. This poses a signifi cant 
problem: diffraction patterns produced by features toward the edge of the mask will 
produce diffraction patterns that are not centered in the lens (see Figure 2.21a).

The shifting behavior of oblique illumination offers a solution to the problem. It is very 
desirable that patterns at all positions of the mask be printed with about equal imaging 
characteristics. Thus, identical mask patterns at different fi eld positions should produce 
diffraction patterns that are positioned identically within the objective lens pupil. The 
diffraction pattern for the line/space pattern at the mask edge of Figure 2.21a can be made 

Table 2.4 Kintner weights for thin annular source imaging of small lines and spaces

Regime Description s1 s2 s3

λ σ
pNA

≤ −1
All three-beam imaging 0 0 1

1 1 2− ≤ ≤ −σ λ σ
pNA

Combination of two- and 
three-beam imaging

0 2(1 − g ) 2g − 1

1 12− ≤ ≤ +σ λ σ
pNA

Combination of one- and 
two-beam imaging

1 − 2g 2g 0

1+ ≤σ λ
pNA

Only the zero order is 
captured, all one-beam

1 0 0

Mask

Illumination
Wavefront

Objective Lens

Mask

)a( (b)

Figure 2.21 The impact of illumination: (a) when illuminated by a plane wave, patterns at 
the edge of the mask will not produce diffraction patterns centered in the objective lens pupil, 
but (b) the proper converging spherical wave produces diffraction patterns that are indepen-
dent of fi eld position



68 Fundamental Principles of Optical Lithography

to behave identically with the mask pattern on the optical axis by shifting the diffraction 
pattern up so that it is centered in the lens. This shift, as in section 2.3.1, can be accom-
plished by tilting the illumination. In fact, at every point on the mask the diffraction pat-
terns can be made to coincide if the illumination is properly tilted for that mask point. The 
ideal tilt is achieved across the entire mask if the illumination is made to be a spherical 
wave converging to a point in the entrance pupil of the objective lens (Figure 2.21b).

Note that all of the previous calculations of diffraction patterns assumed a plane wave of 
illumination striking the mask. If a converging spherical wave is used instead as the illumi-
nation, the previous results are still valid so long as the radius of curvature of the spherical 
wave (that is, the distance from the mask to the objective lens entrance pupil) is suffi ciently 
large compared to the feature dimensions on the mask, so that the spherical wave appears 
like a plane wave over the region of interest on the mask. This is most certainly true in the 
Fraunhofer diffraction region. Thus, even though spherical wave illumination will be used, 
plane wave illumination can still be assumed in the diffraction calculations.

In most lithographic tools today, the various shapes and sizes of illumination are 
achieved by an optical arrangement known as Köhler illumination. Named for August 
Köhler, developer of illumination systems for Zeiss microscopes in the late 1800s, Köhler 
illumination uses the condenser lens to form an image of the source at the entrance pupil 
of the objective lens. Then, the mask is placed precisely at the exit pupil of the condenser 
lens (Figure 2.22). This arrangement has several very desirable properties. First, the mask 
is illuminated with converging spherical waves, producing the correct directionality of 
the incident light over the entire mask as discussed above. Thus, the diffraction pattern 
produced by a mask pattern will land in the entrance pupil at precisely the same spot, 
regardless of the position of the mask pattern within the fi eld (i.e. its location on the 
mask). Second, the uniformity of the illumination intensity over the mask is independent 
of the uniformity of the intensity of the source itself (since every point on the mask 
receives light from every point on the source). Thus, Köhler illumination helps ensure 
uniform imaging for all points on the mask.

An interesting side effect of the use of Köhler illumination is that the focal plane of 
the source becomes the far fi eld of the diffraction pattern, in the Fraunhofer sense of the 
far fi eld. That is, the Fresnel diffraction integrals evaluated at the entrance pupil of the 
objective lens become equal to the Fraunhofer diffraction integrals without further 

MaskMask

Entrance
Pupil

Objective
Lens

Source

Figure 2.22 Köhler illumination where the source is imaged at the entrance pupil of the 
objective lens and the mask is placed at the exit pupil of the condenser lens
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approximation. By making only the Fresnel diffraction approximations, the diffraction 
pattern can still be calculated as the Fourier transform of the mask transmittance. In 
essence, the condenser lens brings the ‘infi nite’ diffraction plane in closer, to the image 
plane of the condenser lens.

2.3.8 Incoherent Illumination

As mentioned above, as the size of the illumination source becomes large relative to the 
size of the pupil (that is, as s for an ideal conventional source goes to infi nity), the illu-
mination is said to be spatially incoherent. For this case, integration over the source can 
be greatly simplifi ed. Using the Hopkins formulation, the TCC becomes

 TCC f f P f f P f f f P f P f fx x x x x x x x x x( ( ) ( ) ( ) (, * d *� � �) =∝ + ′ + ′ ′ ′ − + ′
−∞

∞

∫ ff fx x)d ′
−∞

∞

∫  (2.108)

As the fi nal form of this equation indicates, the TCC will only be a function of the dif-
ference in spatial frequencies �f fx x− . Thus,

 TCC f f P f P fx x x x
� −( ) ∝ ⊗( ) *( )  (2.109)

where the proportionality is made into an equality through proper normalization. For 
incoherent illumination, the TCC is called the Optical Transfer Function (OTF). The 
magnitude the OTF is called the Modulation Transfer Function (MTF). It is usually nor-
malized by dividing by the area of the pupil. For an ideal circular pupil, this convolution 
can be easily carried out (being interpreted geometrically as the area overlap between 
shifted circles, Figure 2.23) giving
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Figure 2.23 The MTF(f) is the overlapping area of two circles of diameter NA/l separated 
by an amount f, as illustrated in (a) and graphed in (b)
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where f f fx x= −�  for the case of our 1D features. One can see that the cutoff frequency 
for the incoherent MTF is 2NA/l, corresponding to the zero order at one edge of the lens 
and the fi rst order at the opposite edge.

Using the MTF in Equation (2.97),
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But, the convolution of the diffraction pattern with its complex conjugate can be easily 
computed using the convolution theorem of the Fourier transform:

 T f T f f f t x t xx x xm m m m* d *( ) ( ) { ( ) ( )}+ =
−∞

∞

∫ F  (2.112)

The product of the electric fi eld transmittance of the mask with its complex conjugate is 
just the intensity transmittance of the mask. Thus, Equation (2.111) becomes

 I x MTF f IT fx xtotal
1

m( ) { ( ) ( )}= −F  (2.113)

where ITm( fx) is the Fourier transform of the intensity transmittance of the mask.
As we saw at the beginning of this chapter, for coherent illumination the electric fi eld 

image is a linear function of the electric fi eld mask transmittance in Fourier space, with 
the pupil function as the linear transfer function. Equation (2.113) shows that for incoher-
ent illumination, the intensity image is a linear function of the intensity mask transmit-
tance in Fourier space, with the MTF as the linear transfer function. For partially coherent 
illumination, the relationship between the image and the object is nonlinear.

As an example of an incoherent image, consider a binary pattern of lines and spaces. 
The resulting aerial image is

 I x a MTF j p a jx pj
j

N

( ) ( ) cos( )= +
=

∑0
1

2 2/ /π  (2.114)

For equal lines and spaces where only the 0 and ±1st diffraction orders are captured, the 
aerial image becomes

 I x MTF p x p( ) ( ) cos( )= +1

2

2
1 2

π
π/ /  (2.115)

2.4 Some Imaging Examples

While most of the imaging examples described above were one-dimensional for the sake 
of mathematical simplicity, the approach described in this chapter can of course be used 
to calculate more general two-dimensional images. Figure 2.24 shows a few simple 
examples of two-dimensional aerial images calculated with the lithography simulator 
PROLITH. Figure 2.25 shows images for an isolated binary edge mask feature as a func-
tion of the partial coherence factor.
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Figure 2.24 Some examples of two-dimensional aerial image calculations (shown as con-
tours of constant intensity), with the mask pattern on the left (dark representing chrome)
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Problems

2.1. Derive Equations (2.5).
2.2. Show that the spherical wave of Equation (2.27) is in fact a solution to the 

Helmholtz equation.
2.3. Using Equation (2.38), determine the SI units for intensity.
2.4. Derive Equations (2.45) for the isolated space and the dense line/space pattern. 

Some of the theorems from Appendix C may prove useful.
2.5. Show that the diffraction pattern for an dense line/space pattern becomes the dif-

fraction pattern for an isolated space as the pitch becomes infi nite (for a constant 
spacewidth w). This is equivalent to proving that

 
lim
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x
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f
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p→∞ =−∞

∞

−



 =∑1

1δ

2.6. Complimentary mask features (for example, an isolated line and an isolated space 
of the same width) are defi ned by

 t x y t x ym
c

m( , ) ( , )= −1

Prove that the diffraction patterns of complimentary mask features are given by

 t f f f f T f fx y x y x ym
c

m( , ) ( , ) ( , )= −δ

Use this expression to derive the diffraction pattern of an isolated line.
2.7. Show that the Fourier transform is a linear operation, that is, show that for two 

functions f(x,y) and g(x,y), and two constants a and b,

 F{af(x,y) + bg(x,y)} = aF( fx, fy) + bG( fx, fy)

2.8. Prove the shift theorem of the Fourier transform:

 If  F F{ ( , )} ( , ), { ( , )} ( , ) (g x y G f f g x a y b G f f ex y x y
i f a f bx y= − − = − +2π ))

2.9. Prove the similarity theorem of the Fourier transform:
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2.10. Prove the convolution theorem of the Fourier transform:

 If F{g(x,y)} = G( fx, fy) and F{h(x,y)} = H( fx, fy),
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2.11. Prove the scaling property of the Dirac delta function [in Appendix C, Equation 
(C.10)].
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2.12. Derive the diffraction pattern of an isolated edge:

 
0

1
tm(x)

x = 0

2.13. Derive the diffraction pattern of an isolated double space pattern:

 
0

1
w2

tm(x) w1

x = 0

(Hint: Superposition plus the shift theorem may prove useful.)
2.14. Derive the diffraction pattern of an alternating phase shift mask (a pattern of lines 

and spaces where every other space is shifted in phase by 180°, resulting in a 
transmittance of −1):

 

0

1
w2tm(x)

w1 x = 0

w1

-1

w2

Graph the resulting diffraction pattern out to the ±5th diffraction orders for the case 
of w1 = w2.

2.15. Prove Equation (2.59).
2.16. In section 2.3, it was claimed that illuminating a mask with a plane wave at an 

angle q ′ resulted, under the Kirchhoff boundary condition assumption, in a diffrac-
tion pattern equal to the normally incident diffraction pattern shifted by an amount 
sinq/l. Prove this statement using the defi nition of the Fraunhofer diffraction 
pattern, Equation (2.44).

2.17. Consider a binary pattern of lines and spaces. Which diffraction orders pass through 
the lens under these circumstances:
(a) l = 248 nm, NA = 0.8, pitch = 300 nm, on-axis coherent illumination
(b) Same as (a), but pitch = 400 nm
(c) Same as (b), but illumination tilted by an angle sinq = 0.5

2.18. Equations (2.65) and (2.67) give the electric fi eld and intensity images for three-
beam images, where the 0 and ±1st diffraction orders are used to form the image. 
Derive similar expressions for two-beam images, where only the 0 and +1st dif-
fraction orders are captured by the lens.

2.19. For a repeating line/space pattern and coherent illumination, derive expressions for 
the aerial image intensity at the center of the line and the center of the space as a 
function of the number of diffraction orders captured.

2.20. For l = 248 nm, NA = 0.8 and pitch = 400 nm, below what value of s is the image 
entirely made up of three-beam interference? At what s value does one-beam 
imaging fi rst appear?
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2.21. For coherent illumination and a lens of a given NA and l, derive a formula for the 
electric fi eld image of an isolated edge. The result will be in terms of the sine inte-
gral, defi ned as

 
Si d( )

sin
z

y

y
y

z

= ∫
0
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3
Aerial Image Formation – 

The Details

The impact of aberrations and defocus must now be added to the description of image 
formation provided in the previous chapter. The unique aspects of imaging while scanning 
the mask and wafer past the stationary imaging lens will also be included. Next, a discus-
sion of the vector nature of light and the impact of polarization on imaging will be added 
and immersion lithography will be described. Finally, a preliminary discussion of image 
quality will conclude this chapter.

3.1 Aberrations

According to Webster, an aberration is ‘.  .  .  a departure from what is right, true or correct’. 
In optical imaging, ‘right, true or correct’ can be thought of as the ideal, ‘diffraction-
limited’ imaging performance of a lens (which was rigorously defi ned in the previous 
chapter using Fourier optics). Thus, a lens aberration is any deviation of the real perfor-
mance of that lens from its ideal performance. As one might imagine, aberrations are 
undesirable intrusions of reality into our attempts to achieve imaging perfection.

3.1.1 The Causes of Aberrations

In practice, aberrations come from three sources – aberrations of design, aberrations of 
construction and aberrations of use. Aberrations of construction are probably the most 
tangible sources of errors and include incorrect shapes and thickness of the glass elements 
that make up the lens, inhomogeneous glass used in their construction, improper mount-
ing, spacings or tilts of the various lens elements, or other imperfections in the manufac-
ture of the lens (Figure 3.1). Aberrations of use include all ways in which improper 
use of the lens degrades its performance: using the wrong wavelength or wavelength 
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spectrum, tilt of the mask or wafer plane, or incorrect environmental conditions (e.g. 
changes in the refractive index of air due to changes in temperature, humidity or baro-
metric pressure). But in a sense, it is the aberrations of design which are the fundamental 
problem for lithographic lenses.

An ‘aberration of design’ does not mean mistakes or problems caused by the designer 
of the lens. In fact, it means quite the opposite. Aberrations are fundamental to the nature 
of imaging and it is the goal of the lens designer to ‘design out’ as many of these aberra-
tions as possible. The aberrations of design are those aberrations, inserted into the imaging 
system by nature, that the designer was not able to extract. The root cause of these 
aberrations for refractive optical elements is the nonlinear nature of Snell’s law.

Snell’s law describes the refraction of light as it passes from one material to another. 
Light incident at the boundary of two materials at an angle q1 with respect to the normal 
will refract to a new angle q2 in material 2 given by Snell’s law:

 n n1 1 2 2sin sinθ θ=  (3.1)

where n1 and n2 are the refractive indices of the two materials. It is this refraction between 
air and glass that allows a curved glass surface to focus light. In terms of refraction, the 
goal of imaging can be stated very simply: light emanating in all directions from some 
point on the object should be collected by the lens and focused to its ideal image point. 
Thus, a ray of light coming from the object point should pass through the lens and arrive 
at the image point, regardless of its angle.

Does Snell’s law permit this ideal behavior? For a lens made of a single element (i.e. 
a single piece of glass) with spherical front and back surfaces, it is not diffi cult to show 
that ideal imaging behavior would be obtained only if Snell’s law were linear: n1q1 = n2q2. 
Thus, it is the nonlinear nature of the refraction of light that causes nonideal imaging 
behavior. In the limit of small angles, Snell’s law does behave about linearly (sin q ≈ q 
for small q). When all the angles of light passing through the imaging system are small 
enough so that Snell’s law is approximately linear, we fi nd that the lens behaves ideally 
in this paraxial (near the axis) approximation. Although a spherically shaped lens was 
used as an example, there is no single shape for a lens surface that provides ideal imaging 
for many different object points. Thus, fundamentally, the nonlinear nature of Snell’s law 
results in nonideal imaging behavior (i.e. aberrations) for any single lens element.
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Figure 3.1 Examples of typical aberrations of construction
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If aberrations are fundamental to the nature of imaging, how can we make a lens that 
approaches the ideal imaging behavior? Since each lens element has aberrations by its 
very nature, these aberrations are corrected by combining different lens elements with 
differing aberrations. If two lens elements are brought together that have aberrations of 
similar magnitude but in opposite directions, the combination will have smaller aberra-
tions than either individual lens element. A simple example is a pair of eyeglasses. One 
lens, your eye, has aberrations of a certain magnitude and direction. A second lens, in the 
glasses, is designed to have aberrations of about the same magnitude but in the opposite 
direction. The combination yields residual aberrations that are small enough to be accept-
able. One of the simplest examples of aberration correction through lens design is a 
cemented doublet of positive and negative elements made from two different types of 
glass, which has the added advantage of reducing chromatic aberrations – the variation 
of imaging behavior with wavelength (Figure 3.2).

The combination of two lens elements can reduce the aberrations of the overall lens 
system, but not eliminate them. If a third element is added, the total amount of aberrations 
can be reduced further. Each lens element, with its two curved surfaces, thickness, posi-
tion and type of glass, adds more degrees of freedom to the design to allow the overall 
level of aberrations to be reduced. Thus, the lens designer uses these degrees of freedom 
(in addition to the position of an aperture stop) to ‘design out’ the aberrations that nature 
has embedded into the behavior of a single element (see Figure 3.3 for an example of a 
modern lithographic lens). An aberration free lens system, however, is an ideal that can 
never be achieved in practice. It would take an infi nite number of lens elements to make 
the designed behavior perfect. Before this point is reached, however, aberrations of con-
struction would begin to dominate. The optimum number of elements is reached when 
the addition of one more lens element adds more aberrations of construction than it 
reduces the aberrations of design.

Figure 3.2 The reduction of spherical aberration by the use of a cemented doublet

Figure 3.3 Example of a simple NA = 0.8, 248-nm lens design1
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Since the nonlinear nature of Snell’s law leads to aberrations, larger angles passing 
through the lens produce greater nonideal behavior. Thus, for a given lens design, increases 
in numerical aperture (NA) or fi eld size result in large increases in aberrations. In fact, 
however, new generations of lithographic lenses with higher NAs always seem to exhibit 
lower levels of aberrations compared to previous generations due to improvements in lens 
design and manufacturing. The increasing use of aspherical lens elements, with their 
greater degrees of freedom for the lens design, has helped to keep the number of lens 
elements lower than would be otherwise required (though at a cost of increased manu-
facturing complexity). Still, lens size and weight grow considerably for each generation 
of lithographic tool, with 500-kg lenses more than 2 m tall now common.

Unfortunately, even the low levels of aberrations found in a state-of-the-art lens are 
not small enough to be ignored. Invariably, the high NA lens is used to print ever smaller 
features that are increasingly sensitive to even the slightest deviation from perfection. The 
impact of these aberrations is a reduction of image quality, and ultimately a loss of critical 
dimension (CD) control and overlay performance (see Chapter 8). A thorough understand-
ing of the aberration behavior of a lens is a necessity for those seeking to push the limits 
of their lithography tools.

3.1.2 Describing Aberrations: the Zernike Polynomial

How are aberrations characterized? In the simple geometrical optics approach, optical 
rays represent the propagation of light through the optical system. By tracing the paths 
of the light through a lens (using a lens design software program, for example), the devia-
tions in the actual paths of the rays from the ideal paths tell us the magnitude of the 
aberration (Figure 3.4). The magnitude of the aberration can be expressed as an optical 
path difference (OPD) between the ideal and actual rays. Rays point in the direction that 
light is traveling and are thus perpendicular to the wavefront of the light, a surface of 
constant phase. By propagating these wavefronts through the lens, the deviation of the 
ideal wavefront from the real wavefront can also be used to express the magnitude of the 
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Object
Point

(a) (b)

Figure 3.4 Ray tracing shows that (a) for an ideal lens, light coming from the object point 
will converge to the ideal image point for all angles, while (b) for a real lens, the rays do not 
converge to the ideal image point



 Aerial Image Formation – The Details 79

aberration (Figure 3.5). The two descriptions are completely equivalent since light under-
goes a phase change of 2p every time it travels a distance of one wavelength, providing 
a simple conversion between OPD and phase error.

The aberration behavior of a lens can be predicted using lens design software, or mea-
sured using interferometry. In both cases, the result is a map of the phase error (or OPD) 
of the light exiting from the lens for a given point in the fi eld. It is important to note that 
the aberrations will vary as a function of fi eld position (center of the fi eld versus the upper 
left corner, for example). It typically takes 25 to 50 measurements across the fi eld to fully 
characterize how these aberrations vary for a typical lithographic lens.

A map of the phase error across the exit pupil of the lens is a useful, but potentially 
large, set of data. One of the most common ways to better understand such data is to 
curve fi t the data to a function, typically a high-order polynomial. In that way, this large 
set of experimental data can be represented by relatively few polynomial coeffi cients. 
Further, by carefully choosing the form of the polynomial fi tting function, the coeffi cients 
themselves can take on physically meaningful interpretations. By far the most common 
such polynomial is the Zernike polynomial, named for Frits Zernike, the 1953 Nobel prize 
winning physicist. This orthogonal polynomial series has an infi nite number of terms, but 
is typically cut off after 36 terms, with powers of the relative radial pupil position R and 
trigonometric functions of the polar angle f. Thus, knowing the numerical values of the 
36 Zernike coeffi cients allows one to describe to a reasonable level of accuracy the 
aberration behavior of a lens at a single fi eld point.

The Zernike polynomial can be arranged in many ways, but most lens design software 
and lens measuring equipment employ the fringe or circle Zernike polynomial, defi ned as

 W R
OPD

Z F Ri i
i

( ) ( ), ,φ
λ

φ= =
=

∞

∑
0

 (3.2)

where W(R,f) is the optical path difference relative to the wavelength, Zi is called the 
ith Zernike coeffi cient, and Fi(R,f) are the polynomial terms, defi ned in Table 3.1. The 
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Figure 3.5 Wavefronts showing the propagation of light (a) for an ideal lens and (b) for a 
lens with aberrations
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phase error due to aberrations will be simply 2pW(R,f). The polar coordinates on the unit 
circle (R,f) are related to the Cartesian spatial frequency coordinates by

 f
NA

R f
NA

Rx y= =
λ

φ
λ

φcos sin,  (3.3)

Table 3.1 Polynomial functions and common names for the fi rst 36 terms in the Fringe 
Zernike polynomial

Term Fringe Zernike Formula, Fi Common Name

Z0 1 Piston
Z1 Rcosf x-Tilt
Z2 Rsinf y-Tilt
Z3 2R2 − 1 Power (paraxial focus)
Z4 R2cos2f 3rd Order Astigmatism
Z5 R2sin2f 3rd Order 45° Astigmatism
Z6 (3R2 − 2)Rcosf 3rd Order x-Coma
Z7 (3R2 − 2)Rsinf 3rd Order y-Coma
Z8 6R4 − 6R2 + 1 3rd Order Spherical
Z9 R3cos3f Trefoil (3rd Order 3-Point)
Z10 R3sin3f 45° Trefoil
Z11 (4R2 − 3)R2cos2f 5th Order Astigmatism
Z12 (4R2 − 3)R2sin2f 5th Order 45° Astigmatism
Z13 (10R4 − 12R2 + 3)Rcosf 5th Order x-Coma
Z14 (10R4 − 12R2 + 3)Rsinf 5th Order y-Coma
Z15 20R6 − 30R4 + 12R2 − 1 5th Order Spherical
Z16 R4cos4f Quadrafoil (3rd Order 4-Point)
Z17 R4sin4f 45° Quadrafoil
Z18 (5R2 − 4)R3cos3f 5th Order Trefoil (5th Order 

3-Point)
Z19 (5R2 − 4)R3sin3f 5th Order 45° Trefoil
Z20 (15R4 − 20R2 + 6)R2cos2f 7th Order Astigmatism
Z21 (15R4 − 20R2 + 6)R2sin2f 7th Order 45° Astigmatism
Z22 (35R6 − 60R4 + 30R2 − 4)Rcosf 7th Order x-Coma
Z23 (35R6 − 60R4 + 30R2 − 4)Rsinf 7th Order y-Coma
Z24 70R8 − 140R6 + 90R4 − 20R2 + 1 7th Order Spherical
Z25 R5cos5f Pentafoil (3rd Order 5-Point)
Z26 R5sin5f 45° Pentafoil
Z27 (6R2 − 5)R4cos4f 5th Order Quadrafoil (5th 

Order 4-Point)
Z28 (6R2 − 5)R4sin4f 5th Order 45° Quadrafoil
Z29 (21R4 − 30R2 + 10)R3cos3f 7th Order Trefoil (7th Order 

3-Point)
Z30 (21R4 − 30R2 + 10)R3sin3f 7th Order 45° Trefoil
Z31 (56R6 − 105R4 + 60R2 − 10)R2cos2f 9th Order Astigmatism
Z32 (56R6 − 105R4 + 60R2 − 10)R2sin2f 9th Order 45° Astigmatism
Z33 (126R8 − 280R6 + 210R4 − 60R2 + 5)Rcosf 9th Order x-Coma
Z34 (126R8 − 280R6 + 210R4 − 60R2 + 5)Rsinf 9th Order y-Coma
Z35 252R10 − 630R8 + 560R6 − 210R4 + 30R2 − 1 9th Order Spherical
Z36 924R12 − 2772R10 + 3150R8 − 1680R6 + 

420R4 − 42R2 + 1
11th Order Spherical
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It is the magnitude of the Zernike coeffi cients that determines the aberration behavior of 
a lens. They have units of optical path length relative to the wavelength. (Note that dif-
ferent notational schemes are in use for the Zernike coeffi cients. Another popular scheme 
labels the piston term Z1 rather than Z0, so that all the indices differ by 1. Unfortunately, 
there is no universal standard and naming conventions can vary.)

Zernike polynomials have some important properties that make their use extremely 
attractive. First, they form a complete set over the unit circle, meaning that any piecewise-
continuous function can be fi tted exactly within this unit circle with an infi nite-order 
Zernike polynomial. Second, they are orthogonal over the unit circle. Mathematically, 
this means that the product of two different polynomial terms, when integrated over the 
pupil, will always be zero, whereas the integral of one polynomial term squared will be 
nonzero. Practically, this means that each polynomial term behaves independently of the 
others, so that the addition or removal of one polynomial term does not affect the best-fi t 
coeffi cients of the other polynomial terms. Third, the Zernike polynomial terms are sepa-
rable into functions of R multiplied by functions of f, providing rotational symmetry. The 
f functions are trigonometric, so that a rotation of the x-axis (defi ning f) does not change 
the form of the equation.

The impact of aberrations on the aerial image can be calculated by modifying the pupil 
function of the lens given in Chapter 2 to include the phase error due to aberrations.

 P f f P f fx y x y
i W R( ) ( , ) ( ), eideal

,= 2π φ  (3.4)

Figure 3.6 shows several examples of plots of W(R,f) for different simple combinations 
of third-order Zernike terms. Implicit in the use of Equation (3.4) is that this lens pupil 
function is also a function of fi eld position and wavelength. The wavelength dependence 
is discussed in section 3.1.6. While the fi eld dependence of the pupil function is sometimes 
modeled mathematically (the Seidel aberration equations being the most common), in 
lithography applications the most common approach is to characterize each fi eld position 
with its own pupil function.

Although the phase variation across the pupil of a typical lithographic lens can be quite 
complicated, there are a few simple examples that can be used to describe the majority 
of the lithographic effects due to aberrations. It is also important to note that the impact 
of a given aberrated lens on the printing of a mask feature is a strong function of the 
feature itself. The reason is quite simple: different mask features diffract light differently, 
sending light through different parts of the lens. As an example, a pattern of equal lines 
and spaces illuminated with coherent (single direction) light will result in a diffraction 
pattern of discrete diffraction ‘orders’, rays of light passing through the lens at certain 
distinct points. Changing the pitch of the line/space pattern changes the position within 
the lens that the diffraction orders will pass (Figure 3.7). We can think of the diffraction 
patterning as ‘sampling’ the lens differently depending on the mask pattern. In general, 
the phase error seen by these different mask patterns will be different, giving rise to feature 
type, size and orientation dependencies to the effects of aberrations.

3.1.3 Aberration Example – Tilt

One of the simplest forms of an aberration is tilt, a linear variation of phase from one 
side of the lens to the other as given by the Zernike terms Z1 and Z2 (Figure 3.8a). As the 
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Figure 3.6 Example plots of aberrations (phase error across the pupil)
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Figure 3.7 Diffraction patterns from (a) a small pitch, and (b) a larger pitch pattern of lines 
and spaces will result in light passing through a lens at different points in the pupil. Note also 
that y-oriented line/space features result in a diffraction pattern that samples the lens pupil 
only along the x-direction
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name implies, the aberration of tilt will ‘tilt’ the wavefront exiting the lens, changing 
the direction of the light. The result is a simple shift in the position of the fi nal printed 
feature (as can be easily shown using the shift property of the Fourier transform). For 
pure tilt, the resulting positional error of the pattern is independent of feature size and 
type, but is very dependent on the orientation of the pattern. As an example, a pattern 
of lines and spaces oriented in the y-direction will give rise to a diffraction pattern with 
diffraction orders spread out in the x-direction (Figure 3.7). The resulting placement 
error (the amount that the image has shifted in x with respect to the unaberrated image) 
will be

 placement error
Z

NA
= − 1λ  (3.5)

In this case, an x-tilted phase variation will cause a pattern placement error for the features, 
whereas a y-tilt aberration (given by the coeffi cient Z2) will have no effect.

The variation of the tilt Zernike coeffi cients with fi eld position is called distortion. 
Since tilt causes the same image placement error for all features, distortion is independent 
of feature size and type. As will be seen below in the section on coma, higher-order odd 
aberrations will cause pattern placement errors as well, but with varying placement error 
as a function of feature size and type.

3.1.4 Aberration Example – Defocus, Spherical and Astigmatism

The next simplest form of an aberration is called paraxial defocus (also called power), a 
parabolic variation in phase about the center of the lens (Figure 3.8b). Since this aberra-
tion is radially symmetric, all feature orientations will behave the same way. However, 
smaller features, with the diffraction orders farther out toward the edge of the lens, will 
have a greater amount of phase error. Thus, small features are more sensitive to the 
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Figure 3.8 Phase error across the diameter of a lens for several simple forms of aberrations: 
(a) the odd aberrations of tilt and coma, and (b) the even aberrations of defocus and 
spherical
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aberration of defocus. More details of the effects of defocus are given in section 3.4. 
Further explanation of the lithographic impact of focus errors is given in Chapter 8.

There is a whole class of aberrations that behave somewhat like defocus across a given 
radial cut through the lens pupil. These aberrations, called even aberrations, have the same 
phase error at either side of the center of the lens along any given diagonal (that is, for a 
fi xed f). For even aberrations, the primary effect on a single feature size and orientation 
is basically a shift in best focus. In general, different feature sizes and orientations will 
experience a different amount of the even aberration phase error, giving different focal 
shifts. Spherical aberration can be thought of as causing a focus error that varies with 
pitch. As Figure 3.8b shows, different pitches, which will give different positions of the 
fi rst diffraction order, will experience different phase errors and thus different effective 
focus errors (see Problem 3.5).

A variation in best focus as a function of the orientation of the features is called astig-
matism. Examining the Zernike terms 4 and 5, for a given orientation of line (and thus a 
given f), the variation of phase with R is quadratic. Thus, for a given orientation, astig-
matism adds a phase error identical to paraxial defocus. But the amount of effective 
defocus error due to astigmatism will depend on the orientation of the line (that is, on f). 
One of the major consequences of the presence of astigmatism is a focus-dependent hori-
zontal–vertical (H–V) bias, a difference in linewidth between horizontally oriented and 
vertically oriented patterns. More on H–V bias will be given in Chapter 8.

3.1.5 Aberration Example – Coma

Finally, odd aberrations are those that do not have radial symmetry about the center of 
the lens. Coma is a common example of an odd aberration (see Figure 3.8). Consider, for 
example, the sixth term in the Zernike polynomial, representing x-oriented 3rd order 
coma:

 Z R R6
23 2( ) cos− φ  (3.6)

y-oriented coma (Zernike term number 7) has the same form as the above expression, but 
with a sin f instead of the cosine term. The combination of these two terms can defi ne 
any amount of 3rd order coma directed in any orientation. For simplicity, then, we can 
consider coma in the direction of maximum magnitude as given by the above equation 
with the angle equal to zero.

What are the main lithographic effects of 3rd order coma? One important effect is a 
feature-size dependent pattern placement error. Since the x-tilt Zernike term takes the 
form Z1Rcos f, comparison with Equation (3.6) shows that coma acts as an effective tilt 
with coeffi cient Z6(3R2 − 2). Consider a pattern of lines and spaces of pitch p. Diffraction 
will produce discrete orders (directions) of light traveling through the lens, the zero order 
going straight through the lens and the plus and minus fi rst orders entering the lens at 
relative radial positions of R = ±l/pNA. For coherent illumination, the pattern placement 
error can be derived directly from the above expressions for x-tilt and 3rd order 
x-coma.

 placement error
Z

NA pNA
= − 



 −
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3 2
λ λ
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It is important to note that the above expression only applies to line/space patterns when 
l/NA < p < 3l/NA and for coherent illumination. The effect of partially coherent illumina-
tion is to spread out the orders in a circle centered about each coherent diffraction order, 
thus averaging out some of the tilt caused by the coma. Figure 3.9 shows how pattern 
placement error varies with pitch for a pattern of equal lines and spaces in the presence 
of coma for different amounts of partial coherence. One can observe a general, though 
not universal, trend: lower partial coherence increases the sensitivity to aberrations.

A second important effect of coma is asymmetric linewidth errors. A single isolated 
line, printed in the presence of coma, will show an asymmetry of the right to left side of 
the photoresist profi le. An even greater effect, however, is the difference in linewidth 
between the rightmost and leftmost lines of a fi ve-bar pattern. Figure 3.10 shows how the 
difference between right and left linewidths varies almost linearly with the amount of 
coma, with smaller features more sensitive to a given amount of coma. In fact, this 
lithographic measurement can be used as a test for the amount of coma in a lens.

The third important impact of coma is a change in the shape of the fi nal resist profi le, 
especially through focus. Coma causes an asymmetric degradation of the resist profi le, 
affecting one side of the feature more than the other, as seen in Figure 3.11. At best focus, 
this degradation in profi le shape is usually not noticeable. But out of focus, there is a 
characteristic loss of resist off one side of the profi le at the part of the profi le that is 
farthest away from the plane of best focus. The reason for this behavior can be seen 
from aerial image isophotes (contours of constant intensity through focus and horizontal 
position) in the presence of coma, as shown in Figure 3.12.

3.1.6 Chromatic Aberrations

An assumption of the Zernike description of aberrations is that the light being used is 
monochromatic. The phase error of light transmitted through a lens applies to a specifi c 
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Figure 3.11 Variation of the resist profi le shape through focus in the presence of coma
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wavelength. One expects this phase error, and thus the coeffi cients of the resulting Zernike 
polynomial, to vary with the wavelength of the light used. The property of a lens element 
that allows light to bend is the index of refraction of the lens material. Since the index 
of refraction of all materials varies with wavelength (a property called dispersion), lens 
elements will focus different wavelengths differently. This fundamental problem, called 
chromatic aberration, can be alleviated by using two different glass materials with 
different dispersions such that the chromatic aberrations of one lens element cancel 
the chromatic aberrations of the other. The cemented doublet of Figure 3.2 is the simplest 
example of a chromatic-corrected lens (called an achromat) where each element is made 
from a glass with different dispersion characteristics. As with all aberrations, this cancel-
lation is not perfect, meaning that all lenses will have some level of residual chromatic 
aberrations.

The effects of chromatic aberrations depend on two things: the degree to which the 
Zernike polynomial coeffi cients vary with wavelength (the magnitude of the chromatic 
aberrations), and the range of wavelengths used by the imaging tool. For example, a 
typical i-line stepper might use a range of wavelengths on the order of 5–10 nm, whereas 
a KrF excimer laser-based deep-UV stepper may illuminate the mask using light with 
a wavelength range of less than 1 pm. The obvious difference in the magnitude of the 
wavelength ranges between these two light sources does not mean, however, that chro-
matic aberrations are a problem for i-line but not for deep-UV. i-line lenses are designed 
to use the (relatively) wide range of wavelengths by chromatically correcting the lens 
with several different types of glass. A typical deep-UV lens, on the other hand, makes 
no attempt at chromatic correction since only fused silica is used for all the elements in 
the lens (due to a lack of suitable alternative materials). As a result, chromatic aberrations 
are a concern in deep-UV lithographic lenses even when extremely narrow bandwidth 
light sources are used.

In principle, every Zernike coeffi cient is a function of wavelength. In practice, for 
lenses with no chromatic corrections (i.e. where every lens element is made from the 
same material), one Zernike term dominates: the term that describes defocus. The plane 
of best focus shifts with changes in wavelength in a nearly linear fashion, a phenomenon 
called longitudinal chromatic aberration. This can be seen quite readily by considering 
an ideal thin lens in air. Such a lens is made of glass of index n and has front and back 
radii of curvature R1 and R2. The focal length f, reduction ratio R, and distances from the 
lens to the object and image, do and di, respectively, are all related by the thin-lens 
equations:
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A change in refractive index of the lens (with wavelength, for example) results in a change 
in focal length. For a fi xed object distance and reduction ratio, a change in focal length 
changes the image distance, that is, focus. Taking the derivative with respect to 
wavelength,
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The term dn/dl is called the dispersion of the lens material. For KrF-grade fused silica 
at 248.3 nm, n = 1.508 and the dispersion is about −5.6 × 10−7/pm. As an example, a thin 
lens of fused silica with an image distance of 0.2 m would result in a change in focus per 
change in wavelength of 0.22 mm/pm. Of course, more complicated lens systems would 
have an effective image distance different from the physical image distance, but the basic 
trend and magnitude for a lens with no chromatic correction is similar. For immersion 
lithography, the slope of the focus versus wavelength dependence will increase by the 
fl uid refractive index.

Since the center wavelength of most excimer lasers is easily adjustable over a reason-
ably large range, this effect can be readily measured for any given stepper. Figure 3.13a 
shows a typical example.2 To account for this behavior, the Zernike term Z3 (the paraxial 
defocus term) can be used. The coeffi cient of the third Zernike term Z3 can be related to 
a focus shift ∆d by

 Z
NA

3

2

04
= ∆δ

λ
 (3.10)

where l0 is the center wavelength of the illumination spectrum. Each wavelength produces 
a different focus shift ∆d, which leads to a different value of Z3. Higher-order focus terms 
could be added as well.

A typical defocus/wavelength behavior for a KrF (248 nm) lens is shown in Figure 
3.13a. An excimer laser light source will emit light over a range of wavelengths with a 
characteristic spectrum (output intensity versus wavelength) that can be roughly approxi-
mated as somewhere between a Gaussian shape and a Lorentzian shape. The full width 
half maximum (FWHM) of the laser output spectrum is called the bandwidth of the laser, 
with typical line-narrowed KrF and ArF lasers having less than 1-pm bandwidths. Each 
wavelength in the laser spectrum will be projected through the imaging lens, forming an 
aerial image shifted in focus according to the wavelength response characteristic for that 
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Figure 3.13 Chromatic aberrations: (a) measurement of best focus as a function of center 
wavelength shows a linear relationship with slope 0.255 mm/pm for this 0.6 NA lens; (b) 
degradation of the aerial image of a 180-nm line (500-nm pitch) with increasing illumination 
bandwidth for a chromatic aberration response of 0.255 mm/pm
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lens. The total aerial image will be the sum of all the images from all the wavelengths in 
the source, resulting in a fi nal aerial image that is somewhat smeared through focus.

Figure 3.13b shows a typical example. For this 180-nm image, the 1-pm bandwidth 
shows a slight degradation of the aerial image, but the 3-pm bandwidth is clearly unac-
ceptable. As one might expect, smaller features will be more sensitive to the effects of 
chromatic aberrations than larger features. Thus, as features are pushed to smaller sizes, 
even these seemingly miniscule sub-picometer excimer bandwidths will require careful 
consideration as to their chromatic aberration effects. Also, since dense line/space features 
tend to respond very differently to focus errors compared to isolated lines, changes in 
laser bandwidth can result in noticeable changes in iso-dense bias, the difference in resist 
linewidth between an isolated and a dense feature of the same mask width.

For rigorous treatment of chromatic aberrations, a mathematical description of the light 
source spectral output is required. A modifi ed Lorentzian distribution has been shown to 
match measured excimer laser spectrums quite well.3 Letting Irso be the relative spectral 
output intensity,

 I
n

n nrso( )
[ ( )]

λ
λ λ

=
+ −

Γ
Γ 2 0

 (3.11)

where l0 is the center wavelength, G is the bandwidth, and n is an empirically determined 
parameter that is typically between 2 and 3. Figure 3.14 shows a typical example from a 
KrF laser.

One very simple way to avoid the problem of chromatic aberrations is to use mirrors 
for the imaging elements. Since mirrors refl ect light in about the same way for a wide 
range of wavelengths, near-perfect chromatic correction is possible. However, mirror 
optical systems pose many other challenges, not the least of which is the extreme diffi culty 
of using multiple focusing mirrors without those mirrors getting in the way of each 
other.
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Figure 3.14 Measured KrF laser spectral output1 and best-fi t modifi ed Lorentzian (Γ = 
0.34 pm, n = 2.17, l0 = 248.3271 nm)
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3.1.7 Strehl Ratio

The overall level of the aberrations of a lens can be characterized in several ways. The 
peak wavefront deviation is the maximum phase difference (or OPD) between any two 
points in the pupil (sometimes called the peak-to-valley wavefront error). The RMS (root 
mean square) wavefront deviation provides an average level of phase error or OPD across 
the pupil. Another approach is to look at the degradation of the point spread function 
(PSF) caused by the aberrations. Since the PSF samples the imaging lens pupil evenly, 
its degradation provides an overall measure of how aberrations might affect image quality. 
Since the ideal PSF is normalized to have a peak value of 1, the Strehl ratio is defi ned 
as the peak intensity of the PSF of the real lens at best focus, a value that is always less 
than 1. For anything but the highest levels of aberrations, the Strehl ratio can be related 
directly to the RMS wavefront deviation:

 Strehl Ratio W= −e RMS( )2 2π  (3.12)

where WRMS is the RMS wavefront error in waves. For small levels of aberrations 
(certainly an applicable constraint for lithographic lenses), the Strehl ratio becomes

 Strehl Ratio W≈ −1 2 2( )π RMS  (3.13)

As an example, a Strehl ratio of 0.9 corresponds to an RMS wavefront error of 50 
milliwaves. For a Strehl ratio of 0.95, the RMS wavefront error is 35 milliwaves. State-
of-the-art lithographic lenses will have Strehl ratios greater than 0.95, with the best lenses 
having RMS wavefront errors of less than 10 milliwaves.

3.2 Pupil Filters and Lens Apodization

Pupil fi lters are special fi lters placed inside the objective lens in order to purposely modify 
the pupil function P(fx, fy). In general, the ideal pupil function will provide the best overall 
imaging capabilities. However, under special circumstances (for example, when imaging 
one specifi c mask pattern), a change in the pupil function may result in desirable imaging 
properties such as enhanced depth of focus. A pupil fi lter can be described by a pupil 
fi lter function F(fx, fy) that can have both a variation in transmission (T) and phase (q) 
across the pupil:

 F f f T f fx y x y
i f fx y( ) ( ) ( ), , e ,= θ  (3.14)

The fi nal pupil function is then the pupil function given by Equation (3.4) multiplied by 
the fi lter function given in Equation (3.14).

In general, lithographic tools used for integrated circuit (IC) production do not allow 
the insertion of pupil fi lters. However, the pupil fi lter function of Equation (3.14) can also 
be used to describe variations in pupil amplitude transmittance, whether intentionally 
induced or not, that impact imaging but are not intended for ‘fi ltering’ purposes. For 
example, some imaging tools introduce a central obscuration into the pupil in order to 
extract light for use in through-the-lens alignment systems. Such an obscuration blocks 
all light transmitted through the central portion of the lens, for example, when the sine 
of the diffracted angle is less than ±0.05. 1× steppers made by Ultratech Stepper and early 
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steppers made by ASML include such central obscurations for through-the-lens alignment 
purposes.

Additionally, nonideal lens antirefl ection coatings can lower the transmittance of the 
lens at the highest spatial frequencies, sometimes by as much as 5–10 %. Such nonideal 
transmittances can be empirically described by a high-order Gaussian:

 T f fx y
f f NAx y

q

( ) [( ) ], e /= − +2 2 2

 (3.15)

where the power q might be on the order of 5–10. In general, a lowering of the transmit-
tance of a lens at high spatial frequencies is called apodization. Such transmission errors 
can also be described using the Jones pupil, as defi ned below in section 3.6.4.

3.3 Flare

The goal of an imaging lens is to collect diffracted light, spreading out away from an 
object, and focus that light down to an imaging plane, creating an image that resembles 
the original object. A typical lens performs this task through the use of curved surfaces 
of materials with indices of refraction different than air, relying on the principle of refrac-
tion. Implicit in this description is the idea that light travels in only one general direction: 
from the object to the image. The astute student of optics, however, might detect a 
problem: the difference in index of refraction between two media (such as air and glass) 
that gives rise to refraction will also give rise to an unwanted phenomenon – refl ection.

The design of a lens, including the ray tracing algorithms used to optimize the indi-
vidual shapes and sizes of each glass or fused silica element in the lens, makes use of 
the assumption that all light traveling through the lens continues to travel from object 
to image without any refl ections. How is this achieved in practice? One of the hidden 
technologies of lens manufacturing is the use of antirefl ection coatings on nearly every 
glass surface in a lens. These lens coatings are designed to maximize the transmittance 
of light at the interface between materials through interference (a subject that will be 
treated extensively in Chapter 4). These coatings, usually made of two layers, have 
specifi cally designed thicknesses and refractive indices that reduce refl ections through 
interference among several refl ected beams. The coatings are quite effective at reducing 
refl ections at a specifi c wavelength and over a range of incident angles. They had 
better be, since a typical microlithographic lens will have over 50 surfaces requiring 
coatings.

Although the lens coatings used in lithography tools are quite good, they are not perfect. 
As a result, unwanted refl ections, though small in magnitude, are inevitably causing light 
to bounce around within a lens. Eventually some of this light will make its way to the 
wafer. For the most part, these spurious refl ections are reasonably random, resulting in a 
nearly uniform background light level exposing the wafer called fl are. Flare is defi ned as 
the fraction of the total light energy reaching the wafer that comes from unwanted refl ec-
tions and scatterings within the lens.

Lens coating nonideality is not the only source of fl are. Flare is caused by anything 
that causes the light to travel in a ‘nonray trace’ direction. In other words, refl ections at 
an interface, scattering caused by particles or surface roughness, or scattering caused by 
glass inhomogeneity all result in stray light called fl are (Figure 3.15). Defects such as 



92 Fundamental Principles of Optical Lithography

Surface
Scattering Reflections

Inhomogeneity

Figure 3.15 Flare is the result of unwanted scattering and refl ections as light travels through 
an optical system

these can be built into the lens during manufacturing, or can arise due to lens degradation 
(aging, contamination, etc.). External sources of fl are, such as light that refl ects off the 
wafer, travels up through the lens and refl ects off the backside of the chrome mask, can 
also contribute. The lithographic consequence of this stray light is probably obvious: 
degradation of image quality. Since fl are is a nearly uniform background light level expos-
ing the wafer, it provides exposure to nominally dark features (such as a line), reducing 
their quality.

While mirrors do not suffer from the problems of nonideal antirefl ection coatings inher-
ent in refractive optical elements, they are far more sensitive to surface roughness scat-
tering. For a given RMS surface roughness, a mirror will scatter greater than one order 
of magnitude more light than an equally rough refractive lens surface.

3.3.1 Measuring Flare

Of course, it is the goal of lens manufacturing and maintenance to produce lenses with 
very low levels of fl are. How can one tell if fl are poses a problem for a particular stepper 
or scanner? Fortunately, measuring fl are is reasonably straightforward. Consider the 
imaging of an island feature whose dimension is extremely large compared to the resolu-
tion limits of the imaging tool (say, a 100-mm square island in positive resist). In the 
absence of fl are, the imaging of such a large feature will result in very nearly zero light 
energy at the center of the image of the island. The presence of fl are, on the other hand, 
will provide light to this otherwise dark region on the wafer (Figure 3.16). A positive 
photoresist can be used as a very sensitive detector for low levels of fl are.

The dose-to-clear (E0) is defi ned as the minimum dose required to completely remove 
the photoresist during development for a large open-frame exposure. A related concept is 
the island dose-to-clear (E0-island), the minimum dose required to completely wash away a 
large island structure during a normal development process. In the absence of fl are, a 
large island would take nearly an infi nite dose to produce enough exposure at its center 
to make the resist soluble in developer. With fl are present, however, this dose is reduced 
considerably. In fact, by measuring the normal dose-to-clear and the dose-to-clear for the 
large island, the amount of fl are can be determined as4
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−
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 (3.16)

For example, if the dose-to-clear of a resist is 35 mJ/cm2, then an imaging tool with 5 % 
fl are would mean that a large island will clear with a dose of 700 mJ/cm2.

Although fl are is a characteristic of an imaging tool, it is also a function of how that 
tool is used. For example, the amount of fl are experienced by any given feature is a func-
tion of both the local environment around that feature (short range fl are) and the total 
amount of energy going through the lens (long range fl are).5 A dark fi eld reticle produces 
images with almost no fl are, whereas a reticle which is almost 100 % clear will result in 
the maximum possible fl are. The data in Figure 3.17 shows the two distinct regions 
clearly. Here, a clear fi eld reticle was used with one fl are target placed in the middle of 
the fi eld. Framing blades were used to change the fi eld size and thus the total clear area 
of the exposure fi eld. As can be seen, fl are quickly rises to a level of about 1 %, then 
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Figure 3.16 Plots of the aerial image intensity I(x) for a large island mask pattern with and 
without fl are

Figure 3.17 Using framing blades to change the fi eld size (and thus total clear area of the 
reticle), fl are was measured at the center of the fi eld (from Mack and Kaufman4)
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grows approximately linearly with clear area of the fi eld. The y-intercept of the linear 
portion of the curve can be thought of as the short range contribution to the total fl are.

Flare is also a function of fi eld position, with points in the center of the fi eld often 
experiencing fl are levels 50 % higher than points near the edge of the fi eld. This phenom-
enon may be thought of as a side effect of the long-range versus short-range scattering 
discussed above. At the edge of the fi eld, the local clear area is half of that at the center 
of the fi eld. Finally, fl are is also increased when a refl ective wafer is exposed. Light 
refl ected back up into the optical system can scatter and fi nd its way back to the wafer 
as stray light.

3.3.2 Modeling Flare

Consider a simple mechanism for the generation of DC (long range) fl are. Light passing 
through the lens is scattered by one or more of the mechanisms shown in Figure 3.15. In 
its simplest manifestation, fl are would cause all light to scatter in equal proportion regard-
less of its spatial frequency and fi eld position (angle and position with which it enters the 
lens). In this case, scattering will result in a uniform reduction in the energy that coher-
ently interacts to from the image. If SF represents the scatter fraction, the fraction of the 
light energy (or intensity) that scatters and thus does not contribute to the coherent cre-
ation of the image, the resulting image would be (1−SF)I0(x,y) where I0(x,y) is the image 
that would result if there were no scattering. But where does this scattered light go? 
Another simple approximation for uniform DC fl are would be that the scattered light is 
uniformly spread over the exposure fi eld. Thus, a DC or background dose would be added 
to the aerial image. But while scattering reduces the intensity of the image locally, the 
background dose is added globally. Thus, the additional background dose would be equal 
to the scatter fraction multiplied by the total energy passing through the lens:

 I x y SF EF SF I x y( ) ( ) ( ), ,= ⋅ + −1 0  (3.17)

where EF is the energy fraction of the reticle, the ratio of the total energy reaching the 
wafer for this reticle compared to the energy that would reach the wafer for a perfectly 
clear reticle. As a reasonable approximation, the total energy passing through the lens is 
proportional to the clear area of the reticle. (Because of diffraction, only a portion of the 
energy passing through the reticle actually passes through the lens. For example, for a 
mask pattern of equal lines and spaces where only the zero and ±1 fi rst orders pass through 
the lens, the energy going through the lens is about 90 % of the energy that passes though 
the mask.) Thus, a simple but still quite accurate DC fl are model would be

 I x y SF CF SF I x y( ) ( ) ( ), ,= ⋅ + −1 0  (3.18)

where CF is the clear area fraction for the fi eld.
For a 100 % clear area full-fi eld mask, the standard measurement of fl are for a 

clear fi eld reticle would yield the scatter fraction used in Equation (3.18). Since the clear 
area fraction is generally known (at least approximately) for any mask, the DC fl are 
can be calculated for any mask once the scatter fraction for the lens has been measured. 
For a dark fi eld mask, as the clear area fraction goes to zero, the effect of fl are is just a 
loss of dose for the image. It is doubtful that this dose loss is observable in normal 
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lithographic practice since dark fi eld exposure layers (such as contacts and vias) generally 
operate at different numerical aperture/partial coherence combinations than clear fi eld 
reticles, and dose calibration is not consistent across different stepper lens and illumina-
tion settings.

A slight correction to Equation (3.18) would occur if some fraction of the scattered 
light was assumed to be lost (absorbed into the lens housing, for example). However, for 
the low levels of fl are expected for normal lithographic imaging tools (much less than 
10 %), the effect of some of the scatter fraction being lost and not reaching the wafer 
would be a simple dose recalibration and would not be observable.

Equation (3.18) does not take into account the impact of short-range fl are effects, as 
observed in Figure 3.17. The scattering PSF approach6 can account for these short-range 
fl are effects. The local scattered light is described as the convolution of the local light 
intensity (the aerial image) with a scattering point spread function, PSFscat.

 I x y PSF x y I x yscat scat, , ,( ) ( ) ( )= ∗ 0  (3.19)

Note that if the scattering PSF is a constant, then the convolution becomes a calculation 
of the total energy of the aerial image and the scattered intensity is equivalent to the scatter 
fraction times the energy fraction. Generally this global scattering is removed from the 
PSFscat and treated separately. A typical scattering PSF is a Gaussian, with standard devia-
tions in the range of 10–20 mm, though other functional forms are used as well.

3.4 Defocus

The inverse Fourier transform expression for calculating the aerial image (see Chapter 2) 
applies only to the image at the focal plane. What happens when the imaging system is 
out of focus, i.e. what is the image intensity distribution some small distance away from 
the plane of best focus?

3.4.1 Defocus as an Aberration

The impact of focus errors on the resulting aerial image can be described as an aberration 
of a sort. Consider a perfect spherical wave converging (i.e. focusing) down to a point. 
An ideal projection system will create such a wave coming out of the lens aperture (called 
the exit pupil), as shown in Figure 3.18a. If the wafer to be printed were placed in the 
same plane as the focal point of this wave, we would say that the wafer was in focus. 
What happens if the wafer were removed from this plane by some distance d, called the 
defocus distance? Figure 3.18b shows such a situation. The spherical wave with the solid 
line represents the actual wave focused to a point a distance d away from the wafer (this 
defocus distance is arbitrarily defi ned to be positive when the wafer is moved away from 
the lens). If, however, the wave had a different shape, as given by the dotted curve, then 
the wafer would be in focus. Note that the only difference between these two different 
waves is the radius of curvature of the wavefront. Since the dotted curve is the wavefront 
we want for the given wafer position, we can say that the actual wavefront is in error 
because it does not focus where the wafer is located. (This is just a variation of ‘the 



96 Fundamental Principles of Optical Lithography

customer is always right’ attitude – the wafer is always right; it is the optical wavefront 
that is out of focus.)

By viewing the actual wavefront as having an error in curvature relative to the 
desired wavefront (i.e. the one that focuses on the wafer), we can quantify the effect of 
defocus. Looking at Figure 3.18b, it is apparent that the distance from the desired to the 
‘defocused’ wavefront goes from zero at the center of the exit pupil and increases as we 
approach the edge of the pupil. This distance between wavefronts is called the optical 
path difference (OPD). The OPD is a function of the defocus distance and the position 
within the pupil and can be obtained from the geometry shown in Figure 3.18b. Describ-
ing the position within the exit pupil by the light propagation angle q, the OPD (assuming 
li >> d ) is given by

 OPD n= −δ θ( cos )1  (3.20)

where n is the refractive index of the medium between the lens and the wafer (generally 
air, though possibly an immersion fl uid, as discussed in section 3.7).

As we have seen before, the spatial frequency and the NA defi ne positions within the 
pupil as the sine of an angle. Thus, the above expression for OPD will be more useful if 
expressed as a function of sin q:

 OPD n n= − = − −( )δ θ δ θ( cos ) sin1 1 1 2  (3.21)

Expanding the square root as a Taylor series,

 OPD n n= + + +





≈1

2 4 8

1

2
2

4 6
2δ θ θ θ δ θsin

sin sin
. . . sin  (3.22)

where the fi nal approximation is accurate only for relatively small angles. Figure 3.19 
shows the accuracy of this approximation as a function of the angle q.

So how does this OPD affect the formation of an image? The OPD acts just like an 
aberration, modifying the pupil function of the lens. For light, this path length traveled 
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Figure 3.18 Focusing of light can be thought of as a converging spherical wave: (a) in focus, 
and (b) out of focus by a distance d. The optical path difference (OPD) can be related to 
the defocus distance d, the angle q and the radius of curvature of the converging wave (also 
called the image distance) li
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(the OPD) is equivalent to a change in phase. Thus, the OPD can be expressed as a phase 
error, ∆Φ, due to defocus:

 P f f P f f P f fx y x y
i OPD

x y
i

defocus ideal
/

ideal, , e , e( ) ( ) ( )= =2π λ ∆Φ

∆Φ == = − ≈2 2 1 2π λ π δ θ λ π δ θ λOPD n n/ / /( cos ) sin
 (3.23)

where again, the fi nal approximation is only valid for small angles. We are now ready to 
see how defocus affects the diffraction pattern and the resulting image. Our interpretation 
of defocus is that it causes a phase error as a function of radial position within the aperture. 
Light in the center of the aperture has no error; light at the edge of the aperture has the 
greatest phase error. This is very important when we remember what a diffraction pattern 
looks like as it enters the lens aperture. Recall that diffraction by periodic patterns results 
in discrete diffraction orders – the zero order is the undiffracted light passing through the 
center of the lens; higher orders contain information necessary to reconstruct the image. 
Thus, the effect of defocus is to add a phase error to the higher-order diffracted light rela-
tive to the zero order. When the lens recombines these orders to form an image, this phase 
error will result in a degraded image (Figure 3.20).

Considering defocus as an aberration, the pupil error due to defocus [Equation (3.21)] 
can be expressed in the terms of a Zernike polynomial. In the paraxial approximation 
(small angles), there is a simple correspondence to the third term in the polynomial 
expression (3.2).
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 (3.24)

If the exact defocus expression is used, higher-order Zernike defocus terms are required 
(Z8, Z15, Z24, etc.).
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Figure 3.19 Comparison of the exact and approximate expressions for the defocus optical 
path difference (OPD) shows an increasing error as the angle increases. An angle of 37° 
(corresponding to the edge of an NA = 0.6 lens) shows an error of 10 % for the approximate 
expression. At an NA of 0.93, the error in the approximate expression is 32 %
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3.4.2 Defocus Example: Dense Lines and Spaces and Three-Beam Imaging

As an example of using Equation (3.23) when calculating an aerial image, consider a 
pattern of small lines and spaces so that only the 0 and ±1 diffraction orders are used to 
form the image (that is, three-beam imaging). For coherent illumination, the zero order 
will pass through the center of the lens and undergo no phase error due to defocus. The 
fi rst diffracted orders will pass through the pupil at spatial frequencies of ±1/p and 
experience a phase error of

 ∆Φ = − −2 1 1 2π δ λ λn np( ( ) )/  (3.25)

Calculating the electric fi eld image including the pupil function defocus,

 
E x a f

j

p
f

E x a a

j
j

x
i i f x

x

i

x( )

( )

= −





= +
=−−∞

∞

∑∫
1

1
2

0 12

δ πe e d

e

∆Φ

∆Φ ccos( )2π x p/

 (3.26)

The intensity image becomes

 I x a a a x p a x p( ) cos( )cos( ) [ cos( )]= + + +0
2

0 1 1
24 2 2 1 4∆Φ π π/ /  (3.27)

The impact of defocus is to reduce the magnitude of the main cosine term in the image. 
In other words, as the fi rst orders go out of phase with respect to the zero order, the 
interference between the zero and fi rst orders decreases. When ∆Φ = 90°, there is no 
interference and the cos(2px/p) term disappears.

Partial coherence can signifi cantly change the focus response of an aerial image. The 
effect of partial coherence is to spread the diffraction order points into larger spots, the 
shape of each order’s spot being determined by the shape of the source. Each point on 
the source is independent, i.e. incoherent, with no fi xed phase relationship to any other 
source point. Each source point produces a coherent aerial image, the total image 
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being the (incoherent) sum of all the intensity images from each source point. Since only 
the exact center source point produces an image affected by focus in the way described 
by Equation (3.27), a more thorough treatment is required for partially coherent 
imaging.

Consider the case, as we did above, where only the fi rst diffraction orders make it 
through the lens and that these orders are completely inside the lens (not clipped by the 
aperture). This occurs when
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A quick look at this constraint shows that it can possibly be true only when s < 0.5. Thus, 
while our example here will not be applicable to many situations, it will still be informa-
tive. Second, we shall use the paraxial approximation for the effects of focus, so that the 
OPD due to a defocus error d will be a quadratic function of the sine of the incident angle 
or the spatial frequency.

Now the aerial image in the presence of defocus can be calculated analytically by 
integrating over the source. Considering only equal lines and spaces for the sake of 
simplicity,
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 (3.29)

where a = 2pdsNA/p and J1 is the Bessel function of the fi rst kind, order one. This defocus 
function 2J1(a)/a is plotted in Figure 3.21 and has the familiar Airy disk form. Comparing 
Equations (3.27) and (3.29), the effect of partial coherence is to cause a faster decline in 
the main cosine interference term [the Airy disk falloff is on top of the cos(∆Φ) falloff 
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that occurs for coherent illumination] and to add a degradation to the higher-order inter-
ference of the + fi rst and − fi rst orders.

It can be useful to simplify the above aerial image Equation (3.29) for the case of small 
amounts of defocus. Both the cosine term and the Airy disk terms can be expanded as 
series approximations, keeping only the low-order terms:
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Using these approximations, and keeping only terms out to second order in defocus,
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Thus, the fi nal result is an example where the effects of defocus can be put into a separable 
form as

 I x I x f x( ) ( ) ( ), ,δ δ≈ −0 2  (3.32)

Most images can be put into such a form for small amounts of defocus.

3.4.3 Defocus Example: Dense Lines and Spaces and Two-Beam Imaging

Consider the case of coherent off-axis illumination of a dense line/space pattern. In par-
ticular, let’s assume that the illumination is a plane wave tilted such that the diffraction 
pattern is shifted by ′fx  and only the zero and −1st diffraction orders pass through the 
lens. The portion of the diffraction pattern passing through the lens will be

 T f P f a f f a f
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With defocus included in the pupil function, the electric fi eld image becomes
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where the phase errors for the zero and fi rst orders are, respectively,
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The intensity image is

 I x a a a a a a x pi i x p( ) cos(( )= + = + + − +− −
0 1

2 2
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1 0 2 2e e //∆Φ ∆Φ ∆Φπ π ∆∆Φ0 )  (3.36)

Note that the fi nal image depends only on the difference in phase between the zero and 
fi rst orders.

The impact of defocus on this tilted-illumination image is clear from Equation (3.36): 
focus errors cause a shift in the position of the sinusoidal image. Such a focus-dependent 
pattern placement error is called nontelecentricity. Telecentricity, on the other hand, 
means that the resulting image will not shift in position as the wafer goes out of focus. 
Wafer-side telecentricity is a requirement for lithographic imaging. Telecentricity can be 
recovered by adding a second illumination angle, causing the same shift in the diffraction 
pattern but in the opposite direction (that is, a shift of − ′fx ). The resulting image will be 
the same as that given by Equation (3.36), except with the opposite sign of the phase 
error. The average of the two aerial images coming from these two symmetrically tilted 
plane waves will be
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Consider now a very special case, where the tilt of the illumination is chosen to be 
′ = ±f px 1 2/ . For this case, the zero order and the fi rst order will be evenly spaced about 

the center of the lens and the phase error due to defocus will be the same for both orders. 
Thus, the resulting intensity image is

 I x a a a a x p( ) cos( )= + +0
2

1
2

0 12 2π /  (3.38)

Remarkably, this is the same image that is obtained when at best focus. That is, defocus 
has no impact on the fi nal aerial image for this special case of coherent two-beam imaging 
where the zero and fi rst orders are evenly spaced about the center of the lens. The 
possibility of essentially infi nite depth of focus when the tilt is adjusted properly for a 
specifi c pitch is the reason why off-axis illumination is so popular for high-resolution 
imaging.

In reality, the infi nite depth of focus promised by Equation (3.38) is never realized 
because real illumination sources are not coherent – they are partially coherent. Thus, 
instead of two point sources separated by ± ′fx , a real source would be two disks centered 
at these spatial frequencies. The resulting illumination is called dipole illumination. The 
image from such a dipole source, assuming that all of the zero order and one fi rst order 
go through the lens, would be the integral of Equation (3.37) over the range of spatial 
frequency shifts corresponding to the full shape of the source. Using the paraxial approxi-
mation for the effects of focus, so that the OPD due to a defocus error d will be a quadratic 
function of the sine of the incident angle or the spatial frequency, the phase difference 
from zero to fi rst orders for any given source point is
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Since each dipole disk is centered at ′ = ±f px 1 2/ , let a point on this source be expressed 
as ′ = − ′f p fx x1 2/ :∆
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2 2− = ′ =π δλ π δ σn
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f

n NA

p
x x  (3.40)

where the fi nal expression comes from converting spatial frequencies into sigma 
coordinates.

Using Equation (3.40) in Equation (3.37) and integrating over the source, where each 
disk has a radius of s, the resulting two-beam image through focus becomes
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where a = 2pdsNA/p and J1 is the Bessel function of the fi rst kind, order one. Referring 
again to Figure 3.21, one can see that when the size of the dipole disk is bigger than zero, 
defocus will cause a degradation in the quality of the aerial image. Note from the defi ni-
tion of the term a that the sensitivity to defocus is in direct proportion to s, the radius of 
the dipole disk.

3.4.4 Image Isofocal Point

Figure 3.20 shows an interesting phenomenon where at a particular horizontal position, 
the aerial image curves cross. In other words, at some x-position for this 1D image, the 
intensity is not a function of focus (although in general this is only approximately true). 
The point at which intensity does not depend of focus is called the image isofocal point. 
Mathematically, it is the value of x at which
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Consider the coherent three-beam image case of Equation (3.27). The isofocal point is 
given by
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Solving for x, the isofocal point is ±jp/4. where j is any odd number. Examining the par-
tially coherent dipole two-beam image of Equation (3.41), the same isofocal point is 
obtained. In fact, this same isofocal point always results whenever the image is made up 
of 2-beam or a combination of 1-beam and 2-beam imaging.

For the partially coherent three-beam image case, the result is far more complicated. 
However, a reasonably simple answer comes from looking for the isofocal point for small 
amounts of defocus, so that Equation (3.31) can be used. Setting the term in this equation 
that multiplies the defocus to zero,
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Consider the case of equal lines and spaces, so that the isofocal value for x can be defi ned 
as p/4 + ∆x. Assuming that ∆x will be small,
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Thus, the isofocal point will be approximately at
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Recall that this approximate position of the image isofocal point applies to three-
beam imaging of equal lines and spaces under conventional illumination such that the 
pupil does not clip any of the fi rst orders. The minus sign shows that the image isofocal 
point will occur in the space region of the image (since x = 0 is the center of the 
space).

3.4.5 Focus Averaging

Frequently, the fi nal aerial image is an average of the aerial image through some range 
of focus, a phenomenon called focus averaging (also called focus drilling, and sometimes 
known by the confusing term ‘focus blur’). Chromatic aberrations, discussed in section 
3.1.6 produce just such a result, as do stage scanning errors, to be discussed in section 
3.5 below. Occasionally, such focus averaging is intentionally induced in order to extend 
the tolerable range of focus.7

The impact of focus averaging can be seen in an approximate form using the separable 
defocus image expression of Equation (3.32), which is appropriate for small levels of 
defocus. If P(d ) is the probability distribution of a defocus error d, the focus-averaged 
image will be
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Consider a uniform probability distribution over a range of focus from dmin to dmax. The 
resulting image will be
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If the focus averaging range is symmetric about best focus (so that dmin = −dmax),

 I x I x f x( ) ( ) ( ) max≈ − 
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If now some unintentional focus error d is added,
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Another common probability distribution for focus averaging is a Gaussian with stan-
dard deviation sF. The resulting image, including unintentional focus error d, is

 I x I x f x( ) ( ) ( )[ ], , Fδ σ δ≈ − +0 2 2  (3.52)

For an arbitrary focus averaging function, an effective defocus error (assuming small 
focus errors) can be defi ned by

 δ σ δeff F
2 2 2≈ +  (3.53)

where σF
2 is the variance of the focus averaging probability distribution.

3.4.6 Reticle Defocus

While the main focus problem in optical lithography may be controlling the focal position 
of the wafer, it is certainly possible for the reticle to be out of focus as well. Like the 
wafer, reticle focus errors can be described as an OPD with essentially the same form as 
for wafer focus errors:

 OPD n n= − ≈m m m m m mδ θ δ θ( cos ) sin1
1

2
2  (3.54)

where the subscript ‘m’ refers to the mask side. Because of the reduction ratio, angles on 
the mask side are much lower than on the wafer side, and so the paraxial approximation 
for the OPD on the right-hand side of Equation (3.54) will be quite accurate. As discussed 
in Chapter 2, angles on the mask side can be related to angles on the wafer side by

 Rn nm m w wsin sinθ θ=  (3.55)

Thus, the OPD caused by the mask defocus can be described in terms of the wafer-side 
angles:
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Comparing this expression to the paraxial effect of wafer defocus, the equivalent wafer 
defocus to cause this same amount of OPD would be
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For imaging in air, where both the wafer-side and mask-side refractive indices are 1, 
focus errors of the reticle are like focus errors on the wafer, but reduced by the reduction 
ratio squared. For a typical reduction ratio of 4, this means that the image is 16 times less 
sensitive to reticle focus errors than to wafer focus errors. (We often say that the longitu-
dinal magnifi cation is equal to the lateral magnifi cation squared.) Of course, this relation-
ship is only approximate since wafer focus errors are not accurately described by the 
paraxial form of the OPD for reasonably large numerical apertures. However, reticle focus 
errors can be readily accounted for using the Zernike third-order defocus term:
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3.4.7 Rayleigh Depth of Focus

Depth of Focus (DOF) is defi ned as the range of focus that can be tolerated, before the 
image quality is degraded beyond usefulness. Lord Rayleigh, more than 100 years ago, 
gave us a simple approach to estimate depth of focus in an imaging system. Here we’ll 
express his method and results in modern lithographic terms. We’ll consider the coherent 
imaging of an array of small lines and spaces so that only the zero and the plus and minus 
fi rst diffraction orders pass through the lens to form the image.

As discussed above in section 3.4.1, a common way of thinking about the effect of 
defocus on an image is to consider the defocusing of a wafer as equivalent to causing an 
aberration – an error in curvature of the actual wavefront relative to the desired wavefront 
(i.e. the one that focuses on the wafer). Equations (3.20)–(3.22) show how the OPD varies 
across the pupil for a given amount of defocus. How much OPD can our line/space pattern 
tolerate? Consider the extreme case. If the OPD of the fi rst diffraction orders were set to 
a quarter of the wavelength, the zero and fi rst diffracted orders would be exactly 90° out 
of phase with each other. At this much OPD, the zero order would not interfere with the 
fi rst orders at all and no pattern would be formed. The true amount of tolerable OPD must 
be less than this amount:

 OPD k kmax = <2 2
4

1
λ

, where  (3.59)

Substituting this maximum permissible OPD into Equation (3.20), we can fi nd the 
DOF.
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At the time of Lord Rayleigh, lens numerical apertures were relatively small and the 
medium of imaging was air, so that n = 1. Thus, the largest angles going through the lens 
were also quite small and the cosine term could be approximated in terms of sinq:

 DOF k k
p≈ =2 2 2

2λ
θ λsin

 (3.61)

This paraxial form is reasonably accurate for numerical apertures below 0.5. At this point, 
Lord Rayleigh made a crucial application of this formula that is often forgotten. While 
Equation (3.61) would apply to any small pattern of lines and spaces, Lord Rayleigh 
essentially looked at the extreme case of the smallest pitch that could be imaged – the 
resolution limit. The smallest pitch that can be printed would put the fi rst diffracted order 
at the largest angle that could pass through the lens, defi ned by the numerical aperture, 
NA. For this one pattern, the general expression [Equation (3.61)] becomes the more 
familiar and specifi c Rayleigh DOF criterion:

 DOF k
NA

= 2 2

λ
 (3.62)

The Rayleigh depth of focus criterion, as usually expressed in Equation (3.62), is rife 
with caveats. It was derived for a pattern of equal lines and spaces imaged under coherent 
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illumination, assumed that the feature was at the resolution limit, and made the paraxial 
approximation, which is not very accurate at numerical apertures in common lithographic 
use. In general, it does a very poor job of predicting the DOF observed in lithographic 
tools.

3.5 Imaging with Scanners Versus Steppers

In general, increasing the numerical aperture of a lens while keeping the fi eld size constant 
requires signifi cant improvements in lens design and manufacturing in order to keep 
aberration levels low (or better yet, to reduce them). A lens with a smaller fi eld size will 
always be easier to design and manufacture. However, the fi eld size must be at least the 
size of the largest chip to be manufactured, and larger fi eld sizes provide for higher 
imaging productivity since throughput is improved if multiple chips can be imaged at 
once. This tension between smaller fi eld sizes to improve aberration performance and 
larger fi eld sizes to improve manufacturing productivity has led to a transition from 
steppers to step-and-scan tools.

A step-and-repeat camera (stepper) images a single fi eld (for example, 20 × 20 mm in 
size on the wafer) while the mask and wafer are stationary, then steps the wafer to a new 
location and repeats the exposure. Eventually the whole wafer is covered with exposed 
fi elds. A scanner, on the other hand, will scan the mask and wafer simultaneously past an 
illuminated exposure fi eld (in the shape of a slit), allowing for an exposure area limited 
only by the length of the slit and the travel of the mask and wafer. Step-and-scan tools 
are a hybrid between these two approaches. The mask and wafer are scanned past a small 
slit (for example, 26 × 8 mm) until the full mask is exposed (up to 26 × 33 mm at wafer 
dimensions). The wafer is then stepped to a new location and the scanning is repeated 
(Figure 3.22). The smaller image fi eld (the slit) makes the imaging system simpler, though 
at the expense of more complicated mechanical mask and wafer motion. Thus, scanning 
can be considered a compromise between throughput, stage complexity and lens complex-
ity for large-fi eld imaging.

Wafer 
Pattern of 
Exposure

Fields

Scan
Direction

Slit

Single Exposure Field

Figure 3.22 A wafer is made up of many exposure fi elds (with a maximum size that is typi-
cally 26 × 33 mm), each with one or more die. The fi eld is exposed by scanning a slit that is 
about 26 × 8 mm across the exposure fi eld
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For scanners, exposure dose is controlled by the scan speed. Since step-and-scan tools 
generally use excimer laser light sources, which emit light in short pulses, the scan speed 
V needed to achieve a specifi c dose is given by

 V W
f

n
= s  (3.63)

where Ws is the slit width, f is the repetition rate of the laser and n is the number of pulses 
needed to achieve the proper dose. The pulse-to-pulse dose repeatability of a good excimer 
laser is a few percent. Since the overall dose repeatability is improved by a factor of n  
(assuming each pulse is independent), to achieve a dose control of a few tenths of a 
percent the number of pulses must be on the order of 100. For a slit width of 8 mm, a 
laser repetition rate of 2 kHz, and 50 pulses required, the wafer stage velocity would need 
to be 0.32 m/s (the reticle stage must move at exactly 4× this speed for a 4× reduction 
system). Improved laser repetition rates and reduced pulse-to-pulse variability allow for 
faster scan speeds and thus better throughput.

Besides all of the practical differences between the operation of steppers and step-
and-scan tools, there are differences in imaging performance as well. Lenses are fabricated 
to be circularly symmetric, while chips are necessarily rectangular in shape. Thus, 
different-sized rectangular fi elds are possible for a given diameter lens. If the fi eld size 
has a diameter of 28 mm, the maximum square fi eld (for a stepper, for example), is just 
under 20 mm square. The same lens, however, can accommodate a 26 × 8 mm slit in a 
step-and-scan confi guration, allowing for larger die sizes and/or more productive printing 
of multiple die in the larger fi eld. In addition, the lens can be rotated during testing and 
assembly to fi nd the 26 × 8 mm slice of the circular fi eld that provides the best imaging 
quality.

As was discussed in sections 3.1 and 3.3, the nonideal imaging behavior of a lens 
(aberrations, fl are) varies as a function of fi eld position. The result is an unwanted varia-
tion in the dimensions and placements of the printed patterns as a function of fi eld posi-
tion. Scanning can signifi cantly change the nature of this spatial variation across the fi eld. 
When scanning the mask and wafer across the stationary slit, each point on the wafer is 
exposed by an average of aerial images – one for each fi eld position along the scan direc-
tion of the slit. In other words, any variations in aberrations or fl are across the fi eld in 
the scan direction will be averaged out. Thus, the variations in feature size and overlay 
are signifi cantly reduced in the scan direction. Of course, in the slit direction there is no 
such averaging and so the full spatial variation of lithographic results will remain in this 
direction (see Chapter 8 for a more detailed discussion of spatial CD variations).

The benefi cial effects of aberration averaging mean that step-and-scan tools generally 
exhibit improved CD control compared to steppers. However, scanners also introduce 
new sources of process variation that, if not properly controlled, could erase these CD 
uniformity benefi ts. Scanning the mask and wafer past the imaging slit requires extremely 
precise synchronization of the mask and wafer position during the scan. Scan synchroni-
zation errors act exactly like wafer vibrations during a stepper exposure. The result is a 
blurring of the projected image, sometimes described as ‘image fading’. While systematic 
synchronization errors are possible, random errors are more common and are character-
ized by a moving standard deviation (MSD) of the stage position (see Figure 3.23). The 
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resulting ‘averaged’ image is the convolution of the static image with a Gaussian of this 
standard deviation. Additionally, focus variations during the scan produce an averaging 
of the aerial image through focus, which will degrade image quality at best focus.

3.6 Vector Nature of Light

As James Clerk Maxwell has shown us, light is an electromagnetic wave. Electric and 
magnetic fi elds oscillate at some characteristic frequency while traveling at the speed of 
light. These fi elds have a magnitude, phase and direction. It is the direction (also called 
the polarization) of the electric fi eld that defi nes its vector nature, and a key property of 
an electromagnetic wave is that its electric and magnetic fi eld vectors are at right angles 
to each other, and at right angles to the direction of propagation. Figure 3.24 shows a 
standard textbook picture of a traveling ray of electromagnetic energy.

The direction of the electric fi eld plays a critical role in the phenomenon of interference. 
Two plane waves, approaching a wafer at different angles, will interfere to form fringe 
patterns of light and dark making the simplest of lithographic patterns – an array of lines 
and spaces. This phenomenon of interference is the key to pattern formation. Without it, 
light hitting the wafer from different directions would simply add up to give a uniform 
intensity. We can see mathematically the effect of interference by examining how two 
electric fi elds combine to form a resultant electric fi eld and intensity. Ignoring the refrac-
tive index of the medium, the intensity I is the square of the magnitude of the electric 
fi eld E. If two electric fi elds are combined, what is the intensity of the combination? If 
the two electric fi elds do not interfere, the total intensity is the sum of the individual 
intensities.

 I E E= +1
2

2
2  (3.64)

If, however, the two electric fi elds interfere completely, the total intensity will be

 I E E= +1 2
2  (3.65)
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Figure 3.23 Example stage synchronization error (only one dimension is shown), with an 
MSD of 2.1 nm
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Two electric fi elds interfere with each other only to the extent that their electric fi elds 
oscillate in the same direction. If the electric fi elds are at right angles to each other, there 
will be no interference. Thus, to determine the amount of interference between two elec-
tric fi elds, one must fi rst determine the amount of directional overlap between them. 
Vector mathematics gives us some simple tools to calculate directional overlap and thus 
the amount of interference. Figure 3.25 shows the standard head-to-tail method of geo-
metrically adding two vectors. In the top case, the two vectors are at right angles to each 
other, so the head-to-tail construction forms a simple right triangle. Thus, the length of 
the resultant vector is given by the familiar Pythagorean theorem: c2 = a2 + b2. If the 

H

z
E

x

y

Figure 3.24 A monochromatic plane wave traveling in the z-direction. The electric fi eld 
vector is shown as E and the magnetic fi eld vector as H
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Figure 3.25 Examples of the sum of two vectors a and b to give a result vector c, using the 
geometric ‘head-to-tail’ method
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vector lengths represent the magnitudes of the electric fi eld, the square of the length is 
the intensity and the resultant intensity is identical to that given by Equation (3.64). In 
other words, when the two electric fi elds are at 90° with respect to each other, they do 
not interfere and the total intensity is just the sum of the individual intensities.

At the other extreme (the middle example in Figure 3.25), two vectors in the same 
direction add directly and the resultant length is c = a + b. Thus, the intensity of the sum 
is given by Equation (3.65) and when the two electric fi elds are in the same direction, 
they interfere completely. Finally, the bottom example in Figure 3.25 shows an intermedi-
ate case. Working through the trigonometry of the vector sum shows that the portion of 
the two vectors that overlap will interfere, and the portion of the vectors that are at right 
angles will add in quadrature (i.e. they won’t interfere, just add as intensities).

When thinking of light as a scalar rather than a vector quantity, we ignore the subtleties 
discussed above. Essentially, a scalar description of light always assumes that the electric 
fi elds are 100 % overlapped and all electric fi elds add together as in Equation (3.65). Since 
interference is what gives us the patterns we want, a scalar view of light is too optimistic. 
The vector description of light says that, like the bottom case in Figure 3.25, there is 
usually some fraction of the electric fi elds of our two vectors that don’t overlap and thus 
don’t contribute to interference. The noninterfering light is still there, but it adds as a 
uniform intensity that degrades the quality of the image.

Consider the interference of two plane waves approaching the wafer at moderate angles, 
as in Figure 3.26. How will the two electric fi elds interfere? The electric fi eld can point 
in any direction perpendicular to the direction of propagation. This arbitrary direction can 
in turn be expressed as the sum of any two orthogonal (basis) directions. The most con-
venient basis directions are called transverse electric or TE (the electric fi eld pointing out 
of the page of the drawing) and transverse magnetic or TM (the electric fi eld pointing in 
the page of the drawing). As Figure 3.26 shows, the TE case means that the electric fi elds 
of the two planes wave are always 100 % overlapped regardless of the angle between the 
plane waves. For the TM case, however, the extent of overlap between the two vectors 
grows smaller as the angle between the plane waves grows larger. TM is the ‘bad’ polar-
ization in lithography, especially at the very high numerical apertures that allow large 
angles between light rays.

1E 2E
1E

2E
1 2

1

2

TE or s-polarization                                TM or p-polarization

Figure 3.26 Two plane waves with different polarizations will interfere very differently. For 
transverse electric (TE) polarization (electric fi eld vectors pointing out of the page), the 
electric fi elds of the two vectors overlap completely regardless of the angle between the 
interfering beams
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We can calculate how much the two electric fi elds for the TM case will interfere with 
each other. Suppose that the two rays in Figure 3.26 are traveling at an angle q with 
respect to the vertical direction (i.e. the direction normal to the wafer). The electric fi elds 
E1 and E2 will have an angle between them of 2q. The amount of the electric fi eld vector 
E2 that points in the same direction as E1 is just the geometric projection, E2cos(2q). Thus, 
the intensity will be given by the coherent (electric fi eld) sum of the parts that overlap 
plus the incoherent (intensity) sum of the parts that don’t overlap.

 I E E E= + +1 2
2

2
22 2cos( ) sin( )θ θ  (3.66)

Note that for q = 0, this equation reverts to the perfectly coherent (interfering) sum of 
Equation (3.65). For q = 45°, the two electric fi elds are perpendicular to each other and 
Equation (3.66) becomes the perfectly incoherent (noninterfering) sum of Equation (3.64). 
For typical photoresists (with refractive indices between 1.6 and 1.7), this 45° angle inside 
the resist will be obtained for numerical apertures in the 1.15–1.2 range.

3.6.1 Describing Polarization

As we saw above, the behavior of a wave of light depends not only on the amplitude and 
phase of the wave (its scalar properties), but on the direction that the electric fi eld is 
pointing (its vector property). In particular, the amount of interference between two 
electromagnetic waves depends on the relative directions of the two electric fi elds. If the 
electric fi elds point in the same direction, they will interfere completely. If they are 
orthogonal to one another, there will be no interference. The direction of the electric fi eld 
of an electromagnetic wave, and how that direction varies in time or space, is called its 
polarization. Recall that Maxwell’s equations require that the electric and magnetic fi elds 
are always perpendicular to each other and both always point perpendicular to the direc-
tion of propagation. As a result, it is suffi cient to consider only the direction of the electric 
fi eld.

Since an electromagnetic wave travels through time and space, there are three important 
ways of looking at (or thinking about) the direction of the electric fi eld. First, imagine 
‘riding the wave’: a given point on the wave moves through time and space at the speed 
of light. On this point on the wave, the electric fi eld stays pointing in a constant direction, 
regardless of the type of polarization that the wave has. While an important conceptual 
idea, this way of thinking about the wave doesn’t give us any information about its polar-
ization. The second approach is to look at an instant of time, and see how the electric 
fi eld direction is changing through space (this works best for simple harmonic waves, 
such as a plane wave). Finally, the third viewpoint is a fi xed location in space, monitoring 
the change in the direction of the electric fi eld through time. These last two perspectives 
allow for equivalent descriptions of polarization: the variation of the electric fi eld direc-
tion in space at an instant in time, or the variation of the electric fi eld direction in time 
at a fi xed point in space.

With the above perspectives in mind, how can light be polarized? The simplest type 
of polarization is called linear polarization, shown in Figure 3.27. At an instant in 
time, the electric fi eld E is always pointing in one direction (in this case, the y-direction, 
though in both positive and negative directions) for all points in space (Figure 3.27a). At 
one point in space, the electric fi eld changes magnitude sinusoidally through time, but 
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always points in the same direction (Figure 3.27b). A second type of polarization is 
called circular polarization, as shown in Figure 3.28. Here, the electric fi eld direction 
takes on a spiral form through space at a given instant in time (Figure 3.28a). At a given 
point in space, the electric fi eld direction rotates through a circle, keeping a constant 
magnitude (Figure 3.28b). Both right-circular and left-circular polarization are possible, 
depending on the direction of rotation of the polarization. Note that the name given to 
the polarization comes from the shape traced out by the electric fi eld through time at a 
given point in space. It is this viewpoint that is usually the easiest one to picture and 
understand.

Figure 3.29 compares some common types of polarization. Besides linear and circular 
polarization, elliptical polarization is somewhere in between the two. Random polariza-
tion is by far the most common type of polarization available for light sources, and until 
recently the only polarization available to lithographers. (Note that the common name for 
this type of polarization, unpolarized light, is actually a misnomer since light always has 
a polarization, even if it is random.) Here, the electric fi eld direction changes randomly 

Figure 3.27 Linear polarization of a plane wave showing (a) the electric fi eld direction 
through space at an instant in time, and (b) the electric fi eld direction through time at a point 
in space. The k vector points in the direction of propagation of the wave

Figure 3.28 Right circular polarization of a plane wave showing (a) the electric fi eld direc-
tion through space at an instant in time, and (b) the electric fi eld direction through time at 
a point in space
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(and quickly) through time. When two waves of random polarization interfere with each 
other, some statistical average of amounts of electric fi eld overlap must be used. Fortu-
nately, a rigorous analysis provides a simple result: the intensity resulting from the inter-
ference of two randomly polarized waves can be calculated by breaking each wave into 
two linearly polarized orthogonal waves (for example, TE and TM polarizations), interfer-
ing each polarization separately, and summing the two resulting intensities.

In reality, none of the polarizations described above are achieved perfectly in practice. 
Practical light sources almost always produce some combination of polarized light and 
unpolarized light. To quantify the degree to which a light source supplies properly polar-
ized illumination, a metric called degree of polarization (DOP) is used:

 DOP
I I

I I
=

−
+

good pol bad pol

good pol bad pol

 (3.67)

where Igood pol is the desired polarization and Ibad pol is the undesired polarization. If one 
is trying to make linear TE polarized light, for example, the good polarization is TE 
and the bad polarization is TM. Perfectly polarized light would have a DOP of 1.0. 
Randomly polarized light, being made up of equal parts TE and TM on average, will 
have a DOP of zero. Polarized light sources for use in lithography are expected to have 
DOPs ≥ 0.9.

Mathematically, the polarization of a plane wave can be characterized by the phase 
difference between orthogonal components of the electric fi eld. For example, consider a 
plane wave traveling in the z-direction with electric fi eld components in the x- and y-
directions. If the difference in phase between the x- and y-components of the electric fi eld 
(∆f) is a multiple of p, the plane wave will be linearly polarized. If ∆f is an odd multiple 
of p/2, the wave will be circularly polarized. For other fi xed phase differences, the wave 
will be elliptically polarized.

3.6.2 Polarization Example: TE Versus TM Image of Lines and Spaces

For TE illumination of line/space patterns, the electric fi elds of each of the diffracted 
orders overlap completely so that the vector sum of the electric fi elds equals the scalar 
sum. An example of a coherent illumination aerial image where only the zero and fi rst 
diffracted orders are used was given in Chapter 2. If the lines are oriented in the y-
direction, the only electric fi eld component for this polarization will be in the y-direction 
as well:

 E x a a x py( ) cos( )= +0 12 2π /  (3.68)

EE

E
E

Circular Elliptical Random Linear

Figure 3.29 Examples of several types of polarizations (plotting the electric fi eld direction 
through time at a point in space)
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giving an intensity image of

 I x E x a a a a x p a x py( ) ( ) cos( ) cos( )= = + + +2
0
2

1
2

0 1 1
22 4 2 2 4π π/ /  (3.69)

A similar expression for TM illumination can also be derived. Here, the electric fi eld will 
have both x and z components. If the diffraction angle of the fi rst diffracted orders is given 
by sinq = l/p,

 E a a x p

E a x p
x

z

= +
=

0 1

1

2 2

2 2

cos cos( )

sin sin( )

θ π
θ π

/

/
 (3.70)

giving
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1
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22 4 2 2 2θ π θ/ )) cos( )4πx p/

 (3.71)

The effect of using the ‘bad’ polarization is to decrease the amount of interference by the 
cosine of the angle between the interfering orders. Thus, the interference between the zero 
and fi rst orders is lessened by the factor cosq and the interference between the plus 
and minus fi rst orders is decreased by cos2q. For randomly polarized light, the fi nal 
aerial image would be the average of the two images given above for TE and TM 
polarization.

The difference between TE and TM polarization, as shown in the above example, can 
be quite large for small-pitch patterns. However, when considering only the aerial image 
(that is, the image in air) this difference is greatly exaggerated. When the image propa-
gates from the air to the resist, refraction will decrease the angle of the fi rst orders inside 
the resist according to Snell’s law. The lower angles in the resist will have greater overlap 
of the TM electric fi elds and thus a better quality image. For example, if the fi rst order 
diffraction angle in air is sinq = 0.9, then cosq = 0.44 and the interference with the zero 
order is less than 50 % effective. However, in resist the fi rst-order angle is reduced by the 
refractive index (typically about 1.7), so that sinqresist = 0.53 and cosqresist = 0.85. The 
image in resist will have far higher quality than the aerial image. And of course, it is 
the image in resist that actually exposes the resist, not the aerial image. This topic will 
be discussed in greater detail in Chapter 4.

3.6.3 Polarization Example: The Vector PSF

An interesting (and somewhat nonintuitive) consequence of the vector nature of light is 
that linearly polarized illumination will produce an asymmetric PSF.8 A cross section of 
the PSF in the direction of polarization is wider than in the perpendicular direction (30 % 
greater for the case of NA = 0.866, see Figure 3.30).

3.6.4 Polarization Aberrations and the Jones Pupil

As discussed at the beginning of this chapter, aberrations are characterized by means of 
the pupil function, defi ned as the ratio of the electric fi eld at the exit pupil to the electric 
fi eld at the entrance pupil. When thinking of electric fi elds as decomposed into orthogonal 
polarization components (TE and TM being the most convenient decomposition), an 
interesting question arises: will the pupil function for TE light passing through the lens 
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be the same as for TM light? Further, if TE light only enters the lens, will any of the light 
exiting the lens be TM? To include the variation of pupil transmittance with polarization, 
a more complete description of the pupil is required.

If the electric fi eld entering the lens is broken down into TE and TM components, given 
by EiTE and EiTM, respectively, and the electric fi eld at the exit pupil is given by EoTE and 
EoTM, these electric fi elds can be expressed as Jones vectors:9
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 (3.72)

Describing the transmittance of the lens by the Jones pupil matrix J, the input and output 
Jones vectors are related by10,11
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 (3.73)

Note that if J12 = J21 = 0 and J11 = J12, then the Jones pupil description of the lens trans-
mittance reverts to the scalar pupil description where J11 = J12 = P, the scalar pupil func-
tion. It is thus convenient to defi ne the scalar pupil function as the average of the diagonal 
elements of the Jones pupil:

 P
J J= +11 22

2
 (3.74)

Using this defi nition of the scalar pupil, a reduced Jones pupil �J can be defi ned by

 J J= = 





P P
J J

J J
�

� �
� �

11 12

21 22

 (3.75)
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Figure 3.30 The point spread function (PSF) for linearly x-polarized illumination: (a) cross 
sections of the PSF for NA = 0.866 (solid line is the PSF along the x-axis, dashed line is the 
PSF along the y-axis); (b) ratio of the x-width to the y-width of the PSF as a function of 
numerical aperture
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For a lens that exhibits no polarization dependence, the reduced Jones matrix is simply 
the identity matrix. For a reasonably well-behaved lens, then, �J11 and �J22 are about equal 
to 1, and �J12 and �J21 are about equal to 0.

There are two main physical causes for what are sometimes called polarization aber-
rations. When light hits an interface (such as the surface of a lens element) at an oblique 
angle, the transmittance of that interface is different for TE and TM polarizations (a topic 
that will be discussed in some detail in Chapter 4). Antirefl ection coatings reduce but 
do not eliminate this difference. Thus, any lens that is a collection of refractive optical 
elements can be thought of as a weakly polarizing optical component, since the overall 
transmittance of the lens will depend on the incoming polarization and will vary with 
spatial frequency (the outer edges of the lens showing the biggest differences). This dif-
ference in amplitude transmittance as a function of polarization is called diattenuation. 
(A similar but less commonly observed phenomenon in lenses is dichroism, the variation 
in the absorption of light by the lens as a function of polarization.)

The second major cause of polarization effects in a lens is birefringence, a difference 
in the refractive index of a material as a function of the direction of the electric fi eld 
vector. Birefringence leads to the general observation of retardance, a difference in the 
phase of the transmitted light as a function of its polarization. Some materials, most 
notably certain crystals, exhibit intrinsic birefringence. Most optical materials become 
at least somewhat birefringent when stressed. Common optical materials used in litho-
graphic lenses exhibit small amounts of both intrinsic and stress-induced birefringence 
at 193-nm wavelength, and relatively large amounts of birefringence at a wavelength of 
157 nm. Lens antirefl ection coatings can also contribute to retardance. Birefringence is 
usually expressed as the OPD experienced by two orthogonal polarizations per unit length 
traveled through the material, with units of nm/cm.

A useful mathematic decomposition of the Jones pupil expresses this matrix as linear 
combination of Pauli spin matrices:

 �J = 
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The magnitudes of a1, a2 and a3 then indicate the deviation of the reduced Jones pupil 
from an identity matrix, and can be easily related to the elements of the reduced Jones 
pupil matrix:
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These (complex number) coeffi cients have important physical interpretations. The real 
parts of a1 and a2 describe the diattenuation of the lens along the axes and at 45° to the 
axes, respectively. The imaginary parts of a1 and a2 describe the retardance of the lens 
along the axes and at 45° to the axes, respectively. The coeffi cient a3 describes the 
circularly directed diattenuation and retardance.

All of these various forms for describing polarization-dependent pupil transmission 
suffer from a common problem – the excess complication that comes from expanding a 
scalar pupil (with its two pupil maps) into a vector pupil (with eight pupil maps). The 
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reduced Jones pupil form of Equation (3.75) preserves the intuition and experience of the 
scalar pupil, but does not reduce the overall level of complexity. Recently, Geh formulated 
an alternate decomposition of the Jones pupil into a scalar pupil plus a partial polarizer 
(producing diattenuation), a rotator (that simply rotates the polarization state), and a 
retarder (giving birefringence).12 The resulting decomposition is signifi cantly more 
intuitive.

One should note that the Jones pupil cannot describe the phenomenon of depolariza-
tion, the decrease in the degree of polarization as light travels through a lens. Depolariza-
tion is generally due to scattering mechanisms – the same mechanisms that give rise to 
fl are. However, in general the amount of scattering will be approximately the same for 
each polarization. Thus, the mechanism used to account for fl are described in section 3.3 
can be coupled with the Jones pupil description of the nonscattered light transmittance to 
give a very reasonable and accurate description of lithographic imaging. The fl are (scat-
tered light) reaching the wafer is then assumed to be randomly polarized, thus accounting 
for depolarization.

3.7 Immersion Lithography

Although the scientifi c principles underlying immersion lithography have been known for 
well over 100 years (immersion microscopes were in common use by 1880), only recently 
has this technology attracted widespread attention in the semiconductor industry. Despite 
this rather late start, the potential of immersion lithography for improved resolution and 
depth of focus has changed the industry’s roadmap and is destined to extend the life of 
optical lithography to new, smaller limits.

From a practical perspective, immersion lithography at 193 nm uses ultrapure degassed 
water, with refractive index of 1.437, as the immersion liquid. A small puddle of water 
is kept between the lens and the wafer during wafer exposure (Figure 3.31). New water 
is constantly pumped under the lens to keep the optical properties of the fl uid consistent, 
and to prevent the buildup of contaminants. A special wafer chuck keeps the puddle intact 
as the edge of the wafer is scanned under the puddle.

Wafer

Water

Projection Lens

Figure 3.31 Immersion lithography uses a small puddle of water between the stationary 
lens and the moving wafer. Not shown is the water source and intake plumbing that keeps 
a constantly fresh supply of immersion fl uid below the lens
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3.7.1 The Optical Invariant and Hyper-NA Lithography

The story of immersion lithography begins with Snell’s Law. Light traveling through 
material 1 with refractive index n1 strikes a surface with angle q1 relative to the normal 
to that surface. The light transmitted into material 2 (with index n2) will have an angle q2 
relative to that same normal as given by Snell’s law.

 n n1 1 2 2sin sinθ θ=  (3.78)

Now picture this simple law applied to a fi lm stack made up of any number of thin parallel 
layers (Figure 3.32a). As light travels through each layer, Snell’s law can be repeatedly 
applied:

 n n n n nk k1 1 2 2 3 3 4 4sin sin sin sin . . . sinθ θ θ θ θ= = = = =  (3.79)

Thanks to Snell’s law, the quantity nsinq is invariant as a ray of light travels through this 
stack of parallel fi lms. Interestingly, the presence or absence of any fi lm in the fi lm stack 
in no way affects the angle of the light in other fi lms of the stack. If fi lms 2 and 3 were 
removed from the stack in Figure 3.32a, for example, the angle of the light in fi lm 4 
would be exactly the same.

We fi nd another, related invariant when looking at how an imaging lens works. A well-
made imaging lens (with low levels of aberrations) will have a Lagrange invariant (often 
just called the optical invariant) that relates the angles entering and exiting the lens to 
reduction ratio of that lens, as described in Chapter 2:

 R
n

n
= w w

m m

sin

sin

θ
θ

 (3.80)

where nm is the refractive index of the media on the mask side of the lens, qm is the angle 
of a ray of light entering the lens relative to the optical axis, nw is the refractive index of 
the media on the wafer side of the lens and qw is the angle of a ray of light exiting the 
lens relative to the optical axis (Figure 3.32b). Note that, other than a scale factor given 
by the magnifi cation of the imaging lens and a change in the sign of the angle to account 
for the focusing property of the lens, the Lagrange invariant makes a lens seem like a 

)b()a(

n1

θ1

n2

n3

n4

θ2

θm

Entrance
Pupil

Aperture
Stop

Exit 
Pupil

θw

Figure 3.32 Two examples of an ‘optical invariant’, (a) Snell’s law of refraction through a 
fi lm stack, and (b) the Lagrange invariant of angles propagating through an imaging lens
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thin fi lm obeying Snell’s law. (It is often convenient to imagine the imaging lens as 1×, 
scaling all the object dimensions by the magnifi cation, thus allowing R = 1 and making 
the Lagrange invariant look just like Snell’s law).

These two invariants can be combined when thinking about how a photolithographic 
imaging system works. Light diffracts from the mask at a particular angle. This diffracted 
order propagates through the lens and emerges at an angle given by the Lagrange invari-
ant. This light then propagates through the media between the lens and the wafer and 
strikes the photoresist. Snell’s law dictates the angle of that ray in the resist, or any other 
layers that might be coated on the wafer. Taking into account the magnifi cation scale 
factor, the quantity nsinq for a diffracted order is constant from the time it leaves the 
mask to the time it combines inside the resist with other diffraction orders to form an 
image of the mask.

If we replace the air between the lens and the wafer with water, the optical invariant 
says that the angles of light inside the resist will be the same, presumably creating the 
exact same image. The impact of immersion lithography comes from two sources: the 
maximum possible angle of light that can reach the resist, and the phase of that light.

Consider again the chain of angles through multiple materials as given by Equation 
(3.79). Trigonometry will never allow the sine of an angle to be greater than 1. Thus, the 
maximum value of the invariant will be limited by the material in the stack with the 
smallest refractive index. If one of the layers is air (with a refractive index of 1.0), this 
will become the material with the smallest refractive index and the maximum possible 
value of the invariant will be 1.0. If we look then at the angles possible inside of the 
photoresist, the maximum angle possible would be sinqmax,resist = 1 / nresist. Now suppose 
that the air is replaced with a fl uid of a higher refractive index, but still smaller than the 
index of the photoresist. In this case, the maximum possible angle of light inside the resist 
will be greater: sinqmax,resist = nfl uid / nresist. At a wavelength of 193 nm, resists have refractive 
indices of about 1.7 and water has a refractive index of about 1.44. The fl uid does not 
make the angles of light larger, but it enables those angles to be larger. If one were to 
design a lens to emit larger angles, immersion lithography will allow those angles to 
propagate into the resist. The numerical aperture of the lens (defi ned as the maximum 
value of the invariant nsinq that can pass through the lens) can be made to be much larger 
using immersion lithography, with the resulting improvements in resolution one would 
expect.

Thus, by using an immersion fl uid between the lens and the wafer, numerical apertures 
greater than 1 have been achieved. These so-called hyper-NA immersion lithography tools 
are certainly not the fi rst NA > 1 imaging tools, since immersion microscopes have been 
common for over 100 years. The challenges in making immersion practical for high-
volume semiconductor manufacturing, however, are quite great, especially considering 
the need for high-speed scanning of the wafer past the lens while immersed in the fl uid. 
Practical numerical apertures for immersion systems are probably in the range of 93 % 
of the refractive index of the fl uid. For water, with n = 1.44 at 193 nm, this means a 
numerical aperture of up to 1.35. High-index fl uids (n = 1.65, for example) could enable 
numerical apertures as high as 1.5. Beyond this level, the maximum angle is limited by 
the refractive index of the photoresist, which would have to be raised to allow for further 
increases in numerical aperture. From the lens perspective, the refractive index of the 
various lens materials for 193-nm lithography is on the order of 1.5, so that concave lens 
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elements would be required in order to couple light into a higher-index fl uid. Alternatively, 
one could attempt to develop higher index glasses for use as lens elements. Both of these 
possibilities pose quite challenging problems.

The second way that an immersion fl uid changes the results of imaging comes from 
manner in which the fl uid affects the phase of the light as it reaches the wafer. Light, 
being a wave, undergoes a phase change as it travels. If light of (vacuum) wavelength l 
travels some distance ∆z through some material of refractive index n, it will undergo a 
phase change ∆f given by

 ∆ ∆ϕ π λ= 2 n z/  (3.81)

A phase change of 360° will result whenever the optical path length (the refractive index 
times the distance traveled) reaches one wavelength. This is important in imaging when 
light from many different angles combine to form one image. All of these rays of light 
will be in phase only at one point – the plane of best focus. When out of focus, rays 
traveling at larger angles will undergo a larger phase change than rays traveling at smaller 
angles. As a result, the phase difference between these rays will result in a blurred 
image.

For a given diffraction order (and thus a given angle of the light inside the resist), the 
angle of the light inside an immersion fl uid will be less than if air were used. These smaller 
angles will result in smaller OPDs between the various diffracted orders when out of 
focus, and thus a smaller degradation of the image for a given amount of defocus. In other 
words, for a given feature being printed and a given numerical aperture, immersion 
lithography will provide a greater depth of focus (DOF). A more thorough description of 
the impact of immersion on DOF will be given in the following section.

3.7.2 Immersion Lithography and the Depth of Focus

From the derivation of the Rayleigh DOF criterion given above in section 3.4.7, we can 
state the restrictions on this conventional expression of the Rayleigh DOF: relatively low 
numerical apertures imaging a binary mask pattern of lines and spaces at the resolution 
limit. Equation (3.60) can be thought of as the high-NA version of the Rayleigh DOF 
criterion, which still assumes we are imaging a small binary pattern of lines and spaces, 
but is appropriate at any numerical aperture. It also accounts for immersion lithography 
through the refractive index n. The angle q can be related to the pitch by letting this angle 
be that of the fi rst diffraction order.

 n
p

sinθ λ=  (3.82)

Combining Equations (3.60) and (3.82), one can see how immersion will improve the 
DOF of a given feature:
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λ
/

/
 (3.83)

As Figure 3.33 shows, the improvement in DOF is at least the refractive index of the 
fl uid, and grows larger from there for the smallest pitches.
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3.8 Image Quality

While much of this chapter has focused on the nature of imaging and those factors that 
affect the resulting aerial image, along the way we have had occasion to mention the 
‘quality’ of the aerial image without actually defi ning what is meant by this term. While 
it is intuitively easy to see how defocus and aberrations degrade the image, we will need 
to defi ne a numerical metric of image quality in order to quantify these effects. While 
much more will be said on this topic in Chapter 9, here we will simply defi ne a metric 
related to the ability of the image to defi ne and control the position of the edge to be 
printed in photoresist.

3.8.1 Image CD

The aerial image, when propagated into a photoresist, interacts with the resist to create a 
fi nal feature of a certain width. It is often convenient to estimate the width of the fi nal 
resist feature by the width of the aerial image. Consider an ideal, infi nite contrast positive 
resist. For such a resist, any exposure above some threshold dose Eth will cause all of the 
resist to be removed. Thus, for an aerial image I(x) and an exposure dose E, the critical 
dimension (CD) will equal 2x when

 E EI xth = ( )  (3.84)

For a given dose, an image intensity threshold value can be defi ned as
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Figure 3.33 For a given pattern of small lines and spaces, using immersion improves the 
depth of focus (DOF) by at least the refractive index of the fl uid (in this example, l = 193 nm, 
nfl uid = 1.46)
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The image CD is simply the width of the image evaluated at this intensity threshold 
(Figure 3.34).

This simple threshold model for estimating the resist CD can be signifi cantly improved 
by including a ‘resist bias’. As Figure 3.20 shows and section 3.4.4 discusses, aerial 
images exhibit an isofocal point, an x-position where the intensity varies the least with 
defocus. Likewise, resist CD exhibits an isofocal value (as will be discussed in Chapter 
8) where the CD is least sensitive to changes in focus. In general, the image isofocal point 
will not occur at the same position as the resist isofocal point. The difference between 
these points is called the resist bias.

Our simple threshold model can be modifi ed to account for this empirical observation 
by adding a bias to Equation (3.84):

 I I x bth = +( )  (3.86)

where b is called the edge bias and the CD is still 2x for a symmetrical image. It should 
be evident that the threshold intensity and the resist bias are not independent parameters, 
but are related by the slope of the aerial image.

 
d

d

d

d

I

b

I

x
th

x b

=
+

 (3.87)

Integrating this relationship,

 I I
I

x
bth th

d

d
= +0  (3.88)

where Ith0 is the threshold one would obtain if the bias were zero.
There are still only two independent parameters in Equation (3.88). If Ith0 and b are 

used as the parameters, then the threshold intensity used to extract the edge position 
from the image will vary as a function of the image slope. This is a simple form of a 
variable threshold resist model. Adding a dose dependence, as in Equation (3.85), we 
obtain

 I x CD I
E

E

I

x
b( )= = = +/

d

d
th

th2 0  (3.89)

where the slope is evaluated at I = Ith. Since this requires knowing Ith before evaluating 
the slope, either an iterative procedure must be used or one must assume that the slope 
is constant over the range of values of b commonly encountered. A second form of the 

Ith

CD

Figure 3.34 Defi ning image CD: the width of the image at a given threshold value Ith
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model avoids this complication by using Ith0 (or Eth0) and Ith as the parameters. In this 
case, the bias will vary as a function of the image slope and the result will be a variable 
bias resist model. For the variable bias resist model,

 I I x b b
I I

I x
th

th th,
d /d

= + = −
( ) 0  (3.90)

where the slope is now evaluated at a constant I = Ith.

3.8.2 Image Placement Error (Distortion)

The threshold model used above to defi ne the width of an aerial image can also be used 
to defi ne its center position, called the image placement. Since this center position is the 
average of the two edge positions, a constant bias does not impact image placement. 
However, a variable threshold or variable bias resist model, as discussed above, will 
infl uence the center position whenever the image slope is different on the right and left 
sides of the image.

Any deviation in the image placement from the ideal (desired) position is called image 
placement error (as described above in section 3.1.3). When image placement error does not 
depend on the size or surroundings of the feature in question, this error is called distortion. 
The most common cause of distortion is the aberration of tilt. Variation of image placement 
error with feature size or type can be caused by any odd Zernike term other than tilt.

3.8.3 Normalized Image Log-Slope (NILS)

The slope of the image intensity I as of function of position x (dI/dx) measures the steep-
ness of the image in the transition from bright to dark. However, for the slope to be useful 
as a metric of image quality, the intensity must be normalized by dividing the slope by 
the intensity at the point where the slope is being measured. The resulting metric is called 
the image log-slope (ILS):

 Image Log Slope
I

I

x

I

x
− = =1 d

d

d

d

ln( )
 (3.91)

where this log-slope is measured at the nominal (desired) line edge (Figure 3.35). Since 
variations in the photoresist edge positions (linewidths) are typically expressed as a per-
centage of the nominal linewidth, the position coordinate x can also be normalized by 
multiplying the log-slope by the nominal linewidth w, to give the normalized image log-
slope (NILS).

 NILS w
I

x
= d

d

ln( )
 (3.92)

The normalized image log-slope can now be used to calculate the image quality of 
various aerial images that we have discussed in this chapter. Consider fi rst a generic 1D 
image of a line-space pattern of pitch p. This image can be represented as a Fourier series 
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of some number of terms N (typically equal to twice the highest diffraction order number 
that passes through the lens).

 I x jx pj
j

N

( ) cos( )=
=
∑β π2

0

/  (3.93)

The NILS calculated at the edge position x = w/2 will be

 NILS
w

p

j jw p

jw p

j
j

N

j
j

N
= − 





=

=

∑

∑
2 0

0

π
β π

β π

sin( )

cos( )

/

/
 (3.94)

For the special case of equal lines and spaces, so that w = p/2,
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For small-pitch patterns, only a few diffraction orders make it through the lens. Near the 
resolution limit, where the fi rst diffraction orders are the highest ones transmitted through 
the lens, N = 2 and

 NILS = −
−

π β
β β

1

0 2

 (3.96)

One can see from this simple derivation that a high-magnitude NILS results from larger 
amounts of high-order components (larger b1 and b2) and less zero-order component 
(smaller b0).

Note that NILS can be positive or negative, depending on whether the pattern is a line 
or a space, and whether the right or the left edge of the pattern is being considered. As a 
convention, the sign of the NILS expression is usually adjusted to produce a positive 
value of NILS. Table 3.2 shows the calculated value of NILS for each of the equal line/
space aerial images discussed in this chapter. Of the images shown, the coherent, in-focus 

Mask

Image

Figure 3.35 Image Log-Slope (or the Normalized Image Log-Slope, NILS) is the best single 
metric of image quality for lithographic applications
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image from TE illumination produces the highest NILS (equal to 8). Defocus or the use 
of TM illumination causes a decrease in the NILS, and thus a degradation of image 
quality.

In Chapter 2, the Kintner method was used to calculate the partially coherent in-focus 
image of small lines and spaces as the weighted some of one-beam, two-beam and three-
beam images. This Kintner formulation can also be put into the Fourier series form of 
Equation (3.93). For TE illumination where only the zero and ±fi rst diffraction orders are 
used,

 

β
β
β

0 0
2

1
2

2 3

1 0 1 2 3

2 1
2

3

2

2 2

2

= + +
= +
=

a a s s

a a s s

a s

( )

( )

( )

 (3.97)

where s2 and s3 are the fractions of two-beam and three-beam imaging, respectively, as 
given in Tables 2.3 or 2.4.

3.8.4 Focus Dependence of Image Quality

All of the image quality metrics described above – image CD, image placement and image 
log-slope – will in general vary with focus. The variation of image CD with focus is 
sometimes called isofocal bias, a topic that will be discussed at length in Chapter 8. The 
variation of image log-slope with focus is a common focus characterization technique, 
and is discussed extensively in Chapter 9. The variation of image placement with focus 
is called telecentricity error, and is commonly due to asymmetric source shapes (discussed 
briefl y in Chapter 8).

Table 3.2 Calculation of NILS for various equal line/space images presented in this 
chapter

Image Type Equation b0 b1 b2 NILS

Coherent, in 
focus, TE
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Problems

 3.1. Derive Equation (3.5).
 3.2. Equation (3.7), which was derived for coherent illumination, predicts that coma 

will result in a positive placement error for lines and spaces when the pitch is less 
than 1 5. λ NA, a negative placement error for pitches greater than this amount, 
and no placement error when the pitch equals 1 5. λ NA. Show why this is true 
using pictures of the wavefront error and the diffraction pattern.

 3.3. Using the Zernike polynomial term F4, explain the effect of 3rd-order astigmatism 
on x-oriented lines and spaces versus y-oriented lines and spaces.

 3.4. Calculate the RMS wavefront error, WRMS, and the resulting Strehl ratio for the case 
when
(a) Only 3rd-order spherical aberration is present
(b) Only 3rd-order x-coma is present

Note that W W R R RRMS , d d2 2

0

2

0

11= ∫∫π
φ φ

π

( )

 3.5. Consider coherent imaging of equal lines and spaces where only the zero and ±fi rst 
diffraction orders enter the lens. Derive an expression, similar to Equation (3.24), 
that shows how spherical aberration results in a pitch-dependent paraxial focus 
error.

 3.6. Calculate the impact of long-range fl are on the image log-slope.
 3.7. Consider the case of dense equal lines and spaces (only the 0 and ±1st orders are 

used) imaged with coherent illumination. Show that the peak intensity of the image 
in the middle of the space falls off approximately quadratically with defocus for 
small amounts of defocus.

 3.8. Using the geometry of Figure 3.18b, derive Equation (3.20).
 3.9. Compare the depth of focus predictions of the high-NA version of the Rayleigh 

equation [Equation (3.60)] to the paraxial version of Equation (3.61) by plotting 
predicted DOF versus pitch (use k2 = 0.6, l = 248 nm, pitch in the range from 250 
to 500 nm, and assume imaging in air).

3.10. Consider two unit-amplitude plane waves traveling in air at angles ±q with respect 
to the z-axis (as in Figure 3.26). Show that the resulting interference patterns, 
depending on the polarizations of the two beams, will be

TE-polarization:  I(x) = 2 + 2 cos(4px sin(q) / l)
TM-polarization: I(x) = 2 + 2 cos(2q) cos(4px sin(q) / l)

 What is the pitch of the resulting line/space image?
3.11. Derive Equation (3.83). What is the limit of this equation for p >> l?
3.12. Consider a coherent, three-beam image of a line/space pattern under TE illumina-

tion (NA = 0.93, l = 193 nm, linewidth = 100 nm, pitch = 250 nm). Plot the resulting 
aerial image at best focus and at defocus values of 50 and 100 nm for:
(a) imaging in air
(b) immersion imaging (nfl uid = 1.44)
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3.13. Consider an in-focus, TE image where only the zero order and one of the fi rst orders 
pass through the lens. For this image, what are the values of b0, b1 and b2 in Equa-
tion (3.93)? What is the value of the NILS for the case of equal lines and spaces?

3.14. For the line/space image of Equation (3.93):
(a) derive an equation for the image contrast, defi ned as

 Image Contrast
I I

I I
= −

+
max min

max min

 For simplicity, assume the maximum intensity occurs in the middle of the 
space, and the minimum intensity occurs in the middle of the line.

(b) For the case where the second harmonic is the largest harmonic in the image 
(i.e. when N = 2), compare the resulting image contrast to the NILS of Equation 
(3.96).

3.15. Consider an in-focus, coherent, three-beam image of an equal line/space pattern 
under TE illumination (NA = 0.93, l = 193 nm, linewidth = 130 nm, pitch = 260 nm). 
Use a threshold model (Eth = 20 mJ/cm2) to plot the resulting line CD versus dose. 
What dose produces the nominal feature size?
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4
Imaging in Resist: Standing Waves 

and Swing Curves

The previous chapter developed a comprehensive theory for calculating aerial images, 
the image of a photomask as projected by the imaging tool into air. But of course the 
real goal is to project that image into photoresist, where chemical reactions respond-
ing to the local exposure dose will transform the intensity image into a latent image 
of exposed and unexposed material. The coupling of the aerial image into the photo-
resist involves the behavior of light as it encounters interfaces between materials – 
refl ection and transmission – and the propagation of light through an absorbing 
medium.

One of the unique aspects of the image in resist (as opposed to the aerial image) 
comes from refl ections off the substrate (or fi lms coated on the substrate). The total 
energy in the resist is the sum of the downward-propagating image and the upward-
propagating refl ected image. Since these two images will interfere, the results are 
highly dependent on the thickness of the resist, and possibly other fi lms above or 
below the resist. Two consequences of this interference are (1) standing waves – a sinu-
soidal variation of dose through the thickness of the resist – and (2) swing curves – a 
sinusoidal dependence of the energy coupled into the resist as a function of resist 
thickness.

A thorough understanding of these phenomena, plus a recognition of their detri-
mental impact on linewidth control, leads to a search for methods to reduce standing 
waves and swing curves. A description of antirefl ection coatings, both top and bottom, 
will show how linewidth control can be reclaimed through effective refl ection 
control.

Finally, examining how light propagates through the photoresist, including all of the 
various thin fi lm interference effects, allows for a rigorous understanding of the difference 
between an aerial image and an image in resist.

Fundamental Principles of Optical Lithography: The Science of Microfabrication. Chris Mack.
© 2007 John Wiley & Sons, Ltd. ISBN:  978-0-470-01893-4
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4.1 Standing Waves

Standing waves occur whenever two waves, traveling in opposite directions and with a 
fi xed phase relationship to each other, combine. Examples of standing waves abound, 
from vibrational waves traveling down a guitar string and refl ecting off the fi xed end of 
that string, to acoustic waves bouncing within the metal tube of a pipe organ, to the design 
of impedance matching connections for coaxial television cables. In lithography, light 
passing through the photoresist is refl ected off the substrate. This refl ected light wave 
interferes with the light wave traveling down to produce a standing wave pattern.1,2

4.1.1 The Nature of Standing Waves

Before looking at the lithographic case in great detail, we’ll examine the basic nature of 
standing waves by considering an exceedingly simplifi ed version of light standing waves. 
Suppose a plane wave of monochromatic light traveling through air (which we’ll assume 
to be nonabsorbing with an index of refraction of 1.0) is normally incident on a mirror. 
What is the total light intensity in the vicinity of the mirror? The total electric fi eld will 
be the sum of the wave traveling toward the mirror and the refl ected wave. Letting z be 
the direction the incident light is traveling in, the electric fi eld EI of a plane wave travel-
ing in this direction has the mathematical form

 E z A ikz
I e( ) =  (4.1)

where A is the amplitude of the plane wave and k is the propagation constant (equal to 
2pn/l where n is the refractive index of the medium and l is the vacuum wavelength of 
the light). (This equation requires an assumption about the sign convention for the phasor 
representation of a sinusoidal wave, as discussed in Chapter 2. Unfortunately, there is no 
standard and the convention commonly used for thin fi lm calculations is the opposite to 
that normally used for imaging. In this book, a plane wave traveling in the +z-direction 
is represented by exp(+ikz) and the imaginary part of the index of refraction must be 
positive to represent an absorbing media.) For simplicity, let z = 0 defi ne the position of 
the mirror. Letting r be the electric fi eld refl ectivity of the mirror, the refl ected light 
electric fi eld will be

 E z E Aikz ikz
R I e e( ) ( )= =− −ρ ρ0  (4.2)

The total electric fi eld is just the sum of the incident and refl ected fi elds.

 E z E z E z A ikz ikz
T R I e e( ) ( ) ( ) ( )= + = ++ −ρ  (4.3)

The special case of a perfectly refl ective mirror (r = −1) provides an especially simple 
result. The two complex exponentials in Equation (4.3) become a sinusoid by using the 
Euler identity.

 E z A i A kzikz ikz
T e e( ) ( ) sin( )= − =+ − 2  (4.4)

The intensity of the light in this region is the ‘interference pattern’ between the incident 
and refl ected beams:

 I z E z A kz A kzT T( ) ( ) sin ( ) ( cos( ))= = = −2 2 2 24 2 1 2  (4.5)
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The most striking aspect of this simple result is that the traveling wave has been converted 
to a standing wave. The plane wave in Equation (4.1) is ‘traveling’, meaning that the 
phase of the electric fi eld varies linearly with distance traveled. Literally, the wave moves 
through its ups and downs of the sinusoidal phase cycle as it travels, while the amplitude 
remains constant. In contrast, the wave in Equation (4.4) is stationary; it is ‘standing’ in 
place. The amplitude of the electric fi eld varies sinusoidally with position z, but the phase 
remains fi xed and independent of position.

(As an interesting historical footnote, the mathematical experiment described above is 
almost identical to a famous and seminal experiment performed in 1888 by Heinrich 
Hertz. Attempting to verify Maxwell’s new theory of electromagnetic radiation, Hertz 
covered one of the walls of his laboratory with copper and refl ected radio waves off this 
‘mirror’. Using a wire loop detector sensitive to the magnitude of the electric fi eld, he 
measured the resulting sinusoidal standing wave, which agreed well with Maxwell’s 
theory. Otto Wiener fi rst demonstrated that light exhibits standing waves in 1890 by 
exposing a photographic fi lm tilted at a small angle to a normally illuminated plane 
mirror.)

4.1.2 Standing Waves for Normally Incident Light in a Single Film

The very simple standing wave result derived above shows us the basic form of standing 
waves caused by plane waves traveling in opposite directions. For the case of standing 
waves in a photoresist, the simplest example is a thin layer of photoresist coated on a 
thick (semi-infi nite) substrate. Let us begin with the simple geometry shown in Figure 
4.1a. A thin photoresist (layer 2) rests on a thick substrate (layer 3) in air (layer 1). Each 
material has optical properties governed by its complex index of refraction, n = n + ik, 
where n is the real index of refraction and k is the imaginary part, sometimes called the 
extinction coeffi cient. This later name comes from the relationship between the imaginary 
part of the refractive index and a, the absorption coeffi cient of the material (as derived 
in Chapter 2).

 α πκ
λ

= 4
 (4.6)

Consider now the propagation of light through this fi lm stack. We will begin with illumi-
nation of the stack by a monochromatic plane wave normally incident on the resist. When 
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Substrate
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n2

n3

(a) (b)

Figure 4.1 Film stack showing (a) the geometry for the standing wave derivation, and (b) 
a normally incident electric fi eld EI
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this plane wave strikes the resist surface, some of the light will be transmitted and some 
will be refl ected. The amount of each is determined by the transmission and refl ection 
coeffi cients. Defi ned as the ratio of the transmitted to incident electric fi eld, the trans-
mission coeffi cient tij for a normally incident plane wave transmitting from layer i to 
layer j is given by

 τ ij
i

i j

=
+

2n
n n

 (4.7)

In general, the transmission coeffi cient will be complex, indicating that when light is 
transmitted from one material to another, both the magnitude and the phase of the electric 
fi eld will change. Similarly, the light refl ected off layer j back into layer i is given by the 
refl ection coeffi cient rij:

 ρij
i j

i j

=
−
+

n n

n n
 (4.8)

Both of these equations are derived from the requirement that electric and magnetic fi eld 
components that are within (or tangential to) the plane of the interface between materials 
i and j must be continuous across that boundary.

If an electric fi eld EI is incident on the photoresist (see Figure 4.1b), the transmitted 
electric fi eld will be t12EI. The transmitted plane wave will now travel down through the 
photoresist. As it travels, the wave will change phase sinusoidally with distance and 
undergo absorption. Both of these effects are given by the standard description of a plane 
wave as a complex exponential:

 E z ikz i z( ) = =e e /2π λn  (4.9)

where this E(z) represents a plane wave traveling in the +z-direction. Using the coordi-
nates defi ned in Figure 4.1a, the transmitted electric fi eld propagating through the resist, 
E0, will be given by

 E z E i z
0 12

2 2( ) = τ π λ
I

/e n  (4.10)

Eventually, the wave will travel through the resist thickness D and strike the substrate, 
where it will be partially refl ected. The refl ected wave, E1, just after refl ection will be

 E z D E i D
1 12 23

2 2( )= = τ ρ π λ
I

/e n  (4.11)

The complex exponential term in the above equation has some physical signifi cance: it 
represents the electric fi eld transmitted from the top to the bottom of the photoresist and 
is called the internal transmittance of the resist, tD.

 τ π λ
D

i D= e /2 2n  (4.12)

As the refl ected wave travels back up through the resist, the distance traveled will be (D-z) 
and the propagation will be similar to that described by Equation (4.9):

 E z E ED
i D z

D
i z

1 12 23
2

12 23
2 22 2( ) ( )= =− −τ ρ τ τ ρ τπ λ π λ

I
/

I
/e en n  (4.13)
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So far, our incident wave (EI) has been transmitted in the photoresist (E0) and then 
refl ected off the substrate (E1), as pictured in Figure 4.1b. The resultant electric fi eld in 
the photoresist will be the sum of E0 and E1.

 E z E z E i z
D

i z
0 1 12

2
23

2 22 2( ) ( ) ( )+ = + −τ ρ τπ λ π λ
I

/ /e en n  (4.14)

This sum is not the total electric fi eld in the photoresist. The wave E1 will travel to the 
top of the resist where it will be refl ected by the air–resist interface. The new wave, E2, 
will travel down through the resist where it will be refl ected by the substrate, giving 
another wave E3. The next two waves are given by
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The total electric fi eld within the thin fi lm, ET(z), is the sum of each Ej(z). Performing 
this summation gives

 E z E Sik z
D

ik z
T I e e( ) ( )= + −τ ρ τ12 23

22 2  (4.16)

where S D D= + + +1 1 121 23
2

21 23
2ρ ρ τ ρ ρ τ( ( . . .

The summation S is simply a geometric series and converges to
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Thus, the total electric fi eld in the resist will be3

 
E z

E

i z
D

i z

D

T

I

/ /e e( ) ( )= +
+

−τ ρ τ
ρ ρ τ

π λ π λ
12

2
23

2 2

12 23
2

2 2

1

n n

 (4.18)

Although we have determined an expression for the standing wave electric fi eld, it is 
the intensity of the light that causes exposure. Calculation of the relative intensity from 
Equation (4.18) leads to a somewhat messy result, but a few algebraic simplifi cations 
allow for a reasonably useful form:
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where ρ ρ φ
23 23

23= ei , and
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rransmittance into the photoresist.

This equation is graphed in Figure 4.2 for an i-line photoresist with typical properties on 
a silicon substrate. By comparing the equation to the graph, many important aspects of 
the standing wave effect become apparent. The most striking feature of the standing wave 
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plot is its sinusoidal variation. The cosine term in Equation (4.19) shows that the period 
of the standing wave is given by

 Period /= λ 2 2n  (4.20)

The amplitude of the standing waves is given by the multiplier of the cosine in Equation 
(4.19). It is quite apparent that there are two basic ways to reduce the amplitude of the 
standing wave intensity. The fi rst is to reduce the refl ectivity of the substrate (reduce r23). 
The use of an antirefl ection coating on the substrate is one of the most common methods 
of reducing standing waves (see section 4.3). The second method for reducing the stand-
ing wave intensity that Equation (4.19) suggests is to increase absorption in the resist 
(reduce the e−aD term). This is accomplished by adding a dye to the photoresist (increasing 
a). Finally, the ‘bulk’ intensity variation, the variation of the intensity averaged over the 
standing wave period, is given by the pair of exponential terms being added to the cosine 
in Equation (4.19). The bulk effect is a function of both absorption in the resist and the 
refl ectivity of the substrate.

As an aside, it is worth mentioning one diffi culty in using Equation (4.19): the conver-
sion of the complex substrate refl ectivity from rectangular to polar form. The calculation 
of the magnitude of the refl ection coeffi cient is straightforward:
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However, determining the angle of the refl ectivity using an arctangent function (as one 
might commonly do in spreadsheet calculations) can introduce an ambiguity if the range 
over which the arctangent is defi ned is not properly taken into account. Defi ning two 
simplifying variables x and y,
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Figure 4.2 Standing wave intensity in one micron of photoresist on a silicon substrate for 
an i-line exposure
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(1) If tan−1 is defi ned on the interval [0,p), then
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(2) If tan−1 is defi ned on the interval [−p/2,p/2), then
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The cases of y = 0 or x = 0 can be handled separately from the arctangent evaluation.

4.1.3 Standing Waves in a Multiple-Layer Film Stack

It is very common to have more than one fi lm coated on a substrate. An analysis similar 
to that for one fi lm yields the following result for the electric fi eld in the top layer of an 
m-1 layer system:

 
E z

E

i z
D

i z

D

2 12
2

23
2 2

12 23
2

2 2

1

( )

I

/ /e e
=

+ ′( )
+ ′

−τ ρ τ
ρ ρ τ

π λ π λn n

 (4.25)
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and all other parameters are as previously defi ned. The parameter ′ρ23 is the effective 
refl ection coeffi cient between the thin resist fi lm and what lies beneath it. Once the effec-
tive refl ection coeffi cient of the substrate fi lm stack is determined, Equation (4.25) 
becomes identical to Equation (4.18).

To better understand the nature and impact of the effective refl ection coeffi cient of the 
substrate, let’s consider two special cases where one layer (layer 3) lies between the resist 
and the substrate. For the fi rst case, let this layer 3 be thick and absorbing enough so that 
no refl ected light from the substrate makes it back to the top of layer 3. In other words, 
let τD3

2 0= . From the equations above, X3 will equal 1 and ′ =ρ ρ23 23. In other words, a 
suffi ciently thick absorbing layer acts as a substrate. For the second case, assume layer 3 
is optically matched to the photoresist so that n2 = n3. For this case, ′ =ρ ρ τ23 34 3

2
D . Ignoring 

any small amount of absorption that may occur in layer 3 (the imaginary part of n2 is 
usually very small), τD3

2  will have a magnitude of about 1 and will thus only impact the 
phase of ′ρ23. In other words, the magnitude of the effective substrate refl ection coeffi cient 
will be determined by the refl ection coeffi cient of layer 3 with the substrate and the phase 
of the effective refl ection coeffi cient will be determined by the thickness of layer 3. (The 
resist on oxide on silicon case shown in Figure 4.3 is very similar to this idealized case.) 
This impact of the phase of the refl ection coeffi cient on lithography is explored below in 
section 4.6.

If the thin fi lm in question is not the top fi lm (layer 2), the intensity can be calculated 
in layer j from
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 (4.26)

where τ ρj j j j− −= +1 11, ,* * . The effective refl ection coeffi cient r* is analogous to the coeffi -
cient r′, looking in the opposite direction. EI,eff is the effective intensity incident on layer 
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Figure 4.3 Standing wave intensity within a photoresist fi lm at the start of exposure (850 nm 
of resist on 100-nm SiO2 on silicon, l = 436 nm). Note the impact of the oxide fi lm on the 
phase of the effective substrate refl ectivity, which affects the intensity at the bottom of 
the resist
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j. Both EI,eff and r* are defi ned in detail in Reference 3. Equation (4.26) is needed when 
using a top antirefl ection coating, as described in section 4.4.

If the resist fi lm is not homogeneous, the equations above are, in general, not valid. 
Let us, however, examine one special case in which the inhomogeneity takes the form of 
small variations in the imaginary part of the index of refraction of the fi lm in the z-
direction, leaving the real part constant. Photoresist bleaching (described in detail in 
Chapter 5) will cause such a variation of the absorption coeffi cient with depth into the 
resist. In this case, the absorbance Abs is no longer simply az, but becomes

 Abs z z z
z

( ) ( )= ′ ′∫α d
0

 (4.27)

Equations (4.18), (4.25) and (4.26) are still approximately valid if this anisotropic expres-
sion for absorbance is used. Thus, I(z) can be found if the absorption coeffi cient is known 
as a function of z.

Figure 4.3 shows a typical result of the standing wave intensity within a photoresist 
fi lm coated on an oxide on silicon fi lm stack.

4.1.4 Oblique Incidence and the Vector Nature of Light

For simplicity, fi rst consider a plane wave traveling through a uniform material and strik-
ing a partially refl ective substrate at z = 0 (see Figure 4.4). The plane wave, described by 
its propagation vector k (defi ned as the propagation constant multiplied by a unit vector 
pointing in the direction of propagation), makes an angle q with respect to the z-axis 
(which is also normal to the refl ecting surface). Taking the x–z plane as the plane of inci-
dence, any point in space (x,z) is described by its position vector r. The electric fi eld of 
the plane wave (before it refl ects off the substrate) is then given by

 E x z A Ai ik x z( ) ( sin cos ), e e= =⋅ +k r θ θ  (4.28)
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Figure 4.4 Geometry used for describing plane waves and standing waves for oblique 
incidence
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where A is the amplitude of the plane wave and the (complex) propagation constant k is 
given by 2pn/l where n is the complex refractive index of the medium. This plane wave 
will refl ect off the substrate with an angle- and polarization-dependent refl ectivity r(q) 
as given by the Fresnel formulae.
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 (4.29)

and the two angles qi and qj are related by Snell’s law,

 n ni i j jsin( ) sin( )θ θ=  (4.30)

Here, || represents an electric fi eld vector that lies in a plane defi ned by the direction of 
the incident light and a normal to the resist surface (i.e. in the plane of the paper in Figure 
4.4). Other names for || polarization include p-polarization and TM (transverse magnetic) 
polarization. The polarization denoted by ⊥ represents an electric fi eld vector that lies in 
a plane perpendicular to that defi ned by the direction of the incident light and a normal 
to the resist surface (i.e. perpendicular to the plane of the paper in Figure 4.4). Other 
names for ⊥ polarization include s-polarization and TE (transverse electric) polarization. 
Note that for light normally incident on the resist surface, both s- and p-polarization result 
in electric fi elds that lie along the resist surface and the four Fresnel formulae revert to 
the two standard defi nitions of refl ection and transmission coeffi cients used earlier in 
Equations (4.7) and (4.8). Figure 4.5 shows how the intensity refl ectivity (the square of 
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and resist layers are assumed to be infi nitely thick
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the magnitude of the refl ection coeffi cient) varies with incident angle for both s- and p-
polarized illumination for a particular case.

The total electric fi eld to the left of the substrate in Figure 4.4 is then the sum of the 
incident and refl ected waves. This simple summation brings up the fi rst interesting com-
plication – the effect of polarization, the direction that the electric fi eld is pointing. If the 
original electric fi eld in Equation (4.28) is s-polarized (also called TE polarized) so that 
the electric fi eld vector points directly out of the plane of Figure 4.4, then both the incident 
and refl ected electric fi elds will point in the same direction and the vector sum will equal 
the scalar (algebraic) sum of the incident and refl ected fi elds:
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 (4.31)

where fr is the phase angle of the complex refl ectivity r and, for simplicity, the propaga-
tion medium is assumed to be nonabsorbing. The amplitude of the standing waves, given 
by the factor multiplying the cosine in the intensity expression above, is controlled by 
the magnitude of the electric fi eld refl ectivity. Note that this equation reverts to the simpler 
perfect mirror Equation (4.5) when r = −1.

Thus, for s-polarized light, the standing wave Equation (4.18) can be easily modifi ed 
for the case of non-normally incident plane waves. Suppose a plane wave is incident on 
the resist fi lm at some angle q1. The angle of the plane wave inside the resist will be q2 
as determined from Snell’s law. An analysis of the propagation of this plane wave within 
the resist will give an expression similar to Equation (4.18) but with the position z replaced 
with z cos q2. For this case, the electric fi eld will point in the y-direction.
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The transmission and refl ection coeffi cients are now functions of the angle of incidence 
(as well as the polarization of the incident light) and are given by the Fresnel formulae 
above. The internal transmittance becomes

 τ π θ λ
D

i D= e /2 2 2n cos  (4.33)

The resulting relative intensity becomes
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(For an understanding of why the absorption terms vary as distance/cos q2, see section 
4.8.2)

For p-polarized incident light, reduced overlap in electric fi elds causes the standing 
wave amplitude to be reduced by the factor cos(2q2), as will be shown below.4 The result-
ing electric fi eld will have both x- and z-components (x being the dimension in the plane 
of incidence), whereas for the s-polarized case the electric fi eld only points in the y-
direction (out of the plane of incidence).
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The total standing wave intensity, relative to the incident intensity, will be
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If q2 = 45°, the incident and refl ected waves have no overlap of their electric fi elds and 
the resulting lack of interference means there will be no standing waves (only the bulk-
effect term survives).

It is interesting to look at the impact of direction that the light is traveling on the defi ni-
tions of the refl ection and transmission coeffi cients. Completely reversing the direction 
of the light, if light approaches the interface through material j at an angle qj, the resulting 
refl ection and transmission coeffi cients become
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where these relationships hold for either polarization.
Figure 4.6 shows an example of the impact of incident angle on the resulting standing 

wave pattern in the resist. The change in incident angle causes a change in the period of 
the standing waves and, because of the angular dependence of Teff, a difference in the 
amount of light transmitted into the photoresist fi lm.

0.0

0.5

1.0

1.5

2.0

2.5

0 100 200 300 400 500

Depth into Resist (nm)

R
el

at
iv

e 
In

te
ns

ity

Angle
Angle

= 0
  = 30

Figure 4.6 Standing wave intensity within a photoresist fi lm (500 nm of resist on silicon, 
l = 248 nm) as a function of incident angle (s-polarization assumed)
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A second approximation can be made to simplify the evaluation of Equations (4.32), 
(4.35) or (4.36). For a complex resist refractive index, Snell’s law produces the nonintui-
tive but mathematically correct result of a complex angle of refraction in the resist. For 
the case where the resist is only weakly absorbing (quite a normal situation), the imaginary 
part of the angle of refraction into the resist can be ignored with only a small loss 
of accuracy. The impact of making such an approximation is explored more fully below 
in section 4.8.

4.1.5 Broadband Illumination

The analysis presented above applies to monochromatic illumination. What if broadband 
(polychromatic) illumination were used? In general, the use of broadband illumination in 
imaging applications can be thought of as the incoherent superposition of individual 
monochromatic results. Thus, the standing wave intensity for a single wavelength is 
integrated over the wavelengths of the source, weighted by the source illumination spec-
trum. Figure 4.7 shows a typical mercury arc lamp output spectrum (before fi ltering in 
the illumination system of the projection tool). Table 4.1 describes the common wave-
lengths used in lithographic tools. For 248- and 193-nm lithography tools, where a line-
narrowed excimer laser is used to generate the light, bandwidths are less than a picometer, 
so that these sources can be considered monochromatic from a standing wave 
perspective.

Although wavelength appears explicitly in the expressions for the standing wave elec-
tric fi eld in the resist, an implicit dependence occurs in the indices of refraction of the 
various resist and substrate materials. The variation of the index of refraction of a material 
with wavelength, called dispersion, is extremely material dependent. Over a limited range 
of wavelengths, many photoresist materials’ dispersion curves can be adequately described 
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Figure 4.7 Spectral output of a typical high-pressure mercury arc lamp. The illumination 
spectrum of an i-line or g-line lithographic exposure tool is usually a fi ltered portion of this 
lamp spectrum
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by an empirical expression called the Cauchy equation (named for the 19th century French 
mathematician Augustin-Louis Cauchy):

 n C
C C

( )λ
λ λ

= + +1
2

2

3

4
 (4.39)

where C1, C2 and C3 are the empirically derived Cauchy coeffi cients (higher-order terms 
are possible, but rarely used for photoresists). It is important to note that any Cauchy fi t 
to refractive index data will be valid only over the wavelength range of the data and 
should not be extrapolated. Further, this equation applies well only to dielectrics with no 
or small amounts of absorption over the wavelength range of interest. Some typical resist 
Cauchy coeffi cients are given in Table 4.2.

Figure 4.8 shows the impact of using a range of wavelengths on the resulting standing 
wave pattern in the resist. In this example, a single 365-nm-wavelength exposure is com-
pared to a very broadband exposure over a range of wavelengths from 350 to 450 nm 
using a mercury arc lamp exposure tool. The total broadband standing wave result is the 
sum of many monochromatic standing wave curves, each with different periods due to 
the different wavelengths. As a result, these sinusoids tend to average out making the fi nal 
intensity within the fi lm more uniform with depth. Note also that the standing waves are 
at their largest at the substrate, where an insuffi cient number of standing wave periods 
are available for averaging.

An alternate viewpoint is to consider the coherence length of the light source. While 
commonly used to describe lasers, coherence length can in fact be used to describe any 
light source and is defi ned as the longest distance light can travel and still maintain a 

Table 4.1 Wavelengths for various lithographic light sources (high pressure mercury arc 
lamps and free-running, unnarrowed excimer lasers)

Source
Center Wavelength 
(nm)

Typical Unnarrowed 
Bandwidth (nm)

Mercury Arc Lamp g-line 435.8 5
Mercury Arc Lamp h-line 404.7 5
Mercury Arc Lamp i-line 365.0 6
KrF excimer laser 248.35 0.30
ArF excimer laser 193.3 0.45
F2 excimer laser 157.63 0.002

Table 4.2 Some values for Cauchy coeffi cients of photoresists (from http://www.microe.
rit.edu/research/lithography/)

Photoresist C1 C2 (nm2) C3 (nm4) Wavelength Range (nm)

SPR-500 i-line (unexposed) 1.6133 5481.6 1.4077 × 109 300–800
SPR-500 i-line (fully 

exposed)
1.5954 9291.9 4.2559 × 108 300–800

193-nm resist 1.5246 3484 1.49 × 108 190–800
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fi xed phase relationship all along that length (that is, still maintain the ability to interfere 
with itself). Suppose light of wavelength l1 travels a distance L/2, strikes a mirror at 
normal incidence, and travels back a distance L/2. Further suppose that the total distance 
traveled L is an integer number of wavelengths Nl1. Consider now a second wavelength 
l2 such that this same distance is equal to ( ) .N +1 2 2/ λ  For this case, when the fi rst wave-
length interferes constructively, the second wavelength will be interfering destructively. 
If both wavelengths are present, no interference pattern will be observed at the distance 
L/2 away from the mirror and L is called the coherence length.

Combining the two equations

 L N N
L= = + = +



λ λ

λ
λ1 2

1
21 2 1 2( )/ /  (4.40)

Solving for L,

 L =
−

λ λ
λ λ

1 2

1 22( )
 (4.41)

Letting l1 − l2 = ∆l, the bandwidth, and assuming this bandwidth is small compared to 
the wavelength so that l1l2 = l2, where the geometric mean l is about equal to the arith-
metic mean, the equation becomes

 L = λ
λ

2

2∆
 (4.42)

As an example, if both g-line and i-line light exposes a photoresist, the range of wave-
lengths is about 80 nm and the mean wavelength is about 400 nm. The coherence length 
will be 1000 nm, which means that there will be no standing waves at about 500 nm up 
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Figure 4.8 Standing wave intensity within a photoresist fi lm (1000 nm of resist on silicon), 
for monochromatic (l = 365 nm) and broadband illumination (350–450 nm range of the 
mercury spectrum)
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from the substrate. This matches the result seen in Figure 4.8 quite well. For laser lithog-
raphy at 248 or 193 nm, the source bandwidth is extremely small. For a 248-nm source 
with a 1-pm bandwidth, the coherence length will be on the order of 3 cm.

4.2 Swing Curves

Generically, a swing curve refers to the sinusoidal variation of some lithographic param-
eter with resist thickness.5 There are several parameters that vary in this way, but the most 
important is the critical dimension (CD) of the photoresist feature being printed. Figure 
4.9 shows a typical CD swing curve for i-line exposure of a 0.5-mm line on silicon. The 
change in linewidth is quite large (more than the typical 10% tolerance) for relatively 
small changes in resist thickness. Another swing curve is the E0 swing curve, showing 
the same sinusoidal swing in the photoresist dose-to-clear (Figure 4.10). For a resist 
thickness that requires a higher dose-to-clear, the photoresist will, as a consequence, 
require a higher dose to achieve the desired line size. But if the exposure dose is fi xed 
(as it was for the CD swing curve), the result will be an underexposed line that prints too 
large. Thus, it follows that the E0 and CD swing curves result from the same effect, 
coupled by the exposure latitude of the feature. The fi nal swing curve measures the 
refl ectivity of the resist-coated wafer as a function of resist thickness (Figure 4.11). 
Although refl ectivity is further removed from lithographic metrics such as E0 or CD, it is 
the refl ectivity swing curve that provides the most insight as to the cause of the 
phenomenon.

4.2.1 Refl ectivity Swing Curve

The refl ectivity swing curve shows that variations in resist thickness result in a sinusoidal 
variation in the refl ectivity of the resist-coated wafer. Since the defi nition of refl ectivity 
is the total refl ected light intensity divided by the total incident intensity, an increase in 
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refl ectivity results in more light that does not make it into the resist. Less light being 
coupled into the resist means that a higher dose is required to affect a certain chemical 
change in the resist, resulting in a larger E0. Thus, the E0 and CD swing curves can both 
be explained by the refl ectivity swing curve. (The interested reader can convince him/
herself that the phases of the sinusoids of Figure 4.9 through Figure 4.11 make sense with 
respect to each other.)

What causes the refl ectivity swing curve of Figure 4.11? Of course, the answer lies in 
the thin fi lm interference effects that were discussed in the previous section on standing 
waves. Using the same simple geometry shown in Figure 4.1, a thin photoresist (layer 2) 
rests on a thick substrate (layer 3) in air (layer 1). If we illuminate this fi lm stack with a 
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Figure 4.11 Refl ectivity swing curve showing a sinusoidal variation in the resist-coated wafer 
refl ectivity with resist thickness (i-line exposure of resist on silicon)
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monochromatic plane wave normally incident on the resist, the analysis given before was 
used to determine the standing wave intensity within the resist. However, our goal here 
is to determine the total light refl ected by the fi lm stack. As shown in Figure 4.12, the 
total refl ected light is made up of the incident beam refl ecting off the air–resist interface 
and beams that have bounced off of the substrate and then were transmitted by the air–
resist interface.

Let’s begin by writing an expression for the electric fi eld of the ray that is directly 
refl ected by the air–resist interface. Recalling the defi nitions used in section 4.1.2,

 E Er I0 12= ρ  (4.43)

The next ‘refl ected’ beam is transmitted into the resist, refl ected off the substrate, and 
transmitted into the air. The result, denoted as Er1, is given by

 E E Dr I1 12 21 23
2= τ τ ρ τ  (4.44)

The next refl ected beam makes two bounces inside the resist before being transmitted 
out, resulting in an additional r21 r23 τD

2  term.
The total refl ection coeffi cient can be computed by totaling up all the refl ected electric 

fi elds and then dividing by the incident fi eld.
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 (4.45)

Note that since all of the refl ected light will always be traveling in the same direction, 
Equation (4.45) applies equally well to s- or p-polarization. The intensity refl ectivity of 
the fi lm stack is the square of the magnitude of the electric fi eld refl ection coeffi cient. At 
fi rst glance, the sinusoidal dependence of refl ectivity with resist thickness is not obvious 
from Equation (4.45). The dependence is contained in the internal transmittance. Carrying 
out the calculation of refl ectivity for the case of normal incidence,

 R
n DD D
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+ + − +

+
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e
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12 23 2 12 232 4D D n De /cos( )

 (4.46)

where f12 and f23 are the phase angles of the refl ection coeffi cients r12 and r23, 
respectively.
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Figure 4.12 Film stack showing (a) geometry for swing curve derivation, and (b) incident, 
transmitted and refl ected waves [oblique angles are shown for diagrammatical purposes 
only]
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The discussion so far has been mostly mathematical. Equation (4.45) gives a rigorous 
result that, when expressed as Equation (4.46), leads to an understanding of the refl ectivity 
swing curve. Physically, the refl ectivity swing curve is the result of interference among 
the refl ected rays. As pictured in Figure 4.12, the total refl ected fi eld is the sum of the 
various rays. How the initially refl ected ray Er0 adds to the fi rst transmitted and refl ected 
ray Er1 depends on the phase of Er1, which in turn depends on the resist thickness. At 
some thickness, Er1 will be in phase with Er0, resulting in a maximum refl ectivity. At 
another thickness Er1 will be out of phase with Er0, resulting in a minimum refl ectivity.

Equation (4.46) can also lead to a better understanding of swing curves. The period of 
all of the swing curves can be easily obtained from Equation (4.46) and is the same as 
the period of the standing waves in the photoresist. Likewise, the effects of increasing or 
reducing the refl ectivities can be seen. Twice the multiplier of the cosine in Equation 
(4.46) is called the swing amplitude,6 and is equal to 4|r12r23|e−aD. If the substrate is non-
refl ective (r23 = 0), the fi lm stack refl ectivity becomes constant (the swing amplitude goes 
to zero). Thus, a bottom antirefl ection coating can reduce or eliminate the swing curve. 
Less obviously, if r12 = 0 the refl ectivity will also become constant, eliminating the swing 
curve. This can be achieved by using a top antirefl ection coating. Physically, if the swing 
curve results from interference between Er0 and Er1, eliminating either Er0 or Er1 will 
eliminate the interference and the swing. Finally, absorption in the resist will reduce the 
swing amplitude in Equation (4.46) by reducing the amplitude of Er1 and thus the amount 
of interference that can take place.

While not as obvious from the above discussion, the use of broadband illumination can 
reduce or eliminate swing curves as well. Recalling the discussion in section 4.1.5, swing 
curves will be reduced whenever the resist thickness approaches the coherence length of 
the light source.

Some refractive index values for common materials encountered in optical lithography 
are given in Table 4.3. For the case of a typical resist on silicon at 248 nm, a = 0.5 mm−1, 
|r12| = 0.275 and |r23| = 0.73. For a nominal 300-nm resist thickness, that gives

 R
D

D
= + − +

+
0 47 0 345 2 70 5

1 03 0 345 2 70
12 23. . cos( ( . ) )

. . cos( (

π φ φ
π

/ nm

/ .. ) )5 12 23nm + +φ φ
 (4.47)

Table 4.3 Some refractive index values of common materials at common lithographic 
wavelengths7

Material n at 436 nm n at 365 nm n at 248 nm n at 193 nm

Photoresist 1.65 + i0.022 1.69 + i0.027 1.76 + i0.010 1.71 + i0.018
Silicon 4.84 + i0.178 6.50 + i2.61 1.57 + i3.57 0.883 + i2.78
Amorphous Silicon 4.45 + i1.73 3.90 + i2.66 1.69 + i2.76 1.13 + i2.10
Silicon Dioxide 1.470 + i0.0 1.474 + i0.0 1.51 + i0.0 1.56 + i0.0
Silicon Nitride 2.06 + i0.0 2.09 + i0.0 2.28 + i0.0 2.66 + i0.240
Aluminum 0.580 + i5.30 0.408 + i4.43 0.190 + i2.94 0.113 + i2.20
Copper 1.17 + i2.33 1.27 + i1.95 1.47 + i1.78 0.970 + i1.40
Chrome 1.79 + i4.05 1.39 + i3.24 0.85 + i2.01 0.84 + i1.65
Gallium Arsenide 5.07 + i1.25 3.60 + i2.08 2.27 + i4.08 1.36 + i2.02
Indium Phosphide 4.18 + i0.856 3.19 + i1.95 2.13 + i3.50 1.49 + i2.01
Germanium 4.03 + i2.16 4.07 + i2.58 1.39 + i3.20 1.13 + i2.09
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where f12 = −179.5° and f23 = −134°. The maximum refl ectivity is about 0.59, and the 
minimum is about 0.18. For the case of a typical resist on silicon at 365 nm, a = 0.95 mm−1, 
|r12| = 0.257 and |r23| = 0.634 (before bleaching). For a nominal 600-nm resist thickness, 
that gives

 R
D

D
= + − +

+
0 195 0 184 2 108

1 008 0 184 2 1
12 23. . cos( ( ) )

. . cos( (

π φ φ
π

/ nm

/ 008 12 23nm) )+ +φ φ
 (4.48)

The maximum refl ectivity for this case is about 0.318, and the minimum is about 
0.013.

4.2.2 Dose-to-Clear and CD Swing Curves

An approximate behavior of the E0 swing curve can be obtained by assuming an ideal, 
threshold resist. For such a case, the resist will just clear away when the dose at the 
bottom of the resist (for an open-frame exposure) reaches some critical threshold. Using 
Equation (4.19) and assuming the standing waves in the resist are averaged out by 
some post-exposure bake mechanism (see Chapter 5), the average or bulk intensity 
will be

 I z T z D z
avg eff e e( ) ( )( )= +− − −α αρ23

2 2  (4.49)

where this equation was derived by averaging the standing wave intensity Equation (4.19) 
over one period. It is the effective transmittance Teff that contains the swing curve effect 
of energy coupled into the resist as a function of resist thickness. Evaluating this expres-
sion at the bottom of the resist,

 I z D T D
avg eff e( ) ( )= = + −1 23

2ρ α  (4.50)

The incident dose will equal the dose-to-clear, E0, when the energy at the bottom of 
the resist (equal to E0 Iavg) reaches some critical dose, Ecrit. Thus,
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 (4.51)

Likewise, for a threshold resist, the dose to achieve a certain CD will follow this same 
equation though with a different critical dose. For a fi xed dose, the CD obtained will 
depend on the exposure latitude of the feature. A simple expression that relates CD to 
exposure dose will be derived in Chapter 8, and takes the form
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where E1 is a reference dose (such as the nominal dose) that produces the CD = CD1, and 
the exposure latitude term (dlnCD/dlnE) can be approximated as a constant.
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In the context of swing curves, the best choice for E1 will be the dose that produces 
the nominal CD when the resist thickness is at a minimum or maximum. For the case of 
operating at a swing curve minimum (resist thickness = Dmin),
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 (4.53)

Substituting Equation (4.51) for E and Equation (4.53) for E1 into Equation (4.52) gives 
a CD swing curve expression.

4.2.3 Swing Curves for Partially Coherent Illumination

Just as for the standing wave expressions, the above swing curve equations will change 
as a function of the incident angle of illumination, so that actual swing curves are strongly 
dependent on the NA and illumination of the stepper. In fact, the range of angles coming 
from a partially coherent imaging source will produce a range of periods of standing 
waves and swing curves in the resist, reducing the amplitude in the same way that a range 
of wavelengths does.

Suppose that the incident light strikes the resist at an angle q1. The angle inside the 
resist will be q2, given by Snell’s law. Then the swing curve expressions given above will 
be correct if the resist thickness D is replaced by D cos q2 and the refl ection and transmis-
sion coeffi cients are calculated for the appropriate angle and polarization according to the 
Fresnel formulae [Equation (4.29)]. The swing curve period becomes

 Period = λ
θ2 2 2n cos

 (4.54)

Consider a simple case. Light normally incident on a thin resist fi lm coated on a refl ec-
tive substrate is found to have a maximum of its swing curve at a certain thickness. This 
means that the path length traveled by the light through the resist is an integer multiple 
of the wavelength. If now the angle of incidence is increased, the path length through 
the resist will also increase. If the angle is large enough so that the path length increases 
by half a wavelength, this same resist thickness will correspond to a minimum of the 
swing curve. The angle inside the resist which causes this swing curve phase reversal is 
given by

 θ2
1

0 5
=

+






−cos
.

m

m
 (4.55)

where m is the multiple of wavelengths that the swing curve maximum represents. For 
m = 9 (typical for a 1000-nm fi lm used for i-line lithography), q2 ≈ 18.7° inside the resist, 
corresponding to about a 32° angle incident on a typical photoresist and sin q1 = 0.53. For 
m = 5, (typical for a 250-nm resist fi lm used for 193-nm lithography), q2 ≈ 24.6° inside 
the resist, corresponding to about a 45° angle incident on a typical photoresist and 
sin q1 = 0.71. Both of these conditions are commonly met.

What does this mean for real swing curves in real lithographic situations? When 
measuring a dose-to-clear (E0) swing curve, the light striking the resist is made up of 
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zero-order light (that is, light which is not diffracted). If the illumination were coherent, 
the light would be normally incident on the resist. For conventional partially coherent 
illumination, the light is incident on the resist over a range of angles given by sin q1 = 
±sNA where NA is the numerical aperture of the objective lens and s is the partial coher-
ence factor. Each angle produces its own ‘swing curve’ and the total result is the super-
position of all the individual responses to each angle. Since any change in s or NA will 
change the range of angles striking the photoresist, the swing curve will change as well. 
Figure 4.13 shows how E0 swing curves vary with sNA (affected by changing either the 
partial coherence or the numerical aperture).

Consider also a simple example of imaging small lines and spaces. For conventional 
illumination, the zero order will be centered around normal incidence at the resist surface 
with a range of angles determined by sNA. The ±1st diffraction orders will strike the 
resist at an angle of sin−1(l/p) where p is the pitch of the line/space pattern. For 350-nm 
features imaged with i-line, the center of the fi rst-order angular range will be about 31.4° 
in air – very close to the angle given above for swing curve phase reversal for a 1000-
nm-thick resist fi lm. For 130-nm lines and spaces imaged with 193-nm light, the fi rst-
order light also produces a swing that is nearly perfectly out of phase with the normally 
incident light. Thus, if the resist thickness were adjusted to give a maximum of the E0 
swing curve (i.e. the zero order is at a maximum of the swing curve), the fi rst orders 
would effectively be at a minimum of the swing curve. The zero-order light would be 
maximally refl ected out of the resist while the fi rst-order light would be maximally 
coupled into the resist. When these orders combine to form the image in resist, the result 
will be signifi cantly different than the case of imaging on a nonrefl ecting substrate. On 
the other hand, if the resist thickness were at an E0 swing curve minimum, the fi rst orders 
would be at a swing curve maximum. The lithographic response of these features (for 
example, the size of the focus-exposure process window) could be quite different when 
operating at an E0 swing curve minimum versus a maximum.
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Figure 4.13 The phase and amplitude of a dose-to-clear swing curve are affected by the 
range of angles striking the resist, which is controlled by the product of the partial coherence 
and the numerical aperture (sNA) for conventional illumination



 Imaging in Resist: Standing Waves and Swing Curves 151

4.2.4 Swing Ratio

While detailed equations for swing curve effects are certainly possible, as the above 
discussions have shown, it is often convenient to defi ne simple metrics to capture the 
essence of the effects. For swing curves, it is the amplitude of the swing that determines 
the degree of the problem caused by resist thickness variations. A simple metric for the 
magnitude of the swing is called the swing ratio, defi ned as the difference between adja-
cent min and max values of the swing curve divided by their average value. For example, 
for an E0 swing curve, the swing ratio (SR) would be

 SR
E E

E E
= −

+
0 0

0 0 2
max min

min max( )/
 (4.56)

Since any two adjacent min/max pairs can be used, it will make a difference whether the 
max is at a greater or lesser thickness compared to the min, as will be seen below.

Using Equation (4.51),
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which gives a swing ratio of

 SR
D D D D

D

= − + − +− −( ) ( )

[(

max mine e e e

e

max minα α α α

α

ρ ρ ρ ρ12 23
2

12 234
1
2

mmax min max mine e e+ + +− −α α αρ ρD D D) ( )]12 23
2

 (4.58)

Let Dmax = D + ∆D/2 and Dmin = D − ∆D/2, where a positive value of ∆D means that the 
max is at a resist thickness greater than the min. (Note that ∆D will be the swing period, 
that is l/2n2.) Equation (4.58) can be rewritten as
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If the amount of absorption is moderate, so that a∆D << 1, this equation can be 
simplifi ed to

 SR
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In general,

 ρ ρ α
12 23
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(for example, for resist on silicon at 248 nm, the value of this term is about 0.01). Neglect-
ing this term gives

 SR D D≈ + −α ρ ρ α∆ 4 12 23 e  (4.62)

Thus, the swing ratio is equal to the swing amplitude plus an absorption term that 
describes the tilt of the swing curve over one swing period.

From Equation (4.62) it is easy to see how the standard approaches to reducing swing 
curves are captured by the swing ratio metric: (1) reduce substrate refl ectivity |r23| by 
using a bottom antirefl ection coating; (2) reduce air–resist refl ectivity |r12| by using a top 
antirefl ection coating; and (3) reduce e−aD by increasing absorption. However, the sign of 
∆D will also have an impact. If the maximum of the swing curve is at a greater thickness 
than the minimum, ∆D will be positive and the upward tilt of the swing curve due to 
absorption will make the swing ratio worse. If, however, the maximum of the swing curve 
is chosen to be at a lower resist thickness than the minimum, ∆D will be negative and 
bulk absorption will lower the swing ratio. In fact, it is possible to make the swing ratio 
go to zero:

 SR
D

D

≈ =
−

−

0
4 12 23when

eα ρ ρ α

∆
 (4.63)

Figure 4.14 shows an example of zero swing ratio for a specifi c case. The upward tilt of 
the swing curve due to absorption can make the swings look more like stair steps. Operat-
ing in the fl at region (where SR ≈ 0) can lead to greater CD control for these cases.

As mentioned in the previous section, light strikes the wafer over a range of angles, 
each angle setting up its own swing curve with its own period. If the range of angles is 
great enough, a very noticeable decrease in the total swing ratio can be observed (see 
Figure 4.13). For a simple case, we can calculate the impact of the range of angles on 
the swing ratio metric defi ned above. Let’s consider the E0 swing curve for conventional 
illumination. Further, let’s assume that the effect of angle on the refl ection and 
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transmission coeffi cients and on absorption is small compared to the effect on the period. 
Thus, we can put the E0 swing curve formula [Equation (4.51)] into the basic approximate 
form

 E a b n D0 2 24= + +cos( cos )π θ λ φ/  (4.64)

where the swing ratio is 2b/a.
Inside the resist, let s = sin q2 so that we must integrate over the range ± smax where

 s
NA

n
max = σ

2

 (4.65)

Integrating over the source,
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0 2 2
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cos( )
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π λ φ d  (4.66)

This integral is not analytically solvable, but it can be approximated by letting

 cosθ2
2

2

1 1
2

= − ≈ −s
s

 (4.67)

A typical value for smax is about 0.5, so that this approximation is not too bad. Using the 
approximation and carrying out the integral gives
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cos maxπ λ φ  (4.68)

where
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n
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2

By using the same small angle approximation as was used in Equation (4.67),
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24
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 +





sin( )
cos cos maxπ θ λ φ  (4.69)

At fi rst glance, it is not clear what the period of the new standing wave is, since there is 
a product of a sine and a cosine. However, the sine term has a period that is 10–20 times 
larger than the cosine term, so it is easiest to interpret the cosine as creating the swing 
curve and the sinc function as an amplitude modifi cation. Thus, the period of the partially 
coherent swing curve is about

 Period where
eff

eff= =λ
θ

θ θ
2 22

2

n cos
max  (4.70)

and the swing ratio is reduced by the factor sin(c)/c. Consider a typical 193-nm imaging 
case where NA = 0.93 and s = 0.7. The swing curve period for normally incident light 
would be 56 nm, but for the partially coherent light it grows slightly to 59 nm. The real 
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impact is in the reduction of the swing ratio, which for a 300-nm-thick resist would 
produce sin(c)/c = 0.77, meaning a 23% reduction in the swing ratio.

4.2.5 Effective Absorption

As we shall see, the optimum resist absorption is a strong function of the refl ectivity of 
the substrate. Consider fi rst, however, the simple case of a nonrefl ecting substrate so that 
light travels only downward through a resist fi lm of thickness D. The absorption of light 
through the resist leads to an exposure dose error: a smaller dose at the bottom of the 
resist (Ebottom) compared to the top (Etop). The fraction of light making it to the bottom is 
given by

 
E

E
TD

Dbottom

top

e= = −α  (4.71)

As an example, for a resist with a = 0.5 mm−1, a 500-nm-thick fi lm will absorb 22% of 
the light so that TD = 0.78.

If the resist fi lm is coated on a refl ective substrate, refl ected light traveling up through the 
fi lm will also be absorbed. The refl ected beam will be brighter at the bottom of the resist, 
so that the sum of the incident and refl ected beams will have a smaller variation in dose from 
top to bottom than for the nonrefl ective substrate case. The amount can be quantifi ed using 
one of the previously derived expressions for the standing wave intensity. The ‘average’ 
intensity (averaged over one standing wave period) was previously derived in Equation 
(4.50), and is given here normalized so that the intensity at the top of the resist is 1:
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The term |r23|2e−a2D represents the fraction of the light intensity that makes it back to the 
top of the resist after traveling down through the resist, refl ecting off the substrate, and 
traveling back up to the top. It can be thought of as a ‘round-trip’ transmittance and is an 
important factor in determining the difference between Equation (4.72) and simple bulk 
absorption.

For small amounts of absorption (a2D < 1, for example), the z-dependent exponential 
term in the parentheses of Equation (4.72) can be expanded as Taylor series and an 
approximate expression for the bulk effect can be derived:

 I z z
average e eff( ) ≈ −α  (4.73)

where the effective absorption coeffi cient is given by
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As discussed above, a more refl ective substrate actually reduces the bulk intensity varia-
tion through the resist, which is expressed here as a lower effective absorption 
coeffi cient.
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Because of the Taylor series expansion, the expression (4.74) used in Equation (4.73) 
provides a very good match for the actual intensity as a function of depth near the top of 
the resist. However, the approximate expression overestimates the amount of absorption, 
resulting in an intensity that is too low everywhere, with the greatest error at the bottom 
of the resist. A second approach toward defi ning an effective absorption is to match the 
intensity at the top and the bottom of the resist.8 This results in an effective absorption 
coeffi cient of
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ρ α
eff

e

= − +
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For the case of small substrate refl ectivity (when using a good bottom antirefl ection 
coating, for example), this expression simplifi es to
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 (4.76)

For moderate to small amounts of absorption, this equation can be further simplifi ed to

 α α ρ αeff ≈ − −[ ( )]1 2 123
2 D  (4.77)

While the intensity using the effective absorption of Equation (4.75) matches the actual 
average intensity at the top and the bottom of the resist, it gives an intensity that is higher 
than the actual intensity everywhere else. To match the integrated intensity through the 
thickness of the resist, the effective absorption coeffi cient must satisfy the following 
equation:
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The effective absorption coeffi cient that matches the integrated intensity will generally 
lie about halfway between the values given by Equations (4.74) and (4.75).

How can the effective absorption be used when designing resists for different refl ectiv-
ity applications? One simple design criterion might be to fi x the effective absorption 
coeffi cient. Suppose that a 0.7-mm-thick deep-UV resist with an absorption coeffi cient of 
0.4 mm−1 is currently providing acceptable resist profi le results on a bare silicon wafer 
(|r23|2 ≈ 0.5). In other words, for the parameters given, the effective absorption provides 
an acceptable dose variation from the top to the bottom of the resist. From Equation (4.74), 
the effective absorption coeffi cient is 0.22 mm−1. Thus, for a resist to have approximately 
the same profi le behavior on a perfectly nonrefl ecting substrate, its absorption coeffi cient 
would have to be lowered to this 0.22-mm−1 value. On the other hand, if one wanted 
to use an equivalent resist on an aluminum substrate with a refl ectivity of 0.84 (not 
necessarily a good idea, given the swing curve effects), one could raise the absorption 
coeffi cient to 0.52 mm−1 and still exhibit the same effective absorption.
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Light traveling at an angle through the photoresist will result in an apparent difference 
in the absorption coeffi cient. As will be derived in section 4.8.2, a plane wave traveling 
through resist at some angle q2 will be absorbed according to

 I z z( ) exp( cos )∝ −α θ/ 2  (4.79)

Thus, an effective absorption coeffi cient can be defi ned as a/cos q2. If a refl ective substrate 
is present, Equations (4.74)–(4.78) can still be used if a/cos q2 is substituted for a. If a 
range of angles is used, such as for partially coherent illumination, Equation (4.79) can 
be integrated over the angular range of the source. For conventional illumination, and for 
moderate amounts of absorption so that the exponential can be expanded as a Taylor 
series, the resulting effective absorption coeffi cient becomes

 α α
θeff ≈ +







2

1 2cos max

 (4.80)

where q2max is the angle in resist corresponding to the maximum angle of the conventional 
partially coherent source.

4.3 Bottom Antirefl ection Coatings

As discussed above, refl ections from the substrate can cause unwanted variations in the 
resist profi le and swing curve effects. Refl ections are caused by a difference in the 
complex index of refraction of two materials. Since lithography takes place on a variety 
of substrates with fi lm stacks of many materials and thicknesses, each interface in the 
fi lm stack can contribute to the overall refl ectivity back into the photoresist. This com-
plicated situation is made worse by the inevitable variations in the thicknesses, and 
sometimes the refractive indices, of the fi lms. One possible solution to refl ectivity prob-
lems is the bottom antirefl ection coating (BARC). Also, swing curves can be improved 
by the use of a top antirefl ection coating (TARC), described in the next section. These 
types of antirefl ection coatings have somewhat different goals, but their basic behavior 
is the same.

The goals of fi lm stack optimization are to minimize standing waves in the resist, and 
to reduce the sensitivity of the process to fi lm stack variations (including resist and BARC, 
but other layers as well). By far the most common way to accomplish all of these goals 
is by using an optimized BARC. When optimizing a lithography process for refl ectivity, 
there are three basic tasks: (1) optimize the BARC, (2) optimize the resist thickness (from 
a swing curve perspective) and (3) understand the sensitivity to BARC, resist and fi lm 
stack variations. For the fi rst task, there are two classes of BARC problems:

• BARC on an absorbing substrate (such as metal) – the goal is to reduce the refl ectivity 
(the thickness of the metal or what is underneath doesn’t matter)

• BARC on a transparent substrate (such as silicon dioxide) – reduce the sensitivity to 
oxide thickness variations (while also keeping refl ectivity low)

There is an unfortunate problem in that the substrate refl ectivity experienced by the 
photoresist cannot be measured. Measuring the refl ectivity of the substrate when not 
coated by photoresist is not useful to this task, and once coated the refl ectivity becomes 
hidden from measurement. Thus, the approach that must be used is to calculate the 
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refl ectivity from measured fundamental parameters, namely the thickness and complex 
refractive index of each layer in the fi lm stack.

For a single-layer BARC, there are three parameters available for optimization: the 
thickness of the BARC, and the real and imaginary parts of its refractive index. For the 
simplest use case, a BARC is given and the goal is just to optimize its thickness. Figure 
4.15 shows substrate refl ectivity calculations for two different resist/BARC/substrate 
stacks. These refl ectivity curves show a characteristic feature of a resist/BARC/substrate 
stack: the lowest refl ectivity could be at the fi rst minimum or at the second minimum 
depending on the parameters. Etch and process integration considerations determine the 
range of acceptable BARC thicknesses, and thus the preference for a fi rst-minimum 
BARC or a second-minimum BARC.

4.3.1 BARC on an Absorbing Substrate

For the case where all of the BARC properties are available for optimization, a more 
detailed look at the problem is required. Recapping the basic thin fi lm refl ectivity theory, 
the electric fi eld refl ection coeffi cient (the ratio of refl ected to incident electric fi elds) at 
the interface between two materials is a function of the complex indices of refraction 
for the two layers. For normal incidence, the refl ection coeffi cient of light traveling 
through layer i and striking layer j is given by Equation (4.8). For the case of a bottom 
antirefl ection coeffi cient (BARC), assume the BARC (layer 2) is sandwiched between a 
resist (layer 1) and a very thick substrate (layer 3). The total refl ectivity looking down on 
layer 2 includes refl ections from both the top and bottom of the BARC fi lm. The resulting 
refl ectivity, taking into account all possible refl ections, is

 R D

D
total total= = +

+
ρ ρ ρ τ

ρ ρ τ
2 12 23

2

12 23
2

2

1
 (4.81)

where the internal transmittance, tD, is the change in the electric fi eld as it travels from 
the top to the bottom of the BARC, given by Equation (4.12).
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Figure 4.15 Typical examples of substrate refl ectivity versus BARC thickness for different 
resist/BARC/substrate stacks
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If the role of layer 2 is to serve as an antirefl ection coating between materials 1 and 3, 
one obvious requirement might be to minimize the total refl ectivity given by Equation 
(4.81). If the light refl ecting off the top of layer 2 (r12) can cancel out the light that travels 
down through layer 2, refl ects off layer 3, and then travels back up through layer 2 23

2( ),ρ τD  
then the refl ectivity can become exactly zero. In other words,

 R D Dtotal when or= + = =0 012 23
2

21 23
2ρ ρ τ ρ ρ τ  (4.82)

When designing a BARC material, there are only three variables that can be adjusted: the 
real and imaginary parts of the refractive index of the BARC, and its thickness. One 
classic solution to Equation (4.82) works perfectly when the materials 1 and 3 are non-
absorbing: let τD

2 1= −  and r12 = r23. This is equivalent to saying that the BARC thickness 
is a ‘quarter wave’ (D = l/4n2), and the nonabsorbing BARC has a refractive index of 
n n n2 1 3= . While this BARC solution is ideal for applications like antirefl ective coatings 
on lens surfaces, it is not particularly useful for common lithography substrates, which 
are invariably absorbing.

Will a solution to Equation (4.82) always exist, even when the resist and substrate have 
complex refractive indices? Since all the terms in Equation (4.82) are complex, zero 
refl ectivity occurs when both the real part and the imaginary part of Equation (4.82) are 
true. This requirement can be met by adjusting only two of the three BARC parameters 
(n, k and D). In other words, there is not just one solution but a family of solutions to 
the optimum BARC problem. Expressing each refl ection coeffi cient in terms of magnitude 
and phase,

 ρ ρ θ
ij ij

i ij= e  (4.83)

Equation (4.82) can be expressed as two equalities:

 D
n

= = −λ
πκ
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θ θ
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Unfortunately, the seemingly simple forms of Equations (4.82) and (4.84) are deceptive: 
solving for the unknown complex refractive index of the BARC is exceedingly messy. 
As a consequence, numerical solutions to Equation (4.82) or (4.84) are almost always 
used. Note that a second-minimum BARC can be optimized using Equation (4.84) by 
adding 2p to the angle difference on the right-hand side of the equation.

Consider a common case of a BARC for 193-nm exposure of resist on silicon. The 
ideal BARC is the family of solutions as shown in Figure (4.16), which gives the 
ideal BARC n and k values as a function of BARC thickness. Each solution produces 
exactly zero refl ectivity for normally incident monochromatic light. Within this family 
of solutions, available materials and the acceptable range of BARC thicknesses 
(usually constrained by coating and etch requirements) will dictate the fi nal solution 
chosen.

Another criterion for choosing the optimum BARC is the sensitivity to BARC thickness 
variations. Often, BARC layers are coated over topography and are partially planarizing. 
This means that BARC thickness variations across the device are inevitable. Is one BARC 
solution from the family of solutions given in Figure 4.16 better from a BARC thickness 
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sensitivity perspective? Consider only small errors in BARC thickness about the optimum 
value, so that D = Dopt + ∆ where Dopt is the optimum thickness given by Equation (4.84). 
Since Equation (4.82) is true at the optimum thickness,

 ρ ρ τ ρ ρ τ ρπ λ π λ
12 23

2
12 23

2 4
12

42 21+ = + = −D D
i i

opt
e e/ /n n∆ ∆( )  (4.85)

Using a similar operation on the denominator of the refl ectivity expression (4.81) gives
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Figure 4.16 Optimum BARC refractive index (real and imaginary parts, n and k) as a func-
tion of BARC thickness for normal incidence illumination (resist index = 1.7 + i0.01536 and 
silicon substrate index = 0.8831 + i2.778) at 193 nm. (a) First minimum BARCs, and (b) 
second minimum BARCs
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Assuming ∆ is small, keeping only the fi rst two terms of a Taylor’s expansion of the 
exponential in the numerator gives

 R
n≈ 



 − 



∆2 1
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2 2

1
π
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n
n

 (4.87)

As can be seen, the refl ectivity increases approximately quadratically about the optimum 
BARC thickness. Different BARC solutions will have different sensitivities, depending 
on how close the ratio n2/n1 is to one. For the fi rst minimum resist on BARC on silicon 
example above, the ∼50-nm BARC thickness solution has the minimum sensitivity to 
BARC thickness errors.

Similarly, variations in refractive index of a BARC can cause the refl ectivity of an 
otherwise optimal BARC solution to increase. For the case of the optimal normal-inci-
dence BARC, the refl ectivity for a given change is BARC index ∆n (which can be an 
error in real and/or imaginary parts) will be approximately
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Note that |∆n|2 is the sum of the squares of the errors in the real and imaginary parts of 
the index. The sensitivity to BARC errors, either in thickness or in refractive index, is 
shown in Figures 4.17 and 4.18 for the case of the BARC solutions of Figure 4.16. Note 
that for the fi rst minimum case, practical BARC solutions have thicknesses in the 20- to 
50-nm range. Thus, for this case, thicker BARCs are less sensitive to thickness errors but 
more sensitive to refractive index errors. Assuming that a refl ectivity of 0.1 % can be 
tolerated, a 20-nm optimal BARC can tolerate 1 nm of thickness error, or a 0.053 change 
in refractive index. A 40-nm optimal BARC can tolerate 2 nm of thickness error, or a 0.04 
change in refractive index. Roughly, if the BARC thickness has no error, the real part of 
the refractive index of these BARCs must be controlled to 2.5 % assuming no error in the 
imaginary part, or the imaginary parts must be controlled to 8 % for no error in the real 
part. Likewise, if the refractive index has no error, the BARC thickness must be controlled 
to roughly 5 % for the given 0.1 % refl ectivity tolerance.

4.3.2 BARCs at High Numerical Apertures

Things become a bit more complicated for the more general case of light traveling at an 
angle with respect to the fi lm stack normal. In lithographic terms, high numerical apertures 
allow large ranges of angles to pass through the lens and arrive at the wafer. Off-axis 
illumination of small pitch patterns produces images made of light concentrated at large 
angles. Small isolated features with large s partially coherent illumination create light 
reaching the wafer over a wide range of angles. And of course, low numerical apertures 
result in limited ranges of angles reaching the wafer.

How does non-normal incidence affect Equation (4.81)? Each refl ection coeffi cient rij 
is a function of the angle of light, and a function of polarization. Randomly polarized 
light (often called unpolarized light, the kind most commonly employed in lithographic 
tools) can be considered the incoherent sum of two linear and orthogonal polarizations. 
If qi is the incident (and refl ected) angle inside the resist and qj is the transmitted angle 
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Figure 4.17 Sensitivity of substrate refl ectivity for the optimum fi rst minimum BARCs of 
Figure 4.16a as a function of (a) BARC thickness errors, or (b) BARC refractive index errors
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in the BARC, then the electric fi eld refl ection and transmission coeffi cients are given by 
the Fresnel formulae [Equation (4.29)]. Of course, the relationship between incident and 
transmitted angle is given by Snell’s law, Equation (4.30). The internal transmittance is 
also a function of angle as given by Equation (4.33).

The requirements for zero refl ectivity remain the same. Equation (4.82) must be satis-
fi ed for both s- and p-polarization. Since each equation has both real and imaginary parts, 
there are four constraints that must be satisfi ed in order to achieve exactly zero refl ectivity 
for unpolarized illumination. However, the BARC fi lm gives us only three degrees of 
freedom (n, k and D). In general, there can be no single BARC fi lm that results in zero 
refl ectivity for a non-normal incident randomly polarized plane wave. Calculating the 
unpolarized intensity refl ectivity (defi ned as the average of the individual refl ectivities 
for s- and p-polarization), the best case optimum BARC parameters are given in Figure 
4.19 as a function of incident angle in air (before striking the resist).

Figure 4.20 shows the lowest possible refl ectivity as a function of incident angle, using 
the optimum BARC parameters defi ned in Figure 4.19 for each angle. As can be seen, 
the best case refl ectivity grows rapidly as the angle increases, and is worse for the thinner 
BARC fi lm.

Polarization plays a large role in determining the effect of angle on refl ectivity. Figures 
4.19 and 4.20 show results assuming unpolarized light striking the BARC, while Figure 
4.21 separates out the behavior of refl ectivity by polarization for two example BARCs. 
The trend toward using polarized illumination will greatly improve the performance of 
BARCs at high numerical apertures since only the refl ectivity for that one polarization 
need be optimized.

Stringent CD control requirements demand refl ectivities below 0.1 %, making BARC 
design diffi cult at high numerical apertures with extreme off-axis illumination (i.e. at large 
incident angles). One potential solution, though not pleasant from a cost and complexity 
perspective, is to increase the number of free variables available for optimization by using 
a two-layer or three-layer BARC. This technique, a standard practice in antirefl ective 
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Figure 4.19 Optimum BARC parameters to achieve minimum substrate refl ectivity as a 
function of incident angle (angle defi ned in air, before entering the photoresist) for two dif-
ferent BARC thicknesses (resist index = 1.7 + i0.01536 and silicon substrate index = 0.8831 
+ i2.778) at 193-nm exposure: (a) 20-nm BARC thickness, and (b) 40-nm BARC thickness
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coatings for lenses, would provide enough adjustable parameters to make the refl ectivity 
go to zero at normal incidence and at one or more angles, thus providing low refl ectivity 
over a wide range of angles. This approach has become necessary with the advent of 
immersion lithography and numerical apertures greater than 1.0. Alternately, a gradient 
index material, with low k near the top of the BARC gradually increasing toward the 
bottom, can be used.
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Figure 4.20 The best case (minimum) refl ectivity (using the BARC parameters shown in 
Figure 4.19) of the substrate as a function of incident angle for 20- and 40-nm-thick BARC 
fi lms. Note that 60 ° corresponds to the maximum angle in air allowed for NA = 0.866
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Figure 4.21 An example of the variation of BARC refl ectivity as a function of light angle 
and polarization for two different BARCs. The intensity refl ectivity is the square of the electric 
fi eld refl ectivity plotted here, but interference makes the fi eld refl ectivity a better measure of 
the standing wave effects (resist index = 1.7 + i0.01536, silicon substrate index = 0.8831 + 
i2.778, BARC A index = 1.80 + i0.48, BARC A thickness = 30 nm, BARC B index = 1.53 + 
i0.54, BARC B thickness = 39 nm)
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4.3.3 BARC on a Transparent Substrate

The second type of BARC optimization problem involves the use of a BARC on a trans-
parent substrate, such as an oxide fi lm. For such a case, the overall substrate refl ectivity 
will be a function of the oxide thickness and one of the goals of the BARC design is to 
reduce the sensitivity to underlying fi lm thickness variations. As can be seen from Figure 
4.22, using the BARC at a fi rst minimum results in a very large sensitivity to underlying 
oxide thickness variations. In fact, the thickest BARC fi lms provide the most robust 
behavior when a wide range of oxide thicknesses are expected. Thus, the preferred design 
approach for this case is to determine the maximum allowed BARC thickness from an 
integration perspective, then optimize the n and k values of the BARC to minimize the 
maximum refl ectivity over the range of expected oxide thicknesses.

If the oxide thickness under the BARC varies by only a small amount, the use of a 
fi rst-minimum BARC becomes practical. The sensitivity to small amounts of underlying 
oxide thickness variation ∆ox can be derived in a manner similar to Equation (4.87):

 R
n≈ 



 −∆ox

ox2
2

1

2

2

1

2π
λ

n
n

n
n

 (4.89)

where nox is the oxide refractive index. Of course, while oxide was used here as an 
example, this analysis applies equally well to any reasonably transparent fi lm under the 
BARC.

A ‘thick’ BARC solution can be thought of as a BARC that completely absorbs all of 
the light that may refl ect off the substrate and is thus insensitive to changes in the substrate 
stack. For this case, the product of BARC thickness and the imaginary part of its 
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Figure 4.22 Substrate refl ectivity versus BARC thickness over a range of underlying oxide 
thicknesses (oxide on top of a silicon substrate)
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refractive index (k2) must be suffi ciently high to make τD
2 0≈ . Maximum BARC thickness 

is usually determined by process considerations, thus fi xing the minimum k2. Assuming 
the imaginary part of the resist refractive index is suffi ciently small, the resulting refl ec-
tivity is

 R
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The optimum real part of the BARC refractive index to minimize refl ectivity will 
then be

 n n2 1
2

2
2= +κ  (4.91)

The resulting refl ectivity is
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Obviously, the thick BARC solution is insensitive to BARC thickness variations by 
design. The sensitivity to errors in BARC refractive index can be obtained from Equation 
(4.90). For a small change in the real part of the BARC refractive index,

 
∆ ∆ ∆R

R
n

n

n n n
n

n

n
≈

−
=2

2 1

2 2
2

1
2 2

2 1

2 2
2( ) κ

 (4.93)

For a small change in the imaginary part of the BARC refractive index,
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4.3.4 BARC Performance

How critical is BARC optimization? How low must the substrate refl ectivity be before 
acceptable CD control can be expected? There is no single answer to these questions, 
since they are process and feature dependent. But consider the example shown in Figure 
4.23. Here, 100-nm lines on a 280-nm pitch are simulated with a stepper using annular 
illumination, with a center sigma given by sNA = 0.54. As can be seen, a substrate refl ec-
tivity of less than 0.1 % still leads to a noticeable swing behavior.

A common approach to characterizing the impact of substrate refl ectance (that is, the 
impact of a nonideal BARC) is to relate refl ectivity in the presence of fi lm thickness 
variations to effective dose errors. Consider, for example, the case where topography on 
the wafer results in resist thickness variations that extend beyond one swing curve period. 
For such a case, the swing ratio is effectively the fractional dose error range resulting 
from resist thickness variations.

 
∆ ∆E

E
SR D D≈ ≈ + −α ρ ρ α4 12 23 e  (4.95)
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Consider a 193-nm resist with a = 1.2 mm−1, D = 200 nm, a resist thickness variation 
equal to the swing period of 56 nm, and | r12 | = 0.26. This results in a fractional effective 
dose error of

 
∆E

E
≈ +0 067 0 83 23. . ρ  (4.96)

For a BARC that allows 1 % refl ectance (| r23 | = 0.1), bulk absorbance adds 6.7 % effec-
tive dose error while the swing effect adds another 8.3 % dose error. Both of these numbers 
are clearly too high, so that a 193-nm lithography process must employ planarization to 
reduce the resist thickness variations caused by topography.

For a 248-nm resist with a = 0.5 mm−1, D = 400 nm, a resist thickness variation 
equal to the swing period of 70 nm, and |r12| = 0.275, the fractional effective dose 
error is

 
∆E

E
≈ +0 035 0 90 23. . ρ  (4.97)

For a BARC that allows 1 % refl ectance (|r23| = 0.1), bulk absorbance adds 3.5 % effective 
dose error while the swing effect adds another 9 % dose error.

A more thorough ‘dose budget’ analysis would consider variations in resist thick-
ness, BARC thickness and underlying fi lm stack simultaneously to determine the effective 
dose errors caused by changes in the energy coupled into the resist. Equation (4.95) 
assumed suffi cient topography to cause one full swing period of resist thickness 
variations. When smaller amounts of resist thickness variation are present, the effective 
dose errors are also smaller. Consider a resist thickness D = Dmin ± ∆ where Dmin is the 
thickness at the swing curve minimum and ∆ is small compared to the swing period. 
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Figure 4.23 CD swing curves (100-nm lines with a 280-nm pitch are printed with a stepper 
using annular illumination, with a center sigma given by sNA = 0.54) for two different BARCs 
with different levels of optimization, as given by the resulting substrate refl ectivity R
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Equation (4.51) can be used to derive the effective dose error for a small resist thickness 
error:
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which can be further approximated for small ∆ as
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and for a reasonably good BARC as
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The dose error comes from a bulk absorption term (a∆) plus a fraction of the swing 
amplitude. Consider the standard 193-nm resist on BARC on silicon case described above, 
with a = 1.2 mm−1, D = 200 nm, nresist = 1.7, and |rair–resist| = 0.26. For ∆ in nanometers,

 
∆ ∆ ∆E

E
≈ +0 0012 0 0025 23

2. . ρ  (4.101)

For an 8.3-nm increase in resist thickness, the bulk effect causes about a 1 % effective 
dose error. The swing effect will cause another 1 % effective dose error for that 8.3-nm 
resist thickness error if the substrate refl ectivity is 0.33 %. The maximum allowed sub-
strate refl ectivity is a function of the range of resist thickness that must be tolerated and 
the amount of effective dose error one is willing to accept. Specifi cations of substrate 
refl ectivity in the 0.1–0.5 % range are not uncommon.

Swing curves are extremely important in lithography for one simple reason: topography 
on the wafer can lead to variations in resist thickness on the order of a period in the swing 
curve or more. In some processes, these effects are the leading cause of CD errors on 
some critical mask levels. Figure 4.24 shows an example of how a line printing over a 
topographical step on the wafer can lead to linewidth variations due to swing curve 
effects.

BARCs of course can dramatically reduce the linewidth variation caused by topography 
on the wafer. A second problem that BARCs can solve is refl ective notching. As Figure 
4.25 illustrates, light can refl ect off the tilted edges of refl ective topography. Patterns being 
printed near such a refl ective edge may receive extra exposure from the refl ection, causing 
a notch, usually near the top of the feature. BARCs can also signifi cantly suppress refl ec-
tive notching (Figure 4.26).

4.4 Top Antirefl ection Coatings

As we saw in Equation (4.46), the amplitude of the refl ectivity swing curve is determined 
by the multiplier of the cosine term, 2|r12r23|e−aD. It is clear that this term can be reduced 
in three ways: (1) increase absorption (increase the term aD) through the use of a dyed 
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Figure 4.24 Example of how resist thickness variations over topography produce linewidth 
variations due to swing curve effects when a BARC is not used

Resist

Figure 4.25 Refl ective notching occurs when nearby topography refl ects light obliquely into 
an adjacent photoresist feature

Figure 4.26 Imaging of lines and spaces over refl ective topography without BARC (left) 
showing refl ective notching, and with BARC (right) showing the refl ective notching effectively 
suppressed (photos courtesy of AZ Photoresist, used with permission)

resist; (2) decrease substrate refl ectivity (decrease r23) by using a BARC; and (3) decrease 
resist refl ectivity (decrease r12) by using a top antirefl ection coating (TARC).9,10 Looking 
again at Figure 4.12b, the refl ectivity swing curve comes about through the interference 
of Er0 with the other refl ected rays such as Er1. By eliminating Er0 using a TARC, there 
can be no interference and thus no swing curve.
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One can simplify the design of the TARC somewhat by imagining the photoresist as 
infi nitely thick. Thus, Equation (4.81) applies where layer 2 is the TARC and layer 3 is 
the resist. If the role of layer 2 is to serve as an antirefl ection coating between materials 
1 and 3, one obvious requirement might be to minimize the total refl ectivity given by 
Equation (4.81). If the light refl ecting off the top of layer 2 (r12) can cancel out the light 
which travels down through layer 2, refl ects off layer 3, and then travels back up through 
layer 2 23

2( ),ρ τD  then the refl ectivity can become exactly zero [in other words, when 
Equation (4.82) is true for the TARC].

When designing an antirefl ection coating material, there are only three variables that 
can be adjusted: the real and imaginary parts of the refractive index of the coating, and 
its thickness. One classic solution to Equation (4.82) works very well when the materials 
1 and 3 are not very absorbing. It is clear that Equation (4.82) is satisfi ed when τD

2 1= −  
and r12 = r23. The requirement that τD

2 1= −  means that two passes of the light through 
the TARC cause a 180° phase change with no absorption (since the magnitude is still 
one). From the defi nition of the internal transmittance, this means that the TARC thickness 
must be adjusted to a ‘quarter wave’:

 D
n

= λ
4 2

 (4.102)

The requirement that r12 = r23 will be satisfi ed when the index of refraction of the TARC 
is made to be

 n n n2 1 3=  (4.103)

Further, since the TARC does not absorb, the imaginary part of its index is zero. Thus, 
Equation (4.82) can only be true if both materials 1 and 3 have no imaginary parts to 
their indices of refraction. For a resist with a refractive index of 1.7 at a wavelength of 
193 nm (in air), the optimum TARC will have a refractive index of about 1.30 and a 
thickness of 37 nm.

An antirefl ection layer defi ned by Equations (4.102) and (4.103) will have zero refl ec-
tivity. Also, due to the lack of absorption, 100 % of the light striking the TARC will be 
transmitted into layer 3. Thus, this type of antirefl ection coating is commonly used for 
coating optical components (such as camera or stepper lenses) where the goal is not so 
much reducing the refl ectivity as it is maximizing the transmittance. The ‘maximum 
transmittance’ type of antirefl ection coating is also used for top antirefl ection coatings. 
This perfect TARC solution, however, is only available for the special case when both 
layers 1 and 3 are transparent. Thus, since in reality resist will always be somewhat 
absorbing, a perfect TARC is not possible, with a residual refl ectance off of the TARC 
proportional to the imaginary part of the resist refractive index squared. However, since 
resists have an imaginary part of the refractive index in the range of 0.01–0.02, the impact 
of resist absorption on TARC performance is quite negligible.

More problematically, it is very diffi cult to fi nd practical materials with refractive 
indices low enough to make a near ideal TARC. Most available TARCs have refractive 
indices greater than 1.4 (versus an ideal index closer to 1.3). Letting nopt be the optimum 
TARC refractive index given by Equation (4.103) and assuming a quarter wave thickness 
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of TARC is always used, the refl ectivity resulting from the use of a nonoptimum TARC 
refractive index is

 R
n n

n n
=

−
+







TARC opt

opt TARC

2 2

2 2

2

 (4.104)

If the TARC refractive index is close to the optimum, this refl ectivity is approximately

 R
n n

n
≈

−





TARC opt

opt

2

 (4.105)

Like BARCs, the performance of TARCs is degraded when a range in incident angles 
of light is used. Both the optimum TARC thickness and the optimum refractive index will 
be a function of incident angle and polarization.

4.5 Contrast Enhancement Layer

A contrast enhancement layer (CEL) is a highly bleachable coating placed on top of the 
photoresist that serves to enhance the contrast of an aerial image projected through it.11 
Unlike a TARC, where the real part of the refractive index is chosen to maximize trans-
mittance and the imaginary part is kept as low as possible, the CEL works by having a 
high absorbance that ‘bleaches’, i.e. that becomes more transparent as it is exposed. The 
mechanism of CEL bleaching is similar to the bleaching that occurs in g-line and i-line 
photoresists, which will be covered in Chapter 5.

The CEL is initially opaque so that essentially no light is transmitted into the photo-
resist. Clear areas of the mask, and thus areas of high intensity of the aerial image, produce 
exposure of the CEL, which begins to bleach in these regions. As the CEL bleaches, light 
is transmitted into the photoresist where it can begin to expose the resist. In the regions 
of low intensity, however, the CEL remains more opaque and less transmitting. As a result, 
the image transmitted into the resist exhibits a steeper transition from bright to dark 
(Figure 4.27).

CELs are not commonly used for submicron semiconductor lithography. Their main 
drawback, besides the expense of the material and added processing, is the signifi cant 
increase in exposure dose (in the range of 2–3 times higher) required to bleach the 
CEL.

4.6 Impact of the Phase of the Substrate Refl ectance

The refractive index of a material is complex in general, the imaginary part being directly 
proportional to the absorption coeffi cient of the material. Thus, in general, the refl ection 
coeffi cient between two materials will be a complex number. The magnitude of r deter-
mines the magnitude of the refl ected light while its phase gives a phase change upon 
refl ection. As we’ve seen, it is the magnitude of the refl ection coeffi cient that impacts the 
amplitudes of standing waves and swing curves. But the phase will have an impact on 
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lithography as well. Consider a typical resist on silicon at the i-line wavelength (365 nm). 
The magnitude of the refl ection coeffi cient is about 0.63 with a phase of −169°. For resist 
on aluminum, r = 0.93 ∠ −138° (the notation meaning that the refl ection coeffi cient has 
a magnitude of 0.93 and a phase angle of −138°). For more complicated layered substrates, 
both the magnitude and phase of the refl ection coeffi cient will depend on the thicknesses 
of the various layers.

Consider a simple but common fi lm stack: resist (1 mm thick) on silicon nitride (100 nm) 
on silicon dioxide (40 nm) on silicon. The refl ection coeffi cient between the resist and the 
underlying fi lm stack is a function of the optical properties of all of the materials, but 
also of the thickness of the nitride and the oxide fi lms. For example, variation of the 
nitride thickness leads to a moderate variation in the magnitude and a large variation in 
the phase of the refl ection coeffi cient, as shown in Figure 4.28. Oxide thickness variations 
produce similar effects.

What will be the lithographic effects of this nitride thickness variation? The ±7 % 
change in the magnitude of the refl ection coeffi cient will have some subtle effects, but 
the large change in the phase of the refl ection will cause two major problems. The resist 
swing curve is a function of the phase change of light that passes down and back up 
through the resist. Changes in resist thickness cause a change in this phase, giving rise 
to a sinusoidal variation in dose-to-clear (E0) and linewidth. Any change in the phase upon 
refl ection will produce the same effect [a variation in f23 in Equation (4.51), for example]. 
Figure 4.29 shows two resist swing curves corresponding to two nitride thicknesses 
(minimum and maximum thicknesses from Figure 4.28). The nitride thickness variation 
produces its own swing curve, resulting in linewidth variations of the same magnitude as 
for resist thickness variations. Control of the nitride thickness (and oxide thickness, for 
that matter) is just as critical as resist thickness control.

The second effect of this phase change upon refl ection is on the shape of the resulting 
resist profi le. When the refl ected light is 180° out of phase with the incident light, 

Image Transmitted 
Through the CEL 

CEL

Incident Aerial Image

Figure 4.27 Contrast Enhancement Layer (CEL) bleaching improves the quality of the aerial 
image transmitted into the photoresist
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Figure 4.28 Variation of the magnitude and phase of the resist/substrate refl ection coeffi -
cient as a function of silicon nitride thickness for a fi lm stack of resist on nitride on 40 nm of 
oxide on silicon

Figure 4.29 Changes in nitride thickness cause a shift in the phase of the resist swing curve, 
making nitride thickness control as critical as resist thickness control

destructive interference results in a minimum light intensity at the resist/substrate inter-
face. When the refl ected light is in phase with the incident light, constructive interference 
results in a maximum light intensity at the resist/substrate interface. Although standing 
waves are generally smoothed out by post-exposure bake diffusion, any asymmetry in the 
standing wave pattern inside the resist can lead to less than perfect reduction of the 
amplitude. When the phase change upon refl ection is about +90° or −90°, the local region 
near the interface has an average intensity that is higher or lower, respectively, than the 
average through the bulk. The result is resist undercutting and resist footing. Figure 4.30 
shows typical resist profi le shapes at different nitride thicknesses.

One can see that nitride thickness variations of just ±20 nm can have huge effects 
on both linewidth and resist profi le shape. If oxide thickness can vary as well, 
the requirements for nitride thickness control become even tighter. In many cases, the 
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lithographic requirements for thin fi lm thickness uniformity and control far exceed 
other device-related restrictions on these thicknesses. As with other swing curve effects, 
a BARC can be very effective at reducing the sensitivity to underlying fi lm stack 
variations.

4.7 Imaging in Resist

The aerial image is, quite literally, the image in air. In the world of semiconductor lithog-
raphy, it is the image of a photomask projected onto the plane of the wafer, but assuming 
that only air occupies this space rather than the resist-coated wafer. Although aerial images 
do not really exist in lithography, the aerial image, which is reasonably easy to calculate 
though very diffi cult to measure, is a convenient proxy for the fi nal resist image. By 
picking an exposure-dose dependent intensity threshold, an estimate of the fi nal resist CD 
is obtained (this essentially assumes that the resist is ideal, with an infi nite contrast). Such 
uses are based on the idea that an aerial image is a good predictor of what the resist image 
will look like. However, at high numerical apertures the aerial image is in fact a very 
poor predictor of the fi nal resist image. Due to vector effects, the image in resist can be 
greatly different from the aerial image, as will be discussed below.

4.7.1 Image in Resist Contrast

At high numerical apertures, the vector nature of light affects the formation of an image 
as a function of the polarization of the light and the angles of the various diffraction orders 
that add together to form the image (see Chapter 3). Two plane waves, approaching a 
wafer at different angles, will interfere to form fringe patterns of light and dark making 
the simplest of lithographic patterns – an array of lines and spaces. This phenomenon of 
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Figure 4.30 Nitride thickness also affects the shape of the resist profi le, causing resist footing, 
undercuts or vertical profi les. Substrate refl ectivity (the square of the magnitude of the refl ec-
tion coeffi cient) is shown for comparison
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interference is the key to pattern formation. Without it, light hitting the wafer from dif-
ferent directions would simply add to give a uniform intensity. We can see mathematically 
the effect of interference by examining how two electric fi elds combine to form a resultant 
electric fi eld (magnitude and intensity). Ignoring a few details that will be described in 
the following section, the intensity of light I is the square of the magnitude of the electric 
fi eld E. If two electric fi elds are combined, what is the intensity of the combination? If 
the two electric fi elds do not interfere, the total intensity is the sum of the individual 
intensities (i.e. it is a constant).

 I E E= +1
2

2
2  (4.106)

If, however, the two electric fi elds interfere completely, the total intensity will be

 I E E= +1 2
2  (4.107)

Here, the variation in the phase of E1 relative to E2 produces a spatial variation in intensity 
that is our image.

As discussed in detail in Chapters 2 and 3, two electric fi elds interfere only if two 
conditions are met: (1) there is a fi xed phase relationship between the electric fi elds, and 
(2) there is some overlap in electric fi eld direction. The fi rst condition is met when the 
electric fi elds arise from diffraction orders created from a single source point. The second 
condition means that the two electric fi elds interfere with each other only to the extent 
that their electric fi elds oscillate in the same direction. If the electric fi elds are at right 
angles to each other, there will be no interference. Thus, to determine the amount of 
interference between two electric fi elds, one must fi rst determine the amount of directional 
overlap between them. Standard vector mathematics gives us some simple tools to cal-
culate directional overlap and thus the amount of interference. When thinking of light as 
a scalar rather than a vector quantity, we ignore the subtleties discussed above. Essentially, 
a scalar description of light always assumes that the electric fi elds are 100 % overlapped 
and all electric fi elds add together as in Equation (4.107). Since interference is what gives 
us the patterns we want, a scalar view of light is generally too optimistic. The vector 
description of light says that there is usually some fraction of the electric fi elds of our 
two vectors that don’t overlap and thus don’t contribute to interference. The noninterfering 
light is still there, but it adds as a uniform intensity that degrades the quality of the 
image.

As was done in Chapter 3, consider the interference of two plane waves approaching 
the wafer at fairly large angles (Figure 4.31). The electric fi eld can point in any direction 
perpendicular to the direction of propagation. This arbitrary direction can in turn be 
expressed as the sum of any two orthogonal (basis) directions. The most convenient basis 
directions are called transverse electric or TE (the electric fi eld pointing out of the page 
of the drawing) and transverse magnetic or TM (the electric fi eld pointing in the page of 
the drawing). The TE case means that the electric fi elds of the two plane waves are always 
100 % overlapped regardless of the angle between the plane waves. For the TM case, 
however, the extent of overlap between the two vectors grows smaller as the angle 
between the plane waves grows larger.

We can calculate how much the two electric fi elds for the TM case will interfere with 
each other. Suppose that two rays are traveling at an angle q with respect to the vertical 
direction (i.e. the direction normal to the wafer), as shown in Figure 4.31. The electric 
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fi elds E1 and E2 will have an angle between them of 2q. The amount of the electric fi eld 
vector E2 that points in the same direction as E1 is just the geometric projection, E2cos(2q). 
Thus, the intensity will be given by the coherent (electric fi eld) sum of the parts that 
overlap plus the incoherent (intensity) sum of the parts that don’t overlap.

 I E E E= + +1 2
2

2
22 2cos( ) sin( )θ θ  (4.108)

Note that for q = 0, this equation reverts to the perfectly coherent (interfering) sum of 
Equation (4.107). For q = 45°, the two electric fi elds are perpendicular to each other and 
Equation (4.108) becomes the perfectly incoherent (noninterfering) sum of Equation 
(4.106). If we consider the simplest case of two unit amplitude plane waves,
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Note that for both TE and TM illumination, the resulting images have no z-dependence. 
In other words, the simple two-beam imaging case has infi nite depth of focus.

Two common image metrics, the normalized image log-slope (NILS) and the image 
contrast will now be calculated for the images in Equation (4.109). For the TE image, the 
NILS (assuming the desired image is equal lines and spaces) is equal to p, and for the 
TM image it is p cos(2q). The visibility (or contrast) of the resulting fringes is the differ-
ence of the maximum and minimum intensities of the interference pattern divided by the 
sum of these two quantities. For the TE polarization case, the contrast is always exactly 
1. For the TM case, the contrast depends on the angle between the two waves and is equal 
to cos(2q). Thus, as the angle between the plane waves increases, the contrast of the 
resulting image decreases. One can see why the TM polarization is often called the ‘bad’ 
polarization – it provides less interference and reduced image quality.

The resist is not exposed by an aerial image, but by the image in resist. The plane 
waves that interfere to form the image fi rst propagate into the resist. Once in the resist, 
they can interfere to form an image in the resist. This image will be different than the 
aerial image due to refraction. As each plane wave travels from air to resist, refraction 
lowers the angle of the light according to Snell’s law. Letting n be the refractive index of 

1 2E
1E

E
2E

TE or s-polarization TM or p-polarization

Figure 4.31 Two plane waves with different polarizations will interfere very differently. For 
transverse electric (TE) polarization (electric fi eld vectors pointing out of the page), the 
electric fi elds of the two vectors overlap completely regardless of the angle between the 
interfering beams



176 Fundamental Principles of Optical Lithography

the resist (and assuming the air above the resist has an index of refraction of 1.0), the 
angle of one of the plane waves inside the resist will be

 sin( ) sin( )θ θresist air= 1

n
 (4.110)

For the TE light, the interference will be the same and the two plane waves will produce 
a sinusoidal image of contrast 1. For the TM light, the contrast will be

 TM Contrast
n

= = − = −cos( ) sin ( ) sin ( )2 1 2 1
22

2
2θ θ θresist resist air  (4.111)

Figure 4.32 illustrates the difference between the NILS and the contrast in air versus 
in resist as a function of angle for TM light when the resist refractive index is 1.7. For 
an angle of 30° (corresponding to two-beam imaging at the resolution limit of a lens of 
a modest NA = 0.5), the aerial image for TM illumination has a contrast of 0.5, while the 
image in resist has a much more acceptable contrast of 0.83. Unpolarized light, which 
produces an average of the TE and TM images, produces a contrast that is also the average 
between 1 and the value given by Equation (4.111) (ignoring the difference in trans-
mission of the two polarizations into the resist). Thus,

 Unpolarized Contrast
n

≈ −1
1

2
2sin ( )θair  (4.112)

For the case of unpolarized two-beam imaging at the resolution limit of an NA = 0.9 lens, 
the aerial image would show a contrast of 0.19 (obviously unacceptable) while the image 
in resist would have a more reasonable contrast of 0.72. In fact, though, Equation (4.112) 
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Figure 4.32 The interference between two TM polarized plane waves produces an image 
whose contrast and NILS depend on the angle. Since the angle in resist is reduced by refrac-
tion, the contrast and NILS of the image in resist are better than those of the aerial image
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is optimistic since TM light will always transmit into the photoresist better than TE 
light. Using the data in Figure 4.5, for example, at an incident angle of 60° almost 100 % 
of the TM light is transmitted into the resist, whereas only 75 % of the high-contrast-
producing TE light makes it into the resist.

What does all of this mean? When calculating aerial images, vector effects can dramati-
cally alter the resulting image compared to an approximate scalar calculation. The resist, 
however, mitigates some of these vector effects and the image in resist can be dramati-
cally different from the aerial image. When trying to approximate a resist feature by a 
calculated intensity image, only the image in resist (calculated correctly using the vector 
nature of light) can be expected to give reasonable results.

4.7.2 Calculating the Image in Resist

An aerial image is formed by the interference of plane waves that result from discrete 
diffraction orders passing through the lens. One of the simplest cases to consider is the 
imaging of small lines and spaces so that only the zero and the two fi rst orders travel 
through the lens. For coherent illumination, the zero order will be a plane wave traveling 
in the z-direction, with magnitude a0. The two fi rst orders will be plane waves each with 
magnitudes a1 and traveling at angles given by

 n psinθ λ= ± /  (4.113)

where p is the pitch of the line/space pattern and n is the refractive index of the media. 
Ignoring for a moment the refl ecting substrate, the image will be formed by the inter-
ference (sum) of these three plane waves. Assuming that the image is focused at z = 0 
(the z-position where all three of the plane waves have the same phase), the resulting 
electric fi eld of the image will be, for s-polarization,

 E x z a a aikz ikx ikz ikx ikz( ) sin cos sin cos, e e e e e= + + −
0 1 1

θ θ θ θ  (4.114)

This sum can be simplifi ed into a more common and convenient form as

 E(x, z) = eikz(a0 + 2a1 cos(2px/p)e−ikz(1−cos q))

giving

 I x z a a a a kz x p a x( ) cos( ( cos ))cos( ) cos(, /= + + − +0
2

1
2

0 1 1
22 4 1 2 2 4θ π π //p)  (4.115)

Equation (4.115) is the standard s-polarized three-beam image where z can be interpreted 
as the distance from best focus. A similar expression for p-polarized illumination can also 
be derived:
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giving
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To determine the aerial image in the presence of a refl ecting substrate, the same pro-
cedure is followed as above, but including the refl ected plane waves as well. The result 
is, for s-polarization,

 E x z a a x pikz ik z ikz( ) ( [ ( ) ] cos( ) [( cos ), e e / e= + + +− − −
0

2
1

11 0 2 2 1ρ π θ ρρ θ θ( ) ])cose−ik z2  (4.118)

In this equation, interference between plane waves causes a variation of the electric fi eld 
in the x-direction (the image) and a variation in the z-direction (a combination of defocus 
and standing waves). In fact, one can think of each plane wave as creating its own electric 
fi eld standing wave, with the fi nal image as the weighted sum of these standing waves:
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The above image in resist analysis captured the essence of the physics involved, but 
ignored the air–resist interface and the multiple refl ections that would result. However, 
the fi nal form of Equation (4.119) suggests that the more detailed standing wave expres-
sion of Equation (4.32) can be used as Esw in Equation (4.119) to get an accurate image 
in resist result. Alternately, the diffraction order amplitudes a0 and a1 can be replaced by 
their effective ‘in-resist’ amplitudes:
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and the simplifi ed standing wave z-dependence would become

 E z ikz
D

ikz
sw , e e( ) ( ) ( )cos cosθ ρ θ τ θθ θ= + −2  (4.121)

In these two equations, q now represents the angle in the resist.
Calculating the intensity in the resist from Equation (4.121) results in cumbersome 

algebra. However, for the case of a low-refl ectivity substrate (through the use of a 
reasonably good BARC, for example), some of the resulting terms can be ignored, 
giving
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where I z E zsw sw eff, , and( ) ( )
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Each diffraction order (plane wave) produces a standing wave. The interaction between 
the zero and fi rst orders produces the interference pattern that forms the image, but the 
difference in propagation angles also creates a defocus term that accounts for defocusing 
of the image through the resist thickness. The terms that were ignored in this expression 
describe the defocusing of the refl ected waves.
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4.7.3 Resist-Induced Spherical Aberrations

Even with TE-polarized light and no substrate refl ection, the resist causes important 
changes to the nature of the image. Consider Equation (4.122), three-beam imaging for 
TE illumination, for the case of no substrate refl ection:

 
I x z a a x p

a a

z z

z

( ) cos ( )

co

cos, e e /

e

r r
/

r r
eff

= +
+

− −

−

0
2

1
2 2

0 1

4 2

4

α α θ

α

π
ss( ( cos ) )cos( )2 1 22π δ θ λ πn x p− / /
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where � = z − z0, and z0 is the position of the plane of best focus. As a comparison, con-
sider the same case for an aerial image:
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There are three important and distinct differences between the image in air and the image 
in resist. First, as given in Equation (4.120), the amplitude of each diffraction order is 
different in the resist compared to air, and for the case of the fi rst order this difference is 
angle, and thus pitch, dependent. Second, each diffracted order is absorbed differently 
also according to its angle, and thus pitch. In fact, an effective z-dependent diffraction 
order can be defi ned as
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so that the image in resist becomes
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As the image propagates further into the resist, the fi rst orders are attenuated due to 
absorption to a greater degree than the zero order. This difference is more acute for larger 
angles (smaller pitches).

A more subtle but important difference between the images in air and resist is the 
defocus term, which includes the normalized optical path difference term nd(1 − cosq)/l. 
Both the refractive index and the angle q are different in resist than in air. The results are 
depicted graphically in Figure 4.33, where larger angles (corresponding to smaller pitches) 
are focused further into the resist than smaller angles. First, the plane of best focus is 
shifted due to refraction. Further, there is a pitch dependence to best focus, a characteristic 
of spherical aberration.

To compare the defocus term in air to the case in resist, we can express the cosq as a 
sine and expand the resulting square root in a Taylor series.
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Using Snell’s law to compare the angles and refractive indices in air and resist,
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and
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In the paraxial limit, where only the lowest order term in the series above is kept, the 
impact of defocus is reduced in resist compared to that in air by the factor n1/n2. The 
distance of the plane of best focus relative to the top of the resist is scaled by this 
factor. Also, the defocusing of the image through the resist is scaled by this amount. Since 
n2 > n1, the plane of best focus is shifted down into the resist, and the thickness of resist 
causes less defocusing than when the image propagates through the same thickness of 
air.

To see how the resist induces spherical aberration, we need only keep one more term 
in the series of Equation (4.129).
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The added term varies as the radial position in the pupil to the fourth power, characteristic 
of 3rd order spherical aberration. Comparing to this Zernike term as given in Chapter 3, 
an effective amount of 3rd order spherical induced by the resist would be
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Figure 4.33 Focusing of plane waves arriving at different angles (a) in air, and (b) in resist, 
showing that the resist induces spherical aberration



 Imaging in Resist: Standing Waves and Swing Curves 181

Consider a typical case where n1 = 1 and n2 = 1.7:

 Z
z

NA8
40 016≈ − .

λ
 (4.132)

For an NA of 0.9, 10 milliwaves of spherical aberration is induced per wavelength of 
resist thickness. Since resists tend to be between one and two wavelengths thick for such 
a high NA, the center of the resist can be expected to show between 5 and 10 milliwaves 
of effective spherical aberration. Since this resist-induced spherical aberration is system-
atic, it is possible to correct for it by adding an equivalent amount of oppositely directed 
spherical aberration into the lens design.

4.7.4 Standing Wave Amplitude Ratio

Our goal is now to understand how refl ectivity, as well as the variation of refl ectivity with 
angle, affects standing waves in the image. To begin, we’ll defi ne a metric called the 
standing wave amplitude ratio (SWAR), given by

 SWAR
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I I
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( )2 0ρ
 (4.133)

Here, I(r = 0) denotes the intensity that would be present if there were no refl ecting sub-
strate and is approximately the average of the min and max intensities. For a single plane 
wave, such as Equation (4.31), the SWAR is equal to twice the substrate amplitude refl ec-
tion coeffi cient r(q), and would be zero if the BARC were perfect. In fact, one goal of 
BARC design is to make the SWAR as close to zero as possible.

For the imaging case, pulling the maximum and minimum values out of Equation 
(4.118) or Equation (4.122) is complicated by two factors: the defocus dependence of the 
image, and the fact that each diffraction order produces a standing wave of a different 
period. If, however, the variation of the image intensity with z caused by defocus is small 
compared to the standing wave variation (i.e. if the depth of focus is much larger than 
one standing wave half-period), and best focus is near the position in the resist where the 
SWAR is being evaluated, this effect can be ignored. Further, by looking at the standing 
waves at the bottom of the resist, the mismatch in standing wave peak positions will be 
at their minimum. Under these circumstances, an approximate value for the SWAR can 
be obtained for this three-beam imaging case. For the simplifi ed case ignoring absorption 
and multiple refl ections in the resist,
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It is very interesting to note that the standing wave amplitude ratio is a function of x. 
Consider x = 0, the center of the space of the line/space pattern. Here, the SWAR is an 
average of the zero- and fi rst-order refl ectivities, weighted in a certain way by the ampli-
tudes of the diffracted orders.

 SWAR x
a a a a a a

a a a a
o o o

o o

( )
( ) ( ) ( ) ( )= ≈ + + +

+ +
0 2

0 2 4 2

4 4

2
1 1

2
1

2
1 1

2

ρ ρ θ
 (4.135)



182 Fundamental Principles of Optical Lithography

At x = p/4, corresponding to the nominal edge of the feature, the SWAR takes on a very 
different value.

 SWAR x p( ) ( )= ≈/4 2 0ρ  (4.136)

In other words, the standing waves at the edge of the feature are controlled only by the 
refl ectivity of the zero order. Figure 4.34 shows an example of how the standing wave 
amplitude ratio varies with position along the line/space features. Note that Equations 
(4.134)–(4.136) and Figure 4.34 all assume a nonabsorbing medium. A real resist, with 
its reasonably high absorption, will reduce the actual SWAR signifi cantly. Equation 
(4.134) can be modifi ed to account for absorption and multiple refl ections in a real resist 
if the diffraction order amplitudes a0 and a1 are replaced by their in-resist values a0r and 
a1r, and the substrate refl ectivity r is replaced by

 ρ θ τ θ α θ( ) ( ) cos
D

z2 e /−  (4.137)

While the mathematics derived above apply to a fairly simple case, the results are 
appropriate for considering the approach toward optimizing a bottom antirefl ection coating 
for three-beam, high-numerical-aperture imaging (for two-beam imaging there is no 
ambiguity, since there is only one angle to optimize for). Equation (4.135) shows that 
standing waves in the middle of the space are controlled by a weighted average of the 
refl ectivities of the zero and fi rst orders (i.e. at zero angle and at the angle of the fi rst 
orders). However, when considering the more important standing waves at the edge of 
the feature, only the zero-order refl ectivity matters. While Equation (4.136) applies to 
both s- and p-polarized illumination, Equation (4.135) can be modifi ed to approximate 
p-polarization by replacing a1 with a1cosq (to account for reduced interference creating 
the image) and by adding a cos2q term to the weighting of the high-angle refl ectivity (to 
account for reduced interference in the standing wave formation). Thus, for p-polarization, 
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Figure 4.34 The standing wave amplitude ratio (SWAR) at different positions on the feature 
for coherent three-beam imaging and s-polarization. For this example of three-beam imaging 
of 100-nm lines and spaces, ao = 0.5, a1 = 0.3183, |r(0)| = 0.1 and |r(q)| = 0.15
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even the SWAR in the center of the space becomes more heavily weighted to the normally 
incident refl ectivity due to the reduced interference of the large-angle fi rst diffracted 
orders. It seems that designing a BARC by reducing the normally incident refl ectivity 
provides a very good starting point for obtaining the best standing wave control. Beyond 
this initial design, full lithographic simulation will be required.

4.8 Defi ning Intensity

While seemingly simple in concept, the defi nition of light intensity is more complicated 
than expected. In particular, a comparison of intensity values when the light is in different 
materials and traveling at different angles requires careful consideration. One case where 
these diffi culties become apparent is the simple refraction of a plane wave traveling from 
one medium to another. Thus, our discussion will begin with a look at electric fi eld and 
intensity refl ection and transmission coeffi cients. The following derivations are based on 
the standard treatment given in Born and Wolf.12

4.8.1 Intensity at Oblique Incidence

When determining the intensity (also called irradiance) transmitted into a material at an 
oblique angle, it is very important to understand the exact defi nition of intensity. By defi -
nition (and as was discussed briefl y in Chapter 2), the intensity of light is the magnitude 
of the (time averaged) Poynting vector, the energy per second crossing a unit area per-
pendicular to the direction of propagation of the light. In a medium of refractive index n 
the intensity I is given by

 I n E= 2  (4.138)

where E is the electric fi eld. Note that the defi nition given in Equation (4.138) may differ 
by a constant multiplicative factor depending on the units used.

The intensity refl ectivity and transmission, for either polarization, are derived by con-
sidering a unit area on the interface between two materials labeled 1 and 2. Consider the 
projected power per unit area, J, of the incident light along the surface of the interface 
between the materials. If the angle of incidence is q1,

 J Ii i= cos( )θ1  (4.139)

Likewise, the projected power per unit area of the refl ected and transmitted light along 
this surface are
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Now the refl ectivity and transmission coeffi cients for each polarization can be defi ned:
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From these two equations it is easy to show that R + T = 1 for each polarization, which 
is a consequence of conservation of energy. Figure 4.5 shows how the intensity refl ectivity 
varies with incident angle for both s- and p-polarized illumination for a typical air–resist 
interface. An alternate form for Equation (4.141), making use of the reverse direction 
defi nitions of refl ection and transmission coeffi cients in Equation (4.38), are
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Also note that for randomly polarized light, the overall intensity refl ectivity and transmit-
tance can be computed from the values obtained for each polarization:
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Consider a unit intensity plane wave incident on the plane boundary between materials 
1 and 2 at an incident angle q1 and with intensity Ii. From Equation (4.138), the magnitude 
of the incident electric fi eld must be
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 (4.144)

The transmitted electric fi eld is then
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The transmitted intensity (i.e. the intensity in material 2) is found by applying the defi ni-
tion of intensity to Equation (4.145).
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By comparing Equation (4.146) with Equation (4.141), the somewhat nonintuitive result 
below is obtained.
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As can be seen in Equation (4.147), the transmittance T is not the ratio of the intensities 
It and Ii (see Figure 4.35). The difference comes from the change in the direction of the 
energy fl ow caused by refraction. Thus, one might ask the question, which is more impor-
tant to know inside fi lm 2, the intensity of the plane wave, or its projected power along 
a surface parallel to the material interface? The answer to this question depends on the 
task at hand, as discussed in section 4.8.3.

4.8.2 Refraction into an Absorbing Material

The well-known Snell’s law of refraction [Equation (4.30)] dictates how a plane wave, 
traveling across a plane boundary between two materials of different optical properties, 



 Imaging in Resist: Standing Waves and Swing Curves 185

will change its direction. The material boundary conditions required by Maxwell’s equa-
tions state that any electric fi eld tangential to the material interface must be continuous 
across that interface. This requirement will lead directly to the derivation of Snell’s law. 
When both refractive indices are real (i.e. neither material is absorbing), the interpretation 
of Snell’s law is quite straightforward. However, if one or both of the materials are absorb-
ing (for example, light traveling from air into photoresist), one or both of the angles will 
be complex. How is a complex angle of transmittance to be interpreted? To answer this 
question, a more rigorous treatment of refraction and absorption is required.

Assuming a unit amplitude plane wave, the electric fi eld can be expressed mathemati-
cally in two dimensions as

 E x z i n x zi , /( ) exp( ( sin cos ) )= +2 1 1 1π θ θ λ  (4.148)

where the interface between the two materials lies in the x − y plane, positive x is up and 
positive z is to the right (as seen in Figure 4.4). Here we shall assume for simplicity that 
material 1 is nonabsorbing. The transmitted electric fi eld will be

 E x z i x zt , /( ) exp( ( sin cos ) )= +τ π θ θ λ12 2 2 22 n  (4.149)

where the appropriate expression for t12 is used depending on the polarization of the 
incident plane wave. If material 2 is absorbing, the angle q2 will be complex. The result-
ing mathematics are quite cumbersome when trying to express all quantities as real 
numbers. For a weakly absorbing fi lm, however, some simplifi cations are possible. The 
optical distance in Equation (4.149) is

 OD x z= +n2 2 2( sin cos )θ θ  (4.150)

Applying Snell’s law to eliminate the complex angle q2,

 n n n2 2 2
2

2 2
2

1 1
21cos sin ( sin )θ θ θ= − = − n  (4.151)
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Figure 4.35 Intensity transmitted into layer 2 relative to the incident intensity (solid lines) 
and the transmittance T (dashed lines) as a function of the angle of incidence for both s- and 
p-polarization (n1 = 1.0, n2 = 1.5)
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If material 2 is weakly absorbing, the imaginary part of n2 will be much smaller than the 
real part (for example, a highly absorbing photoresist may have n2 = n2 + ik2 = 1.7 + 
i0.02). Thus,

 n2
2

2
2

2
2

2 2 2
2

2 22 2= − + ≈ +n i n n i nκ κ κ  (4.152)

where the error in neglecting the κ 2
2 term is only about 0.01 % for the example photoresist. 

Thus,
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Now let us defi ne a new angle called ′θ2 given by

 sin( )
sin( )

′ =θ θ
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n
 (4.154)

This new angle is not the actual transmitted angle, but is the angle of transmission that 
would be obtained if material 2 were nonabsorbing. For a weakly absorbing material, it 
is approximately the angle of transmission. Using this angle in Equation (4.153),
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Expanding the square root into a Taylor series,
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If only the fi rst two terms of the Taylor series are kept, both the real and imaginary parts 

of the result will have a relative error of approximately 
1

2
2

2
2

2

2κ
θn cos ′





 . Using again the 

optical properties of photoresist mentioned above and assuming a maximum incident 
angle of 90 ° in air, neglecting this term will provide less than 0.02 % error. Even if 
extreme immersion lithography is considered, the larger angle inside the resist will cause 
this error to grow to only 0.04 %. Thus, there is very little error in dropping all but the 
fi rst two terms in Equation (4.156). The fi nal result for Equation (4.155) is
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Thus, the plane wave traveling in material 2 will have an optical path of 
approximately

 OD xn z n i n x z≈ + ′ +
′
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and the electric fi eld will be

 E x y z i n x z zt , , / /( ) exp( ( sin cos ) )exp( ( cos≈ ′ + ′ − ′τ π θ θ λ πκ12 2 2 2 22 2 θθ λ2 ) )/  (4.159)
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For a weakly absorbing fi lm, the phase term of the electric fi eld is approximately equal 
to the plane wave that would result for a nonabsorbing fi lm with the same real part of the 
refractive index. The absorption term in Equation (4.159) provides the somewhat intuitive 
result that larger angles of propagation with respect to the z-axis give faster attenuation 
of the light along the z-axis. Because the surfaces of constant phase are not parallel to 
the surfaces of constant amplitude (which instead are parallel to the interface between the 
two materials), such a wave is called an inhomogeneous wave.

Applying the defi nition of intensity,

 I x y z n zt , , /( ) exp( cos )≈ − ′2 12
2

2τ α θ  (4.160)

where a = 4pk/l is the absorption coeffi cient. Note that the transmitted plane wave has 
an intensity with only z-dependence.

4.8.3 Intensity and Absorbed Energy

In lithography, the intensity of light inside the resist fi lm is required in order to know 
the energy absorbed per unit volume in the resist, which in turn determines the amount 
of chemical change that occurs during exposure. The standard approach to photoresist 
exposure kinetics makes use of the Dill equation (to be discussed in more detail in 
Chapter 5),

 
d

d

m

t
CIm= −  (4.161)

where m is the relative concentration of photosensitive material, C is the exposure rate 
constant, and t is the exposure time. Obviously, Equation (4.161) makes use of a specifi c 
defi nition of intensity. What defi nition is used, and why?

A detailed study of the microscopic mechanism of absorption and exposure can be used 
to relate the exposure rate constant C to the molar absorptivity of the photosensitive 
component of the resist (see Chapter 5):

 C a N hc= Φ m Aλ  (4.162)

where Φ is the quantum effi ciency, am is the molar absorptivity of the photosensitive 
component, l is the vacuum wavelength, NA is Avogadro’s number, h is Planck’s constant, 
and c is the speed of light. The important aspect of this relationship is the direct pro-
portionality between the exposure rate constant and the molar absorptivity of the photo-
sensitizer (which is the absorption coeffi cient divided by the concentration of 
photosensitizer). Thus, the rate of exposure in Equation (4.161) is directly proportional 
to the absorption coeffi cient times the intensity of light. However, this same rate of expo-
sure is also directly proportional to the absorbed energy per unit volume of resist per 
second. After all, it is the absorbed energy that actually causes the chemical reactions to 
occur. Thus, our use of the intensity of light in the exposure rate Equation (4.161) must 
be based on the idea that

 Absorbed Energy volume time I/ / ∝α  (4.163)
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Our defi nition of intensity, for it to be useful in this application, must satisfy Equation 
(4.163). In fact, this can only be true if intensity is defi ned as the power per unit area 
perpendicular to the direction of travel. Consider fi rst Lambert’s law of absorption:
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d
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s
I= −α  (4.164)

where s is the direction of propagation of light. The change in intensity with s is just the 
absorbed power per unit volume when I is defi ned as power per unit area perpendicular 
to the direction of propagation. Further tying this defi nition of intensity together with the 
standard formulations for electric fi eld propagation, absorption is accounted for by the use 
of a complex refractive index. For a homogeneous fi lm, the solution to Lambert’s law is

 I x I s( ) = −
0e α  (4.165)

In phasor representation, a plane wave traveling in the s direction is written as

 E s A i s( ) = e /2π λn  (4.166)

Equation (4.166) will yield Equation (4.165) by applying the defi nition of intensity as 
given in Equation (4.138) if the absorption coeffi cient is related to the imaginary part of 
the refractive index by

 α πκ λ= 4 /  (4.167)

If the direction s makes an angle q with respect to the z-axis, then s = z/cosq and

 I z n A z I z( ) exp( cos ) exp( cos )= − = −2
0α θ α θ/ /  (4.168)

Thus, one can see that by defi ning intensity as the energy fl ux perpendicular to the direc-
tion of travel of the light, the use of an imaginary refractive index in the standard optics 
equations provides for a straightforward calculation of energy absorbed per unit volume 
of resist. It is the intensity within the resist fi lm, not J, the intensity projected along a 
surface parallel to the resist and substrate, that determines the amount of chemical change 
during exposure.

Problems

4.1. Imagine two plane waves moving in opposite directions along the z-axis. Using the 
time-dependent form of the waves rather than the phasor representation, the +z 
moving E-fi eld wave is given by

 U+(z,t) = A cos(wt − kz)

and the −z moving wave is

 U−(z,t) = A cos(wt + kz)

Show that the sum of these waves is separable in z and t (that is, can be expressed 
as product of a function of z and a function of t). Show that this results in an inten-
sity ‘standing wave’, that is, the time average of the square of the electric fi eld 
varies sinusoidally with position.
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4.2. Which of the following situations will result in the formation of standing waves? 
Explain your reasoning.
(a) the superposition of identical waves that travel in the same direction;
(b) the superposition of identical waves that travel in opposite directions;
(c) the superposition of waves that are nearly identical but of different amplitudes 

that travel in opposite directions;
(d) the superposition of nearly identical waves of slightly different frequencies that 

travel in the same direction.
4.3. Derive Equation (4.19).
4.4. The optical admittance of a material, h, at normal incidence is just its refractive 

index, n. For light traveling through that material at an angle q, the optical admit-
tance of the material for TE (s-polarized) and TM (p-polarized) waves are

 η θ η
θTE TM= =n

n
cos

cos

Show that by using optical admittance in the Fresnel formulas [Equation (4.29)], 
one obtains a single equation for refl ection for both polarizations that has the same 
form as the normally incident defi nition of Equation (4.8). What are the results for 
transmittance and how do they compare to Equation (4.7)?

4.5. Brewster’s angle is defi ned as the angle at which p-polarized light will have 
zero refl ectance at the interface between two materials. Derive an equation for 
Brewster’s angle. For p-polarized light incident on a photoresist-coated substrate 
at Brewster’s angle, what is the resulting swing amplitude?

4.6. For p-polarized light traveling at 45 ° with respect to the normal inside of a photo-
resist, no standing waves will occur since the incident and refl ected waves will have 
no overlap in their electric fi elds [see Equation (4.37)]. Will the resist swing curve 
similarly have zero amplitude at this angle? What if the light is traveling at 45 ° 
with respect to the normal in air? Explain.

4.7. Derive Equation (4.46) from Equation (4.45).
4.8. Derive an expression for the CD swing curve using Equations (4.51)–(4.53).
4.9. Derive Equation (4.84).
4.10. Calculate the swing ratio for a nominally 400-nm-thick 193-nm resist (assume 

typical properties) on a substrate of copper. What is the impact on this swing ratio 
if the maximum is at a greater thickness than the minimum, compared to the 
minimum at a greater thickness than the maximum?

4.11. Using the normal-incidence BARC solution given in Figure 4.16 for a 40-nm 
BARC thickness, what BARC thickness control is required to keep the BARC 
intensity refl ectivity below 0.5 %?

4.12. At 248 nm, a typical resist on silicon will result in a swing amplitude of about 0.69. 
Using a BARC with a refl ectivity of 1 %, the swing amplitude is reduced to about 
0.095. Ignoring absorption, what level of resist thickness control is required for 
each of these two cases (resist on silicon and resist on a 1 % refl ective BARC) to 
keep the effective dose error below 1 %.

4.13. Derive Equation (4.103), the refractive index of an ideal TARC.
4.14. As an example of the use of Equation (4.100), consider a 193-nm resist with 

n2 = 1.7, a = 1.2 mm−1, D = 200 nm and |r12| = 0.26. Suppose that 2 % dose error 
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due to resist thickness variations was considered acceptable. Generate a plot of 
maximum allowed substrate refl ectivity (|r23|2) as a function of the resist thickness 
variation ∆.

4.15. What will be the impact of using immersion lithography (versus dry lithography at 
the same numerical aperture) in terms of the contrast of the image-in-resist for 
unpolarized illumination? Explain.

4.16. Derive Equation (4.117) from Equation (4.116).
4.17. For light incident on a plane interface between two materials, use Equation (4.141) 

to show that R + T = 1 for each polarization.
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5
Conventional Resists: Exposure and 

Bake Chemistry

Photoresists work by converting a spatial distribution of energy (the projected image of 
a photomask) into a spatial distribution of solubility of the resist in a developer. The fi rst 
step in this chemical process is exposure, where a light-sensitive component of the resist 
forms a latent image in response to the aerial image. For so-called ‘conventional’ resists 
used for g-line and i-line exposures, the exposure products directly change the solubility 
of the resist. For a chemically amplifi ed resist (discussed in the next chapter), a post-
exposure bake is used to thermally induce a second chemical reaction, the product of 
which changes the solubility of the resist. In both cases, understanding the nature of the 
image transfer from a light distribution to a chemical distribution requires an understand-
ing of the chemical kinetics of each of the reactions.

While this chapter deals with conventional resists, which are used only for the older 
g-line and i-line lithography processes, virtually all of the topics discussed here apply to 
chemically amplifi ed resists as well. In a sense, chemically amplifi ed resists are a tech-
nological superset of conventional resists. Thus, the discussion of chemically amplifi ed 
resists in the next chapter will assume a familiarity with the material in this chapter.

5.1 Exposure

The kinetics of photoresist exposure is intimately tied to the phenomenon of absorption. 
The discussion below begins with a description of absorption, followed by the photo-
chemical kinetics of exposure.

5.1.1 Absorption

The fi rst law of photochemistry (also called the Grotthuss–Draper law) states quite 
simply that only light that is absorbed is effective at causing chemical change. Thus a 
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photochemical reaction, such as the exposure of photoresist, must necessarily begin with 
the absorption of light. The phenomenon of absorption can be viewed on a macroscopic 
or a microscopic scale. On the macroscopic level, absorption is described by the familiar 
Lambert and Beer laws, which give a linear relationship between absorbance and path 
length multiplied by the concentration of the absorbing species. On the microscopic level, 
a photon is absorbed by an atom or molecule, promoting an electron to a higher energy 
state. Both methods of analysis yield useful information needed to describe the effects of 
light on a photoresist.

The basic law of absorption is an empirical one called Lambert’s law. It was expressed 
by Johann Heinrich Lambert in 1760, though it was in fact fi rst proposed some years 
earlier by Pierre Bouguer and is sometimes called the Lambert–Bouguer law. It can be 
expressed in differential form as

 
d

d

I

z
I= −α  (5.1)

where I is the intensity of light traveling in the z-direction through a medium, and a is 
the absorption coeffi cient of the medium and has units of inverse-length. This law is 
basically a single photon absorption probability equation: the probability that a photon 
will be absorbed over some small distance traveled is proportional to the photon fl ux 
(i.e. the intensity). In a homogeneous medium (i.e. a is not a function of z), Equation 
(5.1) may be integrated to yield

 I z I z( ) = −
0e α  (5.2)

where z is the distance the light has traveled through the medium and I0 is the intensity 
at z = 0. Note that the integrated form of the Lambert’s law requires a homogeneous 
material. If the medium is inhomogeneous, Equation (5.2) becomes

 I z I Abs z( ) ( )= −
0e  (5.3)

where Abs z z z the absorbance
z

( ) ( )= ′ ′ =∫α d
0

When working with electromagnetic radiation, it is often convenient to describe the 
radiation by its complex electric fi eld vector. The propagation of an electric fi eld through 
some material can implicitly account for absorption by using a complex index of refrac-
tion n for the material such that

 n = +n iκ  (5.4)

The imaginary part of the index of refraction k is related to the absorption coeffi cient by

 α πκ λ= 4 /  (5.5)

where l is the vacuum wavelength of the propagating light. Note that the sign of the 
imaginary part of the index in Equation (5.4) depends on the sign convention chosen for 
the phasor representation of the electric fi eld (see Chapter 2).

In 1852, August Beer showed that for dilute solutions of an absorbing material in a 
nonabsorbing solvent, the absorption coeffi cient is proportional to the concentration of 
the absorbing species in the solution:
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 αsolution = a Ci i  (5.6)

where ai is the molar absorption coeffi cient (sometimes called the extinction coeffi cient) 
of some absorbing species labeled i (given by ai = aıMW/r, where ai is the absorption 
coeffi cient of the pure material, MW is its molecular weight, r is its density) and Ci is 
the concentration. The stipulation that the solution be dilute expresses a fundamental 
limitation of Beer’s law. At high concentrations, where absorbing molecules are close 
together, the absorption of a photon by one molecule may be affected by a nearby mole-
cule. Since this interaction is concentration dependent, it causes deviation from the linear 
relation of Equation (5.6). Also, an apparent deviation from Beer’s law occurs if the real 
part of the index of refraction changes appreciably with concentration. Thus, the validity 
of Beer’s law should always be verifi ed experimentally over the concentration range of 
interest.

While generally described for solutions, Beer’s law can also be applied to solid mix-
tures. For an N component homogeneous solid, the overall absorption coeffi cient 
becomes

 αT i i
i

N

a C=
=
∑

1

 (5.7)

The linear addition of absorption terms presumes that Beer’s law holds across compo-
nents, i.e. that the absorption by one material is not infl uenced by the presence of the 
other materials. Of the total amount of light absorbed, the fraction of light that is absorbed 
by component i is given by
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I

a CAi

AT

i i

T
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α

 (5.8)

where IAT is the total light absorbed by the fi lm, and IAi is the light absorbed by component 
i.

We will now apply the concepts of macroscopic absorption to a typical positive 
photoresist. For g-line (436 nm) and i-line (365 nm) lithography, the most common 
resists are of the diazonaphthoquinone/novolac variety. These positive photoresists are 
made up of three major components: a base novolac resin that gives the resist its structural 
properties and etch resistance; a photoactive compound (PAC; this is the light-sensitive 
component in the resist, also known as the sensitizer) called a diazonaphthoquinone 
(DNQ); and a solvent that renders these components into liquid form for spin coating. 
(Although photoresist drying during post-apply bake is intended to drive off solvents, a 
resist may contain up to 10 % solvent after a typical post-apply bake – see section 5.2.2.) 
Denoting the resin R, the sensitizer M and the solvent S, a fourth component appears 
during exposure: exposure products P generated by the reaction of M with ultraviolet 
(UV) light.

 M PUV →  (5.9)

Applying Beer’s law, the absorption coeffi cient a is then

 α = + + +a M a P a R a SM P R S  (5.10)
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Since P is being produced and M is disappearing through the exposure process, this equa-
tion makes it clear the a will be changing during exposure. If M0 is the initial sensitizer 
concentration (i.e. with no exposure), the stoichiometry of the exposure reaction gives

 P M M= −0  (5.11)

Equation (5.10) may be rewritten as

 α = +Am B  (5.12)

where A = (aM − aP) M0

 B = aPM0 + aRR + aSS
 m = M/M0 = the relative sensitizer concentration.

A and B are called the bleachable and nonbleachable absorption coeffi cients, respec-
tively, and make up the fi rst two Dill photoresist parameters.1 Other nonbleachable com-
ponents of the photoresist (such as a dye additive, leveling agents to reduce striations 
during spin coating, etc.) are added to the B term above. Note that when A > 0, the pho-
toresist will become more transparent as it is exposed (that is, the photoresist ‘bleaches’). 
If A is negative, the resist will darken upon exposure.

The quantities A and B are experimentally measurable and can be easily related to 
typical resist absorbance curves, measured using a UV spectrophotometer. When the resist 
is fully exposed, M = 0 and

 αexposed = B  (5.13)

Similarly, when the resist is unexposed, m = 1 (M = M0) and

 αunexposed = +A B  (5.14)

From this, A may be found by

 A = −α αunexposed exposed  (5.15)

Thus, A(l) and B(l) may be determined from the UV absorbance curves of unexposed 
and completely exposed resist (Figure 5.1). A more complete description of the measure-
ment of A and B will be given at the end of this chapter.

As mentioned previously, Beer’s law is empirical in nature and consequently should 
be verifi ed experimentally. In the case of positive photoresists, this means formulating 
resist mixtures with differing sensitizer to resin ratios and measuring the resulting A 
parameters. Previous work has shown that Beer’s law was valid for a typical conventional 
photoresist over the full practical range of sensitizer concentrations.2

5.1.2 Exposure Kinetics

The kinetics of exposure is best understood by considering absorption on the microscopic 
scale. On a microscopic level, the absorption process can be thought of as photons 
being absorbed by an atom or molecule causing an outer electron to be promoted to a 
higher energy state. The absorption of a photon can have three possible results: the 
absorbed energy can be dissipated as heat (lattice vibrations); it can be re-emitted as 
another photon (fl uorescence); or it can lead to a chemical reaction. It is the third outcome 
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that is important for the sensitizer since it is the absorption of UV light that leads to 
the chemical conversion of M to P as seen in Equation (5.9). Einstein fi rst quantifi ed 
absorption on a microscopic (quantum) scale in 1916–1917 by using probabilities of 
possible absorption events. Here, we will ignore stimulated absorption by assuming a 
reasonably low light intensity so that at any given time relatively few molecules will be 
in the excited state.

Consider a substance M being exposed to quasi-monochromatic radiation. Since the 
speed of light is constant in a given material, the Lambert law can be converted to a 
kinetic absorption equation by letting dz = vdt where v is the speed of light (the rate at 
which new photons arrive). The rate of photon absorption by the molecule M is propor-
tional to NM (the number density of M), the number of photons, and the molecule’s 
absorption cross section sM−abs:

 − = −
d

d
abs

ϕ σ ϕM
M M M

t
vN  (5.16)

where jM is the number density of photons. The intensity I is an energy fl ux – the amount 
of energy per unit area per second – and can be related to the photon fl ux (the photon 
density times the speed the photons are traveling) multiplied by the energy of one 
photon:

 I v
hc

M= 



ϕ

λ
 (5.17)

where h is Planck’s constant and c is the speed of light in vacuum. Einstein’s relation for 
photon absorption is

 − = 





=−
d

d
/abs E

ϕ σ λM
M M M

t
N

hc
I N B I v  (5.18)

Wavelength (nm)

0.0

0.3

0.6

0.9

1.2

1.5

300 340 380 420 460 500

A

B

R
es

is
tA

 a
nd

 B
 (

1/
µm

)

Figure 5.1 Resist parameters A and B as a function of wavelength measured with a UV 
spectrophotometer for a typical g-line resist (a 5-arylsulfonate DNQ)
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where BE is Einstein’s coeffi cient of absorption for material M (the probability per unit 
time per unit energy density of the radiation fi eld that the photon will be absorbed by a 
molecule of M, sometimes written as B12). Note that I/v represents the energy density of 
the photons.

In order to relate Equation (5.18) to measurable quantities, one must relate the micro-
scopic theory to macroscopic observations. The absorption cross section of the molecule 
M can be related to its molar absorptivity by

 σ α
M

M

M

M

N
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N
− = =abs
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 (5.19)

where NA is Avogadro’s number (6.022 × 1023 atoms/mol). Einstein’s coeffi cient of 
absorption for material M is the speed of light times the absorption cross section divided 
by the energy of one photon:
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where n is the refractive index of the resist.
As an example of the use of this microscopic absorption analysis, consider a typical 

g-line resist of density 1.2 g/ml. For a PAC with molecular weight 400 g/mol formulated 
at 30 % by weight, the initial PAC concentration will be 0.9 molar (moles/liter). Since aP 
is very small for these resists, aM is about equal to the Dill bleachable absorption coeffi -
cient divided by the initial PAC concentration. For A = 0.63 mm−1, this gives aM = 7 × 
106 cm2/mol. The resulting PAC absorption cross section is about 0.12 Å2. Since the 
energy of one photon at this wavelength is 4.56 × 10−19 J, the resulting Einstein coeffi cient 
of absorption is about 4.7 × 105 m3/J-s.

The actual chemistry of diazonaphthoquinone exposure is given by3
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 (5.21)

where R is a moderate to large molecular weight ballast group (in some cases R is connected 
to the polymer resin). The DNQ converts to an indene intermediate before converting to its 
fi nal product, a carboxylic acid. It is interesting to note that nitrogen gas is given off (it dif-
fuses quickly out of the fi lm during exposure) and that water is required for this reaction. 
Water is supplied by the humidity in the atmosphere, which is one reason why clean room 
humidity levels are tightly controlled (usually at a set point of around 40 % relative humid-
ity). If the relative humidity of the clean room environment drops below about 30 %, the 
above DNQ exposure reaction will not go to completion. Instead, the intermediate ketene 
will slowly react with the novolac resin to form an ester (more on this in section 5.2.1).

The chemical reaction in Equation (5.9) can be rewritten in a more general form as

 M M k P
k

k

1

2

3 →←   →*  (5.22)
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where M is the sensitizer, M* is the sensitizer molecule in an excited state, P is the indene 
carboxylic acid (product), and k1, k2, k3 are the rate constants for each reaction. Simple 
kinetics can now be applied. The proposed mechanism in Equation (5.22) assumes that 
all reactions are fi rst order. Thus, the rate equation for each species can be written.
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A system of three coupled linear fi rst-order differential equations can be solved exactly 
using Laplace transforms and the initial conditions
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 (5.24)

However, if one uses the steady-state approximation, the solution becomes much simpler. 
This approximation assumes that in a very short time the excited molecule M* comes to 
a steady state, i.e. M* is formed as quickly as it disappears. In mathematical form,
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The intermediate M* does indeed come to a steady state quickly, on the order of 10−8 
seconds or faster.4 Thus,
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The overall rate constant K is proportional to the intensity of the exposure radiation. 
The rate constant k1 will be proportional to the rate of photon absorption (by the Grot-
thuss–Draper law), which in turn is proportional to the photon fl ux (by Lambert’s law), 
and thus the intensity. A more useful form of Equation (5.26) is then
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where the relative sensitizer concentration m (= M/M0) has been used and C is the standard 
exposure rate constant and the third Dill photoresist parameter (collectively, the three Dill 
parameters are also called the ABC parameters). A more thorough microscopic analysis 
of the exposure process allows this exposure rate constant to be broken down into the 
product of the absorption cross section of the sensitizer and the quantum yield of the 
reaction (the fraction of absorbed photons that produce the chemical change, Φ):
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Maximum resist sensitivity comes from high quantum effi ciency, all absorption coming 
from the sensitizer, and an absorption coeffi cient adjusted to be one over the thickness of 
the resist (see Problem 5.2).

A solution to the exposure rate Equation (5.27) is simple if the intensity within the 
resist is constant throughout the exposure (i.e. when A = 0). Integrating Equation (5.27) 
gives

 m CIt= −e  (5.29)

where Dose I t It
t

= =∫ d
0

 for the case of constant intensity during the exposure process.

This result illustrates an important property of fi rst-order kinetics called reciprocity. The 
amount of chemical change is controlled by the product of light intensity and exposure 
time. Doubling the intensity and cutting the exposure time in half will result in the exact 
same amount of chemical change. This product of intensity and exposure time is called 
the exposure dose or exposure energy. This idea can be made more usefully explicit by 
relating the exposure dose at some point inside the resist to the exposure dose incident 
on the resist. For either the simple case of absorption as shown in Equation (5.2) or (5.3), 
or for the more general case of standing waves in the resist fi lm as described in Chapter 
4, the intensity in the resist I(z) is always directly proportional to the incident intensity 
Iinc. Thus,

 I x y z I I x y z( ) ( ), , , ,inc r=  (5.30)

where Ir is the relative intensity, that is, the intensity in the resist assuming a unit incident 
intensity. Equation (5.29) can now be rewritten as

 m x y z CDose I x y z( ) exp[ ( )], , , ,inc r= −  (5.31)

where Doseinc is the incident exposure dose. Reciprocity exists whenever all instances of 
exposure time and incident intensity can be replaced by incident dose in an expression 
for the fi nal latent image m(x,y,z).

Reciprocity failures can occur when mechanisms other than the fi rst-order kinetics 
shown here become signifi cant. For example, an insuffi cient supply of water during 
exposure can lead to reciprocity failure if high intensity exposures use up water in the 
resist fi lm faster than water from the atmosphere can diffuse back into the photoresist. 
Reciprocity failure can also result from high intensities that heat up the resist during 
exposure, causing a temperature-dependent change in the molar absorptivity or the 
quantum yield.

For many resists, especially the conventional DNQ resists popular for g-line and i-line 
exposure, the intensity within the resist is not constant during exposure. In fact, many 
resists bleach upon exposure, that is, they become more transparent as the sensitizer M 
is converted to product P. This corresponds to a positive value of A, as seen, for example, 
in Figure 5.1. Since the intensity varies as a function of exposure time, this variation must 
be known in order to solve the exposure rate equation. In the simplest possible case, a 
resist fi lm coated on a substrate of the same index of refraction, only absorption affects 
the intensity within the resist. Thus, Lambert’s law of absorption, coupled with Beer’s 
law, could be applied:
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where Equation (5.12) was used to relate the absorption coeffi cient to the relative sensi-
tizer concentration. Equations (5.29) and (5.32) are coupled, and thus become fi rst-order 
nonlinear partial differential equations that must be solved simultaneously. Equations 
(5.29) and (5.32) were fi rst solved analytically by Herrick:5
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where y is a dummy variable for the purposes of integration, and
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The sensitizer concentration at the top of the resist, m(0), is obtained from the nonbleach-
ing solution [Equation (5.29)] since the intensity at the top of a bleaching resist on a 
nonrefl ecting substrate does not change during exposure. For many g-line and i-line 
resists, A >> B. Thus, at least near the beginning of exposure, B can often be safely 
neglected (i.e. Am >> B). Under these conditions, the integral in Equation (5.33) can be 
solved exactly (by setting B = 0) giving
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Although an analytical solution exists for the simple problem of exposure with absorp-
tion only, in more realistic problems the variation of intensity with depth in the fi lm is 
more complicated than Equation (5.32). In fact, the general exposure situation results in 
the formation of standing waves, as discussed in Chapter 4. Thus, numerical solutions to 
the time-varying intensity and chemical composition of the fi lm during exposure will 
almost certainly be required whenever a bleaching photoresist fi lm is used.

The fi nal result of exposure is the conversion of an image intensity in resist Ir(x,y,z) 
into a latent image m(x,y,z). Figure 5.2 illustrates a one-dimensional case.

5.2 Post-Apply Bake

Baking a resist may have many purposes, from removing solvent to causing chemical 
amplifi cation. In addition to the intended results, baking may also cause numerous unin-
tended outcomes. For example, the light-sensitive component of the resist may decompose 
at temperatures typically used to remove solvent. The solvent content of the resist can 
impact diffusion and amplifi cation rates for a chemically amplifi ed resist. Also, all aspects 
of baking will probably affect the dissolution properties of the resist. Baking a photoresist 
remains one of the most complicated and least understood steps in the lithographic 
process.



200 Fundamental Principles of Optical Lithography

The post-apply bake (PAB) process, also called a softbake or a prebake, involves drying 
the photoresist after spin coating by removing excess solvent. There are four major effects 
of removing solvent from a photoresist fi lm: (1) fi lm thickness is reduced and stabilized 
(i.e. becomes relatively independent of the time spent waiting for exposure and develop-
ment); (2) post-exposure bake and development properties are changed; (3) adhesion is 
improved; and (4) the fi lm becomes less tacky and thus less susceptible to particulate 
contamination. Unfortunately, there are other consequences of baking many photoresists. 
For conventional resists, the photosensitive component may begin to decompose at tem-
peratures greater than about 70 °C6 (for chemically amplifi ed resists, decomposition 
begins at much higher temperatures). Thus, one must search for the optimum post-apply 
bake conditions that will maximize the benefi ts of solvent evaporation while maintaining 
a tolerable level of sensitizer decomposition.

5.2.1 Sensitizer Decomposition

When heated to temperatures above about 70–80 °C, the sensitizer of a DNQ-type positive 
photoresist begins to decompose to a nonphotosensitive product. The initial reaction 
mechanism is thought to be identical to that of the sensitizer reaction during ultraviolet 
exposure.6,7
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The possible identity of the product or products X will be discussed below.
To determine the concentration of sensitizer M as a function of post-apply bake time 

and temperature, consider the fi rst-order decomposition reaction,
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 M X∆ →  (5.37)

If we let M ′0 be the concentration of sensitizer before post-apply bake and M0 the concen-
tration of sensitizer after post-apply bake, simple kinetics tells us that
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where tb is the post-apply bake time, KT is the decomposition rate constant at the absolute 
temperature T and m′ = M0/M ′0, the fraction of sensitizer remaining after the bake. The 
dependence of KT upon temperature can be described by the Arrhenius equation,

 K AT
E RT= −

r
/e a  (5.39)

where Ar is the Arrhenius coeffi cient, Ea is the activation energy of the reaction, R is the 
universal gas constant (1.98717 cal/mole-K or 8.31431 J/mole-K), and T is the absolute 
temperature (K). Thus, the two parameters Ea and Ar allow us to know m′ as a function 
of the post-apply bake conditions, provided Arrhenius behavior is followed. In polymer 
systems, caution must be exercised since bake temperatures near the glass transition 
temperature sometimes lead to non-Arrhenius behavior. For normal post-apply bakes of 
typical photoresists, the Arrhenius model appears well founded.

The effect of this decomposition is a change in the chemical makeup of the photoresist. 
Thus, any parameters which are dependent upon the quantitative composition of the resist 
are also dependent upon post-apply bake. The most important of these parameters fall 
into three categories: (1) optical (exposure) parameters such as the resist absorption coef-
fi cient; (2) diffusion parameters during post-exposure bake; and (3) development param-
eters such as the development rates of unexposed and completely exposed resist. A 
technique will be described to measure Ea and Ar and thus begin to quantify these effects 
of post-apply bake.

In the Dill model of exposure described in the previous section, the exposure of a posi-
tive photoresist can be characterized by the three parameters A, B and C, as given in 
Equations (5.12) and (5.29). These expressions do not explicitly take into account the 
effects of post-apply bake on the resist composition. To do so, we can modify Equation 
(5.12) to include absorption by the component X:

 B a M a R a XP R X= + +0  (5.40)

where aX is the molar absorption coeffi cient of the decomposition product X (and the 
absorption term for the solvent has been neglected for simplicity). The stoichiometry of 
the decomposition reaction gives

 X M M= ′ −0 0  (5.41)

Thus,

 B a M a R a M MP R X= + + ′ −0 0 0( )  (5.42)

Let us consider two cases of interest, no bake (NB) and full bake (FB). When there is 
no post-apply bake (meaning no decomposition), M0 = M ′0 and
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We shall defi ne ‘full bake’ as a post-apply bake which decomposes all of the sensitizer. 
Thus M0 = 0 and
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Using these special cases in our general expressions for A and B, we can show explicitly 
how these two parameters vary with sensitizer decomposition:

 A A m

B B B B m

= ′
= − − ′

NB

FB FB NB( )
 (5.45)

The A parameter decreases linearly as decomposition occurs, and B typically increases 
slightly (since BFB is typically slightly higher than BNB).

The development rate, as we shall see in Chapter 7, is dependent on the concentration 
of PAC in the photoresist. However, the product X can also have a large effect on the 
development rate. There are two likely products and the most common outcome of a 
post-apply bake decomposition is a mixture of the two. The fi rst product is formed via 
the reaction below and is identical to the product of UV exposure.

 
SO2

R

C=O

+   H2O

SO2

R

COOH

 

(5.46)

As can be seen, this reaction requires the presence of water. A second reaction, which 
does not require water, is the esterifi cation of the ketene with the novolac resin.
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Both possible products have a dramatic effect on dissolution rate. The carboxylic acid is 
very soluble in developer and enhances dissolution. The formation of carboxylic acid can 
be thought of as a blanket exposure of the resist. The dissolution rate of unexposed resist 
(rmin) will increase due to the presence of the carboxylic acid. The dissolution rate of fully 
exposed resist (rmax), however, will not be affected. Since the chemistry of the dissolution 
process is unchanged, the basic shape of the development rate function will also remain 
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unchanged. The ester, on the other hand, is very diffi cult to dissolve in aqueous solutions 
and thus retards the dissolution process. It will have the effect of decreasing rmax, although 
the effects of ester formation on the full dissolution behavior of a resist are not well 
known.

If the two mechanisms given in Equations (5.46) and (5.47) are taken into account, the 
rate Equation (5.38) will become
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where k1 and k2 are the rate constants of Equations (5.46) and (5.47), respectively. For a 
given concentration of water in the resist fi lm, [H2O], this reverts to Equation (5.38) 
where

 K k kT = +1 2[ ]H O2  (5.49)

Thus, the relative importance of the two reactions will depend not only on the ratio of 
the rate constants but on the amount of water in the resist fi lm. The concentration of water 
is a function of atmospheric conditions during the bake and the past history of the resist-
coated wafer.

Examining Equation (5.45), one can see that the parameter A can be used as a means 
of measuring m′, the fraction of sensitizer remaining after post-apply bake. Thus, by 
measuring A as a function of post-apply bake time and temperature, one can determine 
the activation energy and the corresponding Arrhenius coeffi cient for the proposed decom-
position reaction. Figure 5.3a shows the variation of the resist parameter A with post-apply 
bake conditions for one particular resist.8 According to Equations (5.38) and (5.45), this 
variation should take the form
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Thus, a plot of ln(A) versus bake time should give a straight line with a slope equal to 
−KT. This plot is shown in Figure 5.3b. Knowing KT as a function of temperature, one 
can determine the activation energy and Arrhenius coeffi cient from Equation (5.39). One 
should note that the parameters ANB, BNB and BFB are wavelength dependent, but Ea and 
Ar are not.

Figure 5.3 shows an anomaly in which there is a lag time before decomposition occurs. 
This lag time is the time it took the wafer and wafer carrier to reach the temperature of 
the convection oven. Equation (5.38) can be modifi ed to accommodate this phenomena,

 ′= − −( )m K t tTe b wup  (5.51)

where twup is the warm-up time. A lag time of about 11 minutes was observed when con-
vection oven baking a 1/4″-thick glass substrate in a wafer carrier. For a silicon wafer on 
a proximity hot plate, the warm-up time is on the order of 15–20 seconds.

From the data presented in Figure 5.3b, the activation energy is 30.3 Kcal/mol and 
the natural logarithm of the Arrhenius coeffi cient (in 1/minute) is 35.3. Thus, a 100 °C, 



204 Fundamental Principles of Optical Lithography

30-minute convection oven post-apply bake would decompose 11 % of the photoactive 
compound. The nature of the decomposition product (the identity of X) will also affect 
the value of BFB. If thermal decomposition leads to generation of both carboxylic acid 
and ester, only the ester will affect the change of B from BNB to BFB. In this case, Equation 
(5.44) must be modifi ed to take into account the fraction of PAC that decomposes into 
ester, f, by replacing aX with aXf + (1 − f)aP.

The examples given above for photoactive compound decomposition all involve DNQ/
novolac resist systems used at g-line and i-line exposure wavelengths. For these systems, 
typical bake temperatures always result in some (hopefully small) amount of sensitizer 
decomposition. However, for chemically amplifi ed resists, the photoacid generators are 
much more thermally stable . Typical post-apply bake temperatures result in essentially 
no thermal decomposition of the chemically amplifi ed sensitizer.
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5.2.2 Solvent Diffusion and Evaporation

Thermal processing of photoresists (post-apply bake and post-exposure bake) can dra-
matically infl uence resist performance in a number of ways. It is well known that residual 
solvent has a powerful infl uence on the dissolution rate of thin polymer fi lms and that 
post-apply bake (PAB) determines the resist’s residual solvent content. However, quan-
titative determination of the infl uence of bake conditions on residual solvent is diffi cult. 
In order to describe solvent evaporation during the baking of a photoresist, a model for 
how the diffusivity varies during the bake (that is, as a function of the changing photoresist 
fi lm composition) must be established. In this section, a historical review of the Fujita–
Doolittle equation for solvent diffusivity is given. Then, modifi cations to this equation 
are proposed to improve its accuracy and dynamic range as needed for its use in describ-
ing PAB.

The infl uence of temperature, molecular weight and chemical composition on the 
physical and mechanical properties of polymers is a diffi cult but important topic of study. 
Since the early 1950s the use of a ‘free-volume’ description of physical relaxation phe-
nomena in polymers and other materials has proven extremely useful. Although the idea 
that the free, unoccupied volume in a liquid or solid greatly infl uences the physical prop-
erties of the material is quite old, it was fi rst applied successfully by Arthur Doolittle in 
1951.9

Doolittle described the infl uence of temperature on the viscosity of a liquid in two 
steps: the viscosity depends on the free volume in the liquid, and this free volume depends 
on temperature. The fraction of the volume of a liquid which is free, that is, unoccupied 
by the molecules of the liquid, was expressed as

 v
V V

V
f = − 0  (5.52)

where vf is the free volume fraction, V is the volume that a specifi ed mass of the liquid 
occupies at some temperature T, and V0 is the volume occupied by the liquid extrapolated 
to zero absolute temperature assuming no phase change. The assumption here is that the 
‘liquid’ extrapolated to absolute zero will contain no free volume and that the thermal 
expansion of the liquid is due completely to the creation of free volume. Although the 
fi rst assumption seems quite reasonable, the second is probably less accurate. Thermal 
expansion of the liquid will undoubtedly lead to free volume formation, but the increased 
vibrations of the liquid molecules will also lead to an increased ‘occupied’ volume, the 
volume that is occupied by the molecule to the exclusion of other molecules. Doolittle’s 
free volume expression can be modifi ed by multiplying by z, the fraction of the increased 
volume which is actually free. Thus,

 v
V V

V
f = −ζ 0  (5.53)

where the magnitude of z for a liquid is probably close to unity, but for a solid could be 
considerably smaller.

The diffi culty in measuring the free volume is in determining the value of V0. Doolittle 
attempted this by measuring the density of a liquid as a function of temperature, fi tting 
this data to an empirical equation, then extrapolating to zero temperature. With this 
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empirically determined temperature dependence for the free volume of the liquid, Doo-
little then showed that experimental viscosity data as a function of temperature behaved 
as

 η = A B ve / f  (5.54)

where h is the viscosity and A and B are empirical constants. Equation (5.54) was found 
to match the experimental data over a wider range of temperatures much better than any 
of the other empirical expressions in common use at the time, lending credence to this 
free volume interpretation. Interestingly, the experimental value of B obtained by Doo-
little was very close to unity (0.9995) and the free volume of the liquid ranged from 0.22 
to 0.68 over the temperatures studied.

Others began applying the ideas of free volume to polymer systems. Describing both 
viscosity and diffusion processes in polymers by the same mechanism, Bueche10 calcu-
lated the probability that suffi cient free volume would be available to allow movement 
of the polymer. Relaxation processes (i.e. processes that are limited by the movement of 
the polymer) were thought to include such phenomena as viscous fl ow and diffusion. 
Thus, describing the rate at which a polymer moved was the fi rst step in defi ning other 
relaxation rates. Since the polymer segments are vibrating as a function of temperature, 
the volume occupied by the polymer will have a thermodynamically controlled probability 
distribution about the average volume per polymer segment. If the volume occupied by 
the polymer segment exceeds some critical volume, the polymer segment can move or 
‘jump’ to a new confi guration. Thus, by integrating the volume probability from this 
critical volume to infi nity, the frequency of jumps can be determined. In turn, the viscosity 
is almost completely controlled by this jump frequency. By comparing this theory with 
experimental polymer viscosity data, the temperature dependence of the average volume 
of a polymer segment was deduced.

For temperatures above the glass transition temperature of the polymer, Bueche 
described the polymer volume by

 V V TT= + +( )g 1 1 2( )α α  (5.55)

where VTg is the volume at the glass transition temperature, a1 is the coeffi cient of thermal 
expansion of the solid-like polymer below the glass transition temperature, and a1 + a2 
is the thermal expansion coeffi cient of the liquid-like polymer above the glass transition 
temperature. This abrupt change in the coeffi cient of thermal expansion is considered one 
of the fundamental indicators of the glass transition phenomenon. Both a1 and a2 typically 
have magnitudes on the order of 5 × 10−4 K−1 for most polymers.

Fox and Flory measured the specifi c volume of polystyrene11 and polyisobutylene12 as 
a function of temperature for many molecular weights and found that Equation (5.55) was 
quite adequate. Bueche and Fox and Flory went on to speculate that of the total volume 
expansion given by Equation (5.55), only the a2 term resulted in the generation of free 
volume. Essentially, they argued that z of Equation (5.53) was very small for the solid-
like behavior of the polymer, and that the excess volume that comes from thermal expan-
sion above the glass transition temperature is all free volume. Thus,
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= ≤
= + − ≥

,

( ),α2

 (5.56)
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where Tg is the glass transition temperature and vg is the fractional free volume 
at Tg.

The power of the free volume approach to relaxation mechanisms is that the funda-
mental relationship of the relaxation mechanism to free volume is independent of the 
mechanism by which free volume changes. Fujita, Kishimoto and Matsumoto13 used this 
fact to expand the Doolittle model to include the effect of small amounts of solvent in 
the polymer. Solvent dissolved in a polymer results in additional free volume which in 
turn increases diffusivity and decreases viscosity. Fujita et al. modifi ed the free volume 
Equation (5.56) to include solvent content:

 v v T Tf g g s= + − +α βφ2( )  (5.57)

where fs is the fractional volume of solvent and b describes the fraction of this 
solvent volume which can be considered free. Here, Tg is usually considered the glass 
transition temperature of the completely dry (no dissolved solvent) polymer. For the 
polymethyl acrylate polymer and four different solvents studied by Fujita, b was found 
to be 0.19.

The Fujita–Doolittle equation has been used extensively to characterize the change in 
solvent diffusivity with changing solvent concentration. There are, however, constraints 
to this approach that have led some workers in this fi eld to criticize its use and to look 
to alternate expressions. In particular, higher solvent concentration causes a dilution of 
the polymer-induced free volume with the addition of solvent. A correction for this effect 
gives14

 v v T Tf s g g s= − + − +( ) ( )1 2φ α φ β  (5.58)

Equation (5.58) is a more accurate form of the Fujita free volume expression which is 
valid for higher concentrations of solvent, while still requiring the same number of param-
eters as the original free volume expression.

The fi nal expression for free volume, Equation (5.58), can now be combined with the 
Doolittle equation to give a modifi ed Fujita–Doolittle equation for the diffusivity D of a 
solvent in a polymer matrix as a function of temperature and solvent content.

 D A B v= −e / f  (5.59)

Letting D0 be the minimum diffusivity, that is the diffusivity in the limit of no solvent 
content and T = Tg,

 D A B v
0 = −e / g  (5.60)

Thus, Equation (5.59) can be rearranged as

 D = D0e−B(1/vf −1/vg)

where

 v v T Tf s g g s= − + − +( ) ( )1 2φ α φ β  (5.61)

It will often be more convenient to describe the solvent content as a mass fraction rather 
than a volume fraction. Letting x be the mass fraction and r the density,
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where the subscripts ‘s’ and ‘p’ refer to solvent and polymer, respectively.
Based on previous work, the order of magnitude for each of the terms in Equation 

(5.62) is known. Doolittle and Williams et al.15 found B to be approximately 1.0, while 
Fujita et al. found B = 0.73. Cohen and Turnbull16 limit B to be between 0.5 and 1 (their 
so-called geometric factor). The Williams, Landel and Ferry (WLF) equation predicts 
vg = 0.025 and a2 = 4.8 × 10−4 K−1, but further work by Ferry17 found values of vg/B 
between 0.013 and 0.07, with most of the data between 0.02 and 0.035, and values of a2 
between 1 and 11 × 10−4 K−1, with most data between 3 and 5 × 10−4 K−1. Fox and Flory 
found a2 = 3 × 10−4 K−1. Fujita found b to be 0.19, and in any case it must be ≤1.0. The 
value of b′ should be similar. From these typical numbers and the diffusivity model given 
above, one can see that the diffusivity of solvent changes by four to six orders of magni-
tude during the course of a typical post-apply bake.

Using this solvent diffusion model, one can predict the impact of PAB time and tem-
perature on the fi nal resist thickness and the resulting solvent distribution as a function 
of depth into the resist at the end of the bake. Such modeling provides for a very interest-
ing result. Any combination of initial resist thickness and initial solvent content that pro-
duces a certain fi nal resist thickness always results in essentially the same solvent 
distribution in the resist at the end of the bake. Figure 5.4 shows the distribution of solvent 
left in the resist at the end of a 60-second bake of various temperatures using the param-
eters from Table 5.1.

Another consequence of using the modifi ed Fujita–Doolittle equation is a prediction 
of how solvent diffusivity varies with temperature. Using the parameters from Table 5.1, 
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Figure 5.4 Predicted variation of solvent concentration as a function of depth into the resist 
at the end of a 60-second post-apply bake



 Conventional Resists: Exposure and Bake Chemistry 209

and assuming a solvent mass fraction of 0.05, an Arrhenius plot of solvent diffusivity is 
given in Figure 5.5. There is a large discontinuity at the glass transition temperature, since 
the model assumes such a discontinuity as a consequence of Equation (5.56). Note that 
above the glass transition temperature, the behavior is non-Arrhenius, that is, the curve 
is not perfectly linear in the Arrhenius plot of Figure 5.5.

5.2.3 Solvent Effects in Lithography

Residual solvent in the fi lm after baking can have two signifi cant effects on the lithographic 
performance of a photoresist. Just as residual solvent increases the free volume and thus 
the diffusivity of solvent during PAB, any residual solvent at post-exposure bake will 
increase the diffusivity of exposure products. For a chemically amplifi ed resist, especially 
when baking in a diffusion-controlled temperature regime, this increase in acid diffusivity 
can have a quite large impact. Figure 5.6 shows an example where the top portion of the 
resist exhibits standing waves while the rest of the resist does not. Reduced solvent content 
at the top of the resist leads to reduced acid diffusion during PEB and (as will be discussed 
in the following section ) less smoothing out of the standing wave pattern.

Table 5.1 Typical solvent diffusion parameters in 
photoresist

Parameter Value

B 0.737
b′ 0.351
vg 0.0289
a2 (1/K) 8.7E-04
Tg (°C) 110.5
D0 (nm2/s) 0.0967
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Figure 5.5 Temperature dependence of solvent diffusivity (using the parameters from Table 
5.1 and assuming a solvent mass fractions of 0.05 and 0.1) showing an essentially fi xed dif-
fusivity below the glass transition temperature
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As Figure 5.5 showed, diffusivity grows almost exponentially as a function of the 
temperature above Tg. Thus, for the post-exposure bake to cause appreciable diffusion (as 
will be discussed in the next section ), the PEB temperature must be above the Tg of the 
resist. However, as seen above, the Tg of a resist fi lm is a function of the amount of solvent 
in the resist, and thus a function of the post-apply bake conditions. For a suffi ciently long 
post-apply bake, the Tg of the resist fi lm approaches the post-apply bake temperature. For 
shorter bakes, the resist fi lm Tg will be somewhat below the PAB temperature. Thus, as 
a simple rule of thumb, the PEB temperature must be the same or greater than the PAB 
temperature in order for appreciable diffusion to occur during PEB.

Secondly, residual solvent can impact resist dissolution rates, affecting both the average 
dissolution rate and the variation of dissolution rate with exposure dose (Table 5.2). 
Unfortunately, this behavior is rarely well characterized for any given resist material.

5.3 Post-exposure Bake Diffusion

Many attempts have been made to reduce the standing wave effect and thus increase 
linewidth control and resolution. One particularly useful method is the post-exposure, 
predevelopment bake as described by Walker.19 A 100 °C oven bake for 10 minutes was 
found to reduce the standing wave ridges on a resist sidewall signifi cantly. This phenom-
enon can be explained quite simply as due to the diffusion of sensitizer in the resist (which 

Figure 5.6 Lower solvent content at the top of this 248-nm resist leads to reduced acid dif-
fusion during PEB, and thus the presence of standing waves only at the top of the resist 
(photo courtesy of John Petersen, used with permission)

Table 5.2 Development rmax and n values (see Chapter 7) fi tted to measured dissolution 
rate data as a function of PAB temperature (and thus, solvent content) for a thick i-line 
resist18

Temperature (°C) wt.% Solvent rmax (nm/s) Develop n

70 21.1 104.3 1.71
80 19.5 90.3 1.77
90 17.8 78.9 1.96



 Conventional Resists: Exposure and Bake Chemistry 211

acts as a dissolution inhibitor for a conventional resist, see Chapter 7) during the high-
temperature bake. A mathematical model which predicts the results of such a post-
exposure bake (PEB) is described below.

In general, molecular diffusion is governed by Fick’s Second Law of Diffusion, which 
states (in one dimension, r)
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where CA is the concentration of species A, DA is the diffusion coeffi cient of A at some 
temperature T, and t is the time that the system is at temperature T. A more general form 
is
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In many cases, it is quite accurate to assume that the diffusivity is independent of con-
centration (and thus position). Under these conditions, this differential equation can be 
solved given a set of boundary conditions (two for each dimension) and an initial distribu-
tion of A.

Consider one possible initial condition known as the impulse source (a delta function 
of concentration). At some point x0, there are N moles of substance A and at all other 
points there is no A. Thus, the concentration at x0 is infi nite. For boundary conditions, 
assume zero concentration as r goes to ±∞ for all time. Given this initial distribution of 
A and these boundary conditions, the solution to Equation (5.63) is the Gaussian distribu-
tion function,

 C x
N r

A
/e( ) = −

2 2

22 2

πσ
σ  (5.65)

where σ = 2D tA  is the diffusion length, and r = x − x0.
In practice there are no impulse sources. Instead, we can approximate an impulse source 

as having some concentration C0 over some small distance ∆x centered at x0, with zero 
concentration outside of this range. An approximate form of Equation (5.65) is then
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A
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This solution is fairly accurate if ∆x << s. If there are two ‘impulse’ sources located at 
x1 and x2, with initial concentrations C1 and C2 each over a range ∆x, the concentration 
of A at x after diffusion is

 C x
C C

xr r
A

/ /e e( ) = +





− −1

2

2 2

2

2

2 2
1
2 2

2
2 2

πσ πσ
σ σ ∆  (5.67)

where r1 = x − x1 and r2 = x − x2.
If there are a number of sources, Equation (5.67) becomes
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Extending the analysis to a continuous initial distribution C0(x), Equation (5.68) 
becomes

 C x C x xx x
A

/e d( ) ( ) ( )= ′
−∞

∞
′− − ′∫

1

2 2 0
22 2

πσ
σ  (5.69)

where x′ is now the distance from the point x. Equation (5.69) is simply the convolution 
(denoted by ⊗) of the original concentration profi le with a Gaussian:

 C x C x f xA( ) ( ) ( )= ⊗0  (5.70)

where f x x( ) = −1

2 2
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This equation can now be made to accommodate two-dimensional diffusion:

 C x y C x y f x yA , , ,( ) ( ) ( )= ⊗0  (5.71)
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Three-dimensional diffusion can similarly be calculated (as shown below).
From this formulation of diffusion, one can see that the diffusion impulse response 

function of Equation (5.65) or its higher dimensional equivalents is analogous to the 
imaging point spread function of Chapter 2. Thus, f(r) is sometimes referred to as the 
diffusion point spread function (DPSF).

We are now ready to apply our solution to the diffusion of sensitizer in a conventional 
photoresist during a post-exposure bake. For the full three-dimensional case, the sensitizer 
distribution after exposure can be described by m(x,y,z), where m is the relative sensitizer 
concentration. According to Equation (5.71) the relative sensitizer concentration after a 
post-exposure bake, m*(x,y,z), is given by

 m x y z m x y z x x y y z z* , , , , e
/

( )
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( ) (( ) ( ) ( ) )= ′ ′ ′ − − ′ + − ′ + − ′1
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∫∫∫ x y z  (5.72)

or,

 m x y z m x y z DPSF* , , , ,( ) ( )= ⊗  (5.73)

For a given latent image, the only parameter that needs to be specifi ed to solve Equation 
(5.72) is the diffusion length s, or equivalently, the diffusion coeffi cient DA and the 
bake time t. In turn, DA is a function of the bake temperature T (by the Arrhenius 
equation for temperature ranges which do not traverse the glass transition temperature) 
and, of course, the resist system used. Unfortunately, it is quite diffi cult to measure 
the diffusivity of sensitizer in photoresist. From Walker’s work, one can estimate the 
values of Ea and D0 for the resist studied to be about 35 Kcal/mol and 3.2 × 1021 nm2/s, 
respectively.

The diffusion model can now be used to simulate the effects of a post-exposure bake 
on standing waves for a conventional resist (Figure 5.7). Obviously, the major effect is 
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the smoothing out of the standing waves. Less obvious from these pictures is the gradual 
degradation of the photoresist image itself. The trade-off between these two effects puts 
a signifi cant constraint on the acceptable values of the diffusion length. In order to remove 
standing waves, the diffusion length must be on the order of or larger than half of the 
standing wave period. But to avoid degrading the feature itself, diffusion length must be 
much smaller than the smallest feature size being printed.

From Chapter 4, recall that the standing wave period is l/2nresist where nresist is the 
resist refractive index (the period will be slightly less than this for oblique illumination). 
For i-line exposure of a typical resist, this puts the half period at about 55 nm. Thus, 
diffusion lengths must be at about this magnitude or larger to completely remove 
standing waves. Since i-line resists are rarely used to resolve features less than about 
300 nm, the requirement that diffusion length is much less than feature size is also 
realized. However, for 248-nm lithography this is no longer the case. The standing 
wave half period is about 35–40 nm, but features smaller than 130 nm are regularly 
imaged. Thus, to remove standing waves effectively, the diffusion length must approach 
one-third of the feature size, a fraction that is too large to avoid signifi cant image 
degradation. As a result, for 248- and 193-nm lithography, standing waves are reduced 
using bottom antirefl ection coatings rather than relying solely on diffusion during PEB. 
Additionally, it is important to remember that a post-exposure bake, while capable 
of reducing or eliminating standing waves, will have no impact on the photoresist 
swing curve. Since bottom antirefl ection coatings can be very effective at reducing both 
standing waves and swing curves, they have become the preferred solution for critical 
lithography levels.

5.4 Detailed Bake Temperature Behavior

In the discussion of section 5.2.1, a somewhat clumsy approach of adding a ‘warm-up 
time’ to the bake analysis was used to account for the noninstantaneous heating of the 
resist. By modeling the heat transfer from the hot plate to the wafer, a more accurate and 

(c)(b)(a)

Figure 5.7 Typical i-line photoresist profi le simulations (using PROLITH) for resist on silicon 
as a function of the PEB diffusion length: (a) 20 nm, (b) 40 nm and (c) 60 nm
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detailed picture can be drawn of how the temperature of the wafer varies with time during 
the bake.

We can approximate the temperature profi le of the resist on a typical wafer baking 
(track) system by the following differential equation (called a lumped capacitance model 
for heat transfer):20,21

 ρ
δ

C L
T

t

k
T T h T Tp

d

d
air

plate ambient= − − − −( ) ( )  (5.74)

where r is the density of silicon, Cp is the specifi c heat capacity of silicon, L is the 
thickness of the wafer, T is the temperature of the resist-coated wafer, kair is the thermal 
conductivity of air, d is the thickness of the gap between the hot plate and the wafer, and 
h is a heat transfer coeffi cient for the convective heat lost from the top surface of the 
wafer to the surroundings. In this model, the term on the left side represents the thermal 
mass of the wafer, and the terms on the right side represent heat transfer on the bottom 
side of the wafer from the hot plate and heat loss from the top of the wafer to the sur-
roundings. Note that the thermal mass of the photoresist is extremely small compared to 
that of the wafer, so that it can be ignored. Also, the thermal conductivity of silicon is 
high enough that the temperature gradient from the bottom to the top of the wafer can 
also be ignored. Radiative heat transfer mechanisms are small enough to be ignored as 
well.

The solution to this lumped capacitance heat transfer model is

 T T T T t= − − −* * einitial
/( ) τ  (5.75)

where Tinitial is the initial temperature of the wafer, T* is the equilibrium (infi nite time) 
temperature given by
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and t is the time constant for heating (or possibly cooling) the wafer,
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 (5.77)

Some typical values for the constants in these thermal model equations are given in Table 
5.3.

We can now describe the full temperature profi le of the resist on a typical wafer 
track system with a three-stage model for heat transfer to the resist-coated wafer: a prox-
imity hot plate bake as described above; a short time for transfer from the hot plate to 
a chill plate; and then proximity cooling on the chill plate. During the second stage 
where the wafer is transferred from the hot plate to the chill plate, the gap d is assumed 
to be very large so that the fi rst term on the right side of Equation (5.74) is unimportant, 
and the second term on the right side is assumed to represent heat loss from the top 
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and bottom wafer surfaces. An example of such a full temperature profi le is shown in 
Figure 5.8.

The impact of the time variation of temperature will depend of course on the activation 
energy of the reactions in question. For a nonzero activation energy, the result will be a 
time variation of the rate ‘constant’. For each rate constant k, an effective rate constant 
can be defi ned as

 k
t

k t t
t

eff
b

d
b

= ∫
1

0

( )  (5.78)

where tb is the overall bake cycle time.
It is interesting to note that the equilibrium temperature T* is not equal to the tempera-

ture of the hot plate, as shown by Equation (5.76). The fact that the equilibrium tempera-

Table 5.3 Typical values for silicon wafer properties

Parameter Value Units

L (wafer thickness), 300-mm-diameter wafer 0.775 mm
L (wafer thickness), 200-mm-diameter wafer 0.725 mm
L (wafer thickness), 150-mm-diameter wafer 0.675 mm
L (wafer thickness), 100-mm-diameter wafer 0.525 mm
Cp (silicon molar heat capacitance) @ 25 °C 19.8 J/K-mole
Cp (silicon molar heat capacitance) @ 125 °C 22.3 J/K-mole
r (silicon density) 2.33 g/cm3

Atomic weight of silicon 28.09 g/mole
kair (air thermal conductivity) at sea level, 20 °C 0.025 W/m-K
kair (air thermal conductivity) at sea level, 100 °C 0.031 W/m-K
h (convection heat transfer coeffi cient) 5–10 W/m2-K
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Figure 5.8 Typical wafer bake profi le (60-second bake followed by a 10-second transfer to 
a chill plate)



216 Fundamental Principles of Optical Lithography

ture of the wafer is usually very close to the hot plate temperature indicates that heating 
across the gap is the dominant heat transfer mechanism. This is because the gap spacing 
d is very small, typically about 0.15–0.2 mm, so that

 when , *air
plate

air
plate ambient
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h T T

h

k
T T

δ
δ>> ≈ − −( )  (5.79)

Even if signifi cant variations in d across the wafer are present, the value of T* will still 
be dominated by the temperature of the hot plate, and good temperature uniformity can 
be achieved. By contrast, variations in the gap spacing can have a large effect on the time 
constant t, as seen in Equation (5.77). Again, assuming h is small, the hot plate rise time 
will be directly proportional to d.
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Variations in the gap spacing can be due to misalignment of the ceramic pins that control 
the gap spacing in the proximity plate, or due to nonfl atness of the silicon wafer – the 
warp of a 200- and 300-mm wafers can be up to 0.075 and 0.1 mm, respectively (see 
Figure 5.9).

The lumped capacitance model solution of Equations (5.75)–(5.77) has several limita-
tions. When solving the differential Equation (5.74), all of the terms in the equation except 
the wafer temperature are assumed to be constant. Obviously, the accuracy of the solution 
will depend on the accuracy of these assumptions. As Table 5.3 indicates, the heat capacity 
of silicon will vary by about 10 % during a typical bake (a 100 °C temperature range or 
so), and the thermal conductivity of air will vary by 25 %. With a coeffi cient of linear 
expansion of about 2.5 × 10−6/K, the density of silicon will change by less than 0.1 % over 
a 100 °C temperature range. Wafer thickness will typically vary between 1 and 2 % across 
the wafer. The convective heat transfer coeffi cient can change signifi cantly with air fl ow, 
which will change as the air above the wafer heats up and depends on the design of the 
hot plate chamber. Likewise, the ambient temperature is ill-defi ned when the hot plate is 
not in an open environment and can change from wafer to wafer if the hot plate chamber 
lid is not temperature controlled. But possibly the most signifi cant problem is the assump-
tion that the hot plate temperature is constant. Just as the wafer temperature is affected by 
the proximity of the hot massive plate beneath it, the hot plate is affected by the cold wafer. 
When a new wafer is placed on a hot plate, the surface temperature of the plate can drop 
by 1–2 °C, requiring 5–10 seconds to heat back up to its set point temperature.

Wafer

High Thermal Mass Hot Plate

Figure 5.9 Proximity bake of a wafer on a hot plate showing (in a highly exaggerated way) 
how wafer warpage leads to a variation in proximity gap (drawing not to scale)
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The thermal model here also assumes a one-dimensional geometry, so that variations 
in temperature in the plane of the wafer are ignored. Besides edge effects that can cause 
a temperature difference at the edge of the wafer versus the middle, wafer warpage as 
depicted in Figure 5.9 will lead to thermal gradients and thus heat transfer in the plane 
of the wafer, somewhat mitigating the temperature variations that would be predicted 
from a 1D model.22

5.5 Measuring the ABC Parameters

Dill proposed a single, simple experiment for measuring the ABC parameters.1 The pho-
toresist to be measured is coated in a nonrefl ecting transparent substrate (e.g. glass, quartz 
or similar material). The resist is then exposed by a normally incident parallel beam of 
light at the wavelength of measurement. At the same time, the intensity of the light trans-
mitted through the substrate is measured continuously. The output of the experiment, 
transmitted intensity as a function of exposure time, is then analyzed to determine the 
resist ABC parameters. A typical experimental setup is shown in Figure 5.10. By measur-
ing the incident exposing light intensity, the output of the experiment becomes overall 
transmittance as a function of incident exposure dose, T(E). Figure 5.11 shows a typical 
result. Assuming careful measurement of this function, and a knowledge of the thickness 
of the photoresist, all that remains is the analysis of the data to extract the ABC 
parameters.

Note that the effectiveness of this measurement technique rests with the nonzero value 
of the resist bleachable absorption parameter A. If the photoresist does not change its 
optical properties with exposure (i.e. if A = 0), then measuring transmittance will provide 
no insight into the exposure reaction, making C unobtainable by this method. Other 
methods for determining C for the case when A = 0 are discussed briefl y in Chapter 6.

Analysis of the bleaching experimental data is greatly simplifi ed if the experimental 
conditions are adjusted so that the simple exposure and absorption Equations (5.29) and 
(5.32) apply exactly. This means that light passing through the resist must not refl ect at 
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Figure 5.10 Experimental confi guration for the measurement of the ABC parameters
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the resist–substrate interface. Further, light passing through the substrate must not refl ect 
at the substrate–air interface. The fi rst requirement is met by producing a transparent 
substrate with the same index of refraction as the photoresist. The second requirement is 
met by coating the backside of the substrate with an interference-type antirefl ection 
coating.

Given such ideal measurement conditions, Dill showed that the ABC parameters can 
be obtained from the transmittance curve by measuring the initial transmittance T(0), the 
fi nal (completely exposed) transmittance T(∞) and the initial slope of the curve. The 
relationships are:
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where D is the resist thickness, E is the exposure dose, and T12 is the transmittance of the 
air–resist interface and is given approximately, for a resist index of refraction nresist, by
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Although graphical analysis of the data is quite simple, it suffers from the common 
problem of errors when measuring the slope of experimental data. As a result, the value 
of C (and to a lesser extent, A) obtained often contains signifi cant error. Dill also proposed 
a second method for extracting the ABC parameters from the data. Again assuming that 
the ideal experimental conditions had been met, the ABC parameters could be obtained 
by directly solving the two coupled differential Equations (5.27) and (5.32), and fi nding 
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Figure 5.11 Typical transmittance curve of a positive g- or i-line bleaching photoresist 
measured using an apparatus similar to that pictured in Figure 5.10
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the values of A, B and C for which the solution best fi ts the experimental data. Obviously, 
fi tting the entire experimental curve is much less sensitive to noise in the data than taking 
the slope at one point.

Typical values for ABC parameters for several types of resists are given in Table 5.4.
As discussed above, one impact of post-apply baking for conventional resists is the 

decomposition of sensitizer. Since it is the sensitizer that bleaches, a loss of sensitizer 
results in a decrease in the value of A. Figure 5.12 shows two example transmittance 
curves measured for an i-line resist baked at two different temperatures.

Problems

5.1. Assuming a plane wave traveling through a uniform material, derive Equation 
(5.5).

5.2. For a resist fi lm of a given thickness, there is one value of the absorption coeffi cient 
that maximizes the amount of light absorbed by the resist at the bottom. (This can 
be seen by looking at the extremes. When a is zero, all of the incident light makes 

Table 5.4 Typical values for resist ABC parameters

Resist Type A (mm−1) B (mm−1) C (cm2/mJ) Refractive 
Index

g-line (436 nm) 0.6 0.05 0.015 1.65
i-line (365 nm) 0.9 0.05 0.018 1.69
248 nm 0.0 0.50 0.05 1.76
193 nm 0.0 1.20 0.05 1.71
Dyed Unchanged Increased by 

0.3–0.5
Unchanged Approximately 

unchanged
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Figure 5.12 Two transmittance curves for Kodak 820 resist at 365 nm. The curves are for 
a convection oven post-apply bake of 30 minutes at the temperatures shown



220 Fundamental Principles of Optical Lithography

it to the bottom, but none is absorbed. When a is infi nite, no light makes it to the 
bottom, so none is absorbed there. Thus, in between these two extremes there must 
be a maximum.) For a resist of thickness D, and assuming a homogenous material 
and a nonrefl ecting substrate, what value of a maximizes the amount of light 
absorbed by the resist at the bottom?

5.3. An i-line resist has the following properties:

 A = 0.85 mm−1

 B = 0.05 mm−1

 C = 0.018 cm2/mJ

 Refractive index = 1.72

 The resist is coated to a thickness of 1.1 mm on a glass substrate optically matched 
to the photoresist.
(a) At the beginning of exposure, what percentage of the incident light makes it to 

the bottom of the resist?
(b) The photoresist is exposed so that 55 % of the sensitizer is converted at the top 

of the resist. Give your best estimate of what percentage of the incident light 
makes it to the bottom of the resist at the end of the exposure. Explain why 
this estimate is not exact.

5.4. For most conventional (g- and i-line) resists, aM >> aP. For this case, show that a 
measurement of bleachable absorption coeffi cient as a function of wavelength, 
A(l), can be used to determine how the exposure rate constant C varies with 
wavelength.

5.5. Derive Equations (5.35).
5.6. Reciprocity during exposure is seen for the case of a nonbleaching resist by trans-

forming Equation (5.29) to Equation (5.31) – all instances of incident intensity and 
exposure time can be replaced by incident dose.
(a) Show that the fi rst Equation (5.35) obeys reciprocity.
(b) Show that the general fi rst-order exposure Equation (5.27) results in reciprocity 

regardless of the effects of bleaching.
5.7. Suppose that a resist was found to produce the same thickness after PAB for a 

95 °C, 300-second bake, a 100 °C, 60-second bake, or a 105 °C, 17-second bake. If 
the DNQ of that resist decomposes with an activation energy of 31 Kcal/mole and 
ln(Ar) = 37 (1/minute), which bake is preferable from a thermal decomposition 
perspective?

5.8. The modifi ed Fujita–Doolittle Equation (5.61) predicts a temperature dependence 
for solvent diffusivity which is not the Arrhenius equation. Using the parameters 
from Table 5.1 and assuming 10 % solvent volume fraction, create an Arrhenius 
plot (log [diffusivity] vs. 1/absolute temperature) for solvent diffusivity from 115 
to 130 °C. How close is this to true Arrhenius behavior? Find a best estimate for 
Ar and Ea based on this plot.

5.9. Solve the 1D diffusion equation for a ‘fi xed source’ boundary condition (diffusion 
of a constant concentration of material at the surface of a very thick resist). Assume 
the diffusivity is constant and
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 C(z,0) = 0

 C(0,t) = C0

 C(∞,t) = 0

5.10. Solve the 1D diffusion equation for the ‘initial source’ boundary condition (diffu-
sion of a given amount material at the surface of a very thick resist). Assume the 
diffusivity is constant and

 C(z,0) = 0

 dC(0,t)/dt = 0

 C(∞,t) = 0

 C z t z Q( ), d constant
0

0

∞

∫ = =

5.11. For a typical 300-mm silicon wafer baked at a hot plate temperature of 100 °C 
(ambient temperature of 20 °C), and assuming a proximity gap of 0.2 mm, 
calculate:
(a) The equilibrium wafer temperature (T*) and the rise time of the bake (t).
(b) The equilibrium wafer temperature and the rise time of the bake if the proximity 

gap were increased to 0.3 mm.
(c) At what proximity gap distance would the coeffi cient of conduction (heat 

transfer from the hot plate across the gap) equal that of convection (thermal 
transfer from the top of the wafer)?

5.12. For a typical 300-mm silicon wafer baked at a hot plate temperature of 100 °C and 
a proximity gap of 0.2 mm, the equilibrium wafer temperature was found to vary 
by ±0.2 °C across the wafer. How much wafer warpage would be needed to explain 
all of this temperature variation?

5.13. Derive Equation (5.79).
5.14. From the transmittance curve in Figure 5.11, estimate the values of A, B and C. 

The resist thickness used was 0.75 mm and the measurement was performed in the 
standard way. Assume a typical i-line resist.
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6
Chemically Amplifi ed Resists: 
Exposure and Bake Chemistry

Unlike conventional resists, such as the diazonaphthoquinone (DNQ)/novolac systems 
discussed in the previous chapter, chemically amplifi ed resists require two separate 
chemical reactions in order to change the solubility of the resists. First, exposure turns 
an aerial image into a latent image of exposure reaction products. Although very similar 
to conventional resists, the reaction products of exposure for a chemically amplifi ed resist 
do not appreciably change the solubility of the resist. Instead, a second reaction during a 
post-exposure bake is catalyzed by the exposure reaction products. The result of the post-
exposure bake reaction is a change in the solubility of the resist. This two-step process 
has some interesting characteristics and challenges.

In many respects, chemically amplifi ed resists are a conceptual superset of conventional 
resists. With the exception of thermal decomposition, all of the concepts discussed in the 
previous chapter apply to chemically amplifi ed resists as well. Familiarity with the con-
cepts of that chapter is thus assumed in this chapter.

6.1 Exposure Reaction

Chemically amplifi ed photoresists are composed of a polymer resin (possibly ‘blocked’ 
to inhibit dissolution), a sensitizer called a photoacid generator (PAG), and possibly a 
cross-linking agent, dye or other additive. As the name implies, the PAG forms an acid 
when exposed to deep-UV light. Ito and Willson at IBM fi rst proposed the use of an aryl 
onium salt,1 and triphenylsulfonium salts have been studied extensively as PAGs. The 
reaction of a very simple triphenylsulfonium salt PAG is:

 

Ph

Ph S CF COO CF COOH others

Ph
3 3

+ −  → +hν  (6.1)
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The acid generated in this case (trifl uoroacetic acid) is a derivative of acetic acid 
where the electron-drawing properties of the fl uorines greatly increase the acidity of the 
molecule. In fact, very strong acids will be required for the chemical amplifi cation step 
described in the next section. The PAG is mixed with the polymer resin at a concentration 
of typically 5–15 % by weight for 248-nm resists, with 10 % as a typical formulation 
(corresponding to a PAG concentration of about 0.2 mol/liter). For 193-nm resists, PAG 
loading is kept lower at 1–5 wt % in order to keep the optical absorbance of the resist 
within desired levels.

The kinetics of the exposure reaction are presumed to be standard fi rst order (just as 
for the exposure of PAC in a conventional resist):

 
∂
∂

= −G

t
CIG  (6.2)

where G is the concentration of PAG at exposure time t (the initial PAG concentration 
is Go), I is the exposure intensity, and C is the exposure rate constant. For most chemi-
cally amplifi ed resists, the bleachable absorption coeffi cient A is zero and the intensity in 
the resist stays constant during exposure. For this case, the rate equation can be solved 
for G:

 G G CIt= −
0e  (6.3)

The acid concentration H is given by

 H G G G CIt= − = − −
0 0 1( )e  (6.4)

Some 248-nm PAGs react to exposure by a different mechanism. The polymer resin used 
by the resist (such as polyhydroxystyrene, discussed below) will absorb light, resulting in 
electrons promoted to higher energy states in the polymer. It is possible for some of this 
energy to be transferred from the polymer to the PAG, providing an indirect pathway for 
photon absorption to provide energy to the PAG. If this mechanism exists in a resist, the 
resulting kinetics will still be well described by the fi rst-order kinetics discussed above.

6.2 Chemical Amplifi cation

Exposure of the resist with an aerial image I(x) results in an acid latent image H(x). A 
post-exposure bake (PEB) is then used to thermally induce a chemical reaction. This may 
be the activation of a cross-linking agent for a negative resist or the deblocking of the 
polymer resin for a positive resist. The defi ning characteristic of a chemically amplifi ed 
resist is that this reaction is catalyzed by the acid so that the acid is not consumed by the 
reaction and, to fi rst order, H remains constant. As a result, each exposure event (creating 
one acid molecule) can cause a large number of dissolution-changing chemical events 
during PEB. The effects of exposure are said to be ‘amplifi ed’ by the catalytic nature of 
this chemical reaction. The catalytic chain length, defi ned to be the average number of 
amplifi cation chemical events caused by one acid molecule, is in the range of 10 to 100 
for most chemically amplifi ed resists, with 20 a typical catalytic chain length. Chemically 
amplifi ed resists use exposure doses in the range of 20–50 mJ/cm2, making them 5–10 
times more sensitive than the DNQ resists used at i-line.
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6.2.1 Amplifi cation Reaction

Willson, Ito and Frechet fi rst proposed the concept of deblocking a polymer to change its 
solubility.2 A base polymer, such as polyhydroxystyrene (PHS), is used that is very 
soluble in an aqueous base developer. It is the acidic hydroxyl (—OH) groups that give 
the PHS its high solubility, so by ‘blocking’ these sites (by reacting the hydroxyl group 
with some longer-chain molecule) the solubility can be reduced. The IBM team employed 
a t-butoxycarbonyl group (t-BOC), resulting in a very slowly dissolving polymer. In the 
presence of a strong acid and heat, the t-BOC blocked polymer will undergo acidolysis 
to generate the soluble hydroxyl group, as shown below.

 

t-BOC blocking 
group CH3

CH2-CH 

O

O

C

O

CH3

CH3C

CH2-CH 

OH

H+

+  CH2

CH3

CH3

C +  CO2∆

 

(6.5)

One drawback of this scheme is that the cleaved t-BOC is volatile and will evaporate, 
causing fi lm shrinkage in the exposed areas. Larger molecular weight blocking 
groups are commonly used to reduce this fi lm shrinkage to acceptable levels (below 
10 %). Also, the blocking group is such an effective inhibitor of dissolution that nearly 
every blocked site on the polymer must be deblocked to obtain signifi cant dissolution. 
Thus, the photoresist can be made more ‘sensitive’ by only partially blocking the PHS 
(creating what is called a copolymer, since the polymer chain is now made up of two 
repeating units – blocked and unblocked PHS). Additionally, fully blocked polymers 
tend to have poor coating and adhesion properties. Typical photoresists use 10–30 % of 
the hydroxyl groups blocked, with 20 % as a typical value. Molecular weights for the 
PHS run in the range of 3000–6000 giving about 20–40 hydroxyl groups per polymer 
molecule, about 4 to 10 of which are initially blocked in typical formulations. As an 
example, the early chemically amplifi ed resist Apex-E has a molecular weight of about 
5000, giving about 35 hydroxyl sites per polymer, about 25 % of which are initially 
blocked by t-BOC.

This deblocking reaction (also called the deprotection reaction) is often characterized 
as being either low activation or high activation, referring to the amount of heat that must 
be supplied to make the reaction go. For a low activation resist, deblocking can occur at 
room temperature, and so begins during the exposure process. For a high activation resist, 
a post-exposure bake in the 95–135 °C temperature range is required. While low activation 
resists have an advantage in not being sensitive to delay time effects (see section 6.2.3), 
high activation resists tend to be more readily controlled (produce more uniform resist 
feature sizes) and are thus the most commonly used. Typical high and low activation 
blocking groups are shown in Figure 6.1. Many resists today in fact include copolymers 
of both high and low activation blocking groups.
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Using M as the concentration of some reactive site (such as the t-BOC blocking group), 
these sites are consumed (i.e. are reacted) according to kinetics of fi rst order in H and 
fi rst order in M:

 
∂
∂

= −M

t
k MH

PEB
4  (6.6)

where k4 is the rate constant of the amplifi cation reaction (cross-linking, deblocking, etc.) 
and tPEB is the bake time. Assuming that H is constant (an assumption that will be elimi-
nated later in this chapter), Equation (6.6) can be solved:

 M M k Ht= −
0e 4 PEB  (6.7)

(Note: Although H+ is not consumed by the reaction, the value of H is not locally constant. 
Diffusion during the PEB and acid loss mechanisms cause local changes in the acid con-
centration, thus requiring the use of a reaction–diffusion system of equations as discussed 
below. The approximation that H is constant is a useful one, however, that gives insight 
into the reaction as well as accurate results under some conditions.)

It is useful here to normalize the concentrations to some initial values. This results in 
a normalized acid concentration h and normalized unreacted sites m:

 h
H

G
m

M

M
= =

0 0  
 (6.8)

Equations (6.4) and (6.7) become

 
h

m

CIt

K t h

= −
=

−

−

1 e

e amp PEB

 (6.9)

where Kamp = G0k4. The result of the PEB is an amplifi ed latent image m(x), corresponding 
to an exposed latent image h(x), resulting from the aerial image I(x). The amount of 
amplifi cation (the conversion of an exposed latent image of acid into an amplifi ed latent 
image of blocked and deblocked polymer) is a function of PEB time and temperature. 
The time dependence in Equation (6.9) is obvious, and the temperature dependence comes 
through the amplifi cation rate constant Kamp.
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Figure 6.1 Examples of 248-nm blocking groups: the high activation t-butyl ester; and the 
low activation acetal
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Like most rate constants, the temperature dependence of Kamp can be described by an 
Arrhenius relation:

 K A E RT
amp re a= − /  (6.10)

where Ar is the Arrhenius coeffi cient for this reaction (1/s), Ea is the activation energy 
(cal/mole or J/mole), R is the universal gas constant (1.98717 cal/mole-K or 8.31431 J/
mole-K), and T is the absolute temperature (K). Typical values for activation energies as 
a function of blocking group are given in Table 6.1. The resulting Kamp at the PEB tem-
perature tends to be in the range of 0.02–0.1 s−1.

Equations (6.9) reveal an interesting symmetry between exposure dose, given by It, 
and a kind of ‘thermal dose’. Consider the case of a small exposure dose (It << 1/C) so 
that the amount of acid generated is small. Equations (6.9) will become

 
h CIt

m K t CIt

≈
≈ −e amp PEB

 (6.11)

If we defi ne the effective thermal dose as KamptPEB/C, then there exists a reciprocity 
between exposure dose and thermal dose. Cutting exposure dose in half and doubling the 
thermal dose will result in the same chemical change at the end of the amplifi cation reac-
tion. As we shall see in the following section, however, the true picture is complicated 
by the effects of diffusion.

6.2.2 Diffusion

The above analysis of the kinetics of the amplifi cation reaction assumed a locally constant 
concentration of acid H. Although this could be exactly true in some circumstances, it is 
typically only an approximation, and is often a poor approximation. In reality, the acid 
diffuses during the bake. The standard diffusion equation takes the form

 
∂

∂
= ∇ ∇H

t
D HH

PEB

( )  (6.12)

where DH is the diffusivity of acid in the photoresist. Solving this equation requires a 
number of things: two boundary conditions for each dimension, one initial condition and 
knowledge of the diffusivity as a function of position and time.

The solution of Equation (6.12) can now be performed if the diffusivity of the acid in 
the photoresist is known. Unfortunately, this solution is complicated by two very impor-
tant factors: the diffusivity is a strong function of temperature and, most probably, the 

Table 6.1 Typical values for amplifi cation reaction 
activation energies as a function of blocking group

Blocking Group (248-nm 
resists) Activation Energy (kcal/mol)

t-BOC 30
t-Butyl Ester 22
Acetal 15
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extent of amplifi cation. Since the temperature is changing with time during the bake, the 
diffusivity will be time dependent. The concentration dependence of diffusivity results 
from an increase in free volume for typical positive resists: as the amplifi cation reaction 
proceeds, the polymer blocking group evaporates resulting in a decrease in fi lm thickness 
but also an increase in free volume (and probably a change in the glass transition tem-
perature as well). Since the acid concentration is time and position dependent, the diffu-
sivity in Equation (6.12) must be determined as a part of the solution of Equation (6.12) 
by an iterative method. The resulting simultaneous solution of Equations (6.7) and (6.12) 
is called a reaction–diffusion system.

The temperature dependence of the diffusivity can be expressed in a standard Arrhenius 
form:

 D T A E RT
0( ) /= −

re a  (6.13)

where D0 is a general diffusivity. A full treatment of the amplifi cation reaction would 
include a thermal model of the hot plate in order to determine the actual time–temperature 
history of the wafer (see Chapter 5). To simplify the problem, an ideal temperature dis-
tribution can be assumed – the temperature of the resist is zero (low enough for no diffu-
sion or reaction) until the start of the bake, at which time it immediately rises to the fi nal 
bake temperature, stays constant for the duration of the bake, then instantly falls back to 
zero.

The concentration dependence of the diffusivity is less obvious. Several authors have 
proposed and verifi ed the use of different models for the concentration dependence of 
diffusion within a polymer. Of course, the simplest form (besides a constant diffusivity) 
would be a linear model. Letting D0 be the diffusivity of acid in completely unreacted 
resist and Df the diffusivity of acid in resist that has been completely reacted,

 D D D D mH = + − −0 0 1( )( )f  (6.14)

Here, diffusivity is expressed as a function of the extent of the amplifi cation reaction 
1 − m. Another common form is the Fujita–Doolittle equation (see Chapter 5), which can 
be predicted theoretically using free volume arguments. A form of that equation that is 
convenient for calculations is:

 D D
D m

D m
H = −

+ −




0

2

3

1

1 1
exp

( )

( )
 (6.15)

where D2 = (1 + D3)ln(Df/D0) and D3 is an experimentally determined constant. Other 
concentration relationships are also possible.

While general solutions to these reaction–diffusion equations require numerical tech-
niques, there are some special cases where analytical solutions are possible. Consider a 
constant acid diffusivity and an ideal temperature profi le (that is, ignore the ramp up to 
the bake temperature). Further, ignore any sources of acid loss (to be discussed in the 
next section). Then, the solution to the reaction rate equation given in Equation (6.9) can 
be used if the relative acid concentration is replaced by an effective acid concentration, 
given by

 h x
t

h x t DPSF t
t

eff
PEB

,  d
PEB

( ) ( )= = ⊗∫1
0

0

 (6.16)
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where h(x,t = 0) is the acid concentration at the beginning of the bake and tPEB is the PEB 
bake time. Diffusion is given by the convolution of the acid profi le with the diffusion point 
spread function (DPSF, defi ned in Chapter 5). The effective acid concentration at a par-
ticular x-position is the average concentration at that position over time. This equation can 
be further arranged to defi ne a reaction–diffusion point spread function, RDPSF:

 heff(x) = h(x,0) ⊗ RDPSF

where

 RDPSF
t

DPSF t
t

= ∫
1

0PEB

 d
PEB

 (6.17)

The Gaussian diffusion kernel is affected by time integration through the diffusion 
length, σD Dt= 2 , where D is the acid diffusivity in resist. Thus, using the 1D case as 
an example,

 RDPSF
t D t

t
x Dtt

=
−

∫
1

4

2 4

0PEB

/e
d

PEB

π
 (6.18)

The integral is solvable, resulting in an interesting fi nal solution.
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 (6.19)

The fi rst term on the right hand side of Equation (6.19) is nothing more than twice the 
DPSF, and thus accounts for pure diffusion. The second term, the complimentary error 
function times x, is a reaction term that is subtracted and thus reduces the impact of pure 
diffusion. Each term, as well as the fi nal RDPSF, is plotted in Figure 6.2.
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Figure 6.2 The 1D reaction–diffusion point spread function (RDPSF) and its component 
terms
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Equation (6.19) gives the RDPSF in one dimension. Extension to two or three dimen-
sions is straightforward:
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 (6.20)

where Ei is the exponential integral. Once the effective acid concentration is known, the 
amount of deblocking can be calculated as before with a simple modifi cation to Equation 
(6.9):

 m K t h= −e amp PEB eff  (6.21)

6.2.3 Acid Loss

Through a variety of mechanisms, acid formed by exposure of the resist fi lm can be lost 
and thus not contribute to the catalyzed reaction to change the resist solubility. There are 
two basic types of acid loss – loss that occurs between exposure and post-exposure bake, 
and loss that occurs during the post-exposure bake. The fi rst type of loss leads to delay 
time effects – the resulting lithographic patterns are affected by the delay time between 
exposure and post-exposure bake. Delay time effects can be very severe and, of course, 
are very detrimental to the use of such a resist in a manufacturing environment. Acid 
loss during PEB may be detrimental (if, for example, it is nonuniform or affects only 
the top or the bottom of the resist profi le), or it may serve the benefi cial function of stop-
ping the reaction and limiting the sensitivity of the fi nal feature size to bake time or 
temperature.

The typical mechanism for delay time acid loss is the diffusion of atmospheric base 
contaminants into the top surface of the resist. The result is a neutralization of the acid 
near the top of the resist and a corresponding reduced amplifi cation. For a negative resist, 
the top portion of a line is not insolubilized and resist is lost from the top of the line. For 
a positive resist, the effects are more devastating. Suffi cient base contamination can make 
the top of the resist insoluble, blocking dissolution into the bulk of the resist (Figure 6.3) 

(b)(a)

Figure 6.3 Atmospheric base contamination leads to T-top formation. Shown are line/space 
features printed in APEX-E for: (a) 0.275-mm features with no delay; and (b) 0.325-mm 
features with 10-minute delay between exposure and post-exposure bake (courtesy of 
SEMATECH)
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and creating a characteristic ‘T-top’-shaped resist profi le. In extreme cases, no patterns 
are observed after development.

The effects of acid loss due to atmospheric base contaminants can be accounted for 
in a straightforward manner. The base diffuses from the top surface of the resist into the 
bulk. Assuming that the concentration of base contaminant in contact with the top of the 
resist remains constant, the diffusion equation can be solved for the concentration of base, 
B, as a function of depth into the resist fi lm:

 B B
z
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 (6.22)

where B0 is the base concentration at the top of the resist fi lm, z is the depth into the resist 
(z = 0 at the top of the fi lm) and sB is the diffusion length of the base in resist. B0 will 
be directly proportional to the concentration of base in the atmosphere by Henry’s law 
(see Problem 6.8). The standard assumption of constant diffusivity has been made here 
so that the diffusion length goes as the square root of the delay time and as the square 
root of the diffusivity. Note that this equation assumes that during the post-exposure delay 
period, the base diffusion length is much greater than the photogenerated acid diffusion 
length. Since the acid generated by exposure for most resist systems of interest is fairly 
strong, it is a good approximation to assume that all of the base contaminant will react 
with acid if there is suffi cient acid present.

Atmospheric base contamination can be devastating to chemically amplifi ed resist 
performance because of the very nature of chemical amplifi cation. Since one photo-
generated acid causes dozens of dissolution changing events during PEB, loss of even a 
small amount of acid before the PEB will have an amplifi ed effect. Several different 
countermeasures are usually taken to reduce the impact of atmospheric base. As Equation 
(6.22) shows, base contamination in the resist can be reduced by reducing the atmospheric 
base (B0) or by reducing the base diffusion length. In turn, diffusion length can be reduced 
by reducing the base diffusivity or by reducing the delay time. In practice, all three of 
these techniques are commonly used. Photolithography equipment is placed as far as 
possible from sources of base contaminants (resist strippers and ammonia being common 
examples). Imaging and resist processing tools are then enclosed and the air is fi ltered 
with activated charcoal. The delay time between exposure and post-exposure bake is kept 
to a minimum by directly linking the resist processing track to the step and scan exposure 
tool. Each wafer is sent to be baked immediately after its exposure is complete. Finally, 
the diffusivity of base in the resist is reduced by ‘annealing’ the resist. If the post-apply 
bake temperature is set to be above the glass transition temperature of the resist polymer, 
solvent and free volume will be annealed out of the resist (see Chapter 5). It is this free 
volume that enables the diffusion of base into the resist, so elimination of free volume 
greatly reduces the contaminant diffusivity.

Another possible acid loss mechanism is base contamination from the substrate, as has 
been observed on TiN and other nitrogen-containing substrates. These substrates are 
thought to trap acid that diffuses down to the substrate, resulting in resist footing for a 
positive resist. Plasma and chemical treatments of nitrogen containing substrates can 
pacify trapping sites, but the common use of an organic bottom antirefl ection coating 
(BARC) generally eliminates the possibility of substrate interactions. Acid can also be 
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lost at the top surface of the resist due to evaporation. The amount of evaporation is a 
function of the size of the acid and the degree of its interaction with the resist polymer. 
A small acid (such as the trifl uoroacetic acid discussed above) may have very signifi cant 
evaporation. Thus, most resists today employ fairly large acid molecules to avoid signifi -
cant acid evaporation.

6.2.4 Base Quencher

Another mechanism for acid loss is intentional rather than accidental. Most modern for-
mulations of chemically amplifi ed resists include the addition of a base quencher (com-
pounds such as tetraoctylammonium hydroxide, for example3). Loaded at concentrations 
of 5–20 % of the initial PAG loading, this base quencher (Q) is designed to neutralize 
any photogenerated acid that comes in contact with it.

 H Q HQK+ ← →eq  (6.23)

Acid–base neutralization reactions tend to be equilibrium reactions, but in this case the 
equilibrium constant Keq is large due to the strength of the acid, meaning the reaction 
favors heavily the formation of the salt HQ. Thus, it is a good approximation to ignore 
the reversible nature of the reaction and replace the equilibrium constant with a standard 
forward reaction rate constant, kQ.

For low exposure doses, the small amount of photoacid generated will be neutralized 
by the base quencher and amplifi cation will not take place (Figure 6.4). Only when the 
exposure rises above a certain threshold will the amount of acid be suffi cient to completely 
neutralize all of the base quencher and have leftover acid that can cause deblocking during 
PEB. The main purpose of the base quencher is to neutralize the low levels of acid that 
might diffuse into the nominally unexposed regions of the wafer, thus making the fi nal 
resist linewidth less sensitive to acid diffusion. In addition, base quencher will reduce the 
sensitivity of the resist to airborne base contaminants.

The simple description of base quenching behavior above is made more complicated 
by the fact that the quencher will, in general, diffuse during the post-exposure bake. 
Base quencher diffusion can take on any of the concentration and temperature depend-
encies described above for acid diffusion. The difference in diffusivity between the acid 
and the base becomes an important descriptor of lithographic behavior for these types of 

Q(x)

H(x)

H(x)

Q(x)

(b)(a)

Figure 6.4 The effect of quencher (Q) on the acid latent image H(x): (a) after exposure 
but before the quenching reaction; and (b) after the quenching reaction (assuming Kquench 
>> Kamp)
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resists. Rate equations for the acid and base, for the case of constant diffusivity, are given 
by
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where Kquench (= kQG0) is the normalized quenching reaction rate constant and q (= Q/G0) 
is the normalized base quencher concentration. The impact of diffusion can be understood 
qualitatively by examining Figure 6.4b. If acid diffuses, but base does not, the zero points 
(the points at which the acid and base completely neutralize each other) will move toward 
the outside. If the base diffuses but the acid does not, the opposite will occur and the zero 
points will move in toward the center of the fi gure. There will be some combination of 
acid and base diffusion (diffusion lengths about equal) that will leave the zero point sta-
tionary. Note that diffusion is driven by the change in the gradient of the diffusing species 
(a second derivative), so that it is a combination of the diffusivities of the acid and the 
base and the shape of the latent image that determines which direction the zero point will 
move.

If diffusion is ignored and Kquench >> Kamp, the impact of a base quencher is to fi rst 
order a dose offset – one must generate enough acid to overcome the quencher before 
amplifi cation can occur. Thus, the simple (nondiffusion) kinetic result of Equation (6.9) 
becomes
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where the ‘0’ subscript refers to the initial condition (at the beginning of the PEB). Note 
that in the formulation of the above equation, h represents the relative acid concentration 
generated upon exposure, but before any quenching takes place.

The impact of base quencher is most readily seen by comparing latent images of resist 
formulations with and without quencher. When both resist formulations are exposed at 
the dose-to-size, with all other processing parameters the same, the latent image slope 
improves dramatically near the resist feature edge when quencher is added (Figure 6.5).

6.2.5 Reaction–Diffusion Systems

The combination of a reacting system and a diffusing system is called a reaction–diffusion 
system. The solution of such a system is the simultaneous solution of Equations (6.6) 
and (6.12) using Equation (6.4) as an initial condition and possibly Equation (6.14) or 
(6.15) to describe the reaction-dependent diffusivity. Of course, any or all of the acid loss 
mechanisms can also be included.

The coupling of reaction and diffusion can be made more explicit. The Byers–Petersen 
model for chemically amplifi ed reactions4 is a superset of the simpler chemically ampli-
fi ed models discussed above. In this model, the amplifi cation reaction is thought to occur 
by two sequential steps: fi rst, acid diffuses to the reaction site; then, acid reacts at that 
site (an idea fi rst described by the Polish physicist Marian von Smoluchowski5 in 1917). 
If the diffusion step is very fast, the overall rate is controlled by the rate of the reaction 
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itself (the amplifi cation is said to be reaction-controlled). If, however, the diffusion is 
very slow, the overall rate of amplifi cation will be controlled by the rate of diffusion of 
acid to the site (a diffusion-controlled amplifi cation rate). If Kreact is the rate constant for 
the reaction step, and KdiffDH is the rate constant (equal to the Smoluchowski trap rate 
normalized in the same way as Kamp) for the diffusion step, the overall amplifi cation reac-
tion rate constant will have the form

 K
K K D

K K D
H

H
amp

react diff

react diff

=
+

 (6.26)

where DH is the diffusivity of the acid.
Note that if Kdiff is very large, then even for moderate values of acid diffusivity the 

kinetics will be reaction-controlled and Equation (6.26) will become

 K Kamp react=  (6.27)

and the Byers–Petersen model will revert to the original chemically amplifi ed resist model 
given above. In general, the activation energies for Kreact and for DH will be different and 
it is possible for the overall reaction to switch from diffusion-controlled to reaction-
controlled as a function of PEB temperature. For example, if the activation energy for the 
diffusion portion of the reaction is much smaller than the reaction activation energy, the 
overall reaction will be reaction-controlled at lower temperatures and diffusion-controlled 
at higher temperatures (Figure 6.6). Kdiff represents the likelihood that the acid will be 
captured by a blocked site so that the reaction can occur. In the diffusion-controlled 
region, Kreact is very high and

 K K D D aG NH H Aamp diff= = 4 0π  (6.28)

where a is the capture distance for the deblocking reaction (once the acid approaches the 
reaction site closer than the capture distance, a deblocking reaction is possible).
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Figure 6.5 The effect of quencher on the shape of the latent image. Both resists have identi-
cal processing, except that the dose for each is adjusted to be the dose-to-size (130-nm lines 
and spaces)
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As was discussed at the end of section 6.2.1, there is a trade-off in chemically amplifi ed 
resists between exposure dose and thermal dose. Ignoring diffusion and acid loss, there 
is an approximate reciprocity between the two forms of dose. Generally, thermal dose is 
increased by an increase in the bake temperature (for production throughput reasons, PEB 
time is generally varied only over a small window). However, as the above discussion 
has shown, diffusion also varies exponentially with PEB temperature. Since there is an 
upper limit to the desired diffusion length of acid (and of base quencher), there is a practi-
cal upper limit to the temperature that can be used. And because of the exponential nature 
of the thermal dose with temperature, there is a practical minimum temperature that still 
provides for a low-enough dose to give good exposure tool throughput. Typically, the 
useful range of PEB temperatures for chemically amplifi ed resists is at most 20 °C.

6.3 Measuring Chemically Amplifi ed Resist Parameters

Since most chemically amplifi ed resists do not bleach, the traditional optical transmittance 
experiment for measuring the ABC parameters gives no information about C. Other 
approaches have been devised to measure C that take advantage of the strength of the 
acid being generated in a chemically amplifi ed resist. Direct measurement of the acid 
concentration is possible using titration, or indirectly using fl uorescence. Alternatively, 
resist formulations with varying amounts of added base can be used to measure acid 
generation by determining the dose required to overcome the added base.

Deblocking during the chemical amplifi cation reaction leads to the generation of vola-
tile components that evaporate out of the resist during PEB. This slightly unpleasant side 
effect of amplifi cation can be used as a way to measure the kinetics of the amplifi cation 
reaction.6 Evaporation of volatile components at the relatively high PEB temperatures 
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temperature) for Kamp when the diffusion and amplifi cation rate constants have different acti-
vation energies (diffusion activation energy = 26.5 kcal/mol; reaction activation energy = 
45 kcal/mol)
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used allows the fi lm to relax and shrink. For a large open-frame exposure, the thickness 
loss after PEB is directly proportional to the average amount of deblocking that takes 
place through the thickness of the fi lm (a good BARC should be used to avoid standing 
waves). If the maximum amount of fi lm shrinkage, corresponding to 100 % deblocking 
of the polymer, can be measured, fi lm shrinkage after PEB can be directly related to the 
fractional amount of blocked groups left. By measuring fi lm shrinkage versus dose, both 
the quencher concentration and the amplifi cation rate constant can be obtained. By repeat-
ing this measurement at different PEB temperatures, the activation energy of the ampli-
fi cation can also be measured.

Figure 6.7 shows an example of the PEB kinetics measured using the PEB thickness 
loss measurement technique. Initially, no thickness loss is observed because the doses 
are not large enough to overcome the base quencher present in the resist. Past the dose 
required to neutralize all of the base quencher, the blocked fraction decreases as an expo-
nential function, with the rate of decrease dependent on the amplifi cation rate constant 
(and thus on the temperature). This fi gure also illustrates one of the major diffi culties of 
this technique. Because the PEB time is fi xed, there is no guarantee that even at the highest 
temperatures and highest exposure doses the resist will approach 100 % deblocking. It is 
quite diffi cult to ensure that the measurement of the 100 % deblocking thickness loss used 
to calibrate this technique does in fact correspond to 100 % deblocking.

A more direct method of measuring chemical kinetics during PEB involves the use of 
Fourier transform infrared (FTIR) spectroscopy. Absorbance peaks as a function of wave-
length indicate specifi c bonds in the various chemical species in the resist. As bonds are 
broken and formed during amplifi cation, peaks of the FTIR spectrum appear and disap-
pear, providing a quantifi able measure of the extent of reaction. FTIR equipment mounted 
directly above the PEB hot plate can measure these spectra in real time during the bake. 
However, since silicon is mostly transparent to IR light, a backside wafer coating of metal 
is required to provide a refl ected signal to detect,7 or a hole in the hot plate must be used 
for measurement in transmission mode.8
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Figure 6.7 Example of PEB amplifi cation kinetics measured by using thickness loss after PEB 
to estimate the fraction of polymer that remains blocked
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The most diffi cult parameters to measure for chemically amplifi ed resists are the acid 
and base diffusivities (the diffi culties increase if these diffusivities vary with extent of 
amplifi cation). In general, these parameters are empirically determined by matching pre-
dictions to experimental linewidth data.

6.4 Stochastic Modeling of Resist Chemistry

The theoretical descriptions of lithography given so far in this book make an extremely 
fundamental and mostly unstated assumption about the physical world being described: 
the so-called continuum approximation. Even though light energy is quantized into 
photons and chemical concentrations are quantized into spatially distributed molecules, 
the descriptions of aerial images and latent images ignore the discrete nature of these 
fundamental units and use instead continuous mathematical functions. For example, the 
very idea of chemical concentration assumes that the volume one is interested in is large 
enough to contain many, many molecules so that an average number of molecules per 
unit volume can be used. While we can mathematically discuss the idea of the concentra-
tion of some chemical species at a point in space, in reality this concentration must be 
an average extended over a large enough region. While in most cases the volumes of 
interest are large enough not to worry about this distinction, when trying to understand 
lithography down to the nanometer level the continuum approximation begins to break 
down.

When describing lithographic behavior at the nanometer level, an alternate approach, 
and in a very real sense a more fundamental approach, is to build the quantization of light 
as photons and matter as atoms and molecules directly into the models used. Such an 
approach is called stochastic modeling, and involves the use of random variables and 
probability density functions to describe the statistical fl uctuations that are expected. Of 
course, such a probabilistic description will not make deterministic predictions – instead, 
quantities of interest will be described by their probability distributions, which in turn are 
characterized by their moments, such as the mean and variance.

6.4.1 Photon Shot Noise

Consider a light source that randomly emits photons at an average rate of L photons per 
unit time into some area A. Assume further that each emission event is independent. Over 
some small time interval dt (smaller than 1/L and small enough so that it is essentially 
impossible for two photons to be emitted during that interval), either a photon is emitted 
or it is not (a binary proposition). The probability that a photon will be emitted during 
this interval will be Ldt. Consider now some long time T (>> dt). What can we expect 
for the number of photons emitted during the period T? This basic problem is called a 
Bernoulli trial and the resulting probability distribution is the well-known binomial dis-
tribution. If N = T/dt, the number of time intervals in the total time, then the probability 
that exactly n photons will be emitted in this time period, P(n), will be
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The binomial distribution is extremely cumbersome to work with as N gets large. If, 
however, NLdt = TL remains fi nite as N goes to infi nity, the binomial distribution con-
verges to another, more manageable equation called the Poisson distribution:
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Since there is no limit to how small dt can be made, letting dt go to zero will by default 
make N go to infi nity for any nonzero time interval T and nonzero photon emission 
rate L. In general, the Poisson distribution is a good approximation to the binomial 
distribution whenever TL > 1 (that is, you expect to see more than one photon in the 
allotted time).

The Poisson distribution can be used to derive the statistical properties of photon emis-
sion. The expectation value of n [that is, the mean number of photons that will be emitted 
in a time interval T, denoted by the notation E(n) or 〈n〉] is TL (a very reasonable result 
since L was defi ned as the average rate of photon emission):
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The variance (the standard deviation squared) is also TL.

 σ n E n n E n n TL2 2 2 2≡ −( )  = ( ) − =  (6.32)

To use these statistical properties, we must convert from number of photons to a more 
useful measure, intensity. If n photons cross an area A over a time interval T, the intensity 
of light will be
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The mean value of this intensity will be
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The standard deviation of the intensity can also be computed from the properties of the 
Poisson distribution.
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As this equation shows, the uncertainty of getting the mean or expected intensity grows 
as the number of photons is reduced, a phenomenon known as shot noise. Perhaps a more 
useful form is to consider the standard deviation as a fraction of the average value.
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The shot noise (the relative uncertainty in the actual intensity that the resist will see) 
increases with decreasing intensity, exposure time and area of concern.

As an example, consider a 193-nm exposure of a resist with a dose-to-clear of 10 mJ/
cm2. At the resist edge, the mean exposure energy (=〈I〉T) will be on the order of the 
dose-to-clear. At this wavelength, the energy of one photon, hc/l, is about 1.03 × 10−18 J. 
For an area of 1 × 1 nm, the mean number of photons during the exposure, from Equation 
(6.34), is about 97. The standard deviation is about 10, or about 10 % of the average. For 
an area of 10 nm × 10 nm, the number of photons increases by a factor of 100, and the 
relative standard deviation decreases by a factor of 10, to about 1 %. Since these are 
typical values for a 193-nm lithography process, we can see that shot noise contributes a 
noticeable amount of uncertainty as to the actual dose seen by the photoresist when 
looking at length scales less than about 10 nm.

For Extreme Ultraviolet Lithography (EUVL), the situation will be considerably worse. 
At a wavelength of 13.5 nm, the energy of one photon will be 1.47 × 10−17 J, about 15 times 
greater than at 193 nm. Also, the goal for resist sensitivity will be to have EUV resists that 
are 2–4 times more sensitive than 193-nm resists (though it is unclear whether this goal 
will be achieved). Thus, the number of photons will be 30–60 times less for EUV than for 
a 193-nm lithography. A 1 × 1 nm area will see only two to three photons, and a 100-nm2 
area will see on the order of 200 photons, with a standard deviation of 7 %.

6.4.2 Chemical Concentration

As mentioned above, there really is no such thing as concentration at a point in space 
since the chemical species is discrete, not continuous. Concentration, the average number 
of molecules per unit volume, exhibits counting statistics identical to photon emission. 
Let C be the average number of molecules per unit volume, and dV a volume small enough 
so that at most one molecule may be found in it (thus requiring that the concentration be 
fairly dilute, so that the position of one molecule is independent of the position of other 
molecules). The probability of fi nding a molecule in that volume is just CdV. For some 
larger volume V, the probability of fi nding exactly n molecules in that volume will be 
given by a binomial distribution exactly equivalent to that for photon counting. And, for 
any reasonably large volume (CV > 1), this binomial distribution will also be well approxi-
mated by a Poisson distribution.
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The average number of molecules in the volume will be CV, and the variance will also 
be CV. The relative uncertainty in the number of molecules in a certain volume will be
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[The requirement that the concentration be ‘dilute’ can be expressed as an upper limit to 
the Poisson distribution – for a given molecule size, saturation occurs at some nmax mol-
ecules in the volume V. So long as P(nmax) is small, the mixture can be said to be dilute.9]

As an example, consider a 193-nm resist that has an initial PAG concentration of 3 % 
by weight, or a concentration of about 0.07 mole/liter (corresponding to a density of 
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1.2 g/ml and a PAG molecular weight of 500 g/mole). Converting from moles to molecules 
with Avogadro’s number, this corresponds to 0.042 molecules of PAG per cubic nanome-
ter. In a volume of (10 nm)3, the mean number of PAG molecules will be 42 (see Figure 
6.8). The standard deviation will be 6.5 molecules, or about 15 %. For 248-nm resists, 
the PAG loading is typically 3 times higher or more, so that closer to 150 PAG molecules 
might be found in a (10-nm)3 volume, for a standard deviation of 8 %. Note that when 
the mean number of molecules in a given volume exceeds about 20, the Poisson distribu-
tion can be well approximated with a Gaussian distribution.

As mentioned briefl y above, Poisson statistics apply only for reasonably low concentra-
tions. The random distribution of molecules assumes that the position of each molecule 
is independent of all the others. As concentrations get higher, the molecules begin to 
‘crowd’ each other, reducing their randomness. In the extreme limit, molecules become 
densely packed and the uncertainty in concentration goes to zero. This saturation condi-
tion is a function of not only the concentration, but the size of the molecule as well. To 
avoid saturation, the volume fraction occupied by the molecules under consideration must 
be small.
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Figure 6.8 Example Poisson distributions for a typical 193-nm resist (G0NA = 0.042 /nm3): 
(a) volume of 64 nm3; (b) volume of 216 nm3; and (c) volume of 1000 nm3. For (c), a 
Gaussian distribution with the same mean and standard deviation as the Poisson distribution 
is shown as a solid line
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6.4.3 Some Mathematics of Binary Random Variables

The mathematical approach to be taken below in considering the stochastic nature of 
molecular events (such as absorption, reaction or diffusion) is to defi ne a binary random 
variable to represent the result of that event for a single molecule. For example, we 
may let y be a random variable that represents whether a given single PAG molecule 
was converted to acid or remains unexposed by the end of the exposure process. Thus, 
y = 1 if the event has happened, and y = 0 if the event has not happened. Then, by 
considering the kinetics of the event or some other physical model of how that event 
might happen, we assign a probability P to the event. Since the event is binary, P(y = 1) 
= 1 − P(y = 0).

We next consider some properties of the random variable y. In particular, what is the 
mean and variance of y? The mean value of y uses the defi nition of the expectation value 
for a discrete random variable:

 y E y y P y P P Pi
i

i≡ = = + =
=
∑( ) ( ) ( ) ( ) ( ) ( ) ( )

,0 1

0 0 1 1 1  (6.39)

Likewise, the variance of y is

 σ y E y y E y y2 2 2 2≡ −( ) = −( ) ( )  (6.40)

But, since y is binary, y2 = y and

 σ y y y y y2 2 1= − = −( )  (6.41)

Thus, if an appropriate probability for a molecular event can be assigned, the mean and 
variance of the binary random variable y, representing that event for a single molecule, 
can easily be calculated. Of course, these results are simply the properties of a binomial 
distribution, which is the probability distribution of a binary random variable. Interest-
ingly, the random variable y has no uncertainty at the extremes of the event process (〈y〉 
= 1 or 〈y〉 = 0), and maximum uncertainty when 〈y〉 = 0.5.

Now consider a collection of molecules. Suppose a volume V contains some number 
n molecules. After the event process is complete (e.g. at the end of exposure), the number 
of molecules Y in that volume that underwent the event will be

 Y yi
i

n

=
=
∑

1

 (6.42)

where yi is the discrete random variable representing the state of the ith molecule found 
in this volume (each event in the volume is assumed independent). For a given n, the 
mean and variance of Y can be readily computed:
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where the notation 〈a|b〉 signifi es the mean value of a for a given b.
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But n itself is not a fi xed quantity and will in general follow a Poisson statistical dis-
tribution, as discussed in section 6.4.2. To fi nd the mean value of Y including the statistical 
variation of n,
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Likewise, the variance of Y can be computed from

 σY E Y Y E Y Y2 2 2 2= −( ) = −( )  (6.45)

Starting the calculation of the expectation value of Y 2,
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Assuming that the exposure state of each molecule is independent of the states of the 
others,
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giving

 E Y E n n y nE y E n y n y E n E ny y( ) [ ( ) ( )] [ ] ( ) ( )2 2 2 2 2 2 2 2 21= − + = + = +σ σ  (6.48)

But, since

 E n nn( )2 2 2= +σ  (6.49)

we can combine Equations (6.45), (6.48) and (6.49) to give

 σ σ σY n yy n2 2 2 2= +  (6.50)

The variance of n, for a Poisson distribution, is just the mean value of n. Thus,

 σ σY yn y2 2 2= +( )  (6.51)

Using the variance of y from Equation (6.41),

 σY n y y y n y Y2 2 1= + −( )  = =  (6.52)

Like the Poisson distribution of molecules before the event process begins, the variance 
of the fi nal distribution is equal to its mean. In the sections below, these simple results 
will be applied to the specifi c chemical events of exposure, diffusion and reaction.

6.4.4 Photon Absorption and Exposure

What is the probability that a photon will be absorbed by a molecule of light-sensitive 
material in the resist? Further, what is the probability that a molecule of sensitizer will 
react to form an acid? As discussed above, there will be a statistical uncertainty in the 
number of photons in a given region of resist, a statistical uncertainty in the number of 
PAG molecules, and additionally a new statistical uncertainty in the absorption and expo-
sure event itself.
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Consider a single molecule of PAG. First-order kinetics of exposure was used to derive 
Equation (6.3), the concentration of PAG remaining after exposure (and, as well, the 
concentration of acid generated) in the continuum approximation (this is also called the 
mean-fi eld solution to the kinetics of exposure). From a stochastic modeling perspective, 
this kinetic result represents a probability density function for reaction: G/G0 is the frac-
tion of PAG that is unreacted in some large volume, and by the Law of Large Numbers 
this must be the probability that any given PAG will remain unexposed. Let y be a random 
variable that represents whether a given single PAG molecule remains unexposed or was 
converted to acid by the end of the exposure process. Thus y = 0 means an acid has been 
generated (PAG has reacted), and y = 1 means the PAG has not been exposed (no acid 
generated). A kinetic analysis of exposure gives us the probability for each of these states, 
given a certain intensity-in-resist I:

 P y I P y ICIt CIt( ) ( )= = − = =− −0 1 1e , e  (6.53)

For a given intensity, the mean value of y can be calculated using the defi nition of a dis-
crete probability expectation value:

 y I P I CIt= = −( )1 e  (6.54)

Likewise, the variance of y for a given intensity is

 σ y I
CIt CIty y2 1 1= −( ) = −− −e e( )  (6.55)

Note that the above equations were carefully derived under the assumption of a given 
intensity of light. However, we know from our discussion of photon counting statistics 
that I is a probabilistic function [the aerial image intensity I(x) can be thought of as pro-
portional to the probability of fi nding a photon at position x]. Thus, the mean and variance 
of y must take into account this probabilistic nature. Letting n be the number of photons 
exposing a given area A over an exposure time t [related to I by Equation (6.33)], it will 
be useful to defi ne a new constant:
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where the last two equations come from the microscopic absorption analysis presented 
in Chapter 5. The term y is the exposure shot noise coeffi cient, and is equal to the expo-
sure quantum effi ciency multiplied by the ratio of the PAG absorption cross section to 
the area of statistical interest. Since the exposure quantum effi ciency is typically in the 
0.3–0.7 range and the PAG absorption cross section is on the order of 1 Å2 for 193-nm 
resists, for most areas of interest this exposure shot noise coeffi cient will be much less 
than 1.

Using this exposure shot noise coeffi cient to convert intensity to number of photons, 
the total probability becomes
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Evaluating the summation (and recognizing the Taylor series expansion of an 
exponential),

 y
n

n

n
n

n

n= =
−

−

=

∞
− −∑ −( )

!
( )e

e e e
ψ

ψ

0

1  (6.59)

When y is small, the exact expression (6.59) can be approximated as
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This fi nal approximate form can be derived in an alternate way. For a reasonable number 
of photons (greater than about 20), the Poisson distribution of photons is well approxi-
mated by a normal distribution of the same mean and variance. A normal distribution for 
I will result in a log-normal distribution for y. The fi nal equation on the right-hand side 
of Equation (6.60) is the well-known result for the mean of a log-normal distribution.

As often happens when taking statistical distributions into account, the mean value of 
the output of the function is not equal to the function evaluated at the mean value of the 
input. Another approximate form for the mean value of y is

 y y y y y C I t≈ + = −
c c c c( ) where e

ψ
2

ln( )  (6.61)

Since (yc)ln(yc) is always negative (it goes between zero and about −0.37), the mean value 
of y is always less than the value of the function y evaluated at the mean value of the 
intensity. When averaging over a large area, y goes to zero, so that yc can be thought of 
as the mean value of y when averaged over a large area (that is, in the continuum limit). 
As the area over which we average our results decreases, the mean value of y (which is 
the same as the mean value of the relative acid concentration, as we will see below) 
decreases due to shot noise.

The mean value and uncertainty of the state of one acid molecule after exposure can 
now be translated into a mean and uncertainty of the overall acid concentration after 
exposure. Consider a volume V that initially contains some number n0−PAG PAG molecules. 
After exposure, the number of photogenerated acid molecules Y will be

 Y yi
i

n

=
=

−

∑
1

0 PAG

 (6.62)

Assuming that each exposure event is independent, the results from section 6.4.3 give the 
mean of Y:

 Y n y= −0 PAG  (6.63)

The variance becomes

 σ σ ψ
Y

Ct nY Y Y YI2 2 22 2

1 1= + − = + −( )( ) ( )e e  (6.64)
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Since y will in general be small,

 σ ψ ψY Y Y n Y Y C I t Y
Y C I t

n
2 2 2 2

2 2

≈ + = + = +( ) ( )
( )

 (6.65)

The variance of Y has two components. The Poisson chemical distribution gives the fi rst 
term, 〈Y〉. Photon shot noise adds a second term, inversely proportional to the mean 
number of photons.

At this point it is useful to relate the number of acid molecules per unit volume Y to 
the concentration of acid H, and the initial number of PAGs n0−PAG to the initial PAG 
concentration G0.
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We can also defi ne a relative acid concentration h to be
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The means of these quantities can be related by
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Using Equation (6.67),
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Finally, using Equation (6.65), the variance in acid concentration will be

 σ h
h
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h h
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21 1= + −( ) −( )
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[ ln ]
 (6.70)

This fi nal result, which accounts for photon fl uctuations, uncertainty in the initial con-
centration of photoacid generator, and the probabilistic variations in the exposure reaction 
itself, is reasonably intuitive. The fi rst term on the right-hand side of Equation (6.70) is 
the expected Poisson result based on exposure kinetics – the relative uncertainty in the 
resulting acid concentration after exposure goes as one over the square root of the mean 
number of acid molecules generated within the volume of interest. For large volumes 
and reasonably large exposure doses, the number of acid molecules generated is large 
and the statistical uncertainty in the acid concentration becomes small. For small volumes 
or low doses, a small number of photogenerated acid molecules results in a large 
uncertainty in the actual number within that volume. The second term accounts for photon 
shot noise. For the case of the (10 nm)3 of 193-nm resist given above, the standard devia-
tion in initial acid concentration near the resist edge (where the mean acid concentration 
will be about 0.4) will be >20 %. For 193-nm resists, the impact of photon shot noise is 
minimal compared to variance in acid concentration caused by simple molecular position 
uncertainty.
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6.4.5 Acid Diffusion, Conventional Resist

In Chapter 5, diffusion was treated using a Gaussian diffusion point spread function 
(DPSF) – the latent image after diffusion is the initial latent image convolved with a 
Gaussian, whose standard deviation s is called the diffusion length. From a stochastic 
modeling perspective, the Gaussian represents a probability distribution: for a particle 
initially at some position, the Gaussian DPSF, given by

 DPSF r= − −( )2 2 3 2 22 2πσ σ/ /e  (6.71)

represents the probability density of fi nding that particle some distance r from its original 
location. This probability distribution is itself derived from a stochastic look at the pos-
sible motions of the particle during the bake. Given that the particle can randomly move 
in any possible direction at a particular speed determined by its diffusivity, and can change 
directions randomly, the resulting path of the particle is called a random walk. Averaging 
over all possible random walk paths produces the Gaussian probability distribution (when 
the diffusivity is constant).

How does diffusion affect the statistical fl uctuations of concentration? The latent image 
of acid after exposure, h(x,y,z), as used in the continuum approximation, is actually the 
mean relative concentration 〈h〉, with a variance given by Equation (6.70). Ignoring the 
photon shot noise, the probability distribution for the number of acids in a given volume 
is approximately Poisson. Now consider a PEB process that causes only diffusion of acid 
(such as for a conventional resist). The mean acid concentration will ‘diffuse’ as was 
described in the continuum approximation of Chapter 5, convolving the initial acid latent 
image with the DPSF. The stochastic uncertainty in acid concentration will still be given 
by Equation (6.70), but with a new mean ‘after diffusion’ concentration of acid 〈h*〉. 
Ignoring photon shot noise,

 σh
A

h

N V
h h DPSF*

*
, *= = ⊗  (6.72)

The proof of this result (which will be sketched briefl y here) becomes evident by con-
sidering fi rst the diffusion of a single acid molecule, located at some initial position 
designated by the subscript i. Defi ning a binary random variable yi to represent whether 
that molecule is found in some small volume dV located a distance ri from its original 
location,

 P y Vi
r i( ) ( )= = − −1 2 2 3 2 22 2πσ σ/ /e d  (6.73)

This binary random variable will follow all of the properties derived in section 6.4.3:

 y P y y yi i y i ii
= = = −( ) ( )1 12, σ  (6.74)

If, instead of one acid molecule at a certain location which then diffuses, there are ni acid 
molecules at this location that then diffuse, the total number of acid molecules in that 
volume dV will be Yi, again with the properties derived in section 6.4.3:
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Adding up the contributions from all of the locations that could possibly contribute 
acid molecules into the volume dV produces the convolution result of Equation (6.72).
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Here, a summation over i is equivalent to an integration over all space, so that the fi nal 
summation becomes an integral, which in this case becomes a convolution.

 Y n DPSF= ⊗  (6.77)

How does diffusion affect the variance of the post-diffusion concentration?
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Since the diffusion of a given molecule is independent of all of the other molecules,
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As a result, the variance follows in the same way as shown in section 6.4.3:

 σ σY Y
i

i
Y2 2= =∑  (6.80)

Thus, diffusion does not intrinsically increase the uncertainty in acid concentration due 
to the extra stochastic process of the random walk, nor does it intrinsically ‘smooth out’ 
any uncertainties through the process of diffusion. Only through a change in the mean 
concentration does diffusion affect the uncertainty in the concentration. For a typical 
conventional resist, the concentration of exposure products near the edge of the resist 
feature does not change appreciably due to diffusion during PEB. Thus, it is unlikely 
that diffusion will have a signifi cant impact on the concentration statistics near the 
resist line edge.

6.4.6 Acid-Catalyzed Reaction–Diffusion

Of course, for a chemically amplifi ed resist acid diffusion is accompanied by one or more 
reactions. In this section and the next, we’ll consider only the polymer deblocking reac-
tion (acid-quencher neutralization will be discussed in a following section). In the con-
tinuum limit, the amount of blocked polymer left after the PEB is given by
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As before, the latent image of acid after exposure, h(x,y,z, t = 0) used in the continuum 
approximation is actually the mean acid concentration 〈h〉, with a standard deviation given 
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above. The effective acid concentration, however, has a very specifi c interpretation: it is 
the time average of the acid concentration at a given point. The interesting question to 
be answered, then, is whether this time-averaging effect of diffusion coupled with the 
acid-catalyzed reaction affects the uncertainty in the effective acid concentration com-
pared to the original acid concentration uncertainty.

To determine the statistical properties of the effective acid concentration, we’ll begin 
as we did for the pure diffusion case in the previous section by looking at the diffusion 
of a single molecule of acid. Let the binary random variable yi(t) represent whether that 
molecule is found in some small volume dV located a distance ri from its original loca-
tion, during the interval of time between t and t + dt.

 P y t V Dti
ri( ( ) ) ( )= = =− −1 2 22 3 2 2 22 2πσ σσ/ /e d ,  (6.82)

For ni acid molecules at this location that then diffuse, the total number of acid molecules 
in that volume dV and over the same time interval will be Yi(t), again with the properties 
derived in the previous section:
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Adding up the contributions from all of the locations that could possibly contribute acid 
molecules into the volume dV during the interval of time between t and t + dt produces 
the standard convolution result:
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So far, the results are identical to that for pure diffusion since we have only considered 
how many acids are in the volume at time t. We now wish to integrate over time, from 
0 to tPEB.

 

Y
t

Y t t

Y
t

Y t t
t

n DPSF t t

t

t t

=

= = ⊗

∫

∫

1

1 1

0

0 0

PEB

PEB PEB

d

d d

PEB

PEB P

( )

( ) ( )
EEB

∫ = ⊗n RDPSF
 (6.85)

Thus, as expected, the effective acid concentration used in the continuum approximation 
is in fact the mean value of a stochastic random variable. The uncertainty of Y, however, 
involves some extra complications. Proceeding as we have done in the past,
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What is different in this case compared to previous derivations is that Y(t′) and Y(t) are 
not independent. If an acid fi nds itself in the volume of interest at time t, the probability 
of fi nding that same acid in the same volume at time t′ will be greater than if the acid 
had not been found in the volume at time t. Thus, there will be some correlation between 
Y(t′) and Y(t) that will be strongest when t′ is close to t, and diminish as the difference 
between the two times increases.

Applying the defi nition of Y(t) to Equation (6.86),
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For ij ≠ kl (that is, for different acid molecules), there can be no correlation through time. 
Thus, the only time correlation comes from the same acid molecule venturing into the 
volume at different times. Changing the order of integration to bring the time integration 
inside and the spatial integration to the outside, we are interested in fi nding
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Since the only correlation through time exists when j = l,
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Following along the same lines as the derivation given in section 6.4.3, we obtain
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where CovPSF is a new function that I call the ‘covariance point spread function’.
Consider the unphysical case of y(t) and y(t′) being perfectly correlated. In that case, 

y(t)y(t′) = y(t) (since y is a binary variable) and the CovPSF is equal to the RDPSF. Thus, 
perfect correlation over the bake time produces the result that

 σY n RDPSF Y2 = ⊗ =  (6.91)

indicating that the fi nal effective acid concentration would retain an approximately Poisson 
distribution. Without perfect correlation, the CovPSF will differ from the RDPSF and the 
variance will be different from the Poisson result.

Since y(t) is a binary random variable, the expectation value is equal to the probability 
that both conditions are true (that is, the acid found its way into the volume at both time 
t and time t′).

 E y t y t P y t y t P y t y t P y t( ( ) ( )) ( ( ) ( ) ) ( ( ) ( ) ) ( ( ) )′ = ′ = = = ′ = = =1 1 1 1 1and  (6.92)

The conditional probability is governed by the difference in time between t and t′.
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where the one-dimensional case is shown for convenience.
Thus, the CovPSF can be written as
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where again the 1D version is shown for convenience. The inner integral over t’ can be 
readily evaluated:
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Unfortunately, the next integral does not appear to have an analytical solution. Some 
properties of the integral, however, can be determined. When r = 0, the integral evaluates 
to
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A numerical integration shows that the 1D CovPSF is very similar to the RDPSF, but 
with the diffusion length replaced by s/2:
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A comparison of this approximate form with a numerical integration of Equation (6.94) 
is shown in Figure 6.9.

The impact of the CovPSF can now be determined. The shape of the CovPSF is very 
similar to that of the RDPSF, but with an effective diffusion length that is less by a factor 
of 2. Since the effective acid concentration near the line edge does not differ appreciably 
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Figure 6.9 Comparison of the approximate 1D CovPSF of Equation (6.97) with a numerical 
evaluation of the defi ning integral in Equation (6.94)
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from the acid concentration when convolved with the RDPSF, the same will be true when 
convolved with this portion of the CovPSF. Thus, the effective acid concentration and its 
standard deviation can be approximated as
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eff
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The rest of the CovPSF simply gives the ratio dV/2sD, where sD is the overall diffusion 
length. In this context, dV is the (one-dimensional) capture volume for the deblocking 
reaction. In other words, dV/2 represents how close the acid must come to a blocked site 
before it can potentially participate in a deblocking reaction (called the capture range, a). 
As Equation (6.98) indicates, when the acid diffusion length exceeds the capture range 
of the deblocking reaction, the impact of the diffusing catalyst is to ‘smooth out’ the sta-
tistical fl uctuations present in the original acid distribution.

While the above derivation used the one-dimensional form of the diffusion probability, 
the extension to three dimensions is straightforward. For a problem of dimensionality p 
(p = 1, 2 or 3),

 σ
σ

σh
D
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h
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eff
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2
 (6.99)

where a is the deblocking reaction capture distance. In other words, if the acid diffuses 
a distance less than the reaction capture range, the catalytic nature of the amplifi cation 
reaction actually increases the stochastic variation in the effective acid concentration 
compared to the original acid concentration. If, however, the diffusion length is 
greater than this capture range, the time-averaging effect of the catalytic reaction 
will smooth out stochastic roughness. It is not diffusion, per se, that reduces stochastic 
uncertainty, but rather the diffusion of a reaction catalyst that does so. Since in real resist 
systems the diffusion length will invariably be greater than the reaction capture distance, 
the net affect will always be a reduction in the effective acid concentration standard 
deviation.

6.4.7 Reaction–Diffusion and Polymer Deblocking

The stochastics of the deblocking of a single blocked site will follow along the same lines 
as the single PAG exposure analysis of section 6.4.4. Let y be a random variable that 
represents whether a given single blocked site remains blocked by the end of the PEB. 
Thus y = 1 means the site remains blocked, and y = 0 means the site has been deblocked. 
As before, the continuum kinetic analysis gives us the probability that a single site is 
deblocked for a given effective acid concentration.

 P y h P y hK t h K t h( | ) ( )= = = = −− −1 0 1eff effe , eamp PEB eff amp PEB eff  (6.100)

The probability distribution of heff, however, is not obvious. While the relative acid 
concentration has a Poisson distribution, the time-averaging effect on the acid diffusion 
turns the discrete acid random variable into a continuous effective acid random 
variable.
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It will be reasonable to assume that heff is normally distributed with mean and standard 
deviations as given in the previous section. Thus, the mean value of y becomes

 
y h

y

h

K t h h h h= − − −( )

−∞

∞

∫
1

2

2 22

πσ
σ

eff

amp PEB eff eff eff eff(e )e d/
eff

== −e eamp PEB eff
amp PEB effK t h K t h

1

2
2( )σ

 (6.101)

The random variable y has a log-normal probability distribution and Equation (6.101) can 
be recognized as the standard result for a log-normal distribution.

The total number of blocked groups remaining in a certain small volume will be given 
by Y.
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The mean of Y can be easily computed, as before.

 Y n y= −0 block  (6.103)

The variance of Y can be found with a result similar to that for photon shot noise during 
exposure:
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From the defi nitions of M and Y,
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Thus,
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and

 σ σ σ
m

M Y

M n
2

2

0
2

2

0
2= =

−blocked

 (6.107)

giving
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For small levels of effective acid uncertainty,
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As before, the fi rst term captures the Poisson uncertainty due to the initial distribution of 
blocked polymer. The second term captures the infl uence of the effective acid concentra-
tion uncertainty. Combining this expression with Equation (6.99) for the variance of the 
effective acid concentration,
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Finally, using Equation (6.70) for the variance of the acid concentration,
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Or, in a slightly different form,
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While the above equations show how fundamental parameters affect the resulting vari-
ance in the fi nal blocked polymer concentration, interpretation is somewhat complicated 
by the fact that these parameters are not always independent. In particular, the Byers–
Petersen model of Equation (6.26) shows a relationship between KamptPEB and sDa. For 
the case where the PEB temperature puts the deblocking reaction in the diffusion-
controlled regime, Equation (6.28) can be expressed as

 K t a G ND Aamp PEB =2 2
0πσ  (6.113)

When used in Equation (6.112), for the 3D case (p = 3), and ignoring photon shot noise, 
the result is
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While this result is interesting, it is unlikely that resist will be processed at temperatures 
high enough to put the PEB reaction fully into the diffusion-controlled regime.

Using the example of a typical 193-nm resist, M0NA = 1.2 /nm3, G0NA = 0.042 /nm3 
and KamptPEB = 2. Consider the case of 〈h〉 = 〈heff〉 = 0.3, sD/9 = 5 and p = 3. For a (10 nm)3 
volume, sh/〈h〉 ≈ 0.28 and sheff

/〈heff〉 ≈ 0.025. The remaining blocked polymer will have 
〈m〉 = 0.55 and sm = 0.023, or about 4.3 %. For a (5 nm)3 volume, sm = 0.064, or about 
11 %. The factors that have the largest impact are the diffusion length and the volume of 
resist under examination, as shown in Figure 6.10.

6.4.8 Acid–Base Quenching

Interestingly, the acid–base neutralization reaction poses the greatest challenge to 
stochastic modeling. While acid concentrations in chemically amplifi ed resists are low, 
base quencher concentrations are even lower, leading to greater statistical uncertainty in 



254 Fundamental Principles of Optical Lithography

concentration for small volumes. Further, since the reaction is one of annihilation, statisti-
cal variations in acid and base concentrations can lead effectively to acid–base segrega-
tion, with clumps of all acid or all base.10 Such clumping is likely to lead to low-frequency 
line edge roughness that is easily discernable from the higher-frequency roughness that 
will be predicted with the stochastic models presented above. Further discussion of this 
interesting and diffi cult topic is beyond the scope of this book. Thus, while acid–base 
quenching is extremely important in its impact on LER, it will not be considered in the 
model being developed here.

The stochastic descriptions of exposure and reaction–diffusion in chemically amplifi ed 
resist will be used in Chapter 9 to develop a model for line-edge roughness.

Problems

6.1. Equation (6.9) provides the (no diffusion or acid loss) kinetic solution for the block-
ing group concentration in a chemically amplifi ed resist. Under the assumption that 
h is locally constant,
(a) Derive an expression for the relative bake time sensitivity of m (i.e. calculate 

dm/dlntPEB).
(b) Derive an expression for the relative temperature sensitivity of m (i.e. calculate 

dm/dlnT). From this, will a low activation energy resist or a high activation 
energy resist be more sensitive to temperature variations?

(c) Does the presence of base quencher change the bake time or temperature sen-
sitivity of m?

6.2. Plot the effective thermal dose versus temperature for a resist with an amplifi cation 
reaction Ea = 25.0 kcal/mol and Ar = exp(28.0) s−1, and an exposure rate constant C 
= 0.05 cm2/mJ. Use a temperature range from 100 to 140 °C and assume a PEB time 
of 60 seconds.
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Figure 6.10 The relative uncertainty of the relative blocked polymer concentration as a 
function of the volume (= length cubed) under consideration and the diffusion length of acid 
for a two-dimensional problem. Typical 193-nm resist values were used: G0NA = 0.042 /nm3, 
M0NA = 1.2 /nm3, KamptPEB = 2, and for an exposure such that <h> = 0.4
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6.3. What is the impact of increasing the PAG loading (the initial concentration of PAG) 
on the effective thermal dose for a given PEB process?

6.4. Derive the simplifi ed Fujita–Doolittle Equation (6.15) from the full Fujita–Doolittle 
equation given in Chapter 5. What assumptions have to be made?

6.5. Ignoring diffusion and acid loss mechanisms, derive an expression for the catalytic 
chain length (the number of deblocking events per acid molecule). At what dose 
will this catalytic chain length be at its maximum? What is the maximum value for 
the catalytic chain length?

6.6. One possible acid loss mechanism is called acid trapping, where acid is consumed 
by being trapped within the resist. Ignoring diffusion and all other acid loss mecha-
nisms, this acid loss mechanism is governed by

 
∂

∂
= −H

t
k H

PEB
5

 Under these conditions, derive an expression for the concentration of blocked sites 
at the end of the PEB.

6.7. For x >> sD, derive a simplifi ed ‘large argument’ approximation to the 1D reaction–
diffusion point spread function.

6.8. Henry’s law (fi rst formulated in 1803) states that the amount of a gas which will 
dissolve into a solution is directly proportional to the partial pressure of that gas 
above the solution, and is generally found to be true only at low concentrations. 
When applied to a solid, the amount of a substance that is adsorbed onto the surface 
of the solid (the surface concentration) is proportional to the partial pressure of the 
substance in the atmosphere. The constant of proportionality, called the Henry’s 
law constant, is dependent on both materials. Suppose ammonia is in the atmo-
sphere at a concentration of 100 ppb (parts per billion), and that the Henry’s law 
constant for ammonia in photoresist is 30 liters-atm/mol at room temperature. What 
is B0, the surface concentration of ammonia?

6.9. Derive an expression for the total amount of base contaminant found inside a 
resist, assuming that Equation (6.22) applies and that sB << resist thickness. If one 
wanted to reduce this total amount of base contaminant by a factor of 2, how much 
would the post-exposure delay time have to be reduced (all other factors held 
constant)?

6.10. Why does the addition of base quencher reduce the sensitivity of the resist to air-
borne base contaminants?

6.11. For the deblocking kinetics data of Figure 6.7, assume a resist with an exposure 
rate constant C = 0.03 cm2/mJ, and a PEB time of 60 seconds.
(a) If the resist shows no deblocking until a dose of 8 mJ/cm2, what is the relative 

quencher loading for the resist?
(b) Estimate the amplifi cation rate constant for each temperature shown.
(c) What is the activation energy for the amplifi cation reaction?

6.12. Assuming that a certain amount of acid is required to achieve a desired lithographic 
effect (that is, assuming the mean concentration of photogenerated acid is fi xed), 
how low can the mean number of photons go before photon shot noise exceeds the 
PAG loading shot noise? Assume, for example, that 〈h〉 = 0.3 and 〈n0−PAG〉/V = 
0.05 /nm3, and the region of interest is (10 nm)3.
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6.13. Suppose for a given process that 〈h〉 = 0.3 and 〈m〉 = 0.5. Further, assume that 
photon shot noise can be neglected and that 〈n0−blocked〉/〈n0−PAG〉 = 30. Considering 
the total uncertainty of the fi nal blocked polymer concentration for a 1D problem, 
how large must sD/a be in order to make the contribution of acid uncertainty equal 
to the Poisson uncertainty of the deblocking reaction?

6.14. As Equation (6.111) shows, increasing acid diffusion during PEB reduces the sto-
chastic uncertainty caused by acid concentration fl uctuations. Is there a limit as to 
how much this uncertainty can be reduced (that is, is there a practical maximum 
value for the acid diffusion length)? Explain.

6.15. Qualitatively, how will the presence of base quencher affect the variance of fi nal 
blocked polymer concentration?
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7
Photoresist Development

The chemistry of photoresists is designed to turn a spatial distribution of energy (the aerial 
image) into a spatial distribution of resist solubility. Ultimately, the dissolution process 
turns the continuous energy distribution of the projected aerial image into a binary resist 
image: either the resist is dissolved or it remains on the wafer. Exposure and post-exposure 
bake create latent images of chemical distributions, but it is the chemistry of dissolution 
that has the greatest impact on the ability to discern between line and space and to control 
the dimensions of the fi nal resist features.

A kinetic approach to understanding development will be taken here, with a postulated 
reaction mechanism that then leads to a development rate equation. Deviations from the 
expected kinetic development rates at the surface of the resist, called surface induction 
or surface inhibition, will be related empirically to the expected development rate, i.e. 
to the bulk development rate. Next, the infl uence of developer temperature and nor-
mality are discussed. Once a basic understanding of what affects the development rate is 
established, the traditional resist metric ‘contrast’ will be defi ned and explored. Finally, 
to arrive at a resist profi le shape, the physical mechanism by which a spatial variation in 
development rate turns into a fi nal resist profi le is examined by way of the development 
path.

7.1 Kinetics of Development

In order to derive an analytical development rate expression, a simple kinetic model of 
the development process will be used. This approach involves proposing a reasonable 
mechanism for the development reaction and then applying standard kinetics to this 
mechanism in order to derive a rate equation.

Unfortunately, fundamental experimental evidence of the exact mechanism of photo-
resist development is lacking. The models presented below are reasonable, and the result-
ing rate equations have been shown to describe actual development rates extremely well. 
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However, faith in the exact details of the mechanism is limited by this dearth of funda-
mental studies. In addition, photoresists are not simple, uniform collections of model 
compounds. Distributions of polymers with different chain lengths (molecular weights) 
and functional groups mean that macroscopic observations refl ect average material prop-
erties that are only approximately mapped to microscopic mechanisms.

7.1.1 A Simple Kinetic Development Model

Our discussion here will apply to both conventional and chemically amplifi ed positive 
photoresists, and will be generalized to negative working resists in a later section. For all 
resist systems in common use today, the developer is a dilute aqueous solution of a base, 
most commonly tetramethyl ammonium hydroxide (TMAH).

Photoresist dissolution involves three processes: diffusion of the active component of 
the developer from the bulk solution to the surface of the resist, reaction of the developer 
with the resist, and diffusion of the product back into the solution. For this analysis, we 
shall assume that the last step, diffusion of the dissolved resist into solution, occurs very 
quickly so that this step may be ignored. Let us now look at the fi rst two steps in the 
proposed mechanism. The diffusion of developer to the resist surface can be described 
with the simple diffusion rate equation, given approximately by a simple difference 
equation:

 r k D DD D S= −( )  (7.1)

where rD is the rate of diffusion of the developer to the resist surface, D is the bulk devel-
oper concentration, DS is the developer concentration at the resist surface, and kD is the 
rate constant (equal to the diffusivity of the developer in the solution divided by the 
boundary layer thickness).

We shall now propose a mechanism for the reaction of developer with the resist. It is 
quite likely that this step is in fact a series of more detailed steps, including the diffusion 
of the developer cation into the resist to form a thin gel layer. However, we will assume 
a simple surface-limited reaction here. The resist is composed of large macromolecules 
of resin R along with a dissolution inhibitor M. For the conventional DNQ/novolac resist, 
the dissolution inhibitor is the photoactive compound itself. For a chemically amplifi ed 
resist, dissolution is inhibited by the blocking group attached to the PHS (polyhydroxy 
styrene) resin. The resin is somewhat soluble in the developer solution, but the presence 
of the inhibitor makes the development rate very slow. Solubility in the resist is changed 
by removing the inhibitor. For a conventional resist, the sensitizer converts to carboxylic 
acid upon exposure to UV light. This carboxylic acid is highly soluble in developer, 
enhancing the dissolution rate of the resin. For a chemically amplifi ed resist, the PEB 
amplifi cation reaction deblocks the polymer, generating the highly soluble –OH site.

Let us assume that n inhibitor sites must be removed from the infl uence of one 
resin in order for the developer to dissolve that resin molecule. This n parameter, the 
reaction order for this step in the mechanism, will turn out to be the most critical devel-
opment parameter, representing the number of exposure or deblocking events that 
work together to get one resin molecule into solution. The rate of the reaction for this 
step is

 r k D M M n
R R S= −( )0  (7.2)
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where rR is the rate of reaction of the developer with the resist, kR is the rate constant, 
and M0 is the initial inhibitor concentration. The two steps outlined above are in series, 
i.e. one reaction follows the other. Thus, the two steps will come to a steady state such 
that

 r r rR D= =  (7.3)

Equating the rate equations, one can solve for DS and eliminate it from the overall rate 
equation, giving the steady-state development rate:

 r
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 (7.4)

Letting m = M/M0, the relative inhibitor concentration, Equation (7.4) becomes
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When m = 1 (resist unexposed/unreacted), the rate is zero. When m = 0 (resist com-
pletely exposed/reacted), the rate is equal to rmax where

 r
k D

k k M nmax
D

D R/
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+0 1
 (7.6)

If we defi ne a constant a such that

 a k k M n= D R/ 0  (7.7)

the rate equation becomes
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 (7.8)

Note that the simplifying constant a describes the rate constant of diffusion relative to 
the surface reaction rate constant. A large value of a will mean that diffusion is very fast, 
and thus less important, compared to the fastest surface reaction (for completely exposed/
reacted resist), and the rate is reaction-controlled. When a is small, the rate is 
diffusion-controlled.

There are three constants that must be determined experimentally: a, n and rmax. The 
constant a can be put in a more physically meaningful form as follows. A characteristic 
of some experimental rate data is an infl ection point in the rate curve at values of m 
between 0.2 and 0.8. The point of infl ection can be calculated by letting
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where mth is the value of m at the infl ection point, called the threshold inhibitor 
concentration.

This model so far does not take into account the nonzero dissolution rate of unexposed 
resist (rmin). Simply adding this term to Equation (7.8) gives what has been called the 
‘original’ kinetic model or the ‘Original Mack model’:1

 r r
a m

a m
r

n

n
= + −

+ −
+max min

( )( )

( )

1 1

1
 (7.10)

This approach assumes that the mechanism of development of the unexposed resist is 
independent of the above-proposed development mechanism. In other words, there is a 
fi nite dissolution of resist that occurs by a mechanism that is independent of the presence 
of exposed photoactive compound (PAC). Note that the addition of the rmin term means 
that the true maximum development rate is actually rmax + rmin. In most cases rmax >> rmin 
and the difference is negligible.

Consider the case when the diffusion rate constant is large compared to the surface 
reaction rate constant (i.e. the rate is reaction-controlled). If a >> 1, the development rate 
Equation (7.10) will become

 r r m rn= − +max min( )1  (7.11)

The interpretation of a as a function of the threshold inhibitor concentration mth given by 
Equation (7.9) means that a very large a would correspond to a large negative value of 
mth. In other words, if the surface reaction is very slow compared to the mass transport 
of developer to the surface there will be no infl ection point in the development rate data 
and Equation (7.11) will apply. It is quite apparent that Equation (7.11) could be derived 
directly from Equation (7.2) if the diffusion step were ignored.

Figure 7.1 shows some plots of this model for different values of n. The behavior of 
the dissolution rate with increasing n values is to make the rate function more ‘selective’ 
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Figure 7.1 Development rate plot of the original kinetic model as a function of the dissolu-
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between resist exposed/reacted above mth and resist exposed/reacted below mth. For this 
reason, n is called the dissolution selectivity parameter. Also from this behavior, the 
interpretation of mth as a ‘threshold’ concentration becomes quite evident.

The key parameter in this development model that affects lithographic performance is 
the dissolution selectivity n. As n goes to infi nity, the behavior seen in Figure 7.1 reaches 
its extreme of a step function. In other words, for n = ∞ the resist becomes an ideal 
threshold resist. Physically, this parameter represents the number of exposure or deblock-
ing reactions that work together to cause one resin molecule to go into solution. Engineer-
ing the materials of the resist to increase n is one of the primary tasks of the resist designer. 
In general, a high n implies a high molecular weight of the resin (for example, a large 
number of deblocking reactions per resin means a large chain length of the resin). Unfor-
tunately, a resist with all high molecular weight resin will tend to develop more slowly 
(lower rmax and mth), thus degrading resist sensitivity.

The second most important factor in resist performance is the ratio of the maximum to 
minimum development rates, rmax/rmin. Increasing this ratio above 100 will defi nitely 
improve lithographic performance, though there will be diminishing returns as the ratio 
exceeds 10 000 or so.

7.1.2 Other Development Models

The previous kinetic model is based on the principle of dissolution enhancement. For a 
diazonaphthoquinone (DNQ)/novolac resist, the exposure product enhances the dissolu-
tion rate of the resin/PAC mixture. For a chemically amplifi ed resist, the deblocked site 
enhances the solubility of the blocked polymer. In reality this is a simplifi cation – there 
are really two mechanisms at work. The inhibitor acts to inhibit dissolution of the resin 
while the product that results from removing that inhibitor enhances dissolution. Thus, a 
development rate expression could refl ect both of these mechanisms. A new model, call 
the enhanced kinetic model, has been proposed to include both effects:2
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k m

k m l
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1
 (7.12)

where kenh is the rate constant for the enhancement mechanism, n is the enhancement 
reaction order, kinh is the rate constant for the inhibition mechanism, l is the inhibition 
reaction order, and rresin is the development rate of the resin alone.

For no exposure/reaction, m = 1 and the development rate is at its minimum. From 
Equation (7.12),

 r
r

k
min = +

 

1
resin

inh

 (7.13)

Similarly, when m = 0, corresponding to complete exposure/reaction, the development is 
at its maximum.

 r r kmax ( )= +resin enh1  (7.14)

Thus, the development rate expression can be characterized by fi ve parameters: rmax, rmin, 
rresin, n and l.
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The enhanced kinetic model for resist dissolution is a superset of the reaction-controlled 
version of the original kinetic model. If the inhibition mechanism is not important, then 
kinh = 0. For this case, Equation (7.12) is identical to Equation (7.11) when

 r r r r kmin max,= =resin resin enh  (7.15)

The enhanced kinetic model of Equation (7.12) assumes that mass transport of developer 
to the resist surface is not signifi cant. Of course, a simple diffusion of developer can be 
added to this mechanism as was done above with the original kinetic model (see Problem 
7.3).

Figure 7.2 shows several plots of this model. The fi ve parameters of the enhanced 
kinetic model give this equation more fl exibility in fi tting experimental development rate 
curves compared to the four-parameter original kinetic model. As Figure 7.2 shows, the 
combination of enhancing and inhibiting mechanisms can produce a sort of double thresh-
old behavior with rates rising and lowering around a plateau at the resin development 
rate.

Perhaps a more intuitive way to understand the basic mechanism of the enhanced 
kinetic rate model is with the Meyerhofer plot.3 This plot, such as the one shown in Figure 
7.3, shows how the addition of increasing concentrations of inhibitor in the resist formula-
tion (in this case DNQ added to a novolac resin) changes the original development rate 
of the resin and increases rmax while decreasing rmin. Experimentally, the Meyerhofer plot 
shows an approximately linear dependence of log-development rate on the initial concen-
tration of inhibitor, M0 (Figure 7.3a). This empirical result can be explained reasonably 
well if one assumes that kenh has a fi rst-order dependence on M0 and kinh has a second-order 
dependence on M0, as seen in Figure 7.3b.

Some experimentally derived r(m) behavior is not well fi t by either kinetic model 
described above. Figure 7.4 shows the best fi t of both the original and the enhanced 
development rate models to one set of data.4 In the region around a 0.5 inhibitor concen-
tration, the data exhibits a ‘notch’ behavior where the actual development rate drops very 
quickly to a value much less than that predicted by either model. This sudden drop in 
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Figure 7.2 Plots of the enhanced kinetic development model for rmax = 100 nm/s, rresin = 
10 nm/s, rmin = 0.1 nm/s with: (a) l = 9; and (b) n = 5
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rate, resembling a notch in the otherwise slowly varying behavior, is critical to resist 
performance because it is the region of steepest change in relative development rate versus 
m. Thus, it is critical that a development model properly describes this region of the dis-
solution rate curve in order to accurately predict the behavior of the resist.

A semiempirical model has been devised in order to better fi t the notch behavior 
described above. This notch model begins with the simple version of the original model 
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Figure 7.3 An example of a Meyerhofer plot, showing how the addition of increasing con-
centrations of inhibitor increases rmax and decreases rmin: (a) idealized plot showing a log-linear 
dependence on initial inhibitor concentration, and (b) the enhanced kinetic model assuming 
kenh ∝ M0 and kinh ∝ M0
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Figure 7.4 Comparison of experimental dissolution rate data (symbols) exhibiting the so-
called ‘notch’ shape to best fi ts of the original (dotted line) and enhanced (solid line) kinetic 
models. The data shows a steeper drop in development rate at about 0.5 relative inhibitor 
concentration than either model predicts
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given in Equation (7.11) and adds a notch function equivalent to the threshold behavior 
given by Equation (7.10):

 r r m
a m

a m
rn

n notch

n notch
= − + −

+ −





+max min( )

( )( )

( )

_

_
1

1 1

1
 (7.16)

where

 
a

n notch

n notch
m n notch= +

−
−( )( )

( )

_

_
TH_notch

_1

1
1

The term in the square brackets of Equation (7.16) provides the notch-like behavior 
where mth_notch is the position of the notch along the inhibitor concentration axis 
and n_notch gives the strength of the notch. This is illustrated in Figure 7.5. Note that 
the fi ve-parameter notch model of Equation (7.16) reverts to the original kinetic model 
of Equation (7.10) when n = 0 and becomes equivalent to the simplifi ed kinetic model of 
Equation (7.11) when n_notch = 1.

Of the three models described above, about half of the resists that have been character-
ized are fi t well with the original kinetic model. Most of the rest are well described by 
the enhanced kinetic model, with only a few resists needing the notch model to accurately 
describe their dissolution properties.

7.1.3 Molecular Weight Distributions and the Critical Ionization Model

In each of the models above, the mechanism of surface reaction is based on the idea that 
n dissolution-changing chemical events are required to make one polymer molecule dis-
solve. Real resists, however, are formulated with polymers that have a range of molecular 
weights (that is, different polymer chain lengths). It seems unlikely that each polymer 
molecule, regardless of its chain length, would require the same number of deblocking 
events (taking chemically amplifi ed resists as an example) to make it soluble. Another 
approach, called the critical ionization model, assumes that the polymer becomes soluble 
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Figure 7.5 Plots of the notch model: (a) mth_notch equal to 0.4, 0.45 and 0.5 with n_notch 
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whenever some critical fraction of its blocked groups become deblocked.5 Thus, lower 
molecular weight polymers would require fewer deblocking events (lower n) to become 
soluble compared to higher molecular weight polymers.

High molecular weight polymers (>5000 g/mol, for example) result in high n, but with 
less than ideal sensitivity. By mixing in a small amount of low molecular weight polymer 
(<500 g/mol, for example),6 resist sensitivity can be improved without a signifi cant reduc-
tion in average n. Mid-molecular weight resins, however, tend to degrade resolution by 
lowering n.

7.1.4 Surface Inhibition

The kinetic models given above predict the development rate of the resist as a function 
of the inhibitor concentration remaining after the resist has been exposed/reacted. There 
are, however, other parameters that are known to affect the development rate, but that 
were not included in these models. The most notable deviation from the kinetic theory is 
the surface inhibition effect (Figure 7.6). The inhibition, or surface induction, effect is a 
decrease in the expected development rate at the surface of the resist.7 Thus, this effect 
is a function of the depth into the resist and requires a new description of development 
rate.

Several factors have been found to contribute to the surface inhibition effect. Baking 
of the photoresist can produce surface inhibition and two possible mechanisms are thought 
to be likely causes. One possibility is an oxidation of the resist at the resist surface, result-
ing in reduced development rate of the oxidized fi lm. Alternatively, the induction effect 
may be the result of reduced solvent content near the resist surface, which also results 
from baking the resist (see Chapter 5). Both mechanisms could be contributing to the 
surface inhibition. Quite commonly, surface inhibition can be induced with the use of 
surfactants (surface-acting agents) in the developer. Chemically amplifi ed resists open a 
wide array of mechanisms for surface inhibition due to reduced amplifi cation near the 
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resist
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resist surface (caused, for example, by acid evaporation, base contamination, or reduced 
acid diffusion in the low-solvent surface region).

An empirical model can be used to describe the positional dependence of the develop-
ment rate. If we assume that the development rate near the surface of the resist exponen-
tially approaches the bulk development rate, the rate as a function of depth, r(z), is

 r z r r z( ) [ ( ) ]= − − −
B

/e1 1 0
δ  (7.17)

where rB is the bulk development rate, r0 is the development rate at the surface of the 
resist relative to rB, and d is the depth of the surface inhibition layer. In several conven-
tional resists, the induction effect has been found to take place over a depth of about 
100 nm or less.8 For chemically amplifi ed resists, 200- to 300-nm inhibition depths can 
be observed.

A small amount of surface inhibition can be good for photoresist profi le control. Slower 
development of the top of the resist can lead both to less resist loss for small lines, and 
also profi les with sharper, more square tops. Too much inhibition, however, can lead to 
T-top-shaped profi les and a loss of linewidth control. In general, moderate values of r0 
and large values of d lead to improved resist profi les without signifi cant loss of dimen-
sional control.

One of the most useful aspects of surface inhibition is when this effect is used to counter 
the decrease in development rate caused by absorption in positive resists. For resist sitting 
on a good bottom antirefl ection coating, the energy exposing the resist falls off exponen-
tially with depth into the resist. We can approximate the impact of this absorption on the 
variation of development rate with depth into the resist in the following way. For a con-
ventional resist, ignoring resist bleaching and assuming small exposure doses, the sensi-
tizer will vary with depth into the resist approximately as

 m z CDose I z CDose I z CDose z( ) exp[ ( )] ( )= − ≈ − = − −
inc r inc r ince1 1 α  (7.18)

Using the simple reaction-limited development rate Equation (7.11) and ignoring the 
minimum development rate,

 r z r m z r zn nz( ) ( ( )) ( )max≈ − ≈ = −1 0 e α  (7.19)

Thus, the effect of absorption is to cause something close to an exponentially decaying 
development rate with depth into the resist. Surface inhibition can counteract some of 
this falloff. Reasonable results are obtained when the surface development rate is set to 
match the development rate at the bottom of the resist and the surface inhibition depth is 
set to match the absorption exponential decay depth.

 r
n

nD
0

1≈ ≈−e ,α δ
α

 (7.20)

where D is the resist thickness.
Note that the observed magnitude of surface effects is often on the order of 50–100 nm. 

Thus, for thin resist process, where the thickness of the resist is on the order of 100 nm, 
the very idea that resist response can be separated into surface and bulk behavior is called 
into question.
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7.1.5 Extension to Negative Resists

The development rate models discussed above were derived based on positive resist 
chemistry. However, with only a slight change in interpretation, these models are perfectly 
applicable to most negative resist chemistries. For the three models given by Equations 
(7.10), (7.12) and (7.16), the term m represents the concentration of the species that inhibits 
dissolution. For a conventional positive resist, this quantity is the photoactive compound. 
For conventional negative resists, the inhibitor is the exposure product. By interpreting 
the m in the development rate equations as the inhibitor concentration for the negative 
resist, whatever it might be, the rate equations can be used without further modifi cation.

7.1.6 Developer Temperature

It is well known that the temperature of the developer solution during development can 
have a signifi cant impact on resist performance. The speed (i.e. overall development rate) 
varies in a complicated way with temperature, usually resulting in the counterintuitive 
result of a ‘faster’ resist process (i.e. a process requiring lower exposure doses) at lower 
developer temperatures. The shape of the development rate versus dose (or versus inhibi-
tor concentration) curve will also vary considerably with temperature, leading to possibly 
signifi cant performance differences. The effect of temperature on dissolution rate shows 
a complicated behavior where changes in developer temperature give changes in dissolu-
tion rate that are dose dependent. At one dose, the effect of temperature on dissolution 
rate can be very different than at another dose.9 Use of a dissolution rate model can sim-
plify the description of temperature effects by showing just the change in the model 
parameters with developer temperature.

Figure 7.7 shows an example of how temperature can affect dissolution rate. In general, 
one usually expects simple kinetic rate-limited reactions to proceed faster at higher 
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Figure 7.7 Development rate of THMR-iP3650 (averaged through the middle 20 % of the 
resist thickness) as a function of exposure dose for different developer temperatures shows 
a change in the shape of the development dose response
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temperatures (indicating a positive activation energy for the reaction). The behavior 
shown in Figure 7.7 is obviously more complicated than that. At high doses, increasing 
developer temperature does increase the development rate. But at low doses the opposite 
is true. Thus, developer temperature has a signifi cant impact on the shape of the dissolu-
tion rate curve. Reasons have been proposed for this behavior,10 but here we will only 
strive to accurately describe this behavior quantitatively using model parameters.

By fi tting the dissolution rate behavior to a development model, the variation of the 
r(m) curve with temperature can be deduced, as shown in Figure 7.8. Again, the results 
show that at high doses (corresponding to low concentrations of inhibitor remaining), 
higher developer temperature increases the development rate. But at low doses (high 
concentrations of inhibitor remaining), the opposite is true. Using the terminology of the 
original kinetic development model, increasing the developer temperature caused an 
increase in the maximum development rate rmax and an increase in the dissolution selectiv-
ity parameter n.

Figure 7.9 shows the fi nal results of the analysis. The two parameters rmax and n 
are plotted versus developer temperature in an Arrhenius plot. For the i-line resist 
THMR-iP3650, the activation energies for rmax and n are 7.41 and 7.02 Kcal/mole, 
respectively.11

Not all resists exhibit the simple, regular behavior with developer temperature described 
above. The chemically amplifi ed resist Apex-E, for example, shows a maximum dissolu-
tion n value at about 35 °C, as seen in the data of Table 7.1. More work is required to 
fully understand the impact of developer temperature on a wider array of resists.

7.1.7 Developer Normality

TMAH developer at 0.26 N (2.38 % by weight) is extremely widely used (almost to the 
point of being a universal standard). However, as one would expect, developer normality 
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(the concentration of TMAH) impacts dissolution rates greatly. In general, higher normal-
ity produces higher dissolution rates. Using again the model coeffi cients as a way of 
describing the impact of developer normality on dissolution, Equation (7.6) would suggest 
that the parameters rmax and rmin increase with an increase concentration of TMAH. The 
important dissolution selectivity parameter n tends to have an optimum, essentially going 
to zero at very high and very low normalities. The original kinetic model parameters rmax 
and the dissolution selectivity parameter n vary with developer normality as shown in 
Table 7.2 for the chemically amplifi ed resist Apex-E. As the developer temperature 
increases, the impact of different developer normalities on rmax is lessened. Although the 
data here is limited, rmax exhibits a well-known phenomenon – there is a critical normality 
(between about 0.1 and 0.15 N) below which development does not proceed (rmax becomes 
zero). The combined impact of temperature and normality on the dissolution selectivity 
n is quite complicated.
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Figure 7.9 Arrhenius plots of (a) the maximum dissolution rate rmax and (b) the dissolution 
selectivity parameter n for THMR-iP3650

Table 7.1 Developer temperature-dependent modeling parameters of Apex-E (0.26 N 
developer)12

Developer 
Temperature 
(°C) rmax (nm/s) rmin (nm/s) mth n

5 53.1 ± 9.0 1.18 0.571 ± 0.036 3.93 ± 0.56
10 68.0 ± 10.9 1.283 0.578 ± 0.031 4.17 ± 0.52
15 91.9 ± 13.8 1.35 0.586 ± 0.028 4.25 ± 0.48
20 115.7 ± 14.1 1.48 0.682 ± 0.016 4.79 ± 0.49
25 146.1 ± 15.2 1.55 0.637 ± 0.015 5.56 ± 0.54
30 177.8 ± 16.0 1.62 0.646 ± 0.012 6.36 ± 0.55
35 199.7 ± 14.6 2.56 0.693 ± 0.008 15.58 ± 2.17
40 196.2 ± 13.1 2.14 0.694 ± 0.008 11.25 ± 1.32
45 209.5 ± 22.5 1.83 0.665 ± 0.014 6.64 ± 0.74



270 Fundamental Principles of Optical Lithography

Table 7.2 Developer temperature- and normality-dependent modeling parameters for 
Apex-E12

Developer 
Temperature 
(°C)

Developer 
Normality rmax (nm/s) rmin (nm/s) mth n

20 0.195 45.9 ± 7.9 0.272 0.527 ± 0.03 5.26 ± 1.00
20 0.24425 90.9 ± 11.3 0.912 0.607 ± 0.018 5.41 ± 0.61
20 0.26 115.7 ± 14.1 1.482 0.682 ± 0.016 4.79 ± 0.49
35 0.195 78.1 ± 12.9 0.395 0.533 ± 0.01 17.33 ± 2.18
35 0.24425 151.3 ± 13.1 1.191 0.667 ± 0.008 11.10 ± 1.14
35 0.26 199.6 ± 14.6 2.562 0.693 ± 0.008 15.58 ± 2.17
40 0.195 118.5 ± 94.6 0.395 0.511 ± 0.074 8.72 ± 1.93
40 0.24425 182.9 ± 12.4 1.473 0.675 ± 0.005 16.44 ± 1.62
40 0.26 196.2 ± 13.1 2.135 0.694 ± 0.008 11.25 ± 1.32

One important reason for understanding developer normality effects is to better under-
stand the impact of developer loading. One of the most popular styles of development is 
puddle development, where a puddle of developer is formed on top of the wafer which 
sits stationary through most of the development cycle. One potential issue with this 
development method, especially for thicker resists, is the accumulation of dissolved resist 
and the decrease in –OH concentration in the developer as development proceeds in what 
is called developer loading. Additionally, if an integrated circuit has very different pattern 
densities across the die, this developer loading effect can vary across the die. Since devel-
opment will slow down as the developer loading increases, the result can be an additional 
source of CD nonuniformity. A common solution to this problem is to break the puddle 
step into a double puddle, where each puddle is allowed to sit for half of the development 
time and fresh developer is used to form the second puddle.

7.2 The Development Contrast

The use of ‘contrast’ to describe the response of a photosensitive material dates back over 
100 years. Hurter and Driffi eld measured the optical density of photographic negative 
plates as a function of exposure.13 The ‘perfect negative’ was one that exhibited a linear 
variation of optical density with the logarithm of exposure. A plot of optical density versus 
log-exposure showed that a good negative exhibited a wide ‘period of correct representa-
tion’, as is shown in the Hurter–Driffi eld (H–D) curve in Figure 7.10. Hurter and Driffi eld 
called the slope of this curve in the linear region g, the ‘development constant’. Negatives 
with high values of g were said to be ‘high contrast’ negatives because the photosensitive 
emulsion quickly changed from low to high optical density when exposed. Of course, 
high contrast fi lm is not always desirable in photography since it easily saturates.

7.2.1 Defi ning Photoresist Contrast

Photolithography evolved from the photographic sciences and borrowed many of its 
concepts and terminology. When exposing a photographic plate, the goal is to change the 
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optical density of the material. In lithography, the goal is to remove resist. Thus, one 
analogous H–D curve for lithography plots resist thickness after development versus log-
exposure. Experimentally, a wafer is exposed using a blank glass plate as the mask. As 
each fi eld on the wafer is exposed, the dose is adjusted so that a large array of doses is 
exposed on one wafer. After going through the normal PEB and development processes, 
the thickness remaining in this open-frame area is measured for each dose (Figure 7.11). 
The lithographic H–D curve (often called the characteristic curve) is a portion of a com-
plete H–D curve as shown in Figure 7.10. Because the goal is to completely remove 
unwanted photoresist, there is usually a range of energies for which all of the photoresist 
is removed and thus the H–D curve would show no response. If, however, a very thick 
photoresist were used so that it could never be completely removed, the result would be 
the ‘S’-shape of a complete H–D curve. It is common practice to normalize the initial 
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Figure 7.10 An example Hurter–Driffi eld (H–D) curve for a photographic negative
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resist thickness to one, so that the lithographic H–D curve displays the relative thickness 
remaining.

Following the defi nition of g from Hurter and Driffi eld, the photoresist contrast has 
traditionally been defi ned as the slope of the characteristic curve at the point where the 
thickness goes to zero. Thus,

 γ m
d

d
= ±

=

1

0
D

z

E E Eln
 (7.21)

where z is the resist thickness removed during development, D is the resist thickness 
before development, E is the nominal exposure energy, and E0 is the energy at which z = 
D. E0 is called the clearing dose (or dose-to-clear) for positive photoresists and the gel 
dose for negative systems. The positive sign in Equation (7.21) is used for positive resists 
and the minus sign is used for negative systems in order to keep the value of gm positive. 
For the remainder of this section, positive systems will be used as our example. The 
results, however, can easily be applied to negative photoresists as well. [Note that some-
times a base-10 logarithm is used in Equation (7.21) rather than the natural logarithm. 
This book will always employ the natural log.]

Following the tradition of the photographic sciences, a high-contrast photoresist is one 
that makes a quick transition from being an ‘underexposed’ resist (which does not dis-
solve) to an ‘overexposed’ resist (which dissolves completely). The traditional defi nition 
in Equation (7.21) seems to fi t this concept. Further, it is reasonably analogous to the 
photographic contrast as defi ned by Hurter and Driffi eld. The slope of optical density 
(which is a logarithm of transmittance) versus log-exposure is similar in form to the slope 
of relative thickness (which is like a log-thickness) versus log-exposure. Thus, it would 
seem that a suitable defi nition has been used.

However, there are numerous circumstances under which the defi nition in Equation 
(7.21) does not meet our expectations of what contrast means. In particular, the use of 
surfactant-laden developers dramatically increases measured contrast values, but without 
lithographic improvement. What causes these apparent discrepancies between the behav-
ior of the measured contrast and our concept of how contrast affects lithography? Is there 
a problem with the defi nition, or with the measurement technique? These questions can 
be answered by putting the concept of contrast on a fi rm theoretical basis and applying 
rigorous analysis to the observed behavior.

With the advantage of retrospect, let us look at the evolution of the traditional defi nition 
of contrast and provide a different defi nition. In photography, the desired effect of expo-
sure is a change in the optical density of the material. In photolithography, the desired 
effect is a change in development rate. This change in development rate is manifest as a 
change in resist thickness after development. Analogous to the photographic H–D curve, 
let us plot log-development rate versus log-exposure energy. Figure 7.12 shows the results 
for a typical photoresist. Note that this graph gives a complete H–D curve and does not 
cut off at some energy E0. We can give a new defi nition of contrast, called the theoretical 
contrast, as14

 γ th
d

d
= ln

ln

r

E
 (7.22)
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where r is the development rate. Note that the theoretical contrast will be a function of 
dose, going to zero at very low and very high doses. A typical plot of gth(E) is shown in 
Figure 7.13. Not only is the maximum of this curve important, but the width of the gth(E) 
function also affects lithographic performance. The equivalent of the full-width half-
maximum (FWHM) on a logarithmic exposure scale would be the ratio of the high and 
low energies that give contrast equal to half of the maximum value, called the FWHM 
dose ratio.

The goal of lithographic exposure is to turn a gradient in exposure energy (an aerial 
image) into a gradient in development rate. From Equation 7.22, it is very easy to express 
this effect as
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Figure 7.12 A lithographic H–D curve used to defi ne the theoretical contrast
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Figure 7.13 A typical variation of theoretical contrast with exposure dose. For this data, the 
FWHM dose ratio is about 5.5
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where I is the aerial image intensity and x is the horizontal distance from the center of 
the feature being printed. This equation is called the Lithographic Imaging Equation (and 
will be explored in more detail in Chapter 9). The left-hand term is the spatial gradient 
of development rate. To differentiate between exposed and unexposed areas, it is desirable 
to have this gradient as large as possible. The right-hand side of Equation (7.23) contains 
the log-slope of the aerial image. This term represents the quality of the aerial image, or 
alternatively the amount of information contained in the image about the position of the 
mask edge. In order to achieve a large development gradient between exposed and unex-
posed parts of the resist, one needs a large exposure gradient and a high photoresist con-
trast. Also, since contrast is a function of dose, it is important that the theoretical contrast 
stays high over a wide enough range of doses (that is, the FWHM dose ratio must be 
large). This is also equivalent to saying that rmax/rmin must be large (see section 7.2.4).

7.2.2 Comparing Defi nitions of Contrast

The theoretical defi nition of contrast can now be compared to the conventional measured 
contrast, gm. The thickness remaining after development for the conventional H–D curve 
measurement can be described by integrating the defi nition of development rate for our 
open-frame exposures:
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where tdev is the fi nal development time. Knowing that development rate is a function of 
dose as well as depth into the resist, r(E,z), and taking the derivative of both sides of the 
right-hand equation with respect to log-exposure,
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Rearranging,
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Evaluating this expression at E = E0 (i.e. z = D) and using the defi nitions of measured 
and theoretical contrast,

 γ γm th
d= =

∫
r z D
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z

r z
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( )0

 (7.27)

If the development rate does not vary through the resist thickness, it is easy to show that 
Equation (7.27) predicts that measured and theoretical contrast values are equal. But if 
the development rate varies with depth into the resist, the measured contrast fails to 
provide a good measurement of the theoretical contrast.

Consider the case of surface inhibition (caused, for example, by surfactants in the 
developer). The development rate at the top of the resist will be much lower than that at 
the bottom. Thus, Equation (7.27) shows that the measured contrast will be equal to the 
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theoretical contrast multiplied by some number bigger than 1. As the surface development 
rate goes to zero, the measured contrast becomes infi nite, independent of the value of the 
theoretical contrast. Likewise, absorption makes the measured contrast value artifi cially 
low. Since every resist will exhibit some depth-dependent dissolution behavior, the con-
ventional measured contrast is rarely an accurate measure of the true resist contrast. Both 
of these cases can be explored in detail using Equation (7.27).

For absorption, assume that the development rate follows the z-dependence given by 
Equation (7.19). Let’s also assume that the theoretical contrast is constant (that is, through 
the thickness of the resist, all of the doses lie in the range of the approximately linear 
region of Figure 7.12). Thus,
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Solving the integral,
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The behavior of this result can be seen easily by considering the case of relatively small 
absorption (anD << 1) and taking a Taylor expansion of the exponential out to second 
order:
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Thus, absorption reduces the measured contrast by an amount approximately proportional 
to anD. Also, as will be seen in Chapter 9, the dissolution selectivity parameter n is 
directly proportional to the theoretical contrast. Thus, in the presence of absorption, any 
increase in the theoretical contrast will result in only a fractional increase in the measured 
contrast.

Surface inhibition will increase the measured contrast over the theoretical contrast. 
Consider again the case where theoretical contrast is constant, but let the depth depen-
dence of the development rate be governed by the surface inhibition function of Equation 
(7.17). Further, assume that D >> d so that the development rate at the bottom of the resist 
is about equal to the bulk development rate. The measured contrast will become
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Solving the integral,

 γ γ δ
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As the relative surface rate r0 goes to zero, the measured contrast goes to infi nity. For 
example, if the surface inhibition depth is 20 % of the resist thickness and the relative 
surface rate is 0.1, the measured contrast will be about 50 % higher than the theoretical 
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contrast. If the relative surface rate is 0.01, the measured contrast will be about double 
the true value.

The problems with the characteristic curve as discussed above are often very severe. 
While absorption can be easily characterized for a given resist and the measured contrast 
corrected for absorption effects, surface inhibition is rarely characterized with suffi cient 
accuracy to allow its impact to be removed from the measured contrast. As a result, few 
lithographers use the characteristic curve for anything but a dose-to-clear measurement. 
Instead, the theoretical contrast is most often measured directly using a development rate 
monitor (see section 7.4), if it is measured at all.

7.2.3 The Practical Contrast

One possible improvement in the measurement of photoresist contrast uses a method that 
Peter Gwozdz calls the ‘practical contrast’. Rather than measuring the resist thickness 
remaining as a function of dose for open-frame exposures, as for the conventional mea-
surement based on the characteristic curve, the practical contrast measures the develop-
ment time required to clear each open frame. For reasonably slowly developing resists 
(true for many g- and i-line resists), the clear time can be measured visually using a 
stopwatch. Plotting time-to-clear versus dose on a log-log scale gives a curve whose slope 
is equal to the negative of the theoretical contrast.

To see how this is true, consider a resist where the infl uence of dose on development 
rate is separable from the z-dependence.

 r E z f E g z( ) ( ) ( ), =  (7.33)

Such separable behavior has been assumed for the previously discussed absorption and 
surface inhibition effects. The theoretical contrast can then be expressed as

 γ = ∂
∂

= ∂
∂

ln

ln

ln

ln

r

E

f

E
 (7.34)

The time to clear will be given by Equation (7.24) when z = D:
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Since the integral on the right-hand side of Equation (7.35) is a constant (independent of 
dose), the time-to-clear will be inversely proportional to f(E) and
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Unfortunately, accurate measurement of time-to-clear is often diffi cult without auto-
mated equipment such as a development rate monitor (see section 7.4). For g- and i-line 
resists, with maximum development rates of a few hundred nm/s and thicknesses greater 
than 500 nm, the smallest time-to-clear will be a few seconds. For many 248-nm chemi-
cally amplifi ed resists, the maximum development rate is 1000–5000 nm/s and thicknesses 
are as low as a few hundred nanometers, so that over a fair range of doses the time-to-
clear will be less than 1 second. Fortunately, though, the steep ‘high contrast’ portion of 
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the time-to-clear versus dose curve must necessarily (for any reasonably good resist) have 
time-to-clear values on the order of the development time (typically 45–90 seconds). 
Thus, if the goal is to measure the maximum contrast rather than the full contrast versus 
dose function, the practical contrast approach can work quite well.

7.2.4 Relationship Between g  and rmax/rmin

As was mentioned briefl y at the end of section 7.1.1, a good development rate function 
not only has a high dissolution selectivity parameter n, but also a large ratio rmax/rmin. In 
the context of development contrast, these two requirements are equivalent to saying that 
the resist must have a high maximum contrast and a large FWHM dose ratio (see Figure 
7.13). To more explicitly see the relationships at work, let’s assume that our g (E) function 
is Gaussian in shape (on a log-exposure scale):

 γ γ σ( ) (ln ln )E E E= − −
max

* /e
2 22  (7.37)

where g max is the maximum contrast, and E* is the dose that gives the maximum contrast. 
The FWHM dose ratio will be given by
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Integrating Equation (7.37) with respect to lnE gives an error function shape to the 
contrast curve. Using the limits of zero and infi nite dose to defi ne rmax and rmin gives
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Combining Equations (7.38) and (7.40),
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The required FWHM dose ratio is determined by the aerial image and is proportional 
to the ratio of the maximum intensity in the space to the intensity at the line edge (which 
has typical values of 2–4). Thus, the required maximum to minimum development rate 
ratio goes as
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Equation (7.42) provides the interesting result that resists with higher contrast require a 
higher rmax/rmin in order to make effective use of that contrast. A doubling of the contrast 
requires a squaring of the development rate ratio. For example, if the dose ratio is 2 and 
the maximum contrast is 10, the maximum to minimum development rate ratio should be 
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at least 1000. For the same dose ratio, however, a maximum contrast of 15 would require 
that rmax/rmin be greater than 30 000 in order to take full advantage of the higher contrast.

7.3 The Development Path

Most of the discussion in this chapter so far has been concerned with how dose or resist 
chemical composition is converted to development rate. A spatial distribution of energy 
turns into a spatial distribution of chemicals which turns into a spatial distribution of 
dissolution rates. But how does a spatial distribution in development rates turn into an 
actual resist profi le? How does the resist–developer front propagate through time and 
space during development?

For the one-dimensional case of large open-frame exposures (such as the characteristic 
curve experiment described in the previous section), propagation of the resist–developer 
interface is strictly in the z-direction, with the rate of development at a given point equal 
to the rate at which the interface moves down in z. For the more general case, we can 
defi ne the path of development by tracing the position of the resist surface through the 
development time (Figure 7.14). This path will have a direction such that it is always 
perpendicular to the surface of the resist throughout the development cycle. Letting s be 
the length along this path at any given time, the development rate will then be

 r
s

t
= d

d
 (7.43)

The problem then is to follow this path at a rate given by the spatially varying dissolution 
properties of the resist until the total development time is reached. Integrating this general 
defi nition of development rate thus gives a path integral:
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Figure 7.14 Typical development path
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Before tackling the mathematical problem of solving this path integral, let’s consider 
some of the general properties expected of this path. The path always begins vertically 
(since the resist surface is horizontal). If the fi nal resist profi le is close to our goal of 
nearly vertical sidewalls, the path must end going nearly horizontally. Thus, we should 
expect a path that starts out vertically, travels down through the resist thickness, then turns 
horizontally, stopping at the resist edge (see Figure 7.14).

7.3.1 The Euler–Lagrange Equation

The fi rst step in solving the development path integral will be to parameterize the path 
in terms of its position. For simplicity, we will consider only the two-dimensional problem 
s(x,z), though it can be easily extended to three dimensions. Consider a section of that 
path (Figure 7.15) small enough that it can be approximated as linear. It is clear that
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∆

s x z x
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Letting the differentials go to zero,

 d ds x z= + ′1 2  (7.46)

where z′ is the slope of the development path at any given point. The path integral then 
becomes
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where the path starts at (x0,0) and ends at (x,z).
Obviously, to solve Equation (7.47), one must know not only the development rate 

as a function of position, but the slope of the path at every point along the path as well. 
But how is one to determine the path of development? Physical insight and mathematical 
methods must both be exploited. The physical constraint on what path is chosen is called 
the principle of least action: the path taken will be that which goes from the starting 

Path

∆ s

∆ x

∆ z

Figure 7.15 Section of a development path relating path length s to x and z
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point to the fi nish point in the least amount of time. To see why this must be true, just 
imagine a different path competing with the least-time path. By the time the competing 
path made it to the point (x,z), the faster path would have already reached there, and thus 
would have removed the photoresist from that point! Thus, only the least-time path 
survives.

The principle of least action means that a path must be found that minimizes the integral 
in Equation (7.47). A fundamental result from the calculus of variations states that the 
general integral

 f x z z x( ), , d′∫  (7.48)

will have a minimum or maximum whenever the Euler–Lagrange equation
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is satisfi ed. Applying the Euler–Lagrange approach to the development path, the least-
time path will be that which satisfi es the second-order nonlinear differential equation:
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(As an interesting aside, there are many problems in physics where the principle of 
least action is coupled with the Euler–Lagrange technique to solve problems. In optics, 
techniques in geometrical optics are used to trace rays of light through materials of dif-
ferent refractive indices. Fermat’s principle says light will use the path that minimizes 
the travel time – a principle of least action. The rays follow paths equivalent to the devel-
opment path discussed here. The optical path length, or equivalently the optical phase, 
represents the development time in this problem, and a wavefront – a surface of constant 
phase – is equivalent to the resist profi le – a surface of constant development time. The 
refractive index is equivalent to 1/r.)

An equivalent formulation of the Euler–Lagrange equation is the Hamilton–Jacobi 
equation. A surface of constant development time (i.e. the resist surface) is defi ned by the 
Hamilton–Jacobi equation:
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(This equation is equivalent to the Eikonal equation of geometrical optics.) The Hamil-
ton–Jacobi formulation is useful for ‘ray-trace’-like calculations, where at each point the 
dissolution rate is broken down into x- and z-components and the trajectory of the ray is 
traced out over time.

7.3.2 The Case of No z-Dependence

Solutions to Equation (7.50) for general development problems will almost always 
require extensive numerical techniques. However, there are a few simplifying cases that 
yield analytical solutions. Consider the idealized case where the development rate does 
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not vary with z (no absorption, no standing waves, etc.). The Euler–Lagrange equation 
simplifi es to

 ′′ = ′ + ′
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This equation can be solved by direct integration with the boundary condition that z′ = 
∞ and x = x0 at z = 0 (i.e. the path starts out vertically at x = x0), giving
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The actual path z(x) can be derived by integrating Equation (7.53),
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and the development time becomes, by substituting Equation (7.53) into Equation 
(7.47),
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where the point (x,z) is the end of the path and thus a point on the fi nal resist profi le. For 
a given spatial distribution of development rates r(x), the fi nal resist profi le is determined 
by solving the integrals (7.54) and (7.55) for many different values of x0 (i.e. for different 
starting points for the paths), as shown in Figure 7.16, and connecting the paths to form 
a surface of constant development time.
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Figure 7.16 Example of how the calculation of many development paths leads to the deter-
mination of the fi nal resist profi le
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An interesting form of Equation (7.55) reveals some physical insight into the problem. 
Combining Equations (7.55) and (7.53) in a different way,
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The right-hand side of this equation seems to segment the development into horizontal 
and vertical components. The term z/r(x0) is the time required to develop vertically, start-
ing at x0, to the value of z equal to the bottom of the path. The fi rst term on the right-hand 
side (the integral) is then the effective amount of time spent developing horizontally from 
x0 to x.

7.3.3 The Case of a Separable Development Rate Function

Another interesting case to examine is when the development rate function r(x,z) is 
separable into a function of incident dose E only and a function of the spatial variables 
independent of dose:

 r E x z f E g x z( ) ( ) ( ), , ,=  (7.57)

In general, none of the kinetic development models discussed earlier meet this criterion. 
However, such separability is approximately true for the reaction-controlled original 
kinetic development model for conventional resists. For moderately low doses and no 
bleaching, the latent image is approximately

 m x z CEI x z CEI x z( ) exp ( ) ( ), , ,r r= −[ ] ≈ −1  (7.58)

Ignoring the minimum development rate, this approximate latent image gives a develop-
ment rate proportional to a power of dose:

 r x z r m x z r r CE I x zn n n( ) ( ) ( ), , ,max min max r= −( ) + ≈ ( ) ( )1  (7.59)

Obviously, the restrictions and approximations placed on the exposure and development 
functions to achieve separability are numerous and severe. Nonetheless, the separability 
assumption can be very useful. Looking at it another way, separability can be achieved 
by assuming a constant theoretical contrast. Integrating the defi nition of theoretical con-
trast, Equation (7.22), for the case of constant contrast, gives

 r x z E I x z( ) ( ( )), ,r∝ γ γ  (7.60)

Equations (7.59) and (7.60) are equivalent if n = g . Thus, separability can be assumed if 
the range of dose experienced by the resist over the development path is suffi ciently small 
to fall within the approximately linear region of the H–D curve.

Separability leads to an interesting result. Using Equation (7.57),
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and the Euler–Lagrange Equation (7.50) is completely independent of incident dose. In 
other words, as the dose is changed, the path of development does not change – the 
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development just follows that path at a different rate. Applying this idea to the defi ning 
development path Equation (7.47),
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For example, let f(E) = Eg. If the dose is increased, the same path is used to get from x0 
to x, but it arrives in a shorter time.

7.3.4 Resist Sidewall Angle

The development path can help to understand even more about the resist profi le. Since 
the path is always perpendicular to the resist profi le, knowing the path gives us the side-
wall angle of the profi le (the angle that the profi le makes with the horizontal substrate) – 
the tangent of the sidewall angle will be one over the development path slope. For the 
case of no z-variation in development rate, Equation (7.53) leads to

 cos
( )

( )
θ = r x

r x0

 (7.63)

The goal is to make the sidewall angle close to 90°, and thus make cosq ≈ 0. This is 
accomplished by making the development rate at the end of the path very small compared 
to the rate at the beginning of the path. In other words, good resist profi les are obtained 
when very little time is spent developing vertically compared to the time spent developing 
horizontally.

As previously mentioned, numerical methods are required for a general solution for 
the development path. However, an interesting limit can be observed that sheds further 
light on the fi nal resist sidewall angle. For the case of no variation in development rate 
with z, the sidewall angle is given by Equation (7.63) and can be made as close to 90° 
as possible by making the development rate at the end of the path very small. However, 
in the presence of a depth dependence to the development rate, there is a different limiting 
sidewall angle. Consider the Euler–Lagrange Equation (7.50) near the end of the path 
assuming a reasonably good resist profi le. For such a case, the path slope will be small 
and z′2 << 1, so that
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The minimum possible value of z′ (and thus the best possible resist sidewall angle) will 
occur when z″ = 0. Thus,
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Consider again the case of absorption causing the only variation in development rate 
with depth into the resist. Using our simple absorption model in Equation (7.19), the 
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Lithographic Imaging Equation (7.23), and approximating the dissolution selectivity 
parameter with the contrast,
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The minimum path slope with absorption given in Equation (7.66) is obtained when 
the development rate at the end of the path goes to zero. For the case of fi nite develop-
ment rate, the path slope near the end of path is given approximately by

 ′ ≈
∂ ∂

+z
I x

r x

r x
end

/

α
ln

( )

( )0

 (7.67)

This result will be derived in the next section for a specifi c case, but is approximately 
true in general.

7.3.5 The Case of Constant Development Gradients

Another interesting case that can be explored analytically has constant spatial log-
gradients of the development rate. Let

 
∂
∂

= − ∂
∂

= −ln lnr

x
a

r

z
b,  (7.68)

where a and b are constants. Interpreting these constants as before, a is something like 
the resist contrast times image log-slope. The term b is the contrast multiplied by the 
absorption coeffi cient. Note that both a and b will be positive. The Euler–Lagrange equa-
tion can be solved by direct integration, with the boundary condition that z′ = ∞ and 
x = x0 at z = 0. After some algebraic manipulation of the result,
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For a typical process, b/a is in the range of 0.02–0.05 (development gradients in x must 
be signifi cantly greater than the gradients in z if a good resist profi le is to result). Thus, 
it is reasonable to neglect b2/a2 compared to 1. Also, the assumption of constant log-
gradient of development rates means that the development rate is separable into x- and 
z-components and
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Thus, Equation (7.69) becomes
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Finally, the inverse cotangent will be zero at the beginning of the path (when z′ = ∞), 
going to p/4 for z′ = 1, and reaching its maximum of p/2 as z′ goes to zero. Given the 
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small value of b/a, the exponential term can be approximated with a Taylor’s series 
to give
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For a small enough value of b/a,
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Note that at the end of the path, z′2 << 1, and the result given previously in Equation 
(7.67) is obtained.

Before continuing with the solution, let’s consider a simpler case where b = 0. Thus, 
we are solving the no z-dependence case with the development rate function given in 
Equation (7.70). Substituting this rate expression into Equation (7.54) and integrating 
gives us the path z(x) for a given starting point x0:

 z x x
a a

a x x a x x( ) tan cos ( )( ) ( ), e e0
1 2 11

1
1

0 0= −( ) =− − − − −  (7.74)

Going on to fi nd the development time at each point on the path by carrying out the inte-
gration in Equation (7.55),

 t
ar x

a x x
dev e= −−1

1
0

2 0

( )
( )  (7.75)

The resist profi le sidewall angle is simply az.
A convenient way to express this result is to parameterize positions along the path (and 

thus on the resist profi le) as a function of the path starting point and the development 
time. Rearranging the results in Equations (7.74) and (7.75),

 z x t
a

ar x t x x t x
a

ar x t( ) tan ( ( ) ) ( ) ln [ ( ) ]0
1

0 0 0 0
21 1

1, , ,= = + +( )−  (7.76)

Note that for the very likely case that ar(x0)t >> 1,

 x x t x
a

ar x t( ) ln( ( ) )0 0 0
1

, = +  (7.77)

When absorption is added, the results are in general complicated, but simplify when 
one doesn’t care to know the resist profi le at small development times. For normal condi-
tions, the path and develop time can be expressed as the no-absorption solution plus an 
added term:
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Thus, absorption will slow down the development, making the time required to get 
to a certain value of x longer. Also, since the path never levels off to be completely 
horizontal, continued development pushes the profi le down (larger z) as well as to the 
right.

7.3.6 Segmented Development and the Lumped Parameter Model (LPM)

Consider again the case of a constant theoretical contrast. Equation (7.60), for the simple 
2D case, can be expressed as

 r x z r
E

E
I x I zz( ) ( ( ) ( )), = 



0

0

γ
γ  (7.79)

where the intensity variation is assumed separable into x- and z-components and E0 is any 
arbitrary reference dose that produces the development rate r0 for an open-frame exposure 
(so that I(x)Iz(0) = 1). It will be convenient to let this dose be the dose-to-clear. Applying 
Equation (7.24) at this dose,
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r z r
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I z

D D
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γ  (7.80)

An effective resist thickness can be defi ned as

 D r E z D t
I D

I z
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0

γ

 (7.81)

It is clear that for no variation in intensity with depth into the resist this effective resist 
thickness will equal the actual resist thickness.

As an example, the effective resist thickness can be calculated for the case when only 
absorption causes a variation in intensity with depth into the resist. For such a case, I(z) 
will decay exponentially with an absorption coeffi cient a, and Equation (7.81) can be 
evaluated to give

 D D
eff e= − −1

1
αγ

αγ( )  (7.82)

Equation (7.79) is an extremely simple-minded model relating development rate to 
exposure energy based on the assumption of a constant resist contrast. In order to use 
this expression, we still need to determine the path of dissolution. However, rather than 
calculate the path for some given development variation r(x,z), it will be useful to assume 
a reasonable development path and then use this path to calculate the fi nal resist CD 
as a function of exposure dose. The assumed path will be the segmented development 
path:15 the path goes vertically to a depth z, followed by a lateral development to position 
x.

A development ray, which traces out the path of development, starts at the point (x0,0) 
and proceeds vertically until a depth z is reached, at which point the development will 
begin horizontally. Since our interest is to determine the bottom linewidth, consider a path 
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where the depth z is just equal to the resist thickness D. The vertical development time 
becomes

 t
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Similarly, the horizontal development time becomes
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The total development time is still the sum of these two components.
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By applying Equations (7.79) and (7.81),
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where E(x) is the dose required to create a CD = 2x, and E(0) is the dose required to make 
the CD just equal to zero. Note that E(0) is not the dose-to-clear since in general I(x0) 
will not be equal to 1.

Substituting Equation (7.86) into (7.85) gives the Lumped Parameter Model.16
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Given any aerial image I(x), a CD-versus-dose curve can be calculated by evaluating this 
integral numerically. For a small space (or small dense lines and spaces), the start of the 
path x0 will always be the center of the space. The only parameters that control the rela-
tionship between the shape of the aerial image and the shape of the exposure latitude 
curve are the resist contrast and the effective resist thickness. As the effective resist thick-
ness goes to zero and the resist contrast goes to infi nity, the dose required to produce a 
CD of 2x becomes proportional to 1/I(x).

7.3.7 LPM Example – Gaussian Image

In the clear region of an image, near the edge of a line, the aerial image (and the image 
in resist) can quite often be reasonably approximated as a Gaussian function:

 I x I x( ) = −
0

22 2

e / σ  (7.88)

Since only the space region develops away in a positive resist to form the resist profi le, 
an accurate representation of the image is needed only in this region that develops 
away. The reason why an aerial image of a space often looks Gaussian in shape can be 
seen by looking at Taylor expansions of the Gaussian and of a typical cosine Fourier 
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representation of an image. Consider for example an image with two Fourier components 
(a three-beam imaging case) expanded in a Taylor series about x = 0 (the center of the 
space) for a given pitch p:
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Likewise for the Gaussian image:
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The zero- and second-order terms of these two series can be made to match exactly 
when
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2 0 1 2

1 2
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4 2
= + + = + +
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and σ

π
 (7.91)

In addition, the fourth-order terms for each series are often quite close to each other in 
magnitude. For example, if a0 = a1 and a2 = 0.2a0 (a reasonable set of values), then a 
Gaussian image with parameters determined by Equation (7.91) will have fourth-order 
terms in the Taylor series for the aerial image and the Gaussian representation that differ 
in magnitude by only 5 %. Further, by adjusting s of the Gaussian slightly from the value 
given by Equation (7.91), a better overall match to the image in the region of the space 
can be obtained (see Figure 7.17).

The log-slope of the Gaussian image is

 ILS
I

x

x= =d

d

ln

σ 2
 (7.92)
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Figure 7.17 Matching a three-beam image (a0 = 0.45, a1 = 0.55, a2 = 0.1) with a Gaussian 
using (a) a value of s given by Equation (7.91); and (b) the best-fi t s. Note the goodness of 
the match in the region of the space (x/pitch < 0.25)
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Thus, the log-slope varies linearly with x, a result that is approximately true for most 
images in the region of the space (Figure 7.18). If the nominal CD is CD1, then the nor-
malized image log-slope (NILS) at this point is
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x CD
1 1

2

1
2

2
1

2
= =

=

d

d /

ln
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 (7.93)

Putting the Gaussian aerial image into these terms,

 I x I NILS x CD( ) ( )= −
0

1 1
2

e /  (7.94)

Using this Gaussian image in the LPM Equation (7.87) and letting the development 
path start at x = 0,
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The integral is solvable in terms of the imaginary error function erfi . Letting g = 
gNILS1/CD1

2,
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Since erfi  goes to infi nity as x goes to infi nity, a more convenient form can be obtained 
by relating the imaginary error function to the Dawson’s integral Dw(z):

 erfi z D z D z xz x
z

( ) = − ∫
2 2 2

0π
e where e e dw( ) ( ) = z2

w  (7.97)
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Figure 7.18 Simulated aerial images over a range of conditions show that the image log-
slope varies about linearly with distance from the nominal resist edge in the region of the 
space: (a) k1 = 0.46 and (b) k1 = 0.38 for isolated lines, isolated spaces, and equal lines and 
spaces and for conventional, annular and quadrupole illumination
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Dawson’s integral is a bit easier to handle since its maximum value is about 0.54 at z ≈ 
0.92 and goes to zero at large z (see Figure 7.19). The LPM result becomes

 

E x

E D g
D gx

D g

I x

I

gx( )

( )

( )

( )

0
1

1

1
1

0

2



 = + ( )

= + 




−

γ

eff
w

eff

e

γγ

D gxw( )
 (7.98)

For large arguments, the Dawson’s integral can be approximated reasonably well as

 D z
z z z

w( ) = + + ≈1
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23
. . .  (7.99)

This fi nal approximation has about 20 % error when z = 2, 11 % error at z = 2.5, 7 % error 
at z = 3, and 3.5 % error at z = 4. Small arguments occur for low g (low contrast resists 
or low NILS values) and low x (underexposed spaces where the CD is much lower than 
the nominal). This is also the regime where egx2 is small so that the impact of this error 
is much reduced. For typical cases, and where the CD being predicted by Equation (7.98) 
is within 50 % of the nominal CD, the error in calculating the dose required to achieve 
that CD caused by using the approximation for the Dawson’s integral is usually less than 
1–2 %.

In this large argument case, the resulting exposure response expression becomes
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Substituting the defi nition of g and letting CD = 2x,
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Figure 7.19 A plot of Dawson’s integral, Dw(z)
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For our Gaussian image [and from Equations (7.92) and (7.93)],
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 (7.102)

which gives the fi nal expression:
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Remembering that log-slope of the aerial image is also a function of x, Equation (7.103) 
predicts the dose required to achieve a certain CD (= 2x) as a function of the aerial image 
I(x), the resist contrast g, and the effective thickness of the resist Deff.

Equation (7.103) can be further simplifi ed by assuming that the vertical development 
time of the LPM can be ignored compared to the horizontal development time (an assump-
tion that is reasonable for a good lithography process, but may not be accurate when 
trying to understand features that are just able to print, for example at the extremes of 
focus). In this case, the 1 in the square brackets of Equation (7.103) can be ignored, 
giving
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This interesting result is in fact an example of a threshold resist model: the resist CD is 
obtained when the local dose EI(x) reaches a certain threshold dose Eth.
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The particular variant of the threshold resist model derived here is called a variable-
threshold resist model (sometimes called a VTR model). The threshold varies as a function 
of the image log-slope of the image. This model also relates the threshold to physically 
signifi cant resist parameters: E0, g and Deff.

Figure 7.20 compares predictions of the CD of a space versus exposure dose for three 
different models: the LPM Equation (7.98), the LPM using the approximation for the 
Dawson’s integral of Equation (7.103), and the VTR of Equation (7.105). For the condi-
tions here, the approximate form of Dawson’s integral is quite accurate and the approxi-
mate LPM expression is hard to distinguish from the full LPM results. As expected, the 
VTR begins to deviate from the LPM at lower doses, where the vertical development 
time is a signifi cant fraction of the total development time. At the nominal CD, the 
approximate LPM predicts the dose wrong by 1 %, and the VTR is off by 2 %. For a CD 
that is 10 and 20 % too small (underexposed), the approximate LPM is still off by only 
1 % for both, whereas the VTR misses by about 3.5 and 6.5 %, respectively. Overexposed 
(CD of the space getting larger), the VTR and approximate LPM both improve in 
accuracy.
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Figure 7.20 CD-versus-dose curves as predicted by the LPM Equation (7.98), the LPM using 
the approximation for the Dawson’s integral, and the VTR. All models assumed a Gaussian 
image with g = 0.0025 1/nm2 (NILS1 = 2.5 and CD1 = 100 nm), g = 10, and Deff = 200 nm

An alternate (and usually more convenient) form of this VTR model can be obtained 
by inserting the Gaussian image intensity [Equation (7.94)] that was used to derive the 
VTR model directly into Equation (7.104). After some algebraic manipulations, and 
letting E1 be the dose that produces the reference spacewidth CD1,
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Unfortunately, the equation is recursive with respect to CD. However, for dimensions 
close to CD1, the following approximation can be made:
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Thus,

 
CD

CD NILS

E

E NILS1 1 1 1

1
4

1
2≈ + 



 +





ln
γ

 (7.108)

7.4 Measuring Development Rates

In general, development model parameters for a given resist/develop process are obtained 
by making real-time in-situ measurements of resist thickness during development using 
a development rate monitor (DRM). The resist thickness-versus-develop time curves are 
measured at many different incident exposure doses. Taking the derivative of this data 
gives development rate (r) as a function of incident dose (E) and depth into the resist (z). 
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Figure 7.21 Measured contrast curves17 for an i-line resist at development times ranging 
from 9 to 201 seconds (shown here over two different exposure scales)
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Figure 7.22 Analysis of the contrast curves generates an r(m) data set, which was then fi t 
to the original kinetic development model (best fi t is shown as the solid line)

By modeling the exposure process, a given exposure dose turns into a distribution of 
inhibitor concentration (m) after exposure as a function of depth. Combining the measured 
r(E,z) with the calculated m(E,z) produces a resultant r(m,z) data set. These data are then 
fi t with a development model (possibly including a surface inhibition function) and 
parameters for the model are extracted.

Although the best method for obtaining new parameters is the use of a DRM as 
described above, there is another approximate approach called the Poor Man’s DRM.17 
The Poor Man’s DRM involves the measurement of multiple contrast curves – resist 
thickness remaining as a function of exposure dose for open-frame exposures – at different 
development times (Figure 7.21).

Analyzing the information in Figure 7.21 to obtain development rate, and eventually 
development parameters, is not trivial. The thickness as a function of dose and develop-
ment time is fi rst converted to rate as a function of dose and depth into the resist, r(E,z). 
From here, analysis is the same as for conventional DRM data. Figure 7.22 shows an 
example set of results.
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Problems

7.1. For the original kinetic model of Equation (7.10), what is the value of the develop-
ment rate at m = mth? For mth > 0, what is the limit of this value as n becomes 
large?

7.2. Derive Equation (7.9).
7.3. Using the same approach that was used for the original kinetic development model, 

add the effect of developer diffusion to the surface of the resist to the enhanced 
kinetic model. In other words, let Equation (7.12) represent the surface reaction 
rate and assume that rresin is proportional to DS.

7.4. Consider a conventional positive resist that obeys the reaction-controlled version 
of the original kinetic development model of Equation (7.11) Further assume no 
bleaching, but absorption so that the inhibitor concentration m can be related to 
incident dose E and depth into resist z by

 m I zCEI z zr= =− −e where er
( ) ( ) α

Using a spreadsheet or similar program, plot development rate versus dose for 
rmax = 200 nm/s, rmin = 0.05 nm/s, n = 4, C = 0.02 cm2/mJ, a = 0.5 mm−1, and a depth 
into the resist of 500 nm. Compare these results to the approximate Equation 
(7.19):

 r(z) ≈ r(z = 0)e−anz

Repeat for a = 0.1 mm−1 and a = 1.5 mm−1. What can you conclude about the accu-
racy of the approximate expression?

7.5. Consider a conventional positive resist that obeys the reaction-controlled version 
of the original kinetic development model of Equation (7.11). Further, assume no 
bleaching so that the inhibitor concentration m can be related to dose E by

 m = e−CE

Assuming that the minimum development rate rmin can be ignored over the dose 
range of interest and ignoring any variation in development rate with depth into the 
resist, derive an expression for the resist characteristic curve (such as that pictured 
in Figure 7.11). Plot the resulting equation for rmax = 200 nm/s, n = 7, C = 0.02 cm2/
mJ, an initial resist thickness of 800 nm, and a development time of 60 seconds. 
What is the value of the dose-to-clear for this case?

7.6. Given a conventionally measured resist characteristic curve, estimate how a small 
change in resist thickness would change the dose-to-clear.

7.7. Derive Equation (7.32).
7.8. Derive Equation (7.63).
7.9. For the Lumped Parameter Model, consider the case where only absorption causes 

a variation of development rate with z. In the limit of very large contrast, what is 
Deff for the two cases of a = 0 and a > 0?

7.10. The assumption of a segmented development path can lead to a calculation of the 
resulting CD of a space for a given development rate function r(x,z) and a given 
development time. How will this CD compare to the CD calculated by rigorously 
solving the Euler–Lagrange equation for the same conditions?
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7.11. Use the Lumped Parameter Model to calculate CD as a function of dose for the 
case of a space that has a constant log-slope aerial image:

 I(x) = I0e−s|x|

where s is positive. Also assume that x0 = 0 and that there is no z-dependence to 
the development rate. Compare this result to Equation (7.76).

7.12. For the Lumped Parameter Model, consider the case where only absorption causes 
a variation of development rate with z. Derive an expression that compares the 
value of resist contrast as measured with a standard photoresist Hurter–Driffi eld 
(characteristic) curve to the theoretical (LPM) contrast.
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8
Lithographic Control in 

Semiconductor Manufacturing

Historically, lithography engineering has focused on two key, complimentary aspects of 
lithographic quality: overlay performance and linewidth control. Linewidth (or critical 
dimension, CD) control generally means ensuring that the widths of certain critical fea-
tures, measured at specifi c points on those features, fall within acceptable bounds. Overlay 
describes the positional errors in placing one mask layer pattern over an existing pattern 
on the wafer. Control of both CD and overlay is absolutely essential to producing high-
yielding and high-performing semiconductor devices. And achieving adequate control 
becomes increasingly diffi cult as the feature sizes of the devices decrease.

8.1 Defi ning Lithographic Quality

How is lithographic quality defi ned? This simple question has a surprisingly complex 
answer. Lithography is such a large component of the total manufacturing cost of a chip 
and has such a large impact on fi nal device performance that virtually all aspects of the 
lithography process must be carefully considered. Although somewhat arbitrary, the list 
below divides lithographic quality into four basic categories: photoresist profi le control, 
overlay, downstream compatibility and manufacturability.

Photoresist Profi le Control is a superset of the common CD control metric that is uni-
versally thought to be the most important aspect of high-resolution lithography processes. 
For many lithographic steps, the ability to print features at the correct dimensions has a 
direct and dramatic infl uence on device performance. It is typically measured as a mean 
to target CD difference for one or more specifi c device features, as well as a distribution 
metric such as the standard deviation. Spatial variations across the chip, fi eld, wafer or 
lot are also important and can be characterized together or individually. In addition, the 
sensitivity of CD to process variations is often characterized and optimized as a method 
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to improve CD control. Metrics such as resolution, depth of focus and process latitude 
in general are expressions of CD control. For example, resolution can be defi ned as 
the smallest feature of a certain type that provides adequate CD control for a given 
process.

Profi le control, however, recognizes that the printed resist patterns are three-dimensional 
in nature and a single CD value may not be suffi cient to characterize their lithographic 
quality. Extension of CD control to profi le control means taking into account other dimen-
sions. In the ‘z-direction’ from the top to the bottom of the photoresist, the resist profi le 
shape is usually characterized by a sidewall angle and a fi nal resist height. In the ‘x–y 
direction’, patterns more complex than a line or space require a shape characterization that 
can include metrics such as corner rounding, line-end shortening, area fi delity, line edge 
roughness, or the critical shape difference (also called edge placement error).

Overlay is the ability to properly position one lithographic level with respect to a previ-
ously printed level. In one sense, lithography can be thought of as an effort to position 
photoresist edges properly on the wafer. But rather than characterize each edge individu-
ally, it is more convenient to correlate two neighboring edges and measure their distance 
from each other (CD) and the position of their midpoint (overlay). One simple reason for 
this division is that, for the most part, errors that affect CD do not infl uence overlay, and 
vice versa. (Unfortunately, this convenient assumption is becoming less and less true as 
the target feature sizes shrink.) Overlay is typically measured using special targets opti-
mized for the task, but actual device structures can be used in some circumstances. Since 
errors in overlay are conveniently divided into errors infl uenced by the reticle and those 
infl uenced by the wafer and wafer stage, measurements are made within the exposure 
fi eld and for different fi elds on the wafer to separate out these components. While histori-
cally CD control has gained the most attention as the limiter to feature size shrinks, 
overlay control is often just as critical.

Downstream Compatibility describes the appropriateness of the lithographic results for 
subsequent processing steps, in particular etch and ion implantation. Unlike many other 
processing steps in the manufacture of an integrated circuit, the handiwork of the lithog-
rapher rarely fi nds its way to the fi nal customer. Instead, the true customers of the lithog-
raphy process are the etch and implant groups, who then strip off those painstakingly 
prepared photoresist profi les when fi nished with them. Downstream compatibility is 
measured with such metrics as etch resistance, thermal stability, adhesion, chemical com-
patibility, strippability and pattern collapse.

Manufacturability is the fi nal, and ultimate, metric of a lithographic process. The two 
major components of manufacturability are cost and defectivity. The importance of cost 
is obvious. What makes this metric so interesting, and diffi cult to optimize, is the relation-
ship between cost and other metrics of lithographic quality such as CD control. While 
buying ultra fl at wafers or upgrading to the newest stepper platform may provide an easy 
improvement in CD and overlay performance, the benefi t may be negated by the cost 
increase. It is interesting to note that throughput (or more correctly overall equipment 
productivity) is one of the major components of lithographic cost for a fab that is at or 
near capacity due to the normal factory design that places lithography as the fab 
bottleneck.

Defectivity in all areas of the fab has been a major contributor to yield loss for most 
processes throughout the history of this industry. Because lithographic processes are 
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repeatedly applied to make a chip, any improvements in defectivity in the lithography 
area are multiplied many times over. Finally, concerns such as safety and environ-
mental impact will always play a role in defi ning the overall manufacturability of a 
process.

The outline for defi ning lithographic quality presented above gives a fl avor for the 
complexity of the task. Literally dozens of quality metrics are required to describe the 
true value of a lithographic result. However, once these metrics have been defi ned, their 
relative value to the customer evaluated, and methods for their measurement established, 
they become powerful tools for the continuous improvement required to remain competi-
tive in semiconductor manufacturing.

8.2 Critical Dimension Control

The shrinking of the dimensions of an integrated circuit is the technological driver of 
Moore’s Law (see Chapter 1). As the dimensions of a transistor shrink, the transistor 
becomes smaller, lighter, faster, consumes less power, and in many cases is more reliable. 
In addition, the semiconductor industry has historically been able to manufacture silicon 
devices at an essentially constant cost per area of processed silicon. Thus, an increased 
density of transistors per area of silicon results in huge cost advantages in the manufacture 
of chips. While many of these historical trends are being challenged (shrinking transistor 
size now often increases power consumption rather than reducing it), the compelling cost 
advantage of packing more transistors per unit area continues to push feature sizes smaller. 
However, as features become smaller, the need to control the quality of the lithographic 
results increases in proportion.

8.2.1 Impact of CD Control

Lithographers work hard to improve the control of the feature dimensions printed on the 
wafer for two very important reasons. First, and most obviously, the dimensions of device 
features affect the electrical behavior of those devices. In general, devices have been 
designed to work optimally over a very limited range of feature sizes. If those sizes 
become either too big or too small, a variety of undesirable consequences will result. 
Because of this, the very process of design itself must take into account the variability of 
the lithography process, resulting in the second important reason why linewidth control 
is important: its impact on the area of a designed chip.

Design rules are a complex set of geometric restrictions (such as the minimum allowed 
dimensions and spacings for each circuit element) that are used when creating a circuit 
layout (the design information that will eventually be translated into a photomask pattern). 
The overall goal of the design rules is to minimize the silicon area of the circuit while at 
the same time maintaining suffi cient yield and circuit performance in the face of variations 
in the semiconductor manufacturing processes.

Consider a contact hole making contact to a source or drain of a transistor (Figure 8.1). 
One of the many design rules would defi ne the minimum layout separation between the 
contact hole and the active area edge (dimension f in Figure 8.1). In general, this design 
rule would be determined by the contact to active layer overlay specifi cation (Oc-aa) 
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and the CD control specifi cations for the contact (∆CDc) and the active area width 
(∆CDaa).

 Minimum f O= + +c-aa c aaCD / CD /∆ ∆2 2  (8.1)

Thus, the minimum spacing f can be reduced if the CD control specifi cation is reduced. 
In general, though, the overlay specifi cation is roughly three times the CD control speci-
fi cation so that overlay control represents about 75 % of the control requirements and thus 
tends to dominate this design rule (see section 8.4). On the other hand, dimension h is 
completely determined by CD control considerations.

One of the classic examples of the infl uence of CD control is at the polysilicon gate 
level of standard CMOS logic devices. Physically, the polysilicon gate linewidth (para-
doxically called the gate length by device engineers) controls the electrically important 
effective gate length (Leff). In turn, Leff is directly related to the transit time t, the average 
time required to move an electron or hole from the source to the drain of the MOS 
device:

 τ
µ

= L

V
eff

ds

2

 (8.2)

where m is the mobility of the charge carrier for the transistor (either holes or electrons), 
and Vds is the drain–source voltage. The delay time of an unloaded inverter is about twice 
the transit time, plus any parasitic delays caused by resistance and capacitance of the 
device not associated with the gate. These parasitic delays tend to be about equal in 
magnitude to the delay caused by the gate transit time, but are independent of Leff. Pass 
transistors have delays about equal to the inverter delay, and a two-input NAND gate has 
a delay about equal to twice that of an inverter. Given these timing constraints, a circuit’s 
clock period has a minimum of about 10 times the delay given by Equation (8.2), but 
actual circuits use a slower 15× multiplier to allow for variations in this delay time. Thus, 

Figure 8.1 A simple layout showing a two-transistor structure with source/drain contact 
holes. One design rule would dictate the minimum allowed spacing between the edge of the 
contact and the edge of the active area (dimension f)
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narrower gates tend to make transistors that can switch on and off at higher clock speeds. 
The squared dependence shown in Equation (8.2) means that small variations in the poly 
gate CD will cause a 2× larger variation in device delay times.

Obviously, faster chips are more valuable than slower ones, as anyone who has priced 
a personal computer knows. But smaller is not always better. Transistors are designed 
(especially the doping levels and profi les) for a specifi c gate length. As the gate length 
gets smaller than this designed value, the transistor begins to ‘leak’ current when it should 
be off. If this leakage current becomes too high, the transistor is judged a failure. The 
‘off’ current of a transistor, Ioff, defi ned as the current when the gate source voltage Vgs = 
0, is given by

 I I V V V s
off ds gs th

/e th= = −(@ )  (8.3)

where Ids is the drain–source current, Vth is the threshold voltage, and s is the temperature-
dependent subthreshold swing (typically equal to about 80–90 mV/decade at room tem-
perature, which is about 35–40 mV as used in the above equation). When Vgs = Vth, the 
device is not turned on and current is caused simply by diffusion. This diffusion current 
(Ids in the above equation) will in turn be inversely proportional to Leff. However, it is the 
exponential dependence of Ioff on the threshold voltage that provides the strongest depen-
dence of leakage current on gate length. Thus, ignoring the less important dependence of 
Ids,
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The threshold voltage is dependent on the effective gate length due to what are called 
short channel effects. The change in threshold voltage from its long-channel value Vth_long 
depends on the exact doping profi les used, but a typical simple model is

 ∆V V V C L l
th th_long th

/e eff= − = −
1

2  (8.5)

where C1 depends on the source-to-drain voltage and is on the order of 3–3.5 V, and l is 
called the characteristic length of the short channel effect and depends on the oxide 
thickness, the junction depth and the depletion layer width. This characteristic length 
is generally engineered to produce short-channel effects on the order of 0.1 V, so that 
l ≈ Leff/7. Thus,
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Combining Equations (8.6) and (8.4) using the chain rule,
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Assuming a typical subthreshold swing of 35 mV, a 10 % reduction in Leff will cause a 
100 % increase in Ioff.

When printing a chip with millions of transistor gates, the gate lengths take on a dis-
tribution of values across the chip (Figure 8.2a). This across chip linewidth variation 
(ACLV) produces a range of transistor behaviors that affect the overall performance of 
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the chip. Although the specifi c details can be quite complicated and device specifi c, there 
are some very basic principles that apply.1 As a signal propagates through the transistors 
of a chip to perform some operation, there will be several paths – connected chains of 
transistors – that operate in parallel and interconnect with each other. At each clock cycle, 
transistors are turned on and off, with the results passed to other interconnected transis-
tors. The overall speed with which the operation can be performed (i.e. the fastest clock 
speed) is limited by the slowest (largest gate CD) transistors in the critical path for that 
operation (a critical path will typically have between 10 and 20 transistors in the path). 
Also, when gate lengths become too large, the drive current available to turn on or off 
the transistor may be too low, resulting in a potential reliability problem. On the other 
hand, the reliability of the chip is limited by the smallest gate CDs on the chip due to 
leakage current. If too many transistors on the chip have small gate CDs, the higher 
leakage current can result in unacceptably high power consumption.

The distribution of linewidths across the chip has another impact besides the limits of 
the largest and smallest CDs. The range of gate lengths produces a range of switching 
times for the transistors. If a group of connected transistors in a path all happens to be 
undersized (and thus faster), while another group of transistors in a path is oversized (and 
thus slower), a timing error can occur where the results from the two paths don’t show 
up together at the same time. These timing errors, which are very diffi cult to predict and 
sometimes diffi cult to test for, result in device function errors. Today, interconnect delays 
(the time it takes a signal to travel from one transistor to another) are accounting for an 
ever larger share of the timing delays of critical paths for chips. Much design focus con-
tinues to be on evening out the interconnect delays among competing paths. Still, the gate 
delay distribution remains a critical part of the timing error problems on chips that are 
pushing the limits of clock speeds.

So how does improved CD control impact device performance? Obviously from the 
discussion above, a tighter distribution of polysilicon gate CDs will result in reduced 
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Figure 8.2 A distribution of polysilicon gate linewidths across a chip (a) can lead to different 
performance failures. Tightening up the distribution of polysilicon gate linewidths across a 
chip (b) allows for a smaller average CD and faster device performance
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timing errors. This smaller range of linewidths also means that the average linewidth can 
be reduced without running into the leakage current limit (Figure 8.2b). As a result, the 
overall speed of the chip can be increased without impacting reliability. The resulting 
improved ‘bin sort’, the fraction of chips that can be put into the high clock speed bins 
upon fi nal test of the device, can provide signifi cant revenue improvements for the fab.

Like transistor gates, the impact of errors in the CD of a contact hole or via is different 
for oversized versus undersized contacts. If a contact hole is too big, the hole can over-
shoot the edge of the pattern below to which it is making contact, possibly causing an 
electrical short circuit. If a contact hole is too small, the electrical contact resistance will 
increase. Contact resistance is proportional to the area of the contact, and thus to the 
square of the contact diameter. A 10 % decrease in contact CD causes a roughly 20 % 
increase in contact resistance. If the contact/via resistance gets too high, signals propagat-
ing through that contact/via will slow down. For voltage-sensitive parts of the circuit 
(such as the source/drain contacts), the voltage drop across the contact can change the 
electrical characteristics of the device.

8.2.2 Improving CD Control

Fundamentally, errors in the fi nal dimension of a feature are the result of errors in the 
tools, processes and materials that affect the fi nal CD. An error in a process variable (the 
temperature of a hot plate, for example) propagates through to become an error in 
the fi nal CD based on the various physical mechanisms by which the variable infl uences 
the lithographic result. In such a situation, a propagation of errors analysis can be used 
to help understand the effects. Suppose the infl uence of each input variable on the fi nal 
CD were expressed in a mathematical form, such as

 CD f v v v= ( . . .)1 2 3, , ,  (8.8)

where vi are the input (process) variables. Given an error in each process variable ∆vi, the 
resulting CD error can be computed from a high-order total derivative of the CD function 
in Equation (8.8).
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This imposing summation of powers of derivatives can be simplifi ed if the function is 
reasonably well behaved (and of course we hope that our critical features will be so) and 
the errors in the process variables are small (we hope this is true as well). In such a case, 
it may be possible to ignore the higher-order terms (n > 1), as well as the cross terms of 
Equation (8.9), to leave a simple, linear error equation (the fi rst-order total derivative).
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. . .  (8.10)

Each ∆vi represents the magnitude of a process error. Each partial derivative ∂CD/∂vi 
represents the process response, the response of CD to an incremental change in the vari-
able. This process response can be expressed in many forms; for example, the inverse of 
the process response is called process latitude. Figure 8.3 shows a simple case where the 
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process variable is exposure dose and the common-use defi nition of exposure latitude 
(EL) is shown.

The linear error Equation (8.10) can be modifi ed to account for the nature of the errors 
at hand. In general, CD errors are specifi ed as a percentage of the nominal CD. For such 
a case, the goal is usually to minimize the relative CD error, ∆CD/CD. Equation (8.10) 
can be put in this form as
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Also, many sources of process errors result in errors that are a fraction of the nominal 
value of that variable (for example, illumination nonuniformity in a stepper produces a 
dose error that is a fi xed percentage of the nominal dose). For such error types, it is best 
to modify Equation (8.11) to use a relative process error, ∆vi/vi.
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Although Equations (8.10)–(8.12) may seem obvious, even trivial, in their form, they 
reveal a very important truth about error propagation and the control of CD. There are 
two distinct ways to reduce ∆CD: reduce the magnitude of the individual process errors 
(∆vi), or reduce the response of CD to that error (∂CD/∂vi). The separation of CD errors 
into these two source components identifi es the two important tasks that face the photo-
lithography engineer. Reducing the magnitude of process errors is generally considered 
a process control activity and involves picking the right material and equipment for the 
job and ensuring that all equipment is working in proper order and all materials are 
meeting their specifi cations. Reducing the process response is a process optimization 
activity and involves picking the right process settings, as well as the right equipment 
and materials. Often, these two activities are reasonably independent of each other.

× 100 %
Enominal

E(CD – 10 %) – E(CD + 10 %)
EL =

20 25 30 35 40 45
60

80

100

120

140

R
es

is
t L

in
ew

id
th

 (
nm

)

Exposure Energy (mJ/cm2)
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A note of caution: the derivation of Equation (8.10) assumed that the process errors 
were small enough to be linear and independent in their infl uence on CD. This will not 
always be the case in a real lithographic process. One need only consider the two variables 
of focus and exposure to see that the response of CD is certainly nonlinear and the two 
variables are highly dependent on each other (see section 8.5). Usually, a linear expansion 
such as that of Equation (8.10) is most useful as a guide to understanding rather than as 
a computational tool.

8.2.3 Sources of Focus and Dose Errors

The above sections describe why critical dimension (CD) control is important, and 
describe a common methodology for separating the causes of CD errors into two com-
ponents: the magnitude of a process, material, or tool error, and the response of the litho-
graphic process to that error. This separation of errors allows the process engineer to focus 
independently on the two methods for improving CD control: reducing the sources of 
errors and improving process latitude. In general, these approaches can be thought of as 
independent (though not always). Efforts to improve process latitude usually do not 
change the magnitude of the process errors, and vice versa. Let’s consider the fi rst 
approach, reducing the magnitude of the errors, using focus errors as an example.

Focus errors arise from many sources, both random and systematic. Tables 8.1 and 8.2 
show estimates of the focus errors by source for different lithographic generations: a 
1991 0.5-mm i-line process, 1995 0.35-mm i-line and KrF stepper processes, a 0.18-mm 
KrF scanner process, and a more modern 90-nm ArF process. The values shown are 
typical, but certainly vary from process to process. Although the tables are reasonably 

Table 8.1 Examples of random focus errors (mm, 6s) for different lithographic generations

Error Source
19912 i-line 
0.50 mm

19953 i-line 
0.35 mm

19953 KrF 
stepper 
0.35 mm

2001 KrF 
scanner 
0.18 mm

2005 ArF 
scanner 
0.09 mm

Lens Heating 
(Compensated) 0.10 0.10 0.00 0.00 0.00

Environmental 
(Compensated)

0.20 0.20 0.10 0.10 0.05

Mask Tilt (actual/16) 0.05 0.05 0.10 0.05 0.05
Mask Flatness 

(actual/16)
0.12 0.12 0.12 0.12 0.07

Wafer Flatness 
(over one fi eld)

0.30 0.33 0.33 0.15 0.07

Chuck Flatness 
(over one fi eld)

0.14 0.03 0.03 0.03 0.03

Laser Bandwidth 0.0 0.0 0.20 0.1 0.04
Autofocus 

Repeatability
0.20 0.08 0.10 0.07 0.04

Best Focus 
Determination

0.30 0.15 0.10 0.10 0.05

Vibration 0.10 0.10 0.05 0.05 0.03
Total RSS Random 

Focus Errors
0.60 0.50 0.45 0.28 0.15
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self-explanatory, a few items are worth noting. Errors in fl atness or tilt on the mask are 
reduced by the reduction ratio of the imaging tool squared (assumed to be 4× in this 
example). Wafer fl atness is a total range over the exposure fi eld assuming autoleveling is 
turned on. One of the primary advantages of the scanner is that the exposure slit sees a 
smaller region of the wafer and thus has a smaller focus error due to wafer nonfl atness 
compared to a stepper, even for the same wafer. Note also that hot spots (focus errors 
caused by a particle on the backside of the wafer) and edge die problems (caused by errors 
in the autofocus system when attempting to focus at the edge of the wafer) are not included 
in this list.

Systematic focus errors include wafer topography (where chemical mechanical polish-
ing has proven its worth, though is not yet perfect enough to make wafer topography a 
negligible problem), lens aberrations across the fi eld or slit, and the errors due to focusing 
through the thickness of the resist. While not considered here, phase errors on a phase 
shift mask can also act like a focus error. Random and systematic errors can now be 
combined by assuming the systematic errors have a uniform probability distribution with 
the given range and convolving this uniform distribution with the Gaussian distribution 
of the random errors. Since in all cases the uniform width is large compared to the 3s of 
the random errors, the result is a probability distribution that looks like the uniform dis-
tribution with error function tails. For an error function probability, the equivalent to a 
6s Gaussian range (99.7 % probability) depends on the ratio of range/s. For range/s = 
11, the total built-in focus errors (BIFE) of the process, with a probability of 99.7 %, is 
range + 3.6s. For range/s = 6, the BIFE is range + 4s.

The exercise to fi ll in the values in tables such as those presented here serves two 
important functions. First, an evaluation of the BIFE can be combined with a measure-
ment of the focus–exposure process window for the target process to see if the process 
capability (the process window) exceeds the process requirements (see section 8.5). 
Second, a listing of sources of focus errors inevitably leads to ideas where improvements 
can be made. The largest sources of errors (wafer nonfl atness, for example, and wafer 
topography) offer the greatest potential for improvement.

Table 8.2 Examples of systematic (mm, total range) and random focus error estimates 
combined to determine the Built-in Focus Errors (BIFE) of a process

Error Source
19912 i-line 
0.50 mm

19953 i-line 
0.35 mm

19953 KrF 
stepper 
0.35 mm

2001 KrF 
scanner 
0.18 mm

2005 ArF 
scanner 
0.09 mm

Topography 0.5 0.3 0.3 0.10 0.05
Field Curvature and 

Astigmatism
0.4 0.4 0.3 0.08 0.05

Resist Thickness 0.2 0.2 0.2 0.10 0.05
Total Systematic 

Errors (range)
1.1 0.9 0.8 0.28 0.15

Total Random Errors 
(6s)

0.60 0.50 0.45 0.28 0.15

Range/s 11 10.8 10.7 6 6
Total BIFE (6s 

equivalent)
1.5 1.2 1.1 0.47 0.25
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Interestingly, a historical look at built-in focus errors reveals an interesting trend: the 
required depth of focus is about three times the minimum half-pitch for critical lithogra-
phy layers such as gate polysilicon. While certainly not a rigorous analysis, using this 
rule of thumb can prove useful for projecting BIFE requirements to future generations of 
optical lithography.

Many errors that are not focus errors, but still affect CD, can be thought of as equivalent 
to an exposure dose error. Typical examples include:

• across-fi eld (slit) intensity nonuniformity;
• fi eld-to-fi eld and wafer-to-wafer dose control;
• resist sensitivity variations (including development process variations);
• resist/BARC thickness variations (refl ectivity variations);
• PEB time and temperature variations;
• fl are variations;
• mask CD nonuniformity;
• errors in optical proximity correction (behaves like a mask CD error).

The required dose control has steadily tightened for smaller feature sizes. At the 0.5-mm 
generation, the built-in dose errors of a well-controlled process were about 15 % (range). 
At the 90-nm node, dose errors are typically less than about 6 %.

8.2.4 Defi ning Critical Dimension

A cross section of a photoresist profi le has, in general, a very complicated two-dimen-
sional shape (see Figure 8.4, for example). Measurement of such a feature to determine 
its width has many complications. Suppose, however, that we have been able to measure 
the shape of this profi le exactly so that we have a complete mathematical description of 
its shape. How wide is it? The answer depends on how one defi nes the width. The original 
shape of the photoresist profi le is simply too complex to be unambiguously characterized 
by a single width number. The defi nition of the width of a complex shape requires the 
defi nition of a feature model.4

A feature model is a mathematical function described by a conveniently small number 
of parameters used to appropriately depict the actual shape of the resist feature. For our 
application, one of these parameters should be related to the basic concept of the width 
of the resist profi le. The most common feature model used for this application is a trape-
zoid (Figure 8.4). Thus, three numbers can be used to describe the profi le: the width of 

w

D

q

Figure 8.4 Example photoresist profi le and its corresponding ‘best-fi t’ trapezoidal feature 
model
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the base of the trapezoid (linewidth, w), its height (profi le thickness, D) and the angle 
that the side makes with the base (sidewall angle, q). To be perfectly general, the position 
of the feature (defi ned, for example, by the centroid of the feature model) can be specifi ed 
and the shape can be made asymmetrical by allowing a different sidewall angle for each 
side.

Obviously, to describe such a complicated shape as a resist profi le with just three 
numbers is a great simplifi cation. One of the keys to success is to pick a method of fi tting 
this feature model to the profi le that preserves the important properties of the profi le (and 
its subsequent use in the device). Thus, one can see that even given an exact knowledge 
of the actual photoresist profi le, there are two potential sources of error in determining 
the critical dimension: the choice of the feature model and the method of fi tting the feature 
model to the resist profi le. Consider Figure 8.5, which shows resist profi les through focus 
exhibiting different curvatures of their sides (more on this topic in section 8.5). Using a 
trapezoidal feature model will obviously result in a less than perfect fi t, which means that 
the criterion for best fi t will infl uence the answer.

What is the best feature model and best method of fi tting the feature model to measured 
data for a given application? Since the choice of the feature model is based both on rele-
vance and convenience, and since the trapezoid is so commonly used for CD metrology, 
the impact of the feature model choice will not be discussed here. When fi tting the feature 
model to the data, there are many possible methods. For example, one could fi nd a best-fi t 
straight line through the sidewall of the profi le, possibly excluding data near the top and 
bottom of the profi le. Alternately, one could force the trapezoid to always match the actual 
profi le at some point of interest, for example at the bottom. Whenever the shape of the 
actual profi le deviates signifi cantly from the idealized feature model, the method of fi tting 
can have a large impact on the results.

For example, as a lithographic process goes out of focus, the resist profi le and the 
resulting feature size will change. But because the shape of the resist profi le is deviating 
from a trapezoid quite substantially at the extremes of focus, CD can also be a strong 
function of how the profi le data was fi t. Figure 8.6 compares the measured CD through 
focus for two different feature model fi tting schemes: a best-fi t line through the sidewall 
and fi tting the trapezoid to match the actual profi le at a set threshold (height above the 
substrate). Near best focus, the two methods give essentially the same value since the 
resist profi le is very close to a trapezoid. However, out of focus there can be a signifi cant 
difference in the CD values ( > 5 %) based only on the fi tting method used.

Focus Below the Resist Focus Above the Resist 

Figure 8.5 Resist profi les at the extremes of focus show how the curvature of a pattern cross 
section can change
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In real metrology systems, the actual resist profi le is never known. Instead, some signal 
(secondary electrons versus position, scattered light intensity versus wavelength) is mea-
sured that can be related to the shape of the resist profi le. This signal is then fi t to some 
model, which ultimately relates to the feature size being measured. Although a bit more 
complicated, the same principles still apply. Both the feature model and how that model 
is fi t to the data will affect the accuracy of the results.

8.3 How to Characterize Critical Dimension Variations

Critical dimension (CD) errors in lithography come from many sources and exhibit many 
interesting characteristics. The classifi cation of these errors into specifi c categories (sys-
tematic versus random, spatial versus temporal) is often the fi rst step in a root cause 
analysis that allows the sources of CD variation to be identifi ed and addressed. The nature 
of step-and-repeat or step-and-scan lithography on many identical wafers in a lot can 
produce many systematic spatial and temporal processing characteristics that impact CD 
errors. The discussion below will focus on step-and-scan lithography, with emphasis on 
the characterization of systematic error sources.

8.3.1 Spatial Variations

The systematic spatial variations of CD within a wafer exhibit four basic signatures: 
across-wafer, across-fi eld in the scan direction, across-fi eld in the slit direction, and 
across-fi eld independent of the scan/slit orientation (Figure 8.7). The physical causes of 
variations in each of these spatial domains can be very different. Thus, dividing up the 
total spatial variation of CDs among these four components is the fi rst step in identifying 
causes and remedies for unwanted CD errors.
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Figure 8.6 Using resist profi les at the extremes of focus as an example, the resulting 
measured feature size is a function of how the feature model is fi t to the profi le
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For those processing steps that result in a full-wafer treatment (resist coating, post-
exposure baking, development), errors in that processing can contribute to CD variations 
with a full-wafer signature. Essentially all wafer processing other than exposure is 
full-wafer processing and results in an across-the-wafer variation in CD. Examples 
include:

• underlying fi lmstack thickness variations due to deposition;
• resist and bottom antirefl ection coating thickness uniformity;
• prebake temperature uniformity;
• post-exposure bake temperature uniformity;
• development uniformity (due to application, wetting, surface tension, etc.);
• fi rst to last exposure shot variation due to lens heating or post-exposure delay;
• edge shot focus variation due to autofocus/autolevel problems at the edge of the 

wafer.

Many of these sources of error will exhibit mostly radial signatures, though other signa-
tures (such as a wedge variation – a linear variation from one side of the wafer to the 
other) are certainly possible. The variation in CD caused by the difference in the fi rst and 
last exposure shot can have a very different signature and, of course, depends on the 
specifi c stepping pattern used. Hot spots, an extended region of the wafer with higher or 
lower CDs, can be caused by backside defects or wafer chucking errors that produce a 
localized focus error that cannot be compensated for by autofocus and autoleveling 
mechanisms.

The process of scanning a slit in one direction across the fi eld results in a distinct dif-
ference in the way many across-fi eld error sources are manifest. Spatial variations across 
the fi eld in the scan direction will average out to produce a fairly uniform signature in 
that direction. Spatial variations in the slit direction will be systematically reproduced 
everywhere in the fi eld. There is one major systematic across-fi eld CD variation source 
that is independent of scan orientation: reticle CD errors. Coupled with the mask error 

Wafer
Pattern of 
Exposure 

Fields

Scan
Direction

Slit

Single Exposure Field

Figure 8.7 A wafer is made up of many exposure fi elds, each with one or more die. The 
fi eld is exposed by scanning a slit across the exposure fi eld
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enhancement factor (MEEF), reticle errors will systematically reproduce their signature 
across the wafer fi eld without any averaging or other scan-induced changes.

Along the long dimension of the slit, there is no averaging effect of scanning to reduce 
the sources of CD variation. Thus, variations in the slit direction create a unique signature 
for the exposure tool. Common sources of CD errors with systematic variations in the slit 
direction include:

• lens aberrations;
• illumination (dose) uniformity;
• source shape (partial coherence) variations;
• fl are.

In general, systematic errors in the slit direction dominate the systematic across-fi eld 
errors.

Most of the systematic sources of CD errors that plague lithographers in the slit direc-
tion tend to average themselves out in the scan direction – this is one of the major benefi ts 
of step-and-scan technology. And while on-the-fl y focusing can greatly reduce the impact 
of long-range wafer nonfl atness, it can also induce some systematic CD errors in the scan 
direction. Autofocus systems can be fooled by underlying topography on the wafer (for 
example, when scanning past a logic region onto a dense memory region) and systemati-
cally but incorrectly adjust focus as it scans.

Variations from wafer to wafer can take on a spatial component due to systematic dif-
ferences in how one wafer is processed versus another (it is important to differentiate the 
spatial variation being considered here from a temporal variation caused by a change in 
the processing of each wafer over time, to be discussed below). The main source of such 
variations comes from multiple processing chambers (modules) used per lot. For example, 
a single photolithography cell may have two developer cups and two post-exposure bake 
(PEB) hot plates. Any systematic difference between these track modules will give a 
systematic wafer-to-wafer error grouped by which module was used in the processing. 
Likewise, incoming wafers may have systematic wafer-to-wafer fi lmstack variations due 
to multiple deposition chambers.

Lot-to-lot systematic spatial variations are typically caused by differences in processing 
tools:

• different photolithography cells;
• different reticles;
• different deposition tools for incoming wafers;
• different metrology tools (tool matching errors).

Again, one should distinguish between those lot-to-lot differences caused by using 
different tools versus differences caused by temporal drifts in the behavior of a given 
tool.

8.3.2 Temporal Variations and Random Variations

Temporal variations can be seen both wafer-to-wafer and lot-to-lot, depending only on 
the timescales involved. Some effects, however, such as lens heating, have different 
within-lot and lot-to-lot signatures. Temporal variations can be either drifts in lithographic 
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inputs (a gradual barometric pressure change causing a focus shift) or an abrupt distur-
bance (switching to a new batch of photoresist). Although any lithographic input can 
conceivably have a temporal variation, some of the most common are:

• focus drift;
• dose calibration (intensity measurement) drift;
• resist batch change;
• laser center wavelength and bandwidth variations;
• lens heating;
• metrology drift;
• long-term lens degradation.

Of course, almost any lithographic input can have random variations associated with 
it. An important distinction between random errors and temporal variations as discussed 
above is the time constant of change. If a variable changes randomly but over a period 
of time such that many wafers can be processed (that is, between hours and months), such 
errors are generally classed as temporal variations. If, however, the variations are rapid 
enough to change across a wafer or from wafer to wafer, the errors are described as 
random. Some of the most signifi cant random errors are:

• focus;
• dose;
• scan synchronization (x, y and z);
• PEB temperature/heating transients;
• metrology.

Of course, every input to the lithography process has some level of random variation 
associated with it.

8.3.3 Characterizing and Separating Sources of CD Variations

Different methods are often employed to characterize and control errors from different 
sources. For example, temporal variations are usually characterized using trend chart and 
statistical process control (SPC) techniques.5 Wafer-to-wafer and lot-to-lot variations 
caused by differences in processing tools or chambers can be caught using statistical cor-
relation techniques (for example, where the average CD value obtained in one photoli-
thography cell is compared to another and a statistically signifi cant difference is fl agged). 
The separation of CD errors into random and within-wafer spatially systematic is one of 
the most challenging problems in lithography data analysis. Further separation of the 
within-wafer systematic errors into their specifi c components (across-wafer, across-fi eld, 
slit direction and scan direction) is both diffi cult and important. There are two basic 
approaches that can be used: characterizing output CD variations and characterizing input 
parameter variations.

The basic statistical technique for separating various systematic spatial variations and 
random errors is the use of the ‘composite’ spatial source. For example, the variation of 
CD across a wafer can have both a systematic component and a random component. By 
measuring a number of wafers at the exact same spatial locations, averaging of the mea-
surements at each spatial location creates a composite wafer with the random errors 
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mostly averaged out. This composite wafer can then be used to characterize the systematic 
spatial signature of the error. Subtracting the composite wafer from the actual wafer data 
produces a residual set of random errors that can be characterized by a mean and standard 
deviation.

Let Mi(x,y) be the measured CD on wafer i at the location (x,y) on the wafer for a 
measured group of N wafers. This measured value can be separated into systematic and 
random errors:

 M x y CD S x y R x yi i i( ) ( ) ( ), , ,= + +0  (8.13)

where CD0 is the nominal (target) CD, Si is the systematic error for wafer i and Ri is the 
random error component. If the experiment used to make the measurements is conducted 
appropriately, the systematic wafer-to-wafer variations can be kept to a minimum (by 
making sure that each wafer is processed identically and by processing the wafers over 
a very short period of time). If this wafer-to-wafer variation is much smaller than the 
across-wafer variation, it is possible to approximate Si(x,y) ≈ S(x,y) = the systematic 
across-wafer spatial signature. A ‘composite’ wafer CD error CCDE(x,y) is created by 
averaging the measurements from the different wafers at each point:
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If normally distributed, the random errors will have a mean of zero at each point on 
the wafer. For a large enough sample N, the average of the sample will approximate the 
mean of the population with high accuracy. Thus,
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where sR(x,y) is the standard deviation of the random CD error at the point (x,y). By 
approximating the standard deviation of the random error with the standard deviation of 
the residuals of the N sample of measurements sR(x,y), the accuracy of Equation (8.15) 
can be estimated. By picking N to be suffi ciently large, one can use the composite wafer 
error as an estimate of the systematic across-wafer CD error signature within a known 
level of error.

 S x y CCDE x y s x y N( ) ( ) ( ), , with an estimated uncertainty of ,R≈  (8.16)

In turn, the composite wafer can be analyzed to create a composite fi eld. Averaging the 
same fi eld measurement points from all fi elds across the wafer produces a signature that 
is characteristic of the fi eld error only (with the assumption that the across-wafer errors 
vary slowly enough across the fi eld as to contribute only negligibly to the composite 
fi eld). Once the composite fi eld is obtained, it can be subtracted from the composite wafer 
to create a separate across-wafer-only signature.

Likewise, the composite fi eld can be broken down into a composite slit and composite 
scan signature. This separation into components is complicated by the fact that the con-
tribution of reticle errors to the composite fi eld is independent of scan direction. For one 
simplifying case, however, all components can be properly separated. If the reticle CD 
variations do not exhibit any systematic scan or slit direction components, subtraction of 
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the composite slit and composite scan from the composite fi eld should yield the reticle 
contribution. It seems likely, however, that this simplifying assumption will often prove 
false. Any reticle error signature that has a systematic spatial signature (the edges of the 
reticle might have a lower CD than the middle, for example) will confound the separation 
of errors. In such a case, the second method of analyzing CD variations – a direct char-
acterization of the sources of variation – can make this spatial decomposition even more 
meaningful.

While the previous paragraphs described a detailed statistical approach to the charac-
terization of measured CD errors, a second approach would directly look for and measure 
the variations in lithographic inputs thought to cause these errors. Such a ‘sources of 
variations’ study can be coupled with the sensitivities of CD to each error source to predict 
the resulting CD error distributions. One of the most common examples is the measure-
ment of reticle CD errors to create a spatial map of the reticle. By combining this reticle 
map with measured or simulated MEEF values for the specifi c features (mask error 
enhancement factor, see section 8.7), a predicted wafer CD error map due only to reticle 
errors can be generated.

The most effective means of characterizing CD errors in a lithographic process is a 
combination of a sources of variation study and statistical decomposition of measured 
wafer errors. Using the reticle CD error map described above, for example, the reticle 
contribution to the across-fi eld CD errors from the scan and slit direction signatures can 
be subtracted out, making the statistical analysis of spatial variation more accurate. Also, 
by comparing a ‘bottoms up’ prediction of wafer CD errors through a sources of variations 
study with actual measured CD variations, one can check assumptions about which errors 
are most signifi cant and which fab investments meant to improve CD control are most 
likely to pay off.

8.4 Overlay Control

Like critical dimension control, overlay control is a vital part of lithography in semicon-
ductor manufacturing. Errors in the overlay of different lithographic levels can directly 
cause a number of electrical problems. At the gate level, overlay errors can pull a gate 
line end close to the active area, causing an increase in leakage current. At contact or via, 
overlay errors can reduce the overlap between the contact hole and the underlying con-
ductor, causing higher contact resistance or, if bad enough, a short to the wrong electrical 
connection. On the design side, design features are spread out to be insensitive to expected 
errors in overlay. If overlay control can be improved, designs can be shrunk, allowing 
smaller die, more die per wafer and lower cost per die. As a result, economics dictates 
that overlay specifi cations must shrink in lockstep with device geometries, requiring 
continuous improvement in overlay measurement and control.

Overlay is defi ned as the positional accuracy with which a new lithographic pattern 
has been printed on top of an existing pattern on the wafer, measured at any point on the 
wafer. This is opposed to the slightly different concept of registration, which is the posi-
tional accuracy with which a lithographic pattern has been printed as compared to an 
absolute coordinate grid. While registration can be important (for example, when consid-
ering the positional accuracy of features on a photomask), overlay is both much easier to 
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measure and more relevant to lithographic quality and yield. In this section we’ll examine 
some basics of how overlay is measured, and how overlay data are used.

8.4.1 Measuring and Expressing Overlay

Overlay measurement involves the design of special patterns used on two different litho-
graphic printing steps such that a metrology tool, when viewing the results of both printed 
patterns simultaneously, can measure errors in overlay for that point on the wafer. The 
most common pattern used today is the so-called box-in-box target (Figure 8.8). An outer 
box is printed during the fi rst lithographic step and an inner box is printed during the 
second lithography pass.

Overlay measurement looks for differences in the space between the printed boxes (the 
distances between inner and outer box edges). For example, the x-overlay error would be 
one-half of the difference between the right and left widths between the inner and outer 
boxes (Figure 8.9). By using both left and right widths, processing errors that affect the 
dimensions of the boxes symmetrically will cancel out. Repeating this measurement for 
the top and bottom of the boxes gives the y-overlay error. The x- and y-overlay measure-
ment pair produces a vector of the overlay error at the wafer and fi eld location of the 
measurement.

While symmetrical errors in CD measurement will cancel when calculating overlay, 
asymmetrical errors will not. Coma in the overlay measurement optics, for example, can 
cause a left–right asymmetry in the measured box-in-box CDs, thus giving an error in the 
overlay measurement. Such an asymmetry can easily be detected by rotating the wafer 
by 180° and remeasuring the target. In the absence of any measurement asymmetries, the 
two measurements would be the same, but of opposite signs. Thus, the tool-induced shift 
(TIS) is defi ned as

 TIS Overlay Overlay= ° + °( ) ( )0 180  (8.17)

with TIS = 0 for an ideal measurement. If TIS for an overlay measurement tool is 
fi xed, it can be easily measured and subsequent overlay measurement corrected for this 

Box-in-Box Frame-in-Frame Bar-in-Bar

Figure 8.8 Typical ‘box-in-box’ style overlay measurement targets, showing top-down optical 
images along the top and typical cross-section diagrams along the bottom. The outer box is 
typically 20 mm wide. (Courtesy of KLA-Tencor Corp.)
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systematic error. Thus, it is the variation of TIS that causes increased measurement 
uncertainty.

Asymmetries in the measurement target on the wafer can also cause similar shifts, 
termed wafer-induced shift (WIS). Unlike TIS, however, WIS is rarely systematic enough 
to be simply subtracted out of the data. Additionally, nonideal targets often interact with 
the measurement tool, especially focus, to produce nonsystematic WIS errors.

Recently, a new type of target called an Advanced Imaging Metrology (AIM) target 
has shown superior measurement results (Figure 8.10). The AIM bars are less sensitive 

wXL

x-overlay = 0.5(wXL –wXR)

wXR

Figure 8.9 Measuring overlay as a difference in width measurements

Figure 8.10 Typical AIM target where the inner bars (darker patterns in this photograph) 
are printed in one lithographic level and the outer (brighter) bars in another level. (Courtesy 
of KLA-Tencor Corp.)
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to chemical mechanical polishing (CMP) errors such as dishing and other processing 
errors that can damage a box-in-box target, thus making the AIM target more process-
robust. Also, the multiple bars essentially allow an averaging of multiple measurements 
at one time, signifi cantly increasing the precision of the measurement. Special image 
processing software is used to relate the optical image of the target (determining the center 
of symmetry of each of the bars) to x- and y-overlay values.

Overlay measurement targets are placed at various spatial positions in the reticle fi eld, 
minimally at the four corners but often in the streets between the die (and thus within the 
fi eld) as well. The spatial variation of overlay errors provides extremely important infor-
mation as to the behavior of the reticle, the wafer and the stepper, as we shall see in the 
next section. Overlay errors are characterized in terms of x-errors and y-errors separately, 
rather than being combined into an overlay error length. Since integrated circuit (IC) 
patterns are mostly laid out on a rectangular grid, the impact of an x-overlay error on 
device yield or performance is almost independent of any y-overlay errors that might also 
be present, or vice versa.

8.4.2 Analysis and Modeling of Overlay Data

The goal of overlay data analysis is twofold: assess the magnitude of overlay errors and 
determine, if possible, their root causes. The overall magnitude of overlay errors is com-
monly summarized by the mean plus 3s of the overlay data in both x- and y-directions. 
Root cause analysis involves explaining the data with a model that assigns a cause to the 
observed effect.

To see how an overlay model might work, let’s examine a simple example of a reticle 
that is slightly rotated. Figure 8.11a shows how a rectangular reticle fi eld would print on 
a wafer if the reticle were rotated slightly with respect to the previous layer. If the ideal 
position of the upper-right corner of the fi eld were (x,y), rotation of the reticle about an 
angle f would result in that corner printing at a location (x*,y*) given by
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Figure 8.11 Examples of two simple overlay errors: (a) rotation and (b) magnifi cation 
errors
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where the origin was set to be in the middle of the fi eld. In any reasonable lithography 
process, these rotational errors will be quite small (on the order of 10 mradians or less) 
so that the trigonometric functions can accurately be replaced by their small angle 
approximations: cosf ≈ 1 and sinf ≈ f. The resulting overlay errors will then be
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Another possible alignment error is translation (also called offset), where the entire 
reticle fi eld is shifted in x and y by ∆x and ∆y. In this case, the resulting overlay errors 
are simply equal to this translation error:
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Another interesting error that can occur in optical lithography is a magnifi cation 
error. While lithography tools are designed to reduce the reticle by a specifi c amount 
(most commonly 4×), in fact changes in the index of refraction of air and the exact posi-
tion of the lens or lens components relative to the reticle and wafer can cause small errors 
in the magnifi cation of the imaging tool. Sometimes these magnifi cation errors can be 
different in the x- and y-directions (this is especially true for step-and-scan tools, where 
the ratio of reticle-to-wafer scan speeds controls the magnifi cation in the scan direction). 
From Figure 8.11b, for x and y relative magnifi cation errors of ∆mx and ∆my, 
respectively,
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The uniform or overall magnifi cation error is the average of ∆mx and ∆my. The difference 
between ∆mx and ∆my is sometimes called anamorphism.

Combining the three sources of overlay errors we’ve discussed so far, the resulting 
total error in overlay would be
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Like magnifi cation, rotational errors are sometimes broken up into x and y rotations as 
well, with the uniform rotational error being the average of fx and fy and the difference 
between these angles called skew or nonorthogonality. If the overlay error (dx, dy) were 
measured at different points in the fi eld [different (x,y) points], one could fi nd the best fi t 
of Equation (8.22) to the overlay data and extract the fi ve unknown overlay error sources: 
rotation, x and y translation, and x and y magnifi cation errors.

Is there a difference between a rotational error applied to the reticle and a rotational 
error applied to the wafer? Since the reticle fi eld is repeated many times on one wafer, 
rotating the reticle is very different from rotating the wafer, as can be seen more clearly 
in Figure 8.12. (As an aside, the difference between wafer rotation in the x- and y-
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directions is called skew or orthogonality errors, and results from errors in the stepping 
motion of the wafer stage. That is why wafer errors are sometimes called stage errors.) 
Similarly, a reticle magnifi cation error (caused by the imaging tool) would yield a differ-
ent signature than a wafer magnifi cation (also called scale) error (caused, for example, 
by a thermal expansion of the wafer). Translation errors, however, are exactly the same 
regardless of whether the reticle has been offset or the wafer has been offset.

Wafer rotation and magnifi cation errors can be separated from reticle rotation and 
magnifi cation errors by properly defi ning the coordinate axes used in Equation (8.22). If 
x and y represent the coordinates relative to the center of the fi eld being measured, then 
the model fi tting will yield reticle errors. If the coordinates are for the entire wafer (with 
an origin at the center of the wafer, for example), the resulting model fi t will give wafer 
errors. By combining reticle and wafer terms in the full model (using both wafer and fi eld 
coordinates in the full equation), both reticle and wafer error terms can be determined. 
Remember that translation errors cannot be separated into reticle and wafer, so only one 
set of translation terms should be used. The fi nal model equations are
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where q and ∆M represent the wafer (stage) rotation and magnifi cation errors, and f and 
∆m represent the reticle (fi eld) rotation and magnifi cation terms.

In the linear model developed here, there are a total of 10 model coeffi cients: two 
magnifi cation and two rotation errors each for the reticle and the wafer, and two transla-
tion terms. A typical sample plan would measure overlay at the four corners of an exposure 
fi eld for fi ve different fi elds (in the middle and four ‘corners’ of the wafer), and for three 
wafers in a lot. This number of measurements is generally enough to get good modeling 
statistics, averaging random errors so that the model coeffi cients are reasonably precise. 
The residuals, the difference between the modeled overlay errors (the systematic errors) 
and the actual measured data, are a measure of the random component of the errors (Figure 
8.13).

(b)(a)

Figure 8.12 Different types of rotation errors as exhibited on the wafer: (a) reticle rotation 
and (b) wafer rotation
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8.4.3 Improving Overlay Data Analysis

As discussed above, the primary overlay errors to consider are rotation of the wafer about 
an angle q, rotation of the reticle about an angle f, translation where the entire reticle 
fi eld or wafer is shifted in x and y by ∆x and ∆y, relative wafer magnifi cation errors of 
∆Mx and ∆My in x and y, and relative fi eld magnifi cation errors of ∆mx and ∆my in x and 
y, respectively. Combining these fi ve sources of overlay errors gave the model in Equation 
(8.23). While this basic overlay model captures the majority of systematic errors typically 
found in stepper or step-and-scan imaging, additional model terms and other approaches 
can be used to improve the analysis. The goal is to properly account for all systematic 
overlay errors such that the model residuals, the difference between the best-fi t model 
values and the actual data, are purely random. These additional terms are especially 
important when the fi rst and second lithography levels are printed on different lithographic 
tools.

The linear terms in Equation (8.23) can be expanded to include higher-order terms. 
Second-order terms can model a trapezoidal error in the shape of the printed fi eld, caused 
by a tilt in the reticle plane for nontelecentric imaging tools. Thus, these terms provide 
additional ‘correctables’ that can be used to adjust reticle tilt and reduce subsequent 
overlay errors. Third- and fi fth-order terms are added to the fi eld analysis to account for 
systematic lens distortion. While these terms are often not correctable, their inclusion in 
the model can improve the accuracy of the resulting lower-order model terms. A common 
higher-order model (including only the reticle fi eld terms) is shown here:
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where t1 and t2 are the trapezoidal error terms, d3 are the third-order distortion terms, and 
d5 represent fi fth-order distortion. Figure 8.14 shows an overview of reticle model 
terms.

The purpose of using third- and fi fth-order distortion terms in modeling overlay data 
is to account for the very real impact of systematic distortions caused by lens aberrations. 

= +

Raw Overlay Value

= +

Modeled Overlay Value Residual Value

Figure 8.13 Separation of raw overlay data into modeled + residual values. The sampling 
shown here, four points per fi eld and nine fi elds per wafer, is common for production 
monitoring
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More correctly, such overlay errors are the result of differences in the distortion charac-
teristics of the lenses used to print the fi rst and second lithographic levels. If the same 
exposure tool was used for both levels, these high-order distortion terms should disappear 
(since lens distortion changes only slowly with time), regardless of the distortion of the 
lens relative to an absolute grid.

While modeling with high-order terms is a reasonable approach, it would be better to 
characterize the lens distortion more completely. Since distortion caused by lens aberra-
tions varies slowly compared to the correctable error terms, it can be characterized infre-
quently with a thorough analysis. First, one exposure tool is picked as the reference or 
‘golden’ tool. A ‘golden’ artifact wafer is printed on this tool and the resulting fi rst-layer 
overlay marks are etched into the silicon. A test reticle is used that puts many, many 
overlay measurement targets throughout the exposure fi eld (a 10 × 10 array, for example). 
Then, this artifact wafer is printed with the second layer on each exposure tool to be 
characterized. Measurement results are analyzed to subtract out the low-order correctables 
and multiple fi elds are measured to average out random errors. The remaining residuals 
form a lens fi ngerprint for each tool relative to the reference tool (Figure 8.15).

Once a database of lens fi ngerprints for each tool has been collected, these fi ngerprints 
can be used in different ways. In the simplest application, the lens fi ngerprint can be 
subtracted from the raw overlay data before modeling those data. Suppose stepper A was 
used as the reference and the current lot used stepper D for the fi rst layer and stepper G 
for the second layer. The measured fi ngerprints in the database are D-A and G-A. The 

Error Term Picture Coefficients 

Translation ∆x, ∆y

Rotation φx, φy 

Magnification ∆mx, ∆my

Trapezoid (Keystone) t1, t2

Lens Distortion d3, d5

Figure 8.14 Illustration of fi eld (reticle) model terms including higher-order trapezoid and 
distortion6
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lens fi ngerprint for this lot would be G-A–D-A. In a second application of lens fi ngerprint 
data, every possible combination of steppers would be used to calculate the resulting fi n-
gerprints, which then are rank ordered by the maximum error in the fi ngerprint. This lens 
matching exercise results in a list of the best and worst combinations of steppers/scanners 
to use.

Like the imaging lens, every reticle contains fi xed errors in registration (overlay relative 
to an absolute grid). Differences between the reticle fi ngerprint of the fi rst and second 
lithography layer result in systematic overlay errors across the fi eld that are independent 
of both lens distortion and stepper/scanner correctables. And just like the lens fi ngerprint, 
if this reticle fi ngerprint were to be measured, it could be used in the data analysis to 
improve the resulting modeling. Unfortunately, reticle fi ngerprints are much harder to 
measure and generally require special registration measurement equipment found only in 
the mask-making shop. Thus, measurement of a reticle fi ngerprint must generally be 
specifi ed at the time of mask purchase.

Awareness of the reticle fi ngerprint makes measuring the lens fi ngerprint more diffi cult. 
If two reticles are used for the lens fi ngerprint measurement, the result will be a combined 
lens and reticle fi ngerprint measurement. Thus, typically one reticle is used for a lens 
fi ngerprint measurement, with both lithography pass patterns (inner and outer boxes, for 
example) located next to each other to minimize reticle effects.

The switch from pure scanning or pure stepping motion of the wafer stage to a com-
bined step-and-scan stage motion adds several new possible overlay error terms. One such 
scanner term that affects the wafer overlay model is called backlash. With backlash, the 
x and y translation errors depend on the direction of the scan. Step-and-scan tools work 

Figure 8.15 Example of a stepper lens fi ngerprint showing in this case nearly random distor-
tion across the lens fi eld
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by scanning the wafer and reticle past the exposure slit until a whole fi eld is exposed. 
Then the wafer is stepped to a new location and the scanning repeats in the opposite 
direction. Besides an overall translation error between reticle and wafer, backlash adds a 
translation error that switches sign depending on the direction of the scan. Backlash terms 
are often added to the standard overlay models [the 10-parameter model of Equation 
(8.23) becomes a 12-parameter model], and while most common for step-and-scan tools, 
it is sometimes used for steppers as well.

Scanning also adds the possibility of higher-order stage ‘wobble’. If a stage were scan-
ning in the y-direction, for example, that stage could slowly wobble back and forth in the 
x-direction as it scans. Thus, a y-direction scan adds error terms to the x-overlay error dx 
that go as powers of the fi eld coordinate y. A y2 term is called scan bow. A y3 term adds 
a snake-like signature to the fi eld overlay. Note that a linear variation in y is already 
included as a reticle rotation.

Like the reticle and the lens, a specifi c scanner stage can have its own signature. 
However, unlike the reticle or the lens, the scanner stage signature varies more quickly 
over time than the other signatures. Thus, ideally each of these signatures should be 
measured independently. The lens fi ngerprint can be measured independent of the scan 
signature by using the lens fi ngerprint measurement method above for a static exposure 
(that is, with no scanning motion of stage and reticle). This lens signature within the slit 
can then be collapsed to a one-dimensional slit signature by averaging all the errors across 
the slit (that is, in the scan direction). Finally, a dynamic lens/scan signature can be mea-
sured by applying the lens fi ngerprint method for a full scanning exposure (see Figure 
8.16). Subtracting out the slit signature leaves the scan signature remaining.

8.4.4 Using Overlay Data

Once overlay on a production lot of wafers has been measured and modeled, how is this 
data and analysis to be used? In general, production lot measurements of any kind can 
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Figure 8.16 Example of a scanner lens/scan fi ngerprint7 (fi gure used with permission). Note 
that errors in the scan direction are mostly averaged out by the scan
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be thought of as ‘health monitors’. The goal is to answer three questions: How healthy 
is this lot? How healthy are the process and process tools? How healthy is the metrology? 
For overlay, this translates into three basic uses of the metrology data: (1) lot disposition-
ing – should this lot be reworked or sent on to etch; (2) stepper correctables – have we 
detected errors in the stepper or scanner that can be adjusted for improved overlay; and 
(3) metrology diagnostics – do we have a problem with the targets, sample plan, or metrol-
ogy tool that should be taken into account.

If overlay errors on a wafer are too large, fi nal electric yield for that wafer can suffer. 
Since lithography offers the unique option to rework wafers that have not been properly 
processed, it is very cost-effective to try to catch yield-limiting overlay errors while the 
option for rework still exists. Since wafers are processed in batches called lots (typically 
made up of 25 wafers, though lot sizes can vary), and since each lot is processed in an 
essentially identical manner (common tool settings and materials, very small elapsed time 
between processing of wafers within a lot), these lots are almost always dispositioned 
together as a group.

After a lot has been processed through resist development, two or three wafers from 
that lot are randomly selected for overlay measurement. (For dual wafer stage scanners, 
care must be taken to sample both stages and analyze the stage/wafer errors separately.) 
Data analysis leads to a number of statistical and model-based metrics from those mea-
surements. This collection of metrics must then be distilled into a binary go-no go deci-
sion: Do we predict that the cost of yield losses due to overlay errors, should the lot be 
passed, will exceed the cost of reworking the wafers? Some basic cost analysis can trans-
late this question into a yield-loss threshold: if the predicted yield loss due to overlay 
errors exceeds a certain value, the lot should be reworked.

But standard overlay data analysis does not directly provide a prediction of overlay-
limited yield. Instead, certain statistical or modeled proxies for yield are used. In the 
simplest approach, if the maximum measured error, the mean value of the error magni-
tude, or the standard deviation of the measured data distribution (in either x or y) exceed 
some predefi ned thresholds, the lot is to be reworked. These thresholds are generally 
determined by a combination of experience and simple rules of thumb that have been 
scaled with each technology node. Similarly, modeling results can also be used to assess 
the value of reworking the lot. If applying the modeled correctables would reduce overlay 
errors for this lot by some predefi ned amount, it becomes worthwhile to rework.

The above approaches for assessing yield have a serious fl aw – they only predict the 
impact on yield of the errors that occur at the measurement points. But measurement 
sampling on production lots is generally sparse to keep measurement costs low. Thus, it 
is most likely that errors at nonsampled points will be the yield limiters. Modeling can 
be used to overcome this limitation by predicting the maximum error expected on the 
wafer. The best-fi t model can be used to predict the systematic variation of overlay at any 
point on the wafer. Using the residuals of the model fi t as an estimate of the random error 
contribution, a maximum predicted error can be calculated for an average fi eld and for 
the wafers. If this maximum predicted error is above some threshold, the lot is 
reworked.

Even the more rigorous approach of calculating the predicted maximum error on the 
wafer has a fl aw: wafers don’t fail due to overlay errors, die fail. In general, each exposure 
fi eld contains several die (2–4 microprocessors or 8–16 memory chips in a fi eld are 
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common). Knowing the number of die per fi eld and the pattern of fi elds printed on the 
wafer, the max predicted error approach can be used to fi nd the maximum error that occurs 
in each die on the wafer. By predicting that a catastrophic yield-loss error will occur 
whenever the overlay exceeds some threshold at any point in the die, the max predicted 
error calculation can be used to predict the overlay-limited yield – the number of die that 
are expected to fail due to overlay errors from the current lithography step. This overlay-
limited yield metric translates measured overlay data into a lot pass/fail decision that is 
directly related to fi nal die yield.

As discussed before, one important use of overlay data modeling is to calculate stepper 
correctables. Correctables are defi ned as corrections to the exposure tool settings (affect-
ing reticle and wafer position and motion) that, if they had been made before the measured 
lot was processed, would have resulted in improved overlay for that lot. Thus, technically 
these correctables are backward-looking. But their true value comes from applying them 
in a forward-looking manner. There are several ways in which overlay correctables are 
used. The most direct and obvious is during lot rework: if the measurements indicate that 
the lot should be reworked, what stepper/scanner settings should be changed to best ensure 
reworking will result in signifi cantly improved overlay? Since reworking is typically done 
immediately after that lot was fi rst processed, without unloading the reticle or changing 
the basic settings of the tool, the correctables tend to work extremely well at improving 
the reworked overlay.

Correctables can also be applied even if the current lot is passed. Often an exposure 
tool is used to process numerous identical lots in a row. Like the rework case, the reticle 
is not being reloaded and the basic stepper settings are not being changed between lots. 
Thus, correctables can be used to keep the overlay errors of each subsequent lot at their 
minimum. A system of feeding back correctables based on current measurements to keep 
the next batch of wafers in control is termed APC, advanced process control. Finally, 
correctables can be tracked over time for a given exposure tool to look for trends. SPC 
(statistical process control) techniques can determine if the variation in correctables from 
lot to lot is statistically unexpected and thus cause for alarm.

The third ‘health monitor’ use of production lot overlay measurements is to diagnose 
the health of the metrology itself. Overlay measurement begins with a signal acquisition, 
which is then analyzed to produce the raw overlay data. The signal can also be analyzed 
for noise and nonideal characteristics (such as asymmetries) in what is called target 
diagnostics. Wafer processing, fi lm deposition and chemical mechanical polishing (CMP) 
in particular, can reduce the visibility of target to an optical measurement tool both 
decreasing the signal and increasing the noise. CMP and its variation across the wafer 
can also cause an asymmetric ‘smearing’ of the topography that makes up the overlay 
measurement target.

Target diagnostics can be used to assess the uncertainty of a given measurement. This 
uncertainty can be used to weight the data for subsequent modeling, or as a data removal 
mechanism (if the target is too bad, measurement results from that target can be ignored). 
But the modeling itself offers another diagnostic tool for the metrology. Fitting the data 
to a model results in model coeffi cients plus residuals. If the residuals are too high, this 
could be an indication that something has gone wrong with the measurement. Addition-
ally, the data fi tting process results not only in model coeffi cients but in estimates of the 
uncertainties of those coeffi cients (technically termed the covariance matrix of the fi t). If 



326 Fundamental Principles of Optical Lithography

the uncertainty of a correctable is consistently too high, there is a good chance that the 
sampling plan needs to be improved.

8.4.5 Overlay Versus Pattern Placement Error

Overlay is measured using special measurement targets which, in general, are large com-
pared to the resolution limits of the lithographic imaging tool. As was discussed in Chapter 
3, however, aberrations can cause errors in the positions of printed features that are a 
function of the feature size and pitch of the patterns. The positional errors specifi c to the 
feature being printed are called pattern placement errors (PPE) and are above and beyond 
(and thus can be added directly to) the overlay errors that are the same for any pattern. 
Using the Zernike polynomial terminology, the variation of x- and y-tilt with fi eld posi-
tion, called distortion, is an overlay error since the same error is experienced by every 
feature. However, the higher-order odd aberrations (such as coma) cause additional posi-
tional errors that depend on the feature. These additional errors are called pattern place-
ment errors.

Pattern placement errors can be measured by using special overlay targets that have 
the same (or nearly the same) structure as the device patterns of interest. Since practically 
this can very diffi cult to accomplish, pattern placement errors are more commonly pre-
dicted by calculating the various images of interesting patterns given measured lens 
aberrations as a function of fi eld position (see Chapter 3).

8.5 The Process Window

As discussed in section 8.2.2, there are two ways to improve CD control: reduce the 
variation in CD with a given process error (that is, increase process latitude); and reduce 
the magnitude of process errors. In order to increase process latitude, one must fi rst 
measure and characterize that process latitude. Unfortunately, there are a very large 
number of potential process errors in the fab, from variations in the wafer fi lmstack to 
batch-to-batch variations in resist properties, from scanner stage vibrations to PEB hot 
plate temperature nonuniformities. To fully characterize the response of CD to each indi-
vidual process error seen in manufacturing would be a daunting task, let alone to consider 
the interactions of these errors.

Fortunately, the task is simplifi ed by recognizing that essentially all errors in the fab 
fall into two basic categories: errors that behave like dose errors, and errors that behave 
like focus errors. Once this bifurcation of error sources is understood, the job of measur-
ing process latitudes is simplifi ed to measuring the focus and dose responses of the 
process. The sections below will address the importance of dose and focus by explaining 
the focus–exposure matrix, and using it to provide defi nitions of the process window and 
depth of focus (DOF).

8.5.1 The Focus–Exposure Matrix

In general, depth of focus can be thought of as the range of focus errors that a process 
can tolerate and still give acceptable lithographic results. Of course, the key to a good 
defi nition of DOF is in defi ning what is meant by tolerable. A change in focus results in 
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two major changes to the fi nal lithographic result: the photoresist profi le changes, and the 
sensitivity of the process to other processing errors is increased. Typically, photoresist 
profi les are described using three parameters: the linewidth (or critical dimension, CD), 
the sidewall angle and the fi nal resist thickness (that is, the profi le is modeled as a trape-
zoid, see section 8.2.4). The variation of these parameters with focus can be readily 
determined for any given set of conditions (although CD is the easiest of the three to 
measure). The second effect of defocus is signifi cantly harder to quantify: as an image 
goes out of focus, the process becomes more sensitive to other processing errors such as 
exposure dose, PEB temperature and develop time. Exposure dose is commonly chosen 
to represent these other process responses.

The effect of focus on a resist feature is dependent on exposure. Thus, the only way to 
judge the response of the process to focus is to simultaneously vary both focus and expo-
sure in what is known as a focus–exposure matrix. Figure 8.17 shows a typical example 
of the output of a focus–exposure matrix using linewidth as the response (sidewall angle 
and resist loss can also be plotted in the same way) in what is called a Bossung plot.8

Unfortunately, experimental data collected from a focus–exposure matrix will rarely 
be as smooth and clean as that shown in Figure 8.17. Experimental error is typically 
several percent for CDs at best focus and exposure, but the error grows appreciably when 
out of focus. To better analyze focus–exposure CD data, it is common to fi t the data to a 
reasonable empirical equation in order to reduce data noise and eliminate fl yers. A reason-
able expression can be derived from a basic understanding of how an image is printed in 
photoresist.

Consider an ideal, infi nite contrast positive resist and simple 1D patterns. For such a 
resist, any exposure above some threshold dose Eth will cause all of the resist to be 
removed (see Chapter 3). For an aerial image I(x) and an exposure dose E, the CD will 
equal 2x when
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Figure 8.17 Example of the effect of focus and exposure on the resulting resist linewidth. 
Here, focal position is defi ned as zero at the top of the resist with a negative focal position 
indicating that the plane of focus is inside the resist
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Consider some reference dose E1 producing x1 = CD1/2. For some small difference from 
this x value, let us assume the aerial image is linear (that is, let us use only the fi rst two 
terms in a Taylor series expansion of I about x1).
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Combining Equations (8.25) and (8.26),
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Dividing both sides of the equation by EI(x1),
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where the log-slope of the aerial image is evaluated at x1. Since x = CD/2, this equation 
can be rearranged to give

 
E

E

I

CD

CD CD

CD
1 1

1

1− = −





d

d

ln

ln
 (8.29)

Since we have assumed an infi nite contrast resist, it is easy to show from Equation (8.25) 
that
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Combining Equations (8.29) and (8.30),
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The term dlnCD/dlnE is the slope of the CD-versus-dose curve when plotted on a log-log 
scale, evaluated at the reference dose E1. Thus, from this simple model we have a predic-
tion of how CD varies with dose.

An alternate exposure dependence can be derived by assuming the log-slope of the 
aerial image is constant around x1 rather than the slope of the image. In this case, Equa-
tion (8.26) is replaced with
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Following the same derivation path as before,
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Note that Equation (8.33) reverts to Equation (8.31) with a Taylor expansion of the natural 
logarithm when E is near E1.



 Lithographic Control in Semiconductor Manufacturing 329

Finally, the most accurate aerial image dose variation model assumes the log-slope of 
the image varies linearly with x. As was discussed in Chapter 7, this leads to an aerial 
image of the space with a Gaussian shape:
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Proceeding as before,
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where in this case the CD is for the space. For a line, the equivalent expression for CD 
would be
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where p is the pitch. Note that a Taylor series expansion of the square root when E is near 
E1 leads to Equation (8.33). Equation (8.34) for a Gaussian-shaped image has its center 
at x = 0, the center of the space. This describes typical aerial images very well for small 
spaces, but for larger spaces there will be an offset between the peak of the Gaussian and 
the center of the space. In this case, Equation (8.36) can still be used if the pitch is replaced 
by an empirically determined effective pitch.

Equation (8.31), (8.33) or (8.35) describes how CD varies with dose for any given 
aerial image [though in practice Equation (8.33) doesn’t work nearly as well as Equation 
(8.31) or (8.35), and Equation (8.35) matches data best of all]. Thus, these expressions 
apply to an out-of-focus image just as well as to an in-focus image. The only thing that 
changes through focus is the CD-versus-dose slope. To fi rst order, this slope varies 
quadratically with focus.
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where F is the focal position, F0 is best focus, and ∆ is the focus error that causes the 
log-CD-versus-log-dose slope to double.

As an example, consider the case of pure three-beam coherent imaging of equal lines 
and spaces through focus as discussed in Chapter 3. The aerial image was shown to be
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where ∆Φ = −( ) − − ( )( )2 1 10
2π λ λn F F p/ .

The normalized log-slope of the image evaluated at the nominal line edge is

 NILS = 8cos( )∆Φ  (8.39)
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Recalling Equation (8.30) and assuming that the defocus amount is small enough that the 
cosine can be replaced by the fi rst two terms of its Taylor series expansion,
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This gives the same result as Equation (8.37) with
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This method of adding the focus dependence to the dose dependence gives extra sig-
nifi cance to the dose E1. When E = E1, Equations (8.31), (8.33) and (8.35) require that 
CD = CD1 regardless of the value of focus. As will be discussed in section 8.5.3, this is 
the defi nition of the isofocal dose and isofocal CD. Thus, the exposure latitude term 
dlnCD/dlnE used in the above expressions will be the value of this slope at the isofocal 
dose (see Figure 8.18). At other exposure energies, this log-CD-versus-log-dose slope will 
of course be different. For the simplest model, Equation (8.31), the result is
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For the more exact model of Equations (8.35) or (8.36),
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Figure 8.18 Plot of the simple Bossung model of Equations (8.31) and (8.37) shows that it 
describes well the basic behavior observed experimentally
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Over reasonable ranges of focus (the magnitudes of focus errors normally encountered 
in semiconductor lithography), the impact of focus on the blurring of an aerial image is 
symmetric. That is, going out of focus in each direction (the wafer too close or too far 
from the projection lens) produces the same result on the aerial image for the same mag-
nitude of focus error. And yet, when we measure the lithographic response to focus, in 
the form of a focus–exposure matrix or Bossung plot, we can observe an obvious asym-
metry in the response of critical dimension (CD) to focus. Figure 8.17 shows a small but 
noticeable tilt in the shape of the Bossung curves and a decided asymmetry between plus 
and minus focus.

Since the aerial image responds to focus symmetrically, the cause of the observed 
asymmetry must involve the way that the aerial image interacts with the photoresist to 
produce the fi nal CD. In fact, it is the thickness of the photoresist that gives rise to this 
asymmetry. As the aerial image travels through space, it becomes more ‘in focus’ as it 
approaches the focal plane, then defocuses as it travels away from this plane of best focus. 
Because the photoresist has a nonzero thickness, different parts of the resist will experi-
ence different amounts of defocus. Suppose the focal plane were placed just above the 
top of the resist (Figure 8.19a). At the top, the resist sees an aerial image that is near best 
focus and thus very sharp. As this image propagates toward the bottom of the resist, 
however, it goes further out of focus. As a consequence, the top of the resist profi le looks 
sharp but the bottom is curved or ‘blurred’ by the defocused image. If, on the other hand, 
the plane of best focus were placed below the bottom of the resist (Figure 8.19b), a very 
different resist shape will result. The bottom of the resist will see a sharp image, while 
the top of the resist will experience a more defocused image. The result will be a resist 
profi le with straight sidewalls at the bottom, but a very rounded top.

As Figure 8.19 shows, the shape of the resist profi le will be very different depending 
on the direction of the defocus (note that ‘best’ focus will typically place the focal plane 
somewhere near the middle of the resist thickness). As one might expect, the critical 
dimensions of the two resist profi les shown in Figure 8.19 will also be different. The 
result is an asymmetric response to focus as shown in the Bossung curves. The asymmetry 
becomes apparent whenever the thickness of the photoresist becomes an appreciable 
fraction of the depth of focus of that feature.

(b)(a)

Aerial Image Resist Profile

Top

Bottom

Top

Bottom

Aerial Image Resist Profile

Figure 8.19 Positioning the focal plane (a) above the top of the resist, or (b) below the 
bottom of the resist results in very different shapes for the fi nal resist profi le
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Asymmetric response to focus can be added to the semiempirical Bossung model by 
allowing other powers of dose and focus (in particular, allowing odd powers of focus). 
Thus, a generalized version of the Bossung model becomes
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In general, very good fi ts to experimental data are obtained with very few terms of the 
summation.9

8.5.2 Defi ning the Process Window and DOF

Of course, one output as a function of two inputs can be plotted in several different ways. 
For example, the Bossung curves could also be plotted as exposure latitude curves (line-
width versus exposure) for different focus settings. Another very useful way to plot this 
two-dimensional data set is a contour plot – contours of constant linewidth versus focus 
and exposure (Figure 8.20a).

The contour plot form of data visualization is especially useful for establishing the 
limits of exposure and focus that allow the fi nal image to meet certain specifi cations. 
Rather than plotting all of the contours of constant CD, one could plot only the two 
CDs corresponding to the outer limits of acceptability – the CD specifi cations. Because 
of the nature of a contour plot, other variables can also be plotted on the same graph. 
Figure 8.20b shows an example of plotting contours of CD (nominal ±10 %), 80° sidewall 
angle and 10 % resist loss all on the same graph. The result is a process window – the 
region of focus and exposure that keeps the fi nal resist profi le within all three 
specifi cations.
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Figure 8.20 Displaying the data from a focus–exposure matrix in an alternate form: (a) 
contours of constant CD versus focus and exposure, and (b) as a focus–exposure process 
window constructed from contours of the specifi cations for linewidth, sidewall angle and 
resist loss
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The focus–exposure process window is one of the most important plots in lithography 
since it shows how exposure and focus work together to affect linewidth (and possibly 
sidewall angle and resist loss as well). The process window can be thought of as a process 
capability – how the process responds to changes in focus and exposure. An analysis of 
the error sources for focus and exposure in a given process will give a process require-
ment (see Table 8.2). If the process capability exceeds the process requirements, yield 
will be high. If, however, the process requirement is too large to fi t inside the process 
capability, yield will suffer.

What is the maximum range of focus and exposure (that is, the maximum process 
requirement) that can fi t inside the process window? A simple way to investigate this 
question is to graphically represent errors in focus and exposure as a rectangle on the 
same plot as the process window. The width of the rectangle represents the built-in focus 
errors of the processes, and the height represents the built-in dose errors. The problem 
then becomes one of fi nding the maximum rectangle that fi ts inside the process window. 
However, there is no one answer to this question. There are many possible rectangles of 
different widths and heights that are ‘maximal’, i.e. they cannot be made larger in either 
direction without extending beyond the process window (Figure 8.21a). (Note that the 
concept of a ‘maximum area’ is meaningless here.) Each maximum rectangle represents 
one possible trade-off between tolerance to focus errors and tolerance to exposure errors. 
Larger DOF can be obtained if exposure errors are minimized. Likewise, exposure latitude 
can be improved if focus errors are small. The result is a very important trade-off between 
exposure latitude and DOF.

If all focus and exposure errors were systematic, then the proper graphical representa-
tion of those errors would be a rectangle. The width and height would represent the 
total ranges of the respective errors. If, however, the errors were randomly distributed, 
then a probability distribution function would be needed to describe them. It is common 
to assume that random errors in exposure and focus are caused by the summation of 
many small sources of error, so that by the central limit theorem the overall probability 
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Figure 8.21 Measuring the size of the process window: (a) fi nding maximum rectangles; 
and (b) comparing a rectangle to an ellipse
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distributions for focus and dose will be Gaussian (a normal distribution). Given standard 
deviations in exposure and focus, sE and sF respectively, the probability density function 
will be

 p E F E F( ) exp( )exp( )∆ ∆ ∆ ∆, / /
E F

E F= − −1

2
2 22 2 2 2

πσ σ
σ σ  (8.45)

where focus errors and exposure errors are assumed to be independent. In order to graphi-
cally represent the errors of focus and exposure, one should describe a surface of constant 
probability of occurrence. All errors in focus and exposure inside the surface would have 
a probability of occurring which is greater than the established cutoff. What is the shape 
of such a surface? For fi xed systematic errors, the shape is a rectangle. For a Gaussian 
distribution, the surface can be derived by setting the probability of Equation (8.45) to a 
constant, p*.
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Equation (8.46) is that of an ellipse. Suppose, for example, that one wishes to describe a 
‘three-sigma’ surface, where p* corresponds to the probability of having an error equal 
to 3s in one variable. The resulting surface would be an ellipse with major and minor 
axes equal to 3sE and 3sF (Figure 8.21b).
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As seen in Table 8.2 for focus errors, the errors that actually occur in manufacturing 
are a combination of random and systematic errors. In fact, it is a reasonable rule of thumb 
to say that the full-range systematic errors are about equal in magnitude to (on the same 
order as) 6 times the standard deviation of the random errors. As a result, the total error 
probability distribution will be a complimentary error function (the random error Gaussian 
convolved with the systematic error step function). Since the tail of an error function has 
a shape very much like a Gaussian, the resulting surface of constant probability for small 
probabilities (like a 2s or 3s probability) will be very similar to an ellipse.

Using either a rectangle for systematic errors or an ellipse for random errors, the size 
of the errors that can be tolerated for a given process window can be determined. Taking 
the rectangle as an example, one can fi nd the maximum rectangle that will fi t inside the 
process window. Figure 8.22 shows an analysis of the process window where every 
maximum rectangle is determined and its height (the exposure latitude) plotted versus its 
width (depth of focus). Likewise, assuming Gaussian errors in focus and exposure, every 
maximum ellipse that fi ts inside the process window can be determined. The horizontal 
width of the ellipse would represent a three-sigma error in focus, while the vertical height 
of the ellipse would give a three-sigma error in exposure. Plotting the height versus the 
width of all the maximum ellipses gives the second curve of exposure latitude versus 
DOF in Figure 8.22.
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The exposure latitude-versus-DOF curves of Figure 8.22 provide the most concise 
representation of the coupled effects of focus and exposure on the lithography process. 
Each point on the exposure latitude-DOF curve is one possible operating point for the 
process. The user must decide how to balance the trade-off between DOF and exposure 
latitude. One approach is to defi ne a minimum acceptable exposure latitude, and then 
operate at this point; this has the effect of maximizing the DOF of the process. In fact, 
this approach allows for the defi nition of a single value for the DOF of a given feature 
for a given process. The depth of focus of a feature can be defi ned as the range of focus 
that keeps the resist profi le of a given feature within all applicable profi le specifi cations 
(linewidth, sidewall angle and resist loss, for example) over a specifi ed exposure range. 
For the example given in Figure 8.22, a minimum acceptable exposure latitude of 10 %, 
in addition to the other profi le specifi cations, would lead to the following depth of focus 
results:

• DOF (rectangle) = 0.40 mm
• DOF (ellipse)    = 0.52 mm

As one might expect, systematic errors in focus and exposure are more problematic than 
random errors, leading to a smaller DOF. Most actual processes would have a combination 
of systematic and random errors. Thus, one might expect the rectangle analysis to give a 
pessimistic value for the DOF, and the ellipse method to give an optimistic view of DOF. 
As mentioned above, however, the ellipse method gives a DOF very close to the true 
value for a common mix of systematic and random errors.

The defi nition of depth of focus also leads naturally to the determination of best focus 
and best exposure. The DOF value read off from the exposure latitude-versus-DOF curve 
corresponds to one maximum rectangle or ellipse that fi ts inside the process window. The 
center of this rectangle or ellipse would then correspond to best focus and exposure for 
this desired operating point. Knowing the optimum focus and dose values is essential to 
being able to use the full process window. If the process focus and dose settings deviate 
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Figure 8.22 The process window of Figure 8.20b is analyzed by fi tting all the maximum 
rectangles and all the maximum ellipses, then plotting their height (exposure latitude) versus 
their width (depth of focus)
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from this optimum, the range of focus and dose errors that can be tolerated will be reduced 
accordingly. For example, if focus is set in error from best focus by an amount ∆f, the 
resulting DOF will generally be reduced by 2∆f.

8.5.3 The Isofocal Point

An interesting effect is observed in many focus–exposure data sets. There is often one 
exposure dose that produces a CD that has almost no sensitivity to focus. In the Bossung 
plot, this corresponds to the curve with the fl attest response to focus over the middle of 
the focus range (Figure 8.23). By plotting CD through dose for different focuses, this 
isofocal point becomes even clearer as the point where the various curves cross. The dose 
that produces this isofocal behavior is called the isofocal dose, and the resulting CD is 
called the isofocal CD.

Ideally, the isofocal CD would equal the target CD of the process. Unfortunately, this 
is rarely the case without specifi cally designing the process for that result. The difference 
between the isofocal CD and the target CD is called the isofocal bias. A process with a 
large isofocal bias will produce smaller usable process windows because the right and 
left sides of the process window will bend either up or down, making the maximum pos-
sible ellipse or rectangle much smaller. In general, more isolated features exhibit greater 
isofocal bias than dense features, as seen in Figure 8.24.

As was mentioned in section 8.5.1, the isofocal CD and the isofocal dose play an 
important role in the semiempirical Bossung model of Equation (8.44). The terms E1 and 
CD1 are in fact identical to the isofocal dose and CD. For the simplest version of this 
model, Equations (8.31) and (8.37), the role of the isofocal point in infl uencing the shape 
of the process window can be made explicit. Since the model takes the form
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contours of constant CD can be found by solving for E(F,CD):
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(It is useful to remember that s will be negative for a line pattern, and positive for a space.) 
Figure 8.25 shows three example process windows, showing how the shape of the process 
window changes depending on whether the nominal CD is smaller, the same, or larger 
than the isofocal CD.

The process window defi ned by two contours as given by Equation (8.49) can be ana-
lytically measured to give the depth of focus. Using the rectangle approach to measuring 
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Figure 8.24 Bossung plots for (a) dense and (b) isolated 130-nm lines showing the differ-
ence in isofocal bias

Figure 8.25 Process windows calculated using Equation (8.49) for a nominal line CD of 
100 ± 10 nm, nominal dose of 20 mJ/cm2, s = −1, and ∆ = 0.45 microns: (a) isofocal CD1 = 
130 nm, (b) isofocal CD1 = 100 nm and (c) isofocal CD1 = 70 nm
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the size of the process window, consider fi rst the case where the isofocal CD is within 
the process window (such as Figure 8.25b). The rectangle will be limited by its four 
corners, and the resulting DOF (for either a line or a space) will be approximately

 DOF
CD

s EL
= −2 1∆ spec

nom spec

 (8.50)

where CDspec is the range of acceptable CDs divided by the nominal CD (equal to 0.2 for 
the typical ±10 % spec), ELspec is the exposure latitude spec (for example, 0.1 for a 10 % 
exposure latitude specifi cation), and snom is the slope of the log-CD-versus-log-dose curve 
evaluated at the nominal dose [which can be related to s by Equation (8.42)]. As expected, 
the DOF can be improved with a larger ∆, a smaller snom, and relaxed CD and exposure 
latitude specifi cations.

When the isofocal CD is not within the process window (Figure 8.25a and c), the 
bending of the process window further limits the maximum rectangle that can fi t inside 
the window and thus the DOF. For these cases, the DOF becomes
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and CDlimit is the CD value of the process window contour closest to the isofocal CD. 
This K factor shrinks the process window as a function of how far CD1 is from its closest 
CD specifi cation limit, and thus how much the process window is bent upward or 
downward.

8.5.4 Overlapping Process Windows

Although all of the above results describe the focus and exposure response of one critical 
feature, in reality a number of mask features must be printed simultaneously. Using the 
most common example, isolated lines typically occur on the same design as dense lines. 
Thus, a more important measure of performance than the DOF of each individual feature 
is the overlapping DOF of multiple critical features. Just as multiple profi le metrics were 
overlapped to form one overlapping process window in Figure 8.20b, process windows 
from different features can be overlapped to determine the DOF for simultaneously print-
ing those multiple features. Figure 8.26 shows such an example for isolated and dense 
features, where subresolution assist features (SRAFs) are used to reduce the isofocal bias 
of the isolated line and achieve a signifi cantly better overlapping DOF. Ideally, process 
windows for all critical feature sizes and pitches would be overlapped to fi nd out which 
of the features represent the process window limiters.

Systematic variations in patterning as a function of fi eld position can also be accounted 
for with overlapping process windows. If the same feature were printed at different points 
in the fi eld (typically the center and the four corners of the fi eld are suffi cient), process 
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windows can be overlapped to create the usable process window for that feature. The 
resulting depth of focus is called the useable depth of focus (UDOF).

8.5.5 Dose and Focus Control

Controlling focus and dose is an important part of keeping the critical dimensions of the 
printed patterns in control. The fi rst step in understanding how to control focus and dose 
is to characterize the response of critical features to variations using the focus–exposure 
process window, as discussed above. Proper analysis of CD versus focus and dose data 
allows for the calculation of the process window, measurement of the process window 
size to produce the exposure latitude–DOF plot, and determination of a single value for 
the depth of focus. Best focus and dose are also determined with this analysis as the 
process settings that maximize the tolerance to focus and dose errors. Once best focus 
and dose are determined, the next goal is to keep the process centered at this best 
focus and dose condition as thousands of production wafers pass through the lithography 
cell. And since almost all errors that occur in lithography act like either a dose error or a 
focus error, properly adjusting dose and focus on a lot-by-lot basis can provide for much 
tighter CD control. Dose and focus monitoring and feedback control has become a quite 
common technique for living within shrinking process windows.

The most common way to monitor and correct for drifts in exposure dose grew out of 
standard product-monitoring metrology applications. Critical dimension test structures 
(generically called metrology targets) are placed in the kerf (streets separating each die) 
and are designed to mimic the size and surroundings of some critical feature of interest 
within the die. For example, on the polysilicon level of a CMOS device, the most common 
critical gate may be a 90-nm line on a 250-nm pitch. The CD targets might then be an 
array of fi ve 90-nm lines on a 250-nm pitch. These types of targets are called 
device-representing.

By characterizing the change in CD versus dose of this specifi c device-representing 
target, any change in measured CD can be directly related to an equivalent change in dose 
(see Figure 8.3). Often the data are fi t to a function, and the function used to predict the 
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required dose correction. While a linear function is often used (everything becomes linear 
over a small enough range), a signifi cantly better function was given in Equation (8.31). 
This equation can be inverted to give the dose correctable ∆E for a measured critical 
dimension error ∆CD.
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∆
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Multiple measurements and a proper sampling plan help to eliminate random errors in 
the measured CD and ensure that the changes observed are systematic. By monitoring 
this target on product lots over time, temporal drifts in CD can be corrected by changing 
the exposure dose in a feedback loop (often automated using advanced process control, 
APC).

The advantages of using device-representing targets are their simplicity and multipur-
pose use. Device-representing CD targets are often measured for the purpose of lot moni-
toring: do the measured CD values indicate that this lot will yield high or low? If these 
structures are being measured anyway, it only makes sense to use them for dose monitor-
ing and corrections as well. The disadvantage of using device-representing targets, as we 
shall see below, is that they may have reduced sensitivity to the variable being controlled 
(exposure dose, in this case), compared to other possible test structures, and may be too 
sensitive to other variables not being measured or controlled (focus being the most impor-
tant of these).

Monitoring exposure dose is relatively easy since all features vary monotonically with 
dose. However, as we saw above, the sensitivity of any given feature to dose depends on 
focus. In other words, the exposure latitude slope term in Equation (8.53) is focus depen-
dent. In general, s varies quadratically with focus, reaching a minimum at best focus. 
Further, focus errors most often cause CD errors. If focus drifts, the use of an exposure 
monitoring strategy like that outlined above will make exposure dose adjustments to 
compensate for focus errors. If suffi ciently large, the combined focus drift and exposure 
adjustment can render the lithography process unstable (meaning the useable process 
window becomes too small to ensure adequate CD control) even though the target CD 
appears to be in control. How can this situation be avoided?

As we saw above, the two variables focus and dose must be characterized together in 
a focus–exposure matrix (Figure 8.17). Note that at some doses, changes in focus make 
this CD larger, while at other doses the same change in focus will make the CD smaller. 
At the isofocal dose, changes in focus have the least impact on CD. This observation 
suggests a way to improve exposure monitoring: If a CD target is found which exhibits 
isofocal behavior at the nominal dose, this test structure will have minimum sensitivity 
to focus errors while maintaining reasonable dose sensitivity. Such a test structure will 
be called an isofocal target. An isofocal target will have minimum sensitivity to focus 
errors, so that only dose errors will be detected and corrected. However, focus errors will 
still change the exposure latitude term s in the exposure correction equation. Thus, if both 
focus and exposure errors are present, the predicted dose correction from Equation (8.53) 
will be too large. To address this defi ciency, focus monitoring must be added to the overall 
control strategy.
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Focus presents an extremely diffi cult control problem since CD tends to vary quadrati-
cally with focus. As a result, it becomes extremely diffi cult to determine the direction of 
a focus error – was the focal plane too high or too low compared to best focus? Thus, the 
focus monitoring problem is often broken up into two parts: determining the magnitude 
of a focus error, and its direction.

Since the responses of CD to dose and to focus are coupled, the goal is to fi nd two 
targets with different responses to these variables. If, for example, two targets had the 
same response to dose, but different responses to focus, measuring them both would 
allow focus errors to be separated from dose errors. A simple approach would be to 
fi nd a dense line whose isofocal dose matched the nominal dose for the process and an 
isolated line far removed from its isofocal dose. Further, if the isolated line were sized 
so that it had approximately the same exposure latitude as the dense line [same value of 
s in Equation (8.53)], then the isofocal dense feature could be used as the dose monitor 
while the difference in CD between dense and isolated features could be used to monitor 
focus. Figure 8.27 shows an example of a reasonably well-designed target. The dense 
feature (which is the dose monitor) varies by only about 2 nm over the full range of 
focus errors of interest, but varies by over 20 nm over the exposure range of interest. 
The CD difference (the focus monitor) varies by only 2 nm over the dose range of interest 
but changes by over 20 nm over the focus range of interest. Thus each monitor has 10× 
discrimination, that is, 10 times more sensitivity to the variable being monitored com-
pared to the other variable. Further refi nement of the target design can often lead to 
even better discrimination between focus and dose errors, while maintaining high 
sensitivity.

It is possible to improve the analysis of this dual-target dose and focus monitoring 
strategy by creating models for the combined focus–exposure response of each target. 
Inverting both models using the two CD target measurements can provide for good dis-
crimination between dose and focus errors even when the two features do not have identi-
cal exposure latitude and the dense feature is not perfectly isofocal. It is important to 
remember, however, that the nearly quadratic response of CD with focus means that focus 
direction cannot be determined from such data.

To monitor the direction of a focus error, one must measure a response on the wafer 
that is suffi ciently asymmetric with respect to focus direction. CD does not provide such 
a response in general. Of course, at any time the lithography engineer can stop running 
product wafers and print a focus–exposure matrix wafer in order to determine best focus 
and adjust the focus on the stepper or scanner. However, the goal of product monitoring 
is to make measurements on product wafers that can detect and correct for dose and focus 
errors quickly without reducing stepper productivity or throughput. Some novel approaches 
have been developed, each with their own advantages and disadvantages. Two important 
examples are described below.

The phase-shift focus monitor developed by Tim Brunner10 uses a 90° phase shift 
pattern on the mask to turn focus errors into pattern placement errors on the wafer. Thus, 
a measurement of overlay for this pattern is directly proportional to the focus error, direc-
tion included. Unfortunately, the need for a 90° phase shift region on the mask means 
that this focus monitor cannot in general be placed on product reticles – it is a test mask 
approach that doesn’t meet product monitoring requirements.
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Scatterometry-based measurements offer a product-measurement solution to the focus 
monitoring problem. Unlike scanning electron microscopes, scatterometry allows for the 
simultaneous measurement of linewidth, sidewall angle and resist height for a pattern of 
long lines and spaces. While CD varies approximately quadratically with focus, resist 
height and sidewall angle have a strong linear component to their responses, making 
detection of focus direction possible. Like Figure 8.19 above, Figure 8.28 shows an 
example of how a typical resist cross section varies with focus. The strong asymmetry of 
the sidewall angle can provide sensitive detection of focus direction.

The sensitivity of a monitor target is defi ned as the smallest error that can be reliably 
detected. The goal of focus and exposure monitoring is to have sensitivities of detecting 
focus and exposure errors equal to about 10–20 % of the process window size or less. For 
example, if the depth of focus is 400 nm, the focus sensitivity must be at least 80 nm, but 
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Figure 8.27 A dual-target approach to monitoring dose and focus using a 90-nm dense line 
on a 220-nm pitch and an 80-nm isolated line: (a) dense and isolated lines through dose; 
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40 nm is preferable. For an 8 % exposure latitude specifi cation, the dose sensitivity must 
be at least 1.6 %, but 0.8 % is the preferred sensitivity.

8.6 H–V Bias

One interesting effect of aberrations is called horizontal–vertical (H–V) bias. Quite 
simply, H–V bias is the systematic difference in linewidth between closely located hori-
zontally and vertically oriented resist features that, other than orientation, should be 
identical. There are two main causes of H–V bias: astigmatism and related aberrations; 
and source shape aberrations.

8.6.1 Astigmatism and H–V Bias

The aberration of astigmatism results in a difference in best focus as a function of the 
orientation of the feature. Using the Zernike polynomial description of aberrations (see 
Chapter 3), 3rd order 90° astigmatism (which affects horizontally and vertically oriented 
lines) takes the form

 phase error Z R= 2 24
2π φcos  (8.54)

Consider a vertically, y-oriented pattern of lines and spaces. The diffraction pattern will 
spread across the x-axis of the pupil, corresponding to f = 0° and 180°. Thus, the phase 
error will be 2pZ4R

2 for this feature. Recalling the description of defocus as an aberration 
(see Chapter 3), the phase error due to defocus is

 phase error
NA

R≈ πδ
λ

2
2  (8.55)

where d is the defocus distance, l is the wavelength, and NA is the numerical aperture. 
[Equation (8.55) is approximate because it retains only the fi rst term in a Taylor series. 
While this approximation is progressively less accurate for higher numerical apertures, it 
will be good enough for our purposes.] Immediately, one sees that 3rd order astigmatism 

+ Focus– Focus Best
Focus

Figure 8.28 The asymmetric response of resist sidewall angle to focus provides a means for 
monitoring focus direction as well as magnitude. Here, + focus is defi ned as placing the focal 
plane above the wafer (moving the wafer further away from the lens)
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looks just like the approximate effect of defocus. Thus, astigmatism will cause the verti-
cally oriented lines to shift best focus by an amount

 ∆δ λ
vert ≈

2 4

2

Z

NA
 (8.56)

For horizontally oriented lines, the diffraction pattern will be along the y-axis of the pupil 
(q = ±90°) and the astigmatism will cause a phase error of −2pZ4R2. Thus, the focus shift 
for the horizontal lines will be the same magnitude as given by Equation (8.56), but in 
the opposite direction.

To see how astigmatism causes H–V bias, we need to understand how a shift in focus 
might affect the resist feature CD. To fi rst order, CD has a quadratic dependence on 
focus.

 CD CD a≈ +best focus δ 2  (8.57)

where a is the dose-dependent curvature of the CD through focus curve (see section 8.5.1) 
and is given by

 a CD
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Recalling the typical shapes of Bossung curves, a can vary from positive to negative 
values as a function of dose (that is, depending on whether E is greater than or less than 
the isofocal dose, E1). If best focus is shifted due to astigmatism, we can calculate the 
CD of the vertical and horizontal features by adding the focus shift of Equation (8.56) to 
Equation (8.57).
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 (8.59)

From, here a straightforward subtraction gives us the H–V bias:

 H V bias
a Z

NA
− ≈ 8 4

2

δ λ
 (8.60)

The H–V bias is directly proportional to the amount of astigmatism in the lens (Z4) and 
to the curvature of the CD-through-focus curve (a). But it is also directly proportional to 
the amount of defocus. In fact, a plot of H–V bias through focus is a sure way to identify 
astigmatism (that is, when not using the isofocal dose, where a ≈ 0, for the experiment). 
Figure 8.29 shows some typical results. Note that the isolated lines show a steeper slope 
than the dense lines due to a larger value of the CD through focus curvature. In fact, if a 
is determined by fi tting Equation (8.57) to CD through focus data, a reasonable estimate 
of Z4 can be made using an experimentally measured H–V bias through focus curve. Note 
also that the true shape of the curves in Figure 8.29 is only approximately linear, since 
both Equations (8.56) and (8.57) ignore higher-order terms.
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Assume that the maximum possible value of the defocus is one-half of the depth of 
focus (DOF). At this defocus, Equation (8.57) would tell us that at the worst case dose, 
the term ad2 will be about 10 % of the nominal CD (by defi nition of the process window 
with a ±10 % CD specifi cation). Thus, we can say that within the process window, the 
worst case H–V bias due to astigmatism will be

 
H V bias

CD

Z

DOF NA

− ≈
nominal max

.1 6 4

2

λ
 (8.61)

Using typical numbers for a 65-nm process, for a wavelength of 193 nm, an NA of 0.9, 
and assuming a depth of focus of 200 nm, the fractional H–V bias will be about 2Z4. If 
we are willing to give 1 % CD error to H–V bias, our astigmatism must be kept below 5 
milliwaves. In general, Equation (8.61) shows that as new, higher resolution scanners are 
designed and built, the astigmatism in the lens must shrink as fast or faster than the depth 
of focus of the smallest features to be put into production.

8.6.2 Source Shape Asymmetry

The second major cause of H–V bias is illumination aberrations (that is, source shape 
asymmetries). In Chapter 2, a discussion of partial coherence showed that source points 
must be symmetrically placed about the axis of symmetry for a mask pattern in order to 
avoid telecentricity errors (which cause pattern placement errors as a function of defocus). 
For example, for y-oriented lines and spaces, a source point at ( fx, fy) must be accompanied 
by a corresponding source point of the same intensity at (−fx, fy) in order to avoid telecen-
tricity errors. The avoidance of telecentricity errors for x-oriented lines will likewise 
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Figure 8.29 PROLITH simulations of H–V bias through focus showing approximately linear 
behavior (l = 193 nm, NA = 0.75, s = 0.6, 150-nm binary features, 20 milliwaves of astig-
matism). Simulations of CD through focus and fi ts to Equation (8.57) gave the CD curvature 
parameter a = −184 mm−2 for the dense features and −403 mm−2 for the isolated lines
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require additional points at ( fx,−fy) and (−fx,−fy), providing the general guidance that all 
source shapes must have fourfold symmetry. If both horizontal and vertical lines must be 
printed simultaneously, identical printing will occur only if the source shape is invariant 
to a 90° rotation. This provides an additional constraint that for every source point ( fx, fy), 
there must be a corresponding source point of the same intensity at (−fy, fx).

Consider conventional illumination where the center of the disk-shaped source is 
not perfectly aligned with the center of the optical path (called an illumination telecentric-
ity error). The impact of such a source telecentricity error is dependent on the partial 
coherence, the pitch, and of course on the amount of telecentricity error. Figure 8.30 
shows that, in general, an x-shift of the center of the illumination source shape affects 
vertically oriented (y-oriented) lines signifi cantly, but horizontal (x-oriented) lines very 
little.

For the simple case of dense line/space patterns where only the zero and the two fi rst 
diffraction orders are used in the imaging, the image will be made up of combinations of 
one-, two- and/or three-beam interference. The change in CD for the vertical features for 
an x-shift in the source center is caused by a change in the ratio of two-beam to three-
beam imaging. Figure 8.31 shows an example case where the total three-beam imaging 
area (light grey) and the total two-beam imaging area (dark grey) do not appreciably 
change as the center of the source is shifted by about 0.1 sigma. Thus, for this pitch and 
sigma, one would not expect to see much change in the vertical feature CD. Consider a 
different pitch, as shown below in Figure 8.32a. At this particular pitch, all of the fi rst 
order is inside the lens, so that all of the imaging is three-beam (note that the second dif-
fracted order is not shown in the diagram for clarity’s sake). However, when the source 
is shifted in x by 0.1 sigma (Figure 8.32b), the amount of three-beam imaging for the 
vertical lines is reduced and two-beam imaging is introduced. By contrast, the horizontal 
lines (which spread the diffraction pattern vertically in the pupil) have only an 
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Figure 8.31 Example of dense line/space imaging where only the zero and fi rst diffraction 
orders are used (kpitch = 1.05). The middle segment of each source circle represents three-
beam imaging, the outer areas are two-beam imaging. (a) source shape is properly centered, 
(b) source is offset in x (to the right) by 0.1. Note that the diffraction pattern represents verti-
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Figure 8.32 Examples of how a telecentricity error affects the ratio of two-beam to three-
beam imaging at the worst case pitch (s = 0.4, x-shift = 0.1, kpitch = 1.65). (a) vertical lines, 
no telecentricity error, (b) vertical lines, with telecentricity error, (c) horizontal lines, no 
telecentricity error, and (d) horizontal lines, with telecentricity error
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imperceptible change in the amount of three-beam imaging for the same x-shift of the 
source position (Figure 8.32c and d). Thus, at this pitch, one would expect to see a large 
amount of H–V bias with source shift.

The pitch that just allows only three-beam imaging for a given partial coherence is the 
pitch that is most sensitive to a shift in the source center position. Thus, the worst case 
pitch from an H–V bias telecentricity error sensitivity perspective is given by

 worst case k
pNA

pitch = ≈
−λ σ
1

1
 (8.62)

8.7 Mask Error Enhancement Factor (MEEF)

Errors in the critical dimensions of the features on a mask have always been a signifi cant 
cause of critical dimension errors on the wafer. As optical lithography has pushed features 
to lower and lower k1 values (= feature size *NA/l), however, mask CD errors have taken 
up a much larger fraction of the overall sources of CD variations on the wafer.

8.7.1 Linearity

An important constraint placed on any lithographic imaging task is that every feature on 
the mask must be faithfully imaged onto the wafer within predetermined tolerances. Most 
typical integrated circuit device layers consist of a myriad of different pattern types, 
shapes and sizes. It is a common assumption that since the resolution defi nes the smallest 
pattern that can be acceptably imaged, all features larger than this limit will also be 
acceptably imaged. Unfortunately, this assumption may not always be true. For imaging 
systems designed to maximize the printability of a given small feature (e.g. using off-axis 
illumination), often some larger features will be more diffi cult to print. One way to insure 
that larger features print well at the same time as the minimum feature is to build this 
requirement into the defi nition of resolution: the smallest feature of a given type such that 
it and all larger features of the same type can be printed simultaneously with a specifi ed 
depth of focus. This resolution is called the linear resolution of the imaging system.

The linear resolution is typically assessed using the mask linearity plot. Consider a 
mask with many feature sizes of a given type, for example, equal lines and spaces, isolated 
lines, or contact holes. By plotting the resulting resist feature width versus the mask width, 
the mask linearity plot is generated. Shown in Figure 8.33 are examples of linearity plots 
for equal line/space patterns and isolated lines, both imaged at best focus and at the dose-
to-size for the 350-nm features. Perfect, linear behavior would be a line through the origin 
with a slope of 1. By defi ning specifi cations for any deviation from perfect linearity (±5 %, 
for example), the minimum feature that stays within the specifi cation would be the linear 
resolution. Qualitatively, Figure 8.33 shows that the equal line/space patterns of this 
example have a linear resolution down to about 350 nm (k1 = 0.54), whereas the isolated 
lines are linear down to about 300 nm (k1 = 0.46).

Of course, to be truly practical, one should include variations in exposure and focus as 
well. The most rigorous approach would begin with the focus–exposure process window 
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for the largest feature size. The process window from each smaller feature is then over-
lapped with that from the larger features and the depth of focus calculated. Smaller and 
smaller features are added until the overlapped depth of focus drops below the specifi ed 
limit, indicating the linear resolution limit. Thus, although mask linearity plots do not 
provide a rigorous, general method for determining the linear resolution, they are quali-
tatively useful.

As lithography for manufacturing continues to push toward its ultimate resolution 
limits, linearity is playing a decidedly different role in defi ning the capabilities of low k1 
imaging. Consider, using Figure 8.33 as an example, manufacturing at the linear resolu-
tion limits: 350-nm lines and spaces and 300-nm isolated lines. Although these features 
may be ‘resolvable’ by the defi nitions provided above, critical dimension (CD) control 
may be limited by a new factor: how do errors in the dimensions of the feature on the 
mask translate into errors in resist CD on the wafer?

8.7.2 Defi ning MEEF

For ‘linear’ imaging, mask CD errors would translate directly into wafer CD errors 
(taking into account the reduction factor of the imaging tool, of course). Thus, a 3-nm 
CD error on the mask (all CDs on the mask will be expressed here in wafer dimensions) 
would result in a 3-nm CD error on the fi nal resist feature. If, however, the features of 
interest are at the very edge of the linear resolution limit, or even beyond it, the assump-
tion of linear imaging falls apart. How then do mask CD errors translate into resist CD 
errors?

Consider the examples shown in Figure 8.33. If an isolated line is being imaged near 
its resolution limit, about 300 nm, a 10-nm mask CD error would give a 14-nm resist CD 
error. Thus, at this feature width, isolated line mask errors are amplifi ed by a factor of 
1.4. This amplifi cation of mask errors is called the mask error enhancement factor 
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(MEEF). First discussed by Wilhelm Maurer,11 the MEEF (also called MEF by some 
authors) is defi ned as the change in resist CD per unit change in mask CD:

 MEEF
CD

CD
= ∂
∂

resist

mask

 (8.63)

where again the mask CD is in wafer dimensions. If we assume a ‘zero bias’ process 
(where the target CD on the wafer is the same as the mask CD), then the MEEF can also 
be expressed as 

 MEEF
CD

CD
= ∂
∂

ln

ln
resist

mask

 (8.64)

This form of the MEEF equation will be useful later. Figure 8.34 shows how the MEEF 
varies with feature size for the mask linearity data of Figure 8.33. Regions where the 
MEEF is signifi cantly greater than 1 are regions where mask errors may come to dominate 
CD control on the wafer. Optical proximity correction techniques (discussed in Chapter 
10) allow us to lower the linear resolution, but generally without improving the MEEF. 
As a result, the mask has begun to take on a much larger portion of the total CD error 
budget.

8.7.3 Aerial Image MEEF

A MEEF of 1.0 is the defi nition of a linear imaging result. Although a MEEF less than 
one can have some desirable consequences for specifi c features, in general a MEEF of 
1.0 is best. Fundamentally, anything that causes the overall imaging process to be non-
linear will lead to a nonunit valued MEEF. In lithography, every aspect of the imaging 
process is nonlinear to some degree, with the degree of nonlinearity increasing as the 
dimensions of the features approach the resolution limits. Consider the fi rst step in the 
imaging process, the formation of an aerial image. One might judge the linearity of this 
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fi rst step by approximating the resist CD with an image CD, defi ned to be the width of 
the aerial image at some image threshold intensity value. It is important to note that the 
image CD is only an approximate indicator of the resist CD. For real, fi nite-contrast resists 
the differences between these two quantities can be substantial. Nonetheless, the image 
CD will be used here to elucidate some general principles about imaging and the 
MEEF.

For two simple cases of projection imaging, coherent and incoherent illumination, 
analytical expressions for the aerial image can be defi ned. Assuming a pattern of many 
long lines and spaces with a spacewidth w and pitch p such that only the 0 and ±1 dif-
fraction orders pass through the lens, the TE coherent and incoherent in-focus aerial 
images would be 
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where MTF1 is the value of the incoherent Modulation Transfer Function at the spatial 
frequency corresponding to the fi rst diffraction order. The requirement that no orders 
higher than the fi rst diffraction order be used to form the image means that the coherent 
image equation is valid for a limited range of pitches such that 1 < pNA/l < 2, and the 
incoherent expression is valid for 0.5 < pNA/l < 1.

Using these expressions to defi ne the image CD, exact expressions for the image 
MEEF can be derived for these repeating line/space patterns under the conditions given 
above:
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An interesting observation can be made immediately. Over the range of valid pitches, the 
coherent image MEEF is only dependent upon the duty cycle (w/p), not on the pitch itself. 
The incoherent image MEEF, on the other hand, has a direct pitch dependence through 
the value of the MTF (which is approximately equal to 1 − l/[2NAp]). Figure 8.35 shows 
how both image MEEFs vary with spacewidth-to-linewidth ratio.

The extreme nonlinearity of the imaging process is evident from the results shown in 
Figure 8.35. For coherent illumination, a pattern of equal lines and spaces will have an 
image MEEF of 0.5. A spacewidth twice the linewidth produces a MEEF of 1.0, and a 
spacewidth three times the linewidth results in a coherent image MEEF of 2.0. Obviously, 
different duty cycles can have wildly different sensitivities to mask errors. While the 
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approximations used do not apply to truly isolated lines, it is clear that such features will 
also deviate from unit MEEF. A spacewidth/linewidth ratio less than unity also enhances 
the effect.

Although neither purely coherent nor purely incoherent illumination is ever used in 
real lithographic imaging, these two extremes tend to bound the behavior of typical par-
tially coherent imaging tools. Thus, we would expect the image MEEF of a partially 
coherent imaging system to vary with both duty cycle and pitch, and to vary by about a 
factor of 2 as a function of the partial coherence.

8.7.4 Contact Hole MEEF

Possibly the most challenging mask layer to print in high-end lithography processes is 
the contact or via layer. These small features are subwavelength in two dimensions, 
making them exceptionally sensitive to everything that makes low k1 lithography diffi cult. 
For example, contact holes suffer from the largest MEEFs of any feature type (as we shall 
see below). Assuming that the source of the mask error is isotropic (that is, it affects both 
the height and width of the contact in the same way), then such an error is affecting two 
dimensions of the mask simultaneously. In other words, errors in the area of the mask 
feature go as errors in the CD squared.

When printing a small contact hole, the aerial image projected onto the wafer is essen-
tially the same as the point spread function (PSF) of the optical system. The point spread 
function is defi ned as the normalized aerial image of an infi nitely small contact hole on 
the mask. For small contact holes (about 0.6l/NA or smaller), the aerial image takes on 
the shape of the PSF. If the contact hole size on the mask is smaller than this value, the 
printed image is controlled by the PSF, not by the dimensions of the mask. Making the 
contact size on the mask smaller only reduces the intensity of the image peak. This results 
in a very interesting relationship: a change in the mask size of a small contact hole is 
essentially equivalent to a change in exposure dose.

0.0

0.5

1.0

1.5

2.0

2.5

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

Spacewidth/Linewidth

Im
ag

e 
M

E
E

F

Coherent

Incoherent

Figure 8.35 The impact of duty cycle (represented here as the ratio of spacewidth to line-
width for an array of line/space patterns) on the image CD-based MEEF for both coherent 
and incoherent illumination. For the incoherent case, an MTF1 of 0.45 was used



 Lithographic Control in Semiconductor Manufacturing 353

It is the area of the contact hole that controls the printing of the contact. The electric 
fi eld amplitude transmittance of a small contact hole is proportional to the area of the 
contact, which is the CD squared. The intensity is then proportional to the area squared. 
Thus, the effect of a small change in the mask CD of a contact hole is to change the 
effective dose reaching the wafer (E) as the CD to the fourth power.

 
E CD

E d CD

∝
≈

mask

d mask

4

4ln ln
 (8.70)

where the approximate sign is used because the fourth power dependence is only approxi-
mately true for typically sized contact holes.

The above equation relates mask errors to dose errors. Combining this with the MEEF 
Equation (8.64) allows us to relate MEEF to exposure latitude.

 MEEF
CD

E
≈ ∂

∂
4

ln

ln
wafer  (8.71)

The term ∂lnCD/∂lnE can be thought of as the percent change in CD for a 1 % dose change 
and is the inverse of the common exposure latitude metric. Thus, anything that improves 
the exposure latitude of a contact hole will also reduce its MEEF. Anything that reduces 
exposure latitude (like going out of focus) will result in a proportional increase in the 
MEEF. The importance of exposure latitude as a metric of printability is even greater for 
contact holes due to the factor of four multiplier for the MEEF. Additionally, the above 
expression could be used to lump mask errors into effective exposure dose errors for the 
purpose of process window specifi cations. Mask errors could be thought of as consuming 
a portion of the exposure dose budget for a process.

8.7.5 Mask Errors as Effective Dose Errors

The concept of mask errors as effectively exposure dose errors, fi rst discussed above 
in the context of contact hole MEEF, can be used as a general concept for understanding 
the nature of the mask error enhancement factor. Consider again the image MEEF based 
on an aerial image CD. For a given mask feature size w, the image CD will occur at x = 
CD/2 when the intensity equals the image threshold value.

 I x CD w I( )= =/ , th2  (8.72)

Consider the total differential of the intensity with x and w as variables:12
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where the total differential must be zero since the intensity is constrained to be at the 
threshold intensity. Thus,
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In this expression, the numerator can be thought of as the change in dose reaching the 
wafer caused by a change in the mask CD (Figure 8.36). The denominator is the image 
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slope, which is proportional to exposure latitude. An alternate form of this expres-
sion is 

 image MEEF
NILS

I

w x CD

= ∂
∂ =

2

2

ln

ln /

 (8.75)

As an example, consider the out-of-focus coherent three-beam image for TE 
illumination:
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(The low NA expression for defocus is used here, but the results will be identical if 
the more exact expression were used.) Taking the derivative with respect to the mask 
spacewidth w,
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For the case of equal lines and spaces, this derivative becomes a constant (since the edge 
of the feature is at the image isofocal point):
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Thus, the coherent three-beam equal line/space image MEEF, including defocus, 
becomes

 image MEEF
NILS

= 4
 (8.79)

As will be explained in greater detail in Chapter 9, 2/NILS is equal to the slope of a 
log-CD-versus-log-dose curve for the case of an infi nite contrast resist. Thus, one can 
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generalize this image MEEF by replacing 2/NILS with the actual CD-versus-dose 
slope.

 MEEF
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 (8.80)

For the case of a small contact hole, we saw in the previous section that the fractional 
dose change per fractional mask CD change was 4. For a small isolated space, the value 
is about 2. For other features, the change in intensity at the nominal line edge can be 
computed and an estimate of MEEF made using Equation (8.80).

Another way to interpret the above result is to consider that mask errors result in a 
reduction of the effective exposure latitude. If EL is the exposure latitude when no mask 
errors are present, then the effective exposure latitude in the presence of mask errors of 
range ∆CDmask will be

 EL EL MEEF
CD

CD
eff

mask

spec

≈ −





1
∆
∆

 (8.81)

where ∆CDspec is the CD tolerance used to defi ne the exposure latitude (for example, 0.2 
times the nominal CD). This expression can be used to scale an entire exposure latitude 
versus depth of focus plot, such as Figure 8.22, and thus can also be used to determine 
the effect of mask errors on the available depth of focus.

8.7.6 Resist Impact on MEEF

For a given aerial image response, the response of a real, fi nite-contrast resist will change 
the value of the MEEF, sometimes dramatically. Although it is diffi cult to systematically 
and controllably vary resist contrast experimentally, simulation provides an effective tool 
for exploring its impact on MEEF theoretically. Consider a simple baseline process of 
248-nm exposure with a 0.6 NA, 0.5 partial coherence imaging tool using 500-nm-thick 
resist on BARC on silicon. The contrast of the resist is controlled by essentially one 
simulation parameter, the dissolution selectivity parameter n of the original kinetic dis-
solution rate model (see Chapter 7). High values of n correspond to high values of resist 
contrast. For this example, n = 5 will be a low-contrast resist, n = 10 is a mid-contrast 
resist and n = 25 will be called a high-contrast resist.

The variation of MEEF with nominal mask feature size for these three virtual resists 
is shown in Figure 8.37 for a mask pattern of equal lines and spaces. For larger feature 
sizes, the MEEF is near 1.0 for all resists, controlled by the aerial image MEEF. However, 
as the feature sizes approach the resolution limit, the characteristic skyrocketing MEEF 
is observed. (In fact, this dramatic increase in MEEF for smaller features can be used as 
one defi nition of resolution: the smallest feature size that keeps the MEEF below some 
critical value, say 3.) As can be seen from the fi gure, the major impact of resist contrast 
is to determine at what feature size the MEEF begins its dramatic rise. Above k1 values 
of about 0.6, MEEF values are near 1.0 or below, and resist contrast has little impact. 
Below this value, the MEEF rises rapidly. Resist contrast affects the steepness of this 
rise.
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Obviously, resist contrast has a huge effect on the MEEF for features pushing the reso-
lution limits. At a k1 value of 0.5 for the example shown here, the MEEF for the high-
contrast resist is 1.5, for the mid-contrast resist it is 2.0, and for the low-contrast resist 
the MEEF has grown to greater than 3.0. As is seen in so many ways, improvements in 
resist contrast can dramatically improve the ability to control high-resolution linewidths 
on the wafer, in this case in the presence of mask errors.

8.8 Line-End Shortening

As lithography pushes to smaller and smaller features, single number metrics such as the 
critical dimension (CD) of a feature are not adequate. The three-dimensional shapes of 
the fi nal printed photoresist features can, in fact, affect the performance of the fi nal elec-
trical devices in ways that cannot be described by variations in a single width parameter 
of those features. In such cases, more information about the shape of a photoresist pattern 
must be measured in order to characterize its quality. One very simple example is known 
as line-end shortening (LES).

Consider a single, isolated line with width near the resolution limit of a lithographic 
process. Considerable effort is usually required to develop a process that provides ade-
quate CD control over a range of processing errors (focus, exposure, mask errors, etc.). 
Although such a feature is generally considered to be one-dimensional (with CD, mea-
sured perpendicular to the long line, as the only important dimension), it must, by neces-
sity, have a two-dimensional character at the line end. An important question then arises: 
for a process where control of the linewidth is adequate, will the shape of the line end 
also behave acceptably? Often, the answer to this question is no due to line-end 
shortening.
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Figure 8.37 Resist contrast affects the mask error enhancement factor (MEEF) dramatically 
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Figure 8.38 illustrates the problem. When the process is adjusted to give the correct 
CD along the length of the line, the result at the line end will be a pull-back of the 
resist to produce a foreshortened end. The degree of line-end shortening is a strong 
function of the line width, with effects becoming noticeable for k less than about 0.8. 
At fi rst glance, it may seem that a solution to this problem is straightforward. If the 
printed image of a line end is shorter than the drawn pattern on the mask, simply extend-
ing the mask by the amount of line-end shortening would solve the problem. Of course, 
since the degree of LES is feature size dependent, proper characterization would be 
required. Most commercial optical proximity correction or design rule checking software 
today can automatically perform such corrections on the design before the photomask is 
made (see Chapter 10). This solution ignores two very important problems, however. 
First, what happens when the end of the line is in proximity to another feature, as in 
Figure 8.38, and second, how does the degree of LES vary with processing errors? 
For the fi rst problem, a simple extension of the line may not work. Thus, more compli-
cated corrections (such as increasing the width of the line near the end) are required. 
For the second problem, a more complete characterization of line-end shortening is 
needed.

8.8.1 Measuring LES

In order to characterize line-end shortening, the fi rst step is to fi nd a way to measure it. 
Since LES is fundamentally an error of the resist pattern relative to the design, it cannot 
be independently measured. Instead, it must be measured as the difference between two 
measurements, such as a measure of the line-end position relative to another feature. A 
very simple approach is to use a test structure such as those shown in Figure 8.38 where 
the line-end shortening is considered to be proportional to the width of the gap between 
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the end of the line and the edge of the nearby perpendicular line, or between two butting 
line ends. But this gap alone does not tell the whole story. Changes in the process (such 
as focus and exposure) will affect the gap width as well as the width of the isolated 
line.

An interesting approach to normalizing the relationship between linewidth and line-end 
shortening is to plot the gap width from a structure like that in Figure 8.38 as a function 
of the resist linewidth over a range of processing conditions. Based on the simple behavior 
of a pattern of lines and spaces where the resist linewidth plus the spacewidth will always 
be equal to the pitch, one can establish the ideal, linear imaging result for this case. For 
the pattern in Figure 8.38, the ideal result should be a straight line with equation linewidth 
+ gapwidth = 500 nm, where the designed linewidth and gap width are both 250 nm. As 
an example, the data from a focus–exposure matrix are plotted in Figure 8.39 using this 
technique. Interestingly, all of the data essentially follow a straight line which is offset 
from the ideal, no line-end shortening result. The vertical offset between the ideal line 
and a parallel line going through the data can be considered the effective line-end shorten-
ing over the range of processing conditions considered. Although not perfect, this result 
shows that the variables of focus and exposure do not infl uence the effective LES to fi rst 
order. The fact that the data form a line which is not exactly parallel to the ideal line 
simply indicates that, to second order, the LES does not exhibit the same process response 
to these variables as does the linewidth.

The gap width-versus-linewidth approach to characterizing the effective line-end short-
ening still ignores the three-dimensional nature of line-end effects. Processing changes, 
especially focus, can alter the shape as well as the size of a photoresist feature. For the 
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case of a resist line cross section, the sidewall angle of the resist pattern is reduced when 
out of focus. What is less obvious is that the end of a line is even more sensitive to focus 
errors than the line itself. Figure 8.40 shows how errors in focus can change the three-
dimensional shape of a line end. Obviously, any metrology designed to measure line-
end shortening will almost certainly be affected by the shape changes depicted in 
Figure 8.40.

8.8.2 Characterizing LES Process Effects

Any line whose width is near the resolution limit of a lithographic process will usually 
exhibit signifi cant line-end shortening. The end of the line is made up of two 90° corners. 
But as these corners pass through an imaging process of limited resolution, the corners 
will, by necessity, round. If the feature width is less than the sum of the two corner-
rounding radii, the end of the line will pull back due to this corner rounding. There are 
actually three major causes of this corner rounding, all of which contribute to the fi nal 
LES magnitude.

The primary corner rounding, and thus line-end shortening, mechanism is the 
diffraction limitation of aerial image formation. To fi rst order, the aerial image corner-
rounding radius is about equal to the radius of the point spread function (about 0.35l/NA). 
Thus, signifi cant line-end shortening is expected for feature sizes smaller than about 
k1 = 0.7. As an example, a 180-nm isolated line imaged at 248 nm with a numerical aper-
ture (NA) of 0.688 (giving a scaled feature size of k1 = 0.5) and with a partial coherence 
of 0.5 will produce an aerial image with nearly 50 nm of LES. The amount of corner 
rounding is a strong function of k1. Figure 8.41a shows the effect of NA on the line-end 
shortening of the aerial image of a 180-nm-sized structure like that of Figure 8.38. 
Obviously, a higher NA (just like a lower wavelength or larger feature size) produces 
less LES. The infl uence of partial coherence (Figure 8.41b) is less dramatic but still 
signifi cant.

LES is also infl uenced by corner rounding on the reticle. Mask making involves lithog-
raphy processes that, due to their inherent resolution limits, inevitably produce rounded 
corners. At the end of a line, rounded corners on the mask reduce light intensity transmit-
ted through the mask in a manner nearly identical to a foreshortening of the mask line. 
Equating the area lost due to mask corner rounding of radius R (wafer dimensions) with 

+0.4 µm Defocus In Focus –0.4 µm Defocus

Figure 8.40 Simulated impact of focus on the shape of the end of an isolated line (250-nm 
line, NA = 0.6, s = 0.5, l = 248, positive focus defi ned as shifting the focal plane up)
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an equivalent area due to a foreshortened mask, an approximate LES due to mask corner 
rounding can be estimated, for a space of width w, as

 LES
R

w

R

w
mask ≈

−


≈

2 1
4 0 43

2
2

π
.

 (8.82)

A similar result is expected for lines. Thus, mask corner rounding leads to an effectively 
shorter mask line, which of course will lead directly to a shorter line printed in resist. As 
an example, consider a mask-making process with a corner-rounding radius of 20 nm 
(wafer dimensions). For an 80-nm feature, the amount of LES due to the mask corner 
rounding can be estimated at 2 nm. If the mask corner rounding is increased to 40 nm, the 
impact of the mask on LES grows to 9 nm. If the maximum allowed LES due to mask 
corner rounding is set to be a fi xed fraction of the minimum feature size, Equation (8.82) 
shows that the maximum allowed mask corner rounding must also be a fi xed fraction of 
the minimum feature size.

The resist also affects the fi nal degree of line-end shortening. Interestingly, develop-
ment contrast seems to have only a small infl uence on the amount of LES of the fi nal 
resist patterns. Diffusion during PEB, on the other hand, has a very signifi cant effect. 
Figure 8.42 shows the simulated result of increasing diffusion length (for an idealized 
conventional resist and for a chemically amplifi ed resist, both with constant diffusivity) 
on the line-end shortening of a completely isolated line. The diffusion length must be 
kept fairly small in order for diffusion to only marginally impact the LES. In both cases, 
the increase in line-end shortening goes as about the diffusion length squared. The reason 
for the large effect of diffusion on line-end shortening is the three-dimensional nature of 
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the diffusion process: at the end of an isolated line, chemical species from the exposed 
areas can diffuse from all three sides of the line end (as opposed to one direction for a 
line edge).

8.9 Critical Shape and Edge Placement Errors

A discussion of CD control assumes that a convenient and accurate dimensional measure 
of the feature in question is available. For long lines and spaces, and symmetric contact 
holes, a simple, single metric can be used to describe the difference between the actual 
result on the wafer and the desired result: the critical dimension error (CDE). The 
optimum process is that which drives the CDE to zero. But real integrated circuit patterns 
include numerous complex shapes that defy easy one-dimensional characterization. How 
does one judge the error in the shape of an arbitrary 2D pattern? For this we must defi ne 
a critical shape error (CSE), the 2D analog to the critical dimension error.

The critical shape error is determined by fi nding the point-by-point difference between 
the actual printed resist shape and the desired shape.13 For example, Figure 8.43a takes a 
desired shape (equal to the layout design with an acceptable amount of corner rounding 
added) and compares it to a top-down image of the printed resist shape. The desired shape 
is broken down into a collection of measurement points (in this case, equally spaced points 
are placed around the entire desired shape). Then vectors are drawn from these measure-
ment points to the actual wafer shape, collecting their lengths in a frequency distribution 
of errors as shown in Figure 8.43b. Once such a distribution is determined, some charac-
terization of the distribution can be used to describe the overall shape error. For example, 
the average error could be used (CSEavg) or the error which is greater than 90 % of the 
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Figure 8.42 Diffusion can have a dramatic effect on line-end shortening (LES) of an isolated 
line: (a) 180-nm line, l = 248 nm, NA = 0.688, s = 0.5, conventional resist, and (b) 130-nm 
line, l = 248 nm, NA = 0.85, s = 0.5, chemically amplifi ed resist
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point-by-point measurements (CSE90), or some other percentage could also be used. For 
the distribution in Figure 8.43, some results are given below:

• CSEavg = 13.5 nm
• CSE80 = 23 nm
• CSE90 = 28 nm
• CSE95 = 32 nm
• CSE99.7 = 46 nm

Several different defi nitions of the point-by-point error are possible. In the example 
above, the unsigned length of the vector is used to generate the error histogram. The 
signed vector could also be used (a mean of zero for the signed vectors would be an 
indication of a properly sized feature). An alternate approach, useful for features on a 
‘Manhattan’ layout, constrains the error vectors to be wholly vertical or horizontal. These 
Manhattan error vectors are typically called edge placement errors (EPE) and are com-
monly used by optical proximity correction software when characterizing pattern fi delity 
(see Chapter 10).

8.10 Pattern Collapse

Photoresist profi le control has traditionally been defi ned by making a trapezoidal model 
of the shape of the resist profi le and defi ning the width, height and sidewall angle of the 
trapezoid as parameters to be controlled. In general, this approach works well for 1D 
patterns (long lines and spaces). However, under some circumstances, a different problem 
can plague the control of profi le shape – pattern collapse, where seemingly well-formed 
resist profi les fail mechanically and fall over (Figure 8.44).
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Pattern collapse occurs for tall, narrow resist lines when some force pushing against 
the top of the line causes the profi le to bend and eventually break or peal off the substrate. 
As one might expect, the taller and narrower the line, the easier it would be to push it 
over. But where does this pushing force come from? After development, the wafer is 
rinsed with deionized water and then air-dried. As the water dries, surface tension from 
the receding water will pull on the top of the resist feature. Of course, if the water is 
symmetrically receding from both sides of the line, the two forces on each side will cancel. 
If, however, there is an asymmetry and the water from one side of the line dries off faster 
than the other side, the resultant force will not be zero.

Figure 8.45a shows what is probably the worst case for generating asymmetric surface 
tension forces during after-rinse drying: two isolated parallel lines with a small gap 
between them. The large open areas to each side of the pair quickly dry while the small 
space between them requires a much longer time for removal of the water. As a result, 

Figure 8.44 Examples of photoresist pattern collapse, both in cross section (left) and top 
down (Courtesy of Joe Ebihara of Canon)

wlwl
wsws

H

θ

)b()a(

Figure 8.45 Pattern collapse of a pair of isolated lines: (a) drying after rinse leaves water 
between the lines, and (b) capillary forces caused by the surface tension of water pull the 
tops of the lines toward each other, leading to collapse
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there will be a point in the drying cycle where the top meniscus of the water in the gap 
will line up with the top of the resist features, producing a capillary force, driven by the 
surface tension of water, that will pull the two resist lines toward each other (Figure 
8.45b). If the force is great enough to cause the two resist tops to touch each other, these 
features are said to have collapsed. Other patterns of lines and spaces (a fi ve-bar pattern, 
for example) will behave very similarly to this two-bar test pattern for at least the most 
outside lines.

Tanaka14 developed a simple cantilever-beam mechanical model for this pattern col-
lapse situation. The capillary pressure (force per unit area) along the side of the resist line 
covered by water is equal to the surface tension s of the water–air interface divided by 
the radius of curvature R of the meniscus. The radius of curvature in turn is determined 
by the contact angle q of the water–resist interface and the spacewidth ws. Before any 
bending occurs, this curvature will be 

 R
w= s

2 cosθ
 (8.83)

For a resist thickness H, the resulting capillary force per unit length of line is

 F
H

R

H

w
= =σ σ θ2 cos

s

 (8.84)

As the resist line starts to bend, however, this force increases. The radius of curvature of 
the meniscus decreases as the two resist lines come closer together, causing an increase 
in the capillary force.

Since the force caused by the surface tension is always perpendicular to the air–water 
interface, a contact angle of zero (very hydrophilic case) causes the maximum force 
pulling the resist line toward the center of the space. Resists tend to be somewhat hydro-
phobic, so that contact angles between water and resist are often in the 50–70° range 
(though these measurements are for unexposed resist, not the partially exposed and 
deblocked resist along the profi le edge where the contact angle should be less). Note that 
the capillary force increases with the aspect ratio of the space (As = H/ws) and with the 
surface tension of water, which at room temperature is about 0.072 N/m (72 dyne/cm).

The bending of the resist line can be described as an elastic cantilever beam. The 
important resist material property of mechanical strength is the Young’s modulus, E, 
which is a measure of the stiffness of the resist and is higher for resists with high glass 
transition temperatures. Resists have been measured to have Young’s modulus values in 
the range of 2–6 GPa with the high end of the range corresponding to novolac resists and 
the low end of the range for ArF resists.15 Applying a force F to a line of width wl causes 
that line to move (sway) into the space by an amount d given by

 δ = 
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 (8.85)

Note that the amount of bending is proportional to the cube of the aspect ratio of the resist 
line, and thus will be very sensitive to this aspect ratio.

As the resist line bends, the pulling of the line by the capillary force is countered by a 
restoring force caused by the stiffness of the resist. Eventually a ‘tipping point’ is reached 
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where the increasing capillary force exceeds the restoring force of the resist and the line 
collapses. Tanaka calculated this critical point to occur when
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where As is the aspect ratio of the space and Al is the aspect ratio of the line (H/wl). If the 
contact angle is less than about 80° and the aspect ratio of the space is high (that is, we 
are in an interesting regime where pattern collapse is likely to be a problem), the square 
root can be approximated with the fi rst terms of a Taylor series to give a somewhat more 
approachable result:
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Equation (8.87) shows what affects pattern collapse and therefore what can be done to 
try to reduce pattern collapse. Resist chemists could make the resist stiffer by increasing 
the Young’s modulus E (similar to increasing Tg, the glass transition temperature), some-
thing that is hard to do without altering other very important resist properties. The 
water–air surface tension can be reduced by adding surfactant into the rinse liquid. Sur-
factants can easily reduce the surface tension by a factor of 2 or 3, but may pose con-
tamination problems and can also soften the resist, reducing its Young’s modulus. Contact 
angle of water to the resist also infl uences collapse. The worst case (maximum value of 
3Ascosq + sinq) occurs at an angle of tan−1(1/3As) which is generally less than 10°. Thus, 
hydrophilic resists produce greater pattern collapse. Making the resist more hydrophobic 
will help (this, incidentally, is also a goal for immersion lithography). The aspect ratio of 
the space is important, but is less so for hydrophobic resists (small cosq). The space width 
has a direct impact on collapse, with smaller spaces increasing the capillary force and 
thus the likelihood of collapse. By far the most critical factor is the aspect ratio of the 
line. Since the tendency to collapse increases as the line aspect ratio cubed, small changes 
in this factor can have big consequences.

Putting some numbers into the equation, ArF resists will have E/s in the range of about 
35 nm−1 assuming no surfactants in the water. Assuming a 60° water–resist contact angle, 
consider a 100-nm space with a space aspect ratio of 3. The maximum aspect ratio of the 
line will be 4.3 (a 70-nm linewidth before the line collapses). If the space were shrunk 
to 50 nm keeping the space aspect ratio at 3, the maximum line aspect ratio drops to 3.4 
(a 44-nm linewidth). As another example, when printing a pair of 45-nm equal lines and 
spaces in a resist of thickness 141 nm, overexposure will cause the patterns to collapse 
before they reach a 10 % CD error. Pattern collapse can become a process window limiter 
before CD, sidewall angle, or resist loss reach their specifi cations.

Equation (8.87) can also predict the tendency toward pattern collapse as a function of 
line/space duty cycle. To simplify, assume that the contact angle is small enough that 
ignoring the sinq term in Equation (8.87) produces very little error (this approximation 
is not so bad, even for a 60° contact angle). For this case, a given pitch equal to ws + wl 
will have the minimum tendency to collapse when the linewidth is 50 % bigger than the 
spacewidth (a 3 : 2 linewidth to spacewidth ratio). All other duty cycles will have an 
increased chance of pattern collapse. For a fi xed duty cycle, the likelihood of collapse 
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goes as the resist thickness to the fourth power, and as one over the pitch to the third 
power.

The two-dimensional model used here is really a worst case since it assumes very long 
lines and spaces. For shorter lines that are connected to another resist feature at one or 
both ends, the other features can give support to the line, inhibiting the twisting that would 
be required to make the line collapse. However, it is likely that CMOS device levels like 
poly and metal 1 will always have some patterns that will behave close to the worst case 
presented here. And the trend toward smaller feature sizes and constant or even greater 
aspect ratios will only make the problem of pattern collapse worse in the future.

Problems

 8.1. A given 90-nm lithography process level exhibits a 0.1-ppm (parts per million) 
wafer magnifi cation error due to wafer expansion. For a 300-mm wafer, what is the 
maximum overlay error due to this term if it goes uncorrected? Is the magnitude 
of this error signifi cant (assume the overlay specifi cations is 1/3 of the technology 
node feature size)?

 8.2. Silicon has a coeffi cient of linear expansion of about 3 × 10−6/K. Assume that 3 nm 
of overlay error due to lack of wafer temperature control is acceptable. How well 
must the temperature of the wafer be controlled for a 200-mm wafer? For a 300-mm 
wafer?

 8.3. What are the maximum x- and y-overlay errors due to a 0.3 arc-second reticle 
rotation error for a 24 × 28 mm fi eld?

 8.4. It is possible that the overlay targets, when printed on the wafer, may be asymmet-
ric, as shown below for a frame-in-frame target. What will be the impact of such 
asymmetry on overlay measurement?

 8.5. Derive Equations (8.42) and (8.43).
 8.6. Equations (8.31) and (8.35) both predict CD versus dose, with the later equation a 

bit more accurate. Plot CD versus dose for these two models on one graph for the 
case of
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At what dose values do the two models disagree with each other in predicted CD 
by 2 %?
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 8.8. Using Equations (8.50)–(8.52), plot the depth of focus of a 65-nm line as a function 
of isofocal bias: let CDspec = 0.2, Elspec = 0.08, snom = 0.75, and ∆ = 0.2 mm.

 8.9. Use the general expression (8.75) to derive the image MEEF for a coherent equal 
line/space image that uses only the 0th and ±1st diffraction orders [that is, derive 
Equation (8.68)].

8.10. For the two-line pattern collapse problem, what linewidth-to-spacewidth ratio (for 
a fi xed pitch) minimizes the tendency for pattern collapse under the following 
conditions:
(a) Assume that the water–resist contact angle is small enough that the sinq term 

in Equation (8.87) can be ignored.
(b) Assume that the water–resist contact angle is large enough that the cosq term 

in Equation (8.87) can be ignored.
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9
Gradient-Based Lithographic 

Optimization: Using the Normalized 
Image Log-Slope

There are many approaches for optimizing a lithographic process. Very commonly, the 
focus–exposure matrix is used to measure depth of focus (which includes a sensitivity to 
both dose and focus errors) and the process is optimized to maximize the depth of focus 
for select critical features. Such experimental optimization efforts are most effective and 
effi cient when guided by appropriate theory. Here, the gradient-based approach to litho-
graphic optimization, using the well-known image log-slope, is presented. By calculating 
and then optimizing the gradients of the image that is projected and recorded into a pho-
toresist through focus, a clear direction for maximizing depth of focus is seen. This 
approach can also be thought of as a fi rst-order propagation of errors analysis – a Taylor 
series approach to how input variations affect the output of CD. Small errors in exposure 
dose affect CD depending on the focus-dependent slope of the image at the nominal line 
edge.

9.1 Lithography as Information Transfer

This chapter will focus on CD control using exposure latitude and the variation of expo-
sure latitude through focus as the basic metrics of CD control. The approach taken here 
will view lithography as a sequence of information transfer steps (Figure 9.1). A designer 
lays out a desired pattern in the form of simple polygon shapes. This layout data drive a 
mask writer so that the information of the layout becomes a spatial variation of transmit-
tance (chrome and glass, for example) of the photomask. The information of the layout 
has been transferred, though not perfectly, into the transmittance distribution of the mask. 
Next, the mask is used in a projection imaging tool to create an aerial image of the mask. 

Fundamental Principles of Optical Lithography: The Science of Microfabrication. Chris Mack.
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However, due to the diffraction limitations of the wavelength and lens numerical aperture, 
the information transmitted to the wafer is reduced (see Chapter 2). The aerial image is 
an imperfect representation of the information on the mask. Aberrations, fl are and other 
nonidealities degrade the image quality further (see Chapter 3). This aerial image is pro-
jected into the resist where the variation of transmittance with angle, resist refraction and 
substrate refl ection makes the image in resist different than the aerial image (see Chapter 
4). Exposure then produces a latent image of exposed and unexposed sensitizer concentra-
tion, which now contains some portion of the information originally stored as an aerial 
image (see Chapter 5). Post-exposure bake changes this latent image into a new latent 
image through diffusion (for a conventional resist) or reaction and diffusion (for a chemi-
cally amplifi ed resist), with the result being a loss of information in the latent image (see 
Chapter 6). Finally, development convents the latent image into an image of development 
rates, which then is transformed into the fi nal resist profi le via the development path (see 
Chapter 7).

At each stage of this sequence, there is potential for information loss. The fi nal devel-
oped resist image is not a perfect representation of the original design data. By defi ning 
metrics of information content at each stage of this sequence of information transfer steps, 
a systematic approach toward maximizing the information contained in the fi nal image 
can be found. The information contained in each image propagates through the lithogra-
phy process, from the formation of an aerial image I(x) and image in resist, to the exposure 
of a photoresist by that image to form a latent image of chemical species m(x) or h(x), to 
post-exposure bake where diffusion and possibly reactions create a new latent image 
m*(x), and fi nally to development where the latent image produces a development rate 
image r(x) that results in the defi nition of the feature edge (a one-dimensional example 
is used throughout this chapter for simplicity).

9.2 Aerial Image

Projection imaging tools, such as scanners, steppers, or step-and-scan tools, project an 
image of a mask pattern into air, and then ultimately into the photoresist. The projected 

Design

Mask

Aerial Image

Latent Image

Developed Resist Image

Image in Resist

PEB Latent Image

Figure 9.1 The lithography process expressed as a sequence of information transfer steps
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image in air is called the aerial image, a distribution of light intensity as a function of 
spatial position within (or near) the image plane. The aerial image is the source of the 
information that is exposed into the resist, forming a gradient in dissolution rates that 
enables the three-dimensional resist image to appear during development. The quality of 
the aerial image dictates the amount of information provided to the resist, and subse-
quently the quality and controllability of the fi nal resist profi le.

How do we judge the quality of an aerial image? If, for example, aerial images are 
known for two different values of the partial coherence, how do we objectively judge 
which is better? Historically, the problem of image evaluation has long been addressed 
for applications such as photography. The classical metric of image quality is the image 
contrast (Figure 9.2). Given a mask pattern of equal lines and spaces, the image contrast 
is defi ned by fi rst determining the maximum light intensity (in the center of the image of 
the space) and the minimum light intensity (in the center of the line) and calculating the 
contrast as

 Image Contrast
I I

I I
= −

+
max min

max min

 (9.1)

Since the goal is to create a clearly discernible bright/dark pattern, ideally Imin should be 
much smaller than Imax, giving a contrast approaching 1.0 for a high-quality (‘high-
contrast’) image.

Although this metric of image quality is clear and intuitive, it suffers from some prob-
lems when applied to lithographic images. First of all, the metric is only strictly defi ned 
for equal lines and spaces. Although it is possible to modify the defi nition of image con-
trast to apply, for example, to an isolated line or to a contact hole, it is not clear that these 
modifi ed defi nitions are useful or comparable to each other. It is clearly impossible to 
apply this metric to an isolated edge. Secondly, the image contrast is only useful for pat-
terns near the resolution limit. For large features, the image contrast is essentially 1.0, 
regardless of the image quality. Finally, and most importantly, the image contrast is not 
directly related to practical metrics of lithographic quality, such as resist linewidth 
control.

Fundamentally, the image contrast metric samples the aerial image at the wrong 
place. The center of the space and the center of the line are not the important regions of 
the image to worry about. What is important is the shape of the image near the nominal 
line edge. The edge between bright and dark determines the position of the resulting 

Imin

Mask

Image

Imax

Figure 9.2 Image contrast is the conventional metric of image quality used in photography 
and other imaging applications, but is not directly related to lithographic quality
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photoresist edge. This transition from bright to dark within the image is the source of the 
information as to where the photoresist edge should be. The steeper the intensity transi-
tion, the better the edge defi nition of the image, and as a result the better the edge defi ni-
tion of the resist pattern. If the lithographic property of concern is the control of the 
photoresist linewidth (i.e. the position of the resist edges), then the image metric that 
affects this lithographic result is the slope of the aerial image intensity near the desired 
photoresist edge.

The slope of the image intensity I as of function of position x (dI/dx) measures the 
steepness of the image in the transition from bright to dark. However, to be useful it must 
be properly normalized. For example, if one simply doubles the intensity of the light, the 
slope will also double, but the image quality will not be improved. (This is because 
intensity is a reciprocal part of exposure dose, which is adjusted to correctly set the fi nal 
feature size in photoresist.) Dividing the slope by the intensity will normalize out this 
effect. The resulting metric is called the image log-slope (ILS):

 ILS
I

I

x

I

x
= =1 d

d

d

d

ln( )
 (9.2)

where this log-slope is measured at the nominal (desired) line edge (Figure 9.3). Note 
that a relative change in image intensity is the same as a relative change in exposure dose, 
so that the ILS is also a relative exposure energy gradient. Since variations in the photo-
resist edge positions (linewidths) are typically expressed as a percentage of the nominal 
linewidth, the position coordinate x can also be normalized by multiplying the log-slope 
by the nominal linewidth w, to give the normalized image log-slope (NILS).

 NILS w
I

x
= d

d

ln( )
 (9.3)

The NILS is the best single metric to judge the lithographic usefulness of an aerial 
image.1–3

Since the NILS is a measure of image quality, it can be used to investigate how optical 
parameters affect image quality. One of the most obvious examples is defocus, where the 
NILS decreases as the image goes out of focus. Figure 9.4a shows the aerial image of a 
space at best focus, and at two levels of defocus. The ‘blurred’ images obviously have a 
lower ILS at the nominal line edge compared to the in-focus image. By plotting the log-
slope or the NILS as a function of defocus, one can quantify the degradation in aerial 
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Image

Figure 9.3 Image Log-Slope (or the Normalized Image Log-Slope, NILS) is the best single 
metric of image quality for lithographic applications
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image quality as a function of defocus (Figure 9.4b). This log-slope defocus curve pro-
vides a very important tool for understanding how focus affects a lithographic process. 
For example, suppose one assumes that there is a minimum acceptable NILS value, below 
which the aerial image is not good enough to provide adequate resist images or linewidth 
control. In Figure 9.4b, for example, a minimum acceptable NILS value of 1.5 would 
mean that this imaging process can tolerate about ±0.14 mm of defocus and still get aerial 
images of acceptable quality. Thus, an estimate of the minimum acceptable NILS can lead 
to an estimate of the depth of focus. Note that, in general, the focus response of an aerial 
image is symmetric about best focus. When this is the case, the log-slope defocus curve 
is usually plotted only for positive values of defocus.

To see how the log-slope defocus curve can be used to understand imaging, consider 
the effects of wavelength and numerical aperture on the focus behavior of an aerial image. 
Figure 9.5a shows how the NILS of a 0.25-mm line/space pattern degrades with defocus 
for three different wavelengths (365, 248 and 193 nm), all other lithographic parameters 
held constant. It is clear from the plot that the lower wavelength provides better image 
quality for the useful range of defocus. For a given minimum acceptable value of NILS, 
the lower wavelength will allow acceptable performance over a wider range of focus. One 
could conclude that, for a given feature being imaged, a shorter wavelength provides 
better in-focus performance and better depth of focus.

The impact of numerical aperture (NA) is a bit more complicated, as evidenced in 
Figure 9.5b. Here, the log-slope defocus curves for three different numerical apertures 
(again, for a 0.25-mm line/space pattern) cross each other. If one picks some minimum 
acceptable NILS value, there will be an optimum NA which gives the maximum depth 
of focus (for example, a minimum NILS value of 2.5 has the best depth of focus when 
NA = 0.6). Using a numerical aperture above or below this optimum reduces the depth 
of focus.
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NILS values are easy and fast to calculate and provide a simple yet valuable metric of 
image quality. As an example of using this metric, the log-slope defocus curve is one of 
the easiest ways to quantify the impact of defocus on image quality. By using this tool, 
we have quickly arrived at two fundamental imaging relationships: when imaging a given 
mask pattern, (1) lower wavelengths give better depth of focus, and (2) there is an 
optimum NA that maximizes the depth of focus. But to make the best use of the NILS 
as an image metric, one must relate the NILS numerical value to lithographically measur-
able quantities. How does one determine the minimum acceptable NILS? If the NILS is 
increased from 2.0 to 2.5, what is the lithographic impact? More fundamentally, why is 
NILS a good image metric?

The answers to these questions lie with the fact that NILS is directly related to the 
printed feature’s exposure latitude (as will be shown in subsequent sections of this 
chapter). Exposure latitude describes the change in exposure dose that results in a given 
change in linewidth. Mathematically, it can be expressed as one over the slope of a critical 
dimension (CD) versus exposure dose (E) curve, ∂ CD/∂ E. Since both CD and dose varia-
tions are most usefully expressed as a percentage of their nominal values, the more useful 
expression of exposure latitude is ∂ lnCD/∂ lnE. For the simplifying case of a perfect, 
infi nite contrast photoresist the exposure latitude can be related to NILS by

 
∂

∂
=ln

ln

E

CD
NILS

1

2
 (9.4)

To put this in more familiar terms, if we defi ne exposure latitude to be the range of expo-
sure, as a percentage of the nominal exposure dose, that keeps the resulting feature width 
within ±10 % of the nominal size, then for an infi nite contrast resist the exposure latitude 
can be approximately related to NILS by

 %Exposure Latitude NILS≈ ∗10  (9.5)
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(the approximation comes from the assumption that NILS is constant over the 
±10 % CD range). Thus, in a perfect world (i.e. a perfect photoresist), the impact of 
NILS can be easily related to a lithographically useful metric: each unit increase in 
NILS gives us 10 % more exposure latitude. Unfortunately, the real world is not so perfect 
and infi nite contrast photoresists have yet to enter the commercial market. The real impact 
of NILS on exposure latitude is somewhat reduced from the above ideal. In general, 
Equation (9.5) can be modifi ed to account for the nonideal nature of photoresists to 
become

 %Exposure Latitude NILS≈ −α β( )  (9.6)

where a and b are empirically determined constants. b can be interpreted as the minimum 
NILS required to get an acceptable image in photoresist to appear. a then is the added 
exposure latitude for each unit increase in NILS above the lower limit b. By the end of 
this chapter, a more accurate and physically meaningful relationship between NILS and 
exposure latitude will be derived.

The values of a and b can be determined by comparing a calculated NILS-versus-
defocus curve to experimentally measured exposure latitude-versus-defocus data. Figure 
9.6 shows a simulation of such an experiment for a typical case. Once calibrated, a 
minimum acceptable exposure latitude specifi cation (say, 10 %) can be translated directly 
into a minimum acceptable NILS value (in this case, 1.7). Since a and b are resist and 
process dependent, the minimum acceptable NILS must be also. And of course, the 
requirements for the minimum acceptable exposure latitude will impact the required NILS 
directly. Thus, either using Equation (9.5) for the ideal case, or Equation (9.6) for a 
calibrated resist case, a quantitative valuation of the importance of NILS can readily 
be made.
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The NILS is a generic metric of aerial image quality. Thus, it can be used to optimize 
any parameter that affects image quality. Some typical use cases include:

• Optimizing numerical aperture (NA) and partial coherence (s)
• Investigating off-axis illumination parameters
• Comparing phase-shifting mask designs
• Understanding the impact of optical proximity correction (OPC) on image quality and 

optimizing OPC
• Examining the impact of aberrations, polarization and fl are.

As an example, consider the fi rst use case, optimizing NA and s (the so-called optimum 
stepper problem). Most steppers and scanners made today have software-controlled vari-
able numerical aperture and variable partial coherence. For a given feature or features, 
the goal is to pick the settings that maximize lithographic quality. Using the NILS as a 
proxy for lithographic quality, there are two basic optimization approaches: (1) for a given 
level of defocus, fi nd the settings that produce the maximum NILS, or (2) for a given 
minimum acceptable NILS (that is, a given minimum allowed exposure latitude), fi nd the 
settings that maximize depth of focus.

Figure 9.7 shows an example where the defocus is set to equal the built-in focus errors 
of the process (0.2 mm in this case), and contours of constant NILS are plotted as a func-
tion of NA and s (l = 248 nm printing 130-nm lines on a 360-nm pitch). The maximum 
NILS of 1.24 is achieved when NA = 0.72 and s = 0.72. This optimum is sensitive to the 
amount of defocus used. If the defocus requirement can be lowered to 0.16 mm, the 
optimum stepper settings for this problem become NA = 0.76 and s = 0.64 producing a 
maximum NILS of 1.43.
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Figure 9.7 One approach to the optimum stepper problem is to pick a fi xed amount of 
defocus (0.2 mm) and fi nd the settings that maximize the NILS (l = 248 nm, 130-nm lines on 
a 360-nm pitch, contours of constant NILS)
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9.3 Image in Resist

As described in Chapter 4, the image in resist will differ from the aerial image due to the 
different effi ciencies of coupling plane wave energy into the resist as a function of angle 
and polarization. For a refl ective substrate, each incident angle will produce a different 
refl ectivity swing curve, so that for a given resist thickness each incident angle will have 
a different transmittance into the photoresist. For a nonrefl ective substrate, the transmit-
tance of the air–resist interface creates an angular and polarization dependence. Figure 
9.8 illustrates these two cases.

The electric fi eld aerial image can be thought of as the sum of planes waves, each with 
magnitude an, combining to form the image. For the case of TE-polarization,

 E x z an
ikx ikz

n N

N
n n( ) sin cos, e e=

=−
∑ θ θ  (9.7)

where z is the distance from the plane of best focus, qn represents the angle of the 
nth diffraction order with respect to the optical axis, and ±N diffraction orders are used 
to form the image. The image in resist can be calculated in the same way, but with 
the magnitude of each plane wave modifi ed by the infl uence of the photoresist (see 
Chapter 4):
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where qn now represents the angle of the nth diffraction order in resist, aeff is the effective 
absorption coeffi cient, as defi ned in Chapter 4, and z is the depth into the resist. For the 
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Figure 9.8 Intensity refl ectivity between air and resist of plane waves as a function of inci-
dent angle and polarization for (a) resist on silicon, and (b) resist on an optically matched 
substrate (l = 248 nm, resist n = 1.768 + i0.009868)
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case when a reasonably good BARC is used (|r23| << 1), the impact of the fi lm stack is 
dominated by the transmittance of the air–resist interface and absorption in the resist:

 a an n n
z n

r
/e≈ −τ θ α θ

12
2( ) ( cos )  (9.9)

Once the impact of the resist fi lm is properly accounted for and the image in resist has 
been calculated, the image log-slope concept can readily be applied to the image in resist. 
As before, the image-log slope and the NILS, evaluated at the nominal resist edge for the 
image in resist, will serve as the metric of information content of the image in resist. 
Additionally, defocus of the image as it propagates through the thickness of the resist 
means that the location of the image must also be specifi ed. In general, the bottom of the 
resist will be used for calculating NILS, though sometimes the middle of the resist will 
prove more convenient.

9.4 Exposure

The NILS is, fundamentally, an aerial image or image in resist metric. It can be thought 
of as a measure of the amount of information contained in the image that defi nes the 
proper position of the desired photoresist edge. The information in this image propagates 
through exposure into a latent image of exposed and unexposed resist, where a similar 
metric must be defi ned to judge the quality of the latent image. Consider a simple yet 
common case: a resist with fi rst-order kinetics (almost always the case) whose optical 
properties do not change with exposure dose (commonly the case for chemically amplifi ed 
resists). For such a case, the latent image m(x,y,z) is related to the intensity in the resist 
Ir(x,y,z) by

 m x y z CI x y z t( ) exp( ( ) ), , , ,r= −  (9.10)

where C is the exposure rate constant of the resist, t is the exposure time, and m is the 
relative concentration of light-sensitive resist material (see Chapter 5).

Equation (9.10) is the exposure image transfer function, translating an image in resist 
into a latent image. From our experience with using the NILS, one would expect that a 
slope or gradient of the latent image would serve as a good metric of latent image quality. 
The slope of the latent image (at the nominal feature edge position, for example) can 
easily be derived by taking the derivative of Equation (9.10), giving (for a simple 1D 
case)4
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Thus, the latent image gradient is directly proportional to the image log-slope (and thus 
the normalized latent image gradient is proportional to NILS). This entirely logical result 
is very satisfying, since it means that all efforts to improve the NILS will result directly 
in an improved latent image gradient.

Equation (9.11) reveals another important factor in latent image quality. The term 
m  ln(m), which relates the image log-slope to the latent image gradient, is exposure 
dependent (m being the relative amount of resist sensitizer that has not been exposed at 
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the point where the latent image gradient is being described). A simple thought experiment 
reveals the necessity for a dose dependence to latent image quality. At the two extremes 
of zero dose and infi nite dose, the fi nal latent image becomes a uniform chemical distribu-
tion [m(x,y,z) = 1 for zero dose, and m(x,y,z) = 0 for infi nite dose]. Thus, the gradient of 
the latent image is zero at these extremes and no information is transferred to the wafer. 
But obviously the gradient is nonzero at doses in between these extremes. By the Mean 
Value Theorem of calculus, there must be a dose which maximizes the latent image 
gradient.

A plot of −mln(m) versus m shows that there is one exposure dose (one value of m) 
that will maximize the latent image quality (Figure 9.9). When m = e−1 ≈ 0.37, the value 
of −m  ln(m) reaches its maximum and the full information of the aerial image is trans-
ferred into the resist during exposure. It is interesting to note that when m = 1 (no expo-
sure) and m = 0 (complete exposure of the resist), the latent image gradient is zero and 
no information is transferred from the aerial image into the resist, as expected.

There are many interesting implications that come from the simple observation of 
the existence of an optimum exposure dose. Often, dose is used as a ‘dimension dial’, 
adjusting dose to obtain the desired feature size without regard to any process latitude 
implications. If the dose is near the optimum, this approach is valid. If, however, the 
dose used is signifi cantly off from optimum (say, very underexposed compared to the 
peak of Figure 9.9), changing dose will affect both dimension and overall latent image 
quality.

The above discussion assumes a resist that does not bleach. Since g-line and i-line 
resist materials generally exhibit a large amount of bleaching, some attempts to describe 
how bleaching affects the latent image gradient will be useful. In general, the combined 
effects of bleaching with the propagation of the image from top to bottom of the 
resist yield a very complex picture. However, a few approximations can greatly simplify 
this picture without greatly sacrifi cing the accuracy of the derived latent image 
gradient.
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Figure 9.9 Plot revealing the existence of an optimum exposure, the value of m at which 
the latent image gradient is maximized. Note that m = 1 corresponds with unexposed resist, 
while m = 0 is completely exposed resist
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When only absorption affects how the intensity varies with depth into a bleaching resist 
(that is, when there are no standing waves and when the defocusing of the image through 
the resist is ignored), Lambert’s law of absorption coupled with Beer’s law gives
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The coupled Equations (9.10) and (9.12) were solved in Chapter 5 to give

 z
y

y A y B ym z

m z

=
− −=

∫
d

[ ( ) ln( )]( )

( )

10

 (9.13)

where y is a dummy variable for the purposes of integration, and
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Differentiating Equation (9.13) with respect to x gives the interesting result that
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But at the top of the resist, bleaching does not affect the solution to the kinetic rate equa-
tion so that Equations (9.10) and (9.11) still apply at the top of the resist. Thus,
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This derivation shows that Equation (9.16) coupled with Equation (9.13) is a more general 
result for the latent image gradient after exposure and that Equation (9.11) is a special 
case of (9.16) when z = 0 or when A = 0 (since the image log-slope is not a function of 
z when there is no bleaching).

Calculating the gradient of the latent image when bleaching is occurring still involves 
the numerical integration of Equation (9.13). However, for the special case of B = 0 an 
analytical solution is possible. As was shown in Chapter 5,
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which allows Equation (9.16) to be written as
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By plotting Equation (9.18), Figure 9.10 shows that bleaching results in an increased 
latent image gradient. Like the contrast enhancement layers discussed in Chapter 4, 
bleaching allows greater transmittance of light in the bright spaces relative to the edges 
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between lines and spaces, which necessarily have a lower image intensity. As a result, 
the light near the edge of the feature is more highly absorbed than light in the center of 
the space. The transmitted image I(x,z) will have a higher slope than the image at the top 
of the resist. Interestingly, the optimum level of exposure remains very close to the non-
bleaching case: m(x,z) ≈ e−1.

9.5 Post-exposure Bake

The post-exposure bake takes the latent image of exposure products and creates a new 
latent image at the end of the bake, m*(x). For a conventional resist, diffusion will spread 
out the latent image. For a chemically amplifi ed resist, diffusion is accompanied by reac-
tion to form a new latent image.

9.5.1 Diffusion in Conventional Resists

Fickean diffusion, where the diffusivity of the diffusing material remains constant, can 
be treated as a simple convolution problem (as described in Chapter 5). If m(x) is the 
original latent image (the spatial distribution of chemical species in the resist), the new 
latent image after diffusion m*(x) can be found by convolving the original chemical dis-
tribution with a Gaussian sometimes referred to as the diffusion point spread function 
(DPSF):

 m x m x DPSF m x* e d
D

/ D( ) ( ) ( ) ( )= ⊗ = − −

−∞
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1

2

2 22

πσ
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where sD is the diffusion length. While a one-dimensional case is shown here, it is easy 
to extend the convolution to two or three dimensions (though things do get more complex 
when boundary conditions are applied).
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at the bottom of the resist (shown here is the special case where B = 0)
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Consider now a generic latent image for a repeating line/space pattern of pitch p 
described as a Fourier series:

 m x a nx pn
n

N

( ) cos( )=
=

∑ 2
0

π /  (9.20)

where a pattern symmetrical about x = 0 is assumed so that there are no sine terms in the 
series. Larger values of n represent higher-frequency terms (harmonics) in the image, 
though a typical minimum pitch pattern will have an upper limit of N = 2 or 3. The effect 
of diffusion on this latent image can be calculated by plugging Equation (9.20) into the 
convolution integral (9.19) giving

 m x a nx pn
n

N

* * /( ) cos( )=
=

∑ 2
0

π  (9.21)

where a an n
n p* e D= −2 2( / ) .π σ

Diffusion can be thought of as simply a reduction of each of the n > 0 Fourier coeffi -
cients of the latent image. Obviously, a greater diffusion length leads to a greater degrada-
tion of the latent image (an is reduced). But it is the diffusion length relative to the pitch 
that matters. Thus, for the same diffusion length, smaller pitch patterns are degraded more 
than larger pitch patterns. Also, the higher-frequency (larger n) terms degrade faster than 
the lower-frequency terms. In fact, each frequency term can be said to have an effective 
diffusion length equal to nsD and it is the ratio of this effective diffusion length to the 
pitch that determines the amount of damping for that frequency component (Figure 
9.11).

The effect of diffusion on the latent image gradient (LIG) is complicated by the fact 
that the rate of diffusion is driven by the change in the concentration gradient. Thus, in 
general the latent image gradient after diffusion will not be directly proportional to 
the gradient before diffusion – it will be infl uenced by the shape of the latent image to a 
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Figure 9.11 Effect of diffusion on the latent image frequency components for a dense line
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distance of a few diffusion lengths away. However, an approximate response can be 
obtained by assuming that the latent image for a small pitch pattern, and thus the effect 
on the gradient, is dominated by the n = 1 Fourier component of the latent image. The 
change in the latent image gradient due to diffusion can then be approximated as the 
change in a1:
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This simple result can be generalized for any pattern (not just patterns with a very small 
pitch) to become
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where L is a characteristic length related to the width of the edge region (the range over 
which the original latent image gradient is nonzero). For a pattern of small lines and 
spaces, L is equal to the half-pitch of the pattern. Obviously, increased diffusion (indicated 
by a larger diffusion length) results in a greater degradation of the latent image gradient 
(Figure 9.12). Also, sharper edges (smaller values of L) are more sensitive to diffusion, 
showing a greater fractional decline in the latent image gradient for a given diffusion 
length. The second (middle) form of Equation (9.23) replaces the diffusion length with 

2DtPEB  where D is the diffusivity and tPEB is the bake time. Finally, the left-hand form 
of the equation defi nes a characteristic pattern diffusion time t = L2/(Dp 2). The bake time 
must be kept much less than this characteristic pattern diffusion time in order to prevent 
signifi cant latent image degradation due to diffusion.

9.5.2 Chemically Amplifi ed Resists – Reaction Only

For chemically amplifi ed resists, diffusion during PEB is accompanied by a reaction that 
changes the photogenerated acid latent image into a latent image of blocked and deblocked 
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Figure 9.12 Increased diffusion (shown by the dimensionless quantity sD/L, the diffusion 
length over the width of the edge region) causes a decrease in the latent image gradient 
(LIG) after PEB
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polymer. Since reaction and diffusion occur simultaneously, rigorous evaluation of the 
impact on the latent image gradient is required. However, as a start we will look at the 
impact of the reaction without diffusion. Ignoring the possibilities of acid loss before or 
during the PEB, a simple mechanism for a fi rst-order chemical amplifi cation would give 
(from Chapter 6)

 m x h x* e f( ) ( )= −α  (9.24)

where af = KamptPEB is the amplifi cation factor, proportional to the PEB time and expo-
nentially dependent on PEB temperature. This simple expression points out the trade-off 
between exposure dose and thermal dose. A higher exposure dose generates more acid 
(larger value of h), requiring less PEB (lower value of af) to get the same result (same 
value of m*). For a given level of required amplifi cation, thermal and exposure doses can 
be exchanged so long as afh is kept constant.

The gradient of this new latent image after amplifi cation is then
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The gradient of the deprotection latent image relative to the image log-slope is often called 
the chemical contrast:
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For a given latent image after exposure [that is, given h(x)], the optimum latent image 
after amplifi cation occurs when m* = e−1, giving afh = 1. For a given required level 
of amplifi cation (given value of m*), the trade-off between thermal and exposure dose 
can be optimized to give the maximum latent image gradient after PEB. This occurs 
when
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In other words, the optimum latent image gradient after PEB occurs when using a 
low dose (h → 0) and a high level of amplifi cation (Figure 9.13). Carrying this idea to 
its extreme, however, invalidates the assumption that no diffusion occurs, since higher 
levels of amplifi cation necessitate higher levels of acid diffusion. Thus, the true trade-off 
between thermal and exposure dose must take into account the effects of diffusion as 
well.

9.5.3 Chemically Amplifi ed Resists – Reaction–Diffusion

When diffusion is included with amplifi cation, the situation becomes more complex. Dif-
fusion during post-exposure bake is accompanied by a deblocking reaction that changes 
the solubility of the resist. Thus, it is not the fi nal, postdiffusion distribution of exposure 
reaction products that controls development but rather the integral over time of these 
exposure products. Things become even more complicated when acid loss is accounted 
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for. In particular, the presence of base quencher (that also may diffuse) leads to both 
complexity and advantage in tailoring the fi nal latent image shape. However, for the 
simplifi ed case of no acid loss, an analytical solution is possible.

Letting h(x, t = 0) be the concentration of acid (the exposure product) at the beginning 
of the post-exposure bake (PEB), an effective acid latent image can be defi ned as
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where RDPSF is the reaction–diffusion point spread function (see Chapter 6). This effec-
tive acid concentration distribution heff(x) can be used to calculate the reaction kinetics of 
the PEB as if no diffusion had taken place. In other words, the effects of diffusion are 
separable from the reaction for the case of no acid loss. The RDPSF then becomes analo-
gous to the DPSF of a conventional resist.

For the 1D case, the Gaussian diffusion kernel is affected by time integration through 
the diffusion length, σD = 2Dt , where D is the acid diffusivity in resist. Thus,
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The integral is solvable, resulting in an interesting fi nal solution:

 RDPSF x
x

erfc
xx

( ) = − 





−

2
2 2

2 22

2

e /

D D D

Dσ

πσ σ σ
 (9.30)

0.0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1.0

Relative Sensitizer Concentration, m = 1 – h

–m
ln

(m
)/

(1
–m

)

Figure 9.13 For a chemically amplifi ed resist with a given required amount of amplifi cation, 
the exposure dose (and thus relative sensitizer concentration m) is optimum as the dose 
approaches zero (m → 1), assuming negligible diffusion
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The fi rst term on the right-hand side of Equation (9.30) is nothing more than twice the 
DPSF, and thus accounts for pure diffusion. The second term, the complimentary error 
function times x, is a reaction term that is subtracted and thus reduces the impact of pure 
diffusion.

One of the most important properties of the RDPSF is that it falls off in x much faster 
than the DPSF with the same diffusion length. The full-width half-maximum for the DPSF 
is about 2.35sD, but for the RDPSF it is about sD. Also, invoking a large argument 
approximation for the erfc,
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In other words, a reaction–diffusion resist system can tolerate more diffusion than a con-
ventional resist system.

To further compare reaction–diffusion to pure diffusion, consider again the impact of 
diffusion (and reaction–diffusion) on the latent image. As before, we’ll use a generic latent 
image for a repeating line/space pattern of pitch p described as a Fourier series:
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where a pattern symmetrical about x = 0 is assumed so that there are no sine terms in the 
series. The effect of pure diffusion, calculated as a convolution with the DPSF, is simply 
a reduction in the amplitude of each harmonic, as shown in Equation (9.21). In the reac-
tion–diffusion case, we convolve Equation (9.32) with the RDPSF, which results in an 
analytical solution:5
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Consider the special case of x = p/4 and N = 3 (that is, at the nominal line edge of a very 
small line/space pattern), a case that will prove useful later:
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Figure 9.14 compares the effects of pure diffusion with reaction–diffusion on the 
amplitudes of the Fourier coeffi cients. As can be seen, pure diffusion causes a much faster 
degradation of the Fourier components than reaction–diffusion for the same diffusion 
length. For example, if one is willing to allow a particular Fourier component to fall in 
amplitude by 20 %, a reaction–diffusion system with no acid loss can tolerate about 50 % 
more diffusion than a pure diffusion resist. In fact, for reasonably small nsD/p, one can 
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compare the diffusion-only case to a reaction–diffusion system using a Taylor series 
expansion of the exponential:
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The two are roughly equivalent if the reaction–diffusion system has a diffusion length 
2  larger than the diffusion-only case (or a diffusivity that is twice as large).
As with pure diffusion for conventional resist, we can approximate the impact of 

reaction–diffusion on the fi nal latent image gradient by assuming the n = 1 order of the 
latent image Fourier series dominates. Thus,
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Combining now all of the terms of exposure, reaction–diffusion impact on h(x), and reac-
tion to give m*, the fi nal gradient of the deblocked concentration can be calculated. The 
exposure term gives
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Reaction converts the effective acid concentration to a blocked polymer concentration:
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Figure 9.14 Effect of diffusion on the latent image frequency components for a dense line, 
comparing pure diffusion (DPSF) to reaction–diffusion (RDPSF)
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Combining Equations (9.36) through (9.38),
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The term h represents the ratio of the rate of diffusion for this feature to the rate of 
reaction. The only remaining step is to relate heff to h at the nominal line edge. Taking 
the simple case described in Equation (9.34),
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Expanding the exponential as a Taylor’s series,

 h a a p peff D D/ /= − − + −
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To avoid excessive degradation of the latent image due to diffusion, a typical value for 
2psD/p would be 0.5 or less. Typical latent images will have a2 about one order of mag-
nitude smaller than a0. Thus, one can approximate heff for the typical case as

 h a a a p heff D/ to an error of 5% or less≈ − + ≈0 2 2
22( )πσ ∼  (9.42)

In other words, at the line edge the acid concentration doesn’t change much due to diffu-
sion. As a result, a fi nal expression for the latent image gradient becomes
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Figure 9.15 uses Equation (9.43) to show how the latent image gradient (LIG) varies 
with af (which is proportional to PEB time). At low levels of amplifi cation (small PEB 
time), the gradient is amplifi cation controlled and increased bake produces an improved 
gradient. At long PEB times, the gradient becomes diffusion controlled and increased 
bake reduces the gradient due to diffusion. Thus, there is an optimum bake time (optimum 
af) that produces the maximum LIG of blocked polymer concentration.

The goal now becomes one of fi nding the optimum fi nal deblocked concentration m* 
(equivalently, the optimum heff) and the optimum level of amplifi cation af for a given 
value of h. The optimum af can be determined for a given value of m* or for a given 
value of heff:

 optimum
h

h h

hα
η

η
f

eff

eff eff

eff= − + −
− −







= +1 1

1 1

1ln( )

( ) ln( )
ln

hheff





  (9.44)

Figure 9.16 provides numerical results of the values of af and m* that produce the 
maximum latent image gradient as a function of h. Figure 9.17 shows the resulting 
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Figure 9.15 Including diffusion with amplifi cation, there is an optimum PEB to maximize 
the latent image gradient (LIG), shown here relative to the maximum possible LIG. For this 
example, Kamp = 0.1 s−1, t = 200 seconds and the exposure dose is chosen to give the maximum 
gradient for each PEB time

Figure 9.16 The optimum value of (a) the amplifi cation factor, and (b) the deblocked con-
centration in order to maximize the fi nal latent image gradient, as a function of h

maximum latent image gradient. For the case of h = 0 (no diffusion), the solution matches 
the results given in the previous section. As the relative amount of diffusion increases, 
the optimum amplifi cation factor quickly falls. A knee in this response at about h = 0.1 
(and af ≈ 3) marks a transition from high to low sensitivity of the optimum amplifi cation 
factor to h. Typical values of h for commercial resists are on the order of 0.1–0.2, so that 
optimum amplifi cation factors are near 3 and the optimum deblocking concentration at 
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the line edge is about 0.45. The optimum fi nal LIG (relative to the image log-slope) for 
this range of h is about 0.25, a reduction of about 1/3 from the no-diffusion optimum 
LIG (see Figure 9.17).

From the results shown in Figure 9.17, it is clear that a reduction in diffusion relative 
to amplifi cation (that is, a reduction in D/Kamp and thus h) can lead to improved fi nal 
latent image gradient. Also, for a given D/Kamp the value of h grows as feature size shrinks 
so that D/Kamp must be continually improved with each new lithography technology gen-
eration just to keep h constant. Since both diffusivity and the amplifi cation rate constant 
are temperature dependent, changing temperature will likely change their ratio. Using an 
Arrhenius equation for each term,
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The difference in activation energies between diffusion and reaction determines 
whether high- or low-temperature bakes produce lower h and thus better latent image 
gradients.

The dependence of h with temperature is more complicated when the Byers–Petersen 
model is used. Recalling from Chapter 6, the overall amplifi cation rate constant depends 
on the acid diffusivity as
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Thus, the ratio of diffusivity to amplifi cation becomes
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Figure 9.17 The optimum value of the fi nal latent image gradient (relative to the image 
log-slope), as a function of h
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In general, Kdiff is not expected to vary much with temperature. Thus, if the resist operates 
in the diffusion-controlled regime (Kreact >> KdiffD), h will be relatively insensitive to 
temperature. However, in the reaction-controlled regime (Kreact << KdiffD), h will have the 
temperature dependence shown in Equation (9.45).

9.5.4 Chemically Amplifi ed Resists – Reaction–Diffusion with Quencher

The analysis of the previous section is very helpful for understanding the role of diffusion 
in a simple reaction–diffusion system with no acid loss. However, all serious chemically 
amplifi ed resists include base quenchers – a benefi cial source of acid loss. In general, 
quencher greatly complicates any efforts to analytically solve for the fi nal latent image 
or the fi nal latent image gradient. However, for one special case, the above analysis 
applies even when quencher is present. If the acid–quencher reaction is very fast com-
pared to diffusion (typically a very good assumption), and the base quencher has exactly 
the same diffusivity as the acid, then the initial acid concentration at the start of the PEB 
h(x,0) is simply reduced by the background quencher concentration. [Note that for a 
Fourier series representation of the initial acid latent image such as Equation (9.32), the 
impact of quencher is then just a reduction of the value of a0.] Negative acid concentra-
tions represent the concentration of base quencher, so that both acid and base diffusion 
are properly calculated using the convolution of Equation (9.28). Of course, negative 
values of heff(x), the effective acid concentration, should be set to zero before performing 
any amplifi cation calculations.

For quencher of relative initial concentration q0, the acid gradient after exposure and 
initial quenching becomes, in regions of excess acid,
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The resulting fi nal latent image gradient becomes
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The value of af to maximize the fi nal latent image gradient is
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The impact of quencher on the optimum gradient is seen in Figure 9.18. Quencher allows 
the process to be run at higher h values while still providing a good latent image gradient. 
For the q = 0.1 case in this fi gure, an h value that is about 0.23 higher will give the same 
optimum gradient compared to the no-quencher case. Alternately, for a given h, higher 
q0 allows for a higher optimum gradient. Thus, the presence of quencher signifi cantly 
relaxes the constraints placed on diffusion, allowing higher-diffusing resists to work well 
for smaller features. Figure 9.19 shows the values of af and m* that produce the optimum 
gradient.

Note that in Figure 9.18, the two curves for nonzero quencher are only plotted down 
to some critical value of h (called hc). When h < hc, the optimum m* approaches 1 (see 
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Figure 9.18 The optimum value of the fi nal latent image gradient (relative to the image 
log-slope), as a function of h for cases with and without quencher

Figure 9.19 The optimum value of (a) the amplifi cation factor, and (b) the deblocked con-
centration in order to maximize the fi nal latent image gradient, as a function of h for different 
quencher loadings

Figure 9.19). For this case, the best latent image gradient occurs when the point at which 
quencher just eliminates all acid (that is, h = 0) is placed at the nominal line edge. The 
resulting LIG is quite high (see Problem 9.8):
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Of course, real development processes require some level of deblocking at the line edge 
so that this maximum gradient cannot be practically attained. Nonetheless, operating 
below hc and putting the h = 0 point very near the nominal line edge result in very steep 
latent image gradients. A plot of hc as a function of quencher loading is shown in Figure 
9.20.

9.6 Develop

In one sense, the goal of selective exposure of resist with an aerial image is to create a 
solubility differential: exposed and unexposed regions of the photoresist give rise to 
regions of higher and lower solubility, measured as a development rate (resist removal 
rate in nanometers per second). The information contained in the aerial image (or image 
in resist) I(x) is used to expose the photoresist to form a latent image m(x) or h(x), which 
is modifi ed by the post-exposure bake to create a new latent image m*(x), and fi nally 
developed based on a development rate ‘image’ r(x) that results in the defi nition of the 
feature edge.

The fundamental chemical response of interest is the change in dissolution rate as a 
function of the exposure dose seen by the resist. A plot of development rate r versus 
exposure dose E on a log-log scale is called a Hurter–Driffi eld (H–D) curve (Figure 9.21) 
and allows for the defi nition of the photoresist contrast, g. Quite simply, the photoresist 
contrast is the slope of the development rate H–D curve (see Chapter 7).

 γ ≡ ∂
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ln
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r

E
 (9.52)

Note that photoresist contrast is actually a function of exposure, g (E).
The photoresist contrast is a measure of the discrimination of the resist with respect to 

exposure. Higher contrast means that a given change in dose will result in a greater change 
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in development rate. This point can be seen clearly using the lithographic imaging equa-
tion, derived from the defi nition of photoresist contrast:
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The quality of the development rate image, described by a gradient in the dissolution rate, 
is determined by the product of the image log-slope and the photoresist contrast function. 
To create a large solubility differential, one would like a good aerial image (large image 
log-slope), a good photoresist (large photoresist contrast) and an optimized process (an 
exposure dose chosen to use the maximum of the photoresist contrast function).

Breaking up the response of development to exposure into separate latent and develop-
ment rate images allows us to relate the development rate gradient to the latent image 
gradient:
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where m* is the concentration of the chemical species (after post-exposure bake) that 
affects the dissolution rate. For example, for a chemically amplifi ed resist m* would rep-
resent the concentration of blocked polymer. From Equations (9.53) and (9.54), one can 
see that the defi nition of photoresist contrast encompasses the exposure, post -exposure 
bake and development steps in order to relate the fi nal development rate gradient to the 
original source of the information being imprinted in the resist, the image log-slope.

The variation of development rate with m* can take on many forms, but a simple one 
can be used here to illustrate the expected response. The model of development shown 
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Figure 9.21 Typical development rate function of a positive photoresist (one type of Hurter–
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here (called the reaction-controlled version of the original kinetic development model) 
provides for a typical nonlinear development rate function:

 r r m rn= − +max min( )1 *  (9.55)

where rmax and rmin represent the maximum and minimum development rates, respectively 
(rmax >> rmin is assumed), and n is called the dissolution selectivity parameter and controls 
how nonlinear the development response will be. Using this model of dissolution rate,
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Figure 9.22 shows a plot of Equation (9.56) as a function of m* for n = 5 (a low to medium 
contrast resist) and n = 10 (a medium to high contrast resist). Adjusting the process to 
set the peak of this curve at the nominal feature edge is a key part of process 
optimization.

From Equation (9.56), it is easy to show that the maximum gradient occurs when
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The maximum gradient will occur at a value of m* given by
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Figure 9.22 One component of the overall photoresist contrast is the variation in develop-
ment rate r with chemical species m*, shown here for the reaction-controled version of the 
original kinetic development rate model (rmax = 100 nm/s, rmin = 0.1 nm/s)
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Thus, the maximum gradient is
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For the full kinetic rate model,
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and the equivalent gradient is
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Figure 9.23 shows that again there will be an optimum inhibitor concentration to maxi-
mize the development rate gradient, and that this optimum will depend on the value of 
the dissolution selectivity parameter. The maximum gradient occurs when the develop-
ment rate is given by
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The maximum gradient is then
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Figure 9.23 Development rate gradient with inhibitor concentration for the original kinetic 
development rate model (rmax = 100 nm/s, rmin = 0.1 nm/s, mth = 0.7)
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As n increases, the optimum inhibitor concentration approaches the threshold inhibitor 
concentration, mth. For large n, the maximum gradient occurs when
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If the resist is a reasonably good one, so that rmax/rmin > 1000, then this large n approxima-
tion can be further simplifi ed:
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This fi nal result describes the basic behavior that we wish to know: the maximum 
log-development rate gradient is roughly proportional to n, inversely proportional to 
1 − mth, and increases with the log of the ratio of the maximum to minimum development 
rates.

9.6.1 Conventional Resist

While Equation (9.54) related the development rate gradient to the after-PEB latent image 
gradient, in fact all of the lithographic process steps can be chained together to relate the 
fi nal development response to the initial source of the imaging information, the aerial 
image. For a conventional resist,
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As described above, we have seen that for a resist that does not bleach,
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The impact of diffusion can approximated by
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where s is the diffusion length and L is a characteristic width of the edge region (and is 
roughly equal to the resolution of the lithography process). Also, diffusion does not have 
a signifi cant impact on the concentration of the sensitizer at the line edge so that m ≈ m* 
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at the feature edge. Combining each of these expressions with Equation (9.61) gives the 
overall contrast:
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Our goal will now be to fi nd the maximum value of this photoresist contrast. Since dif-
fusion always degrades the contrast, the optimum will always be zero diffusivity. Thus, 
without loss of generality, we shall omit the diffusion term from the analysis that follows. 
The exact value of the maximum is most easily determined numerically (Figure 9.24), but 
it will be useful to derive some general trends. Since the mlnm term varies slowly, the 
contrast will be dominated by the development piece (∂ lnr/∂ m*). Thus, for reasonably 
large n the optimum value of m* will be approximately that given by Equation (9.64).
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Thus, at this optimum
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The maximum contrast will be approximately
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Figure 9.24 Photoresist contrast as a function of inhibitor concentration for the original 
kinetic development rate model, assuming no diffusion (rmax = 100 nm/s, rmin = 0.1 nm/s, mth 
= 0.7) and different values of the dissolution selectivity parameter n
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or, since n is reasonably high,
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This fi nal approximate form matches well the full numerical calculations for the 
maximum contrast shown in Figure 9.24 even for n as low as 5. The overall contrast is 
maximized by minimizing diffusion, maximizing n and letting mth approach 1.

9.6.2 Chemically Amplifi ed Resist

For a chemically amplifi ed resist, the PEB term ∂m*/∂m is a function of the amplifi cation 
factor af and the diffusion factor h, as described previously. Figure 9.25 shows a plot of 
g (E,af) for the n = 5 case assuming no diffusion and the simple reaction-controlled 
development rate equation. Without diffusion, the best performance comes from a low 
dose and a high amplifi cation factor, as described previously.

When diffusion is included in the analysis, the best resist will be the one that matches 
the optimum blocked concentration to produce a good latent image gradient (for example, 
see the curves in Figure 9.19b) with the optimum blocked concentration to maximize 
∂ lnr/∂ m* (for example, see the curves in Figure 9.23). Thus, the mth of the development 
function must be tuned to the value of h and quencher concentration for the resist. And, 
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Figure 9.25 The overall photoresist contrast (gamma) as a function of exposure dose (E) 
and amplifi cation factor (af) for a chemically amplifi ed resist with no diffusion (h = 0, rmax = 
100 nm/s, rmin = 0.1 nm/s, n = 5, C = 0.05 cm2/mJ)
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if the quencher level is set high enough so that h is near its critical level, the maximum 
resist contrast can approach its maximum possible level:
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9.7 Resist Profi le Formation

We have now arrived at the fi nal ‘image’ gradient, the gradient in development rate. As 
we shall see next, the last step will be to relate this gradient to the control of the resist 
feature edge by knowing the development path. The development path traces the surface 
of the resist through the development cycle from the top of the undeveloped resist to a 
point on the fi nal resist profi le (see Chapter 7). The basic equation which defi nes the 
physical process of development is an integral equation of motion:

 t
s

r x y z
dev

d

, ,
= ∫ ( )�  (9.76)

where tdev is the development time, r(x,y,z) is the development rate at every point in the 
resist, ds is a differential length along the development path, and the path integral is taken 
along the development path. The endpoint of the development path defi nes the position 
of the fi nal resist profi le and, consequently, the fi nal critical dimension. There is only one 
path possible, determined by the principle of least action: the path will be that which goes 
from start to end in the least amount of time.

In Chapter 7, several solutions for the development path were given for certain special 
cases. Two of these cases are described below.

9.7.1 The Case of a Separable Development Rate Function

An interesting and useful case to examine is when the development rate function r(x,z) 
is separable into a function of incident dose E only and a function of the spatial variables 
independent of dose:

 r E x z f E g x z( ) ( ) ( ), , ,=  (9.77)

In general, none of the kinetic development models discussed in Chapter 7 meet this cri-
terion. However, separability results from assuming a constant theoretical contrast. Inte-
grating the defi nition of theoretical contrast for the case of constant contrast gives

 r x z E I x z( ) ( ( )), ,r∝ γ γ  (9.78)

where Ir(x,z) is the image in resist. Thus, separability can be assumed if the range of dose 
seen over the development path is suffi ciently small to fall within the approximately linear 
region of the H–D curve.

As we saw in Chapter 7, separability leads to the interesting result that the path of 
development does not change with dose – the development just follows this path at a 
different rate. Applying this idea to the defi ning development path Equation (9.76),
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For example, let f(E) = Eg. If the dose is increased, the same path is used to get from x0 
to x, but it arrives in a shorter time.

Equation (9.79) allows us to calculate exposure latitude: how a change in dose effects 
the fi nal position on the path x for a given development time. Taking the derivative of 
this equation with respect to log-exposure dose,
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Solving for the exposure latitude term, ∂ x/∂ lnE,
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where q is the sidewall angle of the resist profi le (which generally is close to 90°). For 
the case of f(E) = Eg ,
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Similarly, the sensitivity of the fi nal edge position x to changes in development 
time can also be calculated. Taking the derivative of Equation (9.79) with respect to log-
development time,
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While Equations (9.82) and (9.83) were derived to give us insight into exposure latitude 
and development latitude, they also provide for an interesting approach to understanding 
the development time/exposure dose trade-off. If a longer development time is used, a 
lower dose can be used. But what combination of dose and development time will maxi-
mize CD control? For our separable development rate assumption, Equation (9.79) shows 
us that any process that gives the correct edge position (correct CD) must have r(x,z)tdev 
= constant. But Equations (9.82) and (9.83) show us that r(x,z)tdev = constant will produce 
a constant sensitivity to relative dose errors and relative development time errors. In other 
words, under the assumption of constant g, any dose/develop time combination that pro-
duces the correct CD will also allow for the control of that CD with the same sensitivity 
to relative dose errors and relative development time errors.

9.7.2 Lumped Parameter Model

In Chapter 7, the lumped parameter model (LPM) was used to derive a general way to 
relate the dose E(x) required to achieve a certain CD (=2x) to the shape of the aerial image 
I(x), using resist contrast g and the effective resist thickness Deff to describe the infl uence 
of the photoresist on this image:

 
E x

E D

I x

I x
x

x

x( )

( )

( )

( )0
1

1

0
0





 = + ′



 ′

−

∫
γ γ

eff

d  (9.84)



402 Fundamental Principles of Optical Lithography

where the starting point in the development path, x0, is generally assumed to be the middle 
of the space for a pattern with narrow spaces. From this, it is easy to differentiate and 
calculate the exposure latitude of the resist edge position x:

 
∂

∂
= = 





x

E
r x t D

E x I x

E Iln
( )

( ) ( )

( ) ( )
γ γ

γ

dev eff
0 0

 (9.85)

Note that the result matches the general expression (9.82) since the LPM makes the 
explicit assumption of segmented development so that the development path will always 
be horizontal and sin q = 1.

Equation (9.85) can be used for a specifi c case also derived in Chapter 7. Assuming 
that the shape of the aerial image in the region being developed can be approximated as 
a Gaussian (that is, assuming the log-slope of the image varies linearly with position in 
this region), the LPM predicts
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where the approximate equal sign is used since the actual equation yields a Dawson’s 
integral that is approximated in Equation (9.86). Note that the image log-slope, ILS, is 
used in this equation as a function of x rather than being defi ned at the nominal line edge. 
Substituting this specifi c result into the general LPM expression for exposure latitude 
gives
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Often it is convenient to substitute CD = 2x and compute the log-log slope of the 
CD-versus-exposure dose curve:
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There are two distinct terms on the right-hand side of this expression. The fi rst, 2/NILS, 
is a pure aerial image term and is the limiting value of the exposure latitude for the 
case of an infi nite contrast resist (Figure 9.26). The second term is a ‘development path 
factor’ that includes the aspect ratio of the resist (Deff/CD) and the ratio of the aerial 
image intensity at the edge of the pattern relative to that in the center of the space (that 
is, the exposure dose at the end of the path relative to the exposure dose at the beginning 
of the path). This development path factor is reduced (giving better CD control) by lower-
ing the aspect ratio of the resist, increasing the resist contrast, and reducing the aerial 
image intensity at the dark line edge (i.e. x = CD/2) relative to the bright space center 
(x = 0).
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A slightly more accurate form of Equation (9.88) can be obtained by using two terms 
in the polynomial expansion of the Dawson’s integral. The result is
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The relative difference between this equation and Equation (9.88) is generally very small 
except for the case where the resist is very thin.

Equation (9.88) fi nally brings all the pieces of the NILS puzzle together, describing the 
information transfer from the aerial image through development to the fi nal resist image. 
It relates the fractional change in CD to the fractional change in exposure dose and thus 
its inverse defi nes the exposure latitude. The aerial image affects CD control in two ways, 
through the NILS directly and through the development path factor. The exposure, PEB 
and development effects can be lumped together into a photoresist contrast term, or can 
be separated out into individual components as described earlier.

Since the above expressions were derived specifi cally for a Gaussian aerial image, that 
specifi c image can be used in Equation (9.88) or (9.89).
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In this form, the exposure latitude is determined by just three factors: NILS, resist contrast 
and the feature aspect ratio. For large g NILS, Equation (9.91) approaches the result for 
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Figure 9.26 A plot of Equation (9.88) showing how the exposure latitude term approaches 
its limiting value of 2/NILS as the lumped photoresist contrast increases. In this case, the resist 
aspect ratio is 2, the ratio I(CD/2)/I(0) is 0.5 and the NILS is 2
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an ideal threshold resist. Also, recalling the lithographic imaging equation, gNILS is the 
normalized log-development rate gradient. Thus, optimizing this gradient helps make the 
photoresist response approach that of an ideal resist.

9.8 Line Edge Roughness

When variations in the width of a resist feature occur quickly over the length of the 
feature, this variation is called line width roughness (see Figure 9.27). When examining 
these variations along just one edge, it is called line edge roughness (LER). LER becomes 
important for feature sizes on the order of 100 nm or less, and can become a signifi cant 
source of linewidth control problems for features below 50 nm. LER is caused by a 
number of statistically fl uctuating effects at these small dimensions such as shot noise 
(photon fl ux variations), statistical distributions of chemical species in the resist such as 
photoacid generators (PAGs), the random walk nature of acid diffusion during chemical 
amplifi cation, and the nonzero size of resist polymers being dissolved during 
development.

LER is usually characterized as the 3s deviation of a line edge from a straight line, 
though a more complete frequency analysis of the roughness can be valuable as well. For 
193-nm lithography, LER values of 4 nm and larger are common. The impact of LER on 
device performance depends on the specifi c device layer and specifi c aspects of the device 
technology. For lithography generations below 100 nm, typical specifi cations for the 3s 
LER are about 5 % of the nominal CD. It is possible that LER will become the main 
limiter of CD control below 65-nm production.

In Chapter 6, a stochastic model for exposure and reaction–diffusion of chemically 
amplifi ed resists was developed. This stochastic model will now prove useful for the 
prediction of line edge roughness. As a review, for a given volume of resist under 
consideration, the statistical variance in the fi nal blocked polymer concentration is 
given by
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where 〈h〉 is the mean value of the acid concentration, 〈m*〉 is the mean value of the 
blocked polymer concentration after PEB, sD/a is the ratio of acid diffusion length to the 

Figure 9.27 SEM pictures of photoresist features exhibiting line edge roughness
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capture range of the deblocking reaction, 〈n〉 is the mean number of photons (to account 
for photon shot noise), 〈n0−PAG〉 is the mean initial number of PAGs in the control volume 
at the start of exposure, and 〈n0−blocked〉 is the mean initial number of blocked polymer 
groups in the volume before PEB.

While development can also be included, for the sake of simplicity, we will assume an 
infi nite contrast development process so that the line edge will be determined by the 
blocked polymer latent image. Thus, a simple threshold model for the latent image will 
determine the resist critical dimension. And, as we saw in Chapter 2 for an aerial image 
threshold model, a Taylor series expansion of the blocked polymer concentration, cut off 
after the linear term, allows us to predict how a small change in blocked polymer con-
centration (∆m*) will result in a change in edge position (∆x):

 ∆ ∆
x

m

m x
= *

d */d
 (9.93)

From this, we can devise a simple qualitative model for line edge roughness. The standard 
measure of line edge roughness, from a top-down SEM, will be proportional to the stan-
dard deviation of blocked polymer concentration divided by its gradient perpendicular to 
the line edge:

 LER
m x

m∝ σ *

d */d
 (9.94)

Thus, to achieve a low LER it will be necessary to make the standard deviation of the 
deprotection small and make the gradient of deprotection large. Of course, a main topic 
of this chapter was how process parameters can be used to maximize the latent image 
gradient. From Equation (9.92) we can see how to minimize the statistical uncertainty in 
deprotection. There is one interesting variable in common to both: acid diffusion. Increas-
ing acid diffusion will reduce sm*, but will reduce the latent image gradient. One would 
expect, then, an optimum level of diffusion to minimize the LER.

To investigate the impact of diffusion on LER, we can combine Equations (9.92) and 
(9.43) into (9.94). Thus, for the no-quencher case, and ignoring photon shot noise,
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and
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For sD << L this becomes
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To evaluate this expression, consider some typical values. Let M0NA = 1.2 /nm3, G0NA = 
0.042 /nm3, 〈h〉 = 0.3, 〈m*〉 = 0.6. Thus, the LER becomes
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Figure 9.28 shows the trend of LER versus acid diffusion for a 45-nm feature for three 
different values of the deprotection capture range a, 1, 2 and 3 nm. In each case, there is 
a diffusion length that minimizes the LER. Below the optimum diffusion length, LER is 
limited by sm* so that increasing the diffusion will improve LER. Above the optimum 
diffusion length the LER is gradient limited, so that increases in diffusion further degrade 
the gradient and worsen the LER.

9.9 Summary

The above discussion traces the aerial image log-slope through to its ultimate impact on 
exposure latitude (see Table 9.1). The resist contrast relates the original image contrast 
to the fi nal development rate gradient, encompassing exposure, chemical amplifi cation, 
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Figure 9.28 Prediction of LER trends for a 45-nm feature using the generic conditions found 
in Equation (9.99) and using three values of the deblocking reaction capture range a (1, 2 
and 3 nm): (a) assuming a 2D problem, and (b) for a 3D problem
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diffusion and development. Since NILS degrades with focus in a predictable way, the 
fi nal Equation (9.88) provides a simple means of capturing the impacts of both focus and 
exposure on fi nal CD control. Obviously, this simple gradient approach has its limitations. 
In particular, the impact of isofocal bias on depth of focus is not captured by looking only 
at gradients. However, the gradient-based optimization embodied in the use of the normal-
ized image log-slope has proven to be an extremely powerful theory-based guide to full 
lithographic optimization.

The chain rule of differentiation provides a simple approach for identifying the effects 
of each step in the process:
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Comparing this equation to the lithographic imaging Equation (9.53) shows that the 
photoresist contrast is a combined metric of exposure, PEB and development:
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Table 9.1 Summary of lithography process steps and their corresponding information 
metrics

Process Step Information Error Sources Information Metric

Design Polygons, binary (usually assumed 
perfect)

Mask Amplitude 
transmittance, 
tm(x,y)

CD and registration 
errors, corner 
rounding, phase and 
transmittance

Aerial Image I(x,y) Diffraction limitation, 
aberrations, 
defocus, fl are, 
polarization

NILS

Image in Resist I(x,y,z) Substrate refl ections/
thin fi lm effects, 
polarization effects, 
defocus through the 
resist

NILS

Exposure Latent Image m(x,y,z) 
or h(x,y,z) (before 
PEB)

Exposure dose errors Latent image 
gradient

Post-exposure Bake Latent Image 
m*(x,y,z) (after 
PEB)

Thermal dose errors, 
diffusion

Latent image 
gradient

Development Development Rate 
r(x,y,z) + Resist 
Profi le (CD, 
sidewall angle, 
resist loss)

Finite contrast, rmax/rmin Development rate 
log-slope, 
gamma + 
exposure 
latitude, CD 
error
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Problems

9.1. Using results from Chapter 3, show that the aerial image NILS falls off approxi-
mately quadratically with defocus.

9.2. Consider the three-beam aerial image of lines and spaces:

 I x a a a x p a x p( ) cos( / ) cos ( / )= +0
2

0 1 1
2 24 2 4 2π π

Assuming equal lines and spaces, plot pILS(x) versus x/p for 0 ≤ x ≤ p/2.
9.3. A plot of DOF versus NA (for a given feature) looks something like

Explain qualitatively why there is an optimum NA that maximizes the depth of 
focus.

9.4. Using the following approximation for exposure latitude,

 EL
E

CD
= ∂

∂
20

ln

ln

graphically compare Equations (9.6) and (9.91) [let g = 10 and Deff/CD = 2]. What 
are the best-fi t values of a and b using NILS in the range from 1.5 to 3.5?

9.5. Using Equations (9.20) and (9.21),

a) Derive an equation for 
∂ ∂
∂ ∂ =

m x

m x x p

*/

/ / 4

 for N = 4.

b) For this case, derive an expression for the approximate magnitude of the rela-
tive error in Equation (9.22).

9.6. Derive Equation (9.44) [hint: fi rst assume m* = constant, then assume heff is 
constant].

9.7. Show that in the limit as h → 0, Equation (9.39) becomes Equation (9.25).
9.8. For the blocked polymer latent image when quencher is used, show that the 

maximum relative LIG becomes
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9.9. Show that at the optimum conditions (i.e. when the blocked polymer LIG is at its 
maximum),

 

1 1− =
+

−e f

eff

α η

η ηh

9.10. Consider a resist obeying the original kinetic development model so that n = 12, 
mth = 0.65, and rmax/rmin = 2000. If one desired to reformulate the resist to increase 
the maximum log-development rate versus m* by 20 %, how much would each one 
of these variables have to be individually changed?

9.11. In the limit of sD >> a, derive an approximate proportionality for LER. In this 
regime, how does increasing diffusion affect LER?
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10
Resolution Enhancement 

Technologies

In general, the optimum image quality for an arbitrary object is obtained by using a clas-
sical imaging system with zero aberrations. Semiconductor lithography, however, uses a 
very limited set of objects (arrays of lines and spaces, isolated lines, small square holes 
called contacts, etc.) in limited arrangements and orientations. In many cases, the sizes 
of these objects are also limited to set values. Thus, lithography can pose a unique imaging 
problem – given a single object (say, an array of contact holes of a given size), is it pos-
sible to design a special imaging system which is better than a classical imaging system 
for the printing of this one object? The answer is yes.

The design of an imaging system optimized for a reduced class of objects has been 
called wavefront engineering by one of the earlier pioneers in this area, Marc Levenson.1 
Wavefront engineering can be thought of in a number of different ways, but essentially 
it refers to manipulating the optical wavefront exiting the projection lens to produce 
improved images for certain types of objects. There are three basic ways of modifying 
the wavefront – manipulating the object (the mask), adjusting the illumination of the 
object, or modifying the wavefront directly with a pupil fi lter. The use of a pupil fi lter is 
diffi cult with current lens designs since the pupil is not directly accessible within the lens. 
Modifi ed illumination and masks, however, are widely used in semiconductor lithography 
to improve imaging.

In its simplest form, an imaging system uses an object which is identical to the desired 
image. However, knowing the limitations of the imaging system, one can design a new 
object which produces an image more like the desired pattern. By adjusting the transmit-
tance of the mask, one can improve the exposure latitude and depth of focus of a given 
image. Ideally, the spatial variation of both the phase and the transmittance of the mask 
would be modifi ed in whatever way needed to improve the image. From a practical point 
of view though, masks for semiconductor lithography are essentially devices with discrete 
levels of transmittance (the simplest mask is binary, either 100 or 0 % transmittance). 

Fundamental Principles of Optical Lithography: The Science of Microfabrication. Chris Mack.
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Each added level of transmittance adds considerably to the cost and complexity of the 
mask. For this reason, mask modifi cation falls into two categories – mask shaping (also 
called optical proximity correction, or OPC) and phase-shifting masks (PSMs). Mask 
shaping adjusts the shape of the mask features to improve the shape of the resulting image 
(for example, by applying serifs to the corners of a rectangular pattern). The diffi culty 
comes in predicting the needed mask shapes (a typical chip will require masks with hun-
dreds of millions or billions of patterns that must be shaped). PSMs change (or possibly 
add to) the levels of transmittance on the mask to include phase differences between 
transmittance levels. Light shifted by 180 ° will interfere with unshifted light to produce 
well-controlled dark areas on the image. The diffi culty again includes designing the mask, 
but also involves more complicated mask fabrication.

Modifying the illumination of the mask will also result in different wavefronts and 
thus different images. As we saw in Chapters 2 and 3, tilting the illumination can double 
the resolution of grating (line/space) patterns and can also improve the depth of focus 
of gratings of certain periods. This tilting, however, does not improve the performance 
of nonrepeating patterns. Thus, the direction (or directions) of the illumination can 
be customized for given mask features, but there is no one illumination direction which 
is best for all mask features. Modifi ed illumination (also called off-axis illumination 
or OAI) can be combined with mask modifi cation (OPC and possibly PSM) to 
produce results better than either approach alone, but with increasingly complicated 
processes.

Collectively, these three techniques, OPC, PSM and OAI, are known as resolution 
enhancement technologies (RETs). To see how they actually improve resolution, it is 
important to fi rst carefully defi ne what is meant by the term resolution.

10.1 Resolution

The resolution limit of optical lithography is not a simple function. In fact, resolution 
limits differ depending on the type of feature being printed. In general, however, there 
are two basic types of resolution: the smallest pitch that can be printed (the pitch resolu-
tion) and the smallest feature that can be printed (the feature resolution). While related, 
these two resolutions are limited differently by the physics of lithography, and have dif-
ferent implications in terms of fi nal device performance. Pitch resolution, the smallest 
linewidth plus spacewidth pair that will print, determines how closely transistors can be 
packed together on one chip. This resolution has the greatest impact on cost per function 
and functions per chip. Feature size resolution determines the characteristics and perfor-
mance of an individual transistor, and has the greatest impact on chip speed and power 
consumption. Obviously both are very important.

Pitch resolution is the classical resolution discussed in most optics textbooks and 
courses. It is governed by the wavelength of the light used to form the images and the 
numerical aperture of the imaging lens. The classical pitch resolution is given by a version 
of the Rayleigh resolution equation:

 pitch resolution k
NA

= pitch
λ

 (10.1)
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where l is the vacuum wavelength of the lithographic imaging tool, NA is the numeri-
cal aperture, and kpitch depends on the details of the imaging process. Ultimately, kpitch 
can be as low as 0.5, but only with tremendous effort (as will be discussed below). 
Values of 0.7–1.0 are typical, with a trend toward decreasing values approaching the 
0.5 limit.

While pitch resolution has a hard physical limit given by the Rayleigh equation, feature 
resolution is limited by the ability to control the critical dimension (CD) of the feature. 
As features are made smaller, control of the CD of that feature becomes harder. There is 
no hard cutoff, only a worsening of CD control as the feature size is reduced. Feature 
size control is governed by the magnitude of various process errors that inevitably occur 
in a manufacturing environment (such as focus and exposure errors), and the response of 
the process to those errors (see Chapter 8). In order to improve CD control, one must 
simultaneously reduce the sources of process errors and improve process latitude (the 
response of CD to an error). Interestingly, process latitude is similar to pitch resolution 
in that it also depends most strongly on the imaging wavelength and numerical aperture, 
though in more complicated ways.

Process latitude is an exceedingly general concept, but usually the most important 
process latitudes are the interrelated responses of CD to focus and exposure. Using the 
process window to characterize these responses (see Chapter 8), we defi ne depth of focus 
(DOF) as the range of focus which keeps the resist profi le of a given feature within all 
specifi cations (linewidth and profi le shape) over a specifi ed exposure range. One of the 
most insidious diffi culties of lithography is that small features tend to have smaller depth 
of focus.

10.1.1 Defi ning Resolution

Resolution is, quite simply, the smallest feature that you are able to print (with a given 
process, tool set, etc.). The confusion comes from what is meant by ‘able’. For a researcher 
investigating a new process, ‘ability’ might mean shooting a number of wafers, painstak-
ingly searching many spots on each wafer, and fi nding the one place where a small feature 
looks somewhat properly imaged. For a production engineer, the manufacturable resolu-
tion might be the smallest feature size which provides adequate yield for a device designed 
to work at that size. We can defi ne resolution, similar to our defi nition of DOF, in such 
a way that it can meet these varied needs.

Producing an adequately resolved feature in a realistic working environment means 
printing the feature within specifi cations (linewidth, sidewall angle, resist loss, line edge 
roughness, etc.) over some expected range of process variations. As we have seen before, 
the two most common process variations are focus and exposure. Since our defi nition of 
depth of focus includes meeting all profi le specifi cations over a set exposure range, a 
simple defi nition of resolution emerges: the smallest feature of a given type which can be 
printed with a specifi ed depth of focus. This defi nition is perfectly general. If the exposure 
latitude specifi cation used in the DOF defi nition is set to zero and the DOF specifi cation 
in the resolution defi nition is set to zero, the ‘research’ use of the term resolution is 
obtained (if it prints once, it is resolved). If the exposure latitude and DOF specifi cations 
are made suffi ciently large to handle all normal process errors encountered in a manu-
facturing line, the ‘manufacturing’ use of the term resolution is obtained. As with the 
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defi nition of DOF, the choice of the specifi cations determines whether the resulting resolu-
tion is appropriate to a given application.

Figure 10.1 illustrates this concept of resolution. The depth of focus for a pattern of 
equal lines and spaces is shown as a function of feature size. (For this and subsequent 
fi gures, the DOF is based on profi le specifi cations of CD ±10 %, sidewall angle >80 °, 
resist loss <10 %, and an exposure latitude specifi cation of 6 %. All focus and exposure 
errors are assumed to be random. Each data point assumes that nominal exposure and 
focus were adjusted to give the best process window and thus the largest possible DOF. 
Mask linearity – the ability to print different feature sizes at the same time – is not con-
sidered here, but could easily be added as a constraint.) If zero DOF is required, the equal 
line/space resolution for this process would be about 80 nm. A requirement of 160-nm 
DOF would increase the minimum printable feature size to 100 nm, and a requirement of 
250-nm DOF would degrade the resolution further to 115 nm. Obviously, a simple state-
ment of the resolution without clearly stating the DOF requirement (and thus the profi le 
and exposure latitude requirements) would be of little use.

Figure 10.2 illustrates how a given process, tool set, etc., does not have a single resolu-
tion for all feature types. The contact hole shows the worst resolution under these condi-
tions, while the isolated line has the greatest resolution for small required DOF. Figure 
10.3 illustrates how a careful defi nition of resolution can elucidate fundamental litho-
graphic behavior, such as the role of numerical aperture. For larger features, lower NA 
gives more depth of focus. But for smaller features, the DOF falls off more quickly for 
the lower NA. This results in the well-known effect of an optimum NA to give the greatest 
DOF. But it also impacts resolution in an interesting way. If no DOF is required, the reso-
lution (the point where each curve in Figure 10.3 hits the x-axis) follows the familiar 
trend of increased resolution with increased NA. If, however, a nonzero DOF is required, 
the behavior of resolution with NA becomes more complicated.
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Figure 10.1 Resolution can be defi ned as the smallest feature which meets a given DOF 
specifi cation. Shown are results for equal lines and spaces, l = 193 nm, NA = 0.9, s = 0.7, 
typical resist on a nonrefl ective substrate
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Figure 10.4 expands on the results of Figure 10.3 and shows the resolution of equal 
line/space arrays as a function of numerical aperture for different DOF specifi cations.2 
For example, with a required DOF of 200 nm, the resolution reaches an optimum (a 
minimum in the curve at a feature size of 105 nm) at a numerical aperture of 0.84. Larger 
numerical apertures actually reduce the resolution! As the required DOF is reduced, the 
NA which gives maximum resolution moves out to higher values. Also shown on the 
graph is the Rayleigh resolution criterion (R = k1l/NA) for comparison. For a nonzero 
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Figure 10.3 The defi nition of resolution can be used to study fundamental lithographic 
trends, such as the impact of numerical aperture (NA) on resolution (l = 193 nm, s = 0.7, 
equal lines and spaces)
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required DOF, the Rayleigh criterion is not accurate in predicting the infl uence of NA on 
resolution.

10.1.2 Pitch Resolution

Although the above defi nition of resolution is perfectly general, there is a class of 
features where a slightly different approach is more appropriate. Consider a simple 
repeating mask pattern of equal lines and spaces. One could determine the resolution 
of this pattern type using the above defi nition, with the condition that the resist features 
must be equal lines and spaces as well (i.e. the desired linewidth equals the desired 
spacewidth). However, if we were to concentrate only on the line feature, we could 
easily overexpose our positive resist to produce a smaller linewidth and, most likely, a 
smaller ‘resolution’. That is, keeping the pitch of the pattern (linewidth plus spacewidth) 
constant, we could improve the line feature resolution by a simple processing change, but 
only at the expense of the space feature resolution. Is this truly an improvement in 
resolution?

The answer depends on the application. If only the width of the line is critical, then 
resolution should be based only on the line feature. The electric performance of a device, 
for example, may be critically dependent on the linewidth of a given device structure, but 
only marginally affected by the accompanying space feature size. In most cases, however, 
the space feature is also critical (affecting capacitance at interconnect levels and strain 
at the gate level, for example). In fact, the ability to decrease both linewidth and space-
width simultaneously allows manufacturers to shrink chip sizes, putting more chips on a 
wafer and providing a huge economic driver for the quest for better resolution. For such 
applications, where linewidth and spacewidth are both critical , one can modify the above 
defi nition of feature resolution to produce a defi nition for pitch resolution: the smallest 
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pitch of a given duty cycle which can be printed with a specifi ed depth of focus, where 
duty cycle is defi ned as the ratio of spacewidth to linewidth.

At fi rst glance the difference between the feature resolution and the pitch resolution 
seems almost trivial – hardly worth the effort to propose a separate defi nition. However, 
use of these two different types of resolutions reveals that the physical limits to resolution 
can be quite different for each. Consider the simple case of forming an image of an equal 
line/space mask pattern illuminated with a single wavelength, normally incident plane 
wave (i.e. coherent illumination). For such a case, there will be a hard cutoff for the pitch 
resolution: when the pitch drops below l/NA no image whatsoever is formed for any duty 
cycle. Regardless of the profi le, exposure latitude and DOF specifi cations, no pitch below 
this limit can be imaged. For the case of an isolated line, there is no equivalent ‘hard 
cutoff’ of the feature resolution, which instead exhibits a gradual reduction in profi le 
control as the feature size is decreased.

In general terms, the feature resolution is limited by photoresist profi le control and is 
a complicated function of wavelength and numerical aperture. Ultimately, the pitch reso-
lution is limited by the cutoff of discrete diffraction information passing through the 
objective lens and is a relatively simple function of wavelength and numerical aperture. 
To understand this simple functionality, one must understand that a single diffraction order 
passing through the objective lens produces a single plane wave of light striking the wafer 
(see Chapter 2). Two plane waves at the wafer (coming from two separate diffraction 
orders) will interfere with each other to produce a sinusoidal pattern of light and dark 
(giving spaces and lines). If the two plane waves strike the image plane (i.e. the wafer 
plane) with angles q1 and q2 with respect to the optical axis (that is, a normal to the image 
plane), then the period of the resulting image will be

 period =
−
λ

θ θsin sin1 2

 (10.2)

This general expression can be used to understand a variety of imaging situations. For 
the coherent illumination case described above, q2 = 0 for the zero order and sinq1 has a 
maximum value of NA, giving the l/NA resolution mentioned above. In other words, for 
three-beam imaging the minimum kpitch is 1.0. For the special case of two symmetrical 
beams, q1 = −q2 = q and the period becomes

 period = λ
θ2sin

 (10.3)

The ultimate pitch resolution of an imaging tool is obtained when sinq becomes its 
maximum value, the NA:

 ultimate pitch resolution
NA

= λ
2

 (10.4)

for all duty cycles. Thus, for two-beam imaging, the minimum kpitch is 0.5. This ultimate 
pitch resolution uses two-beam imaging that can be obtained from an alternating phase-
shifting mask or an optimized off-axis illumination scheme (see sections 10.3 and 10.4). 
However, the actual pitch resolution may not be this good if the resulting printed image 
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does not meet the required DOF specifi cations (that is, if the patterns are limited by the 
feature resolution of the line or the space making up the pitch).

10.1.3 Natural Resolutions

Besides the two kinds of resolution discussed so far, feature resolution and pitch resolu-
tion, a third type of resolution emerges from a study of optical imaging: natural resolutions 
of an imaging system. Since a discussion of natural resolution will make use of many of 
the concepts that will be developed in the sections that follow, its treatment will be delayed 
until the end of this chapter, in section 10.5.

10.1.4 Improving Resolution

Considering both pitch resolution and feature resolution, the following approaches are 
commonly used to improve resolution:

• Reducing the exposure wavelength
• Increasing the imaging lens numerical aperture
• Reducing kpitch by using two-beam imaging
• Increasing the focus–exposure process window size
• Reducing the magnitude of process errors such as focus and exposure errors.

Unfortunately, several of these factors work against each other. For a given feature, there 
is an optimum numerical aperture that gives the largest process window. Increasing the 
NA further will reduce the process window, making the feature resolution worse even as 
the pitch resolution is improved. Reducing wavelength is always good, but as a practical 
matter, it is extraordinarily diffi cult since we are limited by our ability to engineer materi-
als with the proper optical properties at the lower wavelength. Of course, reducing the 
magnitude of process errors is a never ending quest with cost being the only possible 
downside. That leaves two fi nal resolution enhancement approaches: reducing kpitch with 
two-beam imaging and increasing the size of the process window.

By far the most effective and popular process window improvement approach has been 
improvements in the photoresist. Over the years, resist capabilities have undergone dra-
matic progress. While we are still far from being able to ignore the photoresist (that is, 
we do not have a diffusionless infi nite contrast resist), resist performance today is high 
enough that even small improvements in optical imaging can be seen in the fi nal 
patterns.

Attempts to improve the process window by optical means (sometimes called optical 
‘tricks’) include:

• Optimization of the mask pattern shape (called optical proximity correction, OPC)
• Optimization of the angles of light illuminating the mask (called off-axis illumination, 

OAI)
• Adding phase information to the mask in addition to intensity information (called phase-

shifting masks, PSM).

Collectively, these optical approaches (each of which will be described in detail in the 
sections that follow) are known as resolution enhancement technologies (see Figure 10.5). 
While some techniques improve feature resolution at the expense of pitch resolution, 
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many of the resolution enhancement technology (RET) approaches can improve pitch 
resolution and increase the process window simultaneously, a seemingly no-compromise 
path to resolution enhancement. However, the most promising RETs (especially the best 
PSM techniques) require a revolution in chip layout design that has yet to occur. Ulti-
mately, a kpitch as low as 0.5 is possible, but only for chips designed specifi cally to take 
advantage of these RETs.

10.2 Optical Proximity Correction (OPC)

Since, in general, the smallest features in a design are the hardest to print, lithography 
processes are optimized to best print those smallest features. Unfortunately, the larger 
features (which, while larger, cannot be considered large) are rarely faithfully reproduced 
using this same lithography process. The nonlinear nature of a high-resolution lithography 
process ensures that a ‘what you see is what you get’ imaging ideal, where all features 
on the mask are faithfully reproduced in resist, will never be achieved.

10.2.1 Proximity Effects

Proximity effects are the variations in the linewidth of a feature (or the shape for a 2D 
pattern) as a function of the proximity of other nearby features. The concept of proximity 
effects became prominent several decades ago when it was observed that electron beam 
lithography can exhibit extreme proximity effects (backscattered electrons can travel 
many microns, exposing photoresist at nearby features). Optical proximity effects refer 
to those proximity effects that occur during optical lithography (even though they may 
not be caused by optical phenomenon). The simplest example of an optical proximity 
effect is the difference in printed linewidth between an isolated line and a line in a dense 
array of equal lines and spaces, called the iso-dense print bias.

Although many factors may affect the iso-dense print bias, such as developer fl ow or 
PEB diffusion, in general this bias is fundamentally the result of optics – the aerial images 
for dense and isolated lines are different. For high-resolution features, the diffraction 
patterns from isolated and dense lines are signifi cantly different (see Chapter 2), resulting 
in different aerial images, as shown in Figure 10.6. In this case, the isolated line will print 
wider than the dense line (assuming a positive photoresist), giving a positive iso-dense 
print bias. It is important to note that this result is not a ‘failing’ of the optical system, 
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Figure 10.5 Examples of the three most common resolution enhancement technologies



420 Fundamental Principles of Optical Lithography

but a natural consequence of the physics of imaging. Also, aberrations in the optical 
system can change the magnitude of the bias, sometimes signifi cantly.

The proximity effect is very feature size dependent. For large features, the diffraction 
patterns for isolated and dense lines are similar, giving very little differences in the aerial 
images. As feature size shrinks, the differences grow. Thus, to fully characterize one-
dimensional proximity effects, it is common to measure resist CD versus pitch for a range 
of nominal feature sizes (Figure 10.7). It is very important to note that the resulting 

)a( (b)

40

60

80

100

120

140

160

180

160 260 360 460 560 660 760

Pitch (nm)

R
es

is
t C

D
 (

nm
)

CD = 160 nm

CD = 80 nm

140

120

100

40

60

80

100

120

140

160

180

160 260 360 460 560 660 760

Pitch (nm)

R
es

is
t C

D
 (

nm
)

CD = 160 nm

CD = 80 nm

140

120
100

0.0

0.3

0.6

0.9

1.2

–1000 –600 –200 200 600 1000

A
er

ia
l I

m
ag

e 
In

te
ns

ity

Horizontal Position (nm)

Figure 10.6 The iso-dense print bias is fundamentally a result of the difference in the aerial 
images between isolated and dense lines. In this case, the isolated line is wider than the 
line in a dense array of equal lines and spaces (0.5-micron features, l = 365 nm, NA = 0.52, 
s = 0.5)

Figure 10.7 Resist CD through pitch for different nominal feature sizes (used to fully char-
acterize 1D proximity effects) can be very different as a function of the optical imaging 
parameters used: (a) conventional illumination, s = 0.7, and (b) quadrupole illumination, 
center s = 0.8 (l = 193 nm, NA = 0.85, binary mask, dose set to properly size the 100-nm 
line/space pattern)
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behavior (the CD-through-pitch curves) is very sensitive to the exact lithographic condi-
tions used. For example, a switch from conventional to quadrupole illumination causes a 
dramatic change in the shape of the CD-through-pitch curves (Figure 10.7a vs. Figure 
10.7b), even changing the sign of the iso-dense bias for some features.

The photoresist will also infl uence proximity effects. A systematic study using lithog-
raphy simulation showed that the resist property that most signifi cantly infl uences proxim-
ity effects is resist contrast.3 In simulation terminology, it is the resist dissolution selectivity 
parameter n of the original kinetic development model (which is directly proportional to 
resist contrast, see Chapter 7) that infl uences proximity effects. As an example of how an 
optical proximity effect might change with resist contrast, Figure 10.8 shows the infl uence 
of the next nearest feature on the linewidth of a nominal 400-nm feature using i-line 
lithography and a conventional resist. No proximity effects would result in the fl at line 
shown at 400-nm linewidth. Five curves are shown corresponding to fi ve different resist 
contrasts (subjectively called low, medium, high, state-of-the-art and future contrast 
resists). These resists correspond to dissolution selectivity parameters of 4, 5.5, 7, 10 and 
16, respectively. The infi nite contrast resist corresponds to the width of the image-in-resist 
itself since an infi nite contrast resist will reproduce the image-in-resist exactly (baring 
diffusion).

Obviously, resist contrast plays an important role in determining the actual printed 
proximity effect. For example, the iso-dense bias (the difference in linewidth between 
isolated and dense features) for the state-of-the-art resist is twice that of the low-contrast 
resist for the case shown in Figure 10.8. Also, the lower-contrast resists show a dip in 
linewidth as the spacewidth is initially increased, whereas the higher-contrast resists do 
not. Incidentally, the range of printed linewidths often exceeds the iso-dense bias quite 
signifi cantly, as Figure 10.8 clearly shows.
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10.2.2 Proximity Correction – Rule Based

Since the difference between the desired and actual CD printed on the wafer as a function 
of feature size and pitch is, for the most part, a systematic error, it should be possible to 
correct for this error. The only practical means for correction is to change the CD on the 
mask to compensate for these proximity effects. This compensation is called optical 
proximity correction (OPC).

The initial goal of OPC, then, is to determine the optimal mask shape to get the desired 
resist shape – often called the ‘inverse problem’ in imaging. This simple question is more 
complicated than it appears. As with most such questions, the answer depends on what 
is meant by ‘optimal’. Consider fi rst the simple case of printing long lines. What is the 
optimal width of the mask line to get the desired resist line for many different linewidths 
and proximity to other lines? One simple defi nition of optimum could be just obtaining 
the right linewidth at the nominal exposure dose and focus. As an example, consider a 
100-nm resolution process using the 100-nm equal line/space pattern as the baseline. 
Without any bias on the mask for this feature, we determine the exposure dose to properly 
size this feature. Our simple requirement, then, is that all other mask features must prop-
erly print at their correct size at this dose as well. Since proximity effects prevent this 
from occurring naturally, we can only obtain this result by changing the feature sizes on 
the mask to correct for these proximity effects.

Figure 10.9 shows one example of what the mask bias solution might look like. The 
mask correction (CD bias) is defi ned as the actual absorber width that produces the desired 
resist CD minus the nominal (unbiased) absorber width. Thus, a positive bias means the 
absorber has been made bigger. Each curve shows the amount of linewidth bias needed 
as a function of the nominal feature width. For this example, we have defi ned our starting 
point as zero bias for the most diffi cult feature, the 100-nm lines and spaces. An alternate 
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Figure 10.9 Design curves of the mask linewidth bias (in wafer dimensions) required to 
make all of these features print at the nominal linewidth: 100 nm (thick line), 120 nm (thin 
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(though less common) approach would be to set zero bias for some large feature and 
adjust the bias of the smaller features to match the dose-to-size of that larger feature.

Our defi nition of the optimum mask bias so far is a simple one – the bias which gives 
the proper printed linewidth at the nominal process conditions. Other defi nitions may 
include the tolerance to variations in process conditions (for example, the maximum 
overlap of the focus–exposure process windows of the various features). Ultimately, the 
best solution is that which gives the tightest distribution of linewidths on the wafer for 
all of the features in the presence of typical process variations.

While the curves of Figure 10.9 show how mask correction is a continuous function 
of nominal CD and pitch, the actual implementation of these corrections on a real design 
is often snapped to a design grid in order to ease the design and mask-making burden. 
Typical design grids are 1–3 % of the minimum resist feature size. For example, a typical 
design curve is snapped to a 5-nm grid in Figure 10.10. When discretized in this way, the 
information in the design curve can be easily captured in a correction table, called an 
OPC rules table.

While all of the examples shown here have been symmetrical (the proximity of 
other features is identical on both sides of the main feature), in general this will not be 
the case. Thus, corrections are better described as edge movements rather than linewidth 
changes. A simple OPC rule might be something like this: ‘If a feature is between A and 
B in width, and the next feature to the right is between X and Y away, move the right 
edge of the feature by Z’. Thus, the shape of the feature in the design is changed (its edge 
is moved) depending on the size of the feature and its proximity to its nearest neighbor. 
The values of the parameters of the rule (the amount of correction Z as a function of A, 
B, X and Y in this example) are empirically determined for a given lithography process. 
Since a large set of these parameters is typically required for each rule, the collection of 
these parameters is put into a table called a rules table. Figure 10.11 shows an extremely 
simple case where one-dimensional edge movements based on a rules table were 
applied.

400 500 600 700 800 900

Pitch (nm)

–20

–10

0

10

20

M
as

k 
Li

ne
w

id
th

 C
or

re
ct

io
n 

(n
m

)

Figure 10.10 Discretized design curve (the stair-step approximation to the actual smooth 
curve) appropriate for use in a design rule table (5-nm correction grid used)
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There are two key aspects of successfully implementing rule-based OPC: (1) having 
the right set of rules, and (2) having the right parameter values for those rules. While 
rule-based OPC is conceptually simple and easy to implement for one-dimensional cor-
rections, the rules can get very cumbersome when considering two-dimensional effects. 
Corner rounding and line-end shortening (see Chapter 8) are two particular examples of 
important 2D proximity effects that should be addressed with OPC. An intermediate 
approach is to treat line-ends with their own set of rules, apply serifs to corners, and use 
1D rules for all of the other edges. Sometimes called ‘1.5D’ correction, an example of 
this approach is shown in Figure 10.12.

Rule-based OPC is fairly simple to implement. First, a set of CD-through-pitch curves 
are experimentally measured for a given process. From these data, a one-dimensional 
rules table is created by interpolating from these data. Optimum line-end treatments and 

(a) (b)

Figure 10.11 A small section of a design (a) before, and (b) after correction of the middle 
feature with a simple 1D rule-based correction

(a) (b)

Figure 10.12 A small section of a design (a) before, and (b) after the use of a simple 1.5D 
rule-based correction
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corner serif sizes are also empirically determined for the given process. Corrections are 
made by implementing the rules as scripts for a design rule checker (DRC) software 
package. This approach to OPC became important when feature sizes dropped below 
500 nm, and was widely used at the 250-nm technology generation. However, by the 
130-nm technology generation, the accuracy and robustness of rules-based OPC began 
to falter. It was at this technology generation that most semiconductor manufacturers 
began to switch to model-based OPC.

10.2.3 Proximity Correction – Model Based

Rule-based OPC suffers from a diffi cult scalability problem: in order to increase the 
accuracy of the OPC, the number of rules must grow. This growth in rules is highly non-
linear – a small increase in OPC accuracy may require a very large increase in the number 
of rules. Additionally, the required accuracy of OPC scales at least linearly with the 
technology node dimensions. Since each rule requires several experimentally derived 
parameters, the result is a dramatic increase in effort. For these reasons, most semiconduc-
tor manufacturers realized that model-based OPC was required at the 90-nm technology 
generation.

Model-based OPC replaces experimentally derived rules with a calibrated lithography 
model that predicts the proximity effects for the actual chip pattern. Edges of the features 
are then iteratively moved until the predicted resist shape matches the desired feature 
shape to within a preset tolerance. A well-designed model-based OPC procedure requires 
only very few rules to operate. Instead, considerable effort is put into the development 
and calibration of a simplifi ed lithography model that will predict how each design pattern 
will print.

The constraints on the lithography models used for OPC are severe. Since an entire 
chip must be simulated (with its hundreds of millions or even billions of features), OPC 
models must be very fast and should also be parallelizable (to take advantage of distrib-
uted computing). At the same time, these models must be very accurate, predicting the 
printed shapes on the wafer for every pattern of the design accurately to within a few 
percent of the minimum design rule size. This combination of very fast speed with accept-
able accuracy has resulted in the development of hybrid physical/empirical lithography 
models, sometimes called compact models.

OPC models combine a reasonably accurate and physically correct aerial imaging 
model with a very simple resist model. Etch effects are sometimes included, or separate 
etch models are applied, to predict the after-etch feature sizes and shapes. For the aerial 
image calculation, an approximate solution to the Hopkins imaging equations called 
Sum of Coherent Sources (SOCS) provides extremely fast computation times by pre-
computing a small number of coherent convolution kernels for a given source and lens 
pupil (see Chapter 2). Diffusion effects in the resist are usually approximated by allowing 
the aerial image to diffuse, which can be conveniently calculated using a Gaussian 
diffusion kernel in the SOCS formulation. Resist development effects are approximated 
using a threshold plus bias or a variable threshold model (see Chapters 2 and 7). Alter-
nately, resist effects can be captured as empirical kernels in the SOCS formulation. In 
either case, these empirical resist models require extensive calibration for a given resist 
process.
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Model-based OPC begins by fi rst dividing the original design into edge segments, each 
of which can be individually moved during the OPC process. Simulation of the design 
predicts a resist shape, which is then compared to the original design at various measure-
ment points (for example, the midpoint of the segment) to calculate an edge placement 
error (EPE, see Chapter 8). This EPE is then used to guess how much the segment must 
be moved so that the resist shape will have zero EPE. Edge segments are iteratively moved 
and the resist shape resimulated until all of the EPEs are below a preset limit (typically 
requiring three to six iterations). As with rule-based OPC, edge positions are usually 
snapped to a design grid to reduce the design and mask complexity. An example of model-
based OPC is shown in Figure 10.13. The aggressiveness of the OPC can be adjusted by 
controlling the segment size (smaller segments mean more aggressive OPC), the smallest 
movement allowed for an edge compared to its connecting edge (that is, the smallest 
allowed jog size), and the design grid, among other parameters. A more aggressive OPC 
results in a larger number of design vertices and greater mask-making cost.

In general, model-based OPC is used to fi nd a mask shape that produces an acceptable 
resist shape for a given lithography process that is assumed to be operating at its nominal 
conditions, i.e. at best focus and exposure. Thus, while OPC can be used to extend the 

Figure 10.13 Example of model-based OPC: the original design (upper left) prints very 
poorly (upper right). After aggressive model-based OPC, the resulting design (lower left) 
prints very close to the desired shape (lower right). OPC and simulations done using 
PROLITH
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linear resolution (the smallest features that can be printed while still printing all larger 
features acceptably), it does not address the issue of process window, and thus the true 
manufacturable resolution. One important technique used with OPC that addresses process 
window as well as sizing issues is the subresolution assist feature, as described next.

10.2.4 Subresolution Assist Features (SRAFs)

Scattering bars, also called subresolution assist features (SRAFs), are narrow lines or 
spaces placed adjacent to a primary feature in order to make a relatively isolated primary 
line behave lithographically more like a dense line.4 The problem being solved is generi-
cally described as the problem of iso-dense bias. Isolated features will almost always print 
at a feature size signifi cantly different than the same mask feature surrounded by other 
features. The pitch curves of printed CD versus pitch for various nominal mask dimen-
sions show the problem (see Figure 10.7). While sizing the mask to give the correct CD 
on the wafer for all pitches certainly works (this is the conventional OPC approach), there 
is another isolated-versus-dense difference that is not addressed by this bias OPC.

The response of an isolated feature to focus and exposure errors is signifi cantly different 
than the same-sized dense line. Figure 10.14 shows example focus–exposure matrices for 
dense and isolated lines after the isolated line has been sized to give the proper CD at the 
best focus and exposure needed by the dense features. The different shapes of the Bossung 
curves produce different shapes for the process windows, which limits the overlapping 
depth of focus even when the features nominally have the same best exposure dose.

Scattering bars are designed to reduce the difference in the focus response of an isolated 
feature compared to a dense feature by making the isolated feature seem more ‘dense’. 
This becomes especially important when an off-axis illumination scheme is optimized for 
greatest depth of focus of the dense features (a topic that will be discussed extensively 
in section 10.3). The overlapping process window for the dense and isolated lines of 
Figure 10.14 is shown in Figure 10.15a. The curvature of the isolated process window 
severely limits the useable, overlapping DOF.
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Figure 10.14 Focus–exposure matrices (Bossung curves) for (a) dense and (b) isolated 
130-nm features (isolated lines biased to give the proper linewidth at the best focus and 
exposure of the dense lines, l = 248 nm, NA = 0.85, quadrupole illumination optimized for 
a 260-nm pitch)
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An SRAF, as the name implies, is a subresolution feature that is not meant to print. In 
fact, it must be carefully adjusted in size so that it never prints over the needed process 
window. This determines the most important trade-off in scattering bar design: make the 
assist features as large as possible in order to create a more dense-like mask pattern, but 
not so large as to print. Generally, these assist features are centered on the same pitch for 
which the off-axis illumination was optimized, though a more careful design will optimize 
their position and size to maximize the improvement in overlapping process window. As 
a result, the use of assist features allows the lithographer to design an off-axis illumination 
process optimized for dense patterns that can also be used to print more isolated 
features.

The assist bars used in Figure 10.15b were 50 nm (k1 = 0.17) in size (wafer dimensions), 
and resulted in an increase in the overlapping DOF from 300 nm, when only bias OPC 
was used, to 400 nm. Further improvement can be obtained by using ‘double’ scattering 
bars, where a second set of scattering bars is placed further away to create an effective 
fi ve-bar pattern. Of course, this requires enough free space around the primary feature to 
actually be able to fi t these extra assist features.

While the concept of using scattering bars to improve the DOF of isolated features is 
a simple one, its practical implementation is anything but simple. Unlike the idealized 
case of an isolated line, real patterns contain lines with a variety of pitches (i.e. nearby 
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Figure 10.15 Overlapping process windows generated from the focus–exposure matrices 
of dense and isolated lines for (a) isolated lines with bias OPC (overlapping DOF = 300 nm) 
and (b) isolated lines with scattering bars (overlapping DOF = 400 nm)
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patterns with different distances away), each of which must be outfi tted with an optimal 
assist feature or features, if one can fi t. While bias OPC can be used on the intermediate 
cases where the space between two lines is not large enough to accommodate an assist 
feature, these intermediate pitches do not benefi t from the DOF advantages of SRAFs 
(see Figure 10.16). And then, of course, there is the problem of what to do with line ends, 
corners, and other 2D patterns. Rule-based SRAF placement is quite common, but has 
diffi culty with 2D placement. Model-based SRAF placement is diffi cult, but shows 
promise for complex 2D geometries. These issues can be resolved, however, and subreso-
lution assist features are commonly used in many chip designs. Polysilicon gate and 
contact levels, in particular, have seen benefi ts from using SRAFs. For contacts and other 
dark-fi eld mask levels, the SRAFs take the form of clear slots (spaces) rather than assist 
lines.

10.3 Off-Axis Illumination (OAI)

Off-axis illumination5,6 (OAI) is one of the three major resolution enhancement technolo-
gies that have enabled optical lithography to push practical resolution limits far beyond 
what was once thought possible. In order to effectively use off-axis illumination, the shape 
and size of the illumination must be optimized for the specifi c mask pattern being printed. 
This section will describe how to optimize the most popular types of off-axis illumination 
– dipole, quadrupole and annular illumination – to maximize depth of focus for a given 
pitch.

Off-axis illumination refers to any illumination shape that signifi cantly reduces or 
eliminates the ‘on-axis’ component of the illumination, that is, the light striking the mask 
at near-normal incidence. By tilting the illumination away from normal incidence, the 
diffraction pattern of the mask is shifted within the objective lens. For the case of a 
repeating pattern, the diffraction pattern is made up of discrete diffraction orders. If the 
pitch of the repeating pattern is small, only a few diffraction orders can actually make it 
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Figure 10.16 Schematic diagram of SRAF placement showing the discontinuous effect of 
adding an SRAF as the pitch grows (main feature size is 100 nm)
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through the fi nite size lens. As discussed in Chapter 3, placing those diffraction orders 
that make it through the lens evenly about the center of the lens leads to improved depth 
of focus (DOF). Thus, the main advantage of off-axis illumination is an increase in DOF 
(and thus the resolution) for small-pitch patterns. For these small pitch patterns, OAI 
changes the imaging from three-beam to two-beam imaging.

In spatial frequency terms, the distance between the zero and fi rst diffracted orders is 
1/p, where p is the pitch. It will be convenient to convert this spatial frequency distance 
to ‘sigma space’, the spatial frequency normalized by l/NA. In this normalized coordinate 
system, the maximum spatial frequency passing through the lens is 1.0. Thus, the distance 
between diffraction orders in sigma space is l/(pNA). To center the zero and fi rst orders 
about the center of the lens, the zero order (found at the exact center of the lens for nor-
mally incident light) must be shifted by l/(2pNA) in sigma space. Thus, this becomes the 
optimum illumination tilt to give maximum DOF (Figure 10.17). Of course, tilting in the 
opposite direction [a −l/(2pNA) shift in sigma space] will produce the same effect. Com-
bining both tilts into one illumination shape produces an illumination called dipole illu-
mination that adds the required telecentricity behavior to the imaging. Note that the 
optimum illumination tilt is pitch dependent.

Real lithography, however, adds a signifi cant complication to this otherwise simple 
picture. The line/space pattern shown in Figure 10.17 has a specifi c orientation (the 
lines are running into and out of the page) that results in an optimum tilt as shown in the 
fi gure. Most integrated circuit designs will contain many line and space-like features 
that are oriented both vertically and horizontally. A perspective plot of the same diffrac-
tion situation may make this point clearer, as shown in Figure 10.18. If the illumination 
is tilted by the amount discussed above, that tilt, in a specifi c direction, will only help 
the lines and spaces that are properly oriented with respect to that tilt. The other orienta-
tion of lines will not only not be improved by the illumination tilt, they are likely to 

Diffraction Pattern

Lens Aperture

Mask Pattern 
(Equal Lines and Spaces)

(a) (b)

Figure 10.17 Off-axis illumination modifi es the conventional imaging of a binary mask 
shown in (a) by tilting the illumination, causing a shift in the diffraction pattern as shown in 
(b). By positioning the shifted diffraction orders to be evenly spaced about the center of the 
lens, optimum depth of focus is obtained
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be signifi cantly degraded in imaging performance. If both vertical and horizontal lines 
are to be imaged together on the same mask, an illumination shape must be used that 
provides optimum tilts for both geometries. The simplest shape that provides this optimum 
tilt for both horizontal and vertical line/space patterns is called quadrupole 
illumination.

Quadrupole illumination takes the optimum dipole generated for one orientation of 
lines and spaces, then shifts it both up and down in the other direction to create the proper 
angles for the other orientation of lines. The result is four poles evenly spaced about the 
center of the lens, as shown in Figure 10.19. In sigma space, the radial position of the 
center of each pole with respect to the center of the lens that gives optimum DOF is 

2 2λ ( )pNA . Note that this positioning of the quadrupoles gives the same horizontal and 
vertical spacing between poles as in the dipole case, but places them closer to the edge 
of the lens aperture.

While the quadrupole shape provides optimal performance for vertical and horizontal 
lines, other orientations (such as a line/space array oriented at 45 °) will not be optimum. 
For any orientation of lines, the optimal dipole for that pattern will be spread in a direc-
tion perpendicular to the line orientation, and can be shifted parallel to the lines in any 
amount that keeps the dipoles within the lens. If the mask will contain arbitrary orienta-
tions of lines, many rotations of the dipoles will produce an annulus of illumination (and 

Conventional Quadrupole AnnularDipole

Mask 

Lens

Mask 

Lens

Figure 10.18 The position within the lens of the diffracted orders from a pattern of lines 
and spaces is a function of the orientation of the lines and spaces on the mask

Figure 10.19 Various shapes for conventional and off-axis illumination
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thus is called annular illumination). The optimum center of the annular ring is the same 
as the optimum dipole position.

By switching from three-beam imaging to two-beam imaging, OAI improves the 
through-focus performance of the image, but degrades the in-focus quality of the image. 
Since one of the diffraction orders is lost when the illumination is tilted, the in-focus 
image will have reduced image log-slope (that is, reduced NILS). But if the tilt is opti-
mized for the pitch being imaged, this reduced NILS will not change much as the image 
goes out of focus, as seen in Figure 10.20.

For each illumination shape discussed – dipole, quadrupole and annular illumination – 
there is one illumination size that maximizes the DOF for a given pitch. However, this 
illumination shape is only optimum for that one pitch. While pitches close to this optimum 
will get most of the benefi t of the off-axis illumination, pitches suffi ciently far away from 
the optimum will receive little or no benefi t. In particular, isolated lines do not see the 
benefi t of improved DOF when using off-axis illumination. Figures 10.21 and 10.22 show 
an example of how NILS and the DOF of a 100-nm line vary with pitch for quadrupole 
illumination nominally optimized for a 200-nm pitch. The DOF reaches a maximum when 
the pitch is near the designed-for pitch of 200 nm (the nonzero diameter of the poles means 
that the maximum DOF is obtained at a slightly larger pitch, in this case 230 nm). As the 
pitch increases, the DOF very quickly drops, leveling off at the DOF of an isolated line 
(which in this case is about half of the maximum DOF).

There is, however, a very convenient solution to the problem of lack of DOF for isolated 
lines: subresolution assist features. As discussed before, adding assist features around the 
more isolated lines will make them behave more like dense features. When using OAI, 
this means that the more isolated features can gain some of the benefi t that OAI gives in 
terms of DOF. But, as we have seen before, SRAFs can be inserted between lines only 
if there is suffi cient room to fi t them. In general, SRAFs can be inserted when the pitch 
is greater than about 1.7 times the minimum pitch. For pitches less than about 1.3 times 
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the minimum pitch, the off-axis illumination provides suffi cient DOF. Thus, a range of 
pitches emerges, roughly about 1.3–1.7 times the minimum pitch, where NILS and DOF 
are low and there is no possibility of using SRAFs to improve DOF. These pitches are 
sometimes called ‘forbidden’ pitches,7 indicating the lithographer’s desire that these 
pitches be avoided during circuit design. The forbidden pitch phenomenon signifi cantly 
complicates the use of off-axis illumination since most chip designs will employ a wide 
range of pitches.
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Figure 10.21 Quadrupole illumination optimized for a pitch of 200 nm showing how NILS 
varies with pitch both in-focus and with a moderate amount of defocus (NA = 0.85, 
l = 193 nm, 100-nm line, chrome-on-glass mask, quadrupole settings of 0.8/0.2)

Figure 10.22 Quadrupole illumination optimized for a pitch of 200 nm showing how iso-
lated lines do not show improved DOF (NA = 0.85, l = 193 nm, 100-nm line, chrome-on-glass 
mask, quadrupole settings of 0.8/0.2)



434 Fundamental Principles of Optical Lithography

The three major types of off-axis illumination – dipole, quadrupole and annular illu-
mination – have been described above. There are, however, a wide range of other shapes 
possible. Like line/space patterns, any repeating two-dimensional pattern will have an 
optimum source shape to maximize image quality over a range of focus. Thus, customized 
source shapes are often used whenever a certain repeating 2D shape is the most critical 
pattern in the design (commonly the case for DRAM manufacturing).

10.4 Phase-Shifting Masks (PSM)

For a conventional chrome-on-glass mask, the idealized mask transmittance is considered 
to be binary: the light is 100 % transmitted through the glass areas and 100 % blocked by 
the chrome. The resulting Kirchhoff approximation predicts a mask (electric fi eld) trans-
mittance function tm(x,y) that is either 0 or 1 (and thus the term ‘binary’ mask to describe 
this type of transmission). A phase-shifting mask (PSM) modifi es not only the amplitude 
of the transmitted electric fi eld but the phase of the transmitted light as well.

Consider the cross section of a mask structure shown in Figure 10.23. Two nearby 
regions of the mask transmit 100 % of the monochromatic light, but experience different 
optical path lengths. In one region, the light passes through extra glass (or fused silica) 
of thickness d and refractive index ng. In a nearby region, the light travels through air of 
the same thickness (with refractive index of 1). The phase difference between two plane 
waves traveling perpendicularly through the mask will be

 ∆φ π λ= −2 1d n( )g /  (10.5)

By adjusting the thickness of this extra layer of glass, any phase difference between the 
two waves can be obtained. As we shall soon see, it will be very advantageous to make 
this phase-shift exactly 180 ° (p). The thickness required to achieve this will be

 d
n

180
2 1

=
−

λ
( )g

 (10.6)

d Glass Index = ng Air Index = 1 

Light of Wavelength l 

Figure 10.23 Cross section of a mask showing how the phase of the light transmitted 
through one part of the mask can be shifted relative to the phase of light transmitted through 
a nearby part of the mask
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The fused silica most commonly used for mask blanks has a refractive index of 1.56 at 
193 nm and 1.51 at 248 nm. Thus, the resulting glass thickness to give a p phase shift is 
slightly less than one wavelength.

The phase shift depicted in Figure 10.23 can be achieved by adding extra fused silica 
to the region on the left, or by etching away the same amount of mask blank material on 
the right. Alternately, some other material might be added to the mask blank so that both 
the phase and the amplitude transmittance of the light can be manipulated. There are an 
extremely large number of possible variations when both the amplitude and the phase of 
the transmitted light can be varied. However, practical mask-making considerations limit 
the number of different types of transmittance regions on the mask to a small number, 
typically two or three. And while many styles of phase-shifting masks have been investi-
gated, only the two most common, alternating PSM and attenuated PSM, will be described 
in some detail below.

10.4.1 Alternating PSM

A conventional, binary chrome-on-glass mask of lines and spaces will produce a diffrac-
tion pattern of discrete diffraction orders at spatial frequencies that are multiples of one 
over the pitch (see Chapter 2). For a high-resolution pattern, only the zero and the plus 
and minus fi rst diffraction orders pass through the lens (which has a spatial frequency 
cutoff of NA/l), as seen in Figure 10.24a. In fact, it is the interference of the zero-order 
light with the fi rst orders that produces the bright and dark image of the proper pitch. If 
the pitch is made too small, the fi rst-order light diffracts at an angle too large to fi t through 
the objective lens and no image is produced. The resolution limit, then, occurs when the 
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Figure 10.24 A mask pattern of equal lines and spaces of pitch p showing the idealized 
amplitude transmittance function and diffraction pattern for: (a) binary chrome-on-glass 
mask; and (b) alternating phase-shift mask
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fi rst diffracted order (spatial frequency of 1/pitch) lands exactly at the edge of the aperture 
(spatial frequency of NA/l) so that the minimum resolvable pitch is equal to l/NA (i.e. 
kpitch = 1.0). Additionally, the use of partially coherent illumination can extend this clas-
sical resolution limit, but only at the expense of reduced image quality.

Consider now a repeating line/space pattern (with lithographic pitch p = linewidth + 
spacewidth) where every other space has been phase-shifted by 180 °. Letting w be the 
spacewidth, the diffraction pattern can be calculated as the superposition of one repeating 
space with pitch 2p and transmittance 1, plus another repeating space of pitch 2p and 
transmittance −1, shifted by p. Applying the superposition and the shifting theorems of 
the Fourier transform, the diffraction pattern will be
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When j is even, the diffraction order from the shifted space exactly cancels out the 
diffraction order from the unshifted space. Thus, only the odd orders survive, giving
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The resulting mask is called an alternating phase-shift mask8 (also called a Levenson 
PSM or abbreviated Alt-PSM), as depicted in Figure 10.24b. For small pitch patterns, the 
image is obtained from the interference of the two fi rst diffraction orders, located at the 
spatial frequencies of ±1/2p. For coherent TE illumination, the image is

 I x a x p a
w p

( ) ( cos( ))
sin( )= +2 1 2

2 2
1
2

1π π
π

/ ,
/=  (10.9)

The resolution limit is again obtained when these fi rst diffracted orders just barely pass 
through the edge of the lens, making the minimum resolvable pitch equal to 0.5l/NA. 
Thus, the use of an alternating phase-shift mask leads to two-beam imaging with its 
potential for improved resolution and better DOF. Unlike off-axis illumination, however, 
the resulting diffraction pattern provides optimum defocus performance for all pitches, 
since the two diffraction orders will always be equally spaced about the center of the lens, 
regardless of pitch. Also, the two orders will always be of equal magnitude, a condition 
that results in the maximum image log-slope for two-beam imaging.

While the example given above is for a repeating pattern of lines and spaces, alternating 
PSM can be applied to the printing of any narrow, dark feature by shifting the phase of 
light on one side of the feature compared to the other side. Consider an isolated line of 
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width w, where the clear region on the right side of the feature is phase-shifted by 180 ° 
relative to the transmittance on the left side of the feature (Figure 10.25). The diffraction 
pattern for this phase-shifted, isolated line is

 T f i
f w

f
x

x

x
m( ) = cos( )π

π
 (10.10)

For coherent TE illumination, the resulting aerial image can be expressed in terms of 
sine integrals:
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It is interesting to examine the behavior of this image as w goes to zero. For an unshifted 
line, of course, the image would disappear as the chrome linewidth went to zero. But as 
Figure 10.26 shows, as the chrome width goes to zero the aerial image width approaches 

Figure 10.25 Cross section of a mask of an isolated phase-shifted line
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Figure 10.26 Behavior of an isolated phase-shifted line as a function of the chrome line 
width: (a) coherent aerial images for w = 0 and 50 nm, and (b) the aerial image width (at 
an intensity threshold of 0.25) as a function of the mask chrome width
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a constant value of about 0.26l/NA (see section 10.5.3). Setting w = 0 in Equation (10.11), 
we obtain the coherent TE aerial image for this isolated phase edge:9

 I x
NAx

( ) = 





4 2
2π

π
λ

Si2  (10.12)

As Figure 10.26 and Equation (10.12) show, a 0–180 ° phase edge will print as a 
narrow dark line (in fact, the class of strong phase-shifting masks can be defi ned as those 
masks that use a phase edge to print a dark line). While this can be very good if a narrow 
dark line is desired, it can be very bad if the phase edge occurs incidentally and a 
dark line is not desired at that point. As will be discussed in the following section, it can 
be very diffi cult to ensure that no unwanted phase edges appear in a phase-shifted 
layout.

10.4.2 Phase Confl icts

‘Strong’ phase-shift masks, such as alternating PSM, have seen only limited use in manu-
facturing, despite their potential for nearly doubling resolution and extending DOF by 
even more. Strong shifters invariably use etched quartz to create the phase shift and 
require two mask writing steps (including an alignment in between). While the much 
greater complexity and expense of making alternating PSMs have certainly been an 
impediment to their adoption, it is not the mask manufacturing that is the biggest problem, 
but the mask design. Alternating PSM works by shifting the phase of the clear region to 
one side of a small line by 180 ° relative to the phase of the light coming from the other 
side of the line. While simple in concept, attempting to phase-shift an arbitrary layout of 
lines will invariable lead to phase confl icts.

There are two basics types of phase confl icts, as seen in Figure 10.27: no phase shift 
where you want it, and a phase shift where you don’t want it. The fi rst type (Figure 10.27a) 
results in a lack of phase shift across a critical feature when there is an odd wrapping of 
phase assignments. This ‘nonshifted’ feature will not properly print. The second type 
(Figure 10.27b) is also called the termination problem since it usually occurs at the end 
of a line. Alternating phase across each side of a line will result in those two phases 

0 18 º0º 180º 

Unwanted
Phase
Edge

0º 180º

180º180º

0º 180º 

180º180º

No
Phase
Shift

(a) (b)

Figure 10.27 Types of phase confl icts: (a) no phase shift across a critical pattern, and (b) 
the phase termination problem producing an unwanted phase edge
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meeting at the line end. Whenever two opposing phases meet, a dark interference line is 
created causing a resist line to print. (In fact, as seen in the previous section, when print-
ing small lines, the use of chrome is almost superfl uous – it is the 0 to 180 ° phase transi-
tion that causes the dark lines to print.)

The phase confl ict problems do not have an obvious solution. Taking an arbitrary layout 
and coloring the clear regions with two phase colors will lead to numerous confl icts in 
all but a few special cases. One solution, though not yet proven, is to force the original 
layout to be ‘phase friendly’, a layout where no phase confl icts can occur. It is unclear 
whether such a solution can in fact be developed and if so, what the design trade-offs will 
be. The alternative is costly but more practical: use two exposures from two masks. The 
phase-shift mask is used to defi ne the critical features using a dark-fi eld background to 
avoid phase confl icts. A second exposure uses a second bright-fi eld mask that prints the 
noncritical features as well as the open areas not exposed with the fi rst dark-fi eld mask 
(Figure 10.28). Besides the obvious cost disadvantage due to the lower lithography tool 
throughput, this double-exposure approach also tends to have less-than-optimal transistor 
density (small lines can be printed, but not as close together as desired), and has not been 
proven to be practical on all critical levels. The double-exposure PSM process has been 
used successfully for polysilicon gate layers on microprocessors, where gate CD control 
has a profound effect on the value of the device.

10.4.3 Phase and Intensity Imbalance

The most obvious way of shifting the phase of light on a photomask is to change the 
thickness of quartz that one ray of light must pass through compared to another ray. This 
is most easily done by etching the quartz under one space by a set depth d while leaving 
the quartz of an adjacent space unetched (Figure 10.29). Equation (10.5) tells us the 
amount of phase shift as a function of the etch depth of this trench. This equation can 
also tell us how an error in etch depth turns into an error is phase. For 193-nm lithography, 
that translates into about 0.9 ° phase error per nanometer etch depth error.

These previous equations relating phase change to etch depth make an important 
assumption – that the light is traveling vertically. However, as light goes through the 
etched quartz hole, it begins to diffract at the bottom of the hole and its directions deviate 

1800

Glass
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Exposure #1 Exposure #2

+ =

Figure 10.28 Simple example of a double-exposure alternating phase-shift mask approach 
to gate-level patterning
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d

Figure 10.29 Example of a simple alternating phase-shift mask manufacturing approach

from a straight line. The smaller the hole, the greater this diffraction effect. This causes 
a difference in the actual phase of the light compared to the geometric ‘straight line’ 
approximation, and this difference is a function of the size of the etched space. Diffraction 
through the etched space causes a second problem: some of the diffracted light doesn’t 
make it out of the hole. As a result, the etched quartz space appears dimmer than the 
unetched space, creating an intensity imbalance in addition to the phase error (Figure 
10.30). As with the phase error, the degree of intensity imbalance is spacewidth 
dependent.

The real, physical effects of trying to create a 180 ° phase shift by etching the quartz 
as described above are detrimental to lithography. The intensity imbalance causes the two 
adjacent spaces to print as different linewidths, and the phase imbalances cause these 
spaces to have different best-focus settings. There are a number of possible ways to fi x 
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Figure 10.30 Intensity imbalance shown for an alternating phase-shift mask of equal lines 
and spaces
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these problems. In the dual trench method (Figure 10.31a), both the unshifted and shifted 
spaces are fi rst etched to some depth, then the shifted space is further etched to create the 
desired phase shift. This approach can reduce both the phase errors and the intensity 
imbalance, though not perfectly for all space widths, and it complicates the mask-making 
process. In the undercut etch method (Figure 10.31b), the shifted space is etched some-
what isotropically, causing some undercut of the chrome. This widening of the etched 
space reduces the intensity imbalance appreciably. However, to get the intensity imbal-
ance to approach zero, the amount of undercut can become excessive, causing possible 
reliability problems with the overhanging chrome. Finally, the biased space approach 
(Figure 10.31c) uses an OPC tool to bias the etched space larger in order to eliminate the 
intensity imbalance. This bias can be adjusted as a function of the space size and pitch 
in order to eliminate intensity imbalance across the full range of features. In general, none 
of these approaches is perfect at eliminating the phase error as a function of size and 
pitch.

The most common approach to alternating PSM manufacturing is to combine the biased 
space approach with a small amount of undercut. While not perfect, it can provide very 
good intensity balance and minimum phase error across all pitches.

10.4.4 Attenuated PSM

Consider a general repeating line/space transmittance function (with pitch p) where the 
fi rst feature (width w1) has amplitude and phase transmittance of t1 and f1, respectively, 
and the second feature (width w2 = p − w1) has amplitude and phase transmittance of t2 
and f2 (see Figure 10.32). The resulting diffraction pattern will be

 T f a f
j

p
x j x

j
m( ) = δ −



=−∞

∞

∑  (10.13)

)a( (b)

(c)

Figure 10.31 Different approaches for fi xing the phase error and intensity imbalance in 
alternating PSM: (a) dual trench, (b) undercut etch and (c) biased space
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Without loss of generality, it will be convenient to let f1 = 0 so that f2 represents the 
phase difference between the two features. If t1 = 1 and t2 = 0, we have the conventional 
chrome-on-glass result. If we let t1 = 1 but allow t2 > 0, the phase of this second feature 
will now matter. Given our experience above, we will let this phase shift be 180 °. Thus, 
the diffraction orders are
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A mask of this type is called an attenuated PSM (also known as an embedded PSM, or 
EPSM, and sometimes called a half-tone PSM).

Equation (10.16) shows the impact of allowing the nominally dark feature to transmit 
some light that is phase-shifted compared to the bright feature: the zero order is decreased, 
the fi rst order is increased. Consider the simple case of coherent three-beam imaging 
where the aerial image (for TE illumination) is

 I x a a a a x p a x p( ) cos( ) cos( )= + + +0
2

1
2

0 1 1
22 4 2 2 4π π/ /  (10.17)

For the case of equal lines and spaces, the NILS at the nominal line edge is

 NILS
a

a
= 4 1

0

π  (10.18)

Mask Substrate

Light of wavelength l

1φie t2t2 t1
φie t

Attenuating PSM 
Material

Figure 10.32 Cross section of an attenuated PSM showing how the transmitted amplitude 
and phase of the light is modifi ed by the attenuating material
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For an attenuated PSM, using Equation (10.16) evaluated for equal lines and spaces, the 
NILS becomes

 NILS
t

t
= +

−




8

1

1
2

2

 (10.19)

As the transmittance of the attenuated line increases, the NILS increases as well.
While the discussion above shows the advantages of an attenuated PSM for three-beam 

imaging, a high-resolution lithography process will often use off-axis illumination in order 
to improve depth of focus for small pitch patterns. For this case, a coherent two-beam 
image (for TE illumination) is
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For the case of equal lines and spaces, the NILS at the nominal line edge is
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For the attenuated PSM case,
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For the three-beam imaging case, the best NILS is obtained by making the 0th order 
small and the 1st order big. For the two-beam case, maximum NILS comes from making 
the two orders equal in amplitude. To achieve this maximum,
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The above equations relate diffraction orders, images and the NILS to the electric fi eld 
transmittance of the attenuated PSM material. It is common, however, to specify an 
attenuated PSM by its intensity transmittance, equal to (t2)2. Thus, for the two-beam 
imaging equal line/space patterns, the optimum intensity transmittance of the PSM is 
4.93 %.

Note that the transmittance used in the above equations was set to 1.0 for the transmit-
tance of the mask substrate. Thus, the attenuated material transmittance is defi ned relative 
to the transmittance of the mask substrate. It is common, however, for the manufacturers 
of mask blanks to specify the transmittance of the EPSM blank in absolute terms. Letting 
tblank be the transmittance of the EPSM coated substrate, and tglass the transmittance of the 
glass or fused silica substrate without EPSM material, then

 t
t

t
2 = blank

glass

 (10.24)

For example, a common commercially available EPSM blank has an intensity trans-
mittance of 6 %. The fused silica substrate itself has a transmittance of approximate 
92 % at 248 nm and about 91 % at 193 nm. Thus, the relative intensity transmittance 
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of the EPSM features is actually 6.5 and 6.6 % for 248- and 193-nm wavelengths, 
respectively.

Attenuated PSM has been very widely adopted for contact and via printing, and is fairly 
mainstream for other critical lithography layers as well. This type of PSM is generally 
called a ‘weak’ shifter – it uses phase-shifting to improve the image at the edge, but does 
not defi ne the edge by a 0–180 ° phase transition. Its great advantage is the simplicity and 
low cost of replacing chrome-on-glass (COG) masks, the nonphase-shift alternative. 
Essentially, an existing design based on COG can be converted to an EPSM by simply 
recalibrating the optical proximity correction models used to apply OPC to the design. 
Mask manufacturing, while certainly more diffi cult than COG, is not dramatically differ-
ent (the chrome is replaced by a more complex absorber such as molybdenum silicon) 
and only somewhat more costly. Attenuated PSM does not suffer from phase confl icts 
and exhibits much reduced phase and intensity variation as a function of feature size as 
compared to alternating PSM. When coupled with off-axis illumination and SRAFs, it 
can provide most of the benefi t of the much more diffi cult and expensive alternating PSM 
alternative.

One problem with the use of attenuated PSM is the occurrence of sidelobes. Figure 
10.33 shows an image of an isolated space (k1 = 0.48) using a 6 % attenuated PSM. Inter-
ference between light from the space and light from the background EPSM material 
cancels out near the space edge to make the intensity go to zero and sharpen the image 
near the edge (i.e. increase the NILS). However, away from the edge diffracted light from 
the unshifted space can add constructively with the EPSM transmission to give a bright 
region called a sidelobe. Even though the intensity transmittance in this attenuated area 
is only 6 %, the brightness of this sidelobe is 17 % (in this case). A higher level of EPSM 
transmittance is likely to cause the sidelobe to print, resulting in catastrophic failure. 
Sidelobes can be suppressed, however, using strategically placed assist slots. Since the 
phase of the sidelobe electric fi eld is about 180 ° with respect to the unshifted transmit-
tance of a space, placing an unshifted assist space (small enough in size so that it won’t 
print) at the location of the sidelobe will have the paradoxical effect of reducing the 
intensity at that point.
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Figure 10.33 An isolated space (100 nm, NA = 0.93, l = 193 nm, s = 0.5) imaged from a 
6 % attenuated PSM mask showing sidelobes
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10.4.5 Impact of Phase Errors

All of the analyses of phase-shifting masks above assume that the mask was designed 
and manufactured to give the ideal 180 ° phase shift. However, in practice there will 
invariably be phase errors. It will be important to understand the impact of phase errors 
on lithographic performance and the magnitude of these errors that can be tolerated. To 
investigate the impact of phase errors, the three analytical cases described in the previous 
sections (an isolated phase edge, an alternating PSM of lines and spaces, and an attenu-
ated PSM pattern of lines and spaces) will be analyzed.

Consider an arbitrary isolated edge pattern oriented in the y-direction that has left and 
right sides with amplitude and phase transmittances of t1, f1 and t2, f2, respectively. 
Looking fi rst at the simple case of coherent illumination, the resulting aerial image electric 
fi eld will be
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NAxi i i i
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where x = 0 is the position of the edge. For an ideal phase edge, t1 = t2 = 1, f1 = 0, and 
f2 = p (180 °). For a phase edge with phase error, we can let f2 = p + ∆f. Using these 
values in Equation (10.25) and squaring the magnitude of the electric fi eld to obtain the 
intensity of the aerial image,
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For small phase errors, the small angle approximation to the cosine can be used,

 cos∆ ∆φ φ≈ −1
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 (10.27)
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Looking closely at Equation (10.28), it is interesting to observe that the effect of the phase 
error is to take the ideal image (when ∆f = 0) and add a uniform (d.c.) fl are (see Chapter 
3) in the amount of ∆f2/4. Like fl are, a phase error for this feature will add a background 
dose, in this case caused by the incomplete cancellation of the out-of-phase light across 
the edge.

To put some numerical relevance to this relationship, an 11.5 ° phase error is equivalent 
to a 1 % fl are level. Since fl are levels of 1 % or more are commonly tolerated in litho-
graphic projection tools, one would expect phase errors of 11.5 ° or more should be easily 
tolerated. While the above analysis assumes coherent illumination, simulation of partially 
coherent imaging of the same mask feature has shown the same relationship between 
phase error and fl are (see Figure 10.34).

It is well known that phase errors also cause a change in the response of a phase-mask 
feature to focus errors. Again using simulation, the effect of phase errors on the process 
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window of an isolated phase edge is no different than the effect of fl are on the process 
window. However, a new effect is introduced. When the phase error is not zero, going 
out of focus produces an asymmetry in the image that results in an effective image place-
ment error. This image placement error varies linearly with defocus, acting just like a 
telecentricity error. Over the full range of focus within the process window, the impact 
on image placement error is about ±5 nm for a 10 ° phase error.

Consider now an alternating PSM pattern of lines and spaces with spacewidth ws and 
linewidth wl. Assuming that the lines have zero transmittance, we shall let two adjacent 
spaces have arbitrary transmittances and phases of t1, f1 and t2, f2, respectively. For high-
resolution patterns, only the zero and fi rst diffracted orders will pass through the lens and 
be used to generate the aerial image. Defi ning a coordinate system with x = 0 at the center 
of the fi rst space and letting p = ws + wl = the pitch, the amplitude of the zero and fi rst 
diffraction orders will be given by

 

a
w

p
t t

a a
w p

t t

i i

i i

0 1 2

1 1 1 2

2

2

1 2

1 2

= +

= = −−

s

s

e e

/
e e

( )

sin( )
( )

φ φ

φ φπ
π

 (10.29)

The electric fi eld of the aerial image (assuming coherent illumination for simplicity) 
will be

 E x a a x p( ) cos( )= +0 12 π /  (10.30)

For an ideal alternating PSM, t1 = t2 = 1, f1 = 0, and f2 = p (180 °). For a mask with 
phase error, we can let f2 = p + ∆f. Using these values in Equation (10.29),
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Figure 10.34 Impact of a 20 ° phase error on the aerial image of an isolated phase edge 
(l = 248 nm, NA = 0.75, s = 0.5)
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where the approximate relations on the right make use of a small angle approximation. 
Using these values in Equation (10.30) and squaring the magnitude of the electric fi eld 
to obtain the intensity of the aerial image,
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where Iideal is the image of the alternating PSM for no phase error. Just as in the case of 
the phase edge discussed above, the impact of phase error on the image of an alternating 
PSM looks just like the addition of fl are to the image. In this case, however, the amount 
of effective fl are is reduced by the square of the shifted space duty ratio of the mask 
(ws/2p). For equal lines and spaces, ws/2p = 1/4 so that the effective fl are for this Alt-PSM 
pattern is four times smaller than the effective fl are for an isolated phase edge.

It would seem, then, that the wonderful properties of the alternating phase-shifting 
mask make them relatively immune to the small phase errors that will inevitably occur 
during mask fabrication. Unfortunately, a closer look reveals a more insidious problem. 
When the image goes out of focus, any phase error in the mask will interact with the 
defocus to cause an asymmetry between the shifted and unshifted spaces. The culprit lies 
in the zero order.

For no phase error, the zero order is completely missing (a0 = 0). As a result, the image 
is formed completely by the interference of the two fi rst orders. Since these orders are 
evenly spaced about the center of the lens, they have a natural immunity to focus errors, 
making improved depth of focus one of the most attractive qualities of the alternating 
phase mask. As the zero order grows (with increased phase error on the mask), this third 
beam ruins the natural symmetry of the fi rst orders and adds a focus dependency. Again 
for the case of coherent illumination and assuming small phase errors, the aerial image 
when out of focus will be
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where Eideal is the electric fi eld for the no phase error, no defocus case [i.e. Equation 
(10.30) with ∆f = 0].

Obviously, the interaction of phase error ∆f and defocus distance d adds an error term 
to the in-focus aerial image as shown in Equation (10.33). The nature of this error term 
lies in the nature of the electric fi eld Eideal. Unlike the intensity, the electric fi eld can be 
negative. In fact, the electric fi eld will be negative under the phase-shifted spaces and 
will be positive under the unshifted spaces. Thus, for a positive focus error (d > 0) and 
phase error (∆f > 0), the error term in Equation (10.33) will make the shifted space 
dimmer and the unshifted space brighter. For a negative focus error, the opposite will be 
true. This effect is largest for smallest pitches p as can be seen from the argument of the 
sine term. This asymmetry between adjacent spaces through focus is the most detrimental 
effect of phase errors for an alternating phase-shifted mask and is illustrated in Figure 
10.35.

The lithographic consequences of this intensity imbalance of adjacent spaces through 
focus are quite interesting. From the perspective of the space, the brighter space will print 
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wider (assuming a positive resist), so that one space will be wider on one side of focus 
while its neighbor will be wider on the other side of focus. Things look quite different 
from the perspective of the line, however. As the space to one side of the line gets wider 
with a focus error, the space to the other side of the line will get narrower. As a result, 
the linewidth remains about constant but its position shifts away from the brighter space 
and toward the dimmer space. Thus, the impact of the interaction of phase and defocus 
errors for an alternating PSM can be seen as an error in the placement of the line in the 
PSM array. When both transmission and phase errors are present, the two effects on space 
image brightness can cancel at some defocus. The resist image with the best fi delity would 
then appear out of focus.

While alternating aperture PSMs are important, the overwhelming majority of phase-
shift masks used today are attenuated PSMs. How does a small phase error affect the 
lithographic performance of an attenuated PSM? Consider an equal line/space pattern 
where the line has an electric fi eld amplitude and phase transmittance of t and f, respec-
tively. For a mask with phase error, we can let f = p + ∆f. Using this value in Equation 
(10.15), and assuming that the phase error is small,
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Calculating the magnitude and the phase of each diffraction order,
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Figure 10.35 Aerial images for an alternating phase-shifting mask with a 10 ° phase error 
for +400 nm defocus (dots), no defocus (solid), and −400 nm of defocus (dashed). (100-nm 
lines and spaces with l = 248 nm, coherent illumination, 0.25 < k1 < 0.5)
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Let’s investigate the impact of the changes in the magnitude and phase of each diffracted 
order separately. As shown in Equations (10.35) and (10.36), the magnitudes of the orders 
vary as the phase error squared (and so should be quite small for small errors). As an 
example, for a 6 % EPSM with a 10 ° phase error, the magnitudes of the zero and fi rst 
orders change by only +0.7 and −0.2 %, respectively. The resulting impact on the aerial 
image is quite small, less than 0.2 % intensity difference in most cases.

The phase of the diffraction orders, on the other hand, varies directly as the EPSM 
phase error. In fact, the phase difference between the zero and fi rst orders, which ideally 
would be zero, becomes in the presence of EPSM phase error
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What is the impact of such a change in the phase difference between the diffraction 
orders? Focus also causes a phase difference between the zero and fi rst orders. For the 
simple case of coherent illumination (that is, three-beam imaging), a defocus of d causes 
a phase difference of
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 (10.38)

Thus, the effect of the EPSM phase error will be to shift best focus by an amount 
given by
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Possibly a more useful expression for this effective focal shift is as a function of the depth 
of focus. Using the simple Rayleigh criterion for DOF,

 DOF k
p≈ 2

2

λ
 (10.40)

where k2 is some number less than 1 (0.7 is reasonable). Combining these expressions, 
and assuming that t2 << 1,
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π

φ φshift ≈ ≈2
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For a 6 % EPSM, focus will shift by about 0.4 % of the DOF per degree of EPSM phase 
error. Remembering that Equation (10.39) was derived under the simple assumption of 
coherent illumination, full image simulations show that the use of partial coherence can 
double or triple the focus shift compared to the coherent case. Thus, a 10 ° phase error 
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might cause best focus to shift by 10 % of the DOF, potentially causing a 20 % loss in 
DOF. Off-axis illumination, however, tends to lower this effect since this illumination is 
specifi cally intended to minimize the impact of phase errors between the zero and fi rst 
orders. Figure 10.36 illustrates this focus-shift effect for three-beam imaging, showing 
also that unlike alternating PSM, there is no pattern placement change through focus in 
the presence of an EPSM phase error.

In general, attenuated phase-shift masks are much less sensitive to phase errors than 
alternating phase-shift masks. The major impact of small phase errors is a focus shift, so 
the biggest worry would be a variation of EPSM phase across a reticle rather than a mean 
to target error. Since cleaning can cause phase errors in an EPSM mask, understanding 
the impact of these errors is quite important.

10.5 Natural Resolutions

The discussion above defi ned feature resolution with respect to CD control, (using depth-
of-focus as the metric of CD control) and pitch resolution with respect to the frequency 
cutoff of the imaging lens. There are, however, three special purpose metrics of resolution 
that can also be used to defi ne the ultimate capabilities of an imaging system. These 
special metrics, though defi ned for very specifi c mask features, have almost universal 
appeal as ‘natural’ metrics of imaging resolution.

10.5.1 Contact Holes and the Point Spread Function

The fi rst metric concerns the smallest possible contact hole that can be printed. Consider 
a mask pattern of an isolated contact hole in a chrome (totally dark) background. Now 
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Figure 10.36 A small phase error in an EPSM mask changes the aerial image in the same 
way as a small shift in focus. Here, ±10 ° phase error moves the image closer and farther 
away from best focus (wavelength = 248 nm, NA = 0.8, 180-nm lines/space pattern, coherent 
illumination, 150-nm defocus). For this case, a 10 ° phase error shifts best focus by about 
14 nm
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let that hole shrink to an infi nitesimal pinhole. If this small pinhole could be imaged 
in a positive resist, how big would the resist hole be? Of course, there is a practical 
problem with experimentally determining this ‘resolution’: as the pinhole shrinks, the 
intensity of light reaching the wafer becomes infi nitesimally small, making the required 
exposure time for the resist grow to infi nity. However, from a theoretical perspective, we 
can avoid this problem by assuming we are very patient and calculating the printed 
result.

Thinking fi rst of just the imaging tool, what would be the aerial image resulting from 
this infi nitely small pinhole? We will normalize our aerial image coming from the pinhole 
to have a peak intensity of 1.0 when in-focus for an ideal, aberration-free optical system. 
The aerial image of a pinhole, when normalized in this way, is called the point spread 
function (PSF) of the optical system (see Chapter 2). The PSF is a widely used metric of 
imaging quality for optical system design and manufacture, and is commonly calculated 
for lens designs and measured on fabricated lenses using special benchtop equipment. 
For classical imaging applications, the PSF can be calculated as the square of the magni-
tude of the Fourier transform of the imaging tool exit pupil. For an in-focus, aberration-
free system of wavelength l, the pupil function is just a circle whose radius is given by 
the numerical aperture NA, and the PSF becomes

 PSF
J

ideal = 1
2

2( )πρ
πρ

 (10.42)

where J1 is the Bessel function of the fi rst kind, order one, and r is the radial distance 
from the center of the image normalized by multiplying by NA/l.

How wide is the PSF? For large contact holes, the normalized intensity at a position 
corresponding to the mask edge (that is, at the desired contact hole width) is about 0.25–
0.3. If we use this intensity range to measure the width of the PSF, the result is a contact 
hole between 0.66 and 0.70l/NA wide. Thus, this width represents the smallest possible 
contact hole that could be imaged with a conventional chrome-on-glass (i.e. not phase-
shifted) mask. If the contact hole size on the mask approaches or is made smaller than 
this value, the printed image is controlled by the PSF, not by the dimensions of the mask. 
Making the contact size on the mask smaller only reduces the intensity of the image peak. 
Thus, this width of the PSF, the ultimate resolution of a chrome-on-glass contact hole, is 
a natural resolution of the imaging system.

If instead of using a chrome-on-glass mask when making our conceptual pinhole an 
attenuated PSM is used, the width of the resulting PSM is decreased. Assuming that the 
mask background electric fi eld transmittance is t and the phase shift is exactly 180 °, the 
resulting PSF is

 PSF

J
t

t
ideal =

−

−

1
22

1

( )πρ
πρ

 (10.43)

A graph of this PSF for t = 0.245 (a 6 % intensity transmittance ESPM) compared to 
t = 0 (a chrome-on-glass mask) is shown in Figure 10.37. At an intensity threshold of 
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0.25, the COG PSF has a width of about 0.705l/NA, whereas the EPSM mask produces 
a PSF with a width of 0.595l/NA (16 % narrower). Note that the narrowing of the PSF 
comes at the expense of increased sidelobes, which reach an intensity of nearly 0.25 for 
this 6 % EPSM mask. Thus, 6 % intensity transmittance represents about the maximum 
practical transmittance level when printing isolated contact holes unless some sort of 
sidelobe suppression (in the form of strategically placed assist slots) is employed.

10.5.2 The Coherent Line Spread Function (LSF)

If instead of an infi nitely small pinhole in a dark background an infi nitely narrow space 
is used, the resulting image is called the line spread function (LSF). Unlike the PSF, 
however, the LSF image will depend on the illumination used. For coherent illumination, 
the LSF can be calculated as an integral over one dimension of the coherent PSF:

 LSF x
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For incoherent illumination,
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Alternately, the coherent LSF can be calculated using the image of an isolated space. 
From Chapter 2, the TE coherent image of an isolated space of width w is
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Figure 10.37 Comparison of the ideal PSM from a chrome-on-glass (COG) mask and a 6 % 
intensity transmittance embedded phase-shifting mask (EPSM)
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Normalizing this image so that the peak intensity is 1,
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Taking the limit of Equation (10.47) as w goes to zero (by applying L’Hopital’s rule and 
realizing that the derivative of the sine integral is just the sinc function),
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Using an intensity threshold of 0.25, the coherent illumination LSF has a width of 0.603l/
NA, and is thus 15 % narrower than the PSF. The LSF is a natural resolution limit of an 
isolated space.

10.5.3 The Isolated Phase Edge

Another special mask feature which exhibits a similar natural resolution behavior is the 
180 ° phase edge, as described previously in section 10.4.1. Consider a chromeless mask 
with a large region shifted by 180 ° to produce a long, straight boundary between the 0 ° 
and the 180 ° regions. Since light transmitted to either side of this edge will have a 180 ° 
phase difference, the light that diffracts and interferes under the edge will cancel out, 
producing a dark line centered under the phase edge. As a result, this isolated 180 ° phase 
edge will print as a narrow line in a positive photoresist.

For coherent TE illumination, the in-focus image of an isolated phase edge was given 
in Equation (10.12). Figure 10.38 shows a graph of this equation. The width of this image 
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Figure 10.38 The aerial image of an isolated 180 ° phase edge (shown here using coherent 
illumination) will produce a narrow line in a positive resist
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can be estimated in the same way as the PSF. Assuming an intensity level between 0.25 
and 0.3, the width of the phase edge line is between 0.26 and 0.29l/NA. The use of par-
tially coherent illumination does not appreciably change this width.

What controls the width of the image of an isolated phase edge? Obviously the edge 
itself does not have a ‘width’. Like the PSF and the LSF, the width of the phase edge 
image is in fact an inherent property of the imaging system, controlled by its numerical 
aperture and wavelength. In fact, analogous to the LSF, the image of Equation (10.12) 
could be called the phase edge line spread function. The size of this tiny line is the 
‘natural’ resolution of any 180 ° phase edge. But its importance goes beyond just the 
printing of small isolated lines. A phase-shifted mask can be thought of as a collection of 
0–180 ° phase transitions. Each transition has a tendency to print at its natural linewidth 
of about 0.26l/NA. Much insight can be gained by approaching phase-shifting mask 
design with this natural linewidth in mind.

For the special types of mask features described here, the resolution of that feature 
becomes a function only of the properties of the imaging system and, strangely, becomes 
independent of the size of the feature on the mask. I call these resolution properties the 
‘natural’ resolutions of the imaging tool.

Problems

10.1. Figure 10.1 shows an example of how the depth of focus varies with feature size. 
Generate an equivalent plot using the Rayleigh DOF criterion. Assume equal lines 
and spaces, coherent three-beam imaging, and k2 = 0.8.

10.2. Derive the diffraction pattern of a semi-dense line (width w, pitch p) with single 
SRAFs (width wSRAF) placed in the center of the spaces:

0

1

p

tm(x)

w

x = 0

w

wSRAF

10.3. Considering the FEM plots of Figure 10.14 to be typical of dense and isolated 
lines, how does the iso-dense bias vary with focus?

10.4. What is the smallest value of kpitch possible under the following scenarios:
(a) COG mask and conventional illumination as s goes to zero (i.e. coherent 

illumination)
(b) Alt-PSM mask and conventional illumination as s goes to zero (i.e. coherent 

illumination)
(c) COG mask and dipole illumination with very small poles
(d) COG mask and quadrupole illumination with very small poles

10.5. Explain the main advantage of dipole illumination compared to quadrupole illu-
mination. Explain the main disadvantage of dipole illumination compared to 
quadrupole illumination.
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10.6. For an optimized dipole illuminator, a two-beam aerial image results:

 I x a a a a x p( ) cos( / )= + +0
2

1
2

0 12 2π

Since the dipole can only print small-pitch patterns oriented in one direction, one 
possible solution is to add a second dipole rotated by 90 ° to obtain an illuminator 
called a cross-quadrupole:

Cross-
quadrupole
Illuminator

When printing at the pitch for which the dipole and quadrupole are optimized, 
derive the resulting in-focus aerial image (assume TE illumination) for a 
cross-quadrupole.

10.7. The coherent two-beam aerial image for an alternating PSM mask is given in 
Equation (10.9). From this, derive the image for a chromeless repeating line/space 
pattern by letting the width of the chrome line in the alternating PSM mask go to 
zero. Qualitatively, what is the effect of reducing the chrome width?

10.8. Derive Equation (10.10), the diffraction pattern for an isolated phase-shifted 
line.

10.9. Derive Equation (10.11), the coherent aerial image for an isolated phase-shifted 
line.

10.10. Derive Equation (10.15) from Equation (10.14).
10.11. Equations (10.16) and (10.17) give the coherent (TE) image for an attenuated PSM 

pattern of lines and spaces. What happens to this image as t2 goes to 1? (Such a 
mask is called a chromeless PSM.)

10.12. Derive an equation for the coherent LSF when using an attenuated PSM. What is 
the maximum sidelobe intensity for the LSF for a 6 % attenuating PSM?

10.13. Derive an expression for the normalized image log-slope of the isolated phase 
edge, assuming the nominal feature size is at an intensity threshold of 0.25.
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Appendix A
Glossary of Microlithographic Terms

‘When I use a word, it means just what I choose it to mean – neither more nor less.’
Humpty Dumpty (Lewis Carroll’s Alice’s Adventures in Wonderland)

The following is a list of common words or phrases and their corresponding defi nitions 
as used in the fi eld of semiconductor microlithography. For a fi eld as rich and diverse as 
lithography, no list of terms could ever be complete. I hope, however, that the terms con-
tained here are suffi ciently representative that this glossary might be useful as a reference. 
In particular, people new to or outside of the fi eld of lithography should benefi t from its 
use. The defi nitions assume the reader has a general technical background and a basic 
familiarity with the semiconductor industry.

Format of Glossary Entries:
Glossary Item Defi nition of the glossary item, in the context of semiconductor micro-

lithography, is given here.
Example: An example sentence that illustrates the use of the glossary item appears here.

The example sentence is meant to illustrate the use of the glossary item in the context of 
lithography, but is not a part of the defi nition of the item.

A
ABC Parameters see Dill Parameters.

Aberrations, Lens Any deviation of the real performance of an optical system (lens) 
from its ideal (Fourier optics) performance. Examples of lens aberrations include coma, 
spherical aberration, fi eld curvature, astigmatism, distortion and chromatic aberration. 
One way to describe lens aberrations is through a Zernike polynomial fi t to the wave-
front error at the exit pupil of the lens for each fi eld point.

Example: The aberrations of the objective lens caused a noticeable degradation in image 
quality.

Fundamental Principles of Optical Lithography: The Science of Microfabrication. Chris Mack.
© 2007 John Wiley & Sons, Ltd. ISBN:  978-0-470-01893-4
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Absorption Coeffi cient The fractional decrease in the intensity of light traveling 
through a material per unit distance traveled. See also Extinction Coeffi cient.

Example: The absorption coeffi cient of the ArF resist was so high that only a thin fi lm of 
the resist could be used.

Acid-Catalyzed Resist A type of chemically amplifi ed resist where an acid is the 
product of exposure and this acid serves as the catalyst for a thermal reaction which 
changes the solubility of the resist. See also Chemically Amplifi ed Resist.

Example: Acid-catalyzed resists are the most common type of resist for deep-UV 
lithography.

Activation Energy Defi ned by its role in the Arrhenius equation, the activation energy 
determines the temperature dependence of chemical reaction rate constants, diffusivi-
ties, and other temperature-dependent rate terms. High activation energies produce a 
large temperature dependence.

Example: This low activation energy resist will begin its acid-catalyzed deblocking reac-
tion at room temperature.

Actinic Wavelength The wavelength used to expose the photoresist in a lithographic 
system.

Example: Measurement of the refractive index of the substrate at the actinic wavelength 
is necessary in order to design an optimal BARC.

Additive Patterning A process by which material is added in the places where the 
pattern is to be formed. Examples include lift-off and electroplating processes.

Example: Due to our inability to plasma etch copper, an additive patterning approach 
was chosen instead.

Adhesion Promoter A chemical that is applied to the surface of a wafer in order to 
improve the adhesion of resist to the wafer, often by eliminating water from the wafer 
surface.

Example: The HMDS, used as an adhesion promoter, was applied using the vapor prime 
unit.

Advanced Process Control (APC) The use of automated feedback and feed-forward 
loops to control a lithographic process.

Example: Both rework rates and end-of-line yield were improved after turning on the 
overlay APC system.

Aerial Image An image of a mask pattern that is projected onto the photoresist-coated 
wafer by an optical system.

Example: The aerial image of the isolated line was found to differ signifi cantly from that 
of the dense line.

Aligner see Mask Aligner.

Alignment The act of positioning the image of a specifi c point on a photomask (the 
alignment key) to a specifi c point on the wafer (the alignment target) to be printed. 
Alignment accuracy is the overlay measured at this alignment target.

Example: The alignment system of the stepper used an advanced image recognition 
algorithm.
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Alignment Key The pattern on a photomask used to perform alignment.
Example: This mask had several alignment keys for use on several different steppers.

Alignment Mark see Alignment Key or Alignment Target.

Alignment Target The pattern on a wafer used to perform alignment.
Example: A mesa structure is used as the alignment target for the gate level of this 

device.

Alternating PSM A type of phase-shifting mask where the clear region to one side of 
a small chrome line is shifted in phase by 180° compared to the clear region to the 
other side of that same line. Also called alternating aperture PSM or Levenson PSM.

Example: Although alternating PSM promises extreme resolution and good depth of focus, 
phase confl icts limit their use for general circuit patterns.

Annular Illumination A type of off-axis illumination where a doughnut-shaped 
(annular) ring of light is used as the source.

Example: The use of annular illumination was found to give a noticeable improvement in 
depth of focus for these features.

Antirefl ective Coating (ARC) A coating that is placed on top or below the layer of 
resist to reduce the refl ection of light, and hence, reduce the detrimental effects of 
standing waves or thin-fi lm interference. See also Top Antirefl ective Coating and 
Bottom Antirefl ective Coating.

Example: By optimizing the thickness of the antirefl ective coating, the swing curve ampli-
tude was reduced to almost zero.

APC see Advanced Process Control.

Aperture, Numerical see Numerical Aperture.

Aperture Stop see Pupil, Lens.

ARC see Antirefl ective Coating.

ArF Argon Fluoride, a type of excimer laser used in optical lithography that emits light 
at about 193 nm.

Example: Due to the diffi culty in producing calcium fl uoride lens components, ArF expo-
sure tools are considerably more costly to manufacture.

Arrhenius Coeffi cient Defi ned by its role in the Arrhenius equation, the Arrhenius 
coeffi cient is the pre-exponential term in the equation that defi nes the temperature 
dependence of chemical reaction rate constants, diffusivities and other temperature-
dependent rate terms.

Example: The Arrhenius coeffi cient is often thought of as the extrapolation of the tem-
perature-dependent rate constant to an infi nitely high temperature.

Arrhenius Equation The temperature dependence of chemical reaction rate constants, 
diffusivities and other temperature-dependent rate terms as an exponential relationship 
with the inverse of absolute temperature.

Example: The Arrhenius equation is used to determine how reaction rates and diffusion 
change with PEB temperature.
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Aspect Ratio The ratio of a resist feature’s height to its width.
Example: The resist images suffered from pattern collapse whenever the aspect ratio 

exceeded about 3 : 1.

Astigmatism An aberration that results in a shift in best focus for radially oriented line 
patterns compared to tangentially oriented patterns.

Example: Typically, a variation of H–V bias with focus is a sign of astigmatism.

Attenuated PSM A type of phase-shifting mask where the nominally dark region of 
the mask is allowed to transmit a fraction of the light (e.g. 6 %) with a 180° phase shift 
from light transmitted through the clear regions of the mask.

Example: Although alternating PSM provides better performance, attenuated PSMs have 
become very popular due to their ease of design and manufacture.

Autofocus System A part of a projection imaging tool that automatically places the top 
surface of the wafer a set distance from the focal plane.

Example: Despite the sophistication of the scanner’s autofocus system, the lithographer 
must still determine best focus manually by shooting a focus–exposure matrix.

B
Bandwidth, Illumination The range of wavelengths that is used to illuminate the mask, 

and thus to expose the resist.
Example: The illumination bandwidth for a typical g-line stepper is about 10-nm 

FWHM.

BARC see Bottom Antirefl ective Coating.

Bias see Mask Bias.

Binary Mask A mask made up of opaque and transparent regions (for example, one 
composed of chrome and glass) such that the transmittance of the mask is either 0 or 
1. Also called a binary intensity mask.

Example: The needed resolution was not obtained using a conventional binary mask.

Birefringence A somewhat rare property of some materials (usually crystals) where the 
refractive index of the material is a function of the polarization of the light passing 
through the material.

Example: The discovery that calcium fl uoride exhibits signifi cant intrinsic bire-
fringence caused considerable consternation during the development of 157-nm 
lithography.

Bleaching, Photoresist The decrease in optical absorption of a photoresist due to the 
chemical changes that occur upon exposure to light.

Example: Without photoresist bleaching, this resist could not be used effectively at thick-
nesses greater than about 2 mm.

Bossung Curves see Focus–Exposure Matrix (named after John Bossung, the engineer 
who fi rst published these curves.).

Bottom Antirefl ective Coating (BARC) An antirefl ective coating placed just below 
the photoresist to reduce refl ections from the substrate.
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Example: The use of a bottom antirefl ective coating not only reduced the swing curve, 
but also nearly eliminated the effects of refl ective notching.

C
CAR see Chemically Amplifi ed Resist.

Catadioptric An optical system made up of both refractive elements (lenses) and refl ec-
tive elements (mirrors).

Example: The catadioptric lens system was capable of accepting a much broader illumi-
nation bandwidth than conventional all-refractive lenses.

Catoptric An optical system made up of only refl ective elements (mirrors).
Example: The fi rst Perkin–Elmer scanners used a unique catoptric lens design.

Cauchy Coeffi cients Coeffi cients of the Cauchy equation, which gives an empirical 
expression for the variation of the index of refraction of a material as a function of 
wavelength.

Example: The Cauchy coeffi cients of the resist are needed in order to use the refl ectance 
spectroscopy tool to measure resist thickness.

CD see Critical Dimension.

Characteristic Curve see Contrast Curve.

Chemically Amplifi ed Resist A type of photoresist, most commonly used for deep-UV 
processes, which, upon pos-texposure bake, will multiply the number of chemical reac-
tions through the use of chemical catalysis.

Example: The chemically amplifi ed resist exhibited a large sensitivity to airborne base 
contaminants.

Chromatic Aberration A change in the aberration behavior of a lens as a function of 
wavelength.

Example: For KrF lithography tools, the main chromatic aberration is a linear shift in 
focus as a function of wavelength.

Circular Defi nition see Defi nition, Circular.

Clearing Dose (Eo) see Dose-to-Clear.

Coater, Resist Equipment used to perform resist coating. This equipment is often a part 
of a resist track or cluster tool.

Example: This resist coater can be used at spin speeds from 1000 to 5000 rpm.

Coating, Resist Spin see Spin Coating.

Coherence Factor see Partial Coherence.

Coherence, Spatial The phase relationship of light at two different points in space at 
any instant in time. For mask illumination, the spatial coherence is determined by the 
range of angles incident on the mask.

Example: For lithographic tools, the spatial coherence of the illumination is most easily 
described by the partial coherence factor.
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Coherent Illumination A type of illumination resulting from a point source of light 
that illuminates the mask with light from only one direction. This is more correctly 
called spatially coherent illumination.

Example: Although coherent illumination gave the best resolution performance for the 
phase-shifting mask, it resulted in very poor illumination uniformity.

Coma An aberration that is often seen as a difference in linewidth between the left and 
right lines in a group of fi ve lines.

Example: Coma also causes an asymmetry in resist profi les (right side versus left side) 
that changes as a function of focus.

Condenser Lens Lens system in an optical projection system that prepares light to 
illuminate the mask.

Example: For Köhler illumination, the condenser lens forms an image of the source at 
the entrance pupil of the objective lens.

Contact Printing A lithographic method whereby a photomask is placed in direct 
contact with a photoresist-coated wafer and the pattern is transferred by exposing light 
through the photomask into the photoresist.

Example: Although exhibiting good resolution, contact printing was limited by defect 
densities.

Contrast, Image see Image Contrast.

Contrast, Resist see Photoresist Contrast.

Contrast Curve see H–D curve.

Contrast Enhancement Layer (CEL) A highly bleachable coating on top of the pho-
toresist that serves to enhance the contrast of an aerial image projected through it.

Example: The contrast enhancement layer resulted in improved resist sidewall angle, but 
at the cost of reduced throughput.

Corner Rounding The rounding of a nominally sharp, square corner of a printed litho-
graphic feature due to the inherent resolution limits of the patterning process.

Example: The corner rounding on the reticle resulted in a reduction of the total energy 
transmitted through the mask opening.

Critical Dimension (CD) The size (width) of a feature printed in resist, measured at a 
specifi c height above the substrate. Also called the linewidth or feature width. (Over 
time, the meaning of ‘critical’ has become vague, and it seems that any dimension 
worth measuring must be critical.).

Example: The critical dimension specifi cations for this device are very tight.

Critical Shape (CS) An extension of the one-dimensional critical dimension to two-
dimensional features, the critical shape is the polygon which defi nes the top-down (in 
the plane of the substrate) shape of a feature.

Example: The line-end critical shape suffered from severe line-end shortening.
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Critical Shape Difference (CSD) A statistical analysis (for example, the average mag-
nitude) of a collection of vectors describing the difference (i.e. point-by-point distance) 
between two critical shapes.

Example: The large critical shape difference between the two wafer patterns indicated a 
signifi cant process problem.

Critical Shape Error (CSE) The critical shape difference between the pattern being 
measured and an ideal ‘desired’ critical shape.

Example: A critical shape error of 20 nm was considered to be acceptable for this device 
pattern.

D
Deep-Ultraviolet (DUV) A common though vague term used to describe light of a 

wavelength in the range of about 150 to 300 nm. Also called deep-UV.
Example: The transition of optical lithographic wavelengths from i-line to deep-

ultraviolet accelerated as the industry dipped below the 350-nm resolution node.

Deep-UV Lithography Lithography using light of a wavelength in the range of about 
150 to 300 nm, with about 250 nm being the most common.

Example: Most lithographers agree that deep-UV lithography is required for device 
dimensions below 0.3 microns.

Defi nition, Circular see Circular Defi nition.

Defocus The distance, measured along the optical axis (i.e. perpendicular to the plane 
of best focus) between the position of a resist-coated wafer and the position if the wafer 
were at best focus.

Example: The amount of defocus cannot be determined without an adequate method of 
measuring best focus.

Degree of Coherence see Partial Coherence.

Dehydration Bake A bake step performed on a wafer before coating with resist in order 
to remove water from the surface of the wafer.

Example: The dehydration bake was only partially effective in removing water from the 
wafer surface.

Depolarization The change of light from being polarized to being unpolarized (that is, 
randomly polarized), generally as a result of scattering phenomenon.

Example: Jones matrices cannot account for depolarization of light passing through the 
lens, though Mueller matrices can.

Depth of Focus (DOF) The total range of focus that can be tolerated, that is, the range 
of focus that keeps the resulting printed feature within a variety of specifi cations (such 
as linewidth, sidewall angle, resist loss and exposure latitude).

Example: Optimizing the numerical aperture by fi nding the value that maximized the DOF 
of the critical feature was found to be very effective at improving CD control.
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Design Rule A geometrical rule that defi nes minimum widths and/or spacings used 
when laying out a mask pattern.

Example: Although the designer was not sure why the design rule forbade the use of this 
particular pitch, he reluctantly complied.

Design Rule Checker (DRC) A software package that checks a chip design for compli-
ance with a set of design rules.

Example: Since the Design Rule Checker tool had the capability to correct DRC viola-
tions, is was possible to program the tool to perform rule-based OPC.

Developer The chemical (typically a liquid) used to selectively dissolve resist as a 
function of its chemical composition.

Example: Control of the temperature of the developer should be better than ±0.2 °C.

Development The process by which a liquid, called the developer, selectively dissolves 
a resist as a function of the exposure energy that the resist has received. Also called 
develop.

Example: A puddle development process was used to reduce developer consumption.

Development Rate The rate (change in thickness per unit time) that the resist dissolves 
in developer for a given set of conditions.

Example: The development rate was plotted as a function of exposure energy on a log-log 
scale.

Development Rate Monitor (DRM) An instrument used to measure the development 
rate of a resist by measuring the thickness of the resist in situ as the development 
proceeds.

Example: The development rate as a function of exposure energy was characterized using 
a development rate monitor.

Diattenuation The difference in amplitude transmittance of a lens as a function of the 
polarization of the incident light.

Example: At very large numerical apertures, the nonideal behavior of the lens antirefl ec-
tion coatings caused diattenuation at the highest spatial frequencies.

Dichroism The difference in the absorption of light by the lens as a function of the 
polarization of the incident light.

Example: While diattenuation can be a concern for hyper-NA lenses, dichroism remains 
a very small problem.

Die A single, complete integrated circuit as printed on a wafer, possibly sliced but before 
packaging. Also called a chip.

Example: Because of the size of the ASIC chip, the stepper could accommodate only one 
die in each exposure fi eld.

Diffraction The propagation of light in the presence of boundaries. It is the property 
of light that causes the wavefront to bend as it passes an edge.

Example: In an ideal imaging system, the quality of the aerial image is limited only by 
diffraction.
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Diffraction Limited A description of a lens such that any aberrations in the lens are 
small enough as to be negligible. Theoretically, no lens can be perfect so that the term 
diffraction limited is always an approximation and the appropriateness of its use is 
situational.

Example: In photographic systems and other imaging applications less stringent than 
lithography, lens are often described as diffraction limited when the RMS optical path 
deviation is less than a tenth of a wave.

Diffraction Order For a mask pattern that repeats indefi nitely, the diffraction pattern 
becomes discrete, made up of regularly spaced points of light called diffraction 
orders.

Example: In lithography, high-resolution line/space patterns are imaged with only the 
zero, and plus and minus fi rst diffraction orders passing through the lens.

Diffraction Pattern The pattern of light entering the objective lens due to diffraction 
by a mask.

Example: The diffraction pattern of a repeating pattern of lines and spaces is made up of 
discrete spots of light called diffraction orders.

Diffusion Coeffi cient A rate constant that defi nes the rate at which a particle will diffuse 
through a given medium for a given set of process conditions.

Example: The diffusion coeffi cient of the acid in the chemically amplifi ed resist was not 
constant during the post-exposure bake due to free volume generated by the amplifi ca-
tion reaction.

Diffusion Length The average distance that a particle will diffuse for a given 
process.

Example: The diffusion length of photoactive compound during PEB must be larger than 
the standing wave half period to be effective at removing standing waves from the 
resulting resist profi le.

Diffusivity see Diffusion Coeffi cient.

Dill Parameters Three parameters, named A, B and C, that are used in the Dill exposure 
model for photoresists. A and B represent the bleachable and nonbleachable absorption 
coeffi cients of the resist, respectively, and C represents the fi rst-order kinetic rate con-
stant of the exposure reaction. (Named for Frederick Dill, the fi rst to publish this 
model.) Also called the photoresist ABC parameters.

Example: The Dill parameters (A, B and C) were measured in a single optical transmit-
tance experiment.

Dioptric An optical system made up of only refractive elements (lenses).
Example: Dioptric lens systems require extensive effort to correct for the chromatic aber-

rations that are a natural part of all-refractive lenses.

Dipole Illumination A type of off-axis illumination where two circles or arcs of light 
are used as the source. These two circles are spaced evenly around the optical axis, 
either oriented vertically or horizontally.

Example: Dipole illumination provides the greatest possible dense line resolution, but 
only for one orientation of lines and spaces.
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Direct-Write Lithography A lithography method whereby the pattern is written directly 
on the wafer without the use of a mask.

Example: Due to throughput limitations, direct-write lithography may never be practical 
for IC mass production.

Dispersion The variation of the index of refraction of a material as a function of 
wavelength.

Example: Because of the dispersion of glass, lenses invariably suffer from chromatic 
aberration.

Dissolution Inhibitor A chemical which, when added to a photoresist, decreases the 
dissolution rate of the resist in developer. For many positive photoresists, the photoac-
tive compound acts as a dissolution inhibitor.

Example: If the dissolution inhibitor is bound directly to the novolac resin, diffusion 
during PEB does not occur.

Dissolution Promoter A chemical which, when added to a photoresist, increases the 
dissolution rate of the resist in developer. For many positive photoresists, the exposed 
photoactive compound acts as a dissolution promoter.

Example: When exposed to light, the DNQ dissolution inhibitor becomes a mild dissolu-
tion promoter.

Dissolution Rate see Development Rate.

Distortion An optical aberration that causes a variation in pattern placement error as a 
function of fi eld position.

Example: The variation of distortion from one stepper to another results in the need for 
lens matching when printing critical layers, or possibly even the use of a dedicated 
stepper.

DOF see Depth of Focus.

Dose see Exposure Energy.

Dose-to-Clear (Eo) The amount of exposure energy required to just clear the resist in 
a large clear area for a given process. Also called the clearing dose.

Example: The dose-to-clear was measured once per shift and used as a process 
monitor.

Dose-to-Size The amount of exposure energy required to produce the proper dimension 
of the resist feature.

Example: Changing the thickness of the photoresist resulted in a large change in the 
dose-to-size of the contact hole.

DRM see Development Rate Monitor.

DUV see Deep Ultraviolet.

DUV Lithography see Deep-UV Lithography.
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Dyed Resist A photoresist with an added nonphotosensitive chemical that absorbs light 
at the exposing wavelength.

Example: Although the dyed resist was effective at reducing the swing curve, the resulting 
sidewall angle was unacceptably low.

E
E-beam Lithography see Electron Beam Lithography.

EBR see Edge Bead Removal.

Edge Bead A buildup of resist along the outer edge of a wafer caused by resist surface 
tension during the spin coat process.

Example: If not removed, the edge bead causes contamination during subsequent wafer 
processing.

Edge Bead Removal (EBR) A process by which resist is removed from the outer edge 
of a resist-coated wafer in order to remove the thick ‘bead’ of resist that is usually 
formed along this edge during the spin coat process.

Example: The spin coat module included both front and backside edge bead removal 
systems.

Edge Placement Error (EPE) A term used in optical proximity correction, this is a 
critical shape error where the distance vectors are constrained to be normal to the 
desired shape.

Example: The model-based OPC system used the maximum edge placement error as the 
cost function of the optimization procedure.

Electron Beam Lithography Lithography performed by exposing resist with a beam 
of electrons. Also called e-beam lithography.

Example: Electron beam lithography remains the most popular technique for producing 
high-resolution masks.

Embedded PSM (EPSM) see Attenuated PSM.

Entrance Pupil, Lens The image of the pupil (also called the aperture stop) of an 
imaging lens when viewed from the entrance side of the lens.

Example: The distance from the object to the entrance pupil of the lens is exactly equal 
to the distance from the exit pupil to the image times the reduction ratio of the lens.

EPSM see Attenuated PSM.

Etch Selectivity The ratio of the vertical etch rate of the material that you wish to etch 
compared to the vertical etch rate of the material that you do not wish to etch (the 
masking material or the substrate material).

Example: Sputtering is sometimes used because it is a very good anisotropic etching 
process, despite its lack of etch selectivity.

Etching, Anisotropic An etch process where the vertical etch rate within a given mate-
rial is faster than the horizontal etch rate.

Example: Sputtering is sometimes used because it is a very good anisotropic etching 
process, despite its lack of etch selectivity.
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Etching, Isotropic An etch process where the etch rate within a given material is inde-
pendent of position and direction.

Example: While wet etch processes are simple and exhibit very good etch selectivity, their 
performance on fi ne patterns is limited by the fact that they are isotropic etching 
processes.

EUV see Extreme Ultraviolet.

EUV Lithography Lithography using light of a wavelength in the range of about 5 to 
50 nm, with about 13 nm being the most common. Also called soft x-ray lithography.

Example: Although many problems remain, EUV lithography could potentially have both 
high resolution and large depth of focus.

Excimer Laser Laser using a gas or gases to create an excited dimer (e.g. KrF), usually 
resulting in pulsed deep-UV radiation.

Example: Excimer lasers are used extensively in deep-UV lithography due to their 
extremely high output power.

Exit Pupil, Lens The image of the pupil (also called the aperture stop) of an imaging 
lens when viewed from the exit side of the lens.

Example: The effective focal length of a lens is defi ned as the distance from the exit pupil 
to the image plane.

Exposure The process of subjecting a resist to light energy (or electron energy in the 
case of electron beam lithography) for the purpose of causing chemical change in the 
resist.

Example: The chemically amplifi ed resist was very sensitive to any delay between expo-
sure and post-exposure bake.

Exposure Dose see Exposure Energy.

Exposure Energy The amount of energy (per unit area) that the photoresist is subjected 
to upon exposure by a lithographic exposure system. For optical lithography, it is equal 
to the light intensity times the exposure time. Also called the exposure dose, or simply 
dose.

Example: Accurate control of the exposure energy delivered to the resist is an important 
function of any lithographic exposure tool.

Exposure Field see Field, Exposure.

Exposure Latitude The range of exposure energies (usually expressed as a percent 
variation from the nominal) that keeps the linewidth within specifi ed limits.

Example: A minimum exposure latitude of 10% is needed for this process in order to get 
adequate CD control.

Exposure Margin The ratio of the dose-to-size to the dose-to-clear.
Example: In most cases, increasing exposure margin results in an increase in process 

latitude.
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Extinction Coeffi cient Another name for the absorption coeffi cient of a material, often 
using a base-10 defi nition.

Example: The effectiveness of the dye was determined by measuring the extinction co-
effi cient of the resist.

Extreme Ultraviolet (EUV) A common though vague term used to describe light of a 
wavelength in the range of about 5 to 50 nm. Also called soft x-ray.

Example: The historical progress of optical lithography toward ever smaller wave-
lengths has convinced some that extreme ultraviolet radiation will be the next logical 
step.

F
Fab see Wafer Fab.

FE Matrix see Focus–Exposure Matrix.

Feature Size see Critical Dimension.

Field, Exposure The area of a wafer that is exposed at one time by the exposure 
tool.

Example: An increase in the exposure fi eld size allowed more die to be imaged per expo-
sure, resulting in greater throughput.

Field-By-Field Alignment A method of alignment whereby the mask is aligned to the 
wafer for each exposure fi eld (as opposed to global alignment).

Example: Although fi eld-by-fi eld alignment reduced throughput considerably, the 
improved overlay accuracy was worth the cost.

Field Curvature An optical aberration that causes a variation in best focus as a function 
of fi eld position.

Example: Field curvature results in a systematic focus error that can only be partially 
corrected by a wafer tilt adjustment.

Flare The unwanted light that reaches the photoresist as a result of scattering and refl ec-
tion off surfaces in the optical system that are meant to transmit light. Also called 
background scattered intensity.

Example: Contamination of the bottom surface of the lens resulted in a large increase in 
fl are.

Flood Exposure Exposure of the resist to blanket radiation with no pattern. For projec-
tion tools such as a stepper, this is also called an open-frame exposure (exposure with 
no mask or with a blank glass mask).

Example: A fl ood exposure is the last step in the image reversal process.

Focal Plane The plane of best focus of the optical system.
Example: The best results typically come by placing the focal plane near the middle of 

the thickness of the resist.
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Focal Position see Focus.

Focus The position of the plane of best focus of the optical system relative to some 
reference plane, such as the top surface of the resist, measured along the optical axis 
(i.e. perpendicular to the plane of best focus).

Example: The nonfl atness of the wafer results in unavoidable focus errors.

Focus–Exposure Matrix The variation of linewidth (and possibly other parameters) as 
a function of both focus and exposure energy. The data are typically plotted as linewidth 
versus focus for different exposure energies and these plots are often referred to as 
smiley plots, spider plots, or Bossung curves.

Example: The fi rst step in measuring depth of focus is shooting a focus–exposure 
matrix.

Fourier Optics A mathematical description of imaging where diffraction is calcul-
ated as a Fourier transform, followed by multiplication by the pupil function, followed 
by a second Fourier transform to describe the focusing behavior of the imaging 
lens.

Example: The Fourier Optics approach encourages a natural ‘frequency domain’ lan-
guage for the description of imaging.

G
G-Line A line of the mercury spectrum corresponding to a wavelength of about 

436 nm.
Example: G-line steppers were the dominant lithography tools throughout the 1980s.

GDS II An industry standard fi le format for mask layout information.
Example: When fi nished, the chip designer performed a fi nal ‘tape out’, saving the mask 

layout data into GDS II format for transmittance to the mask shop.

Glass Transition Temperature The temperature (or the midpoint of the temperature 
range) at which a polymer makes a transition from behaving mostly like a solid to 
behaving mostly like a liquid.

Example: After prebake, the glass transition temperature of the resulting resist fi lm is 
approximately equal to the prebake temperature.

Global Alignment A method of alignment where the mask is aligned globally to the 
whole wafer (as opposed to fi eld-by-fi eld alignment).

Example: Where applicable, global alignment is preferred due to its high throughput.

H
H–D Curve The standard form of the H–D or contrast curve is a plot of the relative 

thickness of resist remaining after exposure and development of a large clear area 
as a function of log-exposure energy. The theoretical H–D curve is a plot of log-
development rate versus log-exposure energy. (H–D stands for Hurter–Driffi eld, the 
two scientists who fi rst used a related curve in 1890.) Also called the photoresist con-
trast curve or characteristic curve.

Example: The H–D curve was measured by exposing one wafer with a series of open-
frame exposures of increasing energy.



 Glossary 471

H-Line A line of the mercury spectrum corresponding to a wavelength of about 
405 nm.

Example: The h-line of the mercury spectrum was essentially skipped as the industry 
moved from g-line directly to i-line steppers.

H–V Bias The difference in linewidth between horizontally and vertically oriented 
resist features that, other than orientation, should be identical.

Example: The variation of H–V bias with focus was an indication of astigmatism in the 
stepper lens.

Hard Bake The process of heating the wafer after development of the resist in order 
to harden the resist patterns in preparation for subsequent pattern transfer. Also called 
postbake and postdevelop bake.

Example: The hard bake step was necessary to ensure good etch resistance of the photo-
resist during plasma etching.

Hurter–Driffi eld Curve see H–D Curve.

Huygens’ Principle The idea that any wavefront can be decomposed into an array of 
spherically radiating point sources. The propagation of the wavefront can be calculated 
as the sum of the propagating point source spherical waves.

Example: Huygens’ Principle, when coupled with the concept of interference, can be used 
to derive a simple scalar diffraction theory.

Hyper-NA A euphemistic term to describe numerical apertures greater than 1.0.
Example: Immersion lithography enables the design and manufacture of hyper-NA 

lenses.

I
IC see Integrated Circuit.

I-Line A line of the mercury spectrum corresponding to a wavelength of about 
365 nm.

Example: Improved resolution made i-line steppers the lithography tool of choice since 
about 1990.

Illumination, Köhler see Köhler Illumination.

Illumination System The light source and optical system designed to illuminate the 
mask for the purpose of forming an image on the wafer.

Example: The illumination system in a modern stepper is more complicated than the 
entire stepper of 20 years ago.

Image Contrast A classic image metric useful for small equal line/space patterns only, 
the image contrast is defi ned as the difference between the maximum and minimum 
intensities in an image divided by their sum. Also known as the fringe visibility of two 
interfering plane waves.

Example: Because of its limited usefulness, image contrast is not used in lithography as 
an image metric as often as the image log-slope.
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Image Log-Slope The slope of the logarithm of the aerial image, usually defi ned at the 
nominal edge of the designed pattern.

Example: A plot of the image log-slope versus defocus provides an excellent method of 
estimating depth of focus.

Image Reversal A chemical process by which a positive photoresist is made to behave 
like a negative photoresist.

Example: The use of an image reversal process produced the reentrant profi les needed 
for metal lift-off.

Immersion Lithography A mode of optical lithography where an immersion fl uid, with 
a refractive index greater than 1, fi lls the gap between the projection lens and the 
wafer.

Example: The recent interest in immersion lithography is based on the hope of improved 
depth of focus at a constant resolution, or improved resolution at a (relatively) constant 
depth of focus.

Imprint Lithography A patterning method based on embossing where a topographic 
pattern on a mask is replicated as a topographic pattern in a polymer media by pressing 
the mask (called a template) directly into the polymer media. Also called nanoimprint 
lithography due to the high resolution possible.

Example: The low-cost and high-resolution capabilities of imprint lithography make it a 
promising candidate for some niche applications.

Incoherent Illumination A type of illumination resulting from an infi nitely large source 
of light that illuminates the mask with light from all possible directions. This is more 
correctly called spatially incoherent illumination.

Example: In conventional photography, the available light exposes the subject to in-
coherent illumination.

Index of Refraction see Refractive Index.

Integrated Circuit (IC) Many transistors, resistors, capacitors, etc., fabricated and 
connected together to make a circuit on one monolithic slab of semiconductor 
material.

Example: Since the fi rst integrated circuit was produced in the late 1950s, the number of 
transistors on a chip has grown exponentially.

Intensity A measure of the brightness of light that is defi ned either as the electromag-
netic power per unit area or the electromagnetic power per unit solid angle, with the 
latter being the offi cial (radiometry-based) defi nition. Physicists typically prefer the 
former defi nition, which is almost universally used by lithographers.

Example: Exposure dose is the intensity of the light multiplied by the exposure time.

Ion Beam Lithography Lithography performed by exposing resist with a focused beam 
of ions.

Example: The need for stencil masks has limited the acceptance of ion beam lithography 
outside of the research environment.
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Iso-Dense Print Bias The difference between the dimensions of an isolated line and a 
dense line (a line inside an array of equal lines and spaces) holding all other parameters 
constant. Also called Iso-Dense Bias.

Example: The iso-dense print bias is a strong function of feature size and partial 
coherence.

Isofocal Bias The difference between the isofocal linewidth and the desired resist 
feature width.

Example: In general, the depth of focus is maximized when the isofocal bias becomes 
zero.

Isofocal Dose The dose at which the printed resist feature width equals the isofocal 
linewidth at best focus.

Example: If possible, setting the process to use the isofocal dose can minimize the need 
for frequent focus adjustments.

Isofocal Linewidth The resist feature width (for a given mask width) that exhibits the 
maximum depth of focus (or the least sensitivity to focus variations).

Example: The small isolated lines did not exhibit an isofocal linewidth over the range of 
exposures studied.

J
Jones Pupil see Pupil, Jones.

K
Köhler Illumination A method of illuminating the mask in a projection imaging 

system whereby a condenser lens forms an image of the illumination source at the 
entrance pupil of the objective lens, and the mask is at the exit pupil of the condenser 
lens.

Example: The use of Köhler illumination has become standard in projection lithography 
due to its superior uniformity.

KrF Krypton Fluoride, a type of excimer laser used in optical lithography that emits 
light at about 248 nm.

Example: KrF exposure tools have been the most popular lithographic tools since the 
250-nm resolution node.

L
Latent Image The reproduction of the aerial image in resist as a spatial variation 

of chemical species (for example, the variation of photoactive compound 
concentration).

Example: The latent image was visible to the naked eye due to the change in the resist 
optical properties with exposure.

LER see Line Edge Roughness.

LES see Line-End Shortening.

Levenson PSM see Alternating PSM.
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Lifting, Resist The separation of the resist pattern from the substrate, either partially 
or completely, due to a loss of adhesion.

Example: Resist lifting could not be avoided without the use of an adhesion promoter.

Lift-Off Process A lithographic process by which the pattern transfer takes place by 
coating a material over a patterned resist layer, then dissolving the resist to ‘lift off’ 
the material that is on top of the resist.

Example: The lift-off process allowed the patterning of the metal without the use of an 
etch step.

Line Edge Roughness (LER) The deviation of a feature edge (as viewed top-down) 
from a smooth, ideal shape. That is, the edge deviations of a feature that occur on a 
dimensional scale much smaller than the resolution limit of the imaging tool that was 
used to print the feature.

Example: One simple measure of line edge roughness is the RMS deviation of an edge 
from a best-fi t straight line.

Line-End Shortening (LES) The reduction of the length of a line (where a line is 
defi ned here as any rectangular feature whose length is signifi cantly greater than its 
width) as measured only at one end. Thus, the line-end shortening is characterized as 
the difference between the actual position of the end of a line and the intended 
(designed) position.

Example: The amount of line-end shortening for the feature increased sharply when out 
of focus.

Linear Resolution The smallest feature that can be printed (using some agreed-upon 
criterion for resolution) while simultaneously allowing acceptable printing of all larger 
features.

Example: While the use of OPC does not improve the ultimate resolution of a lithography 
process, its main benefi t is in improving the linear resolution.

Linearity The variation of printed linewidth as a function of designed (or mask) line-
width. In general, linearity is measured with a fi xed duty cycle (equal lines and spaces, 
for example).

Example: The use of OPC resulted in a marked improvement in linearity for both dense 
and isolated lines.

Linewidth see Critical Dimension.

Lithographer 1. A practitioner of lithography. 2. A harmless drudge.
Example: The overworked and underappreciated lithographer paused for a moment and 

daydreamed, ‘Will Moore’s Law ever end?’.

Lithography A method of producing three-dimensional relief patterns on a substrate 
(from the Greek lithos, meaning stone, and graphia, meaning to write).

Example: Although lithography is a centuries-old patterning technique, the small features 
used in integrated circuits make semiconductor lithography very challenging.
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LSI Large-Scale Integration, an integrated circuit made of hundreds to thousands of 
transistors.

Example: As integrated circuits entered the LSI era, contact and proximity printing gave 
way to projection lithography.

M
Mask A glass or quartz plate containing information (encoded as a variation in trans-

mittance and/or phase) about the features to be printed. Also called a photomask or a 
reticle. (Historically, a photomask was the 1× mask used in contact or proximity print-
ing, whereas the reticle was a higher magnifi cation version of a single fi eld used to 
make the photomask. Today, the terms photomask and reticle are used interchangeably 
for all masks used in optical lithography.).

Example: Reduction projection printing signifi cantly eases the burden of producing an 
acceptable mask compared to 1× lithography.

Mask Aligner A tool that aligns a photomask to a resist-coated wafer and then exposes 
the pattern of the photomask into the resist.

Example: The far superior throughput of mask aligners over direct-write lithography tools 
has made them the tools of choice for semiconductor manufacturing.

Mask Biasing The process of changing the size or shape of the mask feature in 
order for the printed feature size to more closely match the nominal or desired feature 
size.

Example: Although mask biasing complicates the design and mask-making process, the 
improvement in linewidth control that results could well be worth the effort.

Mask Blank A blank mask substrate (e.g. quartz) coated with an absorber (e.g. chrome), 
and sometimes with resist, and used to make a mask.

Example: The use of attenuated phase shifting masks greatly increases the cost of the 
mask blank.

Mask Error Enhancement Factor The incremental change in the fi nal resist feature 
size per unit change in the corresponding mask feature size (where the mask dimension 
is scaled to wafer size by the reduction ratio of the imaging tool). Abbreviated MEEF 
or MEF, a value of 1 implies a linear imaging of mask features to the wafer. Also called 
Mask Error Factor.

Example: Although a linear imaging system produces a mask error enhancement factor 
of 1.0, near the resolution limit the MEEF often rises dramatically.

Mask Error Factor see Mask Error Enhancement Factor.

Maskless Lithography Any one of a number of lithographic techniques (including 
direct-write lithography and programmable multimirror masks) that does not use a 
permanent, fi xed mask to perform imaging.

Example: For low-volume IC manufacturing, maskless lithography could offer a compel-
ling cost of ownership advantage.
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Mask Linearity The relationship of printed resist feature width to mask feature width 
for a given process.

Example: Mask linearity is often used as a measure of the practical resolution of a 
process.

Mercury Arc Lamp A common light source used in lithographic exposure systems that 
produces intense radiation at the g-line, h-line and i-lines of the mercury spectrum.

Example: The mercury arc lamp is the most common light source for optical lithography 
when the required resolution is greater than about 300 nm.

MEEF see Mask Error Enhancement Factor.

MEF see Mask Error Enhancement Factor.

Metrology The process of measuring structures on the wafer, such as the width of a 
printed resist feature or the overlay between two printed patterns.

Example: Determination of practical linewidth control requirements must include metrol-
ogy errors as well as process errors.

Microlithography Lithography involving the printing of very small features, typically 
on the order of micrometers or below in size.

Example: Microlithography techniques are used extensively in semiconductor manufac-
turing as well as in compact disc mastering, thin-fi lm head production, and many other 
advanced technologies.

Mix-and-Match Lithography A lithographic strategy whereby different types of litho-
graphic imaging tools are used to print different layers of a given device.

Example: The use of mix-and-match lithography allows for reduced equipment and 
process costs at the expense of more complicated overlay requirements.

Model-Based OPC An optical proximity correction technique that determines the level 
of correction (how much to move a design feature’s edge) by iteratively simulating the 
lithographic result until the corrected design produces the desired resist pattern shape 
to within a preset tolerance.

Example: At the 130-nm technology node, most semiconductor companies switch from 
using rule-based OPC to the more robust and accurate model-based OPC.

Modeling see Simulation.

Moore’s Law Named for Gordon Moore, one of the founders of Fairchild Semiconduc-
tor and Intel, the observation that the number of transistors on a typical chip doubles 
about 1–2 years. In lithography, this law has come to describe the exponential decrease 
in critical dimensions used in IC manufacturing over time.

Example: By assuming that Moore’s Law will continue to hold in the future, lithographic 
requirements can be predicted.

Multilayer Resist (MLR) A resist scheme by which the resist is made up of more than 
one layer, typically a thick conformal bottom layer under a thin imaging layer, possibly 
with a barrier layer in between.

Example: The need for a very thin imaging layer can be met using a multilayer resist 
scheme.
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N
Nanolithography Lithography involving the printing of ultrasmall features, typically 

on the order of nanometers in size.
Example: Nanolithography techniques are being used to research possible device tech-

nologies of the future.

Negative Photoresist A photoresist whose chemical structure allows for the areas that 
are exposed to light to develop at a slower rate than those areas not exposed to 
light.

Example: In theory, isolated lines or islands are best printed in negative photoresist, 
whereas spaces and contacts prefer a positive resist.

NGL Next Generation Lithography, any potential successor to optical lithography for 
semiconductor manufacturing.

Example: Despite billions of dollars invested in NGL technologies over the last two 
decades, optical lithography is still the only viable manufacturing technology for the 
foreseeable future.

NILS see Normalized Image Log-Slope.

Normalized Image Log-Slope (NILS) The slope of the logarithm of an aerial image, 
measured at the desired photoresist edge position, normalized by multiplying by the 
nominal resist feature width. Generally, the sign of the slope is adjusted to be positive 
when the image is sloping in the correct direction. See also Image Log-Slope.

Example: The NILS is a popular image metric because it is directly proportional to the 
feature’s exposure latitude.

Numerical Aperture (NA) The sine of the maximum half-angle of light that can make 
it through a lens, multiplied by the index of refraction of the media.

Example: The numerical aperture of the lens can be adjusted over a specifi ed range 
through the use of a motorized iris.

O
OAI see Off-Axis Illumination.

Objective Lens The main imaging lens of a projection imaging system. Also called the 
projection lens, the imaging lens, or the reduction lens.

Example: Weighing 500 kg, the stepper’s objective lens can only be replaced using a 
specialized crane.

Off-Axis Illumination (OAI) Illumination which has no on-axis component, i.e. which 
has no light that is normally incident on the mask. Examples of off-axis illumination 
include annular and quadrupole illumination.

Example: Although a relatively old optical technique, off-axis illumination was only 
recently applied to the fi eld of optical lithography.

OPC see Optical Proximity Correction.

OPD see Optical Path Difference.
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Optical Density The base-10 logarithm of the intensity transmittance of a material of 
a given thickness.

Example: The absorber material on the photomask had an optical density greater 
than 3.

Optical Lithography Lithography method that uses light to print a pattern in a photo-
sensitive material. Also called photolithography.

Example: Optical lithography will continue to be a workhorse of the semiconductor 
industry well into the 21st century.

Optical Path Difference (OPD) The difference in optical path (related to the difference 
in phase) between an actual wavefront emerging from a lens and the ideal wavefront, 
as a function of position on the wavefront.

Example: The aberrations of the lens were determined by interferometrically measuring 
the wavefront OPD.

Optical Proximity Correction (OPC) A method of selectively changing the sizes and 
shapes of patterns on the mask in order to more exactly obtain the desired printed pat-
terns on the wafer.

Example: As minimum feature sizes are reduced below the imaging wavelength, some 
form of optical proximity correction is usually required.

Optical Proximity Effect Proximity effects that occur during optical lithography.
Example: Optical proximity effects result in systematic linewidth variations across the 

chip.

Overlay A vector describing the positional accuracy with which a new lithographic 
pattern has been printed on top of an existing pattern on the wafer, measured at any 
point on the wafer. See also registration.

Example: Improvements in overlay performance allowed the circuit designers to shrink 
the chip and reduce manufacturing costs.

Overlay Correctables Changes that can be made to the optical exposure tool (such as 
rotation or translation of the wafer stage or reticle stage) that would result in improved 
overlay if the same wafers were to be reworked and reprinted.

Example: For each lot, a sample of wafers is measured and overlay correctables are 
automatically calculated and fed back to the stepper as part of the APC system.

Overlay Mark The target patterns printed on the wafer at two different lithogra-
phy steps that allow the overlay between the two lithography patterns to be 
measured.

Example: The overlay mark should be designed to minimize the impact of nonlithography 
process steps on overlay measurement accuracy and precision.

Overlay Mark Fidelity The variation in measured overlay due to (nonlithographically 
caused) local variations in the shape and structure of the overlay marks.

Example: The overlay mark fi delity attempts to measure the susceptibility of the overlay 
marks to random, normal process variations.
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P
PAB see Prebake.

PAC see Photoactive Compound.

PAG see Photoacid Generator.

Paraxial Approximation The assumption that angles of light passing through a lens 
are small enough (close enough to the center axis of the lens) that spherical surfaces 
can be approximated as parabolic.

Example: In the paraxial approximation, Snell’s law becomes a linear function of incident 
and transmitted angles.

Partial Coherence Referring to the spatial coherence of light, the ratio of the sine of 
the maximum half-angle of illumination striking the mask to the numerical aperture of 
the objective lens. Also called the degree of coherence, the coherence factor, or the 
pupil fi lling function, this term is usually given the symbol s.

Example: Changes in the partial coherence of the projection tool result in signifi cantly 
different imaging performance.

Partially Coherent Illumination A type of illumination resulting from a fi nite-sized 
source of light that illuminates the mask with light from a limited, nonzero range of 
directions.

Example: All projection optical lithography tools in use today employ partially coherent 
illumination.

Pattern Collapse The mechanical failure of a resist feature such that the feature falls 
on its side. Pattern collapse is generally caused by unequal surface tension on the left 
and right sides of a tall photoresist line during drying after development.

Example: The phenomenon of pattern collapse limits the aspect ratio for this resist to 
about 3.5.

Pattern Placement Error The difference between the position of the center of a resist 
pattern from the nominal (designed) center position. Pattern placement error is often 
used to describe pattern-dependent overlay. See also Overlay.

Example: Besides reducing the resist linewidth control, lens aberrations can also result 
in pattern placement errors.

Patterning The processes of lithography (producing a pattern that covers portions 
of the substrate with resist) followed by etching (selective removal of material not 
covered by resist) or otherwise transferring the lithographic pattern into the 
substrate.

Example: The repeated sequence of deposition followed by patterning allows for the 
complicated structures of an integrated circuit to be fabricated.

PEB see Post-exposure Bake.
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Pellicle A thin, transparent membrane placed above and/or below a photomask to 
protect the photomask from particulate contamination. Particles on the pellicle are 
signifi cantly out of focus and thus have a much reduced chance of impacting image 
quality.

Example: The mechanical strength of a pellicle is an important part of its practical use 
in manufacturing.

Phase-Shifting Mask (PSM) A mask that contains a designed spatial variation not only 
in intensity transmittance but phase transmittance as well.

Example: Although complicated to design and make, phase-shifting masks offer signifi -
cant improvements in resolution and depth of focus.

Photoactive Compound (PAC) The component of a photoresist that is sensitive to 
light. Also called a sensitizer.

Example: The interaction of the photoactive compound with the resin is a controlling 
factor in resist performance.

Photoacid Generator (PAG) The light-sensitive component of a chemically amplifi ed 
resist that generates an acid upon exposure to light.

Example: The acid produced by the photoacid generator does not directly affect dissolu-
tion rate without the amplifi cation reaction during the PEB.

Photolithography see Optical Lithography.

Photomask A mask used in optical lithography.
Example: The photomask industry changed considerably when the semiconductor indus-

try switched from using 1× to 10× projection tools.

Photoresist A photosensitive material that forms a three-dimensional relief image by 
exposure to light and allows the transfer of the image into the underlying substrate (for 
example, by resisting an etch step).

Example: The photoresist performs two functions: forming an image and resisting etch 
during pattern transfer.

Photoresist Contrast A measure of the resolving power of a photoresist, the photo-
resist contrast is defi ned in one of two ways. The measured contrast is the slope of 
the standard H–D curve as the thickness of resist approaches zero. The theoretical 
contrast is the maximum slope of a plot of log-development rate versus log-exposure 
energy (the theoretical H–D curve). The photoresist contrast is usually given the 
symbol g.

Example: The use of a material with a higher photoresist contrast resulted in improved 
sidewall angles and linewidth control.

Pitch The sum of the linewidth and spacewidth for a repeating pattern of long lines and 
spaces.

Example: The optical proximity effects were characterized by measuring the change in 
resist linewidth as the pitch of the mask pattern was changed.
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Point Spread Function The aerial image resulting from an infi nitely small isolated 
pinhole on the mask. More correctly, it is the image resulting from a plane wave of 
light entering the entrance pupil of the lens.

Example: Optical designers often use the point spread function as a means of character-
izing the performance of a lens.

Polarization The orientation or direction of the electric fi eld of a light wave.
Example: By orienting the polarization of the illumination to be parallel to the line/space 

pattern, improved performance was obtained.

Positive Photoresist A photoresist whose chemical structure allows for the areas 
that are exposed to light to develop at a faster rate than those areas not exposed to 
light.

Example: Positive photoresists remain the most common type of resist used in the semi-
conductor industry.

Post-Apply Bake (PAB) see Prebake.

Postbake see Hard Bake.

Post-exposure Bake (PEB) The process of heating the wafer immediately after expo-
sure in order to stimulate diffusion of the PAC and reduce the effects of standing waves. 
For a chemically amplifi ed resist, this bake also causes a catalyzed chemical reaction 
that changes the solubility of the resist.

Example: Control of the temperature during the post-exposure bake is critical to linewidth 
control in most chemically amplifi ed resists.

Prebake The process of heating the wafer after application (coating) of the resist 
in order to drive off the solvents in the resist. Also called softbake and post-apply 
bake.

Example: Prebake is one of the least understood steps in resist processing.

Process Latitude The range over which a process parameter can be varied such that 
the lithographic results are still acceptable.

Example: A large process latitude inevitably results in good linewidth control.

Process Window A window made by plotting contours that correspond to various 
specifi cation limits, as a function of exposure and focus. One simple process window, 
called the CD process window, is a contour plot of the high and low CD specifi cations 
as a function of focus and exposure. Other typical process windows include sidewall 
angle and resist loss. Often, several process windows are plotted together to determine 
the overlap of the windows.

Example: One of the most useful ways of characterizing the capabilities of a lithographic 
process is by examining the size of its focus–exposure process window.

Projection Printing A lithographic method whereby the image of a mask is projected 
onto a resist-coated wafer.

Example: Since projection printing was fi rst introduced in the early 1970s, its high-
resolution and low-defect densities solved the problems of contact and proximity 
printing.
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Proximity Bake A type of baking where the wafer is held in close proximity to a hot 
plate.

Example: Proximity baking reduces the possibility of particle generation that can result 
from contact baking.

Proximity Effect A variation in the size or shape of a printed feature as a function of 
the sizes and positions of nearby features.

Example: The coherence of the illumination determines the range of the proximity effect 
in optical imaging.

Proximity Printing A lithographic method whereby a photomask is placed in close 
proximity (but not in contact) with a photoresist-coated wafer and the pattern is trans-
ferred by exposing light through the photomask into the photoresist.

Example: Although proximity printing reduced the defects inherent in contact printing, 
resolution was degraded due to greater diffraction.

PSM see Phase Shifting Mask.

Pupil, Jones A mathematical description of the polarization-dependent transmission 
properties of a lens (named for R.C. Jones who invented the calculus used for polariza-
tion transmission descriptions in 1941).

Example: As lens numerical apertures exceeded 1 (the so-called hyper-NA regime), scalar 
pupil descriptions of the lens had to be replaced with the more complete Jones pupil 
description.

Pupil, Lens The physical opening (somewhere within a lens) that constrains the range 
of angles than can pass through that lens. The size of a circular pupil is defi ned by its 
numerical aperture. Also called an aperture, stop, or aperture stop.

Example: Ultimately, resolution is determined by the portion of the diffraction pattern 
that can pass through the entrance pupil of the objective lens.

Pupil Filter A device used to alter the amplitude and/or phase transmission of the light 
as it passes through the pupil of the objective lens.

Example: Some researchers suggest that pupil fi lters might be able to improve resolution 
or depth of focus for specifi c mask features.

Pupil Function A mathematical function that describes the electric fi eld transmission 
of the light as it passes through the pupil of the objective lens.

Example: The pupil function of a lens includes the aperture (defi ned by its numerical 
aperture), the aberrations of the lens and any pupil fi lter that might be used.

Q
Quadrupole Illumination A type of off-axis illumination where four circles or arcs of 

light are used as the source. These four circles are spaced evenly around the optical 
axis.

Example: Quadrupole illumination is especially useful for improving the depth of focus 
of small dense lines oriented in the x- or y-directions.
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Quantum Effi ciency Referring to photoresist exposure, the quantum effi ciency is the 
average number of exposure reaction products produced when one photon is absorbed 
by the photoreactive species.

Example: Reasonably good photoacid generators show quantum effi ciencies of 
about 0.5.

R
Raster Scan A type of direct-write lithography where an exposing beam scans back and 

forth, covering the entire sample to be printed, while the beam is turned on and off to 
create the pattern.

Example: Optical raster scan exposure tools are commonly used for cost-effective photo-
mask production.

Rayleigh Equations Named for Lord Rayleigh, though modifi ed for use in lithography, 
these equations relate resolution (R) and depth of focus (DOF) to the numerical aperture 
(NA) and wavelength (l) of the imaging system. 

 R k
NA

DOF k
NA

= =1 2 2

λ λ

The terms k1 and k2 are sometimes described as constants, but in reality are the scaled 
or dimensionless resolution and DOF, respectively. The DOF Rayleigh equation can 
also be corrected for high numerical aperture effects.

Example: The Rayleigh equations are frequently misused by lithographers who do not 
understand their limitations.

Refl ective Notching An unwanted notching or local feature size change in a photoresist 
pattern caused by the refl ection of light off nearby topographic patterns on the 
wafer.

Example: Although the refl ective notching problem was reduced by using a dyed resist, 
only a bottom ARC could eliminate it.

Refl ectivity The ratio of the refl ected light intensity to the incident light intensity.
Example: The amplitude of the swing curve is controlled by the refl ectivity of the 

substrate.

Refractive Index The real part of the refractive index of a material is the ratio of the 
speed of light in vacuum to the speed of light in the material. The imaginary part of 
the refractive index is determined by the absorption coeffi cient of the material a and 
is given by al/4p where l is the vacuum wavelength of the light.

Example: The change in the refractive index of a material with wavelength is called 
dispersion.

Registration A vector describing the positional accuracy with which a lithographic 
pattern has been printed as compared to an absolute coordinate grid, measured at any 
point on the wafer. See also overlay.

Example: Unlike wafers, where overlay is the most important measure, photomasks 
require registration specifi cations.
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Resin, Photoresist A component of a photoresist that gives the resist its structural and 
etch-resistant qualities, and is not light-sensitive. The resin also interacts with the 
photoactive compound and/or its exposure products to affect the solubility of the resist 
in developer.

Example: The most common photoresist resin used for typical g-line and i-line resists is 
a novolac resin.

Resist see Photoresist.

Resist Linewidth see Critical Dimension.

Resist Gamma see Photoresist Contrast.

Resist Refl ectivity The refl ectivity of a photoresist-coated wafer. This refl ectivity cor-
responds to the refl ectivity that would be measured by bouncing light off of the resist-
coated wafer. If a Top ARC or CEL is used, the refl ectivity could include these fi lms 
as well.

Example: When coated on a refl ective substrate, the resist refl ectivity is a strong function 
of resist thickness due to thin-fi lm interference effects.

Resolution The smallest feature of a given type that can be printed with acceptable 
quality and control. For example, resolution is often defi ned as the smallest feature of 
a given type that meets a given depth-of-focus requirement.

Example: The traditional approaches to improving resolution are lower wavelength and 
higher numerical aperture.

Resolution Enhancement Technologies (RETs) A collection of techniques such as 
optical proximity correction, phase shifting masks and off-axis illumination, designed 
to improve the usable resolution of an optical lithography tool of a given numerical 
aperture and wavelength.

Example: The widespread use of resolution enhancement technologies has enabled 
optical lithography to push to resolution limits thought impossible just a few years 
ago.

RET see Resolution Enhancement Technologies.

Retardance The difference in the phase of the light transmitted through a lens as a 
function of its polarization.

Example: A lens that exhibits retardance is not well described by a scalar pupil, but 
instead requires a Jones matrix.

Reticle see Mask.

Rule-Based OPC An optical proximity correction technique that determines the level 
of correction (how much to move a design feature’s edge) by applying empirically 
determined rules based on the proximity of that edge to other features.

Example: The use of rule-based OPC began to wane as feature sizes dropped below 
180 nm due to the exponential increase in the number of rules required for accurate 
correction.
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S
Saggital Lines Line patterns oriented along the radial direction from the optical axis 

(i.e. the center) of an imaging system.
Example: The saggital lines on the mask exhibited a different best focus than the tangential 

lines.

Scalar Wave Theory A simplifi ed form of Maxwell’s equations where the vector nature 
of light is ignored. In imaging applications, scalar theory will interfere two beams of 
light completely, regardless of their angle or polarization (i.e. regardless of the relative 
directions of the two electric fi eld vectors).

Example: As numerical apertures increase above 0.7, scalar wave theory becomes less 
and less adequate for predicting lithographic imaging phenomena.

Scanner A type of projection printing tool whereby the mask and the wafer are scanned 
past the small fi eld of the optical system that is projecting the image of the mask onto 
the wafer.

Example: Scanners offer the advantage of larger fi eld size compared to steppers.

Scanning Electron Microscope (SEM) A machine that is used to inspect resist profi les 
and measure critical dimensions by bombarding the sample with electrons and detecting 
the backscattering of the electrons.

Example: The critical dimension was measured in cross section using a scanning electron 
microscope.

Scattering Bars see Subresolution Assist Features.

SEM see Scanning Electron Microscope.

Semiconductor Device A transistor, resistor, capacitor, or integrated circuit made from 
a semiconductor material.

Example: Advances in semiconductor device performance are typically driven by improve-
ments in lithographic performance.

Sensitizer see Photoactive Compound.

Serif A small ancillary pattern attached to the corners of the original pattern on a mask 
in order to improve the printing fi delity of the pattern.

Example: The use of serifs can greatly reduce line-end shortening.

Sidewall Angle The angle that a resist profi le makes with the substrate, usually esti-
mated by modeling the resist profi les as a trapezoid.

Example: After linewidth, sidewall angle is the most critical aspect of resist pattern 
quality.

Simulation The process of using physical models to predict the behavior of a complex 
process. These models are usually implemented as computer software.

Example: Lithography simulation has become an essential tool for research, development 
and manufacturing.

Smiley Plot see Focus–Exposure Matrix.
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Softbake see Prebake.

Soft X-ray Lithography see EUV Lithography.

Solvent, Photoresist The solvent used to render a mixture of photoresist resin and 
photoactive compound or photoacid generator into a liquid form. This allows for spin 
coating of the resulting photoresist onto a wafer.

Example: The photoresist solvent remaining after prebake has a signifi cant impact on 
dissolution rates.

Spatial Frequency A scaled coordinate of the entrance or exit pupil of a lens, the spatial 
frequency refers to the Fourier transform used to calculate Fraunhoffer diffraction pat-
terns. The center of the lens has a spatial frequency of zero and the edge of the lens is 
at the maximum spatial frequency, given by the numerical aperture divided by the 
wavelength.

Example: The numerical aperture of a lens determines the maximum spatial frequency 
that can pass through the lens for a given imaging wavelength.

Spherical Aberration An aberration that often increases the asymmetric response of 
linewidth to positive versus negative focus errors.

Example: Light traveling through the thickness of resist induces a small amount of spheri-
cal aberration in the resulting image.

Spider Plot see Focus–Exposure Matrix.

Spin Coating The process of coating a thin layer of resist onto a substrate by pouring 
a liquid resist onto the substrate and then spinning the substrate to achieve a thin 
uniform coat.

Example: Despite its apparent simplicity, spin coating can result in remarkably uniform 
photoresist fi lms.

SRAF see Subresolution Assist Feature.

Standing Waves A periodic variation of intensity as a function of depth into the resist 
that results from interference between a plane wave of light traveling down through 
the photoresist and one which is refl ected up from the substrate.

Example: Standing waves are reduced by lowering the refl ectivity of the substrate, increas-
ing the absorption in the resist, or by using broadband illumination.

Standing Wave Effect Caused by standing waves in the resist, the horizontal, periodic 
ridges formed along the sides of a resist profi le.

Example: The standing wave effect can be thought of as a loss in linewidth control.

Step-and-Repeat Camera see Stepper.

Step-and-Scan A type of projection printing tool combining both the scanning motion 
of a scanner and the stepping motion of a stepper.

Example: Step-and-scan systems combine the advantages of the scanner’s larger fi eld with 
the stepper’s reduction capability.
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Stepper A type of projection printing tool that exposes a small portion of a wafer at 
one time, and then steps the wafer to a new location to repeat the exposure. Also called 
a step-and-repeat camera.

Example: Since their introduction in the late 1970s, steppers have dominated the litho-
graphic market.

Strehl Ratio The ratio of the intensity at the peak of the actual point spread function 
of a lens to that at the peak of an ideal, aberration-free point spread function as formed 
by the same optical system.

Example: Modern lithographic lenses have very low aberration levels, exhibiting Strehl 
ratios of 0.92–0.95.

Stripping, Resist Complete removal of the resist off the wafer after the lithographic 
and pattern transfer processes are fi nished.

Example: Although often neglected, the ability to perform adequate resist stripping is an 
essential component in evaluating resist quality.

Subresolution Assist Feature (SRAF) Small features, usually in the form of parallel 
lines for a bright fi eld pattern and parallel spaces for a dark fi eld pattern, which are 
below the resolution limit of the imaging system but infl uence the lithographic behavior 
of the larger feature they are near. A common form of such subresolution assist features 
are often called scattering bars.

Example: Sally discovered that the use of subresolution assist features in the form of 
two parallel lines running along either side of the main isolated line feature, of width 
equal to one-half the minimum design size and spaced one minimum design size 
away from the main feature, produced improved focus performance for the isolated 
line.

Substrate The fi lm stack, including the wafer, on which the resist is coated.
Example: The optical properties of the substrate can have a great impact on the lithog-

raphy process.

Substrate Refl ectivity The total refl ectivity of the substrate beneath the resist. This is 
the refl ectivity that light experiences after it passes through the resist and strikes the 
substrate.

Example: Both the magnitude of the standing wave effect and the swing curve are deter-
mined by the substrate refl ectivity.

Subtractive Patterning A process by which material is removed from the places where 
the pattern is not wanted. The standard sequence of deposition, lithography and etch 
is a subtractive patterning process.

Example: The use of directional plasma etching enables very fi ne features to be formed 
in a subtractive patterning process.

Surface Induction see Surface Inhibition.

Surface Inhibition A reduction of the development rate at the top surface of a resist 
relative to the bulk development rate. Also called surface induction.

Example: Surface inhibition may improve the shape of the resist profi le, though it may 
also result in reduced linewidth control.
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Surfactant A ‘surface-acting agent’, a chemical that acts only on the surface of some 
material. For example, surfactants are commonly used in developers to reduce surface 
tension.

Example: Surface inhibition can often be induced through the use of surfactants in the 
developer.

Swing Curve A sinusoidal variation of a parameter, such as linewidth or dose-to-clear, 
as a function of resist thickness caused by thin-fi lm interference effects.

Example: A large swing curve will make a lithographic process extremely sensitive to 
variations in resist thickness.

Swing Ratio Determined from the linewidth swing curve, the linewidths of the fi rst two 
maximums are averaged together to give CDmax. Then using the linewidth at the 
minimum between these two maximums, called CDmin, the swing ratio is defi ned as:

 SR = 2 * (CDmax − CDmin)/(CDmax + CDmin) × 100 %

Example: By measuring the swing ratio as a function of ARC thickness, the optimum ARC 
thickness can be found.

T
T-Top, Resist Profi le The T-shape of a resist profi le caused by the formation of a low-

solubility region at the top of a positive chemically amplifi ed resist. This is usually 
caused by acid loss at the top of the resist due to atmospheric base contamination or 
acid evaporation.

Example: The initial formation of a resist T-top determines the maximum permissible 
post-exposure delay.

Tangential Lines Line patterns oriented perpendicular to the radial direction from the 
optical axis (i.e. the center) of an imaging system.

Example: The difference in best focus between tangential lines and saggital lines is called 
astigmatism.

TARC see Top Antirefl ective Coating.

TIS see Tool-Induced Shift.

Tool-Induced Shift (TIS) The difference in overlay measurements that results when 
the wafer is rotated by 180° and remeasured in the same overlay measurement tool.

Example: While tool-induced shift can be easily measured and calibrated out of overlay 
measurements, variations in the TIS are more problematic.

Top Antirefl ective Coating (TARC) A thin fi lm coated on top of the photoresist used 
to reduce refl ections from the air–resist interface and thus reduce swing curves.

Example: By optimizing the refractive index and the thickness of the top antirefl ective 
coating, the swing ratio was minimized.

Top Surface Imaging A resist imaging method whereby the chemical changes of expo-
sure take place only in a very thin layer at the top of the resist.

Example: The high absorption of polymers to EUV wavelength light means that top 
surface imaging may be required.
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U
ULSI Ultra Large-Scale Integration, an integrated circuit made of millions of 

transistors.
Example: Today’s ULSI circuits challenge every aspect of semiconductor 

manufacturing.

UV Ultraviolet, the portion of the electromagnetic spectrum with wavelengths lower 
than can be seen by the human eye (typically taken to be wavelengths of about 400 nm 
and below).

Example: Unlike g-line, the i-line wavelength of the mercury spectrum is in the UV and 
is not visible to the human eye.

UV Cure A post-development process by which the resist patterns are exposed to 
deep-UV radiation (and often baked at the same time) in order to harden the resist 
patterns for subsequent pattern transfer. The UV cure is often a replacement for the 
hard bake step.

Example: Without a UV curve, this resist would not hold up in the etch process.

V
Vapor Prime A chemical treatment of a wafer to remove water from its surface in 

preparation for coating with resist in which the wafer is exposed to the vapor of an 
adhesion promoter.

Example: The most effective method of applying adhesion promoter is the vapor prime 
method.

Vector Scan A type of direct-write lithography where an exposing beam is not raster 
scanned but rather is moved directly to the area to be exposed before the beam is turned 
on and scanned over the exposure area.

Example: For some mask patterns, vector scan exposure tools can show much greater 
throughput than traditional raster scan tools.

Vector Wave Theory A complete and accurate treatment of imaging, based on Max-
well’s equations, that accounts for the vector nature of light. In imaging applications, 
vector theory will interfere two beams based on the degree of overlap of their electric 
fi elds.

Example: As numerical apertures increase above 0.7, vector wave theory becomes a 
requirement for accurately predicting lithographic imaging phenomena.

VLSI Very Large-Scale Integration, an integrated circuit made of tens of thousands to 
hundreds of thousands of transistors.

Example: The importance of lithography became obvious as the industry moved to VLSI 
circuits.

W
Wafer A thin slice of semiconductor material on which semiconductor devices are 

made. Also called a slice or substrate.
Example: The switch to a larger wafer size has greatly improved the economics of 

semiconductor production.
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Wafer Fab The facility (building and equipment) in which semiconductor devices are 
fabricated. Also called a semiconductor fabrication facility.

Example: The cost of a new wafer fab is dominated by the cost of the semiconductor 
fabrication equipment.

Wavefront Referring to the propagation of electromagnetic waves, any surface of con-
stant phase.

Example: Aberrations can be defi ned as the deviation of the actual wavefront emerging 
from the lens from the ideal wavefront.

X
X-ray Lithography Lithography using light of a wavelength in the range of about 0.1 

to 5 nm, with about 1 nm being the most common. Usually takes the form of proximity 
printing.

Example: X-ray lithography requires the use of proximity printing since focusing elements 
are diffi cult if not impossible to produce at these wavelengths.

Y

Yield The fraction of die (integrated circuits) began in a fab that work properly at the 
end of fabrication. Sometimes called die yield to distinguish from wafer yield, the 
fraction of wafer starts that fi nish production.

Example: Ramping the yield during new technology introduction is critically important, 
with the goal of reaching 80% yield in 6 months.

Z
Zernike Coeffi cients The coeffi cients of the Zernike polynomial.
Example: Knowledge of the Zernike coeffi cients across the fi eld is essential to fully char-

acterizing lens performance.

Zernike Polynomial A specifi c orthonormal polynomial, usually cut off at 36 terms, 
used to fi t the wavefront error of a lens for a given fi eld point. This polynomial char-
acterizes the aberrations of the lens. (Named after Nobel prize-winner Fritz Zernike.)

Example: The Zernike polynomial not only provides a convenient function for fi tting a 
measured wavefront error, but the individual terms of the polynomial have physical 
signifi cance.

For further glossary terms related to lithography, consult:

SEMI Standards M1-94, P5-94, P18-92, P19-92, P21-92, and P25-94



Appendix B
Curl, Divergence, 

Gradient, Laplacian

In the formulation of Maxwell’s equations and the wave equation, some specialized nota-
tion is used to simplify the expression of derivatives. The symbol � (usually pronounced 
‘del’, though it is offi cially known by the name ‘nabla’, from the Greek for harp) repre-
sents a differential operator, but its meaning changes somewhat depending on its use. In 
particular, the same symbol is used in the symbolic representation of the curl (�×), the 
divergence (�•), the gradient (�) and the Laplacian (�2). Defi nitions and some properties 
of these terms, as well as the cross and dot products of vectors, are given below.

B.1 Cross Product

In Cartesian coordinates, the cross product of two vectors U and V is given by

 U V× = −( ) + −( ) + −( )U V U V x U V U V y U V U V zy z z y z x x z x y y xˆ ˆ ˆ  (B.1)

The cross product is sometimes called the vector product or the outer product. The cross 
product of two vectors is always perpendicular to both of those vectors – its direction is 
given by the ‘right-hand rule’ for the normal right-handed coordinate system. The mag-
nitude of their cross product is

 U V U V× = sinθ  (B.2)

where q is the angle between the two vectors. Thus, if the cross product of two nonzero 
vectors is zero, those vectors must be parallel to each other.

Lagrange’s formula for repeated cross products can be useful:

 A B C B A C C A B× × = −( ) ( ) ( )i i  (B.3)

Fundamental Principles of Optical Lithography: The Science of Microfabrication. Chris Mack.
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Also note that the order of the cross product is important.

 U V V U× = − ×  (B.4)

B.2 Dot Product

In Cartesian coordinates, the dot product of two vectors U and V is given by

 U V U Vi = = + +cosθ U V U V U Vx x y y z z  (B.5)

where q is the angle between the two vectors. The dot product is sometimes called the 
scalar product or the inner product. It represents the product of the length of one vector 
with the portion of the length of the second vector that lies in the same direction as the 
fi rst. If the dot product of two nonzero vectors is zero, then those vectors must be per-
pendicular to each other.

B.3 Curl

In Cartesian coordinates, the curl of a vector fi eld F is defi ned as

 � × = ∂
∂

−
∂
∂
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− ∂

∂
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z y x z y xˆ ˆ  ẑ  (B.6)

(The designation of F as a fi eld simply refl ects the notion that the value of F varies as a 
function of position in space.) The curl of F is sometimes expressed as curlF. The curl 
is often thought of as showing the vector’s rate of rotation at the point of evaluation. The 
curl of a vector fi eld always points in a direction perpendicular to the vector at the point 
of evaluation.

B.4 Divergence

The divergence is an operator that produces a scalar measure of a vector fi eld’s tendency 
to originate from or converge upon a given point (the point at which the divergence is 
evaluated). In Cartesian coordinates, the divergence of a vector fi eld F is defi ned as

 � iF = ∂
∂

+
∂
∂

+ ∂
∂

F

x

F

y

F

z
x y z  (B.7)

The divergence of F is sometimes expressed as divF. Physically, the divergence is often 
thought of as the derivative of the net fl ow of the vector fi eld out of the point at which 
the divergence is evaluated.

Divergence is a linear operator so that for two scalar constants a and b and two vectors 
U and V,

 � � �i i i( )a b a bU V U V+ = +  (B.8)
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B.5 Gradient

In Cartesian coordinates, the gradient of a scalar fi eld g is defi ned as

 �g
g

x
x

g

y
y

g

z
z= ∂

∂
+ ∂

∂
+ ∂

∂
ˆ ˆ ˆ  (B.9)

The gradient of g is sometimes expressed as gradg. It is interesting to note that the dot 
product of the gradient of a function with a unit vector gives the slope of the function in 
the direction of the unit vector. For example,

 x̂ g
g

x
i� = ∂

∂
 (B.10)

giving what is sometimes called the directional derivative.

B.6 Laplacian

The Laplacian operator, equal to the divergence of the gradient, operating on some scalar 
fi eld g, is given in Cartesian coordinates as

 ∇ = = ∂
∂

+ ∂
∂

+ ∂
∂

2
2

2

2

2

2

2
g g

g

x

g

y

g

z
� �i( )  (B.11)

The Laplacian is a second-order differential operator. The Laplacian can also operate on 
a vector fi eld (such as F):

 ∇ = ∇ + ∇ + ∇2 2 2 2F F x F y F zx y zˆ ˆ ˆ  (B.12)

B.7 Some Useful Identities

For any scalar fi eld g and any vector fi eld F,

 � �i × =F 0  (B.13)

 � �× =g 0  (B.14)

 � � � � �2 F F F= − × ×( ) ( )i  (B.15)

 � � �i i i( )g g gF F F= +  (B.16)

 � � �× = × + ×( )g g gF F F  (B.17)

B.8 Spherical Coordinates

The above defi nitions of the curl, divergence, gradient and Laplacian were all given in 
Cartesian coordinates. In spherical coordinates, vectors are defi ned by (r,q,f), where r is 
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the length of the vector, q is the angle with the positive z-axis, and f is the angle with 
the x–z-plane. Spherical coordinates can be related to Cartesian coordinates by

 

r x y z

z r

y x

= + +
= ≤ ≤
= ≤ ≤

−

−

2 2 2

1

1
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0 2

θ θ π
φ φ π
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 (B.18)

or inversely by
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In spherical coordinates, the curl, divergence, gradient and Laplacian become:

Curl: 
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Divergence:

 � iF = ∂
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Gradient:
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Laplacian of a scalar:
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Appendix C
The Dirac Delta Function

The Dirac delta function (also called the unit impulse function) is a mathematical abstrac-
tion which is often used to describe (i.e. approximate) some physical phenomenon. The 
main reason it is used has to do with some very convenient mathematical properties 
which will be described below. In optics, an idealized point source of light can be 
described using the delta function. Of course, real points of light will have fi nite width, 
but if the point is narrow enough, approximating it with a delta function can be very 
useful.

C.1 Defi nition

The Dirac delta function is in fact not a function at all, but a distribution (a general-
ized function, such as a probability distribution) that is also a measure (i.e. it assigns 
a value to a function) – terms that come from probability and set theory. However, 
for our purposes it will suffi ce to consider it a special function with infi nite height, zero 
width and an area of 1. It can be considered the derivative of the Heaviside step 
function.

To help think about the Dirac delta function, consider a rectangle with one side along 
the x-axis centered about x = xo such that the area of the rectangle is 1 (this is equivalent 
to a uniform probability distribution). Obviously there are many such rectangles, as shown 
in Figure C.1. We can construct a Dirac delta function by starting with a square of height 
and width of 1. If we halve the width and double the height, the area will remain constant. 
We can repeat this process as many times as we wish. As the width goes to zero, the 
height will become infi nite but the area will remain 1. Any unit area rectangle, centered 
at xo, can be expressed as

Fundamental Principles of Optical Lithography: The Science of Microfabrication. Chris Mack.
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where rect is the common rectangle function. The Dirac delta function, located at x = xo, 
can be defi ned as the limiting case as e goes to zero.

 δ
ε

δε( ) lim ( )x x x x− =
→

−o o
0

 (C.2)

Although a rectangle is used here, in general the Dirac delta function is any pulse in 
the limit of zero width and unit area. Thus, the Dirac delta function can be defi ned by 
two properties:

 δ( )x x= ≠0 0when  (C.3)

 δ( )x xd =
−∞

∞

∫ 1 (C.4)

Any function which has these two properties is the Dirac delta function. A consequence 
of Equations (C.3) and (C.4) is that d(0) = ∞.

The function de(x) is called a ‘nascent’ delta function, becoming a true delta function 
in the limit as e goes to zero. There are many nascent delta functions, for example, the 

x
x0

Figure C.1 Geometrical construction of the Dirac delta function
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Gaussian pulse (a normal probability distribution, letting the standard deviation go to 
zero).

 δ
εε

π ε( ) limx x=
→

−

0

1 2 2

e /  (C.5)

Extending this form to two dimensions,

 δ
ε

δ δ
ε

π ε( ) lim ( ) ( )( )x y x yx y, e /= =
→

− +

0 2

1 2 2 2

 (C.6)

Generalizations to more dimensions are straightforward. Other nascent delta functions 
include the Airy disk function, the sinc function (see section C.2.4), and the Bessel func-
tion of order 1/e. In general, any probability density function with a scale parameter e is 
a nascent delta function as e goes to zero.

C.2 Properties and Theorems

The following sections will state some important identities and properties of the Dirac 
delta function, providing proofs for some of them.

C.2.1 Sifting Property

For any function f(x) continuous at xo,

 f x x x x f x( ) ( ) ( )δ − =
−∞

∞

∫ o od  (C.7)

It is the sifting property of the Dirac delta function that gives it the sense of a measure – it 
measures the value of f(x) at the point xo.

Proof

Since the delta function is zero everywhere except at x = xo, the range of the integration 
can be changed to some infi nitesimally small range e around xo.

 f x x x x f x x x x
x

x

( ) ( ) ( ) ( )δ δ
ε

ε

− = −
−

+

−∞

∞

∫∫ o od d
o

o

 (C.8)

Over this very small range of x, the function f(x) can be thought to be constant and can 
be taken out of the integral.
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d d  (C.9)

From the defi nition of the Dirac delta function, the integral on the right-hand side will 
equal 1, thus proving the theorem. In fact, Equation (C.7) can be used as an alternate 
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defi nition of the Dirac delta function. Any function d(x–xo) which satisfi es the sifting 
property is the Dirac delta function.

C.2.2 Scaling Property

 δ δ
( )

( )
ax

x

a
=  (C.10)

C.2.3 Convolution Property

Convolution of a function f with a delta function at xo is equivalent to shifting f by xo.

 f x x x f x x( ) ( ) ( )∗ − = −δ o o  (C.11)

C.2.4 Identity 1

Another nascent delta function is the sinc function as the width of the sinc goes to zero:

 lim
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/
 (C.12)

Proof

To prove identity 1, it is suffi cient to show that this expression for the Dirac delta function 
satisfi es sifting property:

 lim ( )
sin
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f x
ax

x
x f

→∞
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∞

∫ =
π

d 0  (C.13)

Breaking the integral into three sections, the outer two of which avoid the problem of 
dividing by zero at x = 0,

 f x
ax

x
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sin

π εε
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∞ ∞
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∫ ∫∫∫= + +d  (C.14)

The fi rst and last integral on the right-hand side are zero by the Riemann–Lebesgue lemma 
(an important theorem of the Fourier integral that will not be discussed here). The center 
integral can be evaluated by taking e to be very small (but not zero). Over this very small 
range, f(x) will be about constant:

 f x
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x f
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∫ ∫=d d0  (C.15)

Taking the limit as a goes to infi nity,
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Thus,

 lim ( )
sin

( )
a

f x
ax

x
x f

→∞
−∞

∞

∫ =
π

d 0  (C.17)

C.2.5 Identity 2

 cos( ) ( )2π δvx x vd =
−∞

∞

∫  (C.18)

Proof

The proof simply performs the integration and then applies identity 1.
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C.2.6 Identity 3 – F{1}

The Fourier transform of one is the delta function:

 e d−

−∞

∞

∫ =i vx x v2π δ( )  (C.20)

Proof

Changing the exponential into a sine and cosine,

 e d d d−

−∞

∞

−∞

∞

−∞

∞

∫ ∫∫= −i vx x vx x i vx x2 2 2π π πcos( ) sin( )  (C.21)

Since the sine is an odd function, the sine integral will vanish. Applying identity 2 to the 
cosine integral completes the proof.

C.2.7 Identity 4 – the Dirac Comb

The following identity is useful in the derivation of the diffraction pattern for a periodic 
line/space mask pattern with pitch p.

 p v
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p
i vnp

mn

e−

=−∞

∞

=−∞

∞

= −



∑∑ 2π δ  (C.22)

The function on the right-hand side of Equation (C.22) is called a Dirac comb of period 
p. This identity can be proved by recognizing that the Dirac comb is a periodic function 
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that can be easily represented by a Fourier series. Direct calculation of the Fourier 
coeffi cients of the complex Fourier series produces Equation (C.22).

C.2.8 Relationship to the Heaviside Step Function

The Heaviside step function is defi ned as

 u x
x

x
( ) =

<
≥{0 0

1 1

,
 (C.23)

The step function is related to the Dirac delta function by

 δ δ( ) ( ) ( ) ( )x
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d

d
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||polarization see transverse magnetic 
polarization

⊥polarization see transverse electric 
polarization

Abbe sine condition 53, 58
ABC parameter see Dill parameter
aberration

astigmatism 83–4
averaging 107
causes 75–8
chromatic 103, 461
coma 84–5, 86
construction 75, 76
design 76
even 84
example plots 82
longitudinal chromatic 77, 85–9
magnitude 78–9
odd 84–5
paraxial defocus 83–4
partially coherent illumination 85
polarization 114–17
power 83–4
Seidel equation 81
spherical 83–4, 179–81
Strehl ratio 90
tilt 81–3, 123
use 75–6
Zernike polynomial 78–81
see also lens aberration

absorbance curve, UV 194
absorbed electromagnetic energy 37–8

absorbed energy 187–8
absorption

Beer law 192–3, 194
chemical reaction 195–6
coeffi cient 131, 137, 187, 194, 194, 201, 

201, 458
development rate 275
effect 194
effective 154–6
Lambert’s law 38, 188, 192, 195–6, 380
molar 193
photon 242–5
refraction 185–7
wave propagation 33–6

acetal 226, 227
achromat 87
acid loss 232–32
acid–base quenching 253–4
acid–base segregation 254
acid-catalyzed resist 458
acidolysis 225
across chip linewidth variation (ACLV) 301–2
across-fi eld CD variation 309, 310, 311
across-wafer CD variation 309, 310
actinic wavelength 458
activation energy 458
activation energy, amplifi cation 236
active area level of CMOS process 7
additive pattern transfer see selective 

deposition
additive patterning 458
adhesion 298
adhesion promoter 14–15, 458
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ADI see after develop inspect
advanced imaging metrology (AIM) 

target 316–17
advanced process control (APC) 325, 340, 

458
aerial image

comparison with resist image 173
contact hole 51
defi nition 458
development 257–70
exposure energy 272, 273
forming 48
intensity as focus changes 98
island mask 93
isolated edge 71, 72
MEEF 350–52
NILS 370–76
optimization 370–76
point spread function 51, 59
projection 369–70
two-dimensional 70–71

after develop inspect (ADI) 25
AIM see advanced imaging metrology target
air–resist interface 146
Airy disk 52, 99, 100

see also point spread function
Airy, George Biddle 52
aligner see mask aligner
alignment and exposure process 19–23
alignment key 459
alignment mark 459
alignment target 459
alternating PSM 435–8, 441, 445, 446–8, 

459
Ampere’s law 30
amplifi cation reaction

activation energy 236
deblocking 235, 258–9, 261, 264–5
defi nition 225–7
measuring 235

anisotropic etching 3, 4
annular illumination 65–6, 429, 431, 432, 433, 

434, 459
antimony 5
antirefl ective coating (ARC) 134, 137, 459

see also bottom antirefl ective coating, top 
antirefl ective coating

APC see advanced process control
aperture function 47–8
aperture plane 46

see also diffraction plane, pupil plane
aperture stop see pupil, lens
aperture, numerical see numerical aperture
Apex-E resist 268, 269, 270
apodization 91

ARC see antirefl ective coating
area fi delity 298
ARF 459
ArF excimer laser wavelength 142
Arrhenius coeffi cient 459
Arrhenius equation 201, 459
Arrhenius plot 209, 235
Arrhenius relation 227
arsenic 5, 6
ASML stepper 90–91
aspect ratio 460
astigmatism aberration 82, 83–4, 343–5, 460
asymmetry, source shape 345–8
atmospheric base, reducing 231
atmospheric contaminant 231
attenuated PSM 441–4, 445, 448–50, 460
autofocus system 460

backlash overlay error 322–3
bake profi le 215
bake temperature 214–17
bake time, optimizing 383, 388–9
baking system, wafer 214–17
bandwidth, illumination 460
BARC see bottom antirefl ective coating
BARC layer 158
BARC refl ective index 159–60
bar-in-bar overlay measurement target 315
base contamination 231, 232
base diffusion length, reducing 231
base quencher 232–3, 234, 253–4, 385, 

391–3
Beer, August 192
Beer’s law of absorption 192–3, 194, 380
Bernoulli trial 237
Bessel function 52, 99
bias

horizontal–vertical 84
iso-dense 89

bias resist model, variable 123
biased space 441
binary mask 460
binary random variables 241–53
birefringence 116, 117, 460
bitline contact level of DRAM process 7
bleaching 137, 170, 171, 199, 218, 379–81, 

460
boron 5, 6
Bossung curves see focus–exposure matrix
Bossung plot 327, 330, 331–2
bottom antirefl ective coating (BARC)

absorbing substrate 156, 157–60
defi nition 23, 460
fi lm stack 173
high NA 160–63
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multiple layer 162–3
organic 231
performance 165–7
standing wave amplitude ratio 182
substrate refl ectivity 157, 162, 163
swing curve 213
transparent substrate 156, 164–5
see also BARC layer, BARC refl ective 

index
Bouguer, Pierre 192
box-in-box overlay measurement target 315
broadband illumination 141–4, 147

see also polychromatic illumination
Brunner, Tim 341
Bueche, F. 206
built-in dose error 307
built-in focus error 306
Byers–Petersen model 233–4, 253

capillary force 363–5
CAR see chemically amplifi ed resist
catadioptric 461
catalytic chain length 224
catalyzed reaction 224
catoptric 461
Cauchy coeffi cients 142, 461
Cauchy, Augustin-Louis 142
CD see critical dimension
CEL see contrast enhancement layer 170, 

171
cemented doublet 77, 87
characteristic curve 271, 276

see also H–D curve
characteristic length of short channel 

effect 301
chemical amplifi cation 224–35
chemical compatibility 298
chemical concentration 239–40
chemical mechanical polishing (CMP) 325
chemical mechanical polishing (CMP) 

error 317
chemically amplifi ed resist (CAR)

amplifi cation reaction 225–7
Apex-E 268, 269, 270
atmospheric base contaminant 231
base quencher 391–3
Byers–Petersen model 233–4
deblocking 384
defi nition 23–4, 461
delay time effect 230
development kinetics 258–66
development process 399–400
diffusion of acid 247–51
effect of solvent 209
exposure dose 224, 227

exposure reaction 223–4
high activation 225, 226
low activation 225, 226
measuring Dill parameters 235–7
postexposure bake (PEB) process 224, 226, 

229, 230–32
reaction 383–4
reaction–diffusion 384–91, 391–3
surface inhibition 265–6

chill plate 19
chip

manufacturing cost 2, 8–9, 10
power requirement 301, 302
size 300, 301, 302
speed 300, 301
see also integrated circuit

chromatic aberration 103, 461
chrome-on-glass (COG) mask 432, 433, 434, 

435, 442, 444, 451, 452
circle Zernike see Fringe Zernike
circuit layout 299–300
circular polarization 112, 113
clearing dose see dose-to-clear
CMOS (complementary metal oxide 

semiconductor) process 7
CMOS (complementary metal oxide 

semiconductor) transistor 6, 7
CMP see chemical mechanical polishing
coater, resist see resist coater
coating, resist spin see spin coating
coeffi cient of absorption 195–6
coherence factor see partial coherence
coherence length 142–4
coherence, spatial 461
coherent illumination 98, 351–2, 462
coma aberration 82, 83, 84–5, 86, 462
compact model 425
complementary metal oxide semiconductor see 

CMOS
condenser lens 38, 462
conductivity 30
construction aberration 75, 76
contact hole 51–2, 352–3, 450–52
contact level of CMOS process 7
contact lithography 19
contact printing 462
contaminant diffusivity 231
contamination from substrate 231
continuity equation 30
continuum approximation 237
contrast curve see H–D curve
contrast enhancement layer (CEL) 170, 171, 

462
contrast, image see image contrast
contrast, resist see photoresist contrast
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convection bake oven 203–4, 219
conventional illumination 58, 59, 61–2, 65, 

431
see also illumination

conventional resist
development kinetics 258–66
development process 397–9
diffusion 381–3
diffusion of acid 246–7
dissolution inhibitor 211
exposure 191–9
post-apply bake (PAB) process 199–210
surface inhibition 266

copolymer 225
corner rounding 298, 462
correctable, overlay 324, 325–6
correctable, stepper 324, 325–6
cost of lithography 1–2
covariance point spread function 

(CovPSF) 249–51
critical dimension (CD)

aerial image 121–2, 125
defi nition 25, 307–9, 462
error 167, 168
feature model 307–9
metrology 308–9, 311
response to dose 341–2
shrink rate 4
swing curve 144, 148–9
variation 309–14, 327

critical dimension (CD) control
design rules 299–300
dose error 305, 307
focus error 305–7
improving 298–309, 303–5
loss of 78
magnitude of error 305
response to error 305

critical ionization model 264–5
critical shape (CS) 462
critical shape difference 298, 463
critical shape error (CSE) 361–2, 463
cross product of vectors 491–2
curl operator, vector 30, 492, 494

damascene process 3
Dawson’s integral 289–91, 402
DC fl are 94
death of optical lithography, predicted 12
deblocking reaction 224, 225, 232, 235, 236, 

247–51, 258–9, 261
decomposition of sensitizer 200–204
deep-ultraviolet (DUV) 463
deep-UV lithography 463
defectivity 298–9

defocus 95–8, 100–2, 104, 372–3, 463
degree of coherence see partial coherence
degree of polarization (DOP) 113
dehydration bake 14, 463
delay distribution 300, 302–3
delay time effect 230–1
delta function 49
dense array example 48–50, 51, 66
dense line and space pattern 100–2
depolarization 117, 463
deprotection reaction see deblocking reaction
depth of focus (DOF) 105–6, 120–21, 326, 

332, 333–6, 338–9, 413, 414, 432, 463
design rule 464
design rule checker (DRC) 464
developer defi nition 464
developer diffusion to resist 258
developer loading 270
developer normality 268–70
developer temperature 267–8
developer TMAH 268–9
development 464
development path 278–92, 370
development process

constant gradient 284–6
contrast 270–78
description 24–5
developer loading 270
developer normality 268–70
diffusion to resist 258
kinetic models 257–70
lumped parameter model 286–92
optimization 393–400
puddle 270
rate 260, 261–3, 265–6, 267, 272, 273
reaction with resist 258–9
segmented 286–7
steps 370
temperature 267–8

development rate
constant gradient 284–6
defi nition 464
gradient 400–404
measuring 292–3
parameter 201
ratio 277–8
separable function 282–3, 400–401

development rate monitor (DRM) 276, 292–3, 
464

development time 291
deviation 90
device-representing target 339–40
diattenuation 116, 117, 464
diazonaphthoquinone 196
dichroism 116, 464
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die 464
dielectric constant 30, 32
diffraction

defi nition 464
description 39–43
Fraunhofer 40, 41, 68
Fresnel 68–9
order 42–3, 45, 49, 50, 465
pattern 49–50, 435–6, 465

diffraction limited imaging system 20, 47–8, 
465

diffraction plane 46
see also aperture plane, pupil plane

diffusion
acid 227–30, 247–51
coeffi cient 465
conventional resist 381–3
developer to resist 258
Fickean 381–3
length 465
parameter 201
postexposure bake 210–13
sensitizer 210, 212
solvent 205–9

diffusion point spread function (DPSF) 212, 
229, 385

diffusivity see diffusion coeffi cient
Dill bleachable absorption coeffi cient 196
Dill equation 187
Dill model of exposure 201
Dill parameters 194, 197, 201, 217–9, 235–7, 

465
dimension, critical see critical dimension (CD)
dioptric 465
dipole illumination 65, 101–2, 429, 430, 431, 

434, 465
Dirac delta function 42, 495–500
direction cosine 35
directional derivative 493, 494
direct-write lithography 466
dispersion 87–8, 141, 466
displacement, electric 30
dissolution inhibitor 211, 225, 258, 262, 263, 

265–6, 466
dissolution, photoresist 258–61
dissolution promoter 466
dissolution rate 202–3, 210, 267–8

see also development rate
dissolution selectivity 260–61, 269, 275
distortion 83, 123, 466
divergence of gradient 493, 494
divergence operator, vector 30, 492, 494
DNQ see diazonaphthoquinone
DNQ resist see conventional resist
DOF see depth of focus

Doolittle model 205–7
Doolittle, Arthur 205
DOP see polarization
dopant concentration 6
dopant impurity 5
doping process 1, 5–6
dose

budget analysis 165–6
built-in error 307
control 339–43
error 305, 307, 326, 353–5
error range 165–7
see also exposure energy

dose-to-clear 92, 93, 144, 145, 148–9, 272, 
276, 466

dose-to-size 466
dot product of vectors 492
double puddle development 270
double-puddle process 25
doublet, cemented 77, 87
downstream compatibility 297, 298
DPSF see diffusion point spread function
drain–source voltage 299, 300
DRM see development rate monitor
dry stripping see plasma stripping
dual trench 441
DUV see deep ultraviolet
DUV lithography see deep-UV lithography
dyed resist 467

E-beam lithography see electron beam 
lithography

EBR see edge bead removal
edge bead 17–18, 467
edge bead removal (EBR) 18, 467
edge placement error (EPE) 298, 362, 426, 

467
effective absorption 154–6
Einstein, Albert 195
Einstein’s coeffi cient of absorption 195–6
electric fi eld

interference 174
refl ected 130
resultant 174
standing wave 133, 134, 139
vector 108–17

electrical charge, conservation of 30
electromagnetic energy, absorbed 37–8
electromagnetic wave 108
electron-beam lithography 12, 467
electroplating 3
elliptical polarization 112, 113
embedded PSM (EPSM) see attenuated PSM
enhanced kinetic model 261–3
entrance pupil 46, 47–8, 467
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EPSM see attenuated PSM
etching

anisotropic 467
etch and ion implantation 298
isotropic 468
pattern transfer 25–6
resistance 298
selectivity 3, 4, 467

Euler–Lagrange equation 278–80, 281, 282
Euler’s theorem 49
EUV see extreme ultraviolet
EUV lithography 468
evaporation 205–9, 232
even aberration 84
excimer laser 468
exit pupil 46, 47–8, 53, 95, 96, 468
experimental confi guration measuring Dill 

parameter 217
exposure 201, 242–5, 468
exposure dose 107, 198, 224, 227, 235, 

267–8, 272–3, 292–3, 303–4, 339–43
exposure energy 198, 272, 273, 468
exposure fi eld 310, 469
exposure kinetics 187, 194–9, 200
exposure latitude 304, 333–6, 340, 341, 

374–5, 468
exposure margin 468
exposure parameter 201
exposure process 191–9, 230–32, 370, 378–81
exposure reaction 223–4
exposure shot noise coeffi cient 243
extended illumination 59
extinction coeffi cient 131, 469
extreme ultraviolet (EUV) lithography 239, 

469

F2 excimer laser wavelength 142
fab see IC fabrication factory, 

manufacturability, wafer fab
Faraday’s law 30
far-fi eld diffraction pattern 40
FE matrix see focus–exposure matrix
feature model of resist profi le 307–9
feature resolution 412, 416–8, 418–9
feature size 8–9, 10

see also critical dimension
FI see fi nal inspect
Fick’s Second Law of Diffusion 211, 381–3
fi eld curvature 469
fi eld-by-fi eld alignment 469
fi lm contamination 14
fi lm deposition process 1, 2, 3
fi lm etch rate 3
fi lm shrinkage 236
fi lm stack optimization 156

fi lm stack variation 311
fi lter, pupil 90–91
fi nal inspect 25
fl are 91–5, 117, 469
fl ood exposure 469
Flory, P.J. 206
fl uorescence 194
focal plane 469
focal position see focus
focus

averaging 103–4
blur 103–4
control 339–43
defi nition 470
dependence 125
drilling 103–4
error 305–7, 326
phase-shift monitor 341, 342–3
scatterometry 342, 342–3
sensitivity 342–3

focus–exposure process matrix 326–32, 340, 
341, 358, 427–8, 470

focus–exposure process window 326, 332–9, 
348–9

focusing 47
Fourier optics 41, 470
Fourier transform 41
Fourier transform infrared (FTIR) 

spectroscopy 236
Fourier transform pair 43–5
Fox, T.G. 206
frame-in-frame overlay measurement 

target 315
framing blade 93
Fraunhofer diffraction 40, 41, 68
Fraunhofer, Joseph von 40
free volume 206–7, 228, 231
Fresnel diffraction 68–9, 138, 162
Fresnel, Augustin-Jean 39, 40
Fringe Zernike polynomial, terms 80
FTIR spectroscopy see Fourier transform 

infrared spectroscopy 236
Fujita–Doolittle equation 207–8, 229
full-width half-maximum (FWHM) dose 

ratio 273, 274, 277

gate length 300, 301, 302
Gaussian distribution of ions 5
Gaussian spectrum shape 88
Gauss’s law 30
GCA Corp. 20
GDS II 470
gel dose 272
glass transition temperature 470
g-line 191, 193, 470
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global alignment 470
‘golden’ tool see reference tool
goniometer 15
Goodman sign convention 34–5
gradient of fi eld 493, 494
gradient, divergence 493, 494
Green’s function 53

see also point spread function
Grotthuss–Draper law 191, 197

half-pitch, minimum 10
Hamilton–Jacobi equation 280
hard bake 470
harmonic fi eld 32–3
H–D curve 270, 271, 272, 393, 394, 470
health monitor 323–4
heat dissipation 194
Helmholtz equation 33–4, 39, 40
Herrick, C.E. 199
Hertz, Heinrich 131
hexamethyl disilizane (HMDS) 14–15
h-line 471
Hopkins approach 62–4, 69
horizontal–vertical (H–V) bias 84, 343–8, 

471
hot plate bake 18–19
Hurter–Driffi eld curve see H–D curve
Huygen, Christian 39
Huygen’s principle 39, 471
H–V bias see horizontal–vertical bias
hyper-NA tool 22, 119, 471

IC see integrated circuit
IC fabrication factory

cost of lithography 1–2
profi t 8–9
throughput 2, 9–10

i-line 191, 193, 213, 471
illumination

annular 65–6, 429, 431, 432, 434
broadband 141–4
coherent 98, 351–2
conventional 58, 59, 61–2, 65, 431
dense array example 66
dipole 65, 101–2, 429, 430, 431, 434
extended 59
incoherent 58, 69–70
Kintner weight 61–2, 67
Köhler 66–9
modifi cation 411
oblique 57–8
off-axis 65–6, 100–1, 412, 419, 429–34, 

443
partially coherent 58–63, 71, 72, 85, 

98–9, 101–2, 351–2

polychromatic 141–4
p-polarization 177, 178
quadrupole 65, 429, 431, 433, 434
source shape asymmetry 345–8
s-polarization 177, 178
system 38–9, 471
telecentricity error 346–8
see also dose

illumination aberration see source shape 
asymmetry

image
contrast 371, 471
fading 107
isofocal point 98, 102–3, 122
log-slope 123–5, 472
placement error 123
quality 121–5, 376
reversal 472
see also normalized image log-slope

imaging example
dense array 48–50, 51
isolated space 50–51
three-beam 60–61, 98, 102–3, 125, 177, 

182, 288, 329–30, 346–8, 430, 442–3
two-beam 60–61, 101, 125, 175, 346–7, 

430
imaging lens 45–7
imaging system

diffraction limited 20, 47–8, 465
linear resolution 348–9
natural resolution 53
partially coherent 351–2

imaging theory 38–56
imaging tool projection 369–70, 370–76
immersion lithography 21–2, 117–21, 472
imprint lithography 472
impulse response 53

see also point spread function
impurity doping see ion implantation
incoherent illumination 58, 69–70, 472
index of refraction see refractive index
induction 30
information transfer 369–70
inhomogeneous wave 187
in-line development 24
inner product see dot product of vectors
integrated circuit (IC)

defi nition 472
fabrication 2–7
feature size 8–9, 10
half-pitch, minimum 10
manufacturing cost 8
Moore’s law 7–12
yield 8, 10

Intel 12
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intensity distribution 54
intensity imbalance 439–41
intensity normalization 54
intensity of light

absorbed energy 187–8
calculation 174
defi ning 183–8
defi nition 472
refl ected light 130–31
standing wave 133, 134, 139, 142, 143
threshold value 121–2
total 108, 111

interference 108–17
interference pattern 130
internal transmittance 132
International Technology, Roadmap for 

Semiconductors (ITRS) 11
ion beam lithography 472
ion implantation 5–6, 25–6
ionization model, critical 264–5
irradiance 36, 183–8

see also intensity of light
iso-dense print bias 89, 419–21, 427, 473
isofocal bias 336–8, 473
isofocal CD 330, 336–8
isofocal dose 330, 336, 473
isofocal linewidth 473
isofocal point 98, 102–3, 122, 336–8
isofocal target 340
isolated edge 71, 72
isolated phase edge 445–6, 453–4

see also phase edge
isolated space example 50–51
isolation level of DRAM process 7
isophote 85, 86
isotropic etching 3
ITRS see International Technology, Roadmap 

for Semiconductors 11

Jones pupil 114–17, 482
Jones vector 115

kinetic model 260, 261–3
Kintner method 61–2, 125
Kintner weight 61–2, 67
Kirchhoff boundary condition 40–41, 43, 

57
Kirchhoff transmittance 435
Kirchhoff, Gustav 40
Kodak 820 resist 219
Köhler illumination 66–9, 473
Köhler, August 68
KrF excimer laser wavelength 142
KrF laser 88, 89
Krypton Fluoride (KrF) 473

Lagrange invariant 118–19
Lambert law of absorption 38, 188, 192, 

195–6, 380
Lambert, Johann Heinrich 192
Lambert–Bouguer law see Lambert law of 

absorption
Laplacian operator 493, 494
large-scale integration 473
laser, KrF 88, 89
latent image 199, 200, 473

see also resist image
latent image gradient (LIG) 382–3, 384, 

388–90, 391–2
lattice vibration 194
left-circular polarization see circular 

polarization
lens

aberration 20, 306, 311, 320–21, 326, 
369–70, 457

apodization 91
coating 91
complexity 106
condenser 38
design 22, 77
fi ngerprint 321–2, 323
imaging 45–7
measurement of error 79
objective 38, 45, 46
pupil 482

LER see line edge roughness
LES see line-end shortening
Levenson PSM see alternating PSM
lift-off process 474
light as vector 137–41
light diffraction 39–43
light source 38
light, mathematical description 29–38
line edge roughness (LER) 298, 404–6, 

474
line spread function (LSF) 452–3
line width roughness 404
linear polarization 111–12, 113
linear resolution 348–9, 474
linear systems theory 53
linearity 474
linearity plot 348–9
line-end shortening (LES) 298, 356–7, 357–9, 

359–61, 474
linewidth 10, 326, 335
linewidth see also critical dimension
linewidth control 129, 299–300, 301–2
lithographer 474
lithographic imaging equation 274, 284, 394
lithographic level 6–7
lithographic light source 142
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lithographic process
alignment and exposure 19–23
built-in focus error 306
control 304
description 12–14
development 24–5, 257–93, 370, 393–400
etch and ion implantation 298
exposure 191–9, 370
exposure dose 303–4
exposure latitude 304
g-line 191
gradient-based optimization 369–407
i-line 191
information transfer 369–70
latitude 303
measure and inspect 25
metrics 407
optimization 304
pattern transfer 25–6
photoresist coating 15–18
post-apply bake 18–19, 199–210
postbake 25
postexposure bake 23–4, 224, 226, 229, 

230–32, 370, 381–393
response 303
response to error 305
steps 407
strip 26
substrate preparation 14–15

lithographic quality 297–9
lithographic resolution 21–2
lithographic tool see step-and-scan tool, 

stepper tool
lithography 474
lithography, cost 1–2
log-slope defocus curve 373–4
longitudinal chromatic aberration 77, 85–9
Lorentzian spectrum shape 88, 89
LSF see line spread function
LSI see large-scale integration
lumped capacitance model 214, 216
lumped parameter model (LPM) 286–92, 

401–4

Mack model, original see kinetic model
magnetic fi eld vector 108–17
magnetic permeability 30, 32
magnifi cation overlay error 317, 318, 319
Manhattan error 362
manufacturability 297, 298–9
manufacturable resolution 413–6
mask 38, 475
mask error enhancement factor (MEEF)

aerial image 350–52
contact hole 352–3

defi ning 349–50
defi nition 475
manufacturing 348–56
resist impact 355–6

mask linearity 476
mask linearity plot 348–9
mask modifi cation

general 411
optical proximity correction (OPC) 412, 

419–29
phase-shifting mask (PSM) 412, 419, 

434–50
mask, chrome-on-glass (COG) 432, 433, 434, 

435, 442, 444, 451, 452
maskless lithography 476
mask-level intensity normalization 55
Maurer, Wilhelm 350
Maxwell, James Clerk 108
Maxwell’s equations 29, 30–32, 36, 39, 40, 

185
mean-fi eld solution 243
measure and inspect process 25
measurement target, overlay 315–17
MEEF see mask error enhancement factor
mercury arc lamp 142, 476
metal 1 level of CMOS process 7
metrology defi nition 476
metrology health 323–4
metrology resist profi le 308–9, 311
metrology target 339
Meyerhofer plot 262, 263
microlithography 476
mix-and-match lithography 476
model-based OPC 425–7, 476
modeling see also simulation
modeling, overlay data 317–23
modeling, stochastic 237–53
modulation transfer function (MTF) 69–70, 

351
molar absorption 187, 193, 201
monitor 341, 342–3
Monte Carlo implantation simulator 5
Moore, Gordon 8, 10
Moore’s law 7–12, 299, 476
moving standard deviation (MSD) 107–8
MTF see modulation transfer function
multilayer resist (MLR) 476
multiple-layer fi lm stack 135–7

nanolithography 477
National Technology, Roadmap for 

Semiconductors (NTRS) 11
natural resolution 53, 450–54
negative photoresist 224, 230, 267, 477
next generation lithography (NGL) 477
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NILS see normalized image log-slope
nonabsorbing medium 33–6
nontelecentricity 101
no-quencher 405
normalized image log-slope (NILS) 123–5, 

175, 289, 369–407, 477
notch model 262, 263–4
notching, refl ective 167, 168
Noyce, Bob 12
NTRS see National Technology, Roadmap for 

Semiconductors 11
n-type dopant 5
number of components per chip 8
numerical aperture (NA) 45–6, 53, 78, 

160–63, 181, 477, 119

OAI see off-axis illumination
objective lens 38, 45, 46, 477
oblique illumination 57–8
oblique incidence 183–4
odd aberration 84–5
off-axis illumination (OAI) 65–6, 100–1, 412, 

419, 429–34, 443, 477
offset overlay error 318
Ohm’s law 30
OPC see optical proximity correction
OPD see optical path difference
optical density 478
optical exposure parameter 201
optical invariant 118
optical lithography 478
optical lithography, predicted death 12
optical path difference (OPD) 78, 79, 90, 

96–7, 104, 478
optical proximity correction (OPC) 63, 412, 

419–29, 422–5, 425–7, 478
optical proximity correction (OPC) 

software 362
optical proximity effect 478
optical ray 78
optical transfer function (OTF) 69
optimization of lithographic process 369–407
optimization process 156
optimum stepper problem 376
‘original’ kinetic model 260, 262, 263
original Mack model see ‘original’ kinetic 

model
OTF see optical transfer function
outer product see vector cross product
oven bake 18
overexposed resist 272
overlapping DOF 338, 349
overlay

data analysis 317–23
defi nition 478

mark 478
mark fi delity 478
performance 78

overlay control 297, 298
advanced imaging metrology (AIM) 

target 316–17
analysis 317–23
backlash error 322–3
correctable 324, 325–6, 478
error 314
magnifi cation error 317, 318, 319
measurement 315–17
measurement target 315
modeling 317–23
offset error 318
pattern placement error 326
production lot measurement 323–4
registration 314
rotation error 317–8, 318–9
tool-induced shift (TIS) 315–16
translation error 318, 319, 323
wafer-induced shift (WIS) 316

PAB process see post-apply bake process, 
prebake

PAC see photoactive compound
PAG see photoacid generator
parasitic delay 300
paraxial approximation 76, 99, 101, 479
paraxial defocus aberration 76, 82, 83–4, 87

see also defocus
partially coherent illumination 58–63, 71, 72, 

85, 98–9, 101–2, 149–50, 351–2, 479
particulate contamination 14, 18
pattern collapse 298, 362–6, 479
pattern placement error 326, 479
pattern transfer 4
pattern transfer process 25–6
patterning process 1, 2–3, 6, 5, 116, 479
Pauli spin matrix
peak wavefront deviation 90
PEB process see postexposure bake 

process
pellicle 480
Perkin-Elmer 20
phase confl ict 438–9, 444
phase error, impact 445–50
phase imbalance 439–41
phase sign convention 34–5, 130
phase-shift focus monitor 341
phase-shifting mask (PSM) 412, 419, 434–50, 

480
phasor 33–6
phosphorous 5, 6
photoacid generator (PAG) 232, 223–4, 480
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photoactive compound (PAC) 18, 19, 193–4, 
202, 204, 480

photochemistry, fi rst law 191
photolithography see optical lithography
photomask 19, 29, 480
photon

absorption 242–5
emission 194
exposure 242–5
shot noise 237–9, 246, 253, 405

photoresist
adhesion 14–15
bleaching 137, 194, 218
carbonization 6
coating process 15–18
contrast 270–74, 393–4, 399–400, 480
contrast defi nition 272–4, 274–6
defi nition 480
development process 257–93
Dill parameter 194, 197
dissolution 258–61
dose-to clear 92, 93
exposure kinetics 187
negative 3
positive 3, 193, 481
practical contrast 276–7
profi le 307
profi le control 297–8
theoretical contrast 272–3, 276
see also resist

physical sputtering 3–4
pitch

defi nition 480
forbidden 433
resolution 47, 412–3, 416–8, 418–9

placement error 83, 84, 123
plane wave 32–3, 37, 48–9
plasma etching 3
plasma stripping 26
p–n junction 5
point spread function (PSF) 51–3, 64, 90, 114, 

115, 249–51, 450–52, 481
Poisson distribution 238, 239–40, 242, 244–5, 

251
polarization

aberration 114–17
birefringence 116, 117
bottom antirefl ective coating (BARC) 162, 

163
circular 112, 113
defi nition 481
degree 113
depolarization 117
diattenuation 116, 117
dichroism 116

elliptical 112, 113
Jones pupil 114–17
linear 111–12, 113
random 112–13
retardance 116
TE versus TM 113–14
unpolarized light 112, 160
vector PSF
see also transverse electric polarization, 

transverse magnetic polarization
polychromatic illumination 141–4, 147

see also broadband illumination
polymer

copolymer 225
deblocking reaction 224, 225, 247–51, 251–

3, 258–9, 261, 264–5
molecular weight and dissolution 264–5
resin 223–4
solubility 225
system 206
t-BOC blocked 225, 227

polysilicon gate level of CMOS process 7
poor man’s DRM 293, 294
positive photoresist 193, 224, 230, 258–66
post-apply bake (PAB) process 18–19, 193, 

199–210
postbake process 25

see hard bake
postexposure bake (PEB) process

acid loss 230–32
bake time 229
deblocking 232, 236
defi nition 481
description 23–4, 370
diffusion 172, 210–13
diffusion parameter 201
measuring kinetics 236
optimization 381–393
result 226
solvent 205–9

power aberration see paraxial defocus 
aberration

power-law model 5, 6
Poynting vector 36–7, 183
p-polarization

direction of light 146
intensity of light 183–4
resist image 177, 178
standing wave amplitude ratio 182–3
see also transverse magnetic polarization

practical contrast 276–7
prebake process 481

see also post-apply bake (PAB) process
principle of least action 279–80
process capability 333
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process control 304
process error 303
process latitude 303, 481
process optimization 304
process requirement 333
process response 303
process window 418–19, 481

see also focus–exposure process window
production lot measurement 323–4
projected range of ion penetration 5, 6
projection imaging tool 369–76
projection lithography 19–20
projection printing 29, 481
PROLITH 213
propagation constant 32, 35
proximity bake 482
proximity effect 419–21, 482
proximity lithography 19
proximity printing 482
PSF see point spread function
PSM see phase shifting mask
p-type dopant 5
puddle development 24, 270
pulse-to-pulse 107
pupil fi lter 90–91, 482
pupil function 47–8, 482
pupil plane 46, 48–9

see also aperture plane, diffraction plane
pupil, Jones see Jones Pupil
pupil, lens see lens pupil

quadrature 110
quadrupole illumination 65, 429, 431, 434, 

482
quality of image 121–5
quality of lithography

downstream compatibility 297, 298
manufacturability 297, 298–9
metrics 298
overlay 297, 298
overlay control 314–26
photoresist profi le control 297–8

quantum effi ciency 483
quench, no 405
quencher, base 232–3, 234, 253–4, 385, 391–3

radiometric correction 54–5
random CD variation 312–14
random polarization 112–13
random walk 246
raster scan 483
ray, optical see optical ray
Rayleigh depth of focus 105–6, 120–21
Rayleigh equation 412–3, 483
Rayleigh resolution criterion 21

ray-trace calculation 280
reaction, developer with resist 258–9
reaction–diffusion point spread function 

(RDPSF) 229, 230, 385
reaction–diffusion system 228, 233–5, 251–3
reactive ion etching 4
reciprocity 198
reduction imaging 53–6
reference tool 321
refl ected electric fi eld 130
refl ection 91
refl ection coeffi cient 132, 134–5, 136, 146
refl ection control 129
refl ective notching 167, 168, 483
refl ectivity 157, 161, 483
refl ectivity swing curve 144–8
refraction 185–7
refractive index 119–20, 141, 147, 169, 164–

5, 175–6, 483
registration 314, 483
repeatability, pulse-to-pulse 107
repeating pattern 44–5
resin, photoresist 484
resist

absorption 134, 201
bias 122
bleaching 199, 379–81
coater 461
dye 134
etch rate 3, 4
footing 172, 173, 231
impact on MEEF 355–6
pattern 4
refractive index 175–6
refl ectivity 167–70, 484
sidewall angle 283–4, 298
spherical aberration 179–81
substrate interface 218
thickness 327, 335
undercutting 172, 173
see also photoresist

resist gamma see photoresist contrast
resist image

calculating 177–8
contrast 173–7
creating 175
development rate 272, 273
NILS 377–8
optimization 377–8
standing wave 178, 181–3

resist linewidth see critical dimension
resist profi le

development path 281
focal plane 331
formation 400–404
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model 362
T-top 230, 231, 266
variation 85, 86

resolution
defi nition 484
feature 412, 416–8
improving 418–9
manufacturable 413–6
natural 450–54
pitch 412–3, 416–8

resolution enhancement technology (RET)
defi nition 484
off-axis illumination (OAI) 412
optical proximity correction (OPC) 412, 

419–29
phase-shifting mask (PSM) 412, 419, 

434–50
resolution of lithography 21–2
RET see resolution enhancement 

technology
retardance 116, 484
reticle 29

CD variation 311, 313–4
defocus 104
fi ngerprint 322
magnifi cation error 319
overlay model 320–21
rotation error 318–9
see also mask

reworking 25
Reynolds number 17
right-circular polarization see circular 

polarization
RMS wavefront deviation 90
rotation overlay error 317–8, 318–9
rule-based OPC 422–5, 484

saggital lines 485
sampling wafers 323–4
scalar product see dot product of vectors
scalar wave theory 485
scalar, light as a 110
scan across-fi eld CD variation 309, 310–12
scan bow 323
scanner 106–8, 485
scanning electron microscope (SEM) 485
scanning projection 20
scatter fraction 94
scattering bars see subresolution assist 

features
scatterometry 342
Seidel aberration equation 81
selective deposition 25–6
SEM see scanning electron microscope
semiconductor 2, 485

sensitizer
decomposition 200–204
diffusion 210
see also photoacid generator, photoactive 

compound
serif 485
shallow trench isolation (STI) level of CMOS 

process 7
shift theorem 43
short channel effect 301
shortening, line-end see line-end shortening
shot noise

exposure coeffi cient 243
photon 237–9, 246, 405

sidelobe 444
sidewall angle 283–4, 298, 327, 335, 485
sign convention, Goodman 34–5
signature of CD variation 310
silane 14–15
silanol 14–15
silicon as a semiconductor 2
similarity theorem 43
simulation 485
sinc function 42
single-layer fi lm stack standing wave 131–5
SiOH see silanol
slit across-fi eld CD variation 309, 310, 311
smiley plot see focus–exposure matrix
Snell’s law of refraction 76, 114, 118–19, 138, 

149, 180, 184–5
SOCS see sum of coherent sources
soft X-ray lithography see EUV lithography
softbake see prebake
softbake process see post-apply bake process
solvent

absorption 192–3
defi nition 486
diffusion 205–9
effect in lithography 209–10
evaporation 205–9

source shape asymmetry 345–8
spacewidth, minimum 10
spatial CD variation 309–11
spatial coherence 56
spatial frequency 486
SPC see statistical process control
spectrum 88, 89
speed of light 31
spherical aberration 82, 83–4, 486
spherical coordinates 493–4
spherical wave 35
spider plot see focus–exposure matrix
spin coating 15–18, 486
spin development 24
spin speed 16–17
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s-polarization
direction of light 146
intensity of light 183–4
resist image 177, 178
standing wave amplitude ratio 182
see also transverse electric polarization

spray development 24
SRAF see subresolution assist feature
stage complexity 106
stage scanning error 103
standing wave

amplitude ratio (SWAR) 181–3
defi nition 22–3
effect 486
electric fi eld 133, 134, 139
exposure 199
intensity 133, 134, 139, 142, 143
multiple-layer fi lm stack 135–7
oblique incidence 137–41
postexposure bake (PEB) diffusion 172
resist image 129–44, 178, 181–3
single-layer fi lm stack 131–5

statistical correlation 312
statistical process control (SPC) 312, 325
step-and-repeat camera see stepper
step-and-repeat projection 20, 22
step-and-scan

defi nition 486
error 309–11
projection 20–1, 22

step-and-scan tool
backlash error 322–3
catching errors 320–23
comparison of tools 106–8
magnifi cation error 317, 318
matching tools 321–2
projection imaging 370

stepper
ASML 90–91
comparison of tools 106–8
correctable 324, 325–6
defi nition 487
Ultratech 90–91
see also step-and-repeat projection

stepper tool
backlash error 322–3
catching errors 320–21
matching tools 321–2
optimum problem 376
projection imaging 370

stochastic model 237–53, 404
storage level of DRAM process 7
straggle of ion penetration 5, 6
Strehl ratio 90, 487
strip process 26

strippability 298
stripping, resist defi nition 487
subresolution assist feature (SRAF) 338, 

427–9, 432, 487
substrate

air interface 218
contamination 14
defi nition 487
preparation process 14–15
refl ectance 171–3
refl ectivity 157, 161, 173, 487
transparent 164–5

substrate refl ection coeffi cient 136
subtractive pattern transfer 25–6, 487

see also etching
sum of coherent sources (SOCS) 63–4, 425
surface induction 265–6, 272, 275, 487
surface inhibition 265–6, 272, 275, 487
surfactant 265–6, 272, 488
SVG Lithography 20
SWAR see standing wave amplitude ratio
swing amplitude 147, 152
swing curve

bottom antirefl ective coating (BARC) 156
broadband illumination 147
defi nition 22–3, 488
partially coherent illumination 149–50
photoresist 213
refl ectivity 144–8, 171, 172
resist image 129, 144–56
single-layer fi lm stack 145–6

swing ratio 154, 488
switch 2
systematic CD variation 312–14
systematic focus error

lens aberration 306, 311
thickness of resist 306
wafer topography 306

tangential lines defi nition 488
TARC see top antirefl ective coating
target diagnostics 325
t-butoxycarbonyl (t-BOC) 225, 227
t-butyl Ester 226, 227
TCC see transmission cross-coeffi cient
TE polarization see transverse electric 

polarization
telecentricity 101, 125, 346–8
temporal CD variation 312–14
temporal coherence 56
termination problem 438–9
theoretical contrast 272–3, 276
theoretical resolution 47
thermal dose 227, 235
thermal stability 298
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thin fi lm, sign convention 34–5
three-beam imaging 28, 60–61, 98, 102–3, 

125, 177, 182, 329–30, 346–8, 430, 
442–3

threshold inhibitor concentration 260
threshold resist model, variable 122
throughput 106
tilt aberration 81–3, 83, 123
time-harmonic fi eld 33
timing error 300, 302–3
TIS see tool-induced shift
TM polarization see transverse magnetic 

polarization
TMAH developer 268–9
tool, lithographic see step-and-scan tool, 

stepper tool
tool-induced shift (TIS) 315–16, 488
top antirefl ective coating (TARC) 137, 156, 

167–70, 488
top surface imaging defi nition 488
track system, wafer see baking system, wafer
transistor 2, 10, 301
translation overlay error 318, 319, 323
transmission coeffi cient 132
transmission cross-coeffi cient (TCC) 62–3, 

69
transparent substrate 164–5
transverse electric (TE) polarization 110–11, 

113–14, 138–40, 174–5
transverse magnetic (TM) polarization 110–

11, 113–14, 138–40, 174–5
trend chart 312
triphenylsulfonium salt 223
T-top, resist profi le 266, 488
two-beam imaging 60–61, 101, 125, 175, 

346–7, 430

ultra large-scale integration (ULSI) 489
Ultratech stepper 90–91
ultraviolet (UV) 489
undercut etch 441
underexposed resist 272
unit impulse function 495–500
unpolarized light 112, 160, 176
use aberration 75–6
useable DOF 339
UV absorbance curve 194
UV cure defi nition 489

vapor prime 15, 489
variability, pulse-to-pulse 107
variable bias resist model 123
variable-threshold resist (VTR) model 122, 

291–2

vector
cross product 491–2
dot product 492
light as a 108–17, 137–41, 173
PSF 114, 115
scan 489
wave theory 489

very large-scale integration 489
via level of CMOS process 7
viscosity 17, 206
VLSI see very large-scale integration
von Smoluchowski, Marian 233, 234
VTR model see variable-threshold resist 

(VTR) model

wafer
baking system 214–17
defi nition 489
fab 490
magnifi cation error 319
rotation error 318–9
warpage 216–17

wafer overlay model
backlash error 322–3
magnifi cation error 317, 318, 319
offset error 318
production lot measurement 323–4
rotation error 317–8, 318–9
translation error 318, 319, 323

wafer track system see baking system, wafer
wafer-induced shift (WIS) 316
wafer-level intensity normalization 55
warpage, wafer 216–17
water viscosity 17
wave equation 29, 30–32
wave number 32
wave propagation 32–6
wavefront 78, 90, 490
wavefront engineering 411
wavelength, lithographic light source 142
wet etch 3
wet stripping 26
Wiener, Otto 131
wobble 323
wordline level of DRAM process 7

X-ray lithography 12, 490

yield 8, 10, 490

Zernike coeffi cient 490
Zernike polynomial 78–81, 490
Zernike, Fritz 79
zero order 42


