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Quadratic Formula

If ax2 + bx + c = 0, then  x =   − b ±  √ 
_______

  b   2  − 4ac    _____________ 
2a

   

Binomial Theorem

(  1 + x )  n  = 1 +   nx ___ 
1!

   +   
n (n − 1)  x   2 

 _________ 
2!

   + . . .   ( x   2  < 1) 

Products of Vectors

Let θ be the smaller of the two angles between    → a    and    
→

 b   .  
Then

   → a   ⋅   
→

 b   =   
→

 b   ⋅   → a   =  a  x    b  x   +  a  y    b  y   +  a  z    b  z   = ab cos θ  

    → a   ×   
→

 b   = −   
→

 b   ×   → a   =   |     ̂ i    ̂ j 
  

  ̂  k 
   a  x     a  y     a  z    

 b  x  
  

 b  y  
  

 b  z  
  |    

  =  ̂ i   |    
 a  y  

  
 a  z  

   b  y  
   b  z  

  |   −  ̂ j   |     a  x  
  

 a  z  
   b  x  

   b  z  
  |    +   ̂  k   |    

 a  x  
  

 a  y  
   b  x  

   b  y  
  |     

 =   ( a  y   b  z   −  b  y   a  z  ) ̂ i   + ( a  z   b  x   −  b  z   a  x  ) ̂ j     +   ( a  x   b  y   −  b  x   a  y  )   ̂  k  

    |     → a   ×   
→

 b    |    = ab sin θ 

Trigonometric Identities

 sin α ± sin β = 2 sin   1 _ 2   (α ± β)  cos   1 _ 2   (α ∓ β)  

 cos α + cos β = 2 cos   1 _ 2   (α + β)  cos   1 _ 2   (α − β)  

Derivatives and Integrals

   d ___ 
dx

   sin x = cos x 

   d ___ 
dx

   cos x = − sin x 

   d ___ 
dx

    e   x  =  e   x  

      
 
     dx _________ 
 √ 

_______
  x   2  +  a   2   
     = ln(x +         x2 + a2 )

      
 
    x dx __________ 
( x   2  +  a   2  )  3/2 

     = −   1 __________ 
 ( x   2  +  a   2 )  

1/2
 
  

      
 
     dx __________ 
( x   2  +  a   2  )  3/2 

     =   x ____________  
 a   2  ( x   2  +  a   2 )  1/2 

  

Cramer’s Rule

Two simultaneous equations in unknowns x and y,

a1x + b1y = c1  and  a2x + b2y = c2,

have the solutions

 x =   
 |    c  1    

 b  1    
 c  2  

  
 b  2  

   |  
 _______ 

 |    a  1    
 b  1    

 a  2  
  

 b  2  
   |  
   =   

 c  1   b  2   −  c  2   b  1   __________  a  1   b  2   −  a  2   b  1  
   

and

 y =   
 |    a  1    

 c  1     a  2  
   c  2  

   |  
 _______ 

 |    a  1    
 b  1    

 a  2  
  

 b  2  
   |  
   =   

 a  1   c  2   −  a  2   c  1   __________  a  1   b  2   −  a  2   b  1  
  . 

      
 
  sin x   dx = −cos x

      
 
  c  os x dx = sin x

      
 
   e   x    dx =  e   x 

SI PREFIXES*
Factor Prefix Symbol Factor Prefix Symbol

1024 yotta Y 10−1 deci d
1021 zetta Z 10−2 centi c
1018 exa E 10−3 milli m
1015 peta P 10−6 micro μ
1012 tera T 10−9 nano n
109 giga G 10−12 pico p
106 mega M 10−15 femto f
103 kilo k 10−18 atto a
102 hecto h 10−21 zepto z
101 deka da 10−24 yocto y

 *In all cases, the first syllable is accented, as in ná-no-mé-ter.

MATHEMATICAL FORMULAS*

*See Appendix E for a more complete list.
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xiii

P R E F A C E

As requested by instructors, here is a new edition of the textbook originated by David Halliday and 
Robert Resnick in 1963 and that I used as a first-year student at MIT. (Gosh, time has flown by.) 
Constructing this new edition allowed me to discover many delightful new examples and revisit a few 
favorites from my earlier eight editions. Here below are some highlights of this 12th edition.

Figure 10.39 What tension was required by the  
Achilles tendons in Michael Jackson in his gravity- 
defying 45º lean during his video Smooth Criminals?

Figure 34.5.4 In functional near infrared spectroscopy 
(fNIRS), a person wears a close-fitting cap with LEDs 
emitting in the near infrared range. The light can 
penetrate into the outer layer of the brain and reveal 
when that portion is activated by a given activity, from 
playing baseball to flying an airplane.

Figure 2.37 How should autonomous car B be 
programmed so that it can safely pass car A without 
being in danger from oncoming car C?

Figure 9.6.4 The most dangerous car 
crash is a head-on crash. In a head-on 
crash of cars of identical mass, by how 
much does the probability of a fatality 
of a driver decrease if the driver has a 
passenger in the car?

Figure 4.39 In a Pittsburgh left, a driver in  
the opposite lane anticipates the onset of  
the green light and rapidly pulls in front  
of your car during the red light. In a crash  
reconstruction, how soon before the green 
did the other driver start the turn?

Figure 28.5.2 Fast-neutron therapy is a 
promising weapon against salivary gland 
malignancies. But how can electrically 
neutral particles be accelerated to high 
speeds?

Figure 29.63 Parkinson’s disease and other 
brain disorders have been treated with 
transcranial magnetic stimulation in which 
pulsed magnetic fields force neurons several 
centimeters deep to discharge.

Figure 9.65 Falling is a chronic and serious condition 
among skateboarders, in-line skaters, elderly people, 
people with seizures, and many others. Often, they fall 
onto one outstretched hand, fracturing the wrist. What 
fall height can result in such fracture?

Figure 10.7.2 What is the 
increase in the tension of 
the Achilles tendons when 
high heels are worn?
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xiv PREFACE

In addition, there are problems dealing with

• remote detection of the fall of an elderly person,

• the illusion of a rising fastball,

• hitting a fastball in spite of momentary vision loss,

• ship squat in which a ship rides lower in the water in a channel,

• the common danger of a bicyclist disappearing from view at an intersection,

• measurement of thunderstorm potentials with muons,

and more.

WHAT’S IN THE BOOK
• Checkpoints, one for every module

• Sample problems

• Review and summary at the end of each chapter

• Nearly 300 new end-of-chapter problems

In constructing this new edition, I focused on several areas of research that intrigue me and wrote new
text discussions and many new homework problems. Here are a few research areas:

We take a look at the first image of a black hole (for which I have waited my entire life), and then we 
examine gravitational waves (something I discussed with Rainer Weiss at MIT when I worked in his 
lab several years before he came up with the idea of using an interferometer as a wave detector).

I wrote a new sample problem and several homework problems on autonomous cars where a com-
puter system must calculate safe driving procedures, such as passing a slow car with an oncoming car 
in the passing lane.

I explored cancer radiation therapy, including the use of Augur‐Meitner electrons that were first un-
derstood by Lise Meitner.

I combed through many thousands of medical, engineering, and physics research articles to find clever 
ways of looking inside the human body without major invasive surgery. Some are listed in the index 
under “medical procedures and equipment.” Here are three examples:

(1) Robotic surgery using single‐port incisions and optical fibers now allows surgeons to access inter-
nal organs, with patient recovery times of only hours instead of days or weeks as with previous surgery 
techniques.

(2) Transcranial magnetic stimulation is being used to treat chronic depression, Parkinson’s disease, 
and other brain malfunctions by applying pulsed magnetic fields from coils near the scalp to force 
neurons several centimeters deep to discharge.

(3) Magnetoencephalography (MEG) is being used to monitor a person’s brain as the person per-
forms a task such as reading. The task causes weak electrical pulses to be sent along conducting paths 
between brain cells, and each pulse produces a weak magnetic field that is detected by extremely 
sensitive SQUIDs.

Physics Circus
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xvPREFACE

 THE WILEYPLUS ADVANTAGE
WileyPLUS is a research-based online environment for effective teaching and learning. The custom-
ization features, quality question banks, interactive eTextbook, and analytical tools allow you to 
quickly create a customized course that tracks student learning trends. Your students can stay en-
gaged and on track with the use of intuitive tools like the syncing calendar and the student mobile 
app. Wiley is committed to providing accessible resources to instructors and students. As such, all 
Wiley educational products and services are born accessible, designed for users of all abilities.

Links Between Homework Problems and Learning Objectives    In WileyPLUS, every ques-
tion and problem at the end of the chapter is linked to a learning objective, to answer the (usually 
unspoken) questions, “Why am I working this problem? What am I supposed to learn from it?” By 
being explicit about a problem’s purpose, I believe that a student might better transfer the learning 
objective to other problems with a different wording but the same key idea. Such transference would 
help defeat the common trouble that a student learns to work a particular problem but cannot then 
apply its key idea to a problem in a different setting.

Animations of one of the key figures in each chapter.  Here in the book, those figures are 
flagged with the swirling icon. In the online chapter in WileyPLUS, a mouse click begins the ani-
mation. I have chosen the figures that are rich in information so that a student can see the physics 
in action and played out over a minute or two instead of just being flat on a printed page. Not only 
does this give life to the physics, but the animation can be repeated as many times as a student wants.

Video Illustrations  David Maiullo of Rutgers 
University has created video versions of approxi-
mately 30 of the photographs and figures from the 
chapters. Much of physics is the study of things that 
move, and video can often provide better represen-
tation than a static photo or figure.

Videos  I have made well over 1500 instructional 
videos, with more coming. Students can watch me 
draw or type on the screen as they hear me talk about 
a solution, tutorial, sample problem, or review, very 
much as they would experience were they sitting next 
to me in my office while I worked out something on 
a notepad. An instructor’s lectures and tutoring will 
always be the most valuable learning tools, but my videos are available 24 hours a day, 7 days a week, 
and can be repeated indefinitely.

• Video tutorials on subjects in the chapters. I chose the subjects that challenge the students the 
most, the ones that my students scratch their heads about.

• Video reviews of high school math, such as basic algebraic manipulations, trig functions, and simul-
taneous equations.

• Video introductions to math, such as vector multiplication, that will be new to the students.

• Video presentations of sample problems. My intent is to work out the physics, starting with the key 
ideas instead of just grabbing a formula. However, I also want to demonstrate how to read a sample 
problem, that is, how to read technical material to learn problem-solving procedures that can be 
transferred to other types of problems.

• Video solutions to 20% of the end-of chapter problems. The availability and timing of these solu-
tions are controlled by the instructor. For example, they might be available after a homework dead-
line or a quiz. Each solution is not simply a plug-and-chug recipe. Rather I build a solution from the 
key ideas to the first step of reasoning and to a final solution. The student learns not just how to solve 
a particular problem but how to tackle any problem, even those that require physics courage.

• Video examples of how to read data from graphs (more than simply reading off a number with no 
comprehension of the physics).

• Many of the sample problems in the textbook are available online in both reading and video formats.

A
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xvi

Problem-Solving Help  I have written a large number of resources for WileyPLUS designed to 
help build the students’ problem-solving skills.

• Hundreds of additional sample problems. These are available as stand-alone resources but (at the 
discretion of the instructor) they are also linked out of the homework problems. So, if a homework 
problem deals with, say, forces on a block on a ramp, a link to a related sample problem is provided. 
However, the sample problem is not just a replica of the homework problem and thus does not pro-
vide a solution that can be merely duplicated without comprehension.

• GO Tutorials for 15% of the end-of-chapter home-
work problems. In multiple steps, I lead a student 
through a homework problem, starting with the key 
ideas and giving hints when wrong answers are sub-
mitted. However, I purposely leave the last step (for 
the final answer) to the students so that they are re-
sponsible at the end. Some online tutorial systems trap 
a student when wrong answers are given, which can 
generate a lot of frustration. My GO Tutorials are not 
traps, because at any step along the way, a student can 
return to the main problem.

• Hints on every end-of-chapter homework prob-
lem are available (at the discretion of the instruc-
tor). I wrote these as true hints about the main 
ideas and the general procedure for a solution, 
not as recipes that provide an answer without any 
 comprehension.

• Pre-lecture videos. At an instructor’s discretion, 
a pre-lecture video is available for every module. 
Also, assignable questions are available to accom-
pany these videos. The videos were produced by 
Melanie Good of the University of Pittsburgh.

Evaluation Materials
• Pre-lecture reading questions are available in 
WileyPLUS for each chapter section. I wrote these 
so that they do not  require analysis or any deep 
understanding; rather they simply test whether a 
student has read the section. When a student opens 
up a section, a randomly chosen reading question 
(from a bank of questions) appears at the end. The 
instructor can decide whether the question is part of 
the grading for that section or whether it is just for 
the benefit of the student.

• Checkpoints are available within each chapter module. I wrote these so that they require analysis 
and decisions about the physics in the section. Answers are provided in the back of the book.

• All end-of-chapter homework problems (and many more problems) are available in WileyPLUS. 
The instructor can construct a homework assignment and control how it is graded when the  answers 
are submitted online. For example, the instructor controls the deadline for submission and how 
many attempts a student is allowed on an answer. The instructor also controls which, if any,  learning 
aids are available with each homework problem. Such links can include hints, sample problems,  
in-chapter reading materials, video tutorials, video math reviews, and even video solutions (which 
can be made available to the students after, say, a homework deadline).

• Symbolic notation problems that require algebraic answers are available in every chapter.

• All end-of-chapter homework questions are available for assignment in WileyPLUS. These ques-
tions (in a multiple-choice format) are designed to evaluate the students’ conceptual  understanding.

PREFACE
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xvii

• Interactive Exercises and Simulations by Brad Trees of Ohio Wesleyan University. How do we help 
students understand challenging concepts in physics? How do we motivate students to engage with core 
content in a meaningful way? The simulations are intended to address these key questions. Each module 
in the Etext is linked to one or more simulations that convey concepts visually. A simulation depicts a 
physical situation in which time dependent phenomena are animated and information is presented in mul-
tiple representations including a visual representation of the physical system as well as a plot of related 
variables. Often, adjustable parameters allow the user to change a  property of the system and to see the 
effects of that change on the subsequent behavior. For visual learners, the simulations provide an oppor-
tunity to “see” the physics in action. Each simulation is also linked to a set of interactive exercises, which 
guide the student through a deeper interaction with the physics underlying the simulation. The exercises 
consist of a series of practice questions with feedback and detailed solutions. Instructors may choose to 
assign the exercises for practice, to recommend the exercises to students as additional practice, and to 
show individual simulations during class time to demonstrate a concept and to motivate class discussion. 

PREFACE

Icons for Additional Help  When worked-out solutions are provided either in print or electronically 
for certain of the odd-numbered problems, the statements for those problems include an icon to alert 
both student and instructor. There are also icons indicating which problems have a GO Tutorial or 
a link to the The Flying Circus of Physics, which require calculus, and which involve a biomedical 
application. An icon guide is provided here and at the beginning of each set of problems.

FUNDAMENTALS OF PHYSICS—FORMAT OPTIONS
Fundamentals of Physics was designed to optimize students’ online learning experience.  We highly 
recommend that students use the digital course within WileyPLUS as their primary course mate-
rial. Here are students’ purchase options:

• 12th Edition WileyPLUS course 

• Fundamentals of Physics Looseleaf Print Companion bundled with WileyPLUS 

      Tutoring problem available (at instructor’s discretion) in WileyPLUS

 Worked-out solution available in Student Solutions Manual

E  Easy M  Medium H  Hard

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

SSM CALC  Requires calculus

BIO  Biomedical application

GO

FCP
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• Fundamentals of Physics volume 1 bundled with WileyPLUS

• Fundamentals of Physics volume 2 bundled with WileyPLUS 

• Fundamentals of Physics Vitalsource Etext

SUPPLEMENTARY MATERIALS AND ADDITIONAL RESOURCES
Supplements for the instructor can be obtained online through WileyPLUS or by contacting your 
Wiley representative. The following supplementary materials are available for this edition:

Instructor’s Solutions Manual by Sen-Ben Liao, Lawrence Livermore National Laboratory. This 
manual provides worked-out solutions for all problems found at the end of each chapter. It is avail-
able in both MSWord and PDF.

• Instructor’s Manual This resource contains lecture notes outlining the most important topics of 
each chapter; demonstration experiments; laboratory and computer projects; film and video sources; 
answers to all questions, exercises, problems, and checkpoints; and a correlation guide to the ques-
tions, exercises, and problems in the previous edition. It also contains a complete list of all problems 
for which solutions are available to students.

• Classroom Response Systems (“Clicker”) Questions by David Marx, Illinois State University. There 
are two sets of questions available: Reading Quiz questions and Interactive Lecture questions.The 
Reading Quiz questions are intended to be relatively straightforward for any student who reads the as-
signed material. The Interactive Lecture questions are intended for use in an interactive lecture setting.

• Wiley Physics Simulations by Andrew Duffy, Boston University and John Gastineau, Vernier Soft-
ware. This is a collection of 50 interactive simulations (Java applets) that can be used for classroom 
demonstrations.

• Wiley Physics Demonstrations by David Maiullo, Rutgers University. This is a collection of 
 digital videos of 80 standard physics demonstrations. They can be shown in class or accessed from 
 WileyPLUS. There is an accompanying Instructor’s Guide that includes “clicker” questions.

• Test Bank by Suzanne Willis, Northern Illinois University. The Test Bank includes nearly 3,000 mul-
tiple-choice questions. These items are also available in the Computerized Test Bank, which provides 
full editing features to help you customize tests (available in both IBM and Macintosh  versions).

• All text illustrations suitable for both classroom projection and printing.

• Lecture PowerPoint Slides These PowerPoint slides serve as a helpful starter pack for instructors, 
outlining key concepts and incorporating figures and equations from the text.

STUDENT SUPPLEMENTS

Student Solutions Manual (ISBN 9781119455127) by Sen-Ben Liao, Lawrence Livermore 
National Laboratory. This manual provides students with complete worked-out solutions to 15 per-
cent of the problems found at the end of each chapter within the text. The Student Solutions Manual 
for the 12th edition is written using an innovative approach called TEAL, which stands for Think, 
Express, Analyze, and Learn. This learning strategy was originally developed at the Massachusetts 
Institute of Technology and has proven to be an effective learning tool for students. These problems 
with TEAL solutions are indicated with an SSM icon in the text.

Introductory Physics with Calculus as a Second Language (ISBN 9780471739104) Mastering 
Problem Solving by Thomas Barrett of Ohio State University. This brief paperback teaches the 
 student how to approach problems more efficiently and effectively. The student will learn how 
to recognize common patterns in physics problems, break problems down into manageable steps, 
and apply appropriate techniques. The book takes the student step by step through the solutions 
to numerous examples.
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1

1.1 MEASURING THINGS, INCLUDING LENGTHS
Learning Objectives 
After reading this module, you should be able to . . .

1.1.1 Identify the base quantities in the SI system.
1.1.2 Name the most frequently used prefixes for 

SI units.

1.1.3 Change units (here for length, area, and 
 volume) by using chain- link conversions.

1.1.4 Explain that the meter is defined in terms of the 
speed of light in a vacuum.

Key Ideas 
● Physics is based on measurement of physical quanti-
ties. Certain physical quantities have been chosen as 
base quantities (such as length, time, and mass); each 
has been defined in terms of a standard and given a 
unit of measure (such as meter, second, and kilogram). 
Other physical quantities are defined in terms of the 
base quantities and their standards and units.

● The unit system emphasized in this book is the 
International System of Units (SI). The three physical 
quantities displayed in Table 1.1.1 are used in the early 
chapters. Standards, which must be both accessible 
and invariable, have been established for these base 

quantities by  international agreement. These standards 
are used in all physical measurement, for both the 
base quantities and the quantities derived from them. 
 Scientific notation and the prefixes of Table 1.1.2 are 
used to simplify measurement notation.

● Conversion of units may be performed by using 
chain- link conversions in which the original data are 
multiplied successively by conversion factors written 
as unity and the units are manipulated like algebraic 
quantities until only the desired units remain.

● The meter is defined as the distance traveled by 
light during a precisely specified time interval.

What Is Physics?
Science and engineering are based on measurements and comparisons. Thus, 
we need rules about how things are measured and compared, and we need 
 experiments to establish the units for those measurements and comparisons. One 
purpose of physics (and engineering) is to design and conduct those  experiments.

For example, physicists strive to develop clocks of extreme accuracy so that 
any time or time interval can be precisely determined and compared. You may 
wonder whether such accuracy is actually needed or worth the effort. Here is one 
example of the worth: Without clocks of extreme accuracy, the Global Positioning 
System (GPS) that is now vital to worldwide navigation would be useless.

Measuring Things
We discover physics by learning how to measure the quantities involved in 
 physics. Among these quantities are length, time, mass, temperature, pressure, 
and electric current.

C H A P T E R  1

Measurement
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2 CHAPTER 1 MEAsuREMEnT

We measure each physical quantity in its own units, by comparison with 
a standard. The unit is a unique name we assign to measures of that quantity—
for example, meter (m) for the quantity length. The standard corresponds to 
exactly 1.0 unit of the quantity. As you will see, the standard for length, which 
 corresponds to exactly 1.0 m, is the distance traveled by light in a vacuum during 
a  certain fraction of a second. We can define a unit and its standard in any way 
we care to. However, the important thing is to do so in such a way that scientists 
around the world will agree that our definitions are both sensible and practical.

Once we have set up a standard—say, for length—we must work out proce-
dures by which any length whatever, be it the radius of a hydrogen atom, the 
wheelbase of a skateboard, or the distance to a star, can be expressed in terms of 
the standard. Rulers, which approximate our length standard, give us one such 
procedure for measuring length. However, many of our comparisons must be 
 indirect. You cannot use a ruler, for example, to measure the radius of an atom 
or the distance to a star.

Base Quantities. There are so many physical quantities that it is a problem 
to organize them. Fortunately, they are not all independent; for example, speed 
is the ratio of a length to a time. Thus, what we do is pick out—by international 
 agreement—a small number of physical quantities, such as length and time, and 
assign standards to them alone. We then define all other physical quantities in 
terms of these base quantities and their standards (called base standards). Speed, 
for  example, is defined in terms of the base quantities length and time and their 
base standards.

Base standards must be both accessible and invariable. If we define the 
length standard as the distance between one’s nose and the index finger on an 
outstretched arm, we certainly have an accessible standard—but it will, of course, 
vary from person to person. The demand for precision in science and  engineering 
pushes us to aim first for invariability. We then exert great effort to make dupli-
cates of the base standards that are accessible to those who need them.

The International System of Units
In 1971, the 14th General Conference on Weights and Measures picked seven 
quantities as base quantities, thereby forming the basis of the International 
 System of Units, abbreviated SI from its French name and popularly known 
as the metric system. Table 1.1.1 shows the units for the three base quantities—
length, mass, and time—that we use in the early chapters of this book. These units 
were defined to be on a “human scale.”

Many SI derived units are defined in terms of these base units. For example, 
the SI unit for power, called the watt (W), is defined in terms of the base units 
for mass, length, and time. Thus, as you will see in Chapter 7,

 1 watt = 1 W = 1 kg ⋅ m2/s3, (1.1.1)

where the last collection of unit symbols is read as kilogram- meter squared per 
second cubed.

To express the very large and very small quantities we often run into in 
 physics, we use scientific notation, which employs powers of 10. In this notation,

 3 560 000 000 m = 3.56 × 109 m (1.1.2)

and 0.000 000 492 s = 4.92 × 10−7 s. (1.1.3)

Scientific notation on computers sometimes takes on an even briefer look, as in 
3.56 E9 and 4.92 E–7, where E stands for “exponent of ten.” It is briefer still on 
some calculators, where E is replaced with an empty space.

Table 1.1.1 Units for Three SI  
Base Quantities

Quantity Unit Name Unit Symbol

Length meter m
Time second s
Mass kilogram kg
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31.1 MEAsuRing THings, inCluding lEngTHs

As a further convenience when dealing with very large or very small measure-
ments, we use the prefixes listed in Table 1.1.2. As you can see, each prefix represents 
a certain power of 10, to be used as a multiplication factor. Attaching a prefix to an 
SI unit has the effect of multiplying by the associated factor. Thus, we can express a 
particular electric power as

 1.27 × 109 watts = 1.27 gigawatts = 1.27 GW (1.1.4)

or a particular time interval as

 2.35 × 10−9 s = 2.35 nanoseconds = 2.35 ns. (1.1.5)

Some prefixes, as used in milliliter, centimeter, kilogram, and megabyte, are 
 probably familiar to you.

Changing Units
We often need to change the units in which a physical quantity is expressed. 
We do so by a method called chain- link conversion. In this method, we multiply 
the original measurement by a conversion factor (a ratio of units that is equal 
to  unity). For example, because 1 min and 60 s are identical time intervals, 
we have

   1 min ______ 
60 s

   = 1 and   60 s ______ 
1 min

   = 1. 

Thus, the ratios (1 min)/(60 s) and (60 s)/(1 min) can be used as conversion  factors. 
This is not the same as writing    1 __ 60   = 1 or 60 = 1 ; each number and its unit must be 
treated together.

Because multiplying any quantity by unity leaves the quantity unchanged, 
we can introduce conversion factors wherever we find them useful. In chain-link 
conversion, we use the factors to cancel unwanted units. For example, to convert 
2 min to seconds, we have

  2 min = (2 min)(1) = (2 min) (  60 s ______ 
1 min

  )  = 120 s.  (1.1.6)

If you introduce a conversion factor in such a way that unwanted units do not 
cancel, invert the factor and try again. In conversions, the units obey the same 
 algebraic rules as variables and numbers.

Appendix D gives conversion factors between SI and other systems of units, 
including non-SI units still used in the United States. However, the conversion 
factors are written in the style of “1 min = 60 s” rather than as a ratio. So, you 
need to decide on the numerator and denominator in any needed ratio.

Length
In 1792, the newborn Republic of France established a new system of weights 
and measures. Its cornerstone was the meter, defined to be one ten-millionth 
of the distance from the north pole to the equator. Later, for practical reasons, 
this Earth standard was abandoned and the meter came to be defined as the 
distance between two fine lines engraved near the ends of a platinum– iridium 
bar, the standard meter bar, which was kept at the International Bureau of 
Weights and Measures near Paris. Accurate copies of the bar were sent to stan-
dardizing laboratories throughout the world. These secondary standards were 
used to produce other, still more accessible standards, so that ultimately every 

Table 1.1.2 Prefixes for SI Units

Factor Prefixa Symbol

1024 yotta- Y
1021 zetta- Z
1018 exa- E
1015 peta- P
1012 tera- T
109 giga- G
106 mega- M
103 kilo- k
102 hecto- h
101 deka- da
10−1 deci- d

10−2 centi- c

10−3 milli- m

10−6 micro- μ
10−9 nano- n

10−12 pico- p

10−15 femto- f

10−18 atto- a

10−21 zepto- z

10−24 yocto- y

aThe most frequently used prefixes are 
shown in bold type.
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4 CHAPTER 1 MEAsuREMEnT

measuring device derived its authority from the standard meter bar through a 
complicated chain of comparisons.

Eventually, a standard more  precise  than the distance between two fine 
scratches on a metal bar was required. In 1960, a new standard for the meter, 
based on the wavelength of light, was adopted. Specifically, the standard for the 
meter was redefined to be 1 650 763.73  wavelengths of a particular orange- red 
light emitted by atoms of krypton-86 (a particular isotope, or type, of krypton) 
in a gas discharge tube that can be set up anywhere in the world. This awkward 
number of wavelengths was chosen so that the new standard would be close to 
the old meter- bar standard.

By 1983, however, the demand for higher precision had reached such a point 
that even the krypton-86 standard could not meet it, and in that year a bold 
step was taken. The meter was redefined as the distance traveled by light in a 
 specified time interval. In the words of the 17th General Conference on Weights 
and Measures:

This time interval was chosen so that the speed of light c is exactly

c = 299 792 458 m/s.

Measurements of the speed of light had become extremely precise, so it made 
sense to adopt the speed of light as a defined quantity and to use it to redefine 
the meter.

Table 1.1.3 shows a wide range of lengths, from that of the universe (top line) 
to those of some very small objects.

Significant Figures and Decimal Places
Suppose that you work out a problem in which each value consists of two digits. 
Those digits are called significant figures and they set the number of digits that you 
can use in reporting your final answer. With data given in two significant figures, 
your final answer should have only two significant figures. However, depending 
on the mode setting of your calculator, many more digits might be displayed. 
Those extra digits are meaningless. 

In this book, final results of calculations are often rounded to match the least 
number of significant figures in the given data. (However, sometimes an extra 
significant figure is kept.) When the leftmost of the digits to be discarded is 5 or 
more, the last remaining digit is rounded up; otherwise it is retained as is. For  
example, 11.3516 is rounded to three significant figures as 11.4 and 11.3279 is 
rounded to three significant figures as 11.3. (The answers to sample problems in 
this book are usually presented with the symbol = instead of ≈ even if rounding 
is involved.)

When a number such as 3.15 or 3.15 × 103 is provided in a problem, the num-
ber of significant figures is apparent, but how about the number 3000? Is it known 
to only one significant figure (3 × 103)? Or is it known to as many as four signifi-
cant figures (3.000 × 103)? In this book, we assume that all the zeros in such given 
numbers as 3000 are significant, but you had better not make that assumption 
elsewhere.

Don’t confuse significant figures with decimal places. Consider the lengths 
35.6 mm, 3.56 m, and 0.00356 m. They all have three significant figures but they 
have one, two, and five decimal places, respectively.

Table 1.1.3 Some Approximate 
Lengths

Measurement 
Length in 

Meters

Distance to the 
first  galaxies formed 2 × 1026

Distance to the  
 Andromeda galaxy 2 × 1022

Distance to the nearby  
star Proxima Centauri 4 × 1016

Distance to Pluto 6 × 1012

Radius of Earth 6 × 106

Height of Mt. Everest 9 × 103

Thickness of this page 1 × 10−4

Length of a typical virus 1 × 10−8

Radius of a hydrogen 
atom 5 × 10−11

Radius of a proton 1 × 10−15

The meter is the length of the path traveled by light in a vacuum during a time 
 interval of 1/299 792 458 of a second.
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Sample Problem 1.1.1 Estimating order of magnitude, ball of string

The world’s largest ball of string is about 2 m in radius. To 
the nearest order of magnitude, what is the total length L 
of the string in the ball?

KEY IDEA

We could, of course, take the ball apart and measure the 
total length L, but that would take great effort and make 
the ball’s builder most unhappy. Instead, because we want 
only the nearest order of magnitude, we can estimate any 
quantities required in the calculation.

Calculations: Let us assume the ball is spherical with 
radius R = 2 m. The string in the ball is not closely packed 
(there are uncountable gaps between adjacent sections of 
string). To allow for these gaps, let us somewhat overes-
timate the cross-sectional area of the string by assuming 
the cross section is square, with an edge length d = 4 mm. 

Then, with a cross-sectional area of d2 and a length L, the 
string occupies a total volume of

V = (cross- sectional area)(length) = d2L.

This is approximately equal to the volume of the ball, 
given by    4 _ 3    πR   3  , which is about 4R3 because π is about 3. 
Thus, we have the following

 d2L = 4R3, 

or  L =   4 R   3  ____ 
 d   2 

   =   
4(2 m )  3 

 ____________  
(4 ×  10  −3  m )  2 

    

  =   2 × 10   6  m ≈  10  6  m =  10  3  km.  
 (Answer)

(Note that you do not need a calculator for such a simpli-
fied calculation.) To the nearest order of magnitude, the 
ball contains about 1000 km of string!

1.2 TIME
Learning Objectives 
After reading this module, you should be able to . . .

1.2.1 Change units for time by using chain- link 
conversions.

1.2.2 Use various measures of time, such as for motion 
or as determined on different clocks. 

Key Idea 
● The second is defined in terms of the oscillations of 
light emitted by an atomic (cesium-133) source. Accurate 

time signals are sent worldwide by radio signals keyed to 
atomic clocks in standardizing laboratories.

Time
Time has two aspects. For civil and some scientific purposes, we want to know 
the time of day so that we can order events in sequence. In much scientific work, 
we want to know how long an event lasts. Thus, any time standard must be able 
to answer two questions: “When did it happen?” and “What is its duration?” 
Table 1.2.1 shows some time intervals.

Any phenomenon that repeats itself is a possible time standard. Earth’s 
 rotation, which determines the length of the day, has been used in this way for 
centuries; Fig. 1.2.1 shows one novel example of a watch based on that rotation. 
A quartz clock, in which a quartz ring is made to vibrate continuously, can be 
 calibrated against Earth’s rotation via astronomical observations and used to 
measure time intervals in the laboratory. However, the calibration cannot be 
carried out with the accuracy called for by modern scientific and engineering 
technology.

Additional examples, video, and practice available at WileyPLUS
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6 CHAPTER 1 MEAsuREMEnT

To meet the need for a better time standard, atomic clocks have been 
 developed. An atomic clock at the National Institute of Standards and 
 Technology (NIST) in Boulder, Colorado, is the standard for Coordinated 
 Universal Time (UTC) in the United States. Its time signals are avail-
able by shortwave radio  (stations WWV and WWVH) and by telephone  
(303-499-7111). Time  signals (and related information) are also available from 

the United States Naval  Observatory at website https://
www.usno.navy.mil/USNO/time. (To set a clock  extremely 
 accurately at your particular location, you would have to 
account for the travel time required for these signals to 
reach you.)

Figure 1.2.2 shows variations in the length of one day on 
Earth over a 4-year period, as determined by comparison with 
a cesium (atomic) clock. Because the variation displayed by 
Fig. 1.2.2 is seasonal and repetitious, we suspect the  rotating 
Earth when there is a difference between Earth and atom as 
 timekeepers. The variation is due to tidal effects caused by the 
Moon and to large-scale winds.

The 13th General Conference on Weights and Measures 
in 1967 adopted a  standard second based on the cesium 
clock:

Atomic clocks are so consistent that, in principle, two cesium clocks would have to 
run for 6000 years before their readings would differ by more than 1 s. Even such 
accuracy pales in comparison with that of clocks currently being developed; their 
precision may be 1 part in 1018—that is, 1 s in 1 × 1018 s (which is about 3 × 1010 y).

1.3 MASS
Learning Objectives 
After reading this module, you should be able to . . .

1.3.1 Change units for mass by using chain- link  
conversions.

1.3.2 Relate density to mass and volume when the 
mass is uniformly distributed. 

Table 1.2.1 Some Approximate Time Intervals

Measurement
Time Interval  

in Seconds Measurement
Time Interval  

in Seconds

Lifetime of the   
proton (predicted) 3 × 1040

Time between human 
heartbeats 8 × 10−1

Age of the universe 5 × 1017 Lifetime of the muon 2 × 10−6

Age of the pyramid  
of Cheops 1 × 1011

Shortest lab light pulse
Lifetime of the 

most unstable particle

1 × 10−16

1 × 10−23Human life expectancy
Length of a day

2 × 109

9 × 104 The Planck timea 1 × 10−43

aThis is the earliest time after the big bang at which the laws of physics as we know them can be 
applied.

Figure 1.2.1 When the metric system 
was  proposed in 1792, the hour 
was redefined to  provide a 10-hour 
day. The idea did not catch on. The 
maker of this 10-hour watch wisely 
provided a small dial that kept con-
ventional 12-hour time. Do the two 
dials indicate the same time?

Steven Pitkin
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Figure 1.2.2 Variations in the length 
of the day over a 4-year period. Note 
that the entire  vertical scale amounts 
to only 3 ms (= 0.003 s).

One second is the time taken by 9 192 631 770 oscillations of the light (of a 
 specified wavelength) emitted by a cesium-133 atom.
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Mass
The Standard Kilogram
The SI standard of mass is a cylinder of  platinum and iridium (Fig. 1.3.1) that 
is kept at the International Bureau of Weights and Measures near Paris and 
assigned, by international agreement, a mass of 1 kilogram. Accurate copies have 
been sent to standardizing laboratories in other countries, and the masses of other 
bodies can be determined by balancing them against a copy. Table 1.3.1 shows 
some  masses expressed in kilograms, ranging over about 83 orders of magnitude.

The U.S. copy of the standard kilogram is housed in a vault at NIST. It 
is  removed, no more than once a year, for the purpose of checking duplicate 
 copies that are used elsewhere. Since 1889, it has been taken to France twice for 
recomparison with the primary standard.

Kibble Balance
A far more accurate way of measuring mass is now being adopted. In a Kibble 
balance (named after its inventor Brian Kibble), a standard mass can be mea-
sured when the downward pull on it by gravity is balanced by an upward force 
from a magnetic field due to an electrical current. The precision of this technique 
comes from the fact that the electric and magnetic properties can be determined 
in terms of quantum mechanical quantities that have been precisely defined or 
measured. Once a standard mass is measured, it can be sent to other labs where 
the masses of other bodies can be determined from it.

A Second Mass Standard
The masses of atoms can be compared with one another more precisely than they 
can be compared with the standard kilogram. For this reason, we have a second 
mass standard. It is the carbon-12 atom, which, by international agreement, has 
been assigned a mass of 12 atomic mass units (u). The relation  between the two 
units is

 1 u = 1.660 538 86 × 10−27 kg, (1.3.1)

with an uncertainty of ±10 in the last two decimal places. Scientists can, with 
 reasonable precision, experimentally determine the masses of other atoms rel-
ative to the mass of carbon-12. What we presently lack is a reliable means of 
 extending that precision to more common units of mass, such as a kilogram.

Density
As we shall discuss further in Chapter 14, density ρ (lowercase Greek letter rho) 
is the mass per unit volume:

   ρ =   m __ 
V

  .   (1.3.2)

Densities are typically listed in kilograms per cubic meter or grams per cubic 
centimeter. The density of water (1.00 gram per cubic centimeter) is often used as 
a comparison. Fresh snow has about 10% of that density; platinum has a density 
that is about 21 times that of water.

Table 1.3.1 Some Approximate 
Masses

Object
Mass in  

Kilograms

Known universe 1 × 1053

Our galaxy 2 × 1041

Sun 2 × 1030

Moon 7 × 1022

Asteroid Eros 5 × 1015

Small mountain 1 × 1012

Ocean liner 7 × 107

Elephant 5 × 103

Grape 3 × 10−3

Speck of dust 7 × 10−10

Penicillin molecule 5 × 10−17

Uranium atom 4 × 10−25

Proton 2 × 10−27

Electron 9 × 10−31

Key Ideas 
● The kilogram is defined in terms of a platinum– iridium 
standard mass kept near Paris. For measurements 
on an atomic scale, the atomic mass unit, defined in 
terms of the atom  carbon-12, is usually used.

● The density ρ of a material is the mass per unit 
volume:

 ρ =   m __ 
V

  . 
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Figure 1.3.1 The international 1 kg 
standard of mass, a platinum– iridium 
cylinder 3.9 cm in height and in 
diameter.
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8 CHAPTER 1 MEAsuREMEnT

Measurement in Physics  Physics is based on measure-
ment of physical quantities. Certain physical quantities have 
been chosen as base quantities (such as length, time, and mass); 
each has been defined in terms of a standard and given a unit of 
measure (such as meter, second, and kilogram). Other physical 
quantities are defined in terms of the base quantities and their 
standards and units.

SI Units  The unit system emphasized in this book is the 
International System of Units (SI). The three physical quanti-
ties displayed in Table 1.1.1 are used in the early chapters. Stan-
dards, which must be both accessible and invariable, have been 
established for these base quantities by international agree-
ment. These standards are used in all physical measurement, for 
both the base quantities and the quantities derived from them. 
Scientific notation and the prefixes of Table 1.1.2 are used to 
simplify measurement notation.

Changing Units  Conversion of units may be performed 
by using chain- link conversions in which the original data are 

Review & Summary

multiplied successively by conversion factors written as unity 
and the units are manipulated like algebraic quantities until only 
the desired units remain.

Length  The meter is defined as the distance traveled by light 
during a precisely specified time interval.

Time  The second is defined in terms of the oscillations of light 
emitted by an atomic (cesium-133) source. Accurate time  sig-
nals are sent worldwide by radio signals keyed to atomic clocks 
in standardizing laboratories.

Mass  The kilogram is defined in terms of a platinum–  
iridium standard mass kept near Paris. For measurements on an 
atomic scale, the atomic mass unit, defined in terms of the atom 
carbon-12, is usually used.

Density  The density ρ of a material is the mass per unit 
 volume:

 ρ =    m __ 
V

   . (1.3.2)

figures) should be entered in (a) the cahiz column, (b) the fanega 
column, (c) the cuartilla column, and (d) the almude  column, 
starting with the top blank? Express 7.00 almudes in (e) medios, 
(f) cahizes, and (g) cubic centimeters (cm3).

7 M  Hydraulic engineers in the United States often use, as a 
unit of volume of water, the acre- foot, defined as the volume of 
water that will cover 1 acre of land to a depth of 1 ft. A  severe 
thunderstorm dumped 2.0 in. of rain in 30 min on a town of area 
26 km2. What volume of water, in acre- feet, fell on the town?

8 M  GO  Harvard Bridge, which connects MIT with its frater-
nities across the Charles River, has a length of 364.4 Smoots 
plus  one ear. The unit of one Smoot is based on the length 
of Oliver Reed Smoot, Jr., class of 1962, who was carried or 
dragged length by length across the bridge so that other pledge 
members of the Lambda Chi Alpha fraternity could mark off 
(with paint) 1-Smoot lengths along the bridge. The marks have 

Module 1.1  Measuring Things, Including Lengths
1 E  SSM  Earth is approximately a sphere of radius 6.37 × 106 m.  
What are (a) its circumference in kilometers, (b) its surface area 
in square kilometers, and (c) its volume in cubic kilo meters?

2 E  A gry is an old English measure for length, defined as 1/10 
of a line, where line is another old English measure for length, 
defined as 1/12 inch. A common measure for length in the pub-
lishing business is a point, defined as 1/72 inch. What is an area 
of 0.50 gry2 in points squared (points2)?

3 E  The micrometer (1 μm) is often called the micron. (a) How 
many microns make up 1.0 km? (b) What fraction of a centime-
ter equals 1.0 μm? (c) How many microns are in 1.0 yd?

4 E  Spacing in this book was generally done in units of points 
and picas: 12 points = 1 pica, and 6 picas = 1 inch. If a figure was 
misplaced in the page proofs by 0.80 cm, what was the misplace-
ment in (a) picas and (b) points?

5 E  SSM  Horses are to race over a certain English meadow for 
a distance of 4.0 furlongs. What is the race distance in (a) rods 
and (b)  chains? (1 furlong = 201.168 m, 1 rod = 5.0292 m, 
and 1 chain = 20.117 m.)

6 M  You can easily convert common units and measures elec-
tronically, but you still should be able to use a conversion table, 
such as those in Appendix D. Table 1.1 is part of a conversion 
table for a system of volume measures once com mon in Spain; 
a volume of 1 fanega is equivalent to 55.501 dm3  (cubic decime-
ters). To complete the table, what numbers (to three  significant 

Problems

          Tutoring problem available (at instructor’s discretion) in WileyPLUS

 Worked-out solution available in Student Solutions Manual

E  Easy M  Medium H  Hard

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

CALC  Requires calculus

BIO  Biomedical application

GO

FCP

SSM

Table 1.1 Problem 6

cahiz fanega cuartilla almude medio

1 cahiz = 1 12 48 144 288

1 fanega = 1 4 12 24

1 cuartilla = 1 3 6

1 almude = 1 2

1 medio = 1
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been repainted biannually by fraternity pledges since the ini-
tial measurement, usually during times of traffic congestion so 
that the police cannot easily interfere. (Presumably, the police 
were originally upset because the Smoot is not an SI base unit, 
but these days they seem to have accepted the unit.) Figure 1.1 
shows three parallel paths, measured in Smoots (S), Willies (W), 
and Zeldas (Z). What is the length of 50.0 Smoots in (a) Willies 
and (b) Zeldas?

S

W

Z

0 32

60

212

258

216

0

Figure 1.1 Problem 8.

9 M  Antarctica is roughly semicircular, with a radius of 2000 km 
(Fig.  1.2). The average thickness of its ice cover is 3000  m.  
How many cubic centimeters of ice does Antarctica contain? 
(Ignore the curvature of Earth.)

3000 m
2000 km

Figure 1.2 Problem 9.

Module 1.2  Time
10 E  Until 1883, every city and town in the United States 
kept its own local time. Today, travelers reset their watches only 
when the time change equals 1.0 h. How far, on the  average, 
must you travel in degrees of longitude between the time- zone 
boundaries at which your watch must be reset by 1.0 h? (Hint: 
Earth rotates 360° in about 24 h.)

11 E  For about 10 years after the French Revolution, the 
French government attempted to base measures of time on mul-
tiples of ten: One week consisted of 10 days, one day consisted 
of 10 hours, one hour consisted of 100 minutes, and one minute 
consisted of 100 seconds. What are the ratios of (a) the French 
decimal week to the standard week and (b) the French decimal 
second to the standard second?

12 E  The fastest growing plant on record is a Hesperoyucca 
whipplei that grew 3.7 m in 14 days. What was its growth rate in 
micro meters per second?

13 E  GO  Three digital clocks A, B, and C run at different rates 
and do not have simultaneous readings of zero. Figure 1.3 shows 
simultaneous readings on pairs of the clocks for four occasions. 
(At the earliest occasion, for example, B reads 25.0 s and C 
reads 92.0 s.) If two events are 600 s apart on clock A, how far 
apart are they on (a) clock B and (b) clock C? (c) When clock 
A reads 400 s, what does clock B read? (d) When clock C reads 
15.0 s, what does clock B read? (Assume negative readings for 
prezero times.)

A (s)

B (s)

C (s)

312 512

29020012525.0

92.0 142

Figure 1.3 Problem 13.

14 E  A lecture period (50 min) is close to 1 microcentury. 
(a) How long is a microcentury in minutes? (b) Using 

 percentage difference =   (     
actual − approximation

  _____________________  
actual

   )    100, 

find the percentage difference from the approximation.

15 E  A fortnight is a charming English measure of time equal 
to 2.0 weeks (the word is a contraction of “fourteen nights”). 
That is a nice amount of time in pleasant company but perhaps 
a painful string of microseconds in unpleasant company. How 
many microseconds are in a fortnight?

16 E  Time standards are now based on atomic clocks. A prom-
ising second standard is based on pulsars, which are rotating 
neutron stars (highly compact stars consisting only of neutrons). 
Some rotate at a rate that is highly stable, sending out a radio 
beacon that sweeps briefly across Earth once with each rotation, 
like a lighthouse beacon. Pulsar PSR 1937 + 21 is an example; it 
rotates once every 1.557 806 448 872 75 ± 3 ms, where the trail-
ing ±3 indicates the uncertainty in the last decimal place (it does 
not mean ±3 ms). (a) How many rotations does PSR 1937 + 21 
make in 7.00 days? (b) How much time does the pulsar take to 
rotate exactly one  million times and (c) what is the associated 
uncertainty?

17 E  SSM  Five clocks are being tested in a laboratory. Exactly 
at noon, as determined by the WWV time signal, on successive 
days of a week the clocks read as in the following table. Rank 
the five clocks according to their relative value as good time-
keepers, best to worst. Justify your choice.

Clock Sun. Mon. Tues. Wed. Thurs. Fri. Sat.

A 12:36:40 12:36:56 12:37:12 12:37:27 12:37:44 12:37:59 12:38:14

B 11:59:59 12:00:02 11:59:57 12:00:07 12:00:02 11:59:56 12:00:03

C 15:50:45 15:51:43 15:52:41 15:53:39 15:54:37 15:55:35 15:56:33

D 12:03:59 12:02:52 12:01:45 12:00:38 11:59:31 11:58:24 11:57:17

E 12:03:59 12:02:49 12:01:54 12:01:52 12:01:32 12:01:22 12:01:12

18 M  Because Earth’s rotation is gradually slowing, the length 
of each day increases: The day at the end of 1.0 century is 1.0 ms 
longer than the day at the start of the century. In 20 centuries, 
what is the total of the daily increases in time?

19 H  Suppose that, while lying on a beach near the equator 
watching the Sun set over a calm ocean, you start a stopwatch 
just as the top of the Sun disappears. You then stand, elevat-
ing your eyes by a height H = 1.70 m, and stop the watch when 
the top of the Sun again disappears. If the elapsed time is 
t = 11.1 s, what is the radius r of Earth?

Module 1.3  Mass
20 E  GO  The record for the largest glass bottle was set in 1992 
by  a team in Millville, New Jersey—they blew a bottle with a 
 volume of 193 U.S. fluid gallons. (a) How much short of 1.0 mil-
lion cubic centimeters is that? (b) If the bottle were filled with 
water at the leisurely rate of 1.8 g/min, how long would the fill-
ing take? Water has a density of 1000 kg/m3.

21 E  Earth has a mass of 5.98 × 1024 kg. The average mass of the 
atoms that make up Earth is 40 u. How many atoms are there 
in Earth?
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22 E  Gold, which has a density of 19.32 g/cm3, is the most ductile 
metal and can be pressed into a thin leaf or drawn out into a long 
fiber. (a) If a sample of gold, with a mass of 27.63 g, is pressed 
into a leaf of 1.000 μm thickness, what is the area of the leaf?  
(b) If,  instead, the gold is drawn out into a cylindrical fiber of 
radius 2.500 μm, what is the length of the fiber?

23 E  SSM  (a) Assuming that water has a density of exactly 
1 g/cm3, find the mass of one cubic meter of water in kilograms. 
(b) Suppose that it takes 10.0 h to drain a container of 5700 m3 
of water. What is the “mass flow rate,” in kilograms per second, 
of water from the container?

24 M  GO  Grains of fine California beach sand are approxi-
mately spheres with an average radius of 50 μm and are made 
of silicon dioxide, which has a density of 2600 kg/m3. What mass 
of sand grains would have a total surface area (the total area of 
all the individual spheres) equal to the surface area of a cube 
1.00 m on an edge?

25 M  FCP  During heavy rain, a section of a mountainside mea-
suring 2.5 km horizontally, 0.80 km up along the slope, and 2.0 m 
deep slips into a valley in a mud slide. Assume that the mud ends 
up uniformly distributed over a surface area of the valley measur-
ing 0.40 km × 0.40 km and that mud has a  density of 1900 kg/m3. 
What is the mass of the mud sitting above a 4.0 m2 area of the 
 valley floor?

26 M  One cubic centimeter of a typical cumulus cloud contains 
50 to 500 water drops, which have a typical radius of 10 μm. For 
that range, give the lower value and the higher value, respec-
tively, for the following. (a) How many cubic  meters of water 
are in a cylindrical cumulus cloud of height 3.0 km and radius 
1.0 km? (b) How many 1-liter pop bottles would that water fill? 
(c) Water has a density of 1000 kg/m3. How much mass does the 
water in the cloud have?

27 M  Iron has a density of 7.87 g/cm3, and the mass of an iron 
atom is 9.27 × 10−26 kg. If the atoms are spherical and tightly 
packed, (a) what is the volume of an iron atom and (b) what is 
the distance between the centers of adjacent atoms?

28 M  A mole of atoms is 6.02 × 1023 atoms. To the nearest  order 
of magnitude, how many moles of atoms are in a large domestic 
cat? The masses of a hydrogen atom, an oxygen atom, and a 
carbon atom are 1.0 u, 16 u, and 12 u, respectively. (Hint: Cats 
are sometimes known to kill a mole.)

29 M  On a spending spree in Malaysia, you buy an ox with 
a  weight of 28.9 piculs in the local unit of weights: 1 picul =  
100 gins, 1 gin = 16 tahils, 1 tahil = 10 chees, and 1 chee = 10 hoons. 
The weight of 1 hoon corresponds to a mass of 0.3779 g. When 
you arrange to ship the ox home to your  astonished family, how 
much mass in kilograms must you  declare on the shipping mani-
fest? (Hint: Set up multiple chain- link conversions.)

30 M  CALC  GO  Water is poured into a container that has a 
small leak. The mass m of the water is given as a function of 
time t by m = 5.00t0.8 − 3.00t + 20.00, with t ≥ 0, m in grams, and 
t in seconds. (a) At what time is the water mass greatest, and  
(b) what is that greatest mass? In kilograms per minute, what is 
the rate of mass change at (c) t = 2.00 s and (d) t = 5.00 s?

31 H  CALC  A vertical container with base area measuring 
14.0 cm by 17.0 cm is being filled with identical pieces of candy, 
each with a volume of 50.0 mm3 and a mass of 0.0200 g. Assume 
that the volume of the empty spaces between the  candies is 

negligible. If the height of the candies in the container increases 
at the rate of 0.250 cm/s, at what rate  (kilograms per minute) 
does the mass of the candies in the container increase?

Additional Problems
32  In the United States, a doll house has the scale of 1:12 of 
a real house (that is, each length of the doll house is    1 __ 12    that of 
the real house) and a miniature house (a doll house to fit within 
a doll house) has the scale of 1:144 of a real house. Suppose a 
real house (Fig. 1.4) has a front length of 20 m, a depth of 12 m, 
a height of 6.0 m, and a standard sloped roof (vertical triangular 
faces on the ends) of height 3.0 m. In  cubic meters, what are the 
volumes of the corresponding (a) doll house and (b) miniature 
house?

6.0 m

12 m

20 m

3.0 m

Figure 1.4 Problem 32.

33 SSM  A ton is a measure of volume frequently used in 
shipping, but that use requires some care because there are at 
least three types of tons: A displacement ton is equal to 7 barrels 
bulk, a freight ton is equal to 8 barrels bulk, and a register ton 
is equal to 20 barrels bulk. A barrel bulk is another measure of 
volume: 1 barrel bulk = 0.1415 m3. Suppose you spot a shipping 
order for “73 tons” of M&M candies, and you are certain that 
the client who sent the order intended “ton” to  refer to volume 
(instead of weight or mass, as discussed in Chapter 5). If the 
client actually meant displacement tons, how many extra U.S. 
bushels of the candies will you erroneously ship if you interpret 
the order as (a) 73 freight tons and (b) 73 register tons? (1 m3 = 
28.378 U.S. bushels.)

34  Two types of barrel units were in use in the 1920s in the 
United States. The apple barrel had a legally set volume of 
7056 cubic inches; the cranberry barrel, 5826 cubic inches. If a 
merchant sells 20 cranberry barrels of goods to a customer who 
thinks he is receiving apple barrels, what is the discrepancy in 
the shipment volume in liters?

35  An old English children’s rhyme states, “Little Miss Muffet 
sat on a tuffet, eating her curds and whey, when along came a 
spider who sat down beside her. . . .” The spider sat down not 
because of the curds and whey but because Miss Muffet had a 
stash of 11 tuffets of dried flies. The volume  measure of a tuf-
fet is given by 1 tuffet = 2 pecks = 0.50 Imperial bushel, where 
1 Imperial bush el = 36.3687 liters (L). What was Miss Muffet’s 
stash in (a) pecks, (b) Imperial bushels, and (c) liters?

36  Table 1.2 shows some old measures of  liquid volume. To 
 complete the table, what numbers (to three significant figures) 
should be entered in (a) the wey column, (b) the chaldron col-
umn, (c) the bag column, (d) the pottle column, and (e) the gill 
 column, starting from the top down? (f) The volume of 1 bag is 
equal to 0.1091 m3. If an old story has a witch cooking up some 
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vile liquid in a cauldron of volume 1.5 chaldrons, what is the 
volume in cubic meters?

Table 1.2 Problem 36

wey chaldron bag pottle gill

1 wey = 1 10/9 40/3 640 120 240
1 chaldron =
1 bag =
1 pottle =
1 gill =

37  A typical sugar cube has an edge length of 1 cm. If you had 
a cubical box that contained a mole of sugar cubes, what would 
its edge length be? (One mole = 6.02 × 1023 units.)

38  An old manuscript reveals that a landowner in the time of 
King Arthur held 3.00 acres of plowed land plus a livestock area 
of 25.0 perches by 4.00 perches. What was the total area in (a) the 
old unit of roods and (b) the more modern unit of square meters? 
Here, 1 acre is an area of 40 perches by 4 perches, 1 rood is an 
area of 40 perches by 1 perch, and 1 perch is the length 16.5 ft.

39 SSM  A tourist purchases a car in England and ships it home 
to the United States. The car sticker advertised that the car’s 
fuel consumption was at the rate of 40 miles per gallon on the 
open road. The tourist does not realize that the U.K. gallon dif-
fers from the U.S. gallon:

 1 U.K. gallon = 4.546 090 0 liters

 1 U.S. gallon = 3.785 411 8 liters.

For a trip of 750 miles (in the United States), how many gal-
lons of fuel does (a) the mistaken tourist believe she needs and  
(b) the car actually require?

40  Using conversions and data in the chapter, determine 
the number of hydrogen atoms required to obtain 1.0 kg of 
 hydrogen. A hydrogen atom has a mass of 1.0 u.

41 SSM  A cord is a volume of cut wood equal to a stack 8 ft 
long, 4 ft wide, and 4 ft high. How many cords are in 1.0 m3?

42  One molecule of water (H2O) contains two atoms of 
 hydrogen and one atom of oxygen. A hydrogen atom has a mass 
of 1.0 u and an atom of oxygen has a mass of 16 u,  approximately. 
(a) What is the mass in kilograms of one  molecule of water?  
(b) How many molecules of water are in  the world’s oceans, 
which have an estimated total mass of 1.4 × 1021 kg?

43  A person on a diet might lose 2.3 kg per week. Express the 
mass loss rate in milligrams per second, as if the dieter could 
sense the second- by- second loss.

44  What mass of water fell on the town in Problem 7? Water 
has a density of 1.0 × 103 kg/m3.

45  (a) A unit of time sometimes used in microscopic physics is 
the shake. One shake equals 10−8 s. Are there more shakes in 
a second than there are seconds in a year? (b)  Humans have 
existed for about 106 years, whereas the  universe is about 
1010 years old. If the age of the universe is defined as 1 “universe 
day,” where a universe day consists of “universe seconds” as a 
normal day consists of normal seconds, how many universe sec-
onds have humans existed?

46  A unit of area often used in measuring land areas is the 
hectare, defined as 104 m2. An open- pit coal mine consumes 
75 hectares of land, down to a depth of 26 m, each year. What 
volume of earth, in cubic kilometers, is removed in this time?

47 SSM  An astronomical unit (AU) is the average distance 
 between Earth and the Sun, approximately 1.50 × 108 km. The 
speed of light is about 3.0 × 108 m/s. Express the speed of light in 
astronomical units per minute.

48  The common Eastern mole, a mammal, typically has a mass 
of 75 g, which corresponds to about 7.5 moles of atoms. (A mole 
of atoms is 6.02 × 1023 atoms.) In atomic mass units (u), what is 
the average mass of the atoms in the common Eastern mole?

49  A traditional unit of length in Japan is the ken (1 ken = 
1.97 m). What are the ratios of (a) square kens to square  meters 
and (b)  cubic kens to cubic meters? What is the volume of a 
cylindrical water tank of height 5.50 kens and radius 3.00 kens in 
(c) cubic kens and (d) cubic meters?

50  You receive orders to sail due east for 24.5 mi to put 
your  salvage ship directly over a sunken pirate ship. How-
ever, when your divers probe the ocean floor at that  location 
and find no evidence of a ship, you radio back to your source 
of information, only to discover that the sailing  distance was 
supposed to be 24.5 nautical miles, not regular miles. Use the 
Length table in Appendix D to calculate how far horizontally 
you are from the pirate ship in  kilometers.

51  Density and liquefaction. A heavy object can sink into the 
ground during an earthquake if the shaking causes the ground 
to undergo liquefaction, in which the soil grains experience little 
friction as they slide over one another. The ground is then effec-
tively quicksand. The possibility of liquefaction in sandy ground 
can be predicted in terms of the void ratio e for a sample of the 
ground: e = Vvoids/Vgrains. Here, Vgrains is the total volume of the 
sand grains in the sample and Vvoids is the total volume between 
the grains (in the voids). If e exceeds a critical value of 0.80, 
liquefaction can occur during an earthquake. What is the cor-
responding sand density ρsand? Solid silicon dioxide (the primary 
component of sand) has a density of   ρ   SiO  2     = 2.600 ×  10  3   kg/m  3 . 

52  Billion and trillion. Until 1974, the U.S. and the U.K. used 
the same names to mean different large numbers. Here are two 
examples: In American English a billion means a number with 
9 zeros after the 1 and in British English it formerly meant a 
number with 12 zeros after the 1. In American English a trillion 
means a number with 12 zeros after the 1 and in British English 
it formerly meant a number with 18 zeros after the 1. In scien-
tific notation with the prefixes in Table 1.1.2, what is 4.0 billion 
meters in (a) the American use and (b) the former British use? 
What is 5.0 trillion meters in (c) the American use and (d) the 
former British use?  

53  Townships. In the United States, real estate can be mea-
sured in terms of townships: 1 township = 36 mi2, 1 mi2 = 640 
acres, 1 acre = 4840 yd2, 1 yd2 = 9 ft2. If you own 3.0 townships, 
how many square feet of real estate do you own?

54  Measures of a man. Leonardo da Vinci, renowned for his 
understanding of human anatomy, valued the measures of a 
man stated by Vitruvius Pollio, a Roman architect and engineer 
of the first century BC: four fingers make one palm, four palms 
make one foot, six palms make one cubit, and four cubits make 
a man’s height. If we take a finger width to be 0.75 in., what then 
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are (a) the length of a man’s foot and (b) the height of a man, 
both in centimeters?

55  Dog years. Dog owners like to convert the age of a dog 
(dubbed dog years) to the usual meaning of years to account for 
the more rapid aging of dogs. One measure of the aging process 
in both dogs and humans is the rate at which the DNA changes 
in a process called methylation. Research on that process shows 
that after the first year, the equivalent age of a dog is given by 

equivalent age = 16 ln(dog years) + 31,

where ln is the natural logarithm. What then is the equivalent 
age of a dog on its 13th birthday?

56  Galactic years. The time the Solar System takes to circle 
around the center of the Milky Way galaxy, a galactic year, is 
about 230 My. In galactic years, how long ago did (a) the Tyran-
nosaurus rex dinosaurs live (67 My ago), (b) the first major ice 
age occur (2.2 Gy ago), and (c) Earth form (4.54 Gy ago)?

57  Planck time. The smallest time interval defined in physics is 
the Planck time   t  P   = 5.39 ×  10  −44  s , which is the time required for 
light to travel across a certain length in a vacuum. The universe 
began with the big bang 13.772 billion years ago. What is the 
number of Planck times since that beginning?

58  20,000 Leagues Under the Sea. In Jules Verne’s classic sci-
ence fiction story (published as a serial from 1869 to 1870), Cap-
tain Nemo travels in his underwater ship Nautilus through the 
seas of the world for a distance of 20,000 leagues, where a (met-
ric) league is equal to 4.000 km. Assume Earth is spherical with 
a radius of 6378 km. How many times could Nemo have traveled 
around Earth? 

59  Sea mile. A sea mile is a commonly used measure of dis-
tance in navigation but, unlike the nautical mile, it does not have 
a fixed value because it depends on the latitude at which it is 
measured. It is the distance measured along any given longitude 
that subtends 1 arc minute, as measured from Earth’s center 
(Fig. 1.5). That distance depends on the radius r of Earth at that 
point, but because Earth is not a perfect sphere but is wider at 
the equator and has slightly flattened polar regions, the radius 
depends on the latitude. At the equator, the radius is 6378 km; 
at the pole it is 6356 km. What is the difference in a sea mile 
measured at the equator and at the pole? 

Equator

Quarter
circle

1 sea mile Pole

1'

r

Earth

Figure 1.5 Problem 59.

60  Noctilucent clouds. Soon after the huge 1883 volcanic explo-
sion of Krakatoa Island (near Java in the southeast Pacific), 
silvery, blue clouds began to appear nightly in the Northern 
Hemisphere early at night. The explosion was so violent that it 
hurled dust to the mesosphere, a cool portion of the atmosphere 
located well above the stratosphere. There water collected and 
froze on the dust to form the particles that made the first of 
these clouds. Termed noctilucent clouds (“night shining”), these 
clouds are now appearing frequently (Fig. 1.6a), signaling a 
major change in Earth’s atmosphere, not because of volcanic 
explosions, but because of the increased production of methane 
by industries, rice paddies, landfills, and livestock flatulence.

The clouds are visible after sunset because they are in the 
upper portion of the atmosphere that is still illuminated by sun-
light. Figure 1.6b shows the situation for an observer at point A 
who sees the clouds overhead 38 min after sunset. The two lines 
of light are tangent to Earth’s surface at A and B, at radius r 
from Earth’s center. Earth rotates through angle θ between the 
two lines of light. What is the height H of the clouds?

(a)

(b)

Last light to A

Path of last
light from
Sun

Center of Earth

Last light
on clouds

Distant Sun r

d
A

H

B r

θ

θ

Clouds

Figure 1.6 Problem 60. (a) Noctilucent clouds. (b) Sunlight 
reaching the observer and the clouds.

61  Class time, the long of it. For a common four- year under-
graduate program, what are the total number of (a) hours 
and (b) seconds spent in class? Enter your answer in scientific 
notation.

N
oc

ti
lu

ce
nt

 c
lo

ud
s 

ov
er

 th
e 

B
al

ti
c 

Se
a 

as
 v

ie
w

ed
 

fr
om

 L
ab

oe
, G

er
m

an
y,

 2
01

9.
 S

ou
rc

e:
 M

at
th

ia
s 

Sü
ße

n.
 

L
ic

en
se

d 
un

de
r 

C
C

 B
Y

-S
A

 4
.0

c01Measurement.indd   12 05/05/21   3:51 PM



13

C H A P T E R  2

2.1 POSITION, DISPLACEMENT, AND AVERAGE VELOCITY
Learning Objectives 
After reading this module, you should be able to . . . 

2.1.1 Identify that if all parts of an object move in the 
same direction and at the same rate, we can treat 
the object as if it were a (point- like) particle. (This 
chapter is about the motion of such objects.)

2.1.2 Identify that the position of a particle is its loca-
tion as read on a scaled axis, such as an x axis.

2.1.3 Apply the relationship between a particle’s 
 displacement and its initial and final positions.

2.1.4 Apply the relationship between a particle’s aver-
age  velocity, its displacement, and the time interval 
for that  displacement.

2.1.5 Apply the relationship between a particle’s aver-
age speed, the total distance it moves, and the time 
interval for the motion.

2.1.6 Given a graph of a particle’s position versus time, 
 determine the average velocity between any two 
particular times. 

Key Ideas 
● The position x of a particle on an x axis locates the par-
ticle with respect to the origin, or zero point, of the axis.

● The position is either positive or negative, according 
to which side of the origin the particle is on, or zero if 
the particle is at the origin. The positive direction on an 
axis is the direction of increasing positive numbers; the 
opposite direction is the negative direction on the axis.

● The displacement Δ  x of a particle is the change in its 
 position:

  Δ  x =  x  2   −  x  1  .  

● Displacement is a vector quantity. It is positive if the 
 particle has moved in the positive direction of the x 
axis and negative if the particle has moved in the nega-
tive  direction.

● When a particle has moved from position x1 to posi-
tion x2 during a time interval Δt = t2 − t1, its average 
velocity during that interval is

   v  avg   =   Δ  x ___ Δ t
   =   

 x  2   −  x  1   ______  t  2   −  t  1  
  .  

● The algebraic sign of vavg indicates the direction of 
motion (vavg is a vector quantity). Average velocity does 
not depend on the actual distance a particle moves, 
but instead depends on its original and final positions. 

● On a graph of x versus t, the average velocity for 
a time interval Δt is the slope of the straight line con-
necting the points on the curve that represent the two 
ends of the interval. 

● The average speed savg of a particle during a time 
 interval Δt depends on the total distance the particle 
moves in that time interval: 

  s  avg   =   total distance  ____________ Δt
  . 

What Is Physics?
One purpose of physics is to study the motion of objects—how fast they move, for 
example, and how far they move in a given amount of time. NASCAR  engineers 
are fanatical about this aspect of physics as they determine the perform ance 
of their cars before and during a race. Geologists use this physics to measure 
 tectonic- plate motion as they attempt to predict earthquakes. Medical  researchers 
need this physics to map the blood flow through a patient when  diagnosing a par-
tially closed artery, and motorists use it to determine how they might slow suf-
ficiently when their radar detector sounds a warning. There are countless other 

Motion Along a Straight Line
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examples. In this chapter, we study the basic physics of  motion where the object 
(race car, tectonic plate, blood cell, or any other object) moves along a single axis. 
Such motion is called one- dimensional motion.

Motion
The world, and everything in it, moves. Even seemingly stationary things, such as 
a roadway, move with Earth’s rotation, Earth’s orbit around the Sun, the Sun’s 
orbit around the center of the Milky Way galaxy, and that galaxy’s migration 
relative to other galaxies. The classification and comparison of motions (called 
kinematics) is often challenging. What exactly do you measure, and how do you 
compare?

Before we attempt an answer, we shall examine some general properties of 
motion that is restricted in three ways.

1. The motion is along a straight line only. The line may be vertical, horizontal, 
or slanted, but it must be straight.

2. Forces (pushes and pulls) cause motion but will not be discussed until 
 Chapter 5. In this chapter we discuss only the motion itself and changes in 
the motion. Does the moving object speed up, slow down, stop, or reverse 
 direction? If the motion does change, how is time involved in the change?

3. The moving object is either a particle (by which we mean a point- like object 
such as an electron) or an object that moves like a particle (such that every 
portion moves in the same direction and at the same rate). A stiff pig  slipping 
down a straight playground slide might be considered to be moving like a par-
ticle; however, a tumbling tumbleweed would not.

Position and Displacement
To locate an object means to find its position relative to some reference point, 
often the origin (or zero point) of an axis such as the x axis in Fig. 2.1.1. The 
 positive direction of the axis is in the direction of increasing numbers (coordi-
nates), which is to the right in Fig. 2.1.1. The opposite is the negative direction.

For example, a particle might be located at x = 5 m, which means it is 5 m in 
the positive direction from the origin. If it were at x = −5 m, it would be just as far 
from the origin but in the opposite direction. On the axis, a coordinate of −5 m 
is less than a coordinate of −1 m, and both coordinates are less than a  coordinate 
of +5 m. A plus sign for a coordinate need not be shown, but a  minus sign must 
always be shown.

A change from position x1 to position x2 is called a displacement Δx, where

 Δx = x2 − x1. (2.1.1)

(The symbol Δ, the Greek uppercase delta, represents a change in a quantity, 
and it means the final value of that quantity minus the initial value.) When num-
bers are inserted for the position values x1 and x2 in Eq. 2.1.1, a displacement in 
the positive direction (to the right in Fig. 2.1.1) always comes out positive, and 
a displacement in the opposite direction (left in the figure) always comes out 
 negative. For example, if the particle moves from x1 = 5 m to x2 = 12 m, then the 
displacement is Δx = (12 m) − (5 m) = +7 m. The positive result indicates that the 
motion is in the positive direction. If, instead, the particle moves from x1 = 5 m  
to x2 = 1 m, then Δx = (1 m) − (5 m) = −4 m. The negative result indicates that 
the motion is in the negative direction.

The actual number of meters covered for a trip is irrelevant; displacement 
involves only the original and final positions. For example, if the particle moves 

Figure 2.1.1 Position is determined 
on an axis that is marked in units 
of length (here meters) and that 
 extends indefinitely in opposite 
 directions. The axis name, here x,  
is always on the positive side of  
the origin.

–3 0

Origin

–2 –1 1 2 3

Negative direction

Positive direction

x (m)
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from x = 5 m out to x = 200 m and then back to x = 5 m, the displacement from 
start to finish is Δx = (5 m) − (5 m) = 0.

Signs. A plus sign for a displacement need not be shown, but a minus sign 
must  always be shown. If we ignore the sign (and thus the direction) of a displace-
ment, we are left with the magnitude (or absolute value) of the displacement. For 
example, a displacement of Δx = −4 m has a magnitude of 4 m.

Displacement is an example of a vector quantity, which is a quantity that has 
both a direction and a magnitude. We explore vectors more fully in Chapter 3, 
but here all we need is the idea that displacement has two features: (1) Its mag-
nitude is the distance (such as the number of meters) between the original and 
final positions. (2) Its direction, from an original position to a final position, can 
be represented by a plus sign or a minus sign if the motion is along a single axis.

Here is the first of many checkpoints where you can check your understanding 
with a bit of reasoning. The answers are in the back of the book.

Figure 2.1.2 The graph of 
x(t) for an armadillo that 
is stationary at x = −2 m. 
The value of x is −2 m 
for all times t.

x (m)

t (s)
1 2 3 4

+1

–1
–1

x(t)

0

This is a graph
of position x
versus time t
for a stationary
object.
 

Same position
for any time. 

Checkpoint 2.1.1
Here are three pairs of initial and final positions, respectively, along an x axis. Which 
pairs give a negative displacement: (a) −3 m, +5 m; (b) −3 m, −7 m; (c) 7 m, −3 m?

Average Velocity and Average Speed
A compact way to describe position is with a graph of position x plotted as a func-
tion of time t—a graph of x(t). (The notation x(t) represents a function x of t, not 
the product x times t.) As a simple example, Fig. 2.1.2 shows the position function 
x(t) for a stationary armadillo (which we treat as a particle) over a 7 s time inter-
val. The animal’s position stays at x = −2 m.

Figure 2.1.3 is more interesting, because it involves motion. The armadillo 
is apparently first noticed at t = 0 when it is at the position x = −5 m. It moves 
 toward x = 0, passes through that point at t = 3 s, and then moves on to increas-
ingly larger positive values of x. Figure 2.1.3 also depicts the straight- line motion 
of the armadillo (at three times) and is something like what you would see. The 
graph in Fig. 2.1.3 is more abstract, but it reveals how fast the armadillo moves.

Actually, several quantities are associated with the phrase “how fast.” One 
of them is the average velocity vavg, which is the ratio of the displacement Δx that 
occurs during a particular time interval Δt to that interval:

   v  avg   =   Δ x ___ Δt
   =   

 x  2   −  x  1   ______  t  2   −  t  1  
  .  (2.1.2)

The notation means that the position is x1 at time t1 and then x2 at time t2. A com-
mon unit for vavg is the meter per second (m/s). You may see other units in the 
problems, but they are always in the form of length/time.
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16 CHAPTER 2 MoTion Along A STRAigHT linE

Figure 2.1.4 Calculation 
of the  average velocity 
between t = 1 s and t = 4 s  
as the slope of the line that 
connects the points on the 
x(t) curve representing 
those times. The swirling 
icon indicates that a figure 
is available in WileyPLUS 
as an animation with 
voiceover.
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vavg = slope of this line

0

This horizontal distance is how long
it took, start to end:
Δt = 4 s – 1 s = 3 sStart of interval

This vertical distance is how far
it moved, start to end:
Δx = 2 m – (–4 m) = 6 m

End of interval
Δx__
Δt

rise___
run

= =

This is a graph
of position x
versus time t.

To find average velocity,
first draw a straight line,
start to end, and then
find the slope of the
line.

Graphs. On a graph of x versus t, vavg is the slope of the straight line that 
connects two particular points on the x(t) curve: one is the point that corresponds 
to x2 and t2, and the other is the point that corresponds to x1 and t1. Like displace-
ment, vavg has both magnitude and direction (it is another vector quantity). Its 
magnitude is the magnitude of the line’s slope. A positive vavg (and slope) tells us 
that the line slants upward to the right; a negative vavg (and slope) tells us that the 
line slants downward to the right. The average velocity vavg  always has the same 
sign as the displacement Δx because Δt in Eq. 2.1.2 is always positive.

Figure 2.1.4 shows how to find vavg in Fig. 2.1.3 for the time interval t = 1 s to 
t = 4 s. We draw the straight line that connects the point on the position curve at 
the beginning of the interval and the point on the curve at the end of the interval. 
Then we find the slope Δx/Δt of the straight line. For the given time interval, the 
average velocity is

   v  avg   =   6 m ____ 
3 s

   = 2 m / s.  

Figure 2.1.3 The graph of x(t) for a moving armadillo. The path  associated with the graph 
is also shown, at three times.
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172.1 PoSiTion, DiSPlACEMEnT, AnD AVERAgE VEloCiTY

So,   Δt =   Δt   car   +  Δt  jog   

(Answer) = 0.250 h + 0.500 h = 0.750 h. 

(c) What is your average velocity vavg from the starting 
point to the end of the jog? Find it both numerically and 
graphically.

KEY IDEA

From Eq. 2.1.2 we know that vavg for the entire trip is the 
ratio of the displacement of 13.0 km for the entire trip to the 
time interval of 0.750 h for the entire trip.

Calculation: Here we find

   v  avg   =   Δx ___ Δt
   =   13.0 km _______ 

0.750 h
   = 17.3 km / h.  (Answer)

To find vavg graphically, first we graph the function x(t) as 
shown in Fig. 2.1.5, where the beginning and final points 
on the graph are the origin and the point labeled “Stop.” 

Sample Problem 2.1.1 Average velocity

You get a lift from a car service to take you to a state park 
along a straight road due east (directly toward the east) 
for 10.0 km at an average velocity of 40.0 km/h. From the 
drop- off point, you jog along a straight path due east for 
3.00 km, which takes 0.500 h.

(a) What is your overall displacement from your starting 
point to the point where your jog ends?

KEY IDEA

For convenience, assume that you move in the positive 
direction of an x axis, from a first position of x1 = 0 to a 
second position of x2 at the end of the jog. That second 
position must be at x2 = 10.0 km + 3.00 km = 13.0 km. 
Then your displacement ∆x along the x axis is the second 
position minus the first position.

Calculation: From Eq. 2.1.1, we have

 Δx = x2 − x1 = 13.0 − 0 = 13.0 km. (Answer)

Thus, your overall displacement is 13.0 km in the positive 
 direction of the x axis.

(b) What is the time interval Δt from the beginning of 
your movement to the end of the jog?

KEY IDEA

We already know the jogging time interval ∆ tjog (= 0.500 h),  
but we lack the time interval ∆ tcar for the ride. However, 
we know that the displacement ∆ xcar is 10.0 km and the 
average velocity vavg,car is 40.0 km/h. That average veloc-
ity is the ratio of that displacement to the time interval for 
the ride, so we can find that time interval.

Calculations: We first write

  v  avg,car   =   
 Δx  car   _____ 
 Δt  car  

  . 

Rearranging and substituting data then give us

  Δt  car   =   
 Δx  car   ______  v  avg,car  

   =   10.0 km _________ 
40.0 km / h

   = 0.250 h. 

Figure 2.1.5 The lines marked “Riding” and “Jogging” are 
the position−time plots for the riding and jogging stages. 
The slope of the straight line joining the origin and the point 
labeled “Stop” is the average velocity for the motion from 
start to stop.

Po
si

ti
on

 (
km

)

Time (h)

0
0 0.2 0.4 0.6

2

4

6

8

10

12

x

t

Ri
di

ng ∆x  = 13.0 km

Stop

Drop-off
Jogging

∆t  = 0.750 h

Average speed savg is a different way of describing “how fast” a particle 
moves. Whereas the average velocity involves the particle’s displacement Δx, the 
average speed involves the total distance covered (for example, the number of 
meters moved), independent of direction; that is,

    s  avg   =   total distance  ____________ Δ t
  .   (2.1.3)

Because average speed does not include direction, it lacks any algebraic sign. 
Sometimes savg is the same (except for the absence of a sign) as vavg. However, the 
two can be quite different.
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18 CHAPTER 2 MoTion Along A STRAigHT linE

Your average velocity is the slope of the straight line con-
necting those points; that is, vavg is the ratio of the rise  
(∆ x = 13.0 km) to the run (∆  t = 0.750 h), which gives us vavg =  
17.3 km/h.

(d) Suppose you then jog back to the drop- off point for 
another 0.500 h. What is your average speed from the 
beginning of your trip to that return?

KEY IDEA

Your average speed is the ratio of the total distance you 
 covered to the total time interval you took.

Calculation: The total distance is 10.0 km + 3.00 km + 
3.00 km = 16.0 km. The total time interval is 0.250 h + 
0.500 h + 0.500 h = 1.25 h. Thus, Eq. 2.1.3 gives us

   s  avg   =   16.0 km _______ 
1.25 h

   = 12.8 km / h.  (Answer)

Instantaneous Velocity and Speed
You have now seen two ways to describe how fast something moves: average 
 velocity and average speed, both of which are measured over a time interval Δt. 
However, the phrase “how fast” more commonly refers to how fast a  particle is 
moving at a given instant—its instantaneous velocity (or simply  velocity) v.

The velocity at any instant is obtained from the average velocity by shrinking 
the time interval Δt closer and closer to 0. As Δt dwindles, the average  velocity 
approaches a limiting value, which is the velocity at that instant:

   v =   lim  
Δt→0

     Δx ___ Δt
   =   dx ___ 

dt
  .   (2.2.1)

Note that v is the rate at which  position x is changing with time at a given  instant; 
that is, v is the derivative of x with respect to t. Also note that v at any instant is 
the slope of the position– time curve at the point representing that instant. Veloc-
ity is another vector quantity and thus has an associated  direction.

Speed is the magnitude of velocity; that is, speed is velocity that has been 
stripped of any indication of direction, either in words or via an algebraic sign. 
(Caution: Speed and average speed can be quite different.) A velocity of +5 m/s 
and one of −5 m/s both have an associated speed of 5 m/s. The speedometer in 
a car measures speed, not velocity (it cannot determine the direction).

2.2 INSTANTANEOUS VELOCITY AND SPEED 
Learning Objectives 
After reading this module, you should be able to . . .

2.2.1 Given a particle’s position as a function of 
time, calculate the instantaneous velocity for any 
particular time.

2.2.2 Given a graph of a particle’s position versus time, 
determine the instantaneous velocity for any particu-
lar time.

2.2.3 Identify speed as the magnitude of the instanta-
neous velocity. 

Key Ideas 
● The instantaneous velocity (or simply velocity) v of a 
moving particle is 

 v =   lim  
Δt→0

     Δx ___ Δt
   =   dx ___ 

dt
  , 

where Δx = x2 − x1 and Δt = t2 − t1.

●  The instantaneous velocity (at a particular time) may 
be found as the slope (at that particular time) of the 
graph of x versus t.

● Speed is the magnitude of instantaneous velocity.

Additional examples, video, and practice available at WileyPLUS
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Sample Problem 2.2.1 Velocity and slope of x versus t, elevator cab

Figure 2.2.1 (a) The x(t) curve for an ele-
vator cab that moves upward along an x 
axis. (b) The v(t) curve for the cab. Note 
that it is the derivative of the x(t) curve 
(v = dx/dt). (c) The a(t) curve for the 
cab. It is the derivative of the v(t) curve 
(a = dv/dt). The stick  figures along the 
bottom suggest how a passenger’s body 
might feel during the  accelerations.
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What you would feel.

x = 4.0 m
at t = 3.0 s

x = 24 m
at t = 8.0 s

Calculations: The slope of x(t), and so also the velocity, is 
zero in the intervals from 0 to 1 s and from 9 s on, so then 
the cab is stationary. During the interval bc, the slope is 
constant and nonzero, so then the cab moves with con-
stant velocity. We calculate the slope of x(t) then as

     Δx ___ Δt
   = v =   24 m − 4.0 m  ____________  

8.0 s − 3.0 s
   = + 4.0 m / s.   (2.2.2)

Checkpoint 2.2.1
The following equations give the position x(t) of a particle in four situations (in each 
equation, x is in meters, t is in seconds, and t > 0): (1) x = 3t − 2; (2) x = −4t2 − 2;  
(3) x = 2/t2; and (4) x = −2. (a) In which situation is the velocity v of the particle 
constant? (b) In which is v in the negative x direction?

Figure 2.2.1a is an x(t) plot for an elevator cab that is ini-
tially stationary, then moves upward (which we take to be 
the positive direction of x), and then stops. Plot v(t).

KEY IDEA

We can find the velocity at any time from the slope of the 
x(t) curve at that time. 
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20 CHAPTER 2 MoTion Along A STRAigHT linE

The plus sign indicates that the cab is moving in the pos-
itive x direction. These intervals (where v = 0 and v = 
4 m/s) are plotted in Fig. 2.2.1b. In addition, as the cab 
initially begins to move and then later slows to a stop, 
v varies as indicated in the intervals 1 s to 3 s and 8 s to 
9 s. Thus, Fig. 2.2.1b is the  required plot. (Figure 2.2.1c 
is considered in Module 2.3.)

Given a v(t) graph such as Fig. 2.2.1b, we could 
“work backward” to produce the shape of the associated 
x(t) graph (Fig. 2.2.1a). However, we would not know 
the actual values for x at various times, because the v(t) 
graph indicates only changes in x. To find such a change 
in x during any interval, we must, in the language of 

calculus, calculate the area  “under the curve” on the 
v(t) graph for that interval. For  example, during the 
 interval 3 s to 8 s in which the cab has a velocity of 4.0 
m/s, the change in x is

 Δx = (4.0 m/s)(8.0 s − 3.0 s) = +20 m. (2.2.3)

(This area is positive because the v(t) curve is above the 
t axis.) Figure 2.2.1a shows that x does indeed increase 
by 20 m in that interval. However, Fig. 2.2.1b does not tell 
us the values of x at the beginning and end of the inter-
val. For that, we need additional information, such as the 
value of x at some instant.

Acceleration
When a particle’s velocity changes, the particle is said to undergo acceleration 
(or to accelerate). For motion along an axis, the average acceleration aavg over 
a time interval Δt is

    a  avg   =   
 v  2   −  v  1   ______  t  2   −  t  1  

   =   Δv ___ Δt
  ,   (2.3.1)

where the particle has velocity v1 at time t1 and then velocity v2 at time t2. The 
 instantaneous acceleration (or simply acceleration) is

   a =   dv ___ 
dt

  .   (2.3.2)

2.3 ACCELERATION
Learning Objectives 
After reading this module, you should be able to . . . 

2.3.1 Apply the relationship between a particle’s aver-
age acceleration, its change in velocity, and the time 
interval for that change.

2.3.2 Given a particle’s velocity as a function of time, 
calculate the instantaneous acceleration for any 
particular time.

2.3.3 Given a graph of a particle’s velocity versus 
time, determine the instantaneous acceleration for 
any particular time and the average acceleration 
between any two particular times. 

Key Ideas 
● Average acceleration is the ratio of a change in 
velocity Δv to the time interval Δt in which the change 
occurs:

  a  avg   =   Δv ___ Δt
  . 

The algebraic sign indicates the direction of aavg.

● Instantaneous acceleration (or simply acceleration) a 
is the first time derivative of velocity v(t) and the sec-
ond time derivative of position x(t):

 a =   dv ___ 
dt

   =    d   2  x ____ 
 dt   2 

  . 

● On a graph of v versus t, the acceleration a at any time 
t is the slope of the curve at the point that represents t. 

Additional examples, video, and practice available at WileyPLUS
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In words, the acceleration of a particle at any instant is the rate at which its  velocity 
is changing at that instant. Graphically, the acceleration at any point is the slope 
of the curve of v(t) at that point. We can combine Eq. 2.3.2 with Eq. 2.2.1 to write

  a =   dv ___ 
dt

   =   d __ 
dt

    (  dx ___ 
dt

  )  =    d   2 x ____ 
 dt   2 

  .  (2.3.3)

In words, the acceleration of a particle at any instant is the second derivative of 
its position x(t) with respect to time.

A common unit of acceleration is the meter per second per second: m/(s ⋅ s) 
or m/s2. Other units are in the form of length/(time ⋅ time) or length/time2. Accel-
eration has both magnitude and direction (it is yet another vector quantity). Its 
algebraic sign represents its direction on an axis just as for displacement and 
velocity; that is, acceleration with a positive value is in the positive direction of 
an axis, and acceleration with a negative value is in the negative direction.

Figure 2.2.1 gives plots of the position, velocity, and acceleration of an 
elevator moving up a shaft. Compare the a(t) curve with the v(t) curve—each 
point on the a(t) curve shows the derivative (slope) of the v(t) curve at the 
corres ponding time. When v is constant (at either 0 or 4 m/s), the derivative 
is zero and so also is the acceleration. When the cab first begins to move, the 
v(t) curve has a positive derivative (the slope is positive), which means that a(t) 
is positive. When the cab slows to a stop, the derivative and slope of the v(t) 
curve are negative; that is, a(t) is negative.

Next compare the slopes of the v(t) curve during the two acceleration pe-
riods. The slope associated with the cab’s slowing down (commonly called 
 “deceleration”) is steeper because the cab stops in half the time it took to get 
up to speed. The steeper slope means that the magnitude of the deceleration is 
larger than that of the acceleration, as indicated in Fig. 2.2.1c.

Sensations. The sensations you would feel while riding in the cab of 
Fig. 2.2.1 are indicated by the sketched figures at the bottom. When the cab first 
accelerates, you feel as though you are pressed downward; when later the cab is 
braked to a stop, you seem to be stretched upward. In between, you feel nothing 
special. In other words, your body reacts to accelerations (it is an accelerometer) 
but not to  velocities (it is not a speedometer). When you are in a car traveling at 
90 km/h or an airplane traveling at 900 km/h, you have no bodily awareness of the 
 motion. However, if the car or plane quickly changes velocity, you may become 
keenly aware of the change, perhaps even frightened by it. Part of the thrill of an 
amusement park ride is due to the quick changes of velocity that you undergo 
(you pay for the accelerations, not for the speed). A more extreme example is 
shown in the photographs of Fig. 2.3.1, which were taken while a rocket sled was 
rapidly accelerated along a track and then rapidly braked to a stop. FCP  

g Units. Large accelerations are sometimes expressed in terms of g units, with

 1g = 9.8 m/s2   (g unit). (2.3.4)

(As we shall discuss in Module 2.5, g is the magnitude of the acceleration of a fall-
ing object near Earth’s surface.) On a roller coaster, you may experience brief 
accelerations up to 3g, which is (3)(9.8 m/s2), or about 29 m/s2, more than enough 
to justify the cost of the ride.

Signs. In common language, the sign of an acceleration has a nonscientific 
meaning: Positive acceleration means that the speed of an object is  increasing, and 
negative acceleration means that the speed is decreasing (the object is decelerat-
ing). In this book, however, the sign of an acceleration indicates a direction, not 
whether an object’s speed is increasing or  decreasing. For example, if a car with an 
initial velocity v = −25 m/s is braked to a stop in 5.0 s, then aavg = +5.0 m/s2. The 
 acceleration is positive, but the car’s speed has decreased. The reason is the differ-
ence in signs: The direction of the acceleration is opposite that of the velocity.
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22 CHAPTER 2 MoTion Along A STRAigHT linE

Here then is the proper way to interpret the signs:

Checkpoint 2.3.1
A wombat moves along an x axis. What is the sign of its acceleration if it is moving 
(a) in the positive direction with increasing speed, (b) in the positive direction with 
decreasing speed, (c) in the negative  direction with increasing speed, and (d) in the 
negative  direction with decreasing speed?

acceleration function a(t), we differentiate the velocity 
function v(t) with respect to time. 

Calculations: Differentiating the position function, we find

 v = −27 + 3t2, (Answer)

with v in meters per second. Differentiating the velocity 
function then gives us

 a = +6t, (Answer)

with a in meters per second squared.

Sample Problem 2.3.1 Acceleration and dv/dt

A particle’s position on the x axis of Fig. 2.1.1 is given by

x = 4 − 27t + t3,

with x in meters and t in seconds.

(a) Because position x depends on time t, the particle 
must be moving. Find the particle’s velocity function v(t) 
and acceleration function a(t).

KEY IDEAS

(1) To get the velocity function v(t), we  differentiate the 
position function x(t) with respect to time. (2) To get the 

Figure 2.3.1 Colonel J. P. Stapp in a rocket sled as it is brought up to high speed (accel-
eration out of the page) and then very rapidly braked (acceleration into the page).

Courtesy U.S. Air Force
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 If the signs of the velocity and acceleration of a particle are the same, the speed 
of the particle increases. If the signs are opposite, the speed decreases.
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(b) Is there ever a time when v = 0?

Calculation: Setting v(t) = 0 yields

0 = −27 + 3t2,

which has the solution

 t = ±3 s. (Answer)

Thus, the velocity is zero both 3 s before and 3 s after the 
clock reads 0.

(c) Describe the particle’s motion for t ≥ 0.

Reasoning: We need to examine the expressions for x(t), 
v(t), and a(t).

At t = 0, the particle is at x(0) = +4 m and is  moving 
with a velocity of v(0) = −27 m/s—that is, in the negative 
 direction of the x axis. Its acceleration is a(0) = 0 because 
just then the particle’s velocity is not changing (Fig. 2.3.2a).

For 0 < t < 3 s, the particle still has a negative  velocity, 
so it continues to move in the negative direction. However, 
its  acceleration is no longer 0 but is  increasing and posi-
tive. Because the signs of the velocity and the acceleration 
are  opposite, the particle must be slowing (Fig. 2.3.2b).

Indeed, we already know that it stops momentarily 
at t = 3 s. Just then the particle is as far to the left of the 
 origin in Fig. 2.1.1 as it will ever get. Substituting t = 3 s 
into the  expression for x(t), we find that the particle’s 
position just then is x = −50 m (Fig. 2.3.2c). Its accelera-
tion is still positive.

For t > 3 s, the particle moves to the right on the axis. 
Its acceleration remains positive and grows  progressively 
larger in magnitude. The velocity is now positive, and it 
too grows progressively larger in  magnitude (Fig. 2.3.2d).

Figure 2.3.2 Four stages of the particle’s motion.

x

−50 m

t = 3 s
v = 0
a pos

reversing
(c)

t = 4 s
v pos
a pos

speeding up

(d )

0   4 m t = 0
v neg
a = 0

leftward
motion

(a)

t = 1 s
v neg
a pos

slowing

(b)

2.4 CONSTANT ACCELERATION
Learning Objectives 
After reading this module, you should be able to . . . 

2.4.1 For constant acceleration, apply the relationships 
between position, displacement, velocity, accelera-
tion, and elapsed time (Table 2.4.1). 

2.4.2 Calculate a particle’s change in velocity by inte-
grating its acceleration function with respect to time.

2.4.3 Calculate a particle’s change in position by inte-
grating its velocity function with respect to time. 

Key Idea 
● The following five equations describe the motion of a particle with constant acceleration:

v = v0 + at, x − x0 = v0 t +    1 __ 
2
   at2,

v2 = v2
0 + 2a(x − x0), x − x0 =    1 __ 

2
   (v0 + v)t, x − x0 = vt −    1 __ 

2
   at2.

These are not valid when the acceleration is not constant.

Constant Acceleration: A Special Case
     In many types of motion, the acceleration is either constant or approximately so. 
For example, you might accelerate a car at an approximately constant rate when 
a traffic light turns from red to green. Then graphs of your position,  velocity, 

Additional examples, video, and practice available at WileyPLUS
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and  acceleration would resemble those in Fig. 2.4.1. (Note that a(t) in 
Fig. 2.4.1c is constant, which requires that v(t) in Fig. 2.4.1b have a constant 
slope.) Later when you brake the car to a stop, the acceleration (or decel-
eration in common  language) might also be approximately constant.

Such cases are so common that a special set of equations has been 
derived for dealing with them. One approach to the derivation of these equa-
tions is given in this section. A second approach is given in the next sec-
tion. Throughout both sections and later when you work on the homework 
problems, keep in mind that these equations are valid only for constant accel-
eration (or situations in which you can approximate the acceleration as being 
constant).

First Basic Equation. When the acceleration is constant, the average 
acceleration and instantaneous acceleration are equal and we can write  
Eq. 2.3.1, with some changes in  notation, as

 a =  a  avg   =   
v −  v  0   ______ 
t − 0

  . 

Here v0 is the velocity at time t = 0 and v is the velocity at any later time t. 
We can recast this equation as

 v = v0 + at. (2.4.1)

As a check, note that this equation reduces to v = v0 for t = 0, as it must. As 
a further check, take the derivative of Eq. 2.4.1. Doing so yields dv/dt = a, 
which is the definition of a. Figure 2.4.1b shows a plot of Eq. 2.4.1, the v(t) 
function; the function is linear and thus the plot is a straight line.

Second Basic Equation. In a similar manner, we can rewrite Eq. 2.1.2 
(with a few changes in nota tion) as

  v  avg   =   
x −  x  0   ______ 
t − 0

   

and then as

 x = x0 + vavgt, (2.4.2)

in which x0 is the position of the particle at t = 0 and vavg is the average velocity 
between t = 0 and a later time t.

For the linear velocity function in Eq. 2.4.1, the average velocity over any 
time interval (say, from t = 0 to a later time t) is the average of the velocity at the 
beginning of the interval (= v0) and the velocity at the end of the interval (= v). 
For the interval from t = 0 to the later time t then, the average velocity is

    v  avg   =   1 _ 2    (    v  0   + v )  .    (2.4.3)

Substituting the right side of Eq. 2.4.1 for v yields, after a little rearrangement,

    v  avg   =  v  0   +   1 _ 2   at.   (2.4.4)

Finally, substituting Eq. 2.4.4 into Eq. 2.4.2 yields

   x −  x  0   =  v  0   t +   1 _ 2    at   2 .   (2.4.5)

As a check, note that putting t = 0 yields x = x0, as it must. As a further check, 
taking the derivative of Eq. 2.4.5 yields Eq. 2.4.1, again as it must. Figure 2.4.1a 
shows a plot of Eq. 2.4.5; the function is quadratic and thus the plot is curved.

Three Other Equations. Equations 2.4.1 and 2.4.5 are the basic equations for 
constant acceleration; they can be used to solve any constant acceleration  problem 

Figure 2.4.1 (a) The position x(t) of a 
 particle moving with constant acceleration. 
(b) Its  velocity v(t), given at each point by 
the slope of the curve of x(t). (c) Its (con-
stant) acceleration, equal to the (constant) 
slope of the curve of v(t).
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Slopes of the position graph 
are plotted on the velocity graph.

Slope of the velocity graph is 
plotted on the acceleration graph.
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252.4 ConSTAnT ACCElERATion

in this book. However, we can derive other equations that might prove useful in 
certain  specific situations. First, note that as many as five quantities can possibly 
be  involved in any problem about constant acceleration—namely, x − x0, v, t, a, 
and v0. Usually, one of these quantities is not involved in the problem, either as 
a given or as an unknown. We are then presented with three of the remaining 
quantities and asked to find the fourth.

Equations 2.4.1 and 2.4.5 each contain four of these quantities, but not the 
same four. In Eq. 2.4.1, the “missing ingredient” is the displacement x − x0. In Eq. 
2.4.5, it is the velocity v. These two equations can also be combined in three ways 
to yield three additional equations, each of which involves a different “missing 
variable.” First, we can eliminate t to obtain

    v   2  =  v  0  2  + 2a  (  x −  x  0   )  .    (2.4.6)

This equation is useful if we do not know t and are not required to find it. Second, 
we can eliminate the acceleration a between Eqs. 2.4.1 and 2.4.5 to produce an 
equation in which a does not appear:

  x −  x  0   =   1 _ 2    (    v  0   + v )  t.   (2.4.7)

Finally, we can eliminate v0, obtaining

   x −  x  0   = vt −   1 _ 2    at   2 .   (2.4.8)

Note the subtle difference between this equation and Eq. 2.4.5. One involves the 
initial velocity v0; the other involves the velocity v at time t.

Table 2.4.1 lists the basic constant-acceleration equations (Eqs. 2.4.1 and 2.4.5) 
as well as the specialized equations that we have derived. To solve a simple constant-
acceleration problem, you can usually use an equation from this list (if you have the 
list with you). Choose an equation for which the only unknown variable is the vari-
able requested in the problem. A simpler plan is to remember only Eqs. 2.4.1 and 
2.4.5, and then solve them as simultaneous equations whenever needed. 

Table 2.4.1 Equations for Motion 
with Constant Accelerationa

Equation 
Number Equation

Missing 
Quantity

2.4.1 v = v0 + at x − x0

2.4.5  x −  x  0   =  v  0   t +   1 _ 2   a t   2  v

2.4.6   v   2  =  v  0  2  + 2a  (  x −  x  0   )    t

2.4.7  x −  x  0   =   1 _ 2    (   v  0   + v )   t a

2.4.8  x −  x  0   = vt −   1 _ 2    at   2  v0

aMake sure that the acceleration is indeed 
constant before using the equations in 
this table.

Checkpoint 2.4.1
The following equations give the position x(t) of a particle in four  situations: (1) x = 
3t − 4; (2) x = −5t3 + 4t2 + 6; (3) x = 2/t2 − 4/t; (4) x = 5t2 − 3. To which of these situa-
tions do the equations of Table 2.4.1 apply?

safe. So, the first step in the system’s control is to calcu-
late that passing time.

We want B to pull into the other lane, accelerate at a  
constant a = 3.50 m/s2 until it reaches a speed of v = 27.0 m/s  
(60 mi/h, the speed limit) and then, when it is at distance 
3.00L ahead of A, pull back into the initial lane (it will then 
maintain 27.0 m/s). Assume that the lane changing takes 
negligible time. Figure 2.4.2c shows the situation at the 
onset of the acceleration, with the rear of car B at xB1 = 0 
and the rear of car A at xA1 = 4L. Figure 2.4.2d shows the 
situation when car B is about to pull back into the initial 
lane. Let t1 and d1 be the time required for the acceleration 

Sample Problem 2.4.1 Autonomous car passing slower car

In Fig. 2.4.2a, you are riding in a car controlled by an 
autonomous driving system and trail a slower car that 
you want to pass. Figure 2.4.2b shows the initial situa-
tion, with you in car B. Your system’s radar detects the 
speed and location of slow car A. Both cars have length 
L = 4.50 m, speed v0 = 22.0 m/s (49 mi/h, slower than the 
speed limit), and travel on a straight road with one lane 
in each direction. Your car initially trails A by distance 
3.00L when you ask it to pass the slow car. That would 
require you to move into the other lane where there can 
be an oncoming vehicle. Your system must determine the 
time required for passing A, to see if passing would be 
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26 CHAPTER 2 MoTion Along A STRAigHT linE

(f) Putting the pieces together, we find

   x  B2   =  x  A2   + 4L

  d  1   + v  t  2   = 4L +  v  0   (  t  1   +  t  2   ) + 4L

  t  2   (v −  v  0  ) = 8L +  v  0    t  1   −  d  1  

  t  2   =    8L +  v  0    t  1   −  d  1    _____________ v −  v  0  
   

 =   
8(4.50 )  + (22.0 m/s)(1.4285 s) − 35.0 m

    __________________________________   
(27.0 m/s) − (22.0 m/s)

  

 = 6.4854 s ≈ 6.49 s.  (Answer)

(g) The total time is

   t  tot   =  t  1   +  t  2   = 1.4285 s + 6.4854 s

 = 7.91 s.  (Answer)
As explored in one of the end- of- chapter problems, the 
next step for your car’s control system is to detect the 
speed and distance of any oncoming car, to see if this 
much time is safe.

and the distance traveled during the acceleration. Let t2 
be the time from the end of the acceleration to when B 
is ahead of A by 3L and ready to pull back. We want the 
total time ttot = t1 + t2. Here are the pieces in the calcula-
tion. What are the values of (a) t1 and (b) d1? (c) In terms 
of L, v0, t1, and t2, what is the coordinate xB 2 of the rear of 
car B when B is ready to pull back? (d) In terms of L, v0, 
t1, and t2, what is the coordinate xA2 of the rear of car A  
just then? (e) What is xB2 in terms of xA2 and L? Putting 
the pieces together, find the values of (f) t2 and (g) ttot.

KEY IDEA

We can apply the equations of constant acceleration to 
both stages of passing: when car B has acceleration a = 
3.50 m/s2 and when it travels at constant speed (thus, with 
constant a = 0).

Calculations: (a) In the passing lane, B accelerates at the 
constant rate a = 3.50 m/s2 from initial speed v0 = 22.0 m/s 
to final speed v = 27.0 m/s. From Eq. 2.4.1, we find the 
time t1 required for the acceleration:

   t  1   =   
v −  v  0   ______ a   =   

(27.0 m/s) − (22.0 m/s)
  ____________________  

3.50  m/s  2 
  

 = 1.4285 s ≈ 1.43 s.  (Answer)

(b) In Eq. 2.4.6, let  x −  x  0    be the distance d1 traveled by B 
during the acceleration. We can then write

   v   2  =  v  0  2  + 2a d  1  

  d  1   =   
 v   2  −  v  0  2 

 ______ 
2a

   =   
(27.0   m/s)  2  − (22.0   m/s)  2 

   ______________________  
2(3.50   m/s  2  )

   

(Answer) = 35.0 m 

(c) After the acceleration through displacement d1 from 
its initial position of xB1 = 0, the rear of car B moves at 
constant speed v for the unknown time t2. Its position 
is then

  
 x  B2   =  d  1   + v t  2  .  (Answer)

(d) From its initial position of xA1 = 4L, the rear of car 
A moves at constant speed v0 for the total time t1 + t2. 
Thus, its position is then 

  
 x  A2   = 4L +  v  0   (  t  1   +  t  2   ).  (Answer)

(e) The rear of car B is then 3L from the front of A and 
thus 4L from the rear of A. So,

  
 x  B2   =  x  A2   + 4L.  (Answer)

Figure 2.4.2 (a) Trailing car’s radar system detects distance 
and speed of lead car. (b) Initial situation. (c) Trailing car B 
pulls into passing lane. (d) Car B is about to pull back into 
initial lane.

(a)

3LL L

v0 v0

(b)

B A
x

xB1= 0
x

xA1 = 4L

(c)

B

A

v0

v0

L

xA2
x

xB2

(d)

B

A 3L

Additional examples, video, and practice available at WileyPLUS
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272.4 ConSTAnT ACCElERATion

Another Look at Constant Acceleration*
The first two equations in Table 2.4.1 are the basic equations from which the 
 others are derived. Those two can be obtained by integration of the acceleration 
with the condition that a is constant. To find Eq. 2.4.1, we rewrite the definition 
of acceleration (Eq. 2.3.2) as

dv = a dt.

We next write the indefinite integral (or antiderivative) of both sides:

   
 
      dv     =   

 
      a  dt. 

Since acceleration a is a constant, it can be taken outside the integration. We obtain

   
 
      dv     = a  

 

      dt  

or v = at + C. (2.4.9)

To evaluate the constant of integration C, we let t = 0, at which time v = v0. 
 Substituting these values into Eq. 2.4.9 (which must hold for all values of t, 
 including t = 0) yields

v0 = (a)(0) + C = C.

Substituting this into Eq. 2.4.9 gives us Eq. 2.4.1.
To derive Eq. 2.4.5, we rewrite the definition of velocity (Eq. 2.2.1) as

dx = v dt

and then take the indefinite integral of both sides to obtain

   
 
      dx    =   

 
      v   dt. 

Next, we substitute for v with Eq. 2.4.1:

   
 
      dx  =   

 
      ( v  0   + at )    dt. 

Since v0 is a constant, as is the acceleration a, this can be rewritten as

   
 
      dx  =  v  0     

 
      dt   + a  

 
      t   dt. 

Integration now yields

  x =  v  0  t +   1 _ 2   a t   2  + C′,  (2.4.10)

where   C ′    is another constant of integration. At time t = 0, we have x = x0. Substi-
tuting these values in Eq. 2.4.10 yields x0 =  C ′   . Replacing   C ′    with x0 in Eq. 2.4.10 
gives us Eq. 2.4.5.

*This section is intended for students who have had integral calculus.
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28 CHAPTER 2 MoTion Along A STRAigHT linE

Figure 2.5.1 A feather and an apple 
free fall in vacuum at the same 
 magnitude of acceleration g. The 
 acceleration increases the distance 
between successive images. In the 
absence of air, the feather and apple 
fall together.

2.5 FREE- FALL ACCELERATION
Learning Objectives 
After reading this module, you should be able to . . .

2.5.1 Identify that if a particle is in free flight (whether 
upward or downward) and if we can neglect the 
effects of air on its motion, the particle has a 

constant downward acceleration with a magnitude g 
that we take to be 9.8 m/s2.

2.5.2 Apply the constant- acceleration equations 
(Table 2.4.1) to free- fall motion. 

Key Idea 
● An important example of straight- line motion with 
constant acceleration is that of an object rising or 
falling freely near Earth’s surface. The constant- 
acceleration equations describe this motion, but 
we make two changes in notation: (1) We refer the 

motion to the vertical y axis with +y vertically up; (2) 
we replace a with −g, where g is the magnitude of the 
 free- fall acceleration. Near Earth’s surface, 

g = 9.8 m/s2 = 32 ft/s2. 

Free- Fall Acceleration
If you tossed an object either up or down and could somehow eliminate the 
 effects of air on its flight, you would find that the object accelerates down-
ward at a certain constant rate. That rate is called the free- fall acceleration, 
and its magnitude is represented by g. The acceleration is independent of 
the object’s characteristics, such as mass, density, or shape; it is the same for  
all objects.

Two examples of free- fall acceleration are shown in Fig. 2.5.1, which is a 
series of stroboscopic photos of a feather and an apple. As these objects fall, they 
 accelerate downward—both at the same rate g. Thus, their speeds increase at the 
same rate, and they fall together.

The value of g varies slightly with latitude and with elevation. At sea level 
in Earth’s midlatitudes the value is 9.8 m/s2 (or 32 ft/s2), which is what you 
should use as an exact number for the problems in this book unless otherwise 
noted.

The equations of motion in Table 2.4.1 for constant acceleration also apply 
to free fall near Earth’s surface; that is, they apply to an object in vertical flight, 
 either up or down, when the effects of the air can be neglected. However, note 
that for free fall: (1) The directions of motion are now along a vertical y axis 
 instead of the x axis, with the positive direction of y upward. (This is important 
for later chapters when combined horizontal and vertical motions are examined.)  
(2) The free- fall acceleration is negative—that is, downward on the y axis, toward 
Earth’s center—and so it has the value −g in the equations.

Suppose you toss a tomato directly upward with an initial (positive) velocity 
v0 and then catch it when it returns to the release level. During its free- fall flight 
(from just after its release to just before it is caught), the equations of Table 2.4.1 
apply to its motion. The acceleration is always a = −g = −9.8 m/s2, negative 
and thus downward. The velocity, however, changes, as indicated by Eqs. 2.4.1 
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 The free- fall acceleration near Earth’s surface is a = −g = −9.8 m/s2, and the 
 magnitude of the acceleration is g = 9.8 m/s2. Do not substitute −9.8 m/s2 for g.
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292.5 FREE- FAll ACCElERATion

or  5.0 m =   (  12 m / s )   t −   (    1 _ 2   )   (9.8   m / s  2 ) t   2 .  

If we temporarily omit the units (having noted that they 
are consistent), we can rewrite this as

4.9t2 − 12t + 5.0 = 0.

Solving this quadratic equation for t yields

 t = 0.53 s  and  t = 1.9 s. (Answer)

There are two such times! This is not really surprising 
 because the ball passes twice through y = 5.0 m, once on 
the way up and once on the way down.

Sample Problem 2.5.1 Time for full up‑down flight, baseball toss

In Fig. 2.5.2, a pitcher tosses a baseball up along a y axis, 
with an initial speed of 12 m/s. FCP  

(a) How long does the ball take to reach its maximum 
height?

KEY IDEAS

(1) Once the ball leaves the pitcher and  before it  returns 
to his hand, its acceleration is the free- fall acceleration  
a = −g. Because this is constant, Table 2.4.1 applies to the 
 motion. (2) The velocity v at the maximum height must 
be 0. 

Calculation: Knowing v, a, and the initial velocity v0 = 
12 m/s, and seeking t, we solve Eq. 2.4.1, which contains 
those four variables. This yields

  t =   
v −  v  0   ______ a   =   0 − 12 m / s __________ 

− 9.8   m / s  2 
   = 1.2 s.  (Answer)

(b) What is the ball’s maximum height above its release 
point?

Calculation: We can take the ball’s release point to be 
y0 = 0. We can then write Eq. 2.4.6 in y notation, set y − y0 = y  
and v = 0 (at the maximum height), and solve for y. We get

  y =   
 v   2  −  v  0  2 

 ______ 
2a

   =   
0 −   (  12 m / s )    2 

  ____________  
2(−9.8   m / s  2 )

   = 7.3 m.  (Answer)

(c) How long does the ball take to reach a point 5.0 m 
above its release point?

Calculations: We know v0, a = −g, and displacement 
y  −  y0  = 5.0 m, and we want t, so we choose Eq. 2.4.5. 
Rewriting it for y and setting y0 = 0 give us

 y =  v  0   t −   1 _ 2    gt   2 , 

Figure 2.5.2 A pitcher tosses 
a baseball straight up into 
the air. The equations of 
free fall  apply for rising as 
well as for falling objects, 
provided any effects from 
the air can be  neglected.

Ball

y = 0

y

v = 0 at
highest point

During ascent,
a = –g,
speed decreases,
and velocity
becomes less
positive

During
descent,
a = –g,
speed
increases,
and velocity
becomes
more
negative

Checkpoint 2.5.1
(a) If you toss a ball straight up, what is the sign of the ball’s  displacement for the  ascent, 
from the release point to the highest point? (b) What is it for the descent, from the highest 
point back to the release point? (c) What is the ball’s  acceleration at its highest point?

and 2.4.6: During the ascent, the magnitude of the positive velocity decreases, 
 until it momentarily becomes zero. Because the tomato has then stopped, it is at 
its maximum height. During the descent, the magnitude of the (now negative) 
velocity increases.

Additional examples, video, and practice available at WileyPLUS
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2.6 GRAPHICAL INTEGRATION IN MOTION ANALYSIS 
Learning Objectives 
After reading this module, you should be able to . . . 

2.6.1 Determine a particle’s change in velocity by 
graphical  integration on a graph of acceleration 
versus time.

2.6.2 Determine a particle’s change in position by 
graphical integration on a graph of velocity versus 
time. 

Key Ideas 
● On a graph of acceleration a versus time t, the 
change in the velocity is given by 

  v  1   −  v  0   =   
 t  0  
  
 t  1  

  a dt . 

The integral amounts to finding an area on the graph:

    
 t  0  
  
 t  1  

  a dt  =  ( 
area between acceleration curve

    
and time axis, from   t  0    to   t  1  

  ) . 

● On a graph of velocity v versus time t, the change in 
the  position is given by

  x  1   −  x  0   =   
 t  0  
  
 t  1  

  v dt , 

where the integral can be taken from the graph as 

   
 t  0  
  
 t  1  

  v dt    =  ( 
area between velocity curve

    
and time axis, from   t  0    to   t  1  

  ) . 

Graphical Integration in Motion Analysis
Integrating Acceleration. When we have a graph of an object’s acceleration a ver-
sus time t, we can integrate on the graph to find the velocity at any given time. 
Because a is defined as a = dv/dt, the Fundamental Theorem of Calculus tells us that

 
  v  1   −  v  0   =   

 t  0  
  
 t  1  

  a dt .  (2.6.1)

The right side of the equation is a definite integral (it gives a numerical result 
rather than a function), v0 is the velocity at time t0, and v1 is the velocity at later 
time t1. The definite integral can be evaluated from an a(t) graph, such as in 
Fig. 2.6.1a. In particular,

 
   

 t  0  
  
 t  1  

  a dt  =   (   
area between acceleration curve

    and time axis, from   t  0    to   t  1  
   )   .  (2.6.2)

If a unit of acceleration is 1 m/s2 and a unit of time is 1 s, then the cor-
responding unit of area on the graph is

(1 m/s2)(1 s) = 1 m/s,

which is (properly) a unit of velocity. When the acceleration curve is above 
the time axis, the area is positive; when the curve is below the time axis, the 
area is negative.

Integrating Velocity. Similarly, because velocity v is defined in terms of 
the position x as v = dx/dt, then

 
  x  1   −  x  0   =   

 t  0  
  
 t  1  

  v dt ,  (2.6.3)

where x0 is the position at time t0 and x1 is the position at time t1. The 
definite  integral on the right side of Eq. 2.6.3 can be evaluated from a v(t) 
graph, like that shown in Fig. 2.6.1b. In particular,

 
    

 t  0  
  
 t  1  

  v dt  =   (   
area between velocity curve

   
and time axis, from   t  0    to   t  1  

   )   .   (2.6.4)

Figure 2.6.1 The area between a  plotted 
curve and the horizontal time axis, from 
time t0 to time t1, is indicated for (a) a graph 
of acceleration a versus t and (b) a graph of 
 velocity v versus t.

a

t0
tt1

Area

(a)

v

t0
tt1

Area

(b)

This area gives the
change in velocity.

This area gives the
change in position.
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If the unit of velocity is 1 m/s and the unit of time is 1 s, then the corre-
sponding unit of area on the graph is

(1 m/s)(1 s) = 1 m,

which is (properly) a unit of position and displacement. Whether this area is posi-
tive or negative is determined as described for the a(t) curve of Fig. 2.6.1a.

Checkpoint 2.6.1
(a) To get the change in position function ∆ x from a graph of velocity v versus time t, do 
you graphically integrate the graph or find the slope of the graph? (b) Which do you do 
to get the acceleration?

Combining Eqs. 2.6.1 and 2.6.2, we can write

    v  1   −  v  0   =   (   
area between acceleration curve

    
and time axis, from   t  0    to   t  1  

   )   .   (2.6.5)

For convenience, let us separate the area into three  regions 
(Fig. 2.6.2b). From 0 to 40 ms, region A has no area:

areaA = 0.

From 40 ms to 100 ms, region B has the shape of a triangle, 
with area

  area  B   =   1 _ 2    (  0.060 s )    (50   m / s  2 )  = 1.5 m / s. 

From 100 ms to 110 ms, region C has the shape of a rect-
angle, with area

areaC = (0.010 s)(50 m/s2) = 0.50 m/s.

Substituting these values and v0 = 0 into Eq. 2.6.5 gives us

v1 − 0 = 0 + 1.5 m/s + 0.50 m/s,

or v1 = 2.0 m/s = 7.2 km/h. (Answer)

Comments: When the head is just starting to move for-
ward, the torso  already has a speed of 7.2 km/h. Researchers 
argue that it is this difference in speeds during the early stage 
of a rear- end collision that injures the neck. The backward 
whipping of the head happens later and could, especially if 
there is no head restraint, increase the injury.

Sample Problem 2.6.1 Graphical integration a versus t, whiplash injury

“Whiplash injury” commonly occurs in a rear- end colli-
sion where a front car is hit from behind by a second car. 
In the 1970s, researchers concluded that the injury was due 
to the  occupant’s head being whipped back over the top of 
the seat as the car was slammed forward. As a result of this 
finding, head restraints were built into cars, yet neck inju-
ries in rear- end collisions continued to occur.

In a recent test to study neck injury in rear- end col-
lisions, a  volunteer was strapped to a seat that was then 
moved abruptly to simulate a collision by a rear car mov-
ing at 10.5  km/h.  Figure 2.6.2a gives the accelerations of 
the volunteer’s torso and head during the collision, which 
began at time t = 0. The torso acceleration was delayed by 
40 ms because during that time interval the seat back had to 
compress against the  volunteer. The head acceleration was 
delayed by an additional 70 ms. What was the torso speed 
when the head began to  accelerate? FCP

KEY IDEA

We can calculate the torso speed at any time by finding an 
area on the torso a(t) graph. 

Calculations: We know that the initial torso speed is 
v0 = 0 at time t0 = 0, at the start of the “collision.” We 
want the torso speed v1 at time t1 = 110 ms, which is when 
the head begins to accelerate.

Figure 2.6.2 (a) The a(t) curve of the torso and head of a volunteer in a simulation of a rear- end col-
lision. (b) Breaking up the region between the plotted curve and the time axis to calculate the area.

a 
(m

/s
2 )

0 40 80 120 160

50

100

t (ms)(a)

50

(b)

A
B C

a

t
40 100 110

The total area gives the
change in velocity.

Head

Torso

Additional examples, video, and practice available at WileyPLUS
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1  Figure 2.1 gives the velocity 
of a particle moving on an x axis. 
What are (a) the initial and (b) the 
final directions of travel? (c) Does 
the particle stop momentarily? 
(d) Is the acceleration positive 
or negative? (e)  Is it constant or 
varying?
2  Figure 2.2 gives the accel-
eration a(t) of a Chihuahua as 
it  chases a German shepherd 

Position  The position x of a particle on an x axis locates the 
particle with respect to the origin, or zero point, of the axis. The 
position is either positive or negative, according to which side of 
the origin the particle is on, or zero if the particle is at the ori-
gin. The positive direction on an axis is the  direction of increasing 
positive numbers; the opposite direction is the negative  direction 
on the axis.

Displacement  The displacement Δx of a particle is the 
change in its position:

 Δx = x2 − x1. (2.1.1)

Displacement is a vector quantity. It is positive if the particle has 
moved in the positive direction of the x axis and negative if the 
particle has moved in the negative direction.

Average Velocity  When a particle has moved from position 
x1 to position x2 during a time interval Δt = t2 − t1, its  average 
velocity during that interval is

   v  avg   =   Δ x ___ Δ t
   =   

 x  2   −  x  1   ______  t  2   −  t  1  
  .  (2.1.2)

The algebraic sign of vavg indicates the direction of motion (vavg 
is a vector quantity). Average velocity does not depend on the 
actual distance a particle moves, but instead depends on its orig-
inal and final positions.

On a graph of x versus t, the average velocity for a time 
interval Δt is the slope of the straight line connecting the points 
on the curve that represent the two ends of the  interval.

Average Speed  The average speed savg of a particle dur-
ing a time interval Δt depends on the total distance the particle 
moves in that time interval:

    s  avg   =   total distance  ____________ Δt
  .   (2.1.3)

Instantaneous Velocity  The instantaneous velocity (or 
simply velocity) v of a moving particle is

   v =   lim  
Δt→0

     Δx ___ Δt
   =   dx ___ 

dt
  ,   (2.2.1)

where Δx and Δt are defined by Eq. 2.1.2. The instantaneous 
velocity (at a particular time) may be found as the slope (at that 
particular time) of the graph of x versus t. Speed is the magni-
tude of instantaneous velocity.

Average Acceleration  Average acceleration is the ratio of 
a change in velocity Δv to the time interval Δt in which the change 
occurs:

    a  avg   =   Δv ___ Δt
  .   (2.3.1)

The algebraic sign indicates the direction of aavg.

Instantaneous Acceleration  Instantaneous acceleration 
(or simply acceleration) a is the first time derivative of velocity 
v(t) and the second time derivative of position x(t):

   a =   dv ___ 
dt

   =    d   2  x ____ 
 dt   2 

  .  
 

(2.3.2, 2.3.3)

On a graph of v versus t, the acceleration a at any time t is the 
slope of the curve at the point that represents t.

Constant Acceleration  The five equations in Table 2.4.1 
describe the motion of a particle with constant acceleration:

 v = v0 + at, (2.4.1)

  x −  x  0   =  v  0   t +   1 _ 2    at   2 , 
 

(2.4.5)

   v   2  =  v  0  2  + 2a  (  x −  x  0   )   ,  (2.4.6)

  x −  x  0   =   1 _ 2    (   v  0   + v )   t, 
 

(2.4.7)

  x −  x  0   = vt −   1 _ 2    at   2 . 
 

(2.4.8)

These are not valid when the acceleration is not constant.

Free- Fall Acceleration  An important example of straight- 
line motion with constant acceleration is that of an object  rising or 
falling freely near Earth’s surface. The constant-acceleration equa-
tions describe this motion, but we make two changes in notation: 
(1) We refer the motion to the vertical y axis with +y vertically up; 
(2) we replace a with −g, where g is the magnitude of the free- fall 
acceleration. Near Earth’s surface, g = 9.8 m/s2 (= 32 ft/s2).

t

v

Figure 2.1 Question 1.

Review & Summary

Questions

along an axis. In which of the time periods indicated does the 
Chihuahua move at constant  speed?

a

A B C D E F G H

t

Figure 2.2 Question 2.
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3  Figure 2.3 shows four paths 
along which objects move from 
a starting point to a final point, 
all in the same time  interval. The 
paths pass over a grid of equally 
spaced straight lines. Rank the 
paths according to (a) the average 
velocity of the objects and (b) the 
average speed of the objects, great-
est first.

4  Figure 2.4 is a graph of a par-
ticle’s position along an x axis 
versus time. (a) At time t = 0, 
what is the sign of the  particle’s 
position? Is the particle’s veloc-
ity positive, negative, or 0 at  
(b) t = 1 s, (c) t = 2 s, and (d)  
t = 3 s? (e) How many times 
does the particle go through the 
point x = 0?

5  Figure 2.5 gives the velocity 
of a particle moving along an axis. 
Point 1 is at the highest point on 
the curve; point 4 is at the lowest 
point; and points 2 and 6 are at the 
same height. What is the direc-
tion of travel at (a) time t = 0 and  
(b) point 4? (c) At which of the six 
numbered points does the particle 
reverse its direction of travel?  
(d) Rank the six points according 
to the magnitude of the accelera-
tion, greatest first.

6  At t = 0, a particle  moving 
along an x axis is at position x0 =  
−20 m. The signs of the par-
ticle’s initial velocity v0 (at time 
t0) and constant acceleration a 
are, respectively, for four situa-
tions: (1) +, +; (2) +, −; (3) −, +;  
(4) −, −. In which  situations will 
the particle (a) stop momentarily, 
(b) pass through the origin, and 
(c) never pass through the origin?

7  Hanging over the railing of 
a bridge, you drop an egg (no 

t (s)

x

3 4210

Figure 2.4 Question 4.

v

1

2 6

3 5
4

t

Figure 2.5 Question 5.

3

2

1

4

Figure 2.3 Question 3.

Figure 2.6 Question 7.

0 t

BA

C

D

EFG

v

Module 2.1  Position, Displacement, and Average 
Velocity
1 E  While driving a car at 90 km/h, how far do you move while 
your eyes shut for 0.50 s during a hard sneeze?

A
cc

el
er

at
io

n
 a

Time t

(1)

(2)

(3)

Figure 2.8 Question 11.

Problems

initial velocity) as you throw a second egg downward. Which 
curves in Fig. 2.6 give the velocity v(t) for (a) the dropped egg 
and (b) the thrown egg? (Curves A and B 
are parallel; so are C, D, and E; so are F 
and G.)

8  The following equations give the veloc-
ity v(t) of a particle in four situations: (a) 
v = 3; (b) v = 4t2 + 2t − 6; (c) v = 3t − 4;  
(d) v = 5t2 − 3. To which of these situations 
do the equations of Table 2.4.1 apply?

9  In Fig. 2.7, a cream tangerine is thrown 
directly  upward past three evenly spaced 
windows of equal heights. Rank the win-
dows according to (a) the average speed 
of the cream tangerine while passing them, 
(b) the time the cream tangerine takes to 
pass them, (c) the magnitude of the accel-
eration of the cream tangerine while pass-
ing them, and (d) the change Δv in the 
speed of the cream tangerine during the 
passage, greatest first.

10  Suppose that a passenger intent on lunch during his first 
ride in a hot- air balloon accidently drops an apple over the side 
during the balloon’s liftoff. At the moment of the  apple’s release, 
the balloon is accelerating upward with a magnitude of 4.0 m/s2 
and has an upward velocity of magnitude 2 m/s. What are the  
(a) magnitude and (b) direction of the acceleration of the apple 
just after it is released? (c) Just then, is the apple moving upward 
or downward, or is it stationary? (d) What is the magnitude of its 
velocity just then? (e) In the next few moments, does the speed 
of the apple increase, decrease, or remain constant? 

11  Figure 2.8 shows that a particle moving along an x axis 
undergoes three periods of acceleration. Without written compu-
tation, rank the acceleration periods according to the increases 
they produce in the particle’s velocity, greatest first.

1

2

3

Figure 2.7  
Question 9.

2 E  Compute your average velocity in the following two cases: 
(a) You walk 73.2 m at a speed of 1.22 m/s and then run 73.2 m at 
a speed of 3.05 m/s along a straight track. (b) You walk for 1.00 
min at a speed of 1.22 m/s and then run for 1.00 min at 3.05 m/s 

          Tutoring problem available (at instructor’s discretion) in WileyPLUS

 Worked-out solution available in Student Solutions Manual

E  Easy M  Medium H  Hard

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

CALC  Requires calculus

BIO  Biomedical application

GO

FCP

SSM
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along a straight track. (c) Graph x versus t for both cases and 
indicate how the average velocity is found on the graph.

3 E  SSM  An automobile travels on a straight road for 40 km 
at 30 km/h. It then continues in the same direction for another 
40 km at 60 km/h. (a) What is the average velocity of the car 
during the full 80 km trip? (Assume that it moves in the positive 
x direction.) (b) What is the average speed? (c) Graph x versus 
t and indicate how the average velocity is found on the graph.

4 E  A car moves uphill at 40 km/h and then back downhill at 
60 km/h. What is the average speed for the round trip?

5 E  CALC  SSM  The position of an object moving along an x 
axis is given by x = 3t − 4t2 + t3, where x is in meters and t in 
seconds. Find the position of the object at the following values 
of t: (a) 1 s, (b) 2 s, (c) 3 s, and (d) 4 s. (e) What is the object’s 
 displacement between t = 0 and t = 4 s? (f) What is its average 
velocity for the time interval from t = 2 s to t = 4 s? (g) Graph x 
versus t for 0 ≤ t ≤ 4 s and indicate how the  answer for (f) can be 
found on the graph.

6 E  BIO  The 1992 world speed record for a bicycle (human- 
powered vehicle) was set by Chris Huber. His time through 
the measured 200 m stretch was a sizzling 6.509 s, at which he 
commented, “Cogito ergo zoom!” (I think, therefore I go fast!). 
In 2001, Sam Whittingham beat Huber’s record by 19.0 km/h. 
What was Whittingham’s time through the 200 m?

7 M  Two trains, each having a speed of 30 km/h, are headed 
at each other on the same straight track. A bird that can fly 
60 km/h flies off the front of one train when they are 60 km 
apart and heads directly for the other train. On reaching the 
other train, the (crazy) bird flies directly back to the first train, 
and so forth. What is the total distance the bird travels before 
the trains collide?

8 M  FCP  GO  Panic escape. Figure 2.9 shows a general situation 
in which a stream of people attempt to escape through an exit 
door that turns out to be locked. The people move toward the 
door at speed vs = 3.50 m/s, are each d = 0.25 m in depth, and 
are separated by L = 1.75 m. The arrangement in Fig. 2.9  occurs 
at time t = 0. (a) At what 
average rate does the 
layer of people at the 
door increase? (b) At 
what time does the lay-
er’s depth reach 5.0 m? 
(The answers reveal how 
quickly such a  situation 
becomes dangerous.)

9 M  BIO  In 1 km races, runner 1 on track 1 (with time 2 min, 
27.95 s) appears to be faster than runner 2 on track 2 (2 min, 
28.15 s). However, length L2 of track 2 might be slightly greater 
than length L1 of track 1. How large can L2 − L1 be for us still to 
conclude that runner 1 is faster?

10 M  FCP  To set a speed record in a measured (straight- line) 
 distance d, a race car must be driven first in one direction (in 
time t1) and then in the opposite direction (in time t2). (a) To 
eliminate the effects of the wind and obtain the car’s speed vc 
in a windless situation, should we find the average of d/t1 and  
d/t2 (method 1) or should we divide d by the average of t1 and t2? 
(b) What is the fractional difference in the two methods when a 
steady wind blows along the car’s route and the ratio of the wind 
speed vw to the car’s speed vc is 0.0240?

Car Buffer

dL dL L L L

v vs

Figure 2.10 Problem 12.

11 M  GO  You are to drive 300 km to an interview. The inter-
view is at 11:15 a.m. You plan to drive at 100 km/h, so you leave 
at 8:00 a.m. to allow some extra time. You drive at that speed for 
the first 100 km, but then construction work forces you to slow 
to 40 km/h for 40 km. What would be the least speed needed for 
the rest of the trip to arrive in time for the interview?

12 H  FCP  Traffic shock wave. An abrupt slowdown in concen-
trated traffic can travel as a pulse, termed a shock wave, along 
the line of cars, either downstream (in the traffic direction) or 
upstream, or it can be stationary. Figure 2.10 shows a uniformly 
spaced line of cars moving at speed v = 25.0 m/s toward a uni-
formly spaced line of slow cars moving at speed vs = 5.00 m/s. 
Assume that each faster car adds length L = 12.0 m (car length 
plus buffer zone) to the line of slow cars when it joins the line, 
and assume it slows abruptly at the last instant. (a) For what sep-
aration distance d between the faster cars does the shock wave 
remain  stationary? If the separation is twice that amount, what 
are the (b) speed and (c) direction (upstream or downstream) of 
the shock wave?

Locked
door

L L L

d d d

Figure 2.9 Problem 8.

13 H  You drive on Interstate 10 from San Antonio to  Houston, 
half the time at 55 km/h and the other half at 90 km/h. On the 
way back you travel half the distance at 55 km/h and the other 
half at 90 km/h. What is your average speed (a) from San Anto-
nio to Houston, (b) from Houston back to San Antonio, and 
(c) for the entire trip? (d) What is your  average velocity for the 
entire trip? (e) Sketch x versus t for (a), assuming the motion is 
all in the positive x direc tion. Indicate how the average velocity 
can be found on the sketch.

Module 2.2  Instantaneous Velocity and Speed
14 E  GO  CALC  An electron moving along the x axis has a posi-
tion given by x = 16te−t m, where t is in seconds. How far is the 
electron from the origin when it momentarily stops?

15 E  GO  CALC  (a) If a particle’s position is given by x = 4 − 
12t + 3t2 (where t is in seconds and x is in meters), what is its 
velocity at t = 1 s? (b) Is it moving in the positive or negative 
direction of x just then? (c) What is its speed just then? (d) Is 
the speed  increasing or decreasing just then? (Try answering the 
next two questions without further calculation.) (e) Is there ever 
an instant when the velocity is zero? If so, give the time t; if not, 
answer no. (f) Is there a time after t = 3 s when the particle is 
moving in the negative direction of x? If so, give the time t; if 
not, answer no.

16 E  CALC  The position function x(t) of a particle moving 
along an x axis is x = 4.0 − 6.0t2, with x in meters and t in sec-
onds. (a) At what time and (b) where does the particle (momen-
tarily) stop? At what (c) negative time and (d) positive time does 
the particle pass through the origin? (e) Graph x versus t for 
the range −5 s to +5 s. (f) To shift the curve rightward on the 
graph, should we include the term +20t or the term −20t in x(t)?  
(g) Does that inclusion increase or decrease the value of x at 
which the particle momentarily stops?
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17 M  CALC  The position of a particle moving along the x axis 
is given in centimeters by x = 9.75 + 1.50t3, where t is in  seconds. 
Calculate (a) the average velocity during the time  interval t = 
2.00 s to t = 3.00 s; (b) the instantaneous velocity at t = 2.00 s; 
(c) the instantaneous velocity at t = 3.00 s; (d) the instantaneous 
velocity at t = 2.50 s; and (e) the  instantaneous velocity when 
the particle is midway between its positions at t = 2.00 s and t = 
3.00 s. (f) Graph x versus t and indicate your answers graphically.

Module 2.3  Acceleration
18 E  CALC  The position of a particle moving along an x axis is 
given by x = 12t2 − 2t3, where x is in meters and t is in  seconds. 
Determine (a) the position, (b) the velocity, and (c) the accel-
eration of the particle at t = 3.0 s. (d) What is the maximum 
positive coordinate reached by the particle and (e) at what time 
is it reached? (f) What is the maximum positive velocity reached 
by the particle and (g) at what time is it reached? (h) What is 
the acceleration of the particle at the  instant the particle is not 
moving (other than at t = 0)? (i) Determine the average velocity 
of the particle between t = 0 and t = 3 s.

19 E  SSM  At a certain time a particle had a speed of 18 m/s 
in the positive x direction, and 2.4 s later its speed was 30 m/s 
in the opposite direction. What is the average acceleration of the 
particle during this 2.4 s interval?

20 E  CALC  (a) If the position of a particle is given by x = 20t −  
5t3, where x is in meters and t is in seconds, when, if ever, is 
the particle’s velocity zero? (b) When is its acceleration a zero? 
(c) For what time range (positive or negative) is a negative?  
(d) Positive? (e) Graph x(t), v(t), and a(t).

21 M  From t = 0 to t = 5.00 min, a man stands still, and from  
t = 5.00 min to t = 10.0 min, he walks briskly in a straight line at 
a constant speed of 2.20 m/s. What are (a) his average  velocity 
vavg and (b) his average acceleration aavg in the time interval 
2.00 min to 8.00 min? What are (c) vavg and (d) aavg in the time 
interval 3.00 min to 9.00 min? (e) Sketch x versus t and v ver-
sus t, and indicate how the answers to (a) through (d) can be 
obtained from the graphs.

22 M  CALC  The position of a particle moving along the x axis 
 depends on the time according to the equation x = ct2 − bt3, 
where x is in meters and t in seconds. What are the units of  
(a) constant c and (b) constant b? Let their numerical values 
be 3.0 and 2.0, respectively. (c) At what time does the particle 
reach its maximum positive x position? From t = 0.0 s to t = 4.0 s,  
(d) what distance does the particle move and (e) what is its dis-
placement? Find its velocity at times (f) 1.0 s, (g) 2.0 s, (h) 3.0 s, 
and (i) 4.0 s. Find its acceleration at times (j) 1.0 s, (k) 2.0 s,  
(l) 3.0 s, and (m) 4.0 s.

Module 2.4  Constant Acceleration
23 E  SSM  An electron with 
an initial velocity v0 = 1.50 ×  
105 m/s  enters a region of length 
L = 1.00 cm where it is electri-
cally accelerated (Fig. 2.11). 
It emerges with v = 5.70 ×  
106 m/s. What is its accelera-
tion, assumed constant?

24 E  BIO  FCP  Catapulting 
mushrooms. Certain mushrooms 
launch their spores by a catapult mechanism. As water condenses  

from the air onto a spore that is attached to the mushroom, a 
drop grows on one side of the spore and a film grows on the 
other side. The spore is bent over by the drop’s weight, but when 
the film reaches the drop, the drop’s water suddenly spreads into 
the film and the spore springs upward so rapidly that it is slung 
off into the air. Typically, the spore reaches a speed of 1.6 m/s in 
a 5.0 μm launch; its speed is then reduced to zero in 1.0 mm by 
the air. Using those data and assuming constant accelerations, 
find the acceleration in terms of g during (a) the launch and (b) 
the speed reduction.

25 E  An electric vehicle starts from rest and accelerates at a rate 
of 2.0 m/s2 in a straight line until it reaches a speed of 20 m/s. 
The vehicle then slows at a constant rate of 1.0 m/s2 until it stops.  
(a) How much time elapses from start to stop? (b) How far does 
the vehicle travel from start to stop?

26 E  A muon (an elementary particle) enters a region with a 
speed of 5.00 × 106 m/s and then is slowed at the rate of 1.25 × 
1014 m/s2. (a) How far does the muon take to stop? (b) Graph  
x versus t and v versus t for the muon.

27 E  An electron has a constant acceleration of +3.2 m/s2. At 
a certain instant its velocity is +9.6 m/s. What is its velocity  
(a) 2.5 s earlier and (b) 2.5 s later?

28 E  On a dry road, a car with good tires may be able to brake 
with a constant deceleration of 4.92 m/s2. (a) How long does 
such a car, initially traveling at 24.6 m/s, take to stop? (b) How 
far does it travel in this time? (c) Graph x versus t and v versus t 
for the deceleration.

29 E  A certain elevator cab has a total run of 190 m and a maxi-
mum speed of 305 m/min, and it accelerates from rest and then 
back to rest at 1.22 m/s2. (a) How far does the cab move while 
accelerating to full speed from rest? (b) How long does it take to 
make the nonstop 190 m run, starting and ending at rest?

30 E  The brakes on your car can slow you at a rate of 5.2 m/s2. 
(a) If you are going 137 km/h and suddenly see a state trooper, 
what is the minimum time in which you can get your car under 
the 90 km/h speed limit? (The answer reveals the futility of brak-
ing to keep your high speed from being  detected with a radar or 
laser gun.) (b) Graph x versus t and v versus t for such a slowing.

31 E  SSM  Suppose a rocket ship in deep space moves with 
constant acceleration equal to 9.8 m/s2, which gives the illu-
sion of normal gravity during the flight. (a) If it starts from 
rest, how long will it take to acquire a speed one- tenth that of 
light, which travels at 3.0 × 108 m/s? (b) How far will it travel 
in so doing? 

32 E  BIO  FCP  A world’s land speed record was set by Colonel 
John P. Stapp when in March 1954 he rode a rocket- propelled 
sled that moved along a track at 1020 km/h. He and the sled 
were brought to a stop in 1.4 s. (See Fig. 2.3.1.) In terms of g, 
what acceleration did he experience while stopping?

33 E  SSM  A car traveling 56.0 km/h is 24.0 m from a barrier 
when the driver slams on the brakes. The car hits the barrier 
2.00 s later. (a) What is the magnitude of the car’s constant 
accel eration before impact? (b) How fast is the car traveling at 
 impact?

34 M  GO  In Fig. 2.12, a red car and a green car, identical except 
for the color, move toward each other in adjacent lanes and par-
allel to an x axis. At time t = 0, the red car is at xr = 0 and the 
green car is at xg = 220 m. If the red car has a constant velocity 

Nonaccelerating
region

Accelerating
region

Path of
electron

L

Figure 2.11 Problem 23.
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of 20 km/h, the cars pass each other at x = 44.5 m, and if it has a 
constant velocity of 40 km/h, they pass each other at x = 76.6 m. 
What are (a) the initial velocity and (b) the constant accelera-
tion of the green car?

How many times will the cars be side by side if the magnitude 
of acceleration aB is (d) more than and (e) less than the  answer 
to part (a)?

40 M  FCP  You are driving toward a traffic signal when it turns 
yellow. Your speed is the legal speed limit of v0 = 55 km/h; your 
best deceleration rate has the magnitude a = 5.18 m/s2. Your 
best reaction time to begin braking is T = 0.75 s. To avoid having 
the front of your car enter the intersection after the light turns 
red, should you brake to a stop or continue to move at 55 km/h 
if the distance to the intersection and the duration of the yellow 
light are (a) 40 m and 2.8 s, and (b)  32 m and 1.8 s? Give an 
answer of brake, continue, either (if  either strategy works), or 
neither (if neither strategy works and the yellow duration is 
inappropriate).

41 M  GO  As two trains 
move along a track, their 
conductors suddenly notice 
that they are headed toward 
each other.  Figure 2.16 gives 
their velocities v as functions 
of time t as the conductors 
slow the trains. The figure’s 
vertical scaling is set by vs  = 40.0 m/s. The slowing processes 
begin when the trains are 200 m apart. What is their separation 
when both trains have stopped?

42 H  GO  You are arguing over a cell phone while trailing an 
 unmarked police car by 25 m; both your car and the police car 
are traveling at 110 km/h. Your argument diverts your  attention 
from the police car for 2.0 s (long enough for you to look at the 
phone and yell, “I won’t do that!”). At the  beginning of that 
2.0 s, the police officer begins braking suddenly at 5.0 m/s2. (a) 
What is the separation between the two cars when your atten-
tion finally returns? Suppose that you take another 0.40 s to 
realize your danger and begin braking. (b) If you too brake at 
5.0 m/s2, what is your speed when you hit the police car?

43 H  GO  When a high- speed passenger train traveling at 
161 km/h rounds a bend, the engineer is shocked to see that a 
 locomotive has improperly entered onto the track from a  siding 
and is a distance D = 676 m ahead (Fig. 2.17). The  locomotive 
is moving at 29.0 km/h. The engineer of the high- speed train 
immediately applies the brakes. (a) What must be  the magni-
tude of the resulting constant deceleration if a collision is to be 
just avoided? (b) Assume that the engineer is at x = 0 when, at  
t = 0, he first spots the locomotive. Sketch x(t) curves for the 
locomotive and high- speed train for the cases in which a colli-
sion is just avoided and is not quite avoided.
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Figure 2.16 Problem 41.
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Figure 2.17 Problem 43.

35 M  Figure 2.12 shows a red car 
and a green car that move toward 
each other. Figure 2.13 is a graph 
of their motion, showing the 
positions xg0 = 270 m and xr0 = 
−35.0 m at time t = 0. The green 
car has a constant speed of 20.0 
m/s and the red car begins from 
rest. What is the acceleration 
magnitude of the red car?

36 M  A car moves along an x axis through a distance of 900 m, 
starting at rest (at x = 0) and ending at rest (at x = 900 m). 
Through the first    1 _ 4    of that distance, its acceleration is +2.25 m/s2.  
Through the rest of that distance, its acceler ation is −0.750 m/s2. 
What are (a) its travel time through the 900 m and (b) its maxi-
mum speed? (c) Graph position x,  velocity v, and acceleration a 
versus time t for the trip.

37 M  Figure 2.14 depicts the motion 
of a particle moving along an x axis 
with a constant acceleration. The 
figure’s vertical scaling is set by xs = 
6.0  m. What are the (a) magnitude 
and (b)  direction of the particle’s 
acceleration?

38 M  (a) If the maximum accelera-
tion that is tolerable for passengers 
in a subway train is 1.34 m/s2 and 
subway stations are located 806 m 
apart, what is the maximum speed a 
subway train can attain between stations? (b) What is the travel 
time between stations? (c) If a subway train stops for 20 s at each 
station, what is the maximum average speed of the train, from 
one start- up to the next? (d) Graph x, v, and a versus t for the 
interval from one start- up to the next.

39 M  Cars A and B move 
in the same direction in 
adjacent lanes. The posi-
tion x of car A is given in 
Fig. 2.15, from time t = 0 
to t = 7.0 s. The figure’s 
vertical scaling is set by 
xs = 32.0 m. At t = 0, car 
B is at x = 0, with a veloc-
ity of 12 m/s and a nega-
tive constant acceleration 
aB. (a) What must aB be such that the cars are (momentarily) 
side by side  (momentarily at the same value of x) at t = 4.0 s? 
(b) For that value of aB, how many times are the cars side by 
side? (c) Sketch the position x of car B versus time t on Fig. 2.15. 
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Figure 2.12 Problems 34 and 35.
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Module 2.5  Free- Fall Acceleration
44 E  When startled, an armadillo will leap upward. Suppose 
it rises 0.544 m in the  first 0.200 s. (a) What is its initial speed 
as it leaves the ground? (b) What is its speed at the height of 
0.544 m? (c) How much higher does it go?

45 E  SSM  (a) With what speed must a ball be thrown vertically 
from ground level to rise to a maximum height of 50 m? (b) How 
long will it be in the air? (c) Sketch graphs of y, v, and a versus 
t for the ball. On the first two graphs, indicate the time at which 
50 m is reached.

46 E  Raindrops fall 1700 m from a cloud to the ground. (a) If 
they were not slowed by air resistance, how fast would the drops 
be moving when they struck the ground? (b) Would it be safe to 
walk outside during a rainstorm?

47 E  SSM  At a construction site a pipe wrench struck the 
ground with a speed of 24 m/s. (a) From what height was it 
inadvertently dropped? (b) How long was it falling? (c) Sketch 
graphs of y, v, and a versus t for the wrench.

48 E  A hoodlum throws a stone vertically downward with an ini-
tial speed of 12.0 m/s from the roof of a building, 30.0 m above 
the ground. (a) How long does it take the stone to reach the 
ground? (b) What is the speed of the stone at  impact?

49 E  SSM  A hot- air balloon is ascending at the rate of 12 m/s 
and is 80 m above the ground when a package is dropped over 
the side. (a) How long does the package take to reach the 
ground? (b) With what speed does it hit the ground?

50 M  At time t = 0, apple 1 is dropped from a bridge onto a road-
way beneath the bridge; somewhat later, apple 2 is thrown down 
from the same height. Figure 2.18 gives the  vertical positions y of 
the apples versus t during the falling, until both apples have hit 
the roadway. The scaling is set by ts = 2.0 s. With approximately 
what speed is apple 2 thrown down?

53 M  SSM  A key falls from a bridge that is 45 m above the 
water. It falls directly into a model boat, moving with constant 
 velocity, that is 12 m from the point of impact when the key is 
released. What is the speed of the boat?

54 M  GO  A stone is dropped into a river from a bridge 43.9 m 
above the water. Another stone is thrown vertically down 1.00 s 
 after the first is dropped. The stones strike the water at the same 
time. (a) What is the initial speed of the second stone? (b) Plot 
 velocity versus time on a graph for each stone, taking zero time 
as the instant the first stone is  released.

55 M  SSM  A ball of moist clay falls 15.0 m to the ground. It is 
in contact with the ground for 20.0 ms before stopping. (a) What 
is the magnitude of the average acceleration of the ball during 
the time it is in contact with the ground? (Treat the ball as a 
particle.) (b) Is the average acceleration up or down?

56 M  GO  Figure 2.20 
shows the speed v 
versus height y of a 
ball tossed directly 
upward, along a y axis. 
Distance d is 0.40 m. 
The speed at height 
yA is vA. The speed at 
height yB is    1 _ 3   vA. What 
is speed vA?

57 M  To test the 
quality of a  tennis 
ball,  you drop it onto the  floor from a height of 4.00 m. It 
rebounds to a height of 2.00 m. If the ball is in contact with the 
floor for 12.0 ms, (a) what is the magnitude of its average accel-
eration during that contact and (b) is the average acceleration 
up or down?

58 M  An object falls a distance h from rest. If it travels 0.50h 
in the last 1.00 s, find (a) the time and (b) the height of its fall. 
(c) Explain the physically unacceptable solution of the quadratic 
equation in t that you obtain.

59 M  Water drips from the nozzle of a shower onto the floor 
200 cm below. The drops fall at regular (equal) intervals of time, 
the first drop striking the floor at the instant the fourth drop 
begins to fall. When the first drop strikes the floor, how far 
below the nozzle are the (a) second and (b) third drops?

60 M  GO  A rock is thrown vertically upward from ground level 
at time t = 0. At t = 1.5 s it passes the top of a tall tower, and 
1.0 s later it reaches its maximum height. What is the height of 
the tower?

61 H  GO  A steel ball is dropped from a building’s roof and 
passes a window, taking 0.125 s to fall from the top to the  bottom 
of the window, a distance of 1.20 m. It then falls to a sidewalk 
and bounces back past the window, moving from bottom to top 
in 0.125 s. Assume that the upward flight is an exact reverse of 
the fall. The time the ball spends below the bottom of the win-
dow is 2.00 s. How tall is the building?

62 H  BIO  FCP  A basketball player grabbing a rebound jumps 
76.0 cm vertically. How much total time (ascent and descent) 
does the player spend (a) in the top 15.0 cm of this jump and (b) 
in the bottom 15.0 cm? (The player seems to hang in the air at 
the top.)

51 M  As a runaway scientific bal-
loon ascends at 19.6 m/s, one of its 
instrument packages breaks free 
of a harness and free- falls. Fig-
ure 2.19 gives the vertical velocity 
of the package versus time, from 
before it breaks free to when it 
reaches the ground. (a) What max-
imum height above the break- free 
point does it rise? (b) How high is 
the break- free point above the ground?

52 M  GO  A bolt is dropped from a bridge under construction, 
falling 90 m to the valley below the bridge. (a) In how much 
time does it pass through the last 20% of its fall? What is its 
speed (b) when it begins that last 20% of its fall and (c) when it 
reaches the valley beneath the bridge?

Figure 2.19 Problem 51.
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Figure 2.20 Problem 56.
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63 H  GO  A drowsy cat spots a flowerpot that sails first up and then 
down past an open window. The pot is in view for a total of 0.50 s, 
and the top- to- bottom height of the window is 2.00 m. How high 
above the window top does the  flowerpot go?

64 H  A ball is shot vertically 
upward from the surface of 
another planet. A plot of y versus 
t for the ball is shown in Fig. 2.21, 
where y is the height of the ball 
above its starting point and t = 0 at 
the instant the ball is shot. The fig-
ure’s vertical scaling is set by ys

 = 
30.0 m. What are the magnitudes 
of (a) the free- fall acceleration 
on the planet and (b) the initial 
 velocity of the ball?

Module 2.6  Graphical Integration in Motion Analysis
65 E  BIO  CALC  FCP  Figure 2.6.2a gives the acceleration of a 
volunteer’s head and torso during a rear-end collision. At maxi-
mum head acceleration, what is the speed of (a) the head and 
(b) the torso?

66 M  BIO  CALC  FCP  In a forward punch in karate, the fist 
begins at rest at the waist and is brought rapidly forward until 
the arm is fully extended. The speed v(t) of the fist is given in 
Fig. 2.22 for someone skilled in karate. The vertical scaling is set 
by vs = 8.0 m/s. How far has the fist moved at (a) time t = 50 ms 
and (b) when the speed of the fist is maximum?

68 M  BIO  CALC  FCP  A 
salamander of the genus 
Hydromantes captures 
prey by launching its 
tongue as a projectile: The 
skeletal part of the tongue 
is shot forward, unfold-
ing the rest of the tongue, 
until the outer portion 
lands on the prey, sticking 
to it. Figure 2.24 shows the acceleration magnitude a versus time 
t for the acceleration phase of the launch in a typical situation. 
The  indicated accelerations are a2 = 400 m/s2 and a1 = 100 m/s2.  
What is the outward speed of the tongue at the end of the 
 acceleration phase?

69 M  BIO  CALC  How far 
does the runner whose 
velocity– time graph is shown 
in Fig. 2.25 travel in 16 s? 
The figure’s vertical scaling 
is set by vs = 8.0 m/s.

70 H  CALC   Two particles 
move along an x axis. The 
position of particle 1 is given 
by x = 6.00t2 + 3.00t + 2.00 
(in meters and seconds); the 
acceleration of particle 2 is given by a = −8.00t (in meters per 
second squared and seconds) and, at t = 0, its velocity is 20 m/s. 
When the velocities of the particles match, what is their velocity?

Additional Problems
71 CALC  In an arcade video game, a spot is programmed to 
move across the screen according to x = 9.00t − 0.750t3, where 
x is distance in centimeters measured from the left edge of the 
screen and t is time in seconds. When the spot reaches a screen 
edge, at either x = 0 or x = 15.0 cm, t is reset to 0 and the spot 
starts moving again according to x(t). (a) At what time after 
starting is the spot instantaneously at rest? (b) At what value of 
x does this occur? (c) What is the spot’s acceleration (including 
sign) when this occurs? (d) Is it moving right or left just prior to 
coming to rest? (e) Just after? (f) At what time t > 0 does it first 
reach an edge of the screen?

72  A rock is shot vertically upward from the edge of the top of 
a tall building. The rock reaches its maximum height above the 
top of the building 1.60 s after being shot. Then, after barely miss-
ing the edge of the building as it falls downward, the rock strikes 
the ground 6.00 s after it is launched. In SI units: (a) with what 
upward velocity is the rock shot, (b) what maximum height above 
the top of the building is reached by the rock, and (c) how tall is 
the building?

73 GO  At the instant the traffic light turns green, an automo-
bile starts with a constant acceleration a of 2.2 m/s2. At the same 
instant a truck, traveling with a constant speed of 9.5 m/s, over-
takes and passes the automobile. (a) How far beyond the traffic 
signal will the automobile overtake the truck? (b) How fast will 
the automobile be traveling at that instant?

74  A pilot flies horizontally at 1300 km/h, at height h = 35 m 
above initially level ground. However, at time t = 0, the  pilot 
begins to fly over ground sloping upward at angle θ  = 4.3°  
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67 M  BIO  CALC  
When a soccer ball 
is kicked toward 
a player and the 
player deflects the 
ball by “heading” 
it, the acceleration 
of the head during 
the collision can 
be significant. Fig-
ure 2.23 gives the 
measured acceleration a(t) of a soccer player’s head for a bare 
head and a helmeted head, starting from rest. The scaling on 
the vertical axis is set by as = 200 m/s2. At time t = 7.0 ms, what 
is the difference in the speed acquired by the bare head and the 
speed acquired by the helmeted head?
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Figure 2.23 Problem 67.
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75 GO  To stop a car, first you require a certain reaction time to 
begin braking; then the car slows at a constant rate. Suppose that 
the total distance moved by your car during these two phases is 
56.7 m when its initial speed is 80.5 km/h, and 24.4 m when its 
initial speed is 48.3 km/h. What are (a) your reaction time and 
(b) the magnitude of the acceleration?

76 GO  FCP  Figure 2.27 shows part of a street where traffic flow 
is to be controlled to allow a platoon of cars to move smoothly 
along the street. Suppose that the platoon leaders have just 
reached intersection 2, where the green light appeared when 
they were distance d from the intersection. They continue to 
travel at a certain speed vp (the speed limit) to reach intersec-
tion 3, where the green appears when they are distance d from 
it. The intersections are separated by distances D23 and D12.  
(a) What should be the time delay of the onset of green at inter-
section 3 relative to that at intersection 2 to keep the platoon 
moving smoothly?

Suppose, instead, that the platoon had been stopped by a 
red light at intersection 1. When the green comes on there, the 
leaders require a certain time tr to respond to the change and 
an additional time to accelerate at some rate a to the cruising 
speed vp. (b) If the green at intersection 2 is to appear when the 
leaders are distance d from that intersection, how long  after the 
light at intersection 1 turns green should the light at intersection 
2 turn green?

79 GO  At time t = 0, a rock 
climber accidentally allows 
a piton to fall freely from 
a high point on the rock 
wall to the valley below 
him. Then, after a short 
delay, his climbing partner, 
who is 10 m higher on the 
wall, throws a piton down-
ward. The positions y of 
the pitons versus t during 
the falling are given in Fig. 2.28. With what speed is the second 
piton thrown?

80  A train started from rest and moved with constant accelera-
tion. At one time it was traveling 30 m/s, and 160 m  farther on it 
was traveling 50 m/s. Calculate (a) the acceleration, (b) the time 
required to travel the 160 m mentioned, (c) the time required to 
attain the speed of 30 m/s, and (d) the distance moved from rest 
to the time the train had a speed of 30 m/s. (e) Graph x versus t 
and v versus t for the train, from rest.

81 CALC  SSM  A particle’s acceleration along an x axis is a = 
5.0t, with t in seconds and a in meters per second squared. At t = 
2.0 s, its velocity is +17 m/s. What is its velocity at t = 4.0 s?

82 CALC  Figure 2.29 gives 
the acceleration a versus 
time t for a particle mov-
ing along an x axis. The 
a- axis scale is  set by as = 
12.0 m/s2. At t = −2.0 s, 
the particle’s velocity is 
7.0 m/s. What is its veloc-
ity at t = 6.0 s?

83 BIO  Figure 2.30 shows 
a simple device for mea-
suring your  reaction time. 
It consists of a cardboard strip marked with a scale and two large 
dots. A friend holds the strip vertically, with thumb and forefin-
ger at the dot on the right in Fig. 2.30. You then position your 
thumb and forefinger at the other dot (on the left in  Fig. 2.30), 
being careful not to touch the strip. Your friend releases the 
strip, and you try to pinch it as soon as possible after you see 
it begin to fall. The mark at the place where you pinch the strip 
gives your reaction time. (a) How far from the lower dot should 
you place the 50.0 ms mark? How much higher should you place 
the marks for (b) 100, (c)  150, (d) 200, and (e) 250 ms? (For 
example, should the 100 ms marker be 2 times as far from the 
dot as the 50 ms marker? If so, give an answer of 2 times. Can 
you find any pattern in the answers?)
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500
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Figure 2.30 Problem 83.

( Fig. 2.26). If the pilot does not change the airplane’s heading, at 
what time t does the plane strike the ground?

77 SSM  A hot rod can accelerate from 0 to 60 km/h in 5.4 s. 
(a)  What is its average acceleration, in m/s2, during this time?  
(b) How far will it travel during the 5.4 s, assuming its acceleration 
is constant? (c) From rest, how much time would it require to go 
a distance of 0.25 km if its acceleration could be maintained at the 
value in (a)?

78 GO  A red train traveling at 72 km/h and a green train travel-
ing at 144 km/h are headed toward each other along a straight, 
level track. When they are 950 m apart, each engineer sees the 
other’s train and applies the brakes. The brakes slow each train 
at the rate of 1.0 m/s2. Is there a collision? If so, answer yes and 
give the speed of the red train and the speed of the green train 
at impact, respectively. If not, answer no and give the separation 
between the trains when they stop.
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Figure 2.29 Problem 82.

84 BIO  FCP  A rocket- driven sled running on a straight, level 
track is used to investigate the effects of large accel erations on 
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 humans. One such sled can attain a speed of 1600 km/h in 1.8 s, 
starting from rest. Find (a) the acceleration  (assumed constant) 
in terms of g and (b) the distance traveled.

85  Fastball timing. In professional baseball, the pitching 
distance of 60 feet 6 inches is the distance from the front of 
the pitcher’s plate (or rubber) to the rear of the home plate. 
(a) Assuming that a 95 mi/h fastball travels that full distance 
horizontally, what is its flight time, which is the time a batter 
must judge if the ball is “hittable” and then swing the bat?  
(b) Research indicates that even an elite batter cannot track the 
ball for the full flight and yet many players have described seeing 
the ball−bat collision. One explanation is that the eyes track the 
ball in the early part of the flight and then undergo a  predictive 
saccade in which they jump to an anticipated point later in the 
flight. A saccade suppresses vision for 20 ms. How far in feet 
does the fastball travel during that interval of no vision? 

86  Measuring the free- fall acceleration. At the National Physi-
cal Laboratory in England, a measurement of the free- fall accel-
eration g was made by throwing a glass ball straight up in an 
evacuated tube and letting it return. Let ∆TL in Fig. 2.31 be the 
time interval between the two passes of the ball across a cer-
tain lower level, ∆TU the time interval between the two passages 
across an upper level, and H the distance between the two lev-
els. What is g in terms of those quantities? 

88 CALC  Hockey puck on frozen lake. At time t = 0, a hockey 
puck is sent sliding over a frozen lake, directly into a strong 
wind. Figure 2.33 gives the velocity v of the puck versus time, 

87 CALC  Velocity versus time. Figure 2.32 gives the velocity  
v (m/s) versus time t (s) for a particle moving along an x axis. 
The area between the time axis and the plotted curve is given for 
the two portions of the graph. At t = tA (at one of the crossing 
points in the plotted figure), the particle’s position is x = 14 m. 
What is its position at (a) t = 0 and (b) t = tB?

as the puck moves along an x axis, starting at x0 = 0. At t = 14 s, 
what is its coordinate?

Figure 2.31 Problem 86.
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Figure 2.34 Problem 89.

90  Braking, no reaction time. Modern cars with a computer 
system using radar can eliminate the normal reaction time for 
a driver to recognize an upcoming danger and apply the brakes. 
For example, the system can detect the sudden stopping of a car 
in front of a driver by using radar signals that travel at the speed 
of light. Rapid processing then can almost immediately activate 
the braking. For a car traveling at v = 31.3 m/s (70 mi/h) and 
assuming a normal reaction time of 0.750 s, find the reduction in 
a car’s stopping distance with such a computer system.

91  100 m dash. The running event known as the 100 m dash 
consists of three stages. In the first, the runner accelerates to the 
maximum speed, which usually occurs at the 50 m to 70 m mark. 
That speed is then maintained until the last 10 m, when the 
runner slows. Consider three parts of the record- setting run by 
Usain Bolt in the 2008 Olympics: (a) from 10 m to 20 m, elapsed 
time of 1.02 s, (b) from 50 m to 60 m, elapsed time of 0.82 s, and 
(c) from 90 m to 100 m, elapsed time of 0.90 s. What was the 
average velocity for each part?

92  Drag race of car and motorcycle. A popular web video 
shows a jet airplane, a car, and a motorcycle racing from rest 
along a runway (Fig. 2.35). Initially the motorcycle takes the 
lead, but then the jet takes the lead, and finally the car blows 
past the motorcycle. Consider the motorcycle−car race. The 

89  Seafloor spread. Figure 2.34 is a plot of the age of ancient 
seafloor material, in millions of years, against the distance from 
a certain ocean ridge. Seafloor material extruded from that ridge 
moves away from it at approximately uniform speed. What is 
that speed in centimeters per year?
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Figure 2.35 Problem 92.

Figure 2.36 Problem 96.
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motorcycle’s constant acceleration am = 8.40 m/s2 is greater than 
the car’s constant acceleration ac = 5.60 m/s2, but the motorcycle 
has an upper limit of vm = 58.8 m/s to its speed while the car has 
an upper limit of vc = 106 m/s. Let the car and motorcycle race in 
the positive direction of an x axis, starting with their midpoints 
at x = 0 at t = 0. At what (a) time and (b) position are their mid-
points again aligned?

(b) The speed limit in residential areas is commonly 25 mi/h but 
some motorists drive at an average speed of 45 mi/h, perhaps by 
weaving through traffic and even driving through traffic lights 
that had just turned red. How much time would be saved in 
driving at that faster speed through 5.5 mi instead of the posted 
speed limit if the car does not stop at any intersections?

96  Autonomous car passing with following car. Figure 2.36a 
gives an overhead view of three cars with the same length  
L = 4.50 m. Cars A and B are moving at vA = 22.0 m/s (49 mi/h) 
along the right-hand lane of a long, straight road with two lanes 
in each direction, and car C is moving along the passing lane at 
vC = 27.0 m/s (60 mi/h) at initial distance d behind B. Car B is 
autonomous and is equipped with a computer control system 
using radar to detect the speeds and distances of the other two 
cars. At time t = 0, the front of car B is 3.00L behind the rear of 
car A, which is at xA1 = 0 on the x axis. We want B to pull into the  
passing lane, speed up and pass A, and then pull back into  
the right-hand lane, 3.00L in front of A and at the initial speed. 
The computer control system will allow 15.0 s for the maneuver 
and only if the front of C will be no closer than 3.00L behind A 
at the end of the maneuver, as in Fig. 2.36b. What is the least 
value of d that the system will allow?

97  Freeway entrance ramps. When freeways were first built in 
the United States in the 1950s, entrance ramps were often too 
short for an entering car to safely merge into existing traffic. 
Consider an aggressive car acceleration of a = 4.0 m/s2 and an 
initial car speed of v0 = 25 mi/h as the car enters the entrance 
ramp of a freeway where other cars are moving at 55 mi/h. (a) 
If the ramp has a length of d = 40 yd, what is the car’s speed v 
in miles per hour as it attempts to merge? (b) What is the mini-
mum length d in yards needed for the car’s speed to match the 
speed of the other cars?

98  Autonomous car passing with oncoming car. Figure 2.37a 
gives an overhead view of three cars with the same length  
L = 4.50 m. Cars A and B are moving at vA = 22.0 m/s (49 mi/h) 
along a long, straight road with one lane in each direction and 
car C is oncoming at vC = 27.0 m/s (60 mi/h) at initial distance 
d in front of B. Car B is autonomous and is equipped with a 
computer and radar control system to detect the speeds and 
distances of the other two cars. At time t = 0, the front of car 
B is 3.00L behind the rear of car A, which is at xA1 = 0 on the x 
axis. We want B to pull into the other lane, speed up and pass 
A, and then pull back into the initial lane to be 3.00L in front 
of A and at the initial speed (Fig. 2.37b). The computer control 
system will allow 15.0 s for the maneuver but only if the front 
of C will be no closer than 10L in front of B at the end of the 
maneuver, as shown in the figure. What is the least value of d 
that the system will allow?

93  Speedy ants. The silver ants of the Sahara Desert are the fast-
est ants in terms of their body length, which averages 7.92 mm.  
In the hottest part of the day, they run as fast as 0.855 m/s. In 
terms of body lengths per second, how fast do they run?

94  Car lengths in trailing. When trailing a car on a highway, you 
are advised to maintain a trailing distance that is often quoted 
in terms of car lengths, such as in “stay back by 3 car lengths.” 
Suppose the other car suddenly stops (it hits, say, a large station-
ary truck). Assume a car length L is 4.50 m, your car speed v0 is 
31.3 m/s (70 mi/h), your trailing distance is nL = 10.0L, and the 
acceleration magnitude at which your car can brake is 8.50 m/s2. 
What is your speed just before colliding with the other car if (a) 
your reaction time tr to start braking is 0.750 s and (b) automatic 
braking is immediately started by your car’s radar system that 
continuously monitors the road? What is the minimum value for 
n needed to avoid a collision with (c) the reaction time tr and  
(d) automatic braking?

95  Speed limits. (a) The greatest speed limit in the United 
States is along the tolled section of Texas State Highway 130 
where the limit is 85 mi/h. How much time would be saved in 
driving that 41 mi section at the speed limit instead of 60 mi/h? 
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99  Record accelerations. When Kitty O’Neil set the dragster 
records for the greatest speed and least elapsed time by reaching 
392.54 mi/h in 3.72 s, what was her average acceleration in (a) 
meters per second squared and (b) g units? When Eli Beeding, 
Jr., reached 72.5 mi/h in 0.0400 s on a rocket sled, what was his 
average acceleration in (c) meters per second squared and (d) 
g units? For each person, assume the motion is in the positive 
direction of an x axis.

100  Travel to a star. How much time would be required for a 
starship to reach Proxima Centauri, the star closest to the Sun, 
at a distance of L = 4.244 light years (ly)? Assume that it starts 
from rest, maintains a comfortable acceleration magnitude of 
1.000g for the first 0.0450 y and a deceleration (slowing) magni-
tude of 1.000g for the last 0.0450 y, and cruises at constant speed 
in between those periods.

101 CALC  Bobsled acceleration. In the start of a four- person 
bobsled race, two drivers (a pilot and a brakeman) are already 
on board while two pushers accelerate the sled along the ice by 
pushing against the ice with spiked shoes. After pushing for 50 m  
along a straight course, the pushers jump on board. The accel-
eration during the pushing largely determines the time to slide 
through the rest of the course and thus decides the winner with 
the least run time, which often depends on differences of 1.0 ms. 
Consider an x axis along the 50 m, with the origin at the start 
position. If the position x versus time t in the pushing phase is 
given by x = 0.3305t2 + 4.2060t (in meters and seconds), then 
at the end of a 9.000 s push what are (a) the speed and (b) the 
acceleration?

102  Car- following stopping distance. When you drive behind 
another car, what is the minimum distance you should keep 
between the cars to avoid a rear- end collision if the other car 
were to suddenly stop (it hits, say, a stationary truck)? Some 
 drivers use a “2 second rule” while others use a “3 second rule.” 
To apply such rules, pick out an object such as a tree alongside 
the road. When the front car passes it, begin to count off seconds. 
For the first rule, you want to pass that object at a count of 2 s, 
and for the second rule, 3 s. For the 2 s rule, what is the resulting 
car−car separation at a speed of (a) 15.6 m/s (35 mi/h, slow) and 
(b) 31.3 m/s (70 mi/h, fast)? For the 3 s rule, what is the car−car 
separation at a speed of (c) 15.6 m/s and (d) 31.3 m/s? To check 
if the results give safe trailing distances, find the stopping dis-
tance required of you at those initial speeds. Assume that your 
car’s braking acceleration is –8.50 m/s2 and your reaction time to 
apply the brake upon seeing the danger is 0.750 s. What is your 
stopping distance at a speed of (e) 15.6 m/s and (f) 31.3 m/s?  
(g) For which is the 2 s rule adequate? (h) For which is the 3 s 
rule adequate?

103  Vehicle jerk indicating aggression. One common form of 
aggressive driving is for a trailing driver to repeat a pattern of 
accelerating suddenly to come close to the car in front and then 
braking suddenly to avoid a collision. One way to monitor such 
behavior, either remotely or with an onboard computer sys-
tem, is to measure vehicle jerk, where jerk is the physics term 
for the time rate of change of an object’s acceleration along a 
straight path. Figure 2.38 is a graph of acceleration a versus time 
t in a typical situation for a car. Determine the jerk for each 
of the time periods: (a) gas pedal pushed down rapidly, 2.0 s 
interval, (b) gas pedal released, 1.5 s interval, (c) brake pedal 
pushed down rapidly, 1.5 s interval, (d) brake pedal released, 
2.5 s interval. 
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Figure 2.37 Problem 98.
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104  Metal baseball bat danger. Wood bats are required in pro-
fessional baseball but metal bats are sometimes allowed in youth 
and college baseball. One result is that the exit speed v of the 
baseball off a metal bat can be greater. In one set of measure-
ments under the same circumstances, v = 50.98 m/s off a wood 
bat and v = 61.50 m/s off a metal bat. Consider a ball hit directly 
toward the pitcher. The regulation distance between pitcher 
and batter is ∆ x = 60 ft 6 in. For those measured speeds, how 
much time ∆ t does the ball take to reach the pitcher for (a) the 
wood bat and (b) the metal bat? (c) By what percentage would 
∆t be reduced if professional baseball switched to metal bats? 
Because pitchers do not wear any protective equipment on face 
or body, the situation is already dangerous and the switch would 
add to that danger.

105  Falling wrench. A worker drops a wrench down the eleva-
tor shaft of a tall building. (a) Where is the wrench 1.5 s later? 
(b) How fast is the wrench falling just then?

106  Crash acceleration. A car crashes head on into a wall and 
stops, with the front collapsing by 0.500 m. The driver is firmly 
held to the seat by a seat belt and thus moves forward by 0.500 m 
during the crash. Assume that the acceleration is constant during 
the crash. What is the magnitude of the driver’s acceleration in g 
units if the initial speed of the car is (a) 35 mi/h and (b) 70 mi/h?

107  Billboard distraction. Highway billboards have long been 
a possible source of driver distraction, especially the modern 
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electronic billboards with moving parts or with flipping from 
one scene to another within a few seconds. If you are traveling 
at 31.3 m/s (70 mi/h), how far along the road do you move if you 
look at a colorful and animated billboard for (a) 0.20 s (a glanc-
ing look), (b) 0.80 s, and (c) 2.0 s? Answer in both meters and in 
yards (to give you a feel for how your travel would be along an 
American football field).

108 BIO  CALC  Remote fall detection. Falling is a chronic danger 
to the elderly and people subject to seizure. Researchers search 
for ways to detect a fall remotely so that a caretaker can go to the 
victim quickly. One way is to use a computer system that ana-
lyzes the motions of someone on CCTV in real time. The system 
monitors the vertical velocity of someone and then calculates 
the vertical acceleration when that velocity changes. If the sys-
tem detects a large negative (downward) acceleration followed 
by a briefer positive acceleration and accompanied by a sound 
burst for the onset of the positive acceleration, a signal is sent 
to a caretaker. Figure 2.39 gives an idealized graph of vertical 
velocity v versus time t as determined by the system: t1 = 1.0 s,  
t2 = 2.5 s, t3 = 3.0 s, t4 = 4.0 s, v1 = –7.0 m/s. (The plot on a more 
realistic graph would be curved.) What are (a) the acceleration 
during the descent and (b) the upward acceleration during the 
impact with the floor?

109  Ship speed in knots. Before modern instrumentation, 
a ship’s speed was measured with a line that had small knots 
tied along its length, separated by 47 feet 3 inches. The line 
was attached by three cords to a wood plate (a clip log) in the 
shape of a pie slice as shown in Fig. 2.40. One sailor threw the 
plate overboard and then allowed the force of the water against 
the plate to pull the line off a reel and through his hand so that 
he could detect the periodic passage of knots. Another sailor 
inverted a sandglass so that sand flowed from its upper cham-
ber into the lower chamber in 28 s. During that interval the first 
sailor counted the number of knots passing through his hand. 
The result was the ship’s speed in knots (abbreviated as kn). If 
17 knots passed, what was the ship’s speed in (a) knots, (b) miles 
per hour, and (c) kilometers per hour?

Figure 2.40 Problem 109.
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Figure 2.39 Problem 108.
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C H A P T E R  3

Vectors

3.1 VECTORS AND THEIR COMPONENTS
Learning Objectives 
After reading this module, you should be able to . . . 

3.1.1 Add vectors by drawing them in head- to- tail 
arrangements, applying the commutative and asso-
ciative laws.

3.1.2 Subtract a vector from a second one.
3.1.3 Calculate the components of a vector on a given 

coordinate system, showing them in a drawing. 

3.1.4 Given the components of a vector, draw the vec-
tor and determine its magnitude and orientation. 

3.1.5 Convert angle measures between degrees and 
radians.

Key Ideas 
● Scalars, such as temperature, have magnitude only. 
They are specified by a number with a unit (10°C) 
and obey the rules of arithmetic and ordinary algebra. 
Vectors, such as displacement, have both magnitude 
and  direction (5 m, north) and obey the rules of vector 
algebra.

● Two vectors    a →    and    b 
→

    may be added geometrically 
by draw ing them to a common scale and placing them 
head to tail. The vector connecting the tail of the first 
to the head of the second is the vector sum    s →   . To 
 subtract    b 

→
    from    a →   , reverse the direction of    b 

→
    to get ‒   b 

→
   ; 

then add ‒   b 
→

    to    a →   . Vector addition is commutative and 
obeys the associative law.

● The (scalar) components ax and ay of any two- 
dimensional vector    a →    along the coordinate axes are 
found by dropping perpendicular lines from the ends of    a →    
onto the coordinate axes. The components are given by

ax = a cos θ  and  ay = a sin θ,

where θ is the angle between the positive direction of 
the x axis and the direction of    a →   . The algebraic sign of 
a component indicates its direction along the associ-
ated axis. Given its components, we can find the mag-
nitude and orientation of the vector    a →    with

 a =  √ 
_______

  a x  2  +  a y  2         and    tan  θ =   
 a  y   __  a  x  

  . 

What Is Physics?
Physics deals with a great many quantities that have both size and direction, and it 
needs a special mathematical language—the language of vectors—to  describe those 
quantities. This language is also used in engineering, the other  sciences, and even in 
common speech. If you have ever given directions such as “Go five blocks down this 
street and then hang a left,” you have used the  language of vectors. In fact, naviga-
tion of any sort is based on vectors, but physics and engineering also need vectors in 
special ways to explain phenomena involving rotation and magnetic forces, which 
we get to in later chapters. In this chapter, we focus on the ba sic language of vectors.

Vectors and Scalars
A particle moving along a straight line can move in only two directions. We can 
take its motion to be positive in one of these directions and negative in the other. 
For a particle moving in three dimensions, however, a plus sign or minus sign is 
no longer enough to indicate a direction. Instead, we must use a vector.
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453.1 Vectors and their components

A vector has magnitude as well as direction, and vectors follow certain  (vector) 
rules of combination, which we examine in this chapter. A vector  quantity is a 
quantity that has both a magnitude and a direction and thus can be represented 
with a vector. Some physical quantities that are vector quantities are displacement, 
velocity, and acceleration. You will see many more throughout this book, so learn-
ing the rules of vector combination now will help you greatly in later chapters.

Not all physical quantities involve a direction. Temperature, pressure, 
 energy, mass, and time, for example, do not “point” in the spatial sense. We call 
such quantities scalars, and we deal with them by the rules of ordinary algebra. 
A single value, with a sign (as in a temperature of −40°F), specifies a scalar.

The simplest vector quantity is displacement, or change of position. A vector 
that represents a displacement is called, reasonably, a displacement vector. (Simi-
larly, we have velocity vectors and acceleration vectors.) If a particle changes its 
position by moving from A to B in Fig. 3.1.1a, we say that it undergoes a displace-
ment from A to B, which we represent with an arrow pointing from A to B. The 
arrow specifies the vector graphically. To distinguish vector symbols from other 
kinds of arrows in this book, we use the outline of a triangle as the arrowhead.

In Fig. 3.1.1a, the arrows from A to B, from Aʹ to Bʹ, and from Aʺ to Bʺ have 
the same magnitude and direction. Thus, they specify identical displacement vec-
tors and represent the same change of position for the particle. A vector can be 
shifted without changing its value if its length and direction are not changed.

The displacement vector tells us nothing about the actual path that the par-
ticle takes. In Fig. 3.1.1b, for example, all three paths connecting points A and B 
correspond to the same displacement vector, that of Fig. 3.1.1a. Displacement 
vectors represent only the overall effect of the motion, not the motion itself.

Adding Vectors Geometrically
Suppose that, as in the vector diagram of Fig. 3.1.2a, a particle moves from A to 
B and then later from B to C. We can represent its overall displacement (no 
matter what its actual path) with two successive displacement vectors, AB and 
BC. The net displacement of these two displacements is a single displacement 
from A to C. We call AC the vector sum (or resultant) of the vectors AB and 
BC. This sum is not the usual algebraic sum.

In Fig. 3.1.2b, we redraw the vectors of Fig. 3.1.2a and relabel them in the way 
that we shall use from now on, namely, with an arrow over an italic symbol, as 
in    a →   . If we want to indicate only the magnitude of the vector (a quantity that 
lacks a sign or direction), we shall use the italic symbol, as in a, b, and s. (You 
can use just a handwritten symbol.) A symbol with an overhead arrow always 
implies both properties of a vector, magnitude and direction.

We can represent the relation among the three vectors in Fig. 3.1.2b with 
the vector equation

     s →   =   a →   +   b 
→

  ,   (3.1.1)

which says that the vector    s →    is the vector sum of vectors    a →    and    b 
→

   . The 
 symbol + in Eq. 3.1.1 and the words “sum” and “add” have different mean-
ings for vectors than they do in the usual algebra because they involve both 
magnitude and  direction.

Figure 3.1.2 suggests a procedure for adding two- dimensional vectors    a →    
and    b 

→
    geometrically. (1) On paper, sketch vector    a →    to some convenient scale 

and at the proper angle. (2) Sketch vector    b 
→

    to the same scale, with its tail at 
the head of vector    a →   , again at the proper angle. (3) The vector sum    s →    is the 
vector that  extends from the tail of    a →    to the head of    b 

→
   .

Properties. Vector addition, defined in this way, has two important prop-
erties. First, the order of addition does not matter. Adding    a →    to    b 

→
    gives the 

same result as adding    b 
→

    to    a →    (Fig. 3.1.3); that is,

Figure 3.1.1 (a) All three arrows have 
the same magnitude and direction 
and thus represent the same dis-
placement. (b) All three paths con-
necting the two points correspond to 
the same displacement vector.

(a)

A'

B'

A"

B"

A

B

A

B

(b)

A
C

B

(a)

Actual
path

Net displacement
is the vector sum

(b)

a

s

b

This is the 
resulting vector, 
from tail of a 
to head of b.

To add a and b,
draw them 
head to tail.

Figure 3.1.2 (a) AC is the vector sum of the  
vectors AB and BC. (b) The same vectors 
relabeled.
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46 chapter 3 Vectors

    a →   +   b 
→

   =   b 
→

   +   a →   (commutative law).  (3.1.2)

Second, when there are more than two vectors, we can group them in any 
order as we add them. Thus, if we want to add vectors    a →   ,    b 

→
   , and    c →   , we can 

add    a →    and    b 
→

    first and then add their vector sum to    c →   . We can also add    b 
→

    
and    c →    first and then add that sum to    a →   . We get the same result either way, as 
shown in Fig. 3.1.4. That is,

  (  a →   +   b 
→

  ) +   c →   =   a →   + (  b 
→

   +   c →  ) (associative law).  (3.1.3)

Checkpoint 3.1.1
The magnitudes of displacements    a →    and    b 

→
    are 3 m and 4 m,  respectively, and  

   c →   =   a →   +   b 
→

   . Considering various orientations of    a →    and    b 
→

   , what are (a) the  maximum 
possible magnitude for    c →    and (b) the minimum possible magnitude?

The vector  −   b 
→

    is a vector with the same magnitude as    b 
→

    but the opposite 
 direction (see Fig. 3.1.5). Adding the two vectors in Fig. 3.1.5 would yield

   b 
→

   + (−  b 
→

  ) = 0. 

Thus, adding  −   b 
→

    has the effect of subtracting    b 
→

   . We use this property to define 
the difference between two vectors: let    d 

→
   =   a →   −   b 

→
   . Then

    d 
→

   =   a →   −   b 
→

   =   a →   + (−  b 
→

  ) (vector subtraction);  (3.1.4)

that is, we find the difference vector    d 
→

    by adding the vector  −   b 
→

    to the vector    a →   . 
Figure 3.1.6 shows how this is done geometrically.

As in the usual algebra, we can move a term that includes a vector symbol from 
one side of a vector equation to the other, but we must change its sign. For example, 
if we are given Eq. 3.1.4 and need to solve for    a →   , we can  rearrange the equation as

   d 
→

   +   b 
→

   =   a →   or   a →   =   d 
→

   +   b 
→

  . 

Remember that, although we have used displacement vectors here, the rules 
for addition and subtraction hold for vectors of all kinds, whether they repre-
sent velocities, accelerations, or any other vector quantity. However, we can add 
only vectors of the same kind. For example, we can add two displacements, or 
two  velocities, but adding a displacement and a velocity makes no sense. In the 
arithmetic of scalars, that would be like trying to add 21 s and 12 m.

Components of Vectors
Adding vectors geometrically can be tedious. A neater and easier technique 
 involves algebra but requires that the vectors be placed on a rectangular coordi-
nate system. The x and y axes are usually drawn in the plane of the page, as shown 

a + b

b + a
FinishStart

Vector sum
a

a

b

b

You get the same vector
result for either order of
adding vectors.

Figure 3.1.3 The two vectors    a →    and    b 
→

     
can be added in either order; see  
Eq. 3.1.2.

b

–b

Figure 3.1.5 The vectors    b 
→

    and  −   b 
→

    
have the same magnitude and oppo-
site directions.

d = a – b

(a)

(b)

Note head-to-tail
arrangement for

addition

a

a

b

–b

–b

Figure 3.1.6 (a) Vectors    a →   ,    b 
→

   , and  −   b 
→

   . 
 (b) To subtract vector    b 

→
    from vector 

    a →   , add vector  −   b 
→

    to vector    a →   .

b 
+ 

c

a + b

aa

c c

b

a + b

(a + b) + c

a + b + c

a + (b + c )

b 
+ 

c

You get the same vector result for
 any order of adding the vectors.

Figure 3.1.4 The three vectors    a →   ,    b 
→

   , and    c →    can be grouped in any way as they are added; 
see Eq. 3.1.3.

c03Vectors.indd   46 05/05/21   3:54 PM



473.1 Vectors and their components

in Fig. 3.1.7a. The z axis comes directly out of the page at the origin; we ignore it 
for now and deal only with two- dimensional vectors.

A component of a vector is the projection of the vector on an axis. In 
Fig. 3.1.7a, for example, ax is the component of vector    a →    on (or along) the x axis 
and ay is the component along the y axis. To find the projection of a vector along 
an axis, we draw perpendicular lines from the two ends of the vector to the axis, 
as shown. The projection of a vector on an x axis is its x component, and simi-
larly the projection on the y axis is the y component. The process of finding the 
 components of a vector is called resolving the vector.

A component of a vector has the same direction (along an axis) as the 
 vector. In Fig. 3.1.7, ax and ay are both positive because    a →    extends in the posi-
tive direction of both axes. (Note the small arrowheads on the components, to 
indicate their direction.) If we were to reverse vector    a →   , then both components 
would be negative and their arrowheads would point toward negative x and y. 
Resolving vector    b 

→
    in Fig. 3.1.8 yields a positive component bx and a negative 

component by.
In general, a vector has three components, although for the case of Fig. 3.1.7a 

the component along the z axis is zero. As Figs. 3.1.7a and b show, if you shift 
a vector without changing its direction, its components do not change.

Finding the Components. We can find the components of    a →    in Fig. 3.1.7a 
geometrically from the right triangle there:

 ax = a cos θ  and  ay = a sin θ, (3.1.5)

where θ is the angle that the vector    a →    makes with the positive direction of the 
x axis, and a is the magnitude of    a →   . Figure 3.1.7c shows that    a →    and its x and y com-
ponents form a right triangle. It also shows how we can reconstruct a vector from 
its components: We arrange those components head to tail. Then we com-
plete a right triangle with the vector forming the hypotenuse, from the tail 
of one component to the head of the other component.

Once a vector has been resolved into its components along a set of 
axes, the components themselves can be used in place of the vector. For 
example,    a →    in Fig. 3.1.7a is given (completely determined) by a and θ. It can 
also be given by its components ax and ay. Both pairs of values contain the 
same information. If we know a vector in component notation (ax and ay) 
and want it in magnitude- angle notation (a and θ), we can use the equations

  a =  √ 
_

  a x  2  +  a y  2       and    tan  θ =   
 a  y   __  a  x      (3.1.6)

to transform it.
In the more general three- dimensional case, we need a magnitude and 

two angles (say, a, θ, and ϕ) or three components (ax, ay, and az) to specify 
a vector.

Checkpoint 3.1.2
In the figure, which of the indicated methods for combining the x and y components of vector    a →    are proper to determine that vector?
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Figure 3.1.7 (a) The components ax 
and ay of vector    a →   . (b) The compo-
nents are unchanged if the vector is 
shifted, as long as the magnitude and 
orientation are maintained. (c) The 
components form the legs of a right 
triangle whose hypotenuse is the 
magnitude of the vector.
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Figure 3.1.8 The component of    b 
→

    on the 
x axis is positive, and that on the y axis is 
negative.
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48 chapter 3 Vectors

so

 
 θ  h   =  tan  −1    3.9 km _ 

2.6 km
   = 56°, 

which is one of the two angles we need to specify the 
direction of the overall displacement.

To include the vertical component (25 m = 0.025 km), 
we now take a side view of Fig 3.1.9b, looking northwest. 
We get Fig. 3.1.9c, where the vertical component and the 
horizontal displacement dh form the legs of another right 
triangle. Now the team’s overall displacement forms the 
hypotenuse of that triangle, with a magnitude d:

  d =  √ 
______________________

   (4.69   km)  2  + (0.025  km)  2   

 = 4.69 km ≈ 4.7 km.  (Answer)

This displacement is directed upward from the horizontal 
displacement by the angle

   
 
 θ  v   =  tan  −1    0.025 km _ 

4.69 km
   = 0.3°.  (Answer)

Thus, the team’s displacement vector had a magnitude of 
4.7 km and was at an angle of 56° south of west and at 
an angle of 0.3° upward. The net vertical motion was, of 
course, insignificant compared to the horizontal motion. 
However, that fact would have been no comfort to the 
team, which had to climb up and down countless times 
to get through the cave. The route they actually covered 
was quite different from the displacement vector, which 
merely points in a straight line from start to finish.

Sample Problem 3.1.1 Spelunking

For two decades spelunking teams crawled, climbed, and 
squirmed through 200 km of Mammoth Cave and the Flint 
Ridge cave system, seeking a connection. The team that 
finally found the connection “caved” for 12 hours to go 
from Austin Entrance in the Flint Ridge system to Echo 
River in Mammoth Cave (Fig. 3.1.9a), traveling a net 2.6 km 
westward, 3.9 km southward, and 25 m upward. That estab-
lished the system as the longest cave system in the world. 
What were the magnitude and angle of the team’s displace-
ment from start to finish?

KEY IDEA

We have the components of a three- dimensional vec-
tor, and we need to find the vector’s magnitude and two 
angles to specify the vector’s direction. 

Calculations: We first draw the components as in 
Fig. 3.1.9b. The horizontal components (2.6 km west and 
3.9 km south) form the legs of a horizontal right triangle. 
The team’s horizontal displacement forms the hypotenuse 
of the triangle, and its magnitude dh is given by the Pythag-
orean theorem:

  d  h   =  √ 
____________________

  (2.6  km)  2  + (3.9   km)  2    = 4.69 km. 

Also from the horizontal triangle, we see that this hori-
zontal displacement is directed south of due west (directly 
toward the west) by angle  θ h given by

 tan  θ  h   =   3.9 km _ 
2.6 km

  , 

(d)

(b)

West East

Start

Down

South

Finish

25 m

2.6 km

3.9 km

Up

North

dh

�h

(c)
Down

Finish

0.025 km

Up

dh

d �

Figure 3.1.9 (a) Part of the Mammoth−Flint cave system, 
with the spelunking team’s route from Austin Entrance 
to Echo River indicated in red. (b) The components of 
the team’s overall displacement and their horizontal dis-
placement dh. (c) A side view showing dh and the team’s 
overall displacement vector    d 

→
   . (d) Team member 

 Richard Zopf pushes his pack through the Tight Tube, 
near the bottom of the map. (Map adapted from map 
by The Cave Research Foundation. Photo courtesy of 
David des Marais, © The Cave Research Foundation)

Echo River Tight Tube

Brucker Breakdown Austin Entrance

S

N

Scale of metersScale of meters

0 600

Mammoth Cave
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(a)

additional examples, video, and practice available at WileyPLUS
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493.1 Vectors and their components

Problem- Solving Tactics Angles, trig functions, and inverse trig functions

Tactic 1: Angles—Degrees and Radians Angles that 
are measured relative to the positive direction of the x 
axis are positive if they are measured in the counterclock-
wise direction and negative if measured clockwise. For 
example, 210° and −150° are the same angle.

Angles may be measured in degrees or radians (rad). 
To  relate the two measures, recall that a full circle is 360° 
and 2π rad. To convert, say, 40° to radians, write

 40°   2π rad _ 
360°   = 0.70 rad. 

Tactic 2: Trig Functions You need to know the defini-
tions of the common trigonometric functions—sine, cosine, 
and tangent—because they are part of the language of sci-
ence and engineering. They are given in Fig. 3.1.10 in a 
form that does not depend on how the triangle is labeled.

You should also be able to sketch how the trig func-
tions vary with angle, as in Fig. 3.1.11, in order to be able 
to judge whether a calculator result is reasonable. Even 
knowing the  signs of the functions in the various quad-
rants can be of help.

Tactic 3: Inverse Trig Functions When the inverse 
trig functions sin−1, cos−1, and tan−1 are taken on a cal-
culator, you must consider the reasonableness of the 
answer you get,  because there is usually another possi-
ble answer that the  calculator does not give. The range 
of  operation for a calculator in taking each inverse 
trig function is indicated in Fig. 3.1.11. As an example, 
sin−1 0.5 has associated angles of 30° (which is displayed 
by the calculator, since 30° falls within its range of oper-
ation) and 150°. To see both values, draw a horizon-
tal line through 0.5 in Fig. 3.1.11a and note where it 
cuts the sine curve. How do you distinguish a correct 
answer? It is the one that seems more reasonable for 
the given situation. 

Figure 3.1.11 Three useful curves to remember. A calculator’s 
range of operation for taking inverse trig functions is indicated 
by the darker portions of the colored curves.

Tactic 4: Measuring Vector Angles The equations for 
cos θ and sin θ in Eq. 3.1.5 and for tan θ in Eq. 3.1.6 are 
valid only if the angle is measured from the  positive direc-
tion of the x axis. If it is measured relative to some other 
direction, then the trig functions in Eq. 3.1.5 may have 
to be interchanged and the ratio in Eq. 3.1.6 may have 
to be  inverted. A safer method is to convert the angle to 
one measured from the positive direction of the x axis. In 
WileyPLUS, the system expects you to report an angle of 
direction like this (and positive if counterclockwise and 
negative if clockwise).

Figure 3.1.10 A triangle used to define the trigonometric func-
tions. See also Appendix E.
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additional examples, video, and practice available at WileyPLUS
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50 chapter 3 Vectors

3.2 UNIT VECTORS, ADDING VECTORS BY COMPONENTS
Learning Objectives 
After reading this module, you should be able to . . .

3.2.1 Convert a vector between magnitude- angle and 
unit- vector notations.

3.2.2 Add and subtract vectors in magnitude- angle 
notation and in unit- vector notation.

3.2.3 Identify that, for a given vector, rotating the 
coordinate system about the origin can change the 
vector’s components but not the vector itself.

Key Ideas 
● Unit vectors   ̂ i  ,   ̂ j  , and   k ̂    have magnitudes of unity and 
are directed in the positive directions of the x, y, and z 
axes, respectively, in a right- handed coordinate  system. 
We can write a vector    a →    in terms of unit vectors as

   a →   =  a  x   ̂ i  +  a  y   ̂ j  +  a  z   k ̂  , 

in which ax   i ̂   , ay  ̂ j  , and   a  z   k ̂    are the vector components of    a →    
and ax, ay, and az are its scalar components.

● To add vectors in component form, we use the rules

rx = ax + bx  ry = ay + by  rz = az + bz. 

Here    a →    and    b 
→

    are the vectors to be added, and    r →    is the 
vector sum. Note that we add components axis by axis.

Figure 3.2.2 (a) The vector components 
of vector    a →   . (b) The vector components 
of vector    b 

→
   .

Unit Vectors
A unit vector is a vector that has a magnitude of exactly 1 and points in a particu-
lar direction. It lacks both dimension and unit. Its sole purpose is to point—that 
is, to specify a direction. The unit vectors in the positive directions of the x, y, 
and z axes are labeled    i ̂   ,    j ̂   , and   k ̂   , where the hat ^ is used instead of an overhead 
arrow as for other vectors (Fig. 3.2.1). The arrangement of axes in Fig. 3.2.1 is said 
to be a right- handed coordinate system. The system remains right- handed if it is 
rotated rigidly. We use such coordinate systems exclusively in this book.

Unit vectors are very useful for expressing other vectors; for example, we can 
express    a →    and    b 

→
    of Figs. 3.1.7 and 3.1.8 as

     a →   =  a  x   ̂ i  +  a  y   ̂ j    (3.2.1)

and     b 
→

   =  b  x   ̂ i  +  b  y   ̂ j .   (3.2.2)

These two equations are illustrated in Fig. 3.2.2. The quantities ax  ̂ i   and ay  ̂ j   are 
vectors, called the vector components of    a →   . The quantities ax and ay are scalars, 
called the scalar components of    a →    (or, as before, simply its  components).

Adding Vectors by Components
We can add vectors geometrically on a sketch or directly on a vector- capable 
calculator. A third way is to combine their components axis by axis.

Figure 3.2.1 Unit vectors   ̂ i  ,   ̂ j  , and   k ̂     
define the directions of a right- 
handed coordinate  system.
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513.2 Unit Vectors, adding Vectors by components

To start, consider the statement

    r →   =   a →   +   b 
→

  ,   (3.2.3)
which says that the vector    r →    is the same as the vector  (  a →   +   b 

→
  ) . Thus, each 

 component of    r →    must be the same as the corresponding component of  (  a →   +   b 
→

  ) :

 rx = ax + bx (3.2.4)

 ry = ay + by (3.2.5)

 rz = az + bz. (3.2.6)

In other words, two vectors must be equal if their corresponding components 
are equal. Equations 3.2.3 to 3.2.6 tell us that to add vectors    a →    and    b 

→
   , we must 

(1)  resolve the vectors into their scalar components; (2) combine these scalar 
components, axis by axis, to get the components of the sum    r →   ; and (3) combine  
the components of    r →    to get    r →    itself. We have a choice in step 3. We can express    r →    
in unit- vector notation or in magnitude- angle notation.

This procedure for adding vectors by components also applies to vector sub-
tractions. Recall that a subtraction such as    d 

→
   =   a →   −   b 

→
    can be rewritten as an 

 addition    d 
→

   =   a →   + (−  b 
→

  ) . To subtract, we add    a →    and  −  b 
→

    by components, to get

dx = ax − bx,  dy = ay − by,  and  dz = az − bz,

where     d 
→

   =  d  x   ̂ i  +  d  y   ̂ j  +  d  z   k ̂  .   (3.2.7)

Checkpoint 3.2.1
(a) In the figure here, what are the signs of the x com-

ponents of     d 
→

    1    and     d 
→

    2   ? (b) What are the signs of the y 

components of     d 
→

    1    and     d 
→

    2   ? (c) What are the signs of 

the x and y components of     d 
→

    1   +    d 
→

    2   ?

Vectors and the Laws of Physics
So far, in every figure that includes a coordinate system, the x and y axes are 
parallel to the edges of the book page. Thus, when a vector    a →    is included, its com-
ponents ax and ay are also parallel to the edges (as in Fig. 3.2.3a). The only reason 
for that orientation of the axes is that it looks “proper”; there is no deeper reason. 
We could, instead, rotate the axes (but not the vector    a →   ) through an angle ϕ as 
in Fig. 3.2.3b, in which case the components would have new  values, call them a′x 
and a′y. Since there are an infinite number of choices of ϕ, there are an infinite 
number of different pairs of components for    a →   .

Which then is the “right” pair of components? The answer is that they are 
all equally valid because each pair (with its axes) just gives us a different way of 
describing the same vector    a →   ; all produce the same magnitude and direction for 
the vector. In Fig. 3.2.3 we have

   a =  √ 
______

  a x  2  +  a y  2    =  √ 
________

  a x  ′  2 +  a y  ′  2     (3.2.8)

and

 θ = θ′ + ϕ. (3.2.9)

The point is that we have great freedom in choosing a coordinate system, 
because the relations among vectors do not depend on the location of the origin 
or on the orientation of the axes. This is also true of the relations of physics; they 
are all independent of the choice of coordinate system. Add to that the sim plicity 
and richness of the language of vectors and you can see why the laws of physics 
are almost always presented in that language: One equation, like Eq. 3.2.3, can 
represent three (or even more) relations, like Eqs. 3.2.4, 3.2.5, and 3.2.6.

Figure 3.2.3 (a) The vector    a →    and its 
components. (b) The same vector, 
with the axes of the coordinate 
system rotated through an angle ϕ.
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52 chapter 3 Vectors

KEY IDEA

We can add the three vectors by components, axis by axis, 
and then combine the components to write the vector sum    r →   .

Calculations: For the x axis, we add the x components of    a →   ,  
   b 
→

   , and    c →   , to get the x component of the vector sum    r →   :

 rx = ax + bx + cx

 = 4.2 m − 1.6 m + 0 = 2.6 m.

Similarly, for the y axis,

 ry = ay + by + cy

 = −1.5 m + 2.9 m − 3.7 m = −2.3 m.

We then combine these components of    r →    to write the vec-
tor in unit- vector notation:

    r →   = (2.6 m) ̂ i  − (2.3 m) ̂ j ,  (Answer)

where (2.6 m)î is the vector component of    r →    along the 
x axis and −(2.3 m)ĵ is that along the y axis. Figure 3.2.4b 
shows one way to arrange these vector components to 
form    r →   . (Can you sketch the other way?)

We can also answer the question by giving the magni-
tude and an angle for    r →   . From Eq. 3.1.6, the magnitude is

  r =  √ 
__________________

   (2.6 m)  2  +  (−2.3 m)  2    ≈ 3.5 m  (Answer)

and the angle (measured from the +x direction) is

  θ =  tan  −1  (  − 2.3 m _ 
2.6 m

  )  = −41°,  (Answer)

where the minus sign means clockwise.

Sample Problem 3.2.1 Adding vectors, unit‑vector components

Figure 3.2.4a shows the following three vectors:

     a  →   = (4.2 m) ̂ i  − (1.5 m) ̂ j , 

   b 
→

   = (−1.6 m) ̂ i  + (2.9 m) ̂ j , 

and    c →   = (−3.7 m) ̂ j . 

What is their vector sum    r →   , which is also shown?

Figure 3.2.4 Vector    r →    is the vector sum of the other three  vectors.
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This is the result of the addition.

To add these vectors,
�nd their net x component
and their net y component.

Then arrange the net
components head to tail.

3.3 MULTIPLYING VECTORS
Learning Objectives 
After reading this module, you should be able to . . .

3.3.1 Multiply vectors by scalars.
3.3.2 Identify that multiplying a vector by a scalar gives 

a vector, taking the dot (or scalar) product of two 
vectors gives a scalar, and taking the cross (or vec-
tor) product gives a new vector that is perpendicular 
to the original two.

3.3.3 Find the dot product of two vectors in magnitude- 
angle notation and in unit- vector notation.

3.3.4 Find the angle between two vectors by taking 
their dot product in both magnitude- angle notation 
and unit- vector notation.

3.3.5 Given two vectors, use a dot product to find how 
much of one vector lies along the other vector.

3.3.6 Find the cross product of two vectors in 
magnitude- angle and unit- vector notations.

3.3.7 Use the right- hand rule to find the direction of the 
vector that results from a cross product.

3.3.8 In nested products, where one product is buried 
inside another, follow the normal algebraic procedure 
by starting with the innermost product and working 
outward.

additional examples, video, and practice available at WileyPLUS

c03Vectors.indd   52 05/05/21   3:54 PM



533.3 mUltiplying Vectors

Key Ideas 
● The product of a scalar s and a vector    v →    is a new 
vector whose magnitude is sv and whose direction is 
the same as that of    v →    if s is positive, and opposite that 
of    v →    if s is negative. To divide    v →    by s, multiply    v →    by 1/s.

● The scalar (or dot) product of two  vectors    a →    and    b 
→

    is 
written    a →   ⋅   b 

→
    and is the scalar quantity given by

   a →   ⋅   b 
→

   = ab cos ϕ, 

in which ϕ is the angle between the directions of    a →    and    b 
→

   .  
A scalar product is the product of the magnitude of one 
vector and the scalar component of the second vec-
tor along the direction of the first vector. In unit- vector 
notation,

   a →   ⋅   b 
→

   = (  a  x   ̂ i  +  a  y   ̂ j  +  a  z   k ̂  ) ⋅ (  b  x   ̂ i  +  b  y   ̂ j  +  b  z   k ̂  ), 

which may be expanded according to the distributive 
law. Note that    a →   ⋅   b 

→
   =   b 

→
   ⋅   a →   . 

● The vector (or cross) product of two vectors    a →    and    b 
→

    
is written    a →   ×   b 

→
    and is a vector    c →    whose magnitude c 

is given by

c = ab sin ϕ,

in which ϕ is the smaller of the angles between the 
directions of    a →    and    b 

→
   . The direction of    c →    is perpendicular 

to the plane defined by    a →    and    b 
→

    and is given by a right- 
hand rule, as shown in Fig. 3.3.2. Note that    a →   ×   b 

→
   =  

−(  b 
→

   ×   a →  ) . In unit- vector  notation,

   a →   ×   b 
→

   = ( a  x   ̂ i  +  a  y   ̂ j  +  a  z   k ̂  ) × ( b  x   ̂ i  +  b  y   ̂ j  +  b  z   k ̂  ), 

which we may expand with the distributive law.

● In nested products, where one product is buried 
inside another, follow the normal algebraic procedure 
by starting with the innermost product and working 
outward.

Multiplying Vectors*
There are three ways in which vectors can be multiplied, but none is exactly like 
the usual algebraic multiplication. As you read this material, keep in mind that 
a vector- capable calculator will help you multiply vectors only if you understand 
the basic rules of that multiplication.

Multiplying a Vector by a Scalar
If we multiply a vector    a →    by a scalar s, we get a new vector. Its magnitude is 
the product of the magnitude of    a →    and the absolute value of s. Its direction is 
the direction of    a →    if s is positive but the opposite direction if s is negative. To 
 divide    a →    by s, we multiply    a →    by 1/s.

Multiplying a Vector by a Vector
There are two ways to multiply a vector by a vector: One way produces a scalar 
(called the scalar product), and the other produces a new vector (called the  vector 
product). (Students commonly confuse the two ways.) 

The Scalar Product
The scalar product of the vectors    a →    and    b 

→
    in Fig. 3.3.1a is written as    a →   ⋅   b 

→
    and 

 defined to be

     a →   ⋅   b 
→

   = ab cos ϕ,   (3.3.1)

where a is the magnitude of    a →   , b is the magnitude of    b 
→

   , and ϕ is the angle 
 between    a →    and    b 

→
    (or, more properly, between the directions of    a →    and    b 

→
   ). There 

are actually two such angles: ϕ and 360° ‒ ϕ. Either can be used in Eq. 3.3.1, 
 because their cosines are the same.

*This material will not be employed until later (Chapter 7 for scalar products and Chapter 11 for 
vector products), and so your instructor may wish to postpone it.
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54 chapter 3 Vectors

Note that there are only scalars on the right side of Eq. 3.3.1 (including 
the value of cos ϕ). Thus    a →   ⋅   b 

→
    on the left side represents a scalar quantity. 

Because of the notation,    a →   ⋅   b 
→

    is also known as the dot product and is spoken as 
“a dot b.”

A dot product can be regarded as the product of two quantities: (1) the magni-
tude of one of the vectors and (2) the scalar component of the second vector along 
the direction of the first vector. For example, in Fig. 3.3.1b,    a →    has a scalar compo-
nent a cos ϕ along the direction of    b 

→
   ; note that a perpendicular dropped from the 

head of    a →    onto    b 
→

    determines that component. Similarly,    b 
→

    has a scalar component 
b cos ϕ along the direction of    a →   .

Equation 3.3.1 can be rewritten as follows to emphasize the components:

    a →   ⋅   b 
→

   = (a cos ϕ)(b) = (a)(b cos ϕ).  (3.3.2)

The commutative law applies to a scalar product, so we can write

   a →   ⋅   b 
→

   =   b 
→

   ⋅   a →  . 

When two vectors are in unit- vector notation, we write their dot product as

    a →   ⋅   b 
→

   = ( a  x   ̂ i  +  a  y   ̂ j  +  a  z   k ̂  ) ⋅ ( b  x   ̂ i  +  b  y   ̂ j  +  b  z   k ̂  ),  (3.3.3)

which we can expand according to the distributive law: Each vector component of 
the first vector is to be dotted with each vector component of the second vector. 
By doing so, we can show that

     a →   ⋅   b 
→

   =  a  x    b  x   +  a  y    b  y   +  a  z    b  z  .   (3.3.4)

Figure 3.3.1 (a) Two vectors  
   a →    and    b 

→
   , with an angle ϕ 

between them. (b) Each vector 
has a component along the 
direction of the other  vector.
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a is b cos   

Component of a
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b is a cos   

Multiplying these gives
the dot product.

Or multiplying these
gives the dot product.

�

�

�

�

 If the angle ϕ between two vectors is 0°, the component of one vector along the 
other is maximum, and so also is the dot product of the vectors. If, instead, ϕ is  
90°, the component of one vector along the other is zero, and so is the dot product.
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The direction of    c →    is perpendicular to the plane that contains    a →    and    b 
→

   . Fig-
ure 3.3.2a shows how to determine the direction of    c →   =   a →   ×   b 

→
    with what is known 

as a right- hand rule. Place the vectors    a →    and    b 
→

    tail to tail without altering their 
orientations, and imagine a line that is perpendicular to their plane where they 
meet. Pretend to place your right hand around that line in such a way that your 
fingers would sweep    a →    into    b 

→
    through the smaller angle between them. Your out-

stretched thumb points in the direction of    c →   .
The order of the vector multiplication is important. In Fig. 3.3.2b, we are 

 determining the direction of    c →  ′=   b 
→

   ×   a →   , so the fingers are placed to sweep    b 
→

    
into    a →    through the smaller angle. The thumb ends up in the opposite direction 
from previously, and so it must be that    c →  ′= −   c →   ; that is,

    b 
→

   ×   a →   = − (  a →   ×   b 
→

  ).  (3.3.6)

In other words, the commutative law does not apply to a vector product.
In unit- vector notation, we write

     a →   ×   b 
→

   = (  a  x   ̂ i  +  a  y   ̂ j  +  a  z   k ̂  ) × ( b  x   ̂ i  +  b  y   ̂ j  +  b  z   k ̂  ),   (3.3.7)

which can be expanded according to the distributive law; that is, each component 
of the first vector is to be crossed with each component of the second  vector. The 
cross products of unit vectors are given in Appendix E (see “Products of Vec-
tors”). For example, in the expansion of Eq. 3.3.7, we have

  a  x   ̂ i  ×  b  x   ̂ i  =  a  x    b  x  ( ̂ i  ×  ̂ i ) = 0, 

because the two unit vectors   ̂ i   and   ̂ i   are parallel and thus have a zero cross prod-
uct. Similarly, we have

  a  x   ̂ i  ×  b  y   ̂ j  =  a  x    b  y  ( ̂ i  ×  ̂ j ) =  a  x    b  y   k ̂  . 

In the last step we used Eq. 3.3.5 to evaluate the magnitude of   ̂ i   ×   ̂ j   as unity. 
(These vectors   ̂ i   and   ̂ j   each have a magnitude of unity, and the angle between 
them is 90°.) Also, we used the right- hand rule to get the direction of   ̂ i   ×   ̂ j   as  being 
in the positive direction of the z axis (thus in the direction of   k ̂   ).

The Vector Product
The vector product of    a →    and    b 

→
   , written    a →   ×   b 

→
   , produces a third vector    c →    whose 

magnitude is

 c = ab sin ϕ, (3.3.5)

where ϕ is the smaller of the two angles between    a →    and    b 
→

   . (You must use the 
smaller of the two angles between the vectors because sin ϕ and sin(360° − ϕ) 
differ in algebraic sign.) Because of the notation,    a →   ×   b 

→
    is also known as the cross 

product, and in speech it is “a cross b.”

Checkpoint 3.3.1
Vectors   C 

→
    and   D 

→
    have magnitudes of 3 units and 4 units,  respectively. What is the 

 angle between the directions of   C 
→

    and   D 
→

    if   C 
→

   ⋅  D 
→

    equals (a) zero, (b) 12 units, and 
(c) ‒12 units?

If    a →    and    b 
→

    are parallel or antiparallel,    a →   ×   b 
→

   = 0 . The magnitude of    a →   ×   b 
→

   , 
which can be written as  |  a →   ×   b 

→
  | , is maximum when    a →    and    b 

→
    are perpendicular to 

each other.
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56 chapter 3 Vectors

Continuing to expand Eq. 3.3.7, you can show that

    a →   ×   b 
→

   = ( a  y    b  z   −  b  y    a  z  ) ̂ i  + ( a  z    b  x   −  b  z    a  x  ) ̂ j  + ( a  x    b  y   −  b  x    a  y  ) k ̂  .  (3.3.8)

A determinant (Appendix E) or a vector- capable calculator can also be used.
To check whether any xyz coordinate system is a right- handed coordinate 

system, use the right- hand rule for the cross product   ̂ i  ×  ̂ j  =  k ̂    with that system. If 
your fingers sweep   ̂ i   (positive direction of x) into   ̂ j   (positive direction of y) with 
the outstretched thumb pointing in the positive direction of z (not the negative 
direction), then the system is right- handed.

Checkpoint 3.3.2
Vectors   C 

→
    and   D 

→
    have magnitudes of 3 units and 4 units,  respectively. What is the 

angle between the directions of   C 
→

    and   D 
→

    if the magnitude of the vector product  
  C 
→

   ×  D 
→

    is (a) zero and (b) 12 units?

Figure 3.3.2 Illustration of the right-hand rule for vector products. (a) Sweep vector    a →    into 
vector    b 

→
    with the fingers of your right hand. Your outstretched thumb shows the direc-

tion of vector    c →   =   a →   ×   b 
→

   . (b) Showing that    b 
→

   ×   a →    is the  reverse of    a →   ×   b 
→

   .

a

b b b

c

a

b

a a

(a)

(b)

c′

A
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573.3 mUltiplying Vectors

thumb then gives the direction of    c →   . Thus, as shown in the 
 figure,    c →    lies in the xy plane. Because its direction is per-
pendicular to the  direction of    a →    (a cross product always 
gives a perpendicular vector), it is at an angle of

 250° − 90° = 160° (Answer)

from the positive direction of the x axis.

Sample Problem 3.3.2 Cross product, right‑hand rule

In Fig. 3.3.3, vector    a →    lies in the xy plane, has a magnitude 
of 18 units, and points in a direction 250° from the positive 
direction of the x axis. Also, vector    b 

→
    has a magnitude of 

12 units and points in the positive direction of the z axis. 
What is the vector product    c →   =   a →   ×   b 

→
   ?

KEY IDEA

When we have two vectors in magnitude- angle nota-
tion, we find the magnitude of their cross product with 
Eq. 3.3.5 and the direction of their cross product with the 
right- hand rule of Fig. 3.3.2.

Calculations: For the magnitude we write

 c = ab sin ϕ = (18)(12)(sin 90°) = 216. (Answer)

To determine the direction in Fig. 3.3.3, imagine placing 
the fingers of your right hand around a line perpendicular 
to the plane of    a →    and    b 

→
    (the line on which    c →    is shown) 

such that your fingers sweep    a →    into    b 
→

   . Your outstretched 

Figure 3.3.3 Vector    c →    (in the xy plane) is the vector (or cross) 
product of vectors    a →    and    b 

→
   .

Calculations: Here we write

    c →   = (3 ̂ i  − 4 ̂ j  ) × (−2 ̂ i  + 3 k ̂  ) 

 = 3 ̂ i  × (−2 ̂ i  ) + 3 ̂ i  × 3 k ̂   + (−4 ̂ j  ) × (−2 ̂ i  ) 

 + (−4 ̂ j ) × 3 k ̂  . 

Sample Problem 3.3.3 Cross product, unit‑vector notation

If    a →   = 3 ̂ i  − 4 ̂ j   and    b 
→

   = − 2 ̂ i  + 3 k ̂   , what is    c →   =   a →   ×   b 
→

   ?

KEY IDEA

When two vectors are in unit- vector notation, we can find 
their cross product by using the distributive law. 

We can separately evaluate the left side of Eq. 3.3.9 by 
writing the vectors in unit- vector notation and using the 
distributive law:

    a →   ⋅   b 
→

   = (3.0 ̂ i  − 4.0 ̂ j ) ⋅ (−2.0 ̂ i  + 3.0 k ̂  )
 = (3.0 ̂ i ) ⋅ (−2.0 ̂ i ) + (3.0 ̂ i ) ⋅ (3.0 k ̂  )
 + (−4.0 ̂ j ) ⋅ (−2.0 ̂ i ) + (−4.0 ̂ j ) ⋅ (3.0 k ̂  ). 

We next apply Eq. 3.3.1 to each term in this last expression. 
The angle between the unit vectors in the first term (  ̂ i   and   ̂ i  ) 
is 0°, and in the other terms it is 90°. We then have

    a →   ⋅   b 
→

   = − (6.0)(1) + (9.0)(0) + (8.0)(0) − (12)(0)

 = −6.0. 

Substituting this result and the results of Eqs. 3.3.10 and 
3.3.11 into Eq. 3.3.9 yields

  −6.0 = (5.00)(3.61) cos ϕ,

so ϕ =  cos  −1    − 6.0 ___________ 
(5.00)(3.61)

   = 109° ≈ 110°.   (Answer) 

Sample Problem 3.3.1 Angle between two vectors using dot products

What is the angle ϕ between    a →   = 3.0 ̂ i  − 4.0 ̂ j   and    b 
→

   = − 2.0 ̂ i  +  
3.0 k ̂   ? (Caution: Although many of the following steps can 
be bypassed with a vector- capable calculator, you will 
learn more about scalar products if, at least here, you use 
these steps.)

KEY IDEA 

The angle between the directions of two vectors is included 
in the definition of their scalar product (Eq. 3.3.1):

     a →   ⋅   b 
→

   = ab cos ϕ.   (3.3.9)

Calculations: In Eq. 3.3.9, a is the magnitude of    a →   , or

   a =  √ 
____________

   3.0  2  +  (−4.0)  2    = 5.00,   (3.3.10)

and b is the magnitude of    b 
→

   , or

   b =  √ 
_____________

   (−2.0)  2  +  3.0  2    = 3.61.   (3.3.11)

z

250°
160°

yx

a b
c  = a    b

This is the resulting
vector, perpendicular to
both a and b.

Sweep a  into b.
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58 chapter 3 Vectors

Scalars and Vectors  Scalars, such as temperature, have 
magnitude only. They are specified by a number with a unit 
(10°C) and obey the rules of arithmetic and ordinary alge-
bra. Vectors, such as displacement, have both magnitude and 
 direction (5 m, north) and obey the rules of vector algebra.

Adding Vectors Geometrically  Two vectors    a →    and    b 
→

    
may be added geometrically by drawing them to a common 
scale and placing them head to tail. The vector connecting the 
tail of the first to the head of the second is the vector sum    s →   . To 
 subtract    b 

→
    from    a →   , reverse the direction of    b 

→
    to get  −   b 

→
   ; then 

add  −   b 
→

    to    a →   . Vector addition is commutative

     a →   +   b 
→

   =   b 
→

   +   a →     (3.1.2)

and obeys the associative law

  (  a →   +   b 
→

  ) +   c →   =   a →   + (  b 
→

   +   c →  ).  (3.1.3)

Components of a Vector  The (scalar) components ax and ay  
of any two- dimensional vector    a →    along the coordinate axes are 
found by dropping perpendicular lines from the ends of    a →    onto 
the coordinate axes. The components are given by

 ax = a cos θ  and  ay = a sin θ, (3.1.5)

 where θ is the angle between the positive direction of the x 
axis and the direction of    a →   . The algebraic sign of a compo-
nent indicates its direction along the associated axis. Given 
its components, we can find the magnitude and orientation 
(direction) of the vector    a →    by using

   a =  √ 
_

  a x  2  +  a y  2       and    tan  θ =   
 a  y   _  a  x    .

   (3.1.6)

Unit- Vector Notation  Unit vectors   ̂ i  ,   ̂ j  , and   k ̂    have magni-
tudes of unity and are directed in the positive directions of the x, 
y, and z axes, respectively, in a right- handed coordinate  system 
(as defined by the vector products of the unit vectors). We can 
write a vector    a →    in terms of unit vectors as

     a →   =  a  x   ̂ i  +  a  y   ̂ j  +  a  z   k ̂  ,   (3.2.1)

in which ax  ̂ i  , ay  ̂ j  , and   a  z   k ̂    are the vector components of    a →    and ax, 
ay, and az are its scalar components.

Review & Summary

Adding Vectors in Component Form  To add vectors in 
component form, we use the rules

 rx = ax + bx ry = ay + by rz = az + bz. (3.2.4 to 3.2.6)

Here    a →    and    b 
→

    are the vectors to be added, and    r →    is the vector sum. 
Note that we add components axis by axis.We can then express the 
sum in unit- vector notation or magnitude- angle notation.

Product of a Scalar and a Vector  The product of a sca-
lar s and a vector    v →    is a new vector whose magnitude is sv and 
whose direction is the same as that of    v →    if s is positive, and oppo-
site that of    v →    if s is negative. (The negative sign reverses the 
vector.) To divide    v →    by s, multiply    v →    by 1/s.

The Scalar Product  The scalar (or dot) product of two 
 vectors    a →    and    b 

→
    is written    a →   ⋅   b 

→
    and is the scalar quantity given by

    a →   ⋅   b 
→

   = ab cos ϕ,  (3.3.1)

in which ϕ is the angle between the directions of    a →    and    b 
→

   . A sca-
lar product is the product of the magnitude of one vector and the 
scalar component of the second vector along the direction of the 
first vector. Note that    a →   ⋅   b 

→
   =   b 

→
   ⋅   a →   , which means that the scalar 

product obeys the commutative law.
In unit- vector notation,

    a →   ⋅   b 
→

   = ( a  x   ̂ i  +  a  y   ̂ j  +  a  z   k ̂  ) ⋅ ( b  x   ̂ i  +  b  y   ̂ j  +  b  z   k ̂  ),  (3.3.3)

which may be expanded according to the distributive law. 

The Vector Product  The vector (or cross) product of two 
vectors    a →    and    b 

→
    is written    a →   ×   b 

→
    and is a vector    c →    whose mag-

nitude c is given by

 c = ab sin ϕ, (3.3.5)

in which ϕ is the smaller of the angles between the directions 
of    a →    and    b 

→
   . The direction of    c →    is perpendicular to the plane 

defined by    a →    and    b 
→

    and is given by a right- hand rule, as shown 
in Fig. 3.3.2. Note that    a →   ×   b 

→
   = −(  b 

→
   ×   a →  ) , which means that 

the vector product does not obey the commutative law.
In unit- vector notation,

    a →   ×   b 
→

   = ( a  x   ̂ i  +  a  y   ̂ j  +  a  z   k ̂  ) × ( b  x   ̂ i  +  b  y   ̂ j  +  b  z   k ̂  ),  (3.3.7)

which we may expand with the distributive law.

We next evaluate each term with Eq. 3.3.5, finding the 
 direction with the right- hand rule. For the first term here, 
the angle ϕ between the two vectors being crossed is 0. 
For the other terms, ϕ is 90°. We find

    c →   = −6(0) + 9(− ̂ j ) + 8(− k ̂  ) − 12 ̂ i 

 = −12 ̂ i  − 9 ̂ j  − 8 k ̂  . (Answer) 

This vector    c →    is perpendicular to both    a →    and    b 
→

   , a fact 
you can check by showing that    c →   ⋅   a →   = 0  and    c →   ⋅   b 

→
   = 0 ; 

that is, there is no component of    c →    along the direction of 
 either    a →    or    b 

→
   .

In general: A cross product gives a perpendicular vec-
tor, two perpendicular vectors have a zero dot product, and 
two vectors along the same axis have a zero cross product.

additional examples, video, and practice available at WileyPLUS
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59QUestions

10  Figure 3.5 shows vector    A 
→

    and 
four other vectors that  have the 
same magnitude but differ in orien-
tation. (a) Which of those other four 
vectors have the same dot product 
with    A 

→
   ? (b) Which have a negative 

dot product with    A 
→

   ?

11  In a game held within a three- 
dimensional maze, you must move 
your game piece from start, at xyz 
coordinates (0, 0, 0), to finish, at coordinates (−2 cm, 4 cm, 
−4 cm). The game piece can undergo only the displacements 
(in centimeters) given below. If, along the way, the game piece 
lands at coordinates (−5 cm, −1 cm, −1 cm) or (5 cm, 2 cm, 
−1 cm), you lose the game. Which displacements and in what 
sequence will get your game piece to finish?

    p →   = − 7 ̂ i  + 2 ̂ j  − 3 k ̂     r →   = 2 ̂ i  − 3 ̂ j  + 2 k ̂  

   q →   = 2 ̂ i  −  ̂ j  + 4 k ̂     s →   = 3 ̂ i  + 5 ̂ j  − 3 k ̂  . 

12  The x and y components of four vectors    a →   ,    b 
→

   ,    c →   , and    d 
→

    are 
given below. For which vectors will your calculator give you the 
correct angle θ when you use it to find θ with Eq. 3.1.6? Answer 
first by examining Fig. 3.1.11, and then check your answers with 
your calculator.

 ax = 3 ay = 3 cx = −3 cy = −3

 bx = −3 by = 3 dx = 3 dy = −3.

13  Which of the following are correct (meaningful) vector 
expressions? What is wrong with any incorrect expression?

(a)    A 
→

   ⋅ (  B 
→

   ⋅  C 
→

  )  (f)    A 
→

   + (  B 
→

   ×  C 
→

  ) 

(b)    A 
→

   × (  B 
→

   ⋅  C 
→

  )  (g)  5 +   A 
→

   

(c)    A 
→

   ⋅ (  B 
→

   ×  C 
→

  )  (h)  5 + (  B 
→

   ⋅  C 
→

  ) 

(d)    A 
→

   × (  B 
→

   ×  C 
→

  )  (i)  5 + (  B 
→

   ×  C 
→

  ) 

(e)    A 
→

   + (  B 
→

   ⋅  C 
→

  )  (j)  (  A 
→

   ⋅   B 
→

  ) + (  B 
→

   ×  C 
→

  ) Figure 3.3 Question 5.

Questions

1  Can the sum of the magni-
tudes of two vectors ever be 
equal to the magnitude of the 
sum of the same two vectors? If 
no, why not? If yes, when?

2  The two vectors shown in Fig. 3.1 
lie in an xy plane. What are the signs 
of the x and y components, respec-
tively, of (a)     d 

→
    1   +    d 

→
    2   , (b)     d 

→
    1   −    d 

→
    2   ,  

and (c)     d 
→

    2   −    d 
→

    1   ?

3  Being part of the “Gators,” the 
University of Florida golfing team 
must play on a putting green with an 
alligator pit. Figure 3.2 shows an over-
head view of one putting challenge of 
the team; an xy coordinate system is 
superimposed. Team members must 
putt from the origin to the hole, which 
is at xy coordinates (8 m, 12 m), but 
they can putt the golf ball using only 
one or more of the following displace-
ments, one or more times:

    d 
→

    1   = (8 m) ̂ i  + (6 m) ̂ j ,    d 
→

    2   = (6 m) ̂ j ,    d 
→

    3   = (8 m) ̂ i . 

The pit is at coordinates (8 m, 6 m). If a team member putts 
the ball into or through the pit, the member is automatically 
transferred to Florida State University, the arch rival. What 
sequence of displacements should a team member use to 
avoid the pit and the school transfer?

4  Equation 3.1.2 shows that the addition of two vectors  
   a →    and    b 

→
    is commutative. Does that mean subtraction is com-

mutative, so that    a →   −   b 
→

   =   b 
→

   −   a →   ?

5  Which of the arrangements of axes in Fig. 3.3 can be  labeled 
“right- handed coordinate system”? As usual, each axis label 
indicates the positive side of the axis.

6  Describe two vectors    a →    and    b 
→

    such that

(a)    a →   +   b 
→

   =   c →   and a + b = c; 

(b)    a →   +   b 
→

   =   a →   −   b 
→

  ; 

(c)    a →   +   b 
→

   =   c →   and  a   2  +  b   2  =  c   2 . 

7  If    d 
→

   =   a →   +   b 
→

   + (−  c →  ) , does (a)    a →   + (−  d 
→

  ) =   c →   + (−  b 
→

  ),   
(b)    a →   = (−  b 

→
  ) +   d 

→
   +   c →  ,  and (c)    c →   + (−  d 

→
  ) =   a →   +   b 

→
   ?

8  If    a →   ⋅   b 
→

   =   a →   ⋅   c →   , must    b 
→

    equal    c →   ?

9  If    F 
→

   = q(  v →   ×   B 
→

  )  and    v →    is perpendicular to    B 
→

   , then what is 
the direction of    B 

→
    in the three situations shown in Fig. 3.4 when 

constant q is (a) positive and (b) negative?

y

x

d2

d1

Figure 3.1 Question 2.
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Gator
pit

y

x

Figure 3.2 Question 3.
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Figure 3.4 Question 9.
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Module 3.1  Vectors and Their Components
1 E  SSM  What are (a) the x component and (b) the y component 
of a vector    a →    in the xy plane if its direction is 250° counterclockwise 
from the positive direction of the x axis and 
its magnitude is 7.3 m?

2 E  A displacement vector    r →    in the xy 
plane is 15 m long and directed at angle 
θ = 30° in Fig. 3.6. Determine (a) the x 
component and (b) the y component of 
the vector.

3 E  SSM  The x component of vector    A 
→

    is  ‒25.0 m and the y com-
ponent is +40.0 m. (a) What is the magnitude of    A 

→
   ? (b) What is the 

angle between the direction of    A 
→

    and the positive  direction of x?

4 E  Express the following angles in radians: (a) 20.0°, (b) 50.0°, 
(c) 100°. Convert the following angles to degrees: (d) 0.330 rad, 
(e) 2.10 rad, (f) 7.70 rad.

5 E  A ship sets out to sail to a point 120 km due north. An unex-
pected storm blows the ship to a point 100 km due east of its 
starting point. (a) How far and (b) in what direction must it now 
sail to reach its original destination?

6 E  In Fig. 3.7, a heavy piece of 
machinery is raised by sliding it 
a distance d = 12.5 m along a plank 
oriented at angle θ  = 20.0° to the 
horizontal. How far is it moved (a) 
vertically and (b) horizontally?

7 E  Consider two displacements, 
one of magnitude 3 m and another 
of magnitude 4 m. Show how the 
displacement vectors may be combined to get a resultant dis-
placement of magnitude (a) 7 m, (b) 1 m, and (c) 5 m.

Module 3.2  Unit Vectors, Adding Vectors by Components
8 E  A person walks in the following pattern: 3.1 km north, then 
2.4 km west, and finally 5.2 km south. (a) Sketch the vector dia-
gram that represents this motion. (b) How far and (c) in what 
direction would a bird fly in a straight line from the same start-
ing point to the same final point?

9 E  Two vectors are given by

     a →   = (4.0 m) ̂ i  − (3.0 m) ̂ j  + (1.0 m) k ̂   

and    b 
→

   = (−1.0 m) ̂ i  + (1.0 m) ̂ j  + (4.0 m) k ̂  . 

In unit- vector notation, find (a)    a →   +   b 
→

   , (b)    a →   −   b 
→

   , and (c) a third 
vector    c →    such that    a →   −   b 

→
   +   c →   = 0 .

10 E  Find the (a) x, (b) y, and (c) z components of the sum    r →    
of the displacements    c →    and    d 

→
    whose components in meters are 

cx = 7.4, cy = ‒3.8, cz = ‒6.1; dx = 4.4, dy = ‒2.0, dz = 3.3.

11 E  SSM  (a) In unit- vector notation, what is the sum    a →   +   b 
→

    if  
   a →   = (4.0 m) ̂ i  + (3.0 m) k ̂    and    b 

→
   = (−13.0 m) ̂ i  + (7.0 m) k ̂   ? What 

are the (b) magnitude and (c) direction of    a →   +   b 
→

   ?

12 E  A car is driven east for a distance of 50 km, then north for 
30 km, and then in a direction 30° east of north for 25 km. Sketch 
the vector diagram and determine (a) the magnitude and (b) the 
angle of the car’s total displacement from its starting point.

13 E  A person desires to reach a point that is 3.40 km from her 
present location and in a direction that is 35.0° north of east. 
However, she must travel along streets that are oriented either 
north– south or east– west. What is the minimum  distance she 
could travel to reach her destination?

14 E  You are to make four straight- line moves over a flat desert 
floor, starting at the origin of an xy coordinate system and end-
ing at the xy coordinates (−140 m, 30 m). The x component and 
y component of your moves are the following,  respectively, in 
meters: (20 and 60), then (bx and −70), then (−20 and cy), then 
(−60 and −70). What are (a) component bx and (b) component 
cy? What are (c) the magnitude and (d)  the angle (relative to 
the positive direction of the x axis) of the overall displacement?

15 E  SSM  The two vectors    a →    
and    b 

→
    in Fig. 3.8 have equal mag-

nitudes of 10.0 m and the angles 
are θ1 = 30° and θ2 = 105°. Find 
the (a) x and (b) y components of 
their vector sum    r →   , (c) the mag-
nitude of    r →   , and (d) the angle    r →    
makes with the positive direction 
of the x axis.

16 E  For the displacement vec-
tors    a →   = (3.0 m) ̂ i  + (4.0 m) ̂ j   and  
   b 
→

   = (5.0 m) ̂ i  + (−2.0 m) ̂ j  , give    a →   +   b 
→

    in (a) unit- vector nota-
tion, and as (b) a magnitude and (c) an angle (relative to   ̂ i  ). 
Now give    b 

→
   −   a →    in (d) unit- vector notation, and as (e) a magni-

tude and (f) an angle.

17 E  GO  Three vectors    a →   ,    b 
→

   , and    c →    each have a magnitude 
of 50 m and lie in an xy plane. Their directions relative to the 
 positive direction of the x axis are 30°, 195°, and 315°, respec-
tively. What are (a) the magnitude and (b) the angle of the vector  
   a →   +   b 

→
   +   c →   , and (c) the magnitude and (d) the angle of    a →   −   b 

→
   +  

  c →   ? What are  the (e) magnitude and (f) angle of a fourth vec-
tor    d 

→
    such that  (  a →   +   b 

→
  ) − (  c →   +   d 

→
  ) = 0 ?

18 E  In the sum    A 
→

   +   B 
→

   =  C 
→

   , vector    A 
→

    has a magnitude of 12.0 m 
and is angled 40.0° counterclockwise from the +x  direction, and 
 vector   C 

→
    has a magnitude of 15.0 m and is  angled 20.0° counter-

clockwise from the ‒x direction. What are (a) the magnitude and 
(b) the angle (relative to +x) of    B 

→
   ?

19 E  In a game of lawn chess, where pieces are moved  between 
the centers of squares that are each 1.00 m on edge, a knight is 
moved in the following way: (1) two squares forward, one square 
rightward; (2) two squares leftward, one square forward; (3) two 
squares forward, one square leftward. What are (a) the magni-
tude and (b) the angle (relative to “forward”) of the knight’s 
overall displacement for the  series of three moves?
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61problems

32 H  In Fig. 3.11, a cube of edge 
length a sits with one  corner at the 
origin of an xyz coordinate sys-
tem. A body  diagonal is a line that 
extends from one corner to another 
through the center. In unit- vector 
notation, what is the body  diago-
nal that extends from the corner at 
(a) coordinates (0, 0, 0), (b) coor-
dinates (a, 0, 0), (c) coordinates (0, a,  0), and (d)  coordinates  
(a, a, 0)? (e) Determine the  angles that the body diagonals make 

30 M  GO  Here are two vectors:

   a →   = (4.0 m) ̂ i  − (3.0 m) ̂ j  and   b 
→

   = (6.0 m) ̂ i  + (8.0 m) ̂ j . 

What are (a) the magnitude and (b) the angle (relative to   ̂ i  ) of    a →   ?  
What are (c) the magnitude and (d) the angle of    b 

→
   ? What  

are (e) the magnitude and (f) the angle of    a →   +   b 
→

   ; (g)  the 
 magnitude and (h) the angle of    b 

→
   −   a →   ; and (i) the mag nitude 

and  ( j) the angle of    a →   −   b 
→

   ? (k) What is the angle  between  
the directions of    b 

→
   −   a →    and    a →   −   b 

→
   ?

31 M  In Fig. 3.10, a vector    a →    with a magnitude of 17.0 m is 
 directed at angle θ = 56.0° counterclockwise from the +x axis. 
What are the components (a) ax and (b) ay of the vector? A 
second coordinate system is inclined by angle θʹ = 18.0° with 
respect to the first. What are the components (c)   a x   ́    and (d)   a y   ′    
in this primed coordinate system?

20 M  FCP  An explorer is caught in a whiteout (in which the 
snowfall is so thick that the ground cannot be distinguished 
from the sky) while returning to base camp. He was supposed to 
travel due north for 5.6 km, but when the snow clears, he discov-
ers that he actually traveled 7.8 km at 50° north of due east. (a) 
How far and (b) in what direction must he now travel to reach 
base camp?

21 M  GO  An ant, crazed by the Sun on a hot Texas after-
noon, darts over an xy plane scratched in the dirt. The x 
and y  components of four consecutive darts are the follow-
ing, all  in  centimeters: (30.0, 40.0), (bx, −70.0), (−20.0, cy), 
(−80.0, −70.0). The overall displacement of the four darts has 
the xy components (−140, −20.0). What are (a) bx and (b) cy? 
What are the (c) magnitude and (d) angle (relative to the posi-
tive direction of the x axis) of the overall  displacement?

22 M  (a) What is the sum of the following four vectors in unit- 
vector notation? For that sum, what are (b) the magnitude, (c) 
the angle in degrees, and (d) the angle in radians?

   E 
→

   : 6.00 m at  +0.900 rad   F 
→

   : 5.00 m at −75.0°

  G 
→

   : 4.00 m at +1.20 rad  H 
→

   : 6.00 m at −21.0° 

23 M  If    B 
→

    is added to   C 
→

   = 3.0 ̂ i  + 4.0 ̂ j  , the result is a vector in the 
positive direction of the y axis, with a magnitude equal to that of   C 

→
   .  

What is the magnitude of    B 
→

   ?

24 M  GO  Vector    A 
→

   , which is directed along an x axis, is to be 
added to vector    B 

→
   , which has a magnitude of 7.0 m. The sum is 

a third vector that is directed along the y axis, with a magnitude 
that is 3.0 times that of    A 

→
   . What is that magnitude of    A 

→
   ?

25 M  GO  Oasis B is 25 km due east of oasis A. Starting from 
 oasis A, a camel walks 24 km in a direction 15° south of east and 
then walks 8.0 km due north. How far is the camel then from 
 oasis B?

26 M  What is the sum of the following four vectors in (a) unit- 
vector notation, and as (b) a magnitude and (c) an angle?

    A 
→

   = (2.00 m) ̂ i  + (3.00 m) ̂ j    B 
→

   : 4.00 m, at +65.0°

  C 
→

   = (−4.00 m) ̂ i  + (−6.00 m) ̂ j   D 
→

   : 5.00 m, at −235° 

27 M  GO  If     d 
→

    1   +    d 
→

    2   = 5   d 
→

    3  ,    d 
→

    1   −    d 
→

    2   = 3   d 
→

    3   , and     d 
→

    3   = 2 ̂ i  + 4 ̂ j  , then 
what are, in unit- vector notation, (a)     d 

→
    1    and (b)     d 

→
    2   ?

28 M  Two beetles run across flat sand, starting at the same 
point. Beetle 1 runs 0.50 m due east, then 0.80 m at 30° north 
of due east. Beetle 2 also makes two runs; the first is 1.6 m at 
40° east of due north. What must be (a) the magnitude and (b) 
the direction of its second run if it is to end up at the new loca-
tion of beetle 1?

29  M  FCP  GO  Typical backyard ants often create a network 
of chemical trails for guidance. Extending outward from the nest, 
a trail branches (bifurcates) repeatedly, with 60° between the 
branches. If a roaming ant chances upon a trail, it can tell the way 
to the nest at any branch point: If it is moving away from the nest, 
it has two choices of path requiring a small turn in its travel direc-
tion, either 30° leftward or 30° rightward. If it is moving toward 
the nest, it has only one such choice.  Figure 3.9 shows a typical 
ant trail, with lettered straight sections of 2.0 cm length and sym-
metric bifurcation of 60°. Path v is parallel to the y axis. What are 

the (a) magnitude and (b) angle (relative to the positive direction 
of the superimposed x axis) of an ant’s displacement from the nest 
(find it in the figure) if the ant enters the trail at point A? What 
are the (c) magnitude and (d) angle if it enters at point B?

Figure 3.9 Problem 29.
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62 chapter 3 Vectors

with the adjacent edges. (f) Determine the length of the body 
diagonals in terms of a.

Module 3.3  Multiplying Vectors
33 E  For the vectors in Fig. 3.12, with 
a = 4, b = 3, and c = 5, what are (a) the 
magnitude and (b) the direction of    a →   ×  
  b 
→

   , (c) the magnitude and (d) the direc-
tion of    a →   ×   c →   , and (e) the magnitude 
and (f) the direction of    b 

→
   ×   c →   ? (The z 

axis is not shown.)

34 E  Two vectors are presented as    a →   
= 3.0 ̂ i  + 5.0 ̂ j   and    b 

→
   = 2.0 ̂ i  + 4.0 ̂ j  . Find 

(a)    a →   ×   b 
→

   , (b)    a →   ⋅   b 
→

   , (c)  (  a →   +   b 
→

  ) ⋅   b 
→

   , and (d) the component 
of    a →    along the direction of    b 

→
   . (Hint: For (d), consider Eq. 3.3.1 

and Fig. 3.3.1.)

35 E  Two vectors,    r →    and    s →   , lie in the xy plane. Their magnitudes 
are 4.50 and 7.30 units, respec tively, and their  directions are 320° 
and 85.0°, respectively, as measured counterclockwise from the 
positive x axis. What are the values of (a)    r →   ⋅   s →    and (b)    r →   ×   s →   ?

36 E  If     d 
→

    1   = 3 ̂ i  − 2 ̂ j  + 4 k ̂   ,     d 
→

    2   = − 5 ̂ i  + 2 ̂ j  −  k ̂   , then what is  
 (   d 
→

    1    +   d 
→

    2  ) ⋅ (   d 
→

    1    + 4  d 
→

    2  ) ?

37 E  Three vectors are given by    a →   = 3.0 ̂ i  + 3.0 ̂ j  − 2.0 k ̂   ,  
   b 
→

   = − 1.0 ̂ i  − 4.0 ̂ j  + 2.0 k ̂   , and    c →   = 2.0 ̂ i  + 2.0 ̂ j  + 1.0 k ̂   . Find (a)    a →   ⋅  
(  b 
→

   ×   c →  ) , (b)    a →   ⋅ (  b 
→

   +   c →  ) , and (c)    a →   × (  b 
→

   +   c →  ) .

38 M  GO  For the following three vectors, what is  3 C 
→

   ⋅ (2  A 
→

   ×   B 
→

  ) ?

    A 
→

   = 2.00 ̂ i  + 3.00 ̂ j  − 4.00 k ̂  

   B 
→

   = − 3.00 ̂ i  + 4.00 ̂ j  + 2.00 k ̂     C 
→

   = 7.00 ̂ i  − 8.00 ̂ j  

39 M  Vector    A 
→

    has a magnitude of 6.00 units, vector    B 
→

    has a 
magnitude of 7.00 units, and    A 

→
   ⋅   B 

→
    has a value of 14.0. What is 

the angle between the directions of    A 
→

    and    B 
→

   ?

40 M  GO  Displacement     d 
→

    1    is in the yz plane 63.0° from the posi-
tive direction of the y axis, has a positive z component, and has 
a magnitude of 4.50 m. Displacement     d 

→
    2    is in the xz plane 30.0° 

from the positive direction of the x axis, has a positive z compo-
nent, and has magnitude 1.40 m. What are (a)     d 

→
    1   ⋅    d 

→
    2   , (b)     d 

→
    1   ×    d 

→
    2   ,  

and (c) the angle between     d 
→

    1    and     d 
→

    2   ?

41 M  SSM  Use the definition of scalar product,    a →   ⋅   b 
→

   = ab cos θ ,  
and the fact that    a →   ⋅   b 

→
   =  a  x   b  x   +  a  y   b  y   +  a  z   b  z    to calculate the angle 

between the two vectors given by    a →   = 3.0 ̂ i  + 3.0 ̂ j  + 3.0 k ̂    and  
   b 
→

   = 2.0 ̂ i  + 1.0 ̂ j  + 3.0 k ̂   .

42 M  In a meeting of mimes, mime 1 goes through a displace-
ment     d 

→
    1   = (4.0 m) ̂ i  + (5.0 m) ̂ j   and mime 2 goes through a dis-

placement     d 
→

    2   = (−3.0 m) ̂ i  + (4.0  m) ̂ j  . What are (a)     d 
→

    1   ×    d 
→

    2   , 
(b)     d 

→
    1   ⋅    d 

→
    2   , (c)  (   d 

→
    1   +    d 

→
    2  ) ⋅    d 

→
    2   , and (d) the component of     d 

→
    1    along 

the direction of     d 
→

    2   ? (Hint: For (d), 
see Eq. 3.3.1 and Fig. 3.3.1.)

43 M  SSM  The three vectors 
in Fig. 3.13 have magnitudes a =  
3.00 m, b = 4.00 m, and c = 10.0 m 
and angle  θ  = 30.0°. What are (a) 
the x component and (b) the y com-
ponent of    a →   ; (c) the x component 
and (d) the y component of    b 

→
   ; and  

(e) the x component and (f) the y component of    c →   ? If    c →   = p  a →   + 
q  b 

→
   , what are the values of (g) p and (h) q?

44 M  GO  In the product    F 
→

   = q  v →   ×   B 
→

   , take q = 2,

   v →   = 2.0 ̂ i  + 4.0 ̂ j  + 6.0 k ̂     and     F 
→

   = 4.0 ̂ i  − 20 ̂ j  + 12 k ̂  . 

What then is    B 
→

    in unit- vector notation if Bx = By?

Additional Problems

45  Vectors    A 
→

    and    B 
→

    lie in an xy plane.    A 
→

    has magnitude 8.00 
and angle 130°;    B 

→
    has components Bx = −7.72 and By = −9.20. 

(a) What is  5  A 
→

   ⋅   B 
→

   ? What is  4  A 
→

   × 3  B 
→

    in (b) unit- vector notation 
and (c) magnitude- angle notation with spherical  co ordinates 
(see Fig. 3.14)? (d) What is the angle between the directions 
of    A 

→
    and  4  A 

→
   × 3  B 

→
   ? (Hint: Think a bit before you resort to a 

calculation.) What is    A 
→

   + 3.00 k ̂    in (e) unit- vector notation and 
(f) magnitude- angle notation with  spherical coordinates?

46 GO  Vector    a →    has a magnitude of 5.0 m and is directed east. 
 Vector    b 

→
    has a magnitude of 4.0 m and is directed 35° west of due 

north. What are (a) the magnitude and (b) the direction of    a →   +   b 
→

   ?  
What are (c) the magnitude and (d) the direction of    a →   −   b 

→
   ? (e) 

Draw a vector diagram for each combination.

47  Vectors    A 
→

    and    B 
→

    lie in an xy plane.    A 
→

    has magnitude 8.00 
and angle 130°;    B 

→
    has components Bx = −7.72 and By = −9.20. 

What are the angles between the negative direction of the y 
axis and (a) the direction of    A 

→
   , (b) the direction of the prod-

uct    A 
→

   ×   B 
→

   , and (c) the direction of    A 
→

   × (  B 
→

   + 3.00 k ̂  ) ?

48 GO  Two vectors    a →    and    b 
→

    have the components, in meters, 
ax = 3.2, ay = 1.6, bx = 0.50, by = 4.5. (a) Find the angle  between 
the directions of    a →    and    b 

→
   . There are two vectors in the xy plane 

that are  perpendicular to    a →    and have a magnitude of 5.0 m. One, 
vector    c →   , has a positive x component and the other, vector    d 

→
   , a 

negative x component. What are (b) the x component and (c) 
the y component of vector    c →   , and (d) the x component and (e) 
the y component of vector    d 

→
   ?

49 SSM  A sailboat sets out from the U.S. side of Lake Erie for a 
point on the Canadian side, 90.0 km due north. The sailor, how-
ever, ends up 50.0 km due east of the starting point. (a) How far 
and (b) in what direction must the sailor now sail to reach the 
original destination?

50  Vector     d 
→

    1    is in the negative direction of a y axis, and vec-
tor     d 

→
    2    is in the positive direction of an x axis. What are the 

directions of (a)     d 
→

    2   / 4  and (b)     d 
→

    1   / (−4) ? What are the magni-
tudes of products (c)     d 

→
    1   ⋅    d 

→
    2    and (d)     d 

→
    1   ⋅ (   d 

→
    2   /4) ? What is the 

direction of the vector resulting from (e)     d 
→

    1   ×    d 
→

    2    and (f)     d 
→

    2   
×    d 

→
    1   ? What is the magnitude of the vector product in (g) part (e)  

and (h) part (f)? What are the (i) magnitude and (j) direction 
of     d 

→
    1   × (   d 

→
    2   / 4) ?
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63problems

51  Rock faults are ruptures along which opposite faces of rock 
have slid past each other. In Fig. 3.15, points A and B  coincided 
before the rock in the foreground slid down to the right. The 
net displacement    

⟶
 AB    is along the plane of the fault. The hori-

zontal component of    
⟶

 AB    is the strike- slip AC. The component 
of    

⟶
 AB    that is directed down the plane of the  fault is the dip- 

slip AD. (a) What is the magnitude of the net displacement    
⟶

 AB     
if the strike- slip is 22.0 m and the dip- slip is 17.0 m? (b) If the 
plane of the fault is inclined at angle  ϕ  = 52.0° to the horizontal, 

what is the vertical component of    
⟶

 AB   ?

57 SSM  If    B 
→

    is added to    A 
→

   , the result is  6.0 ̂ i  + 1.0 ̂ j  . If    B 
→

    is sub-
tracted from    A 

→
   , the result is  − 4.0 ̂ i  + 7.0 ̂ j  . What is the magnitude 

of    A 
→

   ?
58  A vector    d 

→
    has a magnitude of 2.5 m and points north. 

What are (a) the magnitude and (b) the direction of 4.0   d 
→

   ? What 
are (c) the magnitude and (d) the direction of ‒ 3.0   d 

→
   ?

59     A 
→

    has the magnitude 12.0 m and is angled 60.0° 
 counterclockwise from the positive direction of the x axis of an xy 
coordinate system. Also,    B 

→
   = (12.0 m) ̂ i  + (8.00 m) ̂ j   on that same 

coordinate system. We now rotate the system counterclockwise 
about the origin by 20.0° to form an x′y′ system. On this new 
system, what are (a)    A 

→
    and (b)    B 

→
   , both in unit-vector notation?

60  If    b 
→

   = 2  c →  ,   a →   +   b 
→

   = 4  c →   , and    c →   = 3 ̂ i  + 4 ̂ j  , then what are (a)    a →    
and (b)    b 

→
   ?

61  (a) In unit- vector notation, what is    r →   =   a →   −   b 
→

   +   c →    if    a →   =  
5.0 ̂ i  + 4.0 ̂ j  − 6.0 k ̂   ,    b 

→
   = − 2.0 ̂ i  + 2.0 ̂ j  + 3.0 k ̂   , and    c →   = 4.0 ̂ i  + 3.0 ̂ j   

+ 2.0 k ̂   ? (b) Calculate the angle between    r →    and the positive z 
axis. (c) What is the component of    a →    along the  direction of    b 

→
   ? 

(d) What is the component of    a →    perpendicular to the direction 
of    b 

→
    but in the plane of    a →    and    b 

→
   ? (Hint: For (c), see Eq. 3.3.1 and 

Fig. 3.3.1; for (d), see Eq. 3.3.5.)

62  A golfer takes three putts to get the ball into the hole. 
The first putt displaces the ball 3.66 m north, the second 1.83 m 
southeast, and the third 0.91 m southwest. What are (a) the 
magnitude and (b) the direction of the displacement needed to 
get the ball into the hole on the first putt?

63  Here are three vectors in meters:

    d 
→

    1   = −3.0 ̂ i  + 3.0 ̂ j  + 2.0 k ̂  

   d 
→

    2   = −2.0 ̂ i  − 4.0 ̂ j  + 2.0 k ̂  

   d 
→

    3   = 2.0 ̂ i  + 3.0 ̂ j  + 1.0 k ̂  . 

What results from (a)     d 
→

    1   ⋅ (   d 
→

    2   +    d 
→

    3  ) , (b)     d 
→

    1   ⋅ (   d 
→

    2   ×    d 
→

    3  ) , and  

(c)     d 
→

    1   × (   d 
→

    2   +    d 
→

    3  ) ?

64 SSM  A room has dimensions 3.00 m (height) × 3.70 m ×  
4.30 m. A fly starting at one corner flies around, ending up at 
the diagonally opposite corner. (a) What is the magnitude of 
its displacement? (b) Could the length of its path be less than 
this magnitude? (c) Greater? (d) Equal? (e) Choose a suitable 
coordinate system and express the components of the displace-
ment vector in that system in unit- vector notation. (f) If the fly 
walks, what is the length of the shortest path? (Hint: This can be 
answered without calculus. The room is like a box. Unfold its 
walls to flatten them into a plane.)

65  A protester carries his sign of protest, starting from the ori-
gin of an xyz coordinate system, with the xy plane horizontal. 
He moves 40 m in the negative direction of the x axis, then 20 m 
along a perpendicular path to his left, and then 25 m up a water 
tower. (a) In unit- vector notation, what is the displacement of 
the sign from start to end? (b) The sign then falls to the foot of 
the tower. What is the magnitude of the displacement of the sign 
from start to this new end?

66  Consider    a →    in the positive direction of x,    b 
→

    in the positive 
direction of y, and a scalar d. What is the direction of    b 

→
   / d  if d is 

(a) positive and (b) negative? What is the magnitude of (c)    a →   ⋅   b 
→

    
and (d)    a →   ⋅   b 

→
   / d ? What is the direction of the vector resulting 

52  Here are three displacements, each measured in meters:     d 
→

    1   
= 4.0 ̂ i  + 5.0 ̂ j  − 6.0 k ̂   ,     d 

→
    2   = − 1.0 ̂ i  + 2.0 ̂ j  + 3.0 k ̂   , and     d 

→
    3   = 4.0 ̂ i  + 3.0 ̂ j   

+ 2.0 k ̂   . (a) What is    r →   =    d 
→

    1   −    d 
→

    2   +    d 
→

    3   ? (b) What is the angle 
between    r →    and the positive z axis? (c) What is the component 
of     d 

→
    1    along the direction of     d 

→
    2   ? (d) What is the component of     d 

→
    1    

that is perpendicular to the direction of     d 
→

    2    and in the plane of     d 
→

    1    
and     d 

→
    2   ? (Hint: For (c), consider Eq. 3.3.1 and Fig. 3.3.1; for (d), 

consider Eq. 3.3.5.)

53 SSM  A vector    a →    of magnitude 10 units and another vector    b 
→

    
of magnitude 6.0 units differ in directions by 60°. Find (a) the 
scalar product of the two vectors and (b) the magnitude of the 
vector product    a →   ×   b 

→
   .

54  For the vectors in Fig. 3.12, with a = 4, b = 3, and c = 5, cal-
culate (a)    a →   ⋅   b 

→
   , (b)    a →   ⋅   c →   , and (c)    b 

→
   ⋅   c →   .

55  A particle undergoes three successive displacements in a 
plane, as follows:     d 

→
    1   , 4.00 m southwest; then     d 

→
    2   , 5.00 m east; 

and  finally     d 
→

    3   , 6.00 m in a direction 60.0° north of east. Choose 
a coordinate system with the y axis pointing north  and the x 
axis pointing east. What are (a) the x component and (b) the y 
component of     d 

→
    1   ? What are (c) the x component and (d) the  

y component of     d 
→

    2   ? What are (e)  the x component and (f)  
the y component of     d 

→
    3   ? Next, consider the net displacement of 

the particle for the three successive displacements. What are 
(g) the x component, (h) the y component, (i) the magnitude, 
and ( j) the direction of the net displacement? If the particle is 
to return directly to the  starting point, (k) how far and (l) in 
what direction should it move?

56  Find the sum of the following four vectors in (a) unit- vector 
notation, and as (b) a magnitude and (c) an angle relative to +x.

  

  P 
→

   :  10.0 m, at 25.0°  counterclockwise from +x

     

 Q 
→

   :  12.0 m, at 10.0°  counterclockwise from +y

     
  R 
→

   :  8.00 m, at 20.0°  clockwise from −y
     

  S 
→

   :  9.00 m, at 40.0°  counterclockwise from −y
   

 

 

 

 

 

   

A

D

C

Strike-slip

Dip-slip

Fault plane

B

�

Figure 3.15 Problem 51.
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64 chapter 3 Vectors

from (e)    a →   ×   b 
→

    and (f)    b 
→

   ×   a →   ? (g) What is the magnitude of the 
vector product in (e)? (h) What is the magnitude of the vector 
product in (f)? What are (i) the magnitude and (j) the direction 
of    a →   ×   b 

→
   / d  if d is positive?

67  Let   ̂ i   be directed to the east,   ̂ j   be directed to the north, and   k ̂     
be directed upward. What are the values of products (a)   ̂ i  ⋅  k ̂   , (b)  
 (− k ̂  ) ⋅ (− ̂ j ) , and (c)   ̂ j  ⋅ (− ̂ j ) ? What are the directions (such as east or  
down) of products (d)   k ̂   ×  ̂ j  , (e)  (− ̂ i ) × (− ̂ j ) , and (f)  (− k ̂  ) × (− ̂ j ) ?

68  A bank in downtown Boston is robbed (see the map in 
Fig. 3.16). To elude police, the robbers escape by helicopter, 
making three successive flights described by the following dis-
placements: 32 km, 45° south of east; 53 km, 26° north of west; 
26 km, 18° east of south. At the end of the third flight they are 
captured. In what town are they apprehended?

5.0   d 
→

   ? What are (c) the magnitude and (d) the direction of the 
vector −2.0   d 

→
   ?

72  A fire ant, searching for hot sauce in a picnic area, 
goes through three displacements along level ground:     d 

→
    1    for 

0.40 m southwest (that is, at 45° from directly south and from 
directly west),     d 

→
    2    for 0.50 m due east,     d 

→
    3    for 0.60 m at 60° 

north of east. Let the positive x direction be east and the posi-
tive y direction be north. What are (a) the x component and 
(b) the y component of     d 

→
    1   ? Next, what are (c) the x compo-

nent and (d) the y component of     d 
→

    2   ? Also, what are (e) the x 
component and (f) the y component of     d 

→
    3   ?

What are (g) the x component, (h) the y component, (i) the 
magnitude, and (j) the direction of the ant’s net displacement? If 
the ant is to return directly to the starting point, (k) how far and 
(l) in what direction should it move?

73  Two vectors are given by    a →   = 3.0 ̂ i  + 5.0 ̂ j   and    b 
→

   = 2.0 ̂ i  + 4.0 ̂ j  .  
Find (a)    a →   ×   b 

→
   , (b)    a →   ⋅   b 

→
   , (c)  (  a →   +   b 

→
  ) ⋅   b 

→
   , and (d) the compo-

nent of    a →    along the direction of    b 
→

   .

74  Vector    a →    lies in the yz plane 63.0° from the positive direc-
tion of the y axis, has a positive z component, and has magnitude 
3.20 units. Vector    b 

→
    lies in the xz plane 48.0° from the positive 

direction of the x axis, has a positive z component, and has mag-
nitude 1.40 units. Find (a)    a →   ⋅   b 

→
   , (b)    a →   ×   b 

→
   , and (c) the angle 

between    a →    and    b 
→

   .

75  Find (a) “north cross west,” (b) “down dot south,” (c) “east 
cross up,” (d) “west dot west,” and (e) “south cross south.” Let 
each “vector” have unit magnitude.

76  A vector    B 
→

   , with a magnitude of 8.0 m, is added to a vec-
tor    A 

→
   , which lies along an x axis. The sum of these two vectors is 

a third vector that lies along the y axis and has a magnitude that is 
twice the magnitude of    A 

→
   . What is the magnitude of    A 

→
   ?

77  A man goes for a walk, starting from the origin of an xyz 
coordinate system, with the xy plane horizontal and the x axis 
eastward. Carrying a bad penny, he walks 1300 m east, 2200 m 
north, and then drops the penny from a cliff 410 m high. (a) 
In unit- vector notation, what is the displacement of the penny 
from start to its landing point? (b) When the man returns to 
the origin, what is the magnitude of his displacement for the 
return trip?

78  What is the magnitude of    a →   × (  b 
→

   ×   a →  )  if a = 3.90, b = 2.70, 
and the angle between the two vectors is 63.0°?

79  Hedge maze. A hedge maze is a maze formed by tall rows of 
hedge. After entering, you search for the center point and then 
for the exit. Figure 3.18a shows the entrance to such a maze and 
the first two choices we make at the junctions we encounter in 
moving from point i to point c. We undergo three displacements 
as indicated in the overhead view of Fig. 3.18b: d1 = 6.00 m at  
θ1 = 40°, d2 = 8.00 m at θ2 = 30°, and d3 = 5.00 m at θ3 = 0°, where 
the last segment is parallel to the superimposed x axis. When we 
reach point c, what are (a) the magnitude and (b) the angle of 
our net displacement    d 

→
    from point i?

69  A wheel with a radius 
of 45.0  cm rolls without slip-
ping along a horizontal floor 
(Fig. 3.17). At time  t1, the dot P 
painted on the rim of the wheel 
is at the point of contact between 
the wheel and the floor. At a 
later time t2, the wheel has rolled 
through one- half of a revolution. 
What are (a) the magnitude and 
(b) the angle (relative to the floor) of the displacement of P?

70  A woman walks 250 m in the direction 30° east of north, 
then 175 m directly east. Find (a) the magnitude and (b) the 
angle of her final displacement from the starting point. (c) Find 
the distance she walks. (d) Which is greater, that distance or the 
magnitude of her displacement?

71  A vector    d 
→

    has a magnitude 3.0 m and is directed south. 
What are (a) the magnitude and (b) the direction of the vector 

BOSTON
and Vicinity

Wellesley

Waltham

Brookline
Newton

Arlington

Lexington
Woburn

Medford

Lynn

Salem

Quincy

5 10 km

BOSTON
Massachusetts

Bay

Bank

Walpole

Framingham

Weymouth

Dedham

Winthrop

N

Figure 3.16 Problem 68.

P

At time t1 At time t2

P

Figure 3.17 Problem 69.
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65problems

83  Jungle gym, dot products, unit vectors. A coordinate system 
is laid out along the bars of a large 3D jungle gym (Fig. 3.20). 
You start at the origin and then move according to the following 
instructions. The direction for each move is explicitly shown but 
the distance (in meters) you move in that direction must be deter-
mined by evaluating a dot product of the given vectors    A 

→
    and    B 

→
  .  

For example, the first move is 21 m in the − x direction. What is the 
magnitude dnet of your final displacement from the origin?

 (a) −x,    A 
→

   = 3.0 i ̂  ,   B 
→

   = 7.0 i ̂   

 (b) −z,    A 
→

     = 2.0 k ̂  ,   B 
→

   = 3.0  j ̂   

 (c) +y,    A 
→

   = 5.0  j ̂  ,   B 
→

   = 3.0  j ̂   

 (d) +x,    A 
→

   = 7.0 k ̂  ,   B 
→

   = 2.0 k ̂   

 (e) −z,    A 
→

   = 3.0 i ̂  ,   B 
→

   = 2.0 i ̂   

 (f) −y,    A 
→

   = 3.0 i ̂  ,   B 
→

    = 7.0  j ̂   

0
x

y

z

Figure 3.20 Problems 83–86.

84  Jungle gym, cross products, unit vectors. A coordinate sys-
tem is laid out along the bars of a large 3D jungle gym (Fig. 3.20). 
You start at the origin and then move according to the follow-
ing steps. For each step, the distance (in meters) and direction 
in which you move are given by the cross product    A 

→
   ×   B 

→
    of the 

given vectors    A 
→

    and    B 
→

  .  For example, the first move is 18 m in the 
+z direction. What is the magnitude dnet of your final displace-
ment from the origin?

 (a)    A 
→

   = 3.0 i ̂  ,   B 
→

   = 6.0  j ̂   

 (b)    A 
→

   = −4.0 i ̂  ,   B 
→

   = 3.0 k ̂   

 (c)    A 
→

   = 2.0  j ̂  ,   B 
→

   = 4.0 k ̂   

 (d)    A 
→

   = 3.0  j ̂  ,   B 
→

   = −8.0  j ̂   

 (e)    A 
→

   = 4.0 k ̂  ,   B 
→

   = −2.0 i ̂   

 (f)    A 
→

   = 2.0 i ̂  ,   B 
→

   = −4.0  j ̂   

80  A dot product, a cross product. We have two vectors: 

 

 

  a →   =  a  x   i ̂   +  a  y    j ̂  

   b 
→

   =  b  x   i ̂   +  b  y    j ̂  . 

What is the ratio by /bx if (a)    a →   ⋅   b 
→

   = 0  and (b)    a →   ×   b 
→

   = 0 ? 

81  Orienteering. In an orienteering class, you have the goal 
of moving as far (straight- line distance) from base camp as 
possible by making three straight- line moves. You may use the 
following displacements in any order: (a)    a →   , 2.0 km due east 
(directly toward the east); (b)    b 

→
   , 2.0 km 30° north of east (at an 

angle of 30° toward the north from due east); (c)    c →   , 1.0 km due 
west. Alternately, you may substitute either  −   b 

→
    for    b 

→
    or  −  c →    

for    c →  .  What is the greatest distance you can be from base camp 
at the end of the third displacement (regardless of direction)?

82  Mt. Lafayette hike. Figure 3.19 shows a trail 5.8 km long, 
leading from a trailhead (elevation 1770 ft) to the summit of 
Mt. Lafayette (elevation 5250 ft) in New Hampshire. Sara 
hikes the trail. What are the (a) magnitude L and (b) eleva-
tion angle θ (relative to the horizontal) of Sara’s displacement 
for the hike? (Measure the component in the plane of the map 
by laying the edge of a sheet of paper next to the line in the 
map, marking off the line’s length d, and then using the scale 
on the map.)

Franconia
Notch

0 1 2 3 km

5089
5250 Mt. Lincoln

Mt. Lafayette

Bridle

Old

Path

Figure 3.19 Problem 82.
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i
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θ2
d1 d2

d3

Figure 3.18 Problem 79.
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85  Jungle gym, dot products, magnitude- angle. A coordi-
nate system is laid out along the bars of a large 3D jungle gym 
(Fig. 3.20). You start at the origin and then move according 
to the following instructions. The direction for each move is 
explicitly shown but the distance (in meters) you move in that 
direction must be determined by evaluating a dot product of 
vectors    A 

→
    and    B 

→
    with the given magnitudes and separation 

angle θ. For example, the first move is 6.0 m in the +x direc-
tion. What is the magnitude dnet of your final displacement 
from the origin?

 (a) +x, A = 3.0, B = 4.0, θ = 60°

 (b) +y, A = 4.0, B = 5.0, θ = 90°

 (c) −z, A = 6.0, B = 5.0, θ = 120°

 (d) −x, A = 5.0, B = 4.0, θ = 0°

 (e) −y, A = 4.0, B = 7.0, θ = 60°

 (f) +z, A = 4.0, B = 10, θ = 60°

86  Jungle gym, cross products, magnitude- angle. A coordi-
nate system is laid out along the bars of a large 3D jungle gym 
(Fig. 3.20). You start at the origin and then move according to 
the following instructions. The direction for each move is explic-
itly shown but the distance (in meters) you move in that direc-
tion must be determined by evaluating the cross product    A 

→
   ×   B 

→
    

of vectors    A 
→

    and    B 
→

    with the given magnitudes and separation 
angle θ. For example, the first move is 12 m in the +y direction. 
What is the magnitude dnet of your final displacement from the 
origin?

 (a) +y, A = 3.0, B = 4.0, θ = 90°

 (b) −z, A = 3.0, B = 2.0, θ = 30°

 (c) −y, A = 6.0, B = 8.0, θ = 0°

 (d) +x, A = 4.0, B = 5.0, θ = 150°

 (e) −y, A = 7.0, B = 2.0, θ = 30°

 (f) −x, A = 4.0, B = 3.0, θ = 90°

87  Road rally. Figure 3.21 gives an incomplete map of a road 
rally. From the starting point (at the origin), you must use avail-
able roads to go through the following displacements: (1)    a →    to 
checkpoint Able, magnitude 36 km, due east; (2)    b 

→
    to check-

point Baker, due north; (3)    c →    to checkpoint Charlie, magnitude 
25 km, at the angle shown. The magnitude of your net displace-
ment    d 

→
    from the starting point is 62.0 km. What is the magni-

tude b of    b 
→

  ? 
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Figure 3.21 Problem 87.

88  Vector putt- putt. Figure 3.22 shows a grid laid out on a putt- 
putt golf course. You are to tee off at the lower left corner and, 
through three putts, get the ball to roll into the cup. However, 
you can use only the following displacements (each in meters), 
without repeating a displacement. What displacements will get 
the ball into the cup without the ball rolling off the grid? 

A:  6.0 i ̂   + 2.0  j ̂    B:  − 2.0 i ̂   − 1.0  j ̂    C:  4.0 i ̂   + 5.0  j ̂    D:  4.0 i ̂   

E:  2.0 i ̂   + 6.0  j ̂    F:  2.0 i ̂   − 3.5  j ̂    G:  1.0 m, at 90°  from +x 

0 1
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y 
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Tee

Cup

2 3 4 5 6 7

Figure 3.22 Problem 88.
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4.1 POSITION AND DISPLACEMENT
Learning Objectives 
After reading this module, you should be able to . . .

4.1.1 Draw two-dimensional and three-dimensional 
position vectors for a particle, indicating the 
 components along the axes of a coordinate system.

4.1.2 On a coordinate system, determine the direction 
and magnitude of a particle’s position vector from 
its components, and vice versa.

4.1.3 Apply the relationship between a particle’s dis-
placement vector and its initial and final position 
vectors.

Key Ideas 
● The location of a particle relative to the origin of 
a coordinate system is given by a position vector    r →   , 
which in unit-vector notation is

   r →   = x ̂ i  + y ̂ j  + z k ̂  . 

Here  x  ̂ i  ,  y  ̂ j  , and  z k ̂    are the vector components of posi-
tion vector    r →   , and x, y, and z are its scalar components 
(as well as the coordinates of the particle).

● A position vector is described either by a magnitude 
and one or two angles for orientation, or by its vector 
or scalar components.

● If a particle moves so that its position vector changes 
from     r →    1    to     r →    2   , the particle’s displacement  Δ  r →    is

 Δ  r →   =    r →    2   −    r →    1  . 

The displacement can also be written as

  Δ  r →   = ( x  2   −  x  1  ) ̂ i  + ( y  2   −  y  1  ) ̂ j  + ( z  2   −  z  1  ) k ̂  
  = Δx ̂ i  + Δy ̂ j  + Δz k ̂  . 

What Is Physics?
In this chapter we continue looking at the aspect of physics that analyzes  motion, 
but now the motion can be in two or three dimensions. For example, medical 
 researchers and aeronautical engineers might concentrate on the physics of the 
two- and three-dimensional turns taken by fighter pilots in dogfights because 
a modern high-performance jet can take a tight turn so quickly that the pilot 
 immediately loses consciousness. A sports engineer might focus on the physics of 
basketball. For example, in a free throw (where a player gets an uncontested shot 
at the basket from about 4.3 m), a player might employ the overhand push shot, in 
which the ball is pushed away from about shoulder height and then released. Or 
the player might use an underhand loop shot, in which the ball is brought  upward 

C H A P T E R  4

Motion in Two and Three 
Dimensions
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from about the belt-line level and released. The first technique is the over-
whelming choice among professional players, but the legendary Rick Barry 
set the record for free-throw shooting with the underhand technique.  FCP  

Motion in three dimensions is not easy to understand. For example, you 
are probably good at driving a car along a freeway (one-dimensional motion) 
but would probably have a difficult time in landing an airplane on a runway 
(three-dimensional motion) without a lot of training.

In our study of two- and three-dimensional motion, we start with posi-
tion and displacement.

Position and Displacement
One general way of locating a particle (or particle-like object) is with a posi-
tion vector    r →   , which is a vector that extends from a reference point (usually 
the origin) to the particle. In the unit-vector notation of Module 3.2,    r →    can 
be written

    r →   = x ̂ i  + y ̂ j  + z k ̂  ,  (4.1.1)

where  x ̂ i  ,  y ̂ j  , and  z k ̂    are the vector components of    r →    and the coefficients x, y, 
and z are its scalar components.

The coefficients x, y, and z give the particle’s location along the coor-
dinate axes and relative to the origin; that is, the particle has the rectangular 
coordinates (x, y, z). For instance, Fig. 4.1.1 shows a particle with position vector

   r →   = (−3 m) ̂ i  + (2 m) ̂ j  + (5 m) k ̂   

and rectangular coordinates (‒3 m, 2 m, 5 m). Along the x axis the particle is 
3 m from the origin, in the  −  ̂ i   direction. Along the y axis it is 2 m from the 
 origin, in the  +  ̂ j   direction. Along the z axis it is 5 m from the origin, in the  +  k ̂    
 direction.

As a particle moves, its position vector changes in such a way that the vector 
always extends to the particle from the reference point (the origin). If the posi-
tion vector changes—say, from     r →    1    to     r →    2    during a certain time interval—then the 
particle’s displacement  Δ  r →    during that time interval is

  Δ  r →   =    r →    2   −    r →    1  .  (4.1.2)

Using the unit-vector notation of Eq. 4.1.1, we can rewrite this displacement as

  Δ  r →   = ( x  2   ̂ i  +  y  2   ̂ j  +  z  2   k ̂   ) − ( x  1   ̂ i  +  y  1   ̂ j  +  z  1   k ̂  ) 

 or as  Δ  r →   = ( x  2   −  x  1  ) ̂ i  + ( y  2   −  y  1  ) ̂ j  + ( z  2   −  z  1  ) k ̂  ,  (4.1.3)

where coordinates (x1, y1, z1) correspond to position vector     r →    1    and coordinates 
(x2, y2, z2) correspond to position vector     r →    2   . We can also rewrite the displacement 
by substituting Δx for (x2 − x1), Δy for (y2 − y1), and Δz for (z2 − z1):

  Δ  r →   = Δx ̂ i  + Δy ̂ j  + Δz k ̂  .  (4.1.4)

Checkpoint 4.1.1
A bat flies from xyz coordinates (−2 m, 4 m, −3 m) to coordinates (6 m, −2 m, −3 m). 
Its displacement vector is parallel to which plane?

y

x

z

(–3 m)i
(2 m)j(5 m)k

O

ˆ
ˆ

ˆ

r

To locate the 
particle, this
is how far 
parallel to z.

This is how far 
parallel to y.

This is how far 
parallel to x.

Figure 4.1.1 The position vector    r →    for a 
particle is the vector sum of its vector 
components.
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At t = 15 s, the scalar components are

 x = (‒0.31)(15)2 + (7.2)(15) + 28 = 66 m

and y = (0.22)(15)2 ‒ (9.1)(15) + 30 = ‒57 m,

so    r →   = (66 m) ̂ i  − (57 m) ̂ j ,  (Answer)

which is drawn in Fig. 4.1.2a. To get the magnitude and 
angle of    r →   , notice that the components form the legs of a 
right triangle and r is the hypotenuse. So, we use Eq. 3.1.6:

  r =  √ 
_

  x   2  +  y   2    =  √ 
__________________

  (66 m )  2  + (−57 m )  2    

  = 87 m,  (Answer)

and  θ =  tan  −1    
y
 __ x   =  tan  −1  (  − 57 m ______ 

66 m
  )  = − 41° . (Answer)

Check: Although θ = 139° has the same tangent as ‒41°, the 
components of position vector    r →    indicate that the desired 
angle is 139° ‒ 180° = ‒41°.

(b) Graph the rabbit’s path for t = 0 to t = 25 s.

Graphing: We have located the rabbit at one instant, but 
to see its path we need a graph. So we repeat part (a) for 
several values of t and then plot the results. Figure 4.1.2b 
shows the plots for six values of t and the path connecting 
them.

A rabbit runs across a parking lot on which a set of 
 coordinate axes has, strangely enough, been drawn. The 
coordinates (meters) of the rabbit’s position as functions 
of time t  (seconds) are given by

 x = ‒0.31t2 + 7.2t + 28 (4.1.5)

and y = 0.22t2 ‒ 9.1t + 30. (4.1.6)

(a) At t = 15 s, what is the rabbit’s position vector    r →    in 
unit-vector notation and in magnitude-angle notation?

KEY IDEA

The x and y coordinates of the rabbit’s  position, as given 
by Eqs. 4.1.5 and 4.1.6, are the scalar components of the 
rabbit’s position vector    r →   . Let’s evaluate those coordi-
nates at the given time, and then we can use Eq. 3.1.6 to 
evaluate the magnitude and orientation of the position 
vector.

Calculations: We can write

    r →  (t) = x(t) ̂ i  + y(t) ̂ j .  (4.1.7)

(We write    r →  (t)  rather than    r →    because the components are 
functions of t, and thus    r →    is also.)

Sample Problem 4.1.1 Two‑dimensional position vector, rabbit run

x (m)
0

20

40

–20

–40

–60

y (m)

20 40 60 80

(b) 25 s
20 s

15 s

10 s

5 s

t = 0 s

This is the path with
various times indicated.

x (m)
0

20

40

–20

–40

–60

y (m)

20 40 60 80

(a)

–41°

r

This is the y component.

To locate the 
rabbit, this is the 
x component.

Figure 4.1.2 (a) A rabbit’s position vector    r →    at time t = 15 s. The scalar components of    r →    are 
shown along the axes. (b) The rabbit’s path and its position at six values of t.

Additional examples, video, and practice available at WileyPLUS
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Average Velocity and Instantaneous Velocity
If a particle moves from one point to another, we might need to know how fast 
it moves. Just as in Chapter 2, we can define two quantities that deal with “how 
fast”: average velocity and instantaneous velocity. However, here we must con-
sider these quantities as vectors and use vector notation.

If a particle moves through a displacement  Δ  r →    in a time interval Δt, then its 
average velocity     v →    avg    is

 average velocity =   
displacement

  ____________  
time interval

  , 

or     v →    avg   =   Δ  r →   ____ Δt
  .  (4.2.1)

This tells us that the direction of     v →    avg    (the vector on the left side of Eq. 4.2.1) must 
be the same as that of the displacement  Δ  r →    (the vector on the right side). Using 
Eq. 4.1.4, we can write Eq. 4.2.1 in vector components as

 
    v →    avg   =   

Δx ̂ i  + Δy ̂ j  + Δz k ̂  
  _______________ Δt

   =   Δx ___ Δt
    ̂ i  +   

Δy
 ___ Δt
    ̂ j  +   Δz ___ Δt

    k ̂  .  (4.2.2)

For example, if a particle moves through displacement  (12 m) ̂ i  + (3.0 m) k ̂    in 2.0 s, 
then its average velocity during that move is

      v →    avg   =   Δ  r →   ____ Δt
   =   

(12 m) ̂ i  + (3.0 m) k ̂  
  _________________ 

2.0 s
   = (6.0 m / s) ̂ i  + (1.5 m / s) k ̂  . 

That is, the average velocity (a vector quantity) has a component of 6.0 m/s along 
the x axis and a component of 1.5 m/s along the z axis.

When we speak of the velocity of a particle, we usually mean the particle’s 
instantaneous velocity    v →    at some instant. This    v →    is the value that     v →    avg    approaches 

4.2 AVERAGE VELOCITY AND INSTANTANEOUS VELOCITY
Learning Objectives 
After reading this module, you should be able to . . . 

4.2.1 Identify that velocity is a vector quantity and thus 
has both magnitude and direction and also has 
components.

4.2.2 Draw two-dimensional and three-dimensional 
velocity vectors for a particle, indicating the compo-
nents along the axes of the coordinate system.

4.2.3 In magnitude-angle and unit-vector notations, relate 
a particle’s initial and final position vectors, the time 
interval between those positions, and the particle’s 
average velocity vector.

4.2.4 Given a particle’s position vector as a function of 
time, determine its (instantaneous) velocity vector.

Key Ideas 
● If a particle undergoes a displacement  Δ  r →    in time inter-
val Δt, its average velocity     v →    avg    for that time interval is

    v →    avg   =   Δ  r →   ____ Δt
  . 

● As Δt is shrunk to 0,     v →    avg    reaches a limit called either 
the velocity or the instantaneous velocity    v →   :

   v →   =   d  r →   ___ 
dt

  , 

which can be rewritten in unit-vector notation as

   v →   =  v  x   ̂ i  +  v  y   ̂ j  +  v  z   k ̂  , 

where vx = dx/dt, vy = dy/dt, and vz = dz/dt.

● The instantaneous velocity    v →    of a particle is always 
directed along the tangent to the particle’s path at the 
particle’s position.
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in the limit as we shrink the time interval Δt to 0 about that instant. Using the 
 language of calculus, we may write    v →    as the derivative

 
    v →   =   d  r →   ___ 

dt
  .   (4.2.3)

Figure 4.2.1 shows the path of a particle that is restricted to the xy plane. As 
the particle travels to the right along the curve, its position vector sweeps to the 
right. During time interval Δt, the position vector changes from     r →    1    to     r →    2    and the 
particle’s displacement is  Δ  r →   .

To find the instantaneous velocity of the particle at, say, instant t1 (when the 
particle is at position 1), we shrink interval Δt to 0 about t1. Three things hap-
pen as we do so. (1) Position vector     r →    2    in Fig. 4.2.1 moves toward     r →    1    so that  Δ  r →    
shrinks toward zero. (2) The direction of  Δ  r →   / Δt  (and thus of     v →    avg   ) approaches the 
 direction of the line tangent to the particle’s path at position 1. (3) The average 
velocity     v →    avg    approaches the instantaneous velocity    v →    at t1.

In the limit as Δt → 0, we have     v →    avg   →   v →    and, most important here,     v →    avg    takes 
on the direction of the tangent line. Thus,    v →    has that direction as well:

Figure 4.2.1 The displacement  Δ  r →    of a particle 
during a time interval Δt, from position 1 with 
position vector     r →    1    at time t1 to position 2 with 
 position vector     r →    2    at time t2. The  tangent to 
the particle’s path at  position 1 is shown.

r1
r2

Path

Tangent

O

y

x

1
2

r

As the particle moves,
the position vector 
must change.

This is the 
displacement.∆

The result is the same in three dimensions:    v →    is always tangent to the particle’s path.
To write Eq. 4.2.3 in unit-vector form, we substitute for    r →    from Eq. 4.1.1:

   v →   =   d __ 
dt

  (x ̂ i  + y ̂ j  + z k ̂  ) =   dx ___ 
dt

    ̂ i  +   dy ___ 
dt

    ̂ j  +   dz ___ 
dt

    k ̂  . 

This equation can be simplified somewhat by writing it as

    v →   =  v  x   ̂ i  +  v  y   ̂ j  +  v  z   k ̂  ,  (4.2.4)

where the scalar components of    v →    are

   v  x   =   dx ___ 
dt

  ,  v  y   =   
dy

 ___ 
dt

  , and  v  z   =   dz ___ 
dt

  .  (4.2.5)

For example, dx/dt is the scalar component of    v →    along the x axis. Thus, we can 
find the scalar components of    v →    by differentiating the scalar components of    r →   .

Figure 4.2.2 shows a velocity vector    v →    and its scalar x and y components. Note 
that    v →    is tangent to the particle’s path at the particle’s position. Caution: When 
a position vector is drawn, as in Fig. 4.2.1, it is an arrow that extends from one 
point (a “here”) to another point (a “there”). However, when a velocity vector 

The direction of the instantaneous velocity    v →    of a particle is always tangent to 
the particle’s path at the particle’s position.
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is drawn, as in Fig. 4.2.2, it does not extend from one point to another. Rather, it 
shows the instantaneous direction of travel of a particle at the tail, and its length 
(representing the velocity magnitude) can be drawn to any scale.

Figure 4.2.2 The velocity    v →    of 
a particle, along with the scalar 
components of    v →   .

Path

O

y

x

Tangent

vy

vx

v

The velocity vector is always
tangent to the path.

These are the x and y
components of the vector
at this instant.

Checkpoint 4.2.1
The figure shows a circular path taken by a particle. 
If the  instantaneous velocity of the  particle is    v →   = 
(2 m / s) ̂ i  − (2 m / s) ̂ j  , through which quad rant is the par-
ticle moving at that instant if it is traveling (a) clockwise 
and (b)  counterclockwise around the circle? For both 
cases, draw    v →    on the figure.

y

x

Sample Problem 4.2.1 Two‑dimensional velocity, rabbit run

For the rabbit in the preceding sample problem, find the 
velocity    v →    at time t = 15 s.

KEY IDEA

We can find    v →    by taking derivatives of the components of 
the rabbit’s position vector. 

Calculations: Applying the vx part of Eq. 4.2.5 to Eq. 
4.1.5, we find the x component of    v →    to be

   v  x   =   dx ___ 
dt

   =   d __ 
dt

   (−0.31 t   2  + 7.2t + 28) 

  = − 0.62t + 7.2. (4.2.6)

At t = 15 s, this gives vx = ‒2.1 m/s. Similarly, applying 
the vy part of Eq. 4.2.5 to Eq. 4.1.6, we find

   v  y   =   
dy

 ___ 
dt

   =   d __ 
dt

   (0.22  t   2  − 9.1t + 30)  

  = 0.44t − 9.1. (4.2.7)

At t = 15 s, this gives vy = ‒2.5 m/s. Equation 4.2.4 then yields

    v →   = (−2.1 m / s) ̂ i  + ( −2.5 m / s) ̂ j ,  (Answer)

which is shown in Fig. 4.2.3, tangent to the rabbit’s path 
and in the direction the rabbit is running at t = 15 s.

–130°

x (m)
0

20

40

–20

–40

–60

y (m)

20 40 60 80

x

v
These are the x and y
components of the vector
at this instant.

Figure 4.2.3 The rabbit’s velocity    v →    at t = 15 s.
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To get the magnitude and angle of    v →   , either we use a 
 vector-capable calculator or we follow Eq. 3.1.6 to write

 v =  √ 
_

  v x  2  +  v y  2    =  √ 
_______________________

   (−2.1 m s )  2  + (−2.5 m/s )  2    

 = 3.3 m/s (Answer)

and  θ =  tan  −1    
 v  y   __  v  x  

   =  tan  −1  (  − 2.5 m/s ________ − 2.1 m/s
  )   

  =  tan  −1  1.19 = − 130° .  (Answer)

Check: Is the angle ‒130° or ‒130° + 180° = 50°?

4.3 AVERAGE ACCELERATION AND INSTANTANEOUS ACCELERATION
Learning Objectives 
After reading this module, you should be able to . . . 

4.3.1 Identify that acceleration is a vector quantity and 
thus has both magnitude and direction and also has 
components.

4.3.2 Draw two-dimensional and three-dimensional 
acceleration vectors for a particle, indicating the 
components.

4.3.3 Given the initial and final velocity vectors of a par-
ticle and the time interval between those velocities, 

determine the average acceleration vector in 
 magnitude-angle and unit-vector notations.

4.3.4 Given a particle’s velocity vector as a function 
of time, determine its (instantaneous) acceleration 
vector.

4.3.5 For each dimension of motion, apply the 
 constant-acceleration equations (Chapter 2) to  
relate acceleration, velocity, position, and time.

Key Ideas 
● If a particle’s velocity changes from     v →    1    to     v →    2    in time 
interval Δt, its average acceleration during Δt is

    a →    avg   =   
   v →    2   −    v →    1   _______ Δt

   =   Δ  v →   ____ Δt
  . 

● As Δt is shrunk to 0,     a →    avg    reaches a limiting value 
called either the acceleration or the instantaneous 
 acceleration    a →   :

   a →   =   d  v →   ___ 
dt

  . 

● In unit-vector notation,

   a →   =  a  x   ̂ i  +  a  y   ̂ j  +  a  z   k ̂  , 

where ax = dvx/dt, ay = dvy/dt, and az = dvz/dt.

Average Acceleration and Instantaneous Acceleration
When a particle’s velocity changes from     v →    1    to     v →    2    in a time interval Δt, its  average 
acceleration     a →    avg    during Δt is

   
average

  
acceleration

  =   
change in velocity

  ________________  
time interval

  , 

or     a →    avg   =   
   v →    2   −    v →    1   _______ Δt

   =   Δ  v →   ____ Δt
  .  (4.3.1)

If we shrink Δt to zero about some instant, then in the limit     a →    avg    approaches the 
instantaneous acceleration (or acceleration)   a →    at that instant; that is,

 
   a →   =   d  v →   ___ 

dt
  .  (4.3.2)

Additional examples, video, and practice available at WileyPLUS
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O
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ay

ax

Path

a

These are the x and y
components of the vector
at this instant.

Figure 4.3.1 The acceleration    a →    of a particle and 
the scalar components of    a →   .

If the velocity changes in either magnitude or direction (or both), the particle 
must have an acceleration.

We can write Eq. 4.3.2 in unit-vector form by substituting Eq. 4.2.4 for    v →    to 
obtain

    a →   =   d __ 
dt

  ( v  x   ̂ i  +  v  y   ̂ j  +  v  z   k ̂  )  

  =   
 dv  x   ___ 
dt

    ̂ i  +   
 dv  y   ___ 
dt

    ̂ j  +   
 dv  z   ___ 
dt

    k ̂  . 

We can rewrite this as

    a →   =  a  x   ̂ i  +  a  y   ̂ j  +  a  z   k ̂  ,  (4.3.3)

where the scalar components of    a →    are

 
  a  x   =   

 dv  x   ___ 
dt

  ,  a  y   =   
 dv  y   ___ 
dt

  , and  a  z   =   
 dv  z   ___ 
dt

  .  (4.3.4)

To find the scalar components of    a →   , we differentiate the scalar components of    v →   .
Figure 4.3.1 shows an acceleration vector    a →    and its scalar components 

for a particle moving in two dimensions. Caution: When an acceleration vec tor is 
drawn, as in Fig. 4.3.1, it does not extend from one position to another. Rather, it 
shows the direction of acceleration for a particle located at its tail, and its length 
(representing the acceleration magnitude) can be drawn to any scale.

Checkpoint 4.3.1
Here are four descriptions of the position (in meters) of a puck as it moves in an xy plane:

(1) x = ‒3t2 + 4t ‒ 2  and  y = 6t2 ‒ 4t (3)    r →   =  2t   2  ̂ i  −   (  4t + 3 )    ̂ j  

(2) x = ‒3t3 ‒ 4t  and  y = ‒5t2 + 6 (4)    r →   =   (   4t   3  − 2t )    ̂ i  + 3 ̂ j  

Are the x and y acceleration components constant? Is acceleration    a →    constant?

Sample Problem 4.3.1 Two‑dimensional acceleration, rabbit run

For the rabbit in the preceding two sample problems, find 
the acceleration    a →    at time t = 15 s.

KEY IDEA

We can find    a →    by taking  derivatives of the rabbit’s veloc-
ity components. 

Calculations: Applying the ax part of Eq. 4.3.4 to Eq. 
4.2.6, we find the x component of    a →    to be

  a  x   =   
 dv  x   ___ 
dt

   =   d __ 
dt

  (−0.62t + 7.2) = −  0.62 m / s  2 . 

Similarly, applying the ay part of Eq. 4.3.4 to Eq. 4.2.7 
yields the y component as
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  a  y   =   
 dv  y   ___ 
dt

   =   d __ 
dt

  (0.44t − 9.1) = 0.44   m / s  2 . 

We see that the acceleration does not vary with time (it is 
a constant) because the time variable t does not appear in 
the expression for either acceleration component. Equation 
4.3.3 then yields

    a →   = (− 0.62 m / s  2 ) ̂ i  + ( 0.44 m / s  2 ) ̂ j ,  (Answer)

which is superimposed on the rabbit’s path in Fig. 4.3.2.
To get the magnitude and angle of    a →   , either we use a 

 vector-capable calculator or we follow Eq. 3.1.6. For the 
magnitude we have

  a =  √ 
_

  a x  2  +  a y  2    =  √ 
________________________

   (−0.62  m/s  2  )  2  + (  0.44 m/s  2  )  2    

 = 0.76   m/s  2  . (Answer)

For the angle we have

 θ =  tan  −1    
 a  y   __  a  x  

   =  tan  −1  (   0.44 m / s  2  __________ 
 − 0.62 m / s  2 

  )  = − 35°. 

However, this angle, which is the one displayed on a cal-
culator, indicates that    a →    is directed to the right and down-
ward in Fig. 4.3.2. Yet, we know from the components 
that    a →    must be directed to the left and upward. To find 
the other angle that has the same tangent as ‒35° but is 
not displayed on a calculator, we add 180°:

 ‒35° + 180° = 145°. (Answer)

This is consistent with the components of    a →    because it 
gives a vector that is to the left and upward. Note that    a →    
has  the same magnitude and direction throughout the 
rabbit’s run because the acceleration is  constant. That 

means that we could draw the very same vector at any 
other point along the rabbit’s path (just shift the vector 
to put its tail at some other point on the path without 
changing the length or orientation).

This has been the second sample problem in which we 
needed to take the derivative of a vector that is written 
in unit-vector notation. One common error is to neglect 
the unit vectors themselves, with a result of only a set of 
numbers and symbols. Keep in mind that a derivative of a 
vector is always another vector. 
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–60

y (m)

20 40 60 80

x

145°a

These are the x and y
components of the vector
at this instant.

Figure 4.3.2 The acceleration    a →    of the rabbit at t = 15 s. The 
rabbit happens to have this same acceleration at all points on 
its path.

4.4 PROJECTILE MOTION
Learning Objectives 
After reading this module, you should be able to . . .

4.4.1 On a sketch of the path taken in projectile motion, 
explain the magnitudes and directions of the velocity 
and acceleration components during the flight.

4.4.2 Given the launch velocity in either 

magnitude-angle or unit-vector notation, calculate 
the particle’s position, displacement, and velocity at 
a given instant during the flight.

4.4.3 Given data for an instant during the flight, calcu-
late the launch velocity.

Key Ideas 
● In projectile motion, a particle is launched into the air 
with a speed v0 and at an angle θ0 (as measured from a 
horizontal x axis). During flight, its horizontal accelera-
tion is zero and its vertical acceleration is ‒g (down-
ward on a vertical y axis). 

● The equations of motion for the particle (while in 
flight) can be written as

  x −  x  0   = ( v  0   cos  θ  0  )t, 

  y −  y  0   = ( v  0   sin  θ  0  )t −   1 _ 2    gt   2 , 

Additional examples, video, and practice available at WileyPLUS
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   v  y   =  v  0   sin  θ  0   − gt, 

   v y  2  =  ( v  0   sin  θ  0  )  2  − 2g(y −  y  0  ). 

● The trajectory (path) of a particle in projectile motion 
is parabolic and is given by

 y = (tan  θ  0  )x −   
 gx   2 
 ___________  

 2( v  0    cos  θ  0  )  2 
  , 

if x0 and y0 are zero. 

● The particle’s horizontal range R, which is the hori-
zontal distance from the launch point to the point at 
which the particle returns to the launch height, is

 R =   
 v 0  2 

 __ g   sin  2θ  0  . 

Projectile Motion
We next consider a special case of two-dimensional motion: A particle moves 
in a vertical plane with some initial velocity     v →    0    but its acceleration is always the 
free-fall acceleration    g →   , which is downward. Such a particle is called a projectile 
(meaning that it is projected or launched), and its motion is called projectile 
 motion. A projectile might be a tennis ball (Fig. 4.4.1) or baseball in flight, but 
it is not a duck in flight. Many sports involve the study of the projectile motion 
of a ball. For example, the racquetball player who discovered the Z-shot in the 
1970s easily won his games because of the ball’s perplexing flight to the rear of 
the court. FCP

Our goal here is to analyze projectile motion using the tools for two- 
dimensional motion described in Modules 4.1 through 4.3 and making the 
 assumption that air has no effect on the projectile. Figure 4.4.2, which we 
shall analyze soon, shows the path followed by a projectile when the air has 
no  effect. The projectile is launched with an initial velocity     v →    0    that can be 
written as

     v →    0   =  v  0x   ̂ i  +  v  0y   ̂ j .  (4.4.1)

The components v0x and v0y can then be found if we know the angle θ0 between     v →    0     
and the positive x direction:

 v0x = v0 cos θ0  and  v0y = v0 sin θ0. (4.4.2)

During its two-dimensional motion, the projectile’s position vector    r →    and 
 velocity vector    v →    change continuously, but its acceleration vector    a →    is con-
stant and  always directed vertically downward. The projectile has no horizontal 
 acceleration.

Projectile motion, like that in Figs. 4.4.1 and 4.4.2, looks complicated, but we 
have the following simplifying feature (known from experiment):

Figure 4.4.1 A stroboscopic photo-
graph of a yellow tennis ball bounc-
ing off a hard surface. Between 
impacts, the ball has projectile 
motion.

Richard Megna/Fundamental Photographs

R
ic

ha
rd

 M
eg

na
/F

un
da

m
en

ta
l  

P
ho

to
gr

ap
hs

This feature allows us to break up a problem involving two-dimensional motion 
into two separate and easier one-dimensional problems, one for the horizontal 
motion (with zero acceleration) and one for the vertical motion (with constant 
downward acceleration). Here are two experiments that show that the horizontal 
motion and the vertical motion are independent.

In projectile motion, the horizontal motion and the vertical motion are indepen-
dent of each other; that is, neither motion affects the other.
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Figure 4.4.2 The projectile motion of an object 
launched into the air at the origin of a coordinate 
system and with launch velocity    v →   0 at angle θ0. The 
motion is a combination of vertical motion (constant 
acceleration) and horizontal motion (constant veloc-
ity), as shown by the velocity components.
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Two Golf Balls
Figure 4.4.3 is a stroboscopic photograph of two golf balls, one simply released and 
the other shot horizontally by a spring. The golf balls have the same vertical motion, 
both falling through the same vertical distance in the same interval of time. The 
fact that one ball is moving horizontally while it is falling has no effect on its vertical 
motion; that is, the horizontal and vertical motions are independent of each other.

A Great Student Rouser
In Fig. 4.4.4, a blowgun G using a ball as a projectile is aimed directly at a can sus-
pended from a magnet M. Just as the ball leaves the blowgun, the can is released. If 
g (the magnitude of the free-fall acceleration) were zero, the ball would follow 
the straight-line path shown in Fig. 4.4.4 and the can would float in place after the 
magnet released it. The ball would certainly hit the can. However, g is not zero, 
but the ball still hits the can! As Fig. 4.4.4 shows,  during the time of flight of the 
ball, both ball and can fall the same distance h from their zero-g locations. The 
harder the demonstrator blows, the greater is the ball’s initial speed, the shorter 
the flight time, and the smaller the value of h.

Figure 4.4.4 The projectile ball  always 
hits the falling can. Each falls a dis-
tance h from where it would be were 
there no free-fall acceleration.
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The ball and the can fall
the same distance h.

The Horizontal Motion
Now we are ready to analyze projectile motion, horizontally and vertically. We 
start with the horizontal motion. Because there is no acceleration in the hori-
zontal direction, the horizontal  component vx of the projectile’s velocity remains 
unchanged from its initial value v0x throughout the motion, as demonstrated in 
Fig. 4.4.5. At any time t, the projectile’s horizontal displacement x ‒ x0 from an 
initial position x0 is given by Eq. 2.4.5 with a = 0, which we write as

x ‒ x0 = v0xt.

Because v0x = v0 cos θ0, this becomes

 x ‒ x0 = (v0 cos θ0)t. (4.4.3)

The Vertical Motion
The vertical motion is the motion we discussed in Module 2.5 for a particle in free 
fall. Most important is that the acceleration is constant. Thus, the equations of 
Table 2.4.1 apply, provided we substitute ‒g for a and switch to y notation. Then, 
for example, Eq. 2.4.5 becomes

  y −  y  0   =  v  0y  t −   1 _ 2    gt   2  

  = ( v  0   sin  θ  0  )t −   1 _ 2    gt   2 ,  (4.4.4)

where the initial vertical velocity component v0y is replaced with the equivalent  
v0 sin θ0. Similarly, Eqs. 2.4.1 and 2.4.6 become

 vy = v0 sin θ0 ‒ gt (4.4.5)

and   v y  2  = ( v  0    sin  θ  0   )  2  − 2g(y −  y  0  ).  (4.4.6)

As is illustrated in Fig. 4.4.2 and Eq. 4.4.5, the vertical velocity component 
behaves just as for a ball thrown vertically upward. It is directed upward initially, 
and its magnitude steadily decreases to zero, which marks the maximum height of 
the path. The vertical velocity component then reverses direction, and its magni-
tude becomes larger with time.

Checkpoint 4.4.1
At a certain instant, a fly ball has velocity    v →   = 25 ̂ i  − 4.9 ̂ j   (the x axis is horizontal, the 
y axis is upward, and    v →    is in meters per second). Has the ball passed its highest point?

Figure 4.4.3 One ball is released from 
rest at the same instant that another 
ball is shot horizontally to the right. 
Their vertical motions are identical.

Richard Megna/Fundamental Photographs
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794.4 PRojECTilE MoTion

The Equation of the Path
We can find the equation of the projectile’s path (its trajectory) by eliminating 
time t between Eqs. 4.4.3 and 4.4.4. Solving Eq. 4.4.3 for t and substituting into 
Eq. 4.4.4, we obtain, after a little rearrangement,

  
y = (tan  θ  0  )x −   

 gx   2 
 ___________  

 2( v  0   cos  θ  0  )  2 
    (trajectory). (4.4.7)

This is the equation of the path shown in Fig. 4.4.2. In deriving it, for simplicity 
we let x0 = 0 and y0 = 0 in Eqs. 4.4.3 and 4.4.4, respectively. Because g, θ0, and v0 
are constants, Eq. 4.4.7 is of the form y = ax + bx2, in which a and b are constants. 
This is the equation of a parabola, so the path is parabolic.

The Horizontal Range
The horizontal range R of the projectile is the horizontal  distance the projec-
tile has traveled when it returns to its initial height (the height at which it is 
launched). To find range R, let us put x ‒ x0 = R in Eq. 4.4.3 and y ‒ y0 = 0 in  
Eq. 4.4.4,  obtaining

R = (v0 cos θ0)t

and  0 = ( v  0   sin  θ  0  )t −   1 _ 2    gt   2 . 

Eliminating t between these two equations yields

  R =   
2 v 0  2 

 ____ g   sin  θ  0   cos  θ  0  . 

Using the identity sin 2θ0 = 2 sin θ0 cos θ0 (see Appendix E), we obtain

 
 R =   

 v 0  2 
 __ g   sin  2θ  0  .  (4.4.8)

This equation does not give the horizontal distance traveled by a projectile when 
the final height is not the launch height. Note that R in Eq. 4.4.8 has its maximum 
value when sin 2θ0 = 1, which  corresponds to 2θ0 = 90° or θ0 = 45°.

Figure 4.4.6 (I) The path of a fly ball 
calculated by taking air resistance 
into account. (II) The path the ball 
would follow in a vacuum, calculated 
by the methods of this  chapter. See 
Table 4.4.1 for corresponding data. 
(Based on “The Trajectory of a Fly 
Ball,” by Peter J. Brancazio, The 
Physics Teacher, January 1985.)

x

y

60°

v0

I

II

Air reduces 
height ... ... and range.

Table 4.4.1 Two Fly Ballsa

Path I  
(Air)

Path II  
(Vacuum)

Range 98.5 m 177 m
Maximum  

height
53.0 m 76.8 m

Time  
of flight

6.6 s 7.9 s

aSee Fig. 4.4.6. The launch angle is 60° 
and the launch speed is 44.7 m/s.

However, when the launch and landing heights differ, as in many sports, a launch 
angle of 45° does not yield the maximum horizontal dis tance. FCP

The Effects of the Air
We have assumed that the air through which the projectile moves has no effect 
on its motion. However, in many situations, the disagreement between our cal-
culations and the actual motion of the projectile can be large because the air 
 resists (opposes) the motion. Figure 4.4.6, for example, shows two paths for a 
fly ball that leaves the bat at an angle of 60° with the horizontal and an initial 
speed of 44.7 m/s. Path I (the baseball player’s fly ball) is a calculated path that 
 approximates normal conditions of play, in air. Path II (the physics professor’s 
fly ball) is the path the ball would follow in a vacuum.

Checkpoint 4.4.2
A fly ball is hit to the outfield. During its flight (ignore the effects of the air), what 
happens to its (a) horizontal and (b) vertical components of velocity? What are the 
(c) horizontal and (d) vertical components of its acceleration during ascent, during 
descent, and at the topmost point of its flight?

Figure 4.4.5 The vertical compo-
nent of this skateboarder’s velocity 
is changing but not the horizontal 
component, which matches the 
skateboard’s velocity. As a result, the 
skateboard stays underneath him, 
 allowing him to land on it.

© Glen Erspamer Jr. / Dreamstime

©
 G

le
n 

E
rs

pa
m

er
 J

r. 
/ D

re
am

st
im

e

The horizontal range R is maximum for a launch angle of 45°.
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Solving this quadratic equation, we find that the flight 
time for the conventional throw-in is 

 
 t  c   = 1.764 s ≈ 1.76 s. 

(b) To find the horizontal distance dc the ball travels, we 
can now use the same constant-acceleration equation but 
for the horizontal motion:

  x ‒  x  0   =  v  0x  t +   1 _ 2    a  x    t   
2 

  d  c   = ( v  0   cos  θ  0  )  t  c  , 

where we set the horizontal acceleration as zero and sub-
stitute the flight time tc. We then find that the horizontal 
distance for the conventional throw-in is

   d  c   = (18.1 m/s)(cos 28.1° )(1.764 s)

 = 28.16 m ≈ 28.2 m.  (Answer)

(c)‒(d) We repeat the calculations, but now with initial 
speed of 23.4 m/s and initial angle of 23.5°. For the hand-
spring throw-in, the flight time is ths = 1.93 s and the hori-
zontal distance is dhs = 41.3 m.

(e) The handspring gives a longer distance in which 
a player propels the ball, resulting in a greater launch 
speed. The ball then travels farther than with a conven-
tional throw-in, which means that the opposing team must 
spread out to be ready for the throw-in. The ball might 
even land close enough to the net that a team member 
could score with a head shot. 

Sample Problem 4.4.1 Soccer handspring throw‑in

In a conventional soccer throw-in, the player has both 
feet on the ground on or outside the touch line, brings the 
ball back of the head with both hands, and launches the 
ball. In a handspring throw-in, the player rapidly executes 
a forward handspring with both hands on the ball as the 
ball touches the ground and then launches the ball upon 
rotating upward (Fig. 4.4.7a). For both launches, take the 
launch height to be h1 = 1.92 m and assume that the ball 
is intercepted by a teammate’s forehead at height h2 = 
1.71 m. Use the experimental results that the launch in a 
conventional throw-in is at angle   θ  0   = 28.1°  and speed   v  0   = 
18.1 m/s  and in a handspring throw-in is at angle   θ  0   = 23.5°  
and speed   v  0   = 23.4 m/s . For the conventional throw-in, 
what are (a) the flight time tc and (b) the horizontal dis-
tance dc traveled by the ball to the teammate? For the 
handspring throw-in, what are (c) the flight time ths and 
(d) the horizontal distance dhs? (e) From the results, what 
is the advantage of the handspring throw-in?

KEY IDEAS

(1) For projectile motion, we can apply the equations 
for constant acceleration along the horizontal and verti-
cal axes separately. (2) Throughout the flight, the verti-
cal acceleration is ay = ‒g = ‒9.8 m/s2 and the horizontal 
acceleration is ax = 0.

Calculations: We first draw a coordinate system and 
sketch the motion of the ball (Fig. 4.4.7b). The origin is 
at ground level directly below the launch point, which 
is at height h1. The interception is a height h2. Because 
we will consider the horizontal and vertical motions 
separately, we need the horizontal and vertical compo-
nents of the launch velocity     v →    0    and the acceleration    a →  .   
Figure 4.4.7c shows the component triangle of     v →    0   .  
We can determine the horizontal and vertical compo-
nents from the triangle: 

 
 v  0x   =  v  0   cos  θ  0     and    v  0y   =  v  0   sin  θ  0  . 

(a) We want the time of flight t for the ball to move from 
y0 = 1.92 m to y = 1.71 m. The only constant-acceleration 
equation that involves t but does not require more infor-
mation, such as the vertical velocity at the interception 
point, is

  y ‒  y  0   =  v  0y  t +   1 _ 2    a  y    t   
2 

 = ( v  0   sin  θ  0  )t +   1 _ 2   (‒g) t   2 . 

Inserting values and symbolizing the time as tc give us

 
1.71 m ‒ 1.92 m = (18.1 m/s)(sin 28.1° )  t  c   +   1 _ 2   (‒9.8  m/s  2 ) t c  2 . 

y

x

h1
h2

O
(b)

v0x

v0y

v0

(c)

0θ

Figure 4.4.7 (a) Handspring throw-in in foot-
ball (soccer). (b) Flight of the ball. (c) Com-
ponents of the launch velocity.
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Additional examples, video, and practice available at WileyPLUS
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(b) As the capsule reaches the water, what is its  velocity  
   v →   ?

KEY IDEAS

(1) The horizontal and vertical components of the cap-
sule’s velocity are independent. (2) Component vx does not 
change from its initial value v0x = v0 cos θ0 because there 
is no horizontal  acceleration. (3) Component vy changes 
from its initial value v0y = v0  sin θ0 because there is a verti-
cal  acceleration.

Calculations: When the capsule reaches the water,

vx = v0 cos θ0 = (55.0 m/s)(cos 0°) = 55.0 m/s.

Using Eq. 4.4.5 and the capsule’s time of fall t = 10.1 s, we 
also find that when the capsule reaches the  water,

 vy = v0 sin θ0 ‒ gt

 = (55.0 m/s)(sin 0°) ‒ (9.8 m/s2)(10.1 s)

 = ‒99.0 m/s.

Thus, at the water

    v →   = (55.0 m / s) ̂ i  − (99.0 m / s) ̂ j .  (Answer)

From Eq. 3.1.6, the magnitude and the angle of    v →    are

 v = 113 m/s  and  θ = ‒60.9°. (Answer)

Sample Problem 4.4.2 Projectile dropped from airplane

In Fig. 4.4.8, a rescue plane flies at 198 km/h (= 55.0 m/s) 
and constant height h = 500 m toward a point directly 
over a victim, where a rescue capsule is to land.

(a) What should be the angle ϕ of the pilot’s line of sight 
to the victim when the capsule release is made?

KEY IDEAS

Once released, the capsule is a projectile, so its horizon-
tal and vertical motions can be considered separately (we 
need not consider the actual curved path of the  capsule).

Calculations: In Fig. 4.4.8, we see that ϕ is given by

  ϕ =  tan  −1    x __ 
h

  ,  (4.4.9)

where x is the horizontal coordinate of the victim (and 
of the capsule when it hits the water) and h = 500 m. We 
should be able to find x with Eq. 4.4.3:

 x ‒ x0 = (v0 cos θ0)t. (4.4.10)

Here we know that x0 = 0 because the origin is placed at 
the point of release. Because the capsule is released and 
not shot from the plane, its initial velocity     v →    0    is equal to 
the plane’s  velocity. Thus, we know also that the initial 
velocity has mag nitude v0 = 55.0 m/s and angle θ0 = 0° 
(measured relative to the positive  direction of the x axis).  
However, we do not know the time t the capsule takes 
to move from the plane to the victim.

To find t, we next consider the vertical motion and 
specifically Eq. 4.4.4:

   y − y  0   = ( v  0   sin  θ  0  )t −   1 _ 2    gt   2 .  (4.4.11)

Here the vertical displacement y ‒ y0 of the capsule  
is ‒500 m (the negative value indicates that the capsule 
moves downward). So,

  − 500 m = (55.0 m/ s)(sin 0° )t −   1 _ 2  (9.8  m/s  2 ) t   2 .  (4.4.12)

Solving for t, we find t = 10.1 s. Using that value in Eq. 
4.4.10 yields

 x ‒ 0 = (55.0 m/s)(cos 0°)(10.1 s), (4.4.13)

or x = 555.5 m.

Then Eq. 4.4.9 gives us

  ϕ =  tan  −1    555.5 m _______ 
500 m

   = 48.0°.  (Answer)

y

O

v0

Trajectory
Line of sight

h

x

v
θ

�

Figure 4.4.8 A plane drops a rescue capsule while moving at 
 constant velocity in level flight. While falling, the capsule 
remains under the plane.

Additional examples, video, and practice available at WileyPLUS
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4.5 UNIFORM CIRCULAR MOTION
Learning Objectives 
After reading this module, you should be able to . . .

4.5.1 Sketch the path taken in uniform circular motion 
and explain the velocity and acceleration vectors 
(magnitude and direction) during the motion.

4.5.2 Apply the relationships between the radius of the 
circular path, the period, the particle’s speed, and 
the particle’s acceleration magnitude.

Key Ideas 
● If a particle travels along a circle or circular arc of 
radius r at constant speed v, it is said to be in uniform 
circular motion and has an acceleration    a →    of constant 
magnitude

 a =    v   2  __ r  . 

The direction of    a →    is toward the center of the circle or 
circular arc, and    a →    is said to be centripetal. The time for 
the particle to complete a circle is

 T =   2πr ___ v  . 

T is called the period of revolution, or simply the 
period, of the motion.

Figure 4.5.1 Velocity and acceleration 
vectors for uniform circular  motion.

v

v

v

a

a
a

The acceleration vector
always points toward the
center.

The velocity
vector is always
tangent to the path.

Uniform Circular Motion
A particle is in uniform circular motion if it travels around a circle or a circular 
arc at constant (uniform) speed. Although the speed does not vary, the particle is 
accelerating because the velocity changes in direction.

Figure 4.5.1 shows the relationship between the velocity and acceleration 
vectors at various stages during uniform circular motion. Both vectors have 
 constant magnitude, but their directions change continuously. The velocity is 
 always directed tangent to the circle in the direction of  motion. The acceleration 
is always directed radially inward. Because of this, the acceleration associated 
with uniform circular motion is called a centripetal (meaning “center seeking”) 
acceleration. As we prove next, the magnitude of this acceleration    a →    is

  a =    v   2  __ r      (centripetal acceleration), (4.5.1)

where r is the radius of the circle and v is the speed of the particle.
In addition, during this acceleration at constant speed, the particle travels the 

circumference of the circle (a distance of 2πr) in time

  T =   2πr ___ v      (period). (4.5.2)

T is called the period of revolution, or simply the period, of the motion. It is, in 
general, the time for a particle to go around a closed path exactly once.

Proof of Eq. 4.5.1
To find the magnitude and direction of the acceleration for uniform circular 
 motion, we consider Fig. 4.5.2. In Fig. 4.5.2a, particle p moves at constant speed v  
around a circle of radius r. At the instant shown, p has coordinates xp and yp.

Recall from Module 4.2 that the velocity    v →    of a moving particle is always 
tangent to the particle’s path at the particle’s position. In Fig. 4.5.2a, that 
means    v →    is perpendicular to a radius r drawn to the particle’s position. Then 
the angle θ that    v →    makes with a vertical at p equals the angle θ that radius r 
makes with the x axis.
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The scalar components of    v →    are shown in Fig. 4.5.2b. With them, we can write 
the velocity    v →    as

    v →   =  v  x   ̂ i  +  v  y   ̂ j  = (−v sin θ) ̂ i  + (v cos θ) ̂ j .  (4.5.3)

Now, using the right triangle in Fig. 4.5.2a, we can replace sin θ with yp/r and 
cos θ with xp/r to write

 
   v →   =  (−   

v y  p  
 ____ r  )  ̂ i  +  (   

v x  p  
 ____ r  )  ̂ j .  (4.5.4)

To find the acceleration    a →    of particle p, we must take the time derivative of this 
equation. Noting that speed v and radius r do not change with time, we  obtain

 
   a →   =   d  v →   ___ 

dt
  =  (−   v __ r     

 dy  p  
 ____ 

dt
  )   ̂ i  +  (   v __ r     

 dx  p  
 ____ 

dt
  )   ̂ j .  (4.5.5)

Now note that the rate dyp/dt at which yp changes is equal to the velocity compo-
nent vy. Similarly, dxp/dt = vx, and, again from Fig. 4.5.2b, we see that vx = ‒v sin θ  
and vy = v cos θ. Making these substitutions in Eq. 4.5.5, we find

    a →   =  (−    v   2  __ r   cos θ)  ̂ i  +  (−    v   2  __ r   sin θ)  ̂ j .  (4.5.6)

This vector and its components are shown in Fig. 4.5.2c. Following Eq. 3.1.6, 
we find

 a =  √ 
_

  a x  2  +  a y  2    =    v   2  __ r    √ 
________________

  (cos  θ )  2  + (sin  θ )  2    =    v   2  __ r    √ 
_

 1   =    v   2  __ r  , 

as we wanted to prove. To orient    a →   , we find the angle ϕ shown in Fig. 4.5.2c:

 tan ϕ =   
 a  y   __  a  x  

   =   
− ( v   2 /r) sin θ

  ___________  
−( v   2 /r) cos θ

   = tan θ. 

Thus, ϕ = θ, which means that    a →    is directed along the radius r of Fig. 4.5.2a, 
 toward the circle’s center, as we wanted to prove.

Figure 4.5.2 Particle p moves in coun-
terclockwise uniform circular motion. 
(a) Its position and velocity    v →    at a 
certain instant. (b) Velocity    v →   .  
(c) Acceleration    a →   .
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Checkpoint 4.5.1
An object moves at constant speed along a circular path in a horizontal xy plane, with 
the center at the origin. When the object is at x = ‒2 m, its velocity is ‒(4 m/s)  ̂ j  . Give the 
object’s (a) velocity and (b) acceleration at y = 2 m.

Sample Problem 4.5.1 Top gun pilots in turns

“Top gun” pilots have long worried about taking a turn too 
tightly. As a pilot’s body undergoes centripetal  acceleration, 
with the head toward the center of curvature, the blood pres-
sure in the brain decreases, leading to loss of brain function.

There are several warning signs. When the centripe-
tal acceleration is 2g or 3g, the pilot feels heavy. At about 
4g, the pilot’s vision switches to black and white and nar-
rows to “tunnel  vision.” If that acceler ation is sustained or 
increased,  vision ceases and, soon after, the pilot is uncon-
scious—a condition known as g-LOC for “g-induced loss 
of consciousness.” FCP

What is the magnitude of the acceleration, in g units, 
of a pilot whose aircraft enters a horizontal circular turn 
with a velocity of     v →    i   = (400 ̂ i  + 500 ̂ j )  m/s and 24.0 s later 
leaves the turn with a velocity of     v →    f   = (− 400 ̂ i  − 500 ̂ j )  m/s?

KEY IDEAS

We assume the turn is made with uniform circular motion. 
Then the pilot’s acceleration is  centripetal and has magni-
tude a given by Eq. 4.5.1 (a = v2/R), where R is the circle’s 
radius. Also, the time  required to complete a full circle is 
the period given by Eq. 4.5.2 (T = 2πR/v).
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4.6 RELATIVE MOTION IN ONE DIMENSION
Learning Objective 
After reading this module, you should be able to . . .

4.6.1 Apply the relationship between a particle’s posi-
tion, velocity, and acceleration as measured from 

two reference frames that move relative to each 
other at constant velocity and along a single axis.

Key Idea 
● When two frames of reference A and B are moving 
relative to each other at constant velocity, the velocity 
of a particle P as measured by an observer in frame A 
usually differs from that measured from frame B. The 
two measured velocities are related by

    v →    PA   =    v →    PB   +    v →    BA  , 

where     v →    BA    is the velocity of B with respect to A. Both 
observers measure the same acceleration for the particle:

    a →    PA   =    a →    PB  . 

Relative Motion in One Dimension
Suppose you see a duck flying north at 30 km/h. To another duck flying alongside, 
the first duck seems to be stationary. In other words, the velocity of a particle 
depends on the reference frame of whoever is observing or measuring the veloc-
ity. For our purposes, a reference frame is the physical object to which we attach 
our coordinate system. In everyday life, that object is the ground. For  example, 
the speed listed on a speeding ticket is always measured relative to the ground. 
The speed relative to the police officer would be different if the officer were mov-
ing while making the speed measurement.

Suppose that Alex (at the origin of frame A in Fig. 4.6.1) is parked by the side 
of a highway, watching car P (the “particle”) speed past. Barbara (at the  origin of 
frame B) is driving along the highway at constant speed and is also watching car P. 
Suppose that they both measure the position of the car at a given moment. From 
Fig. 4.6.1 we see that

 xPA = xPB + xBA. (4.6.1)

The equation is read: “The coordinate xPA of P as measured by A is equal to the 
coordinate xPB of P as measured by B plus the coordinate xBA of B as measured 
by A.” Note how this reading is supported by the sequence of the subscripts.

Taking the time derivative of Eq. 4.6.1, we obtain

   d __ 
dt

   ( x  PA  ) =   d __ 
dt

   ( x  PB  ) +   d __ 
dt

   ( x  BA  ). 

Calculations: Because we do not know radius R, let’s 
solve Eq. 4.5.2 for R and substitute into Eq. 4.5.1. We find

 a =   2πv ____ 
T

  . 

To get the constant speed v, let’s substitute the compo-
nents of the initial velocity into Eq. 3.1.6:

 v =  √ 
______________________

  (400 m / s )  2  + (500 m / s )  2    = 640.31 m / s. 

To find the period T of the motion, first note that the final 
 velocity is the reverse of the initial velocity. This means 
the aircraft leaves on the opposite side of the circle from 
the initial point and must have completed half a circle in the 
given 24.0 s. Thus a full circle would have taken T = 48.0 s. 
Substituting these values into our equation for a, we find

  a =   
2π(640.31 m/s)

  _____________ 
48.0 s

   = 83.81  m / s  2  ≈ 8.6g. 
 

(Answer)

Figure 4.6.1 Alex (frame A) and 
Barbara (frame B) watch car P, 
as both B and P move at different 
 velocities along the common x axis 
of the two frames. At the instant 
shown, xBA is the coordinate of B in 
the A frame. Also, P is at coordinate 
xPB in the B frame and  coordinate 
xPA = xPB + xBA in the A frame.

x

Frame A Frame B

vBA

P

x

yy

xPA = xPB + xBAxBA

xPB

Frame B moves past
frame A while both
observe P.

Additional examples, video, and practice available at WileyPLUS
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Thus, the velocity components are related by

 vPA = vPB + vBA. (4.6.2)

This equation is read: “The velocity vPA of P as measured by A is equal to the 
 velocity vPB of P as measured by B plus the velocity vBA of B as measured by A.” 
The term vBA is the velocity of frame B relative to frame A.

Here we consider only frames that move at constant velocity relative to 
each other. In our example, this means that Barbara (frame B) drives always at 
constant velocity vBA relative to Alex (frame A). Car P (the moving particle), 
however, can change speed and direction (that is, it can accelerate).

To relate an acceleration of P as measured by Barbara and by Alex, we take 
the time derivative of Eq. 4.6.2:

   d __ 
dt

   ( v  PA  ) =   d __ 
dt

   ( v  PB  ) +   d __ 
dt

   ( v  BA  ). 

Because vBA is constant, the last term is zero and we have

 aPA = aPB. (4.6.3)

In other words,

Checkpoint 4.6.1
Let’s again consider the Alex–Barbara–car P arrangement. (a) Let vBA = +50 km/h 
and vPA = +50 km/h. What then is vPB? (b) Is the distance between Barbara and car P 
increasing, decreasing, or staying the same? (c) Now let vPA = +60 km/h and vPB =  ‒ 20  
km/h. Is the distance between Barbara and car P increasing, decreasing, or staying the 
same?

Sample Problem 4.6.1 Relative motion, one dimensional, Alex and Barbara

In Fig. 4.6.1, suppose that Barbara’s velocity relative to 
Alex is a constant vBA = 52 km/h and car P is moving in 
the negative direction of the x axis.

(a) If Alex measures a constant vPA = ‒78 km/h for car P, 
what velocity vPB will Barbara  measure?

KEY IDEAS

We can attach a frame of reference A to Alex and a frame 
of reference B to Barbara. Because the frames move at 
constant velocity relative to each other along one axis, we 
can use Eq. 4.6.2 (vPA = vPB + vBA) to relate vPB to vPA and 
vBA.

Calculation: We find

‒78 km/h = vPB + 52 km/h.

Thus,   vPB = ‒130 km/h. (Answer)

Comment: If car P were connected to Barbara’s car by 
a cord wound on a spool, the cord would be unwinding at 
a speed of 130 km/h as the two cars separated.

(b) If car P brakes to a stop relative to Alex (and thus 
relative to the ground) in time t = 10 s at constant accel-
eration, what is its acceleration aPA relative to Alex?

KEY IDEAS

To calculate the acceleration of car P relative to Alex, we 
must use the car’s veloc ities relative to Alex. Because the 
 acceleration is constant, we can use Eq. 2.4.1 (v = v0 + at) 
to relate the acceleration to the initial and final veloci-
ties of P. 

Calculation: The initial velocity of P relative to Alex is 
vPA = ‒78 km/h and the final velocity is 0. Thus, the accel-
eration relative to Alex is

Observers on different frames of reference that move at constant velocity rela-
tive to each other will measure the same acceleration for a moving particle.
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4.7 RELATIVE MOTION IN TWO DIMENSIONS
Learning Objective 
After reading this module, you should be able to . . .

4.7.1 Apply the relationship between a particle’s posi-
tion, velocity, and acceleration as measured from 

two reference frames that move relative to each 
other at constant velocity and in two dimensions.

Key Ideas 
● When two frames of reference A and B are moving 
relative to each other at constant velocity, the velocity 
of a particle P as measured by an observer in frame A 
usually differs from that measured from frame B. The 
two measured velocities are related by

    v →    PA   =    v →    PB   +    v →    BA  , 

where     v →    BA    is the velocity of B with respect to A. Both 
observers measure the same acceleration for the particle:

    a →    PA   =    a →    PB  . 

Relative Motion in Two Dimensions
Our two observers are again watching a moving particle P from the origins of refer-
ence frames A and B, while B moves at a constant velocity     v →    BA    relative to A. (The 
corresponding axes of these two frames remain parallel.) Figure 4.7.1 shows a cer-
tain instant during the motion. At that instant, the position vector of the origin of 
B relative to the origin of A is     r →    BA   . Also, the position vectors of particle P are     r →    PA    
relative to the origin of A and     r →    PB    relative to the origin of B. From the arrangement 
of heads and tails of those three position vectors, we can relate the vectors with

     r →    PA   =    r →    PB   +    r →    BA  .  (4.7.1)

By taking the time derivative of this equation, we can relate the velocities     v →    PA    
and     v →    PB    of particle P relative to our observers:

     v →    PA   =    v →    PB   +    v →    BA  .  (4.7.2)

By taking the time derivative of this relation, we can relate the accelera-
tions     a →    PA    and     a →    PB    of the particle P relative to our observers. However, note that 
because     v →    BA    is constant, its time derivative is zero. Thus, we get

     a →    PA   =    a →    PB  .  (4.7.3)

   a  PA   =   
v −  v  0   ______ t   =   

0 − (−78 km / h)
  ______________ 

10 s
     1 m / s ________ 

3.6 km / h
    

 = 2.2 m/  s  2  . (Answer)

(c) What is the acceleration aPB of car P relative to Bar-
bara during the braking?

KEY IDEA

To calculate the accel eration of car P relative to Barbara, 
we must use the car’s  velocities relative to Barbara. 

Calculation: We know the initial velocity of P relative 
to Barbara from part (a) (vPB = ‒130 km/h). The final 

velocity of P relative to Barbara is ‒52 km/h (because 
this is the velocity of the stopped car relative to the 
moving  Barbara). Thus,

   a  PB   =   
v −  v  0   ______ t   =   

− 52 km / h −  (−130 km / h)
   _______________________  

10 s
     1 m / s ________ 

3.6 km / h
   

  =  2.2 m / s  2 .  (Answer)

Comment: We should have foreseen this result: Because 
Alex and Barbara have a constant relative  velocity, they 
must measure the same acceleration for the car.

Figure 4.7.1 Frame B has the constant 
two-dimensional velocity     v →    BA    rela-
tive to frame A. The position vector 
of B relative to A is     r →    BA   . The posi-
tion vectors of particle P are    r →    PA    rela-
tive to A and     r →    PB    relative to B.

x

x

y

y

rPB
rPA

rBA
Frame B

Frame A

vBA

P

Additional examples, video, and practice available at WileyPLUS

c04MotionInTwoAndThreeDimensions.indd   86 05/05/21   4:08 PM



874.7 RElATivE MoTion in Two diMEnsions

As for one-dimensional motion, we have the following rule: Observers on differ-
ent frames of reference that move at constant velocity relative to each other will 
measure the same acceleration for a moving particle.

Checkpoint 4.7.1
Here are two velocities (in meters and seconds) using the same notation as Alex,  
Barbara, and car P:

     v →    PA   = 3t  i ̂   + 4t   j ̂   ‒ 2t  k ̂  
    v →    AB   = 10  i ̂   + 6   j ̂  . 

What is the relative velocity     v →    BP  ? 

Sample Problem 4.7.1 Relative motion, two dimensional, airplanes

In Fig. 4.7.2a, a plane moves due east while the pilot points 
the plane somewhat south of east, toward a steady wind 
that blows to the northeast. The plane has velocity     v →    PW    
relative to the wind, with an airspeed (speed relative to 
the wind) of 215 km/h, directed at  angle θ south of east. 
The wind has  velocity     v →    WG    relative to the ground with 
speed 65.0 km/h,  directed 20.0° east of north. What is the 
magnitude of the velocity     v →    PG    of the plane relative to the 
ground, and what is θ?

KEY IDEAS

The situation is like the one in Fig. 4.7.1. Here the moving 
particle P is the plane, frame A  is attached to the ground 
(call it G), and frame B is  “attached” to the wind (call it 
W). We need a vector diagram like Fig. 4.7.1 but with three 
velocity vectors.

Calculations: First we construct a sentence that relates 
the three vectors shown in Fig. 4.7.2b:

Similarly, for the x components we find

vPG,x = vPW,x + vWG,x.

Here, because     v →    PG    is parallel to the x axis, the component 
vPG,x is equal to the magnitude vPG. Substituting this nota-
tion and the value θ = 16.5°, we find

 vPG = (215 km/h)(cos 16.5°) + (65.0 km/h)(sin 20.0°)

 = 228 km/h. (Answer)

vPG

vPW vWG

vPG

vPW vWG

N

y

N
E

20°

x

(a)

(b)

This is the plane’s actual
direction of travel.

This is the wind
direction.

The actual direction
is the vector sum of
the other two vectors
(head-to-tail arrangement).

This is the plane’s
orientation.

θ

θ

Figure 4.7.2 A plane flying in a wind.

   
velocity of plane 

   relative to ground   
(PG)

   =   
velocity of plane 

   relative to wind   
(PW)

    +    
velocity of wind 

   relative to ground.    
(WG)

   

This relation is written in  vector notation as

     v →    PG   =    v →    PW   +    v →    WG  .  (4.7.4)

We need to resolve the  vectors into components on the 
coordinate system of Fig. 4.7.2b and then solve Eq. 4.7.4 
axis by axis. For the y components, we find

vPG,y = vPW,y + vWG,y

or 0 = ‒(215 km/h) sin θ + (65.0 km/h)(cos 20.0°).

Solving for θ gives us

 
θ =  sin  −1     

(65.0 km / h)(cos  20.0° )
  ____________________  

215 km / h
    = 16.5°. (Answer)

Additional examples, video, and practice available at WileyPLUS
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Position Vector  The location of a particle relative to the 
origin of a coordinate system is given by a position vector    r →   , 
which in unit-vector notation is

    r →   = x ̂ i  + y ̂ j  + z k ̂  .  (4.1.1)

Here  x   ̂ i  ,  y  ̂ j  , and  z k ̂    are the vector components of position vec-
tor    r →   , and x, y, and z are its scalar components (as well as the 
coordinates of the particle). A position vector is  described  either 
by a magnitude and one or two angles for orientation, or by its 
vector or scalar components.

Displacement  If a particle moves so that its position vector 
changes from     r →    1    to     r →    2   , the particle’s displacement  Δ  r →    is

  Δ  r →   =    r →    2   −    r →    1  .  (4.1.2)

The displacement can also be written as

  Δ  r →   = ( x  2   −  x  1  ) ̂ i  + ( y  2   −  y  1  ) ̂ j  + ( z  2   −  z  1  ) k ̂    (4.1.3)

  = Δx ̂ i  + Δy ̂ j  + Δz k ̂  .  (4.1.4)

Average Velocity and Instantaneous Velocity  If a 
particle undergoes a displacement  Δ  r →    in time interval Δt, its 
 average velocity     v →    avg    for that time interval is

 
    v →    avg   =   Δ  r →   ____ Δt

  .  (4.2.1)

As ∆t in Eq. 4.2.1 is shrunk to 0,     v →    avg    reaches a limit called either 
the velocity or the instantaneous velocity    v →   :

 
   v →   =   d  r →   ___ 

dt
  ,  (4.2.3)

which can be rewritten in unit-vector notation as

    v →   =  v  x   ̂ i  +  v  y   ̂ j  +  v  z   k ̂  ,  (4.2.4)

where vx = dx /dt, vy = dy/dt, and vz = dz /dt. The instantaneous 
velocity    v →    of a particle is always directed along the  tangent to 
the particle’s path at the particle’s position.

Average Acceleration and Instantaneous Ac cele
ration  If a particle’s velocity changes from     v →    1    to     v →    2    in time 
interval ∆t, its average acceleration during ∆t is

     a →    avg   =   
   v →    2   −    v →    1   ________ Δt

   =   Δ  v →   ____ Δt
  .  (4.3.1)

As ∆t in Eq. 4.3.1 is shrunk to 0,     a →    avg    reaches a limiting value 
called either the acceleration or the instantaneous  acceleration    a →   :

 
   a →   =   d  v →   ___ 

dt
  .  (4.3.2)

In unit-vector notation,

    a →   =  a  x   ̂ i  +  a  y   ̂ j  +  a  z   k ̂  ,  (4.3.3)

where ax = dvx/dt, ay = dvy/dt, and az = dvz/dt.

Review & Summary

Projectile Motion  Projectile motion is the motion of a par-
ticle that is launched with an initial velocity     v →    0   . During its flight, 
the particle’s horizontal acceleration is zero and its  vertical 
acceleration is the free-fall acceleration ‒g. (Upward is taken to 
be a positive direction.) If     v →    0    is expressed as a magnitude (the 
speed v0) and an angle θ0 (measured from the horizontal), the 
particle’s equations of motion along the horizontal x axis and 
vertical y axis are

  x −  x  0   = ( v  0   cos  θ  0  )t,  (4.4.3)

  y −  y  0   = ( v  0   sin  θ  0  )t −   1 _ 2    gt   2 ,  (4.4.4)

   v  y   =  v  0   sin  θ  0   − gt,  (4.4.5)

   v y  2  = ( v  0   sin  θ  0   )  2  − 2g(y −  y  0  ).  (4.4.6)

The trajectory (path) of a particle in projectile motion is 
 parabolic and is given by

 
 y = (tan  θ  0  )x −   

 gx   2 
 ____________  

2( v  0   cos  θ  0   )  2 
   ,  (4.4.7)

if x0 and y0 of Eqs. 4.4.3 to 4.4.6 are zero. The particle’s  horizontal 
range R, which is the horizontal distance from the launch point 
to the point at which the particle returns to the launch height, is

  R =   
 v 0  2 

 __ g   sin  2θ  0  .  (4.4.8)

Uniform Circular Motion  If a particle travels along a circle 
or circular arc of radius r at constant speed v, it is said to be in 
uniform circular motion and has an acceleration    a →    of constant 
magnitude

 
 a =    v   2  ___ r  .  (4.5.1)

The direction of    a →    is toward the center of the circle or  circular 
arc, and    a →    is said to be centripetal. The time for the particle to 
complete a circle is

 
 T =   2πr ____ v  .  (4.5.2)

T is called the period of revolution, or simply the period, of the 
 motion.

Relative Motion  When two frames of reference A and B are 
moving relative to each other at constant velocity, the  velocity of 
a particle P as measured by an observer in frame A usually differs 
from that measured from frame B. The two measured velocities 
are related by

     v →    PA   =    v →    PB   +    v →    BA  ,  (4.7.2)

where     v →    BA    is the velocity of B with respect to A. Both  observers 
measure the same acceleration for the particle:

     a →    PA   =    a →    PB  .  (4.7.3)
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Questions

1  Figure 4.1 shows the path taken 
by a skunk foraging for  trash food, 
from initial point i. The skunk took 
the same time T to go from each 
labeled point to the next along its 
path. Rank points a, b, and c accord-
ing to the magnitude of the  average 
velocity of the skunk to reach them 
from initial point i, greatest first.

2  Figure 4.2 shows the initial position i and the final position 
f of a particle. What are the (a) initial position vector     r →    i    and (b) 
final position vector     r →    f   , both in unit-vector notation? (c) What is 
the x component of displacement  Δ  r →   ?

z

x

i

f

y

4 m
4 m

1 m

2 m
3 m

3 m

3 m 5 m

Figure 4.2 Question 2.

3 FCP  When Paris was shelled from 100 km away with the WWI 
long-range artillery piece “Big Bertha,” the shells were fired at 
an angle greater than 45° to give them a greater range, possibly 
even twice as long as at 45°. Does that result mean that the air 
density at high altitudes increases with altitude or  decreases?

4  You are to launch a rocket, from just above the ground, 
with one of the following initial velocity vectors: (1)     v →    0   = 20 ̂ i  +  
70  ̂ j  , (2)     v →    0   = − 20 ̂ i  + 70 ̂ j  , (3)     v →    0   = 20 ̂ i  − 70 ̂ j  , (4)     v →    0   = −20 ̂ i  −  
70  ̂ j  . In your coordinate system, x runs along level ground 
and y increases upward. (a) Rank the vectors  accord ing to 
the launch speed of the projectile, greatest first. (b) Rank the 
vectors according to the time of flight of the projectile, great-
est first.

5  Figure 4.3 shows three situations in which identical projec-
tiles are launched (at the same level) at identical initial speeds 
and angles. The projectiles do not land on the same terrain, 
however. Rank the situations according to the final speeds of 
the projectiles just before they land, greatest first.

(a) (b) (c)

Figure 4.3 Question 5.

6  The only good use of a fruitcake 
is in catapult practice. Curve  1 in 
Fig. 4.4 gives the height y of a cata-
pulted fruitcake versus the angle θ 
between its velocity vector and its 
 acceleration vector during flight. 
(a) Which of the lettered points on 
that curve corresponds to the land-
ing of the fruitcake on the ground? 
(b) Curve 2 is a similar plot for the 
same launch speed but for a different launch angle. Does the 
fruitcake now land farther away or closer to the launch point?

7  An airplane flying horizontally at a constant speed of 
350 km/h over level ground releases a bundle of food supplies. 
Ignore the effect of the air on the bundle. What are the bundle’s 
initial (a)  vertical and (b) horizontal components of  velocity? (c) 
What is its horizontal component of velocity just before hitting 
the ground? (d) If the airplane’s speed were, instead, 450 km/h, 
would the time of fall be longer, shorter, or the same?

8  In Fig. 4.5, a cream tangerine is thrown up past windows 1, 2, 
and 3, which are identical in size and regularly spaced vertically. 
Rank those three windows according to (a) the time the cream 
tangerine takes to pass them and (b) the  average speed of the 
cream tangerine during the passage, greatest first.

The cream tangerine then moves down past windows 4, 5, 
and 6, which are identical in size and irregularly spaced horizon-
tally. Rank those three windows according to (c) the time the 
cream tangerine takes to pass them and (d) the  average speed of 
the cream tangerine during the passage, greatest first.

1

2

3
4

5

6

Figure 4.5 Question 8.

9  Figure 4.6 shows three paths for a football kicked from ground 
level. Ignoring the effects of air, rank the paths  according to (a) 
time of flight, (b) initial vertical velocity component, (c) initial 
horizontal velocity component, and (d) initial speed, greatest first.

1 2 3

Figure 4.6 Question 9.

Figure 4.1 Question 1.

a i b c

y

A B

2

1

θ

Figure 4.4 Question 6.
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10  A ball is shot from ground level over level ground at a cer-
tain initial speed. Figure 4.7 gives the range R of the ball versus 
its launch angle θ0. Rank the three lettered points on the plot 
according to (a) the total flight time of the ball and (b) the ball’s 
speed at maximum height, greatest first.

R

0

b
a

c

θ

Figure 4.7 Question 10.

11  Figure 4.8 shows four tracks (either half- or quarter- circles) 
that can be taken by a train, which moves at a constant speed. 
Rank the tracks according to the magnitude of a train’s accel-
eration on the curved portion, greatest first.

3

4

2

1

Figure 4.8 Question 11.

12  In Fig. 4.9, particle P is in uniform circular motion, cen-
tered on the origin of an xy coordinate system. (a) At what 
values of θ is the vertical component ry of the position vector 
greatest in magnitude? (b) At what values of θ is the vertical 
component vy of the particle’s velocity greatest in magnitude? 

(c) At what values of θ is the vertical component ay of the par-
ticle’s acceleration greatest in magnitude?

x

y

r
P

θ

Figure 4.9 Question 12.

13  (a) Is it possible to be accelerating while traveling at  constant 
speed? Is it possible to round a curve with (b) zero acceleration 
and (c) a constant magnitude of acceleration?

14  While riding in a moving car, you toss an egg directly upward. 
Does the egg tend to land behind you, in front of you, or back 
in your hands if the car is (a) traveling at a constant speed, (b) 
increasing in speed, and (c) decreasing in speed?

15  A snowball is thrown from ground level (by someone in a 
hole) with initial speed v0 at an angle of 45° relative to the (level) 
ground, on which the snowball later lands. If the launch angle 
is increased, do (a) the range and (b) the flight time increase, 
decrease, or stay the same? 

16  You are driving directly behind a pickup truck, going at the 
same speed as the truck. A crate falls from the bed of the truck 
to the road. (a) Will your car hit the crate before the crate hits 
the road if you neither brake nor swerve? (b) During the fall, 
is the horizontal speed of the crate more than, less than, or the 
same as that of the truck?

17  At what point in the path of a projectile is the speed a 
minimum?

18  In shot put, the shot is put (thrown) from above the ath-
lete’s shoulder level. Is the launch angle that produces the great-
est range 45°, less than 45°, or greater than 45°?

Module 4.1  Position and Displacement
1 E  The position vector for an electron is    r →   = (5.0 m) ̂ i  − (3.0 m) ̂ j   
+ (2.0 m) k ̂   . (a) Find the magnitude of    r →   . (b) Sketch the vector 
on a right-handed coordinate system.
2 E  A watermelon seed has the following coordinates: x =  
‒5.0 m, y  = 8.0 m, and z = 0 m. Find its position vector (a) in 
unit-vector notation and as (b) a magnitude and (c) an angle 
relative to the positive direction of the x axis. (d) Sketch the vec-
tor on a right-handed coordinate system. If the seed is moved to 
the xyz coordinates (3.00 m, 0 m, 0 m), what is its displacement  

Problems

(e) in unit-vector notation and as (f) a magnitude and (g) an 
angle relative to the positive x direction?

3 E  A positron undergoes a displacement  Δ  r →   = 2.0 ̂ i  − 3.0 ̂ j  + 6.0 k ̂   , 
ending with the position vector    r →   = 3.0 ̂ j  − 4.0 k ̂   , in meters. What 
was the positron’s initial position vector?

4 M  The minute hand of a wall clock measures 10 cm from its tip 
to the axis about which it rotates. The magnitude and angle of the 
displacement vector of the tip are to be determined for three time 
intervals. What are the (a) magnitude and (b) angle from a quarter 

          Tutoring problem available (at instructor’s discretion) in WileyPLUS

 Worked-out solution available in Student Solutions Manual

E  Easy M  Medium H  Hard

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

CALC  Requires calculus

BIO  Biomedical application

GO

FCP

SSM
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after the hour to half past, the (c) magnitude and (d) angle for the 
next half hour, and the (e) magnitude and (f) angle for the hour 
after that?

Module 4.2  Average Velocity and Instantaneous Velocity
5 E  SSM  A train at a constant 60.0 km/h moves east for 
40.0 min, then in a direction 50.0° east of due north for 20.0 min, 
and then west for 50.0 min. What are the (a) magnitude and 
(b) angle of its average velocity during this trip?

6 E  CALC  An electron’s position is given by    r →   = 3.00t ̂ i  − 4.00  t   2  ̂ j   
+ 2.00 k ̂   , with t in seconds and    r →    in meters. (a) In unit-vector 
notation, what is the electron’s velocity    v →  (t) ? At t = 2.00 s, what 
is    v →    (b) in unit-vector notation and as (c) a magnitude and (d) an 
angle relative to the positive direction of the x axis?

7 E  An ion’s position vector is initially    r →   = 5.0 ̂ i  − 6.0 ̂ j  + 2.0 k ̂   , 
and 10 s later it is    r →   = − 2.0 ̂ i  + 8.0 ̂ j  − 2.0 k ̂   , all in meters. In unit-
vector notation, what is its     v →    avg    during the 10 s?

8 M  A plane flies 483 km east from city A to city B in 45.0 min 
and then 966 km south from city B to city C in 1.50 h. For the 
total trip, what are the (a) magnitude and (b) direction of the 
plane’s displacement, the (c) magnitude and (d) direction of its 
average velocity, and (e) its average speed?

9 M  Figure 4.10 gives the 
path of a squirrel moving 
about on level ground, from 
point A (at time t = 0), to 
points B (at t = 5.00 min), 
C (at t = 10.0 min), and 
finally D (at t = 15.0 min). 
Consider the average 
velocities of the squirrel 
from point A to each of 
the other three points. Of 
them, what are the (a) mag-
nitude and (b) angle of the 
one with the least magni-
tude and the (c) magni-
tude and (d) angle of the one with the greatest magnitude?

10 H  The position vector    r →   = 
5.00t ̂ i  + (et +  ft   2 ) ̂ j   locates a par-
ticle as a function of time t. Vec-
tor    r →    is in meters, t is in seconds, 
and factors e and f are constants. 
Figure 4.11 gives the angle θ of 
the particle’s direction of travel 
as a function of t (θ is measured 
from the positive x direction). 
What are (a) e and (b) f, includ-
ing units?

Module 4.3  Average Acceleration and Instantaneous 
Acceleration
11 E  CALC  GO  The position    r →    of a particle moving in an xy 
plane is given by    r →   = (2.00  t   3  − 5.00t) ̂ i  + (6.00 −  7.00t   4 )   ̂ j  , with    r →    in 
meters and t in seconds. In unit-vector notation, calculate (a)    r →   , 
(b)    v →   , and (c)    a →    for t = 2.00 s. (d) What is the angle  between the 
positive direction of the x axis and a line tangent to the particle’s 
path at t = 2.00 s? 

12 E  At one instant a bicyclist is 40.0 m due east of a park’s flag-
pole, going due south with a speed of 10.0 m/s. Then 30.0 s later, 
the cyclist is 40.0 m due north of the flagpole, going due east with 
a speed of 10.0 m/s. For the cyclist in this 30.0 s  interval, what 
are the (a)   magnitude and (b) direction of the  displacement, 
the (c)  magnitude and (d) direction of the average velocity, and 
the (e) magnitude and (f) direction of the average acceleration?

13 E  CALC  SSM  A particle moves so that its position (in meters) 
as a  function of time (in seconds) is    r →   =  ̂ i  + 4  t   2  ̂ j  + t k ̂   . Write 
 expres sions for (a) its velocity and (b) its acceleration as functions 
of time.

14 E  A proton initially has    v →   = 4.0 ̂ i  − 2.0 ̂ j  + 3.0 k ̂    and then 4.0 s 
later has    v →   = − 2.0 ̂ i  − 2.0 ̂ j  + 5.0 k ̂    (in meters per second). For 
that 4.0 s, what are (a) the proton’s average acceleration     a →    avg    in 
unit-vector notation, (b) the magnitude of     a →    avg   , and (c) the angle 
between     a →    avg    and the positive direction of the x axis?

15 M  SSM  A particle leaves the origin with an initial velocity    v →   =  
(3.00 ̂ i ) m / s  and a constant acceleration    a →   = (−1.00 ̂ i  − 0.500 ̂ j )   
m / s  2  . When it reaches its maximum x coordinate, what are its (a) 
velocity and (b) position vector?

16 M  CALC  GO  The velocity    v →    of a particle moving in the xy 
plane is given by    v →   = (6.0t − 4.0  t   2 )  ̂ i  + 8.0  ̂ j  , with    v →    in meters 
per  second and t  (> 0) in seconds. (a) What is the acceleration 
when t = 3.0 s? (b) When (if ever) is the acceleration zero?  
(c) When (if ever) is the velocity zero? (d) When (if ever) does 
the speed equal 10 m/s?

17 M  A cart is propelled over an xy plane with acceleration com-
ponents ax = 4.0 m/s2 and ay = ‒2.0 m/s2. Its initial  velocity has 
components v0x = 8.0 m/s and v0y = 12 m/s. In unit-vector nota-
tion, what is the velocity of the cart when it reaches its greatest y 
coordinate?

18 M  A moderate wind accelerates a pebble over a horizon-
tal xy plane with a constant acceleration    a →   = (5.00   m / s  2 ) ̂ i  + 
(7.00  m / s  2 ) ̂ j  . At time t = 0, the velocity is (4.00 m/s)  ̂ i  . What are 

the (a) magnitude and (b) angle of its velocity when it has been 
displaced by 12.0 m parallel to the x axis?

19 H  CALC  The acceleration of a particle moving only on a hori-
zontal xy plane is given by    a →   = 3t ̂ i  + 4t ̂ j  , where    a →    is in meters per 
second-squared and t is in seconds. At t = 0, the  position vec-
tor    r →   = (20.0 m) ̂ i  + (40.0 m) ̂ j   locates the particle, which then has 
the velocity vec tor    v →   = (5.00 m / s) ̂ i  + (2.00 m / s) ̂ j  . At t = 4.00 s, 
what are (a) its position vector in unit-vector notation and (b) 
the  angle between its direction of travel and the positive direc-
tion of the x axis?

20 H  GO  In Fig. 4.12, particle 
A moves along the line y = 30 m 
with a constant velocity    v →    of 
magnitude 3.0 m/s and paral-
lel to the x axis. At the instant 
particle A passes the y axis, 
particle B leaves the origin 
with a zero initial speed and a 
constant  acceleration    a →    of mag-
nitude 0.40 m/s2. What angle 
θ between    a →    and the positive 
direction of the y axis would 
result in a collision?
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Module 4.4  Projectile Motion
21 E  A dart is thrown horizontally with an initial speed of 
10 m/s toward point P, the bull’s-eye on a dart board. It hits at 
point Q on the rim, vertically below P, 0.19 s later. (a) What is 
the distance PQ? (b) How far away from the dart board is the 
dart released?

22 E  A small ball rolls horizontally off the edge of a tabletop 
that is 1.20 m high. It strikes the floor at a point 1.52 m hori-
zontally from the table edge. (a) How long is the ball in the air?  
(b) What is its speed at the instant it leaves the table?

23 E  A projectile is fired horizontally from a gun that is 45.0 m 
above flat ground, emerging from the gun with a speed of 
250 m/s. (a) How long does the projectile remain in the air? 
(b)  At what horizontal distance from the firing point does it 
strike the ground? (c) What is the magnitude of the vertical 
component of its velocity as it strikes the ground?

24 E  BIO  FCP  In the 1991 World Track and Field Champion-
ships in Tokyo, Mike Powell jumped 8.95 m, breaking by a full 
5 cm the 23-year long-jump record set by Bob Beamon. Assume 
that Powell’s speed on takeoff was 9.5 m/s (about equal to that 
of a sprinter) and that g = 9.80 m/s2 in Tokyo. How much less 
was Powell’s range than the maximum possible range for a par-
ticle launched at the same speed?

25 E  FCP  The current world-record motorcycle jump is 77.0 m,  
set by Jason Renie. Assume that he left the take-off ramp at 
12.0° to the horizontal and that the take-off and landing heights 
are the same. Neglecting air drag, determine his take-off speed.

26 E  A stone is catapulted at time t = 0, with an initial veloc-
ity of magnitude 20.0 m/s and at an angle of 40.0° above the 
horizontal. What are the magnitudes of the (a) horizontal and  
(b) vertical components of its displacement from the catapult site 
at t = 1.10 s? Repeat for the (c) horizontal and (d) vertical com-
ponents at t = 1.80 s, and for the (e) horizontal and (f) vertical 
components at t = 5.00 s.

27 M  A certain airplane has a 
speed of 290.0 km/h and is  diving 
at an angle of θ = 30.0° below 
the horizontal when the  pilot 
releases a radar decoy (Fig. 4.13).  
The horizontal distance between 
the release point and the point 
where the  decoy strikes the 
ground is d = 700 m. (a) How 
long is the decoy in the air? (b) 
How high was the release point?

28 M  GO  In Fig. 4.14, a stone is projected at a cliff of height 
h with an initial speed of 42.0 m/s directed at angle θ0 = 60.0° 
above the horizontal. The stone strikes at A, 5.50 s after launch-
ing. Find (a) the height h of the cliff, (b) the speed of the stone 
just before impact at A, and (c) the maximum height H reached 
above the ground.
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θ

Figure 4.14 Problem 28.

29 M  A projectile’s launch speed is five times its speed at maxi-
mum height. Find launch angle θ0.

30 M  GO  A soccer ball is kicked from the ground with an initial 
speed of 19.5 m/s at an upward angle of 45°. A player 55 m away 
in the direction of the kick starts running to meet the ball at that 
instant. What must be his average speed if he is to meet the ball 
just before it hits the ground?

31 M  FCP  In a jump spike, a volleyball player slams the ball 
from overhead and toward the opposite floor. Controlling the 
angle of the spike is difficult. Suppose a ball is spiked from a 
height of 2.30 m with an initial speed of 20.0 m/s at a downward 
angle of 18.00°. How much farther on the opposite floor would it 
have landed if the downward angle were, instead, 8.00°?

32 M  GO  You throw a ball 
toward a wall at speed 25.0 m/s 
and at angle θ0 = 40.0° above the 
horizontal (Fig. 4.15). The wall 
is distance d = 22.0 m from the 
release point of the ball. (a) How 
far above the release point does 
the ball hit the wall? What are 
the (b) horizontal and (c) vertical components of its velocity as 
it hits the wall? (d) When it hits, has it passed the highest point 
on its trajectory?

33 M  SSM  A plane, diving with constant speed at an angle of 
53.0° with the vertical, releases a projectile at an altitude of 730 m. 
The projectile hits the ground 5.00 s after release. (a) What is 
the speed of the plane? (b) How far does the  projectile travel 
horizontally during its flight? What are the (c) horizontal and 
(d) vertical components of its velocity just before striking  
the ground?

34 M  FCP  A trebuchet was a hurling machine built to attack the 
walls of a castle under siege. A large stone could be hurled against 
a wall to break apart the wall. The machine was not placed near 
the wall because then arrows could reach it from the castle wall. 
Instead, it was positioned so that the stone hit the wall during the 
second half of its flight. Suppose a stone is launched with a speed 
of v0 = 28.0 m/s and at an angle of θ0 = 40.0°. What is the speed 
of the stone if it hits the wall (a) just as it reaches the top of its 
parabolic path and (b) when it has descended to half that height? 
(c) As a percentage, how much faster is it moving in part (b) than 
in part (a)?

35 M  SSM  A rifle that shoots bullets at 460 m/s is to be aimed 
at a target 45.7 m away. If the center of the target is level with 
the rifle, how high above the target must the rifle barrel be 
pointed so that the bullet hits dead center?

36 M  GO  During a tennis match, a player serves the ball at 
23.6 m/s, with the center of the ball leaving the racquet hori-
zontally 2.37 m above the court surface. The net is 12 m away 
and 0.90 m high. When the ball reaches the net, (a) does the 
ball clear it and (b) what is the distance between the center of 
the ball and the top of the net? Suppose that, instead, the ball is 
served as before but now it leaves the racquet at 5.00°  below the 
horizontal. When the ball reaches the net, (c) does the ball clear 
it and (d) what now is the distance between the center of the ball 
and the top of the net?

37 M  SSM  A lowly high diver pushes off horizontally with 
a speed of 2.00 m/s from the platform edge 10.0 m above the 
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Figure 4.13 Problem 27.
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Figure 4.15 Problem 32.
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surface of the water. (a) At what horizontal distance from the 
edge is the diver 0.800 s after pushing off? (b) At what vertical 
distance above the surface of the water is the diver just then? 
(c) At what horizontal distance from the edge does the diver 
strike the water?

38 M  A golf ball is struck 
at ground level. The 
speed of the golf ball as 
a function of the time is 
shown in Fig. 4.16, where 
t = 0 at the instant the 
ball is struck. The scaling 
on the vertical axis is set 
by va = 19 m/s and vb = 31 
m/s. (a) How far does the 
golf ball travel horizon-
tally before returning to ground level? (b) What is the maxi-
mum height above ground level attained by the ball?

39 M  In Fig. 4.17, a ball is 
thrown leftward from the left 
edge of the roof, at height h 
above the ground. The ball 
hits the ground 1.50 s later, 
at distance d = 25.0 m from 
the building and at angle 
θ = 60.0° with the horizontal. 
(a) Find h. (Hint: One way is to reverse the motion, as if on video.) 
What are the (b) magnitude and (c) angle relative to the horizontal 
of the velocity at which the ball is thrown? (d) Is the angle above or 
below the horizontal?

40 M  FCP  Suppose that a shot putter can put a shot at the 
world-class speed v0 = 15.00 m/s and at a height of 2.160 m. What 
horizontal distance would the shot travel if the launch angle θ0 
is (a) 45.00° and (b) 42.00°? The answers indicate that the  angle 
of 45°, which maximizes the range of projectile  motion, does not 
maximize the horizontal distance when the launch and landing 
are at different heights.

41 M  GO  FCP  Upon spotting 
an insect on a twig overhang-
ing water, an archer fish squirts 
water drops at the insect to knock 
it into the water (Fig. 4.18). 
Although the insect is located 
along a straight-line path at angle 
ϕ and distance d, a drop must be 
launched at a different angle θ0 if 
its parabolic path is to intersect 
the  insect. If ϕ0 = 36.0° and d = 0.900 m, what launch angle θ0 is 
required for the drop to be at the top of the parabolic path when 
it reaches the insect?

42 M  FCP  In 1939 or 1940, Emanuel Zacchini took his 
human-cannonball act to an extreme: After being shot from 
a cannon, he soared over three Ferris wheels and into a net (Fig. 
4.19). Assume that he is launched with a speed of 26.5 m/s and at 
an angle of 53.0°. (a) Treating him as a particle, calculate his clear-
ance over the first wheel. (b) If he reached  maximum height over 
the middle wheel, by how much did he clear it? (c) How far from 
the cannon should the net’s center have been positioned (neglect 
air drag)?
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Figure 4.19 Problem 42.

43 M  A ball is shot from the ground into the air. At a height 
of 9.1 m, its velocity is    v →   = (7.6 ̂ i  + 6.1 ̂ j ) m / s , with   ̂ i   horizontal 
and   ̂ j   upward. (a) To what maximum height does the ball rise? 
(b)  What total horizontal distance does the ball travel? What 
are the (c) magnitude and (d) angle (below the  horizontal) of 
the ball’s velocity just before it hits the ground?

44 M  A baseball leaves a pitcher’s hand horizontally at a speed 
of 161 km/h. The distance to the batter is 18.3 m. (a) How long 
does the ball take to travel the first half of that  distance? (b) The 
second half? (c) How far does the ball fall freely during the first 
half? (d) During the second half? (e) Why aren’t the quantities in 
(c) and (d) equal?

45 M  In Fig. 4.20, a ball is 
launched with a velocity of 
magnitude 10.0 m/s, at an 
angle of 50.0° to the hori-
zontal. The launch point is 
at the base of a ramp of hor-
izontal length d1 = 6.00 m 
and height d2 = 3.60 m. A plateau is located at the top of the 
ramp. (a) Does the ball land on the ramp or the plateau? When 
it lands, what are the (b) magnitude and (c) angle of its displace-
ment from the launch point?

46 M  BIO  GO  FCP  In basketball, hang is an illusion in which a 
player seems to weaken the gravitational acceleration while in 
midair. The illusion depends much on a skilled player’s ability 
to rapidly shift the ball between hands during the flight, but it 
might also be supported by the longer horizontal distance the 
player travels in the upper part of the jump than in the lower 
part. If a player jumps with an initial speed of v0 = 7.00 m/s at 
an  angle of θ0 = 35.0°, what percent of the jump’s range does 
the player spend in the upper half of the jump (between maxi-
mum height and half maximum height)?

47 M  SSM  A batter hits a pitched ball when the center of the 
ball is 1.22 m above the ground. The ball leaves the bat at an 
 angle of 45° with the ground. With that launch, the ball should 
have a horizontal range (returning to the launch level) of 107 m. 
(a) Does the ball clear a 
7.32-m-high fence that is 
97.5 m horizontally from 
the launch point? (b) At the 
fence, what is the distance 
between the fence top and 
the ball center?

48 M  GO  In Fig. 4.21, a ball 
is thrown up onto a roof, 
landing 4.00 s later at height 
h = 20.0 m above the release 
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level. The ball’s path just before landing is angled at θ = 60.0° 
with the roof. (a) Find the horizontal distance d it travels. 
(See the hint to Problem 39.) What are the (b) magnitude and  
(c) angle (relative to the horizontal) of the ball’s initial velocity?

49 H  SSM  A football kicker can give the ball an initial speed of 
25 m/s. What are the (a) least and (b) greatest elevation  angles 
at which he can kick the ball to score a field goal from a point 
50 m in front of goalposts whose horizontal bar is 3.44 m above 
the ground?

50 H  GO  Two seconds after being projected from ground 
level, a projectile is displaced 40 m horizontally and 53 m ver-
tically above its launch point. What are the (a) horizontal and 
(b)  vertical components of the initial velocity of the projectile? 
(c) At the instant the projectile achieves its maximum height 
above ground level, how far is it displaced horizontally from 
the launch point?

51 H  BIO  FCP  A skilled skier knows to jump upward before 
reaching a downward slope. Consider a jump in which the launch 
speed is v0 = 10 m/s, the launch angle is θ0 = 11.3°, the initial 
course is  approximately flat, and the steeper track has a slope of 
9.0°. Figure 4.22a shows a prejump that allows the skier to land on 
the top portion of the steeper track. Figure 4.22b shows a jump 
at the edge of the steeper track. In Fig. 4.22a, the skier lands at 
approximately the launch level. (a) In the landing, what is the 
angle ϕ  between the skier’s path and the slope? In Fig. 4.22b,  
(b) how far below the launch level does the skier land and (c) 
what is ϕ? (The greater fall and greater ϕ can result in loss of 
control in the  landing.)

(a) (b)

Figure 4.22 Problem 51.

52 H  A ball is to be shot from level ground toward a wall at 
distance x (Fig. 4.23a). Figure 4.23b shows the y component vy of 
the ball’s velocity just as it would reach the wall, as a function of 
that distance x. The scaling is set by vys = 5.0 m/s and xs = 20 m. 
What is the launch angle?
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Figure 4.23 Problem 52.

53 H  GO  In Fig. 4.24, a baseball is hit at a height h = 1.00 m 
and then caught at the same height. It travels alongside a wall, 
moving up past the top of the wall 1.00 s after it is hit and then 
down past the top of the wall 4.00 s later, at distance D = 50.0 m 
farther along the wall. (a) What horizontal distance is traveled 
by the ball from hit to catch? What are the (b) magnitude and 
(c) angle (relative to the horizontal) of the ball’s velocity just 
after being hit? (d) How high is the wall?

D

h h

Figure 4.24 Problem 53.

54 H  GO  A ball is to be shot 
from level ground with a cer-
tain speed. Figure 4.25 shows 
the range R it will have versus 
the launch angle θ0. The value 
of θ0 determines the flight time; 
let tmax represent the maximum 
flight time. What is the least 
speed the ball will have during 
its flight if θ0 is chosen such that 
the flight time is 0.500tmax?

55 H  SSM  A ball rolls horizontally off the top of a stairway 
with a speed of 1.52 m/s. The steps are 20.3 cm high and 20.3 cm 
wide. Which step does the ball hit first?

Module 4.5  Uniform Circular Motion
56 E  An Earth satellite moves in a circular orbit 640 km (uni-
form circular motion) above Earth’s surface with a period of 
98.0 min. What are (a) the speed and (b) the magnitude of the 
centripetal acceleration of the satellite?

57 E  A carnival merry-go-round rotates about a vertical axis 
at a constant rate. A man standing on the edge has a constant 
speed of 3.66 m/s and a centripetal acceleration    a →    of mag nitude 
1.83 m/s2. Position vector    r →    locates him relative to the rotation 
axis. (a) What is the magnitude of    r →   ? What is the  direction of    r →    
when    a →    is directed (b) due east and (c) due south?

58 E  A rotating fan completes 1200 revolutions every minute. 
Consider the tip of a blade, at a radius of 0.15 m. (a) Through 
what distance does the tip move in one revolution? What are 
(b) the tip’s speed and (c) the magnitude of its  acceleration?  
(d) What is the period of the motion?

59 E  A woman rides a carnival Ferris wheel at radius 15 m, 
completing five turns about its horizontal axis every minute. 
What are (a) the period of the motion, the (b) magnitude and 
(c)  direction of her centripetal acceleration at the highest point, 
and the (d) magnitude and (e) direction of her centripetal accel-
eration at the lowest point?

60 E  A centripetal-acceleration addict rides in uniform circular 
motion with radius r = 3.00 m. At one instant his acceleration 
is    a →   = (6.00  m/s  2 ) ̂ i  + (−4.00  m/s  2 ) ̂ j .  At that instant, what are the 
 values of (a)    v →   ⋅   a →    and (b)    r →   ×   a →   ?

61 E  When a large star becomes a supernova, its core may be 
compressed so tightly that it becomes a neutron star, with a radius 
of about 20 km (about the size of the San Francisco area). If a 
neutron star rotates once every second, (a) what is the speed of a 
particle on the star’s equator and (b) what is the magnitude of the 
particle’s centripetal acceleration? (c) If the neutron star rotates 
faster, do the answers to (a) and (b) increase, decrease, or remain 
the same?

62 E  What is the magnitude of the acceleration of a sprinter 
running at 10 m/s when rounding a turn of radius 25 m?
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63 M  GO  At t1 = 2.00 s, the acceleration of a particle in counter-
clockwise circular motion is (6.00 m/s2)  ̂ i   + (4.00 m/s2)  ̂ j  . It moves 
at constant speed. At time t2 = 5.00 s, the particle’s acceleration 
is (4.00 m/s2)  ̂ i   + (‒6.00 m/s2)  ̂ j  . What is the radius of the path 
taken by the particle if t2 ‒ t1 is less than one period?

64 M  GO  A particle moves horizontally in uniform circular 
 motion, over a horizontal xy plane. At one instant, it moves 
through the point at coordinates (4.00 m, 4.00 m) with a  velocity 
of ‒5.00  ̂ i   m/s and an acceleration of +12.5  ̂ j   m/s2. What are the 
(a) x and (b) y coordinates of the center of the circular path?

65 M  A purse at radius 2.00 m and a wallet at radius 3.00 m travel 
in uniform circular motion on the floor of a merry- go-round as 
the ride turns. They are on the same radial line. At one instant, 
the acceleration of the purse is (2.00 m/s2)  ̂ i   + (4.00 m/s2)  ̂ j  . At that 
instant and in unit-vector notation, what is the acceleration of the 
wallet?

66 M  A particle moves along a circular path over a hori zontal 
xy coordinate system, at constant speed. At time t1 = 4.00 s, it is 
at point (5.00 m, 6.00 m) with velocity (3.00 m/s)  ̂ j   and accelera-
tion in the positive x direction. At time t2 = 10.0 s, it has velocity 
(−3.00 m/s)  ̂ i   and acceleration in the  positive y direction. What are 
the (a) x and (b) y coordi nates of the  center of the circular path if 
t2 ‒ t1 is less than one period?

67 H  SSM  A boy whirls a stone in a horizontal circle of radius 
1.5 m and at height 2.0 m above level ground. The string breaks, 
and the stone flies off horizontally and strikes the ground  after 
traveling a horizontal distance of 10 m. What is the  magnitude 
of the centripetal acceleration of the stone during the circular 
motion?

68 H  GO  A cat rides a merry-go-round turning with uniform
circular motion. At time t1 = 2.00 s, the cat’s velocity is     v →    1   = 
(3.00 m / s) ̂ i  + (4.00 m / s) ̂ j  , measured on a horizontal xy coordinate 
system. At t2 = 5.00 s, the cat’s velocity is     v →    2   = (−3.00 m / s) ̂ i  +  
(−4.00 m / s) ̂ j  . What are (a) the magnitude of the cat’s centripetal 
acceleration and (b) the cat’s  average acceleration during the 
time interval t2 ‒ t1, which is less than one period?

Module 4.6  Relative Motion in One Dimension
69 E  A cameraman on a pickup truck is traveling westward at 
20 km/h while he records a cheetah that is moving westward 
30  km/h faster than the truck. Suddenly, the cheetah stops, 
turns, and then runs at 45 km/h eastward, as measured by a sud-
denly nervous crew member who stands alongside the cheetah’s 
path. The change in the animal’s velocity takes 2.0 s. What are 
the (a) magnitude and (b) direction of the  animal’s acceleration 
according to the cameraman and the (c) magnitude and (d) direc-
tion according to the nervous crew member?

70 E  A boat is traveling upstream in the positive direction of 
an x axis at 14 km/h with respect to the water of a river. The 
water is flowing at 9.0 km/h with respect to the ground. What 
are the (a) magnitude and (b) direction of the boat’s velocity 
with respect to the ground? A child on the boat walks from front 
to rear at 6.0 km/h with respect to the boat. What are the (c) 
magnitude and (d) direction of the child’s velocity with respect 
to the ground?

71 M  BIO  A suspicious-looking man runs as fast as he can along 
a moving sidewalk from one end to the other, taking 2.50 s. 
Then security agents appear, and the man runs as fast as he can 

back along the sidewalk to his starting point, taking 10.0 s. What 
is the ratio of the man’s running speed to the sidewalk’s speed?

Module 4.7  Relative Motion in Two Dimensions
72 E  A rugby player runs with the ball directly toward his oppo-
nent’s goal, along the positive direction of an x axis. He can 
legally pass the ball to a teammate as long as the ball’s  velocity 
relative to the field does not have a positive x component. Sup-
pose the player runs at speed 4.0 m/s relative to the field while he 
passes the ball with velocity     v →    BP    relative to himself. If     v →    BP    has 
magnitude 6.0 m/s, what is the smallest  angle it can have for the 
pass to be legal?

73 M  Two highways intersect as shown in Fig. 4.26. At the 
 instant shown, a police car P is distance dP = 800 m from the 
intersection and moving at speed vP = 80 km/h. Motorist M 
is distance dM = 600 m from the intersection and moving at speed 
vM = 60 km/h. 

x

y

M

dM

vP

vM

dP

P

Figure 4.26 Problem 73.
(a) In unit-vector notation, what is the velocity of the motorist 
with respect to the police car? (b) For the instant shown in Fig. 
4.26, what is the angle  between the velocity found in (a) and the 
line of sight  between the two cars? (c) If the cars maintain their 
velocities, do the answers to (a) and (b) change as the cars move 
nearer the intersection?

74 M  After flying for 15 min in a wind blowing 42 km/h at an 
 angle of 20° south of east, an airplane pilot is over a town that is 
55 km due north of the starting point. What is the speed of the 
airplane relative to the air?

75 M  SSM  A train travels due south at 30 m/s (relative to the 
ground) in a rain that is blown toward the south by the wind. 
The path of each raindrop makes an angle of 70° with the verti-
cal, as measured by an observer stationary on the ground. An 
observer on the train, however, sees the drops fall perfectly 
vertically. Determine the speed of the raindrops  relative to the 
ground.

76 M  A light plane attains an airspeed of 500 km/h. The  pilot 
sets out for a destination 800 km due north but discovers that 
the plane must be headed 20.0° east of due north to fly there 
directly. The plane arrives in 2.00 h. What were the (a) magni-
tude and (b) direction of the wind velocity?

77 M  SSM  Snow is falling vertically at a constant speed of 
8.0 m/s. At what angle from the vertical do the snowflakes 
appear to be falling as viewed by the driver of a car traveling on 
a straight, level road with a speed of 50 km/h?
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78 M  In the overhead view of 
Fig. 4.27, Jeeps P and B race 
along straight lines, across 
flat terrain, and past station-
ary border guard A. Relative 
to the guard, B travels at a 
constant speed of 20.0 m/s, at 
the angle θ2 = 30.0°. Relative 
to the guard, P has acceler-
ated from rest at a constant 
rate of 0.400 m/s2 at the angle 
θ1 = 60.0°. At a certain time during the  acceleration, P has a speed 
of 40.0 m/s. At that time, what are the (a) magnitude and (b) direc-
tion of the velocity of P relative to B and the (c) magnitude and  
(d) direction of the  acceleration of P relative to B?

79 M  SSM  Two ships, A and B, leave port at the same time. 
Ship A travels northwest at 24 knots, and ship B travels at 28 
knots in a direction 40° west of south. (1 knot = 1 nautical mile 
per hour; see Appendix D.) What are the (a) magnitude and 
(b) direction of the velocity of ship A relative to B? (c) After 
what time will the ships be 160 nautical miles apart? (d) What 
will be the bearing of B (the direction of B’s position) relative 
to A at that time?

80 M  GO  A 200-m-wide river flows due east at a uniform 
speed of 2.0 m/s. A boat with a speed of 8.0 m/s relative to the 
water leaves the south bank pointed in a direction 30° west 
of north. What are the (a) magnitude and (b) direction of the 
boat’s velocity relative to the ground? (c) How long does the 
boat take to cross the river?  

81 H  CALC  GO  Ship A is located 4.0 km north and 2.5 km east 
of ship B. Ship A has a velocity of 22 km/h toward the south, 
and ship B has a velocity of 40 km/h in a direction 37° north 
of east. (a)  What is the velocity of A relative to B in unit- 
vector notation with   ̂ i   toward the east? (b) Write an expression 
(in terms of   ̂ i   and   ̂ j  ) for the position of A relative to B as  a 
function of t, where t = 0 when the ships are in the positions 
described above. (c) At what time is the separation  between 
the ships least? (d) What is that least  separation?

82 H  GO  A 200-m-wide river has a uniform flow speed of 
1.1 m/s through a jungle and toward the east. An explorer 
wishes to leave a small clearing on the south bank and 
cross the river in a powerboat that moves at a constant speed 
of 4.0 m/s with respect to the water. There is a clearing on 
the north bank 82 m upstream from a point directly opposite 
the clearing on the south bank. (a) In what direction must the 
boat be pointed in order to travel in a straight line and land 
in the clearing on the north bank? (b) How long will the boat 
take to cross the river and land in the clearing?

Additional Problems
83 BIO  A woman who can row a boat at 6.4 km/h in still water 
faces a long, straight river with a width of 6.4 km and a current of 
3.2 km/h. Let   ̂ i   point directly across the river and   ̂ j   point directly 
downstream. If she rows in a straight line to a point directly 
opposite her starting position, (a) at what angle to   ̂ i   must she 
point the boat and (b) how long will she take? (c) How long will 
she take if, instead, she rows 3.2 km down the river and then 
back to her starting point? (d) How long if she rows 3.2 km up 
the river and then back to her starting point? (e) At what angle 

to   ̂ i   should she point the boat if she wants to cross the river in 
the shortest possible time? (f) How long is that shortest time?

84  In Fig. 4.28a, a sled moves in the negative x direction at 
constant speed vs while a ball of ice is shot from the sled with 
a velocity     v →    0   =  v  0x   ̂ i  +  v  0y   ̂ j   relative to the sled. When the ball 
lands, its horizontal displacement ∆xbg relative to the ground 
(from its launch position to its landing position) is measured. 
Figure 4.28b gives ∆xbg as a function of vs. Assume the ball 
lands at approximately its launch height. What are the values 
of (a) v0x and (b) v0y? The ball’s displacement ∆xbs relative to 
the sled can also be measured. Assume that the sled’s velocity 
is not changed when the ball is shot. What is ∆xbs when vs is (c) 
5.0 m/s and (d) 15 m/s?
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Figure 4.28 Problem 84.

85  You are kidnapped by political-science majors (who are 
upset because you told them political science is not a real 
 science). Although blindfolded, you can tell the speed of 
their car (by the whine of the engine), the time of travel (by 
mentally counting off seconds), and the direction of travel 
(by turns along the rectangular street system). From these 
clues, you know that you are taken along the following 
course: 50  km/h for 2.0 min, turn 90° to the right, 20 km/h 
for 4.0 min, turn 90° to the right, 20 km/h for 60 s, turn 90° 
to the left, 50 km/h for 60 s, turn 90° to the right, 20 km/h for 
2.0 min, turn 90° to the left, 50 km/h for 30 s. At that point, 
(a) how far are you from your starting point, and (b) in what 
direction relative to your initial direction of travel are you?

86  A radar station detects an airplane  approach ing  directly 
from the east. At first observation, the airplane is at  distance 
d1 = 360 m from the station and at  angle θ1 = 40° above the 
horizon (Fig. 4.29). The airplane is tracked through an angular 
change ∆θ = 123° in the vertical east–west plane; its distance is 
then d2 = 790 m. Find the (a) magnitude and (b) direction of the 
airplane’s displacement during this  period.
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Figure 4.29 Problem 86.

87 SSM  A baseball is hit at ground level. The ball reaches its 
maximum height above ground level 3.0 s after being hit. Then 
2.5 s after reaching its maximum height, the ball barely clears a 
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Figure 4.27 Problem 78.
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fence that is 97.5 m from where it was hit. Assume the ground is 
level. (a) What maximum height above ground level is reached 
by the ball? (b) How high is the fence? (c) How far beyond the 
fence does the ball strike the ground?

88  Long flights at midlatitudes in the Northern Hemisphere 
encounter the jet stream, an eastward airflow that can affect a 
plane’s speed relative to Earth’s surface. If a pilot maintains a 
certain speed relative to the air (the plane’s airspeed), the speed 
relative to the surface (the plane’s ground speed) is more when 
the flight is in the direction of the jet stream and less when the 
flight is opposite the jet stream. Suppose a round-trip flight is 
scheduled between two cities separated by 4000 km, with the 
outgoing flight in the direction of the jet stream and the return 
flight opposite it. The airline computer advises an airspeed of 
1000 km/h, for which the difference in flight times for the outgo-
ing and return flights is 70.0 min. What jet-stream speed is the 
computer using?

89 SSM  A particle starts from the origin at t = 0 with a velocity 
of  8.0 ̂ j  m / s  and moves in the xy plane with constant acceleration  
(4.0 ̂ i  + 2.0 ̂ j )  m / s  2  . When the particle’s x coordinate is 29 m, what 
are its (a) y coordinate and (b) speed?

90 BIO  At what initial 
speed must the basketball 
player in Fig. 4.30 throw 
the ball, at angle θ0 = 55° 
above the horizontal, to 
make the foul shot? The 
horizontal distances are 
d1 = 1.0 ft and d2 = 14 ft, 
and the heights are 
h1 = 7.0 ft and h2 = 10 ft.

91  During volcanic erup-
tions, chunks of solid rock 
can be blasted out of the volcano; these  projectiles are called 
volcanic bombs.  Figure 4.31 shows a cross section of Mt. Fuji, 
in Japan. (a) At what initial speed would a bomb have to be 
ejected, at angle θ0 = 35° to the horizontal, from the vent at 
A in order to fall at the foot of the volcano at B, at verti-
cal distance h = 3.30 km and horizontal distance d = 9.40 km? 
Ignore, for the  moment, the effects of air on the bomb’s travel. 
(b) What would be the time of flight? (c) Would the  effect of 
the air increase or decrease your answer in (a)?

h

d
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Figure 4.31 Problem 91.

92  An astronaut is rotated in a horizontal centrifuge at a 
radius of 5.0 m. (a) What is the astronaut’s speed if the centrip-
etal acceleration has a magnitude of 7.0g? (b) How many revo-
lutions per minute are required to produce this acceleration?  
(c) What is the period of the motion?

93 SSM  Oasis A is 90 km due west of oasis B. A desert camel 
leaves A and takes 50 h to walk 75 km at 37° north of due east. 
Next it takes 35 h to walk 65 km due south. Then it rests for 
5.0 h. What are the (a) magnitude and (b) direction of the 
 camel’s displacement relative to A at the resting point? From 
the time the camel leaves A until the end of the rest period, what 
are the (c) magnitude and (d) direction of its average velocity 
and (e) its average speed? The camel’s last drink was at A; it 
must be at B no more than 120 h later for its next drink. If it is to 
reach B just in time, what must be the (f) magnitude and (g) direc-
tion of its average velocity after the rest period?

94 FCP  Curtain of death. A large metallic asteroid strikes Earth 
and quickly digs a crater into the rocky material below ground level 
by launching rocks upward and outward. The following table gives 
five pairs of launch speeds and angles (from the horizontal) for such 
rocks, based on a model of crater formation. (Other rocks, with 
intermediate speeds and angles, are also launched.) Suppose that 
you are at x = 20 km when the asteroid strikes the ground at time 
t = 0 and position x = 0 (Fig. 4.32). (a) At t = 20 s, what are the x and 
y  coordinates of the rocks headed in your direction from launches 
A through E? (b) Plot these coordinates and then sketch a curve 
through the points to include rocks with intermediate launch speeds 
and angles. The curve should indicate what you would see as you 
look up into the approaching rocks.

Launch Speed (m/s) Angle (degrees)

A 520 14.0
B 630 16.0
C 750 18.0
D 870 20.0
E 1000 22.0

y

x (km)
You

20100

Figure 4.32 Problem 94.

95  Figure 4.33 shows the straight path of a par-
ticle across an xy coordinate system as the par-
ticle is accelerated from rest during time interval 
∆t1. The acceleration is constant. The xy coor-
dinates for point A are (4.00 m, 6.00 m); those 
for point B are (12.0 m, 18.0 m). (a) What is the 
ratio ay/ax of the acceleration components? (b) 
What are the coordinates of the particle if the 
motion is continued for another interval equal 
to ∆t1?

96  For women’s volleyball the top of the net is 2.24 m above 
the floor and the court measures 9.0 m by 9.0 m on each side of 
the net. Using a jump serve, a player strikes the ball at a point 
that is 3.0 m above the floor and a horizontal distance of 8.0 m 
from the net. If the initial velocity of the ball is horizontal, (a) 
what minimum magnitude must it have if the ball is to clear the 
net and (b) what maximum magnitude can it have if the ball is to 
strike the floor inside the back line on the other side of the net?
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Figure 4.30 Problem 90.
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Figure 4.33   
Problem 95.
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97 SSM  A rifle is aimed horizontally at a target 30 m away. The 
bullet hits the target 1.9 cm below the aiming point. What are  
(a) the bullet’s time of flight and (b) its speed as it emerges from 
the rifle?

98  A particle is in uniform circular motion about the origin 
of an xy coordinate system, moving clockwise with a period of 
7.00 s. At one instant, its position vector (measured from the 
origin) is    r →   = (2.00 m) ̂ i  − (3.00 m) ̂ j  . At that instant, what is its 
velocity in unit-vector notation?

99  In Fig. 4.34, a lump of wet 
putty moves in uniform circular 
motion as it rides at a radius of 
20.0 cm on the rim of a wheel 
rotating counterclockwise with a 
period of 5.00 ms. The lump then 
happens to fly off the rim at the  
5 o’clock  position (as if on a clock 
face). It leaves the rim at a height 
of h = 1.20 m from the floor and at a distance d = 2.50 m from 
a wall. At what height on the wall does the lump hit?

100  An iceboat sails across the surface of a frozen lake with 
constant acceleration produced by the wind. At a certain  instant 
the boat’s velocity is  (6.30 ̂ i  ‒ 8.42 ̂ j ) m/s . Three seconds later, 
because of a wind shift, the boat is instantaneously at rest. What 
is its average acceleration for this 3.00 s interval?

101  In Fig. 4.35, a ball is 
shot directly upward from the 
ground with an initial speed of 
v0 = 7.00 m/s. Simultaneously, a 
construction elevator cab begins to 
move upward from the ground with 
a constant speed of vc = 3.00 m/s. 
What maximum height does the  
ball reach relative to (a) the ground and (b) the cab floor? At what 
rate does the speed of the ball change relative to (c) the ground and 
(d) the cab floor?

102  A magnetic field forces an electron to move in a circle with 
radial acceleration 3.0 × 1014 m/s2. (a) What is the speed of the 
electron if the radius of its circular path is 15 cm? (b) What is the 
period of the motion?

103  In 3.50 h, a balloon drifts 21.5 km north, 9.70 km east, and 
2.88 km upward from its release point on the ground. Find (a) 
the magnitude of its average velocity and (b) the  angle its aver-
age velocity makes with the horizontal.

104  A ball is thrown horizontally from a height of 20 m and 
hits the ground with a speed that is three times its initial speed. 
What is the initial speed?

105  A projectile is launched with an initial speed of 30 m/s at 
an angle of 60° above the horizontal. What are the (a) magni-
tude and (b) angle of its velocity 2.0 s after launch, and (c) is the 
angle above or below the horizontal? What are the (d) magni-
tude and (e) angle of its velocity 5.0 s after launch, and (f) is the 
angle above or below the horizontal?

106  The position vector for a proton is initially    r →   = 5.0 ̂ i  − 6.0 ̂ j  +  
2.0 k ̂    and then later is    r →   = − 2.0 ̂ i  + 6.0 ̂ j  + 2.0 k ̂   , all in meters. 
(a) What is the proton’s displacement vector, and (b) to what 
plane is that vector parallel?

107  A particle P travels with 
constant speed on a circle of 
 radius r = 3.00 m (Fig. 4.36) and 
completes one revolution in 20.0 s. 
The particle passes through O 
at time t = 0. State the following 
vectors in magnitude-angle nota-
tion (angle relative to the posi-
tive direction of x). With respect 
to O, find the  particle’s position 
vector at the times t of (a) 5.00 s, 
(b) 7.50 s, and (c) 10.0 s. (d) For 
the 5.00 s interval from the end of 
the fifth second to the end of the tenth second, find the parti-
cle’s displacement. For that interval, find (e) its average  velocity 
and its velocity at the (f) beginning and (g) end. Next, find the 
 acceleration at the (h) beginning and (i) end of that interval.

108  The fast French train known as the TGV (Train à Grande 
Vitesse) has a scheduled average speed of 216 km/h. (a) If the 
train goes around a curve at that speed and the magnitude of 
the acceleration experienced by the passengers is to be lim-
ited to 0.050g, what is the smallest radius of curvature for the 
track that can be tolerated? (b) At what speed must the train 
go around a curve with a 1.00 km radius to be at the accelera-
tion limit?

109  (a) If an electron is projected horizontally with a speed of 
3.0 × 106 m/s, how far will it fall in traversing 1.0 m of horizontal 
distance? (b) Does the answer increase or decrease if the initial 
speed is increased?

110 BIO  A person walks up a stalled 15-m-long escalator in 90 s. 
When standing on the same escalator, now moving, the  person is 
carried up in 60 s. How much time would it take that person to 
walk up the moving escalator? Does the  answer  depend on the 
length of the escalator?

111  (a) What is the magnitude of the centripetal acceleration 
of an object on Earth’s equator due to the rotation of Earth? 
(b) What would Earth’s rotation period have to be for objects 
on the equator to have a centripetal acceleration of magnitude 
9.8 m/s2?

112 FCP  The range of a projectile depends not only on v0 and θ0 
but also on the value g of the free-fall acceleration, which varies 
from place to place. In 1936, Jesse Owens established a world’s 
running broad jump record of 8.09 m at the Olympic Games at 
Berlin (where g = 9.8128 m/s2). Assuming the same values of v0 
and θ0, by how much would his 
record have differed if he had com-
peted instead in 1956 at  Melbourne 
(where g = 9.7999 m/s2)?

113  Figure 4.37 shows the path 
taken by a drunk skunk over level 
ground, from initial point i to final 
point f. The angles are θ1 = 30.0°, 
θ2 = 50.0°, and θ3 = 80.0°, and the 
distances are d1 = 5.00 m, d2 = 
8.00 m, and d3 = 12.0 m. What are 
the (a) magnitude and (b) angle 
of the skunk’s displacement from 
i to f?
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114  The position vector    r →    of a particle moving in the xy plane 
is    r →   = 2t ̂ i  + 2  sin [(π / 4 rad / s)t] ̂ j  , with    r →    in meters and t in seconds. 
(a)  Calculate the x and y components of the particle’s  position 
at t = 0, 1.0, 2.0, 3.0, and 4.0 s and sketch the particle’s path 
in the xy plane for the interval 0 ≤ t ≤ 4.0 s. (b) Calculate the 
components of the particle’s velocity at t = 1.0, 2.0, and 3.0 s. 
Show that the velocity is tangent to the path of the particle and 
in the direction the particle is moving at each time by drawing 
the velocity vectors on the plot of the particle’s path in part (a). 
(c) Calculate the components of the particle’s acceleration at 
t = 1.0, 2.0, and 3.0 s.

115  Circling the Galaxy. The Solar System is moving along an 
approximately circular path of radius  2.5 ×  10  4  ly  (light-years) 
around the center of the Milky Way Galaxy with a speed of 205 
km/s. (a) How far has a person traveled along that path by the time 
of the person’s 20th birthday? (b) What is the period of the circling?

116  Record motorcycle jump. Figure 4.38 illustrates the ramps 
for the 2002 world-record motorcycle jump set by Jason Renie. 
The ramps were H = 3.00 m high, angled at   θ  R   = 12.0°,  and sepa-
rated by distance D = 77.0 m. Assuming that he landed halfway 
down the landing ramp and that the slowing effects of the air were 
negligible, calculate the speed at which he left the launch ramp.

H
x

y

Launch Landing
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R R
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θ θ

Figure 4.38 Problem 116.

117  Circling the Sun. Considering only the orbital motion of 
Earth around the Sun, how far has a person traveled along the 
orbit by the day of their 20th birthday? Earth’s speed along its 
orbit is  30 ×  10  3   m/s.

118  Airboat. You are to ride an airboat over swampy water, 
starting from rest at point i with an x axis extending due east 
and a y axis extending due north. First, moving at 30° north of 
due east: (1) increase your speed at 0.400 m/s2 for 6.00 s; (2) with 
whatever speed you then have, move for 8.00 s; (3) then slow 
at 0.400 m/s2 for 6.00 s. Immediately then move due west: (4) 
increase your speed at 0.400 m/s2 for 5.00 s; (5) with whatever 
speed you then have, move for 10.0 s; (6) then slow at 0.400 m/s2  
until you stop. In magnitude-angle notation, what then is your 
average velocity for the trip from point i?

119  Detective work. In a police story, a body is found 4.6 m 
from the base of a building and 24 m below an open window. (a) 
Assuming the victim left that window horizontally, what was the 
victim’s speed just then? (b) Would you guess the death to be 
accidental? Explain your answer.

120  A throw from third. A third baseman wishes to throw to 
first base, 127 ft distant. His best throwing speed is 85 mi/h. (a) If 
he throws the ball horizontally 3.0 ft above the ground, how far 
from first base will it hit the ground? (b) From the same initial 
height, at what upward angle must he throw the ball if the first 
baseman is to catch it 3.0 ft above the ground? (c) What will be 
the time of flight in that case?

121  Gliding down to ground. At time t = 0, a hang glider is 
7.5 m above level ground with a velocity of 8.0 m/s at an angle of 

30° below the horizontal and a constant acceleration of 1.0 m/s2  
upward. (a) At what time t does the glider reach the ground? 
(b) How far horizontally has the glider traveled by then? (c) For 
the same initial conditions, what constant acceleration will cause 
the glider to reach the ground with zero speed (no motion)? Use 
unit-vector notation, with   i ̂    in the horizontal direction of travel 
and    j ̂    upward.

122  Pittsburgh left. Drivers in Pittsburgh, Pennsylvania, are 
alert for an aggressive maneuver dubbed the Pittsburgh left. Fig-
ure 4.39 gives an example that resulted in a collision. Cars A and 
B were initially stopped at a red light. At the onset of the green 
light at time t = 0, car A moved forward with acceleration aA but 
the driver of car B, wanting to make a left turn in front of A, 
anticipated the light change by moving during the yellow light 
for the perpendicular traffic. The driver started at time  t = ‒Δt  
and moved through a quarter circle with tangential acceleration 
aB until there was a front‒side collision. In your investigation of 
the accident, you find that the width of each lane is w = 3.00 m 
and the width of car B is b = 1.50 m. The cars were in the middle 
of a lane initially and in the collision. Assume the accelerations 
were aA = 3.00 m/s2 and aB = 4.00 m/s2 (which is aggressive). 
When the collision occurred, (a) how far had A moved, (b) what 
was the speed of A, (c) what was the time, (d) how far had the 
middle front of B moved, and (e) what was the speed of B? (e) 
What was the value of ∆t? (Engineers and physicists are com-
monly hired to analyze traffic accidents and then testify in court 
as expert witnesses.) 

        wb

B

A

Figure 4.39 Problem 122.

123  g dependence of projectile motion. A device shoots a small 
ball horizontally with speed 0.200 m/s from a height of 0.800 m  
above level ground on another planet. The ball lands at dis-
tance d from the base of the device directly below the ejection 
point. What is g on the planet if d is (a) 7.30 cm, (b) 14.6 cm, and  
(c) 25.3 cm?

124  Disappearing bicyclist. Figure 4.40 is an overhead view of 
your car (width C = 1.50 m) and a large truck (width T = 1.50 m 
and length L = 6.00 m). Both are stopped for a red traffic light 
waiting to make a left-hand turn and are centered in a traffic 
lane. You are sitting at distance d = 2.00 m behind the front of 
your car next to the left-hand window. Your street has two lanes 
in each direction; the perpendicular street has one lane in each 
direction; each lane has width w = 3.00 m. A bicyclist moves at 
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a speed of 5.00 m/s toward the intersection along the middle of 
the curb lane of the opposing traffic. Sight line 1 is your view 
just as the bicyclist disappears behind the truck. Sight line 2 is 
your view just as the bicyclist reappears. For how long does the 
bicyclist disappear from your view? This is a common dangerous 
situation for bicyclists, motorcyclists, skateboarders, inline skat-
ers, and drivers of scooters and short cars. 

Sight
line 2

Sight
line 1

Driver

w

Pa
th

Figure 4.40 Problem 124.

125  Stuntman jump. A movie stuntman is to run across a roof-
top and jump horizontally off it, to land on the roof of the next 
building (Fig. 4.41). The rooftops are separated by h = 4.8 m 
vertically and d = 6.2 m horizontally. Before he attempts the 
jump, he wisely calculates if the jump is possible. Can he make 
the jump if his maximum rooftop speed is v0 = 4.5 m/s?

h

d

v0

Figure 4.41 Problem 125.

126  Passing British rail trains. Two British rail trains pass each 
other on parallel tracks moving in opposite directions. Train A has 
length LA = 300 m and is moving at speed vA = 185 km/h. Train B
has length LB = 250 m and is moving at speed vB = 200 km/h. How 
long does the passage take to a passenger on (a) A and (b) B?

127  Rising fast ball. A batter in a baseball game will sometimes 
describe a pitch as being a rising ball, termed a hop. Although 
technically possible, such upward motion would require a large 
backspin on the ball so that an aerodynamic force would lift the 
ball. More likely, a rising ball is an illusion stemming from the 
batter’s misjudgment of the ball’s initial speed. The distance 
between the pitching rubber and home plate is 60.5 ft. If a ball 
is thrown horizontally with no spin, how far does it drop during 
its flight if the initial speed v0 is (a) 36 m/s (slow, about 80 mi/h) 
and (b) 43 m/s (fast, about 95 mi/h)? (c) What is the difference 
in the two displacements? (d) If the batter anticipates the slow 
ball, will the swing be below the ball or above it? 

128 CALC Car throwing stones. Chipsealing is a common and 
relatively inexpensive way to pave a road. A layer of hot tar is 
sprayed onto the existing road surface and then stone chips are 
spread over the surface. A heavy roller then embeds the chips 
in the tar. Once the tar cools, most of the stones are trapped. 
However, some loose stones are scattered over the surface. 
They eventually will be swept up by a street cleaner, but if cars 
drive over the road before then, the rear tires on a leading car 
can launch stones backward toward a trailing car (Fig. 4.42). 
Assume that the stones are launched at speed v0 = 11.2 m/s (25 
mi/h), matching the speed of the cars. Also assume that stones 
can leave the tires of the lead car at road level and at any angle 
and not be stopped by mud flaps or the underside of the car. In 
terms of car lengths Lc = 4.50 m, what is the least separation L 
between the cars such that stones will not hit the trailing car?

v0 v0

v0

Portions of
car rear

Portions of
car front

Stone

Figure 4.42 Problem 128.
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What Is Physics?
We have seen that part of physics is a study of motion, including accelerations, 
which are changes in velocities. Physics is also a study of what can cause an  object 
to accelerate. That cause is a force, which is, loosely speaking, a push or pull on the 
object. The force is said to act on the object to change its velocity. For example, 
when a dragster accelerates, a force from the track acts on the rear tires to cause 
the dragster’s acceleration. When a defensive guard knocks down a quarterback, a 
force from the guard acts on the quarterback to cause the quarterback’s backward 

 C H A P T E R  5

5.1 NEWTON’S FIRST AND SECOND LAWS
Learning Objectives 
After reading this module, you should be able to . . .

5.1.1 Identify that a force is a vector quantity and thus has 
both magnitude and direction and also components.

5.1.2 Given two or more forces acting on the same par-
ticle, add the forces as vectors to get the net force.

5.1.3 Identify Newton’s first and second laws of motion.
5.1.4 Identify inertial reference frames.
5.1.5 Sketch a free- body diagram for an object, show-

ing the object as a particle and drawing the forces 

acting on it as vectors with their tails anchored on 
the particle.

5.1.6 Apply the relationship (Newton’s second law) 
between the net force on an object, the mass of the 
object, and the acceleration produced by the net 
force.

5.1.7 Identify that only external forces on an object can 
cause the object to accelerate.

Key Ideas 
● The velocity of an object can change (the object can 
accelerate) when the object is acted on by one or more 
forces (pushes or pulls) from other objects. Newtonian 
mechanics relates accelerations and forces.

● Forces are vector quantities. Their magnitudes are 
defined in terms of the acceleration they would give the 
standard kilogram. A force that accelerates that standard 
body by exactly 1 m/s2 is defined to have a magnitude 
of 1 N. The direction of a force is the direction of the 
acceleration it causes. Forces are combined according to 
the rules of vector algebra. The net force on a body is the 
vector sum of all the forces acting on the body.

● If there is no net force on a body, the body remains 
at rest if it is initially at rest or moves in a straight line at 
constant speed if it is in motion.

● Reference frames in which Newtonian mechanics 
holds are called inertial reference frames or inertial 
frames. Reference frames in which Newtonian mechanics 
does not hold are called noninertial reference frames or 
noninertial frames.

● The mass of a body is the characteristic of that body 
that relates the body’s acceleration to the net force 
causing the acceleration. Masses are scalar quantities.

● The net force     F 
→

    net    on a body with mass m is related 
to the body’s acceleration    a →    by 

    F 
→

    net   = m  a →  , 

which may be written in the component versions

   F  net, x   = m a  x     F  net,y   = m a  y    and   F  net,z   = m a  z  .  

The second law indicates that in SI units

 1 N = 1 kg ⋅  m / s  2 . 

● A free- body diagram is a stripped- down diagram 
in which only one body is considered. That body is 
represented by either a sketch or a dot. The external 
forces on the body are drawn, and a coordinate 
 system is superimposed, oriented so as to simplify 
the solution.

Force and Motion—I

c05ForceAndMotionI.indd   101 06/05/21   10:28 PM



102 CHAPTER   FoERT Hnd MoPion—i

acceleration. When a car slams into a telephone pole, a force on the car from the 
pole causes the car to stop. Science, engineering, legal, and medical journals are 
filled with articles about forces on objects, including people.

A Heads Up. Many students find this chapter to be more challenging than 
the preceding ones. One reason is that we need to use vectors in setting up 
 equations—we cannot just sum some scalars. So, we need the vector rules from 
Chapter 3. Another reason is that we shall see a lot of different arrangements: 
Objects will move along floors, ceilings, walls, and ramps. They will move upward 
on ropes looped around pulleys or by sitting in ascending or descending eleva-
tors. Sometimes, objects will even be tied together.

However, in spite of the variety of arrangements, we need only a single key 
idea (Newton’s second law) to solve most of the homework problems. The pur-
pose of this chapter is for us to explore how we can apply that single key idea to 
any given arrangement. The application will take experience—we need to solve 
lots of problems, not just read words. So, let’s go through some of the words and 
then get to the sample problems.

Newtonian Mechanics
The relation between a force and the acceleration it causes was first understood 
by Isaac Newton (1642–1727) and is the subject of this chapter. The study of that 
relation, as Newton presented it, is called Newtonian mechanics. We shall focus 
on its three primary laws of motion.

Newtonian mechanics does not apply to all situations. If the speeds of the 
interacting bodies are very large— an appreciable fraction of the speed of light—we 
must replace Newtonian mechanics with Einstein’s special theory of relativity, 
which holds at any speed, including those near the speed of light. If the inter acting 
bodies are on the scale of atomic structure (for example, they might be electrons in 
an atom), we must replace Newtonian mechanics with quantum mechanics. Physi-
cists now view Newtonian mechanics as a special case of these two more compre-
hensive theories. Still, it is a very important special case  because it applies to the 
motion of objects ranging in size from the very small (almost on the scale of atomic 
structure) to astronomical (galaxies and clusters of galaxies).

Newton’s First Law
Before Newton formulated his mechanics, it was thought that some influence, 
a “force,” was needed to keep a body moving at constant velocity. Similarly, a 
body was thought to be in its “natural state” when it was at rest. For a body to 
move with constant velocity, it seemingly had to be propelled in some way, by 
a push or a pull. Otherwise, it would “naturally” stop moving.

These ideas were reasonable. If you send a puck sliding across a wooden 
floor, it does indeed slow and then stop. If you want to make it move across the 
floor with constant velocity, you have to continuously pull or push it.

Send a puck sliding over the ice of a skating rink, however, and it goes a lot 
farther. You can imagine longer and more slippery surfaces, over which the puck 
would slide farther and farther. In the limit you can think of a long, extremely 
slippery surface (said to be a frictionless surface), over which the puck would 
hardly slow. (We can in fact come close to this situation by sending a puck  sliding 
over a horizontal air table, across which it moves on a film of air.)

From these observations, we can conclude that a body will keep moving with 
constant velocity if no force acts on it. That leads us to the first of Newton’s three 
laws of motion:

 Newton’s First Law: If no force acts on a body, the body’s velocity cannot 
change; that is, the body cannot accelerate.
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Figure 5.1.1 A force    F 
→

    on the  
standard  kilogram gives that body  
an acceleration    a →   .

a

F

In other words, if the body is at rest, it stays at rest. If it is moving, it continues to 
move with the same velocity (same magnitude and same direction).

Force
Before we begin working problems with forces, we need to discuss several fea-
tures of forces, such as the force unit, the vector nature of forces, the combining 
of forces, and the circumstances in which we can measure forces (without being 
fooled by a fictitious force).

Unit. We can define the unit of force in terms of the acceleration a force would 
give to the standard kilogram (Fig. 1.3.1), which has a mass defined to be ex actly 
1 kg. Suppose we put that body on a horizontal, frictionless surface and pull hori-
zontally (Fig. 5.1.1) such that the body has an acceleration of 1 m/s2. Then we can 
define our applied force as having a magnitude of 1 newton (abbreviated N). If we 
then pulled with a force magnitude of 2 N, we would find that the acceleration is 
2 m/s2. Thus, the acceleration is proportional to the force. If the standard body of 
1 kg has an acceleration of magnitude a (in meters per second per second), then the 
force (in newtons) producing the acceleration has a magnitude equal to a. We now 
have a workable definition of the force unit.

Vectors. Force is a vector quantity and thus has not only magnitude but 
also direction. So, if two or more forces act on a body, we find the net force 
(or resultant force) by adding them as vectors, following the rules of Chapter 3. 
A single force that has the same magnitude and direction as the calculated net 
force would then have the same effect as all the individual forces. This fact, called 
the  principle of superposition for forces, makes everyday forces reasonable and 
predictable. The world would indeed be strange and unpredictable if, say, you 
and a friend each pulled on the standard body with a force of 1 N and somehow 
the net pull was 14 N and the resulting acceleration was 14 m/s2.

In this book, forces are most often represented with a vector symbol such 
as    F 

→
   , and a net force is represented with the vector symbol     F 

→
    net   . As with other 

 vectors, a force or a net force can have components along coordinate axes. 
When forces act only along a single axis, they are single- component forces. 
Then we can drop the overhead arrows on the force symbols and just use signs 
to indicate the directions of the forces along that axis.

The First Law. Instead of our previous wording, the more proper statement 
of Newton’s first law is in terms of a net force:

There may be multiple forces acting on a body, but if their net force is zero, the 
body cannot accelerate. So, if we happen to know that a body’s velocity is con-
stant, we can immediately say that the net force on it is zero.

Inertial Reference Frames
Newton’s first law is not true in all reference frames, but we can always find 
 reference frames in which it (as well as the rest of Newtonian mechanics) is true. 
Such special frames are referred to as inertial reference frames, or simply inertial 
frames.

For example, we can assume that the ground is an inertial frame provided we can 
neglect Earth’s astronomical motions (such as its rotation).

 Newton’s First Law: If no net force acts on a body  (   F 
→

    net   = 0) , the body’s velocity 
 cannot change; that is, the body cannot accelerate.

An inertial reference frame is one in which Newton’s laws hold.
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(a)

(b)

Earth’s rotation
causes an
apparent deflection.

Figure 5.1.2 (a) The path of a puck 
sliding from the north pole as seen 
from a stationary point in space. 
Earth rotates to the east. (b) The path 
of the puck as seen from the ground.

That assumption works well if, say, a puck is sent sliding along a short strip 
of frictionless ice—we would find that the puck’s motion obeys Newton’s laws. 
However, suppose the puck is sent sliding along a long ice strip extending from 
the north pole (Fig. 5.1.2a). If we view the puck from a stationary frame in 
space, the puck moves south along a simple straight line because Earth’s rota-
tion around the north pole merely slides the ice beneath the puck. However, 
if we view the puck from a point on the ground so that we rotate with Earth, 
the puck’s path is not a simple straight line. Because the eastward speed of 
the ground beneath the puck is greater the farther south the puck slides, from 
our ground- based view the puck appears to be deflected westward (Fig. 5.1.2b). 
However, this apparent deflection is caused not by a force as required by 
 Newton’s laws but by the fact that we see the puck from a rotating frame. In this 
situation, the ground is a noninertial frame, and trying to explain the deflection 
in terms of a force would lead us to a fictitious force. A more common example 
of inventing such a nonexistent force can occur in a car that is rapidly increas-
ing in speed. You might claim that a force to the rear shoves you hard into the 
seat back. FCP

In this book we usually assume that the ground is an inertial frame and that 
measured forces and accelerations are from this frame. If measurements are made 
in, say, a vehicle that is accelerating relative to the ground, then the measurements 
are being made in a noninertial frame and the results can be surprising. 

Mass
From everyday experience you already know that applying a given force to bod-
ies (say, a baseball and a bowling ball) results in different accelerations. The com-
mon explanation is correct: The object with the larger mass is accelerated less. 
But we can be more precise. The acceleration is actually inversely related to the 
mass (rather than, say, the square of the mass).

Let’s justify that inverse relationship. Suppose, as previously, we push on the 
standard body (defined to have a mass of exactly 1 kg) with a force of magnitude 
1 N. The body accelerates with a magnitude of 1 m/s2. Next we push on body 
X with the same force and find that it accelerates at 0.25 m/s2. Let’s make the 
 (correct) assumption that with the same force,

   
 m  X  

 ___  m  0  
   =   

 a  0   ___  a  X    , 

Checkpoint 5.1.1
Which of the figure’s six arrangements correctly show the vector addition of forces     F 

→
    1    

and     F 
→

    2    to yield the third vector, which is meant to represent their net force     F 
→

    net   ?

(a) (c)(b)

F1 F1 F1

F1 F1 F1

F2F2F2

F2

F2 F2(d) ( f )(e)
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and thus

  m  X   =  m  0     
 a  0   ___  a  X     = (1.0 kg)   1 .0 m / s  2  _________ 

0 .25 m / s  2 
   = 4.0 kg. 

Defining the mass of X in this way is useful only if the procedure is consistent. 
Suppose we apply an 8.0 N force first to the standard body (getting an accelera-
tion of 8.0 m/s2) and then to body X (getting an acceleration of 2.0 m/s2). We 
would then calculate the mass of X as

  m  X   =  m  0     
 a  0   ___  a  X     = (1.0 kg)   8 .0 m / s  2  ________ 

 2.0 m / s  2 
   = 4.0 kg, 

which means that our procedure is consistent and thus usable.
The results also suggest that mass is an intrinsic characteristic of a body— it 

automatically comes with the existence of the body. Also, it is a scalar quantity. 
However, the nagging question remains: What, exactly, is mass?

Since the word mass is used in everyday English, we should have some intui-
tive understanding of it, maybe something that we can physically sense. Is it 
a body’s size, weight, or density? The answer is no, although those characteristics 
are sometimes confused with mass. We can say only that the mass of a body is 
the characteristic that relates a force on the body to the resulting acceleration. Mass 
has no more familiar definition; you can have a physical sensation of mass only 
when you try to accelerate a body, as in the kicking of a baseball or a bowling ball.

Newton’s Second Law
All the definitions, experiments, and observations we have discussed so far can 
be summarized in one neat statement:

In equation form,

     F 
→

    net   = m  a →     (Newton’s second law). (5.1.1)

Identify the Body. This simple equation is the key idea for nearly all the 
homework problems in this chapter, but we must use it cautiously. First, we must 
be  certain about which body we are applying it to. Then     F 

→
    net    must be the vector 

sum of all the forces that act on that body. Only forces that act on that body are 
to be included in the vector sum, not forces acting on other bodies that might be 
 involved in the given situation. For example, if you are in a rugby scrum, the net 
force on you is the vector sum of all the pushes and pulls on your body. It does not 
include any push or pull on another player from you or from anyone else. Every 
time you work a force problem, your first step is to clearly state the body to which 
you are applying Newton’s law.

Separate Axes. Like other vector equations, Eq. 5.1.1 is equivalent to three 
component equations, one for each axis of an xyz coordinate system:

 Fnet, x = max,   Fnet, y = may,   and   Fnet, z = maz. (5.1.2)

Each of these equations relates the net force component along an axis to the 
 acceleration along that same axis. For example, the first equation tells us that 
the sum of all the force components along the x axis causes the x component ax 
of the body’s acceleration, but causes no acceleration in the y and z directions. 
Turned around, the acceleration component ax is caused only by the sum of the 

Newton’s Second Law: The net force on a body is equal to the product of the 
body’s mass and its acceleration.
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force components along the x axis and is completely unrelated to force compo-
nents along another axis. In general,

Forces in Equilibrium. Equation 5.1.1 tells us that if the net force on a body 
is zero, the body’s  acceleration    a →   = 0 . If the body is at rest, it stays at rest; if it 
is moving, it continues to move at constant velocity. In such cases, any forces on 
the body  balance one another, and both the forces and the body are said to be in 
equilibrium. Commonly, the forces are also said to cancel one another, but the 
term “cancel” is tricky. It does not mean that the forces cease to exist (canceling 
forces is not like canceling dinner reservations). The forces still act on the body 
but cannot change the velocity.

Units. For SI units, Eq. 5.1.1 tells us that

  1 N = (1 kg)(1  m / s  2 ) = 1 kg ⋅  m / s  2 .  (5.1.3)

Some force units in other systems of units are given in Table 5.1.1 and Appendix D.

Diagrams. To solve problems with Newton’s second law, we often draw 
a free- body  diagram in which the only body shown is the one for which we are 
summing forces. A sketch of the body itself is preferred by some teachers but, 
to save space in these chapters, we shall usually represent the body with a dot. 
Also, each force on the body is drawn as a vector arrow with its tail anchored on 
the body. A coordinate system is usually included, and the acceleration of the 
body is sometimes shown with a vector arrow (labeled as an acceleration). This 
whole procedure is designed to focus our attention on the body of interest.

External Forces Only. A system consists of one or more bodies, and any 
force on the bodies inside the system from bodies outside the system is called 
an external force. If the bodies making up a system are rigidly connected to one 
another, we can treat the system as one composite body, and the net force     F 

→
    net    on 

it is the vector sum of all external forces. (We do not include internal forces— that 
is, forces between two bodies inside the system. Internal forces cannot accelerate 
the system.) For example, a connected railroad engine and car form a system. 
If, say, a tow line pulls on the front of the engine, the force due to the tow line 
acts on the whole engine– car system. Just as for a single body, we can relate 
the net external force on a system to its acceleration with Newton’s second law,  
    F 
→

    net   = m  a →   , where m is the total mass of the system.

Table 5.1.1 Units in Newton’s Second Law (Eqs. 5.1.1 and 5.1.2)

System Force Mass Acceleration

SI newton (N) kilogram (kg) m/s2

CGSa dyne gram (g) cm/s2

Britishb pound (lb) slug ft/s2

a1 dyne = 1 g  ⋅  cm/s2.
b1 lb = 1 slug  ⋅  ft/s2.

Checkpoint 5.1.2
The figure here shows two horizontal forces acting 
on a block on a frictionless floor. If a third horizon-
tal force     F 

→
    3    also acts on the block, what are the magnitude and direction of     F 

→
    3    when the 

block is (a) stationary and (b) moving to the left with a constant speed of 5 m/s?

3 N 5 N

 The acceleration component along a given axis is caused only by the sum of the force 
components along that same axis, and not by force components along any other axis.
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Sample Problem 5.1.1 One‑ and two‑dimensional forces, puck

Here are examples of how to use Newton’s second law  
for a puck when one or two forces act on it. Parts A, B,  
and C of Fig. 5.1.3 show three situations in which one 
or two forces act on a puck that moves over frictionless  
ice along an  x  axis, in one- dimensional  motion. The 
puck’s mass is m = 0.20 kg. Forces     F 

→
    1    and     F 

→
    2    are directed 

along the axis and have  magnitudes F1 = 4.0 N and 
F2 = 2.0  N. Force     F 

→
    3    is directed at angle θ = 30° and 

has  magnitude F3 = 1.0 N. In each situation, what is the 
 acceleration of the puck?

KEY IDEA

In each situation we can  relate the acceleration    a →    to the 
net force    F 

→
    net    acting on the puck with Newton’s  second law,  

    F 
→

    net   = m  a →   . However,  because the motion is along only the 
x axis, we can simplify each situation by writing the second law 
for x components only:

 Fnet, x = max. (5.1.4)

The free- body diagrams for the three situations are also 
given in Fig. 5.1.3, with the puck represented by a dot.

Situation A: For Fig. 5.1.3b, where only one horizontal 
force acts, Eq. 5.1.4 gives us

F1 = max,

which, with given data, yields

 
  a   x   =   

 F  1   __ m   =   4.0 N _______ 
0.20 kg

   = 20  m / s  2 . 
 

(Answer)

The positive answer indicates that the acceleration is in 
the positive direction of the x axis.

Situation B: In Fig. 5.1.3d, two horizontal forces act on 
the puck,     F 

→
    1    in the positive direction of x and     F 

→
    2    in the 

negative direction. Now Eq. 5.1.4 gives us

F1 − F2 = max,

which, with given data, yields

   a   x   =   
 F  1   −  F  2   ______ m   =   4.0 N − 2.0 N  ____________ 

0.20 kg
   = 10  m / s  2 .  

 
  

 (Answer)

Thus, the net force accelerates the puck in the positive 
direction of the x axis.

Situation C: In Fig. 5.1.3f, force     F 
→

    3    is not directed along the 
 direction of the puck’s acceleration; only the x component 

Figure 5.1.3 In three situations, forces act on a puck that moves 
along an x axis. Free- body diagrams are also shown.

F1
x

(a)

Puck
x

A

(b)

F1

F1F2
x

(c)

x

B

(d)

F1F2

F2
x

x

(e)

C

( f )

θ

θ

F3

F2

F3

The horizontal force
causes a horizontal
acceleration.

This is a free-body
diagram.

These forces compete.
Their net force causes
a horizontal acceleration.

This is a free-body
diagram.

Only the horizontal
component of F3
competes with F2.

This is a free-body
diagram.

F3,x is. (Force     F 
→

    3    is two- dimensional but the  motion is only 
one- dimensional.) Thus, we write Eq. 5.1.4 as

 F3,x − F2 = max. (5.1.5)

From the figure, we see that F3,x = F3 cos θ. Solving for 
the  acceleration and substituting for F3,x yield

   a   x   =   
 F  3, x   −  F  2   ________ m   =   

 F  3    cos θ −  F  2    ___________ m  

 =   
(1.0 N)(cos 30°) − 2.0 N

  _____________________  
0.20 kg

   = − 5.7  m / s  2 . 

 (Answer)

Thus, the net force accelerates the puck in the negative 
direction of the x axis.

Hdditional examples, video, and practice available at WileyPLUS
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x components: Along the x axis we have

 F3,x = max − F1,x − F2,x

 = m(a cos 50°) − F1 cos(−150°) − F2 cos 90°.

Then, substituting known data, we find

 F3,x = (2.0 kg)(3.0 m/s2) cos 50° − (10 N) cos(−150°)

 − (20 N) cos 90°
 = 12.5 N.

y components: Similarly, along the y axis we find

 F3,y = may − F1,y − F2,y

 = m(a sin 50°) − F1 sin(−150°) − F2 sin 90°
 = (2.0 kg)(3.0 m/s2) sin 50° − (10 N) sin(−150°)

 − (20 N) sin 90°
 = −10.4 N.

Vector: In unit- vector notation, we can write

    F 
→

    3   =  F  3,x   ̂ i  +  F  3,y   ̂ j  = (12.5 N) ̂ i  − (10.4 N) ̂ j 

 ≈ (13 N) ̂ i  − (10 N) ̂ j .  (Answer) 

We can now use a vector- capable calculator to get the 
magnitude and the angle of     F 

→
    3   . We can also use Eq. 3.1.6 

to obtain the magnitude and the angle (from the positive 
direction of the x axis) as

   F  3   =  √ 
__________

  F 3, x   2   +  F 3, y  2     = 16 N 

and  θ =  tan  −1    
 F  3, y   ____ 
 F  3, x  

   = − 40°.  (Answer)

Sample Problem 5.1.2 Two‑dimensional forces, cookie tin

Here we find a missing force by using the acceleration. 
In the overhead view of Fig. 5.1.4a, a 2.0 kg cookie tin is 
accelerated at 3.0 m/s2 in the direction shown by    a →   , over a 
frictionless horizontal surface. The acceleration is caused 
by three horizontal forces, only two of which are shown:     F 

→
    1    

of magnitude 10 N and     F 
→

    2    of magnitude 20 N. What is the 
third force     F 

→
    3    in unit- vector notation and in magnitude- 

angle  notation?

KEY IDEA

The net force     F 
→

    net    on the tin is the sum of the three forces 
and is related to the  acceleration    a →    via Newton’s second 
law  (   F 

→
    net   = m  a →  ) . Thus,

      F 
→

    1   +    F 
→

    2   +    F 
→

    3   = m  a →  ,     (5.1.6)

which gives us

      F 
→

    3   = m  a →   −    F 
→

    1   −    F 
→

    2  .     (5.1.7)

Calculations: Because this is a two- dimensional  pro b lem,  
we cannot find     F 

→
    3    merely by substituting the  magnitudes for 

the vector quantities on the right side of Eq. 5.1.7. Instead, 
we must vectorially add  m  a →   ,  −    F 

→
    1    (the reverse of     F 

→
    1   ), and  

−    F 
→

    2    (the reverse of     F 
→

    2   ), as shown in Fig. 5.1.4b. This addi-
tion can be done directly on a vector- capable calculator 
because we know both magnitude and angle for all three 
vectors. However, here we shall evaluate the right side of 
Eq. 5.1.7 in terms of components, first along the x axis and 
then along the y axis. Caution: Use only one axis at a time.

Figure 5.1.4 (a) An overhead view of two of three horizontal forces that act on a cookie tin, 
resulting in acceleration    a →   .     F 

→
    3    is not shown. (b) An arrangement of vectors  m  a →   ,  −     F 

→
    1   , and   −   F 

→
    2    

to find force     F 
→

    3   .

y

(a)

30°
x

y

(b)

x

F2

F3

F2

F1

a

a
50°

m
–

F1–

These are two
of the three
horizontal force
vectors.

This is the resulting
horizontal acceleration
vector.

We draw the product
of mass and acceleration
as a vector.

Then we can add the three
vectors to �nd the missing
third force vector.

Hdditional examples, video, and practice available at WileyPLUS
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Some Particular Forces
The Gravitational Force
A gravitational force     F 

→
    g    on a body is a certain type of pull that is directed  toward 

a second body. In these early chapters, we do not discuss the nature of this force 
and usually consider situations in which the second body is Earth. Thus, when 
we speak of the gravitational force     F 

→
    g    on a body, we usually mean a force that 

pulls on it directly toward the center of Earth— that is, directly down  toward the 
ground. We shall assume that the ground is an inertial frame.

Free Fall. Suppose a body of mass m is in free fall with the free- fall accelera-
tion of magnitude g. Then, if we neglect the effects of the air, the only force acting 
on the body is the gravitational force     F 

→
    g   . We can relate this downward force and

downward acceleration with Newton’s second law  (  F 
→

   = m  a →  ) . We place a ver-
tical y  axis along the body’s path, with the positive direction upward. For this 
axis, Newton’s second law can be written in the form Fnet,y = may, which, in our 
 situation, becomes

 −  F  g   = m(−g) 

or Fg = mg. (5.2.1)

In words, the magnitude of the gravitational force is equal to the product mg.

5.2 SOME PARTICULAR FORCES
Learning Objectives 
After reading this module, you should be able to . . .

5.2.1 Determine the magnitude and direction of the gravi-
tational force acting on a body with a given mass, at a 
location with a given free- fall acceleration.

5.2.2 Identify that the weight of a body is the magni-
tude of the net force required to prevent the body 
from  falling freely, as measured from the reference 
frame of the ground.

5.2.3 Identify that a scale gives an object’s weight when 
the measurement is done in an inertial frame but not in 
an accelerating frame, where it gives an apparent weight.

5.2.4 Determine the magnitude and direction of the 
normal force on an object when the object is 
pressed or pulled onto a surface.

5.2.5 Identify that the force parallel to the surface is a 
frictional force that appears when the object slides 
or attempts to slide along the surface.

5.2.6 Identify that a tension force is said to pull at both 
ends of a cord (or a cord- like object) when the cord 
is taut.

Key Ideas 
● A gravitational force     F 

→
    g    on a body is a pull by another 

body. In most situations in this book, the other body 
is Earth or some other astronomical body. For Earth, 
the force is directed down toward the ground, which is 
assumed to be an inertial frame. With that assumption, 
the magnitude of     F 

→
    g    is

  F   g   = mg, 

where m is the body’s mass and g is the magnitude of 
the free- fall acceleration.

● The weight W of a body is the magnitude of the upward 
force needed to balance the gravitational force on the 
body. A body’s weight is related to the body’s mass by

W = mg.

● A normal force     F 
→

    N    is the force on a body from a sur-
face against which the body presses. The normal force 
is always perpendicular to the surface.

● A frictional force    f 
→

    is the force on a body when the 
body slides or attempts to slide along a surface. The 
force is always parallel to the surface and directed so 
as to oppose the sliding. On a frictionless surface, the 
frictional force is negligible.

● When a cord is under tension, each end of the cord pulls 
on a body. The pull is directed along the cord, away from 
the point of attachment to the body. For a massless cord (a 
cord with negligible mass), the pulls at both ends of the cord 
have the same magnitude T, even if the cord runs around 
a massless, frictionless pulley (a pulley with negligible mass 
and negligible friction on its axle to oppose its rotation).

c05ForceAndMotionI.indd   109 06/05/21   10:28 PM



110 CHAPTER   FoERT Hnd MoPion—i

FgL = mLg FgR = mRg

mRmL

Figure 5.2.1 An equal- arm balance. 
When the device is in balance, the 
gravitational force     F 

→
    gL    on the body 

being weighed (on the left pan) and 
the total gravitational force     F 

→
    gR    on 

the reference bodies (on the right 
pan) are equal. Thus, the mass mL 
of the body being weighed is equal 
to the total mass mR of the reference 
bodies.

Fg = mg

Scale marked
in either
weight or
mass units

Figure 5.2.2 A spring scale. The read-
ing is proportional to the weight of 
the object on the pan, and the scale 
gives that weight if marked in weight 
units. If, instead, it is marked in mass 
units, the reading is the object’s 
weight only if the value of g at the 
location where the scale is being 
used is the same as the value of g 
at the location where the scale was 
calibrated.

At Rest. This same gravitational force, with the same magnitude, still acts on 
the body even when the body is not in free fall but is, say, at rest on a pool table 
or moving across the table. (For the gravitational force to disappear, Earth would 
have to disappear.)

We can write Newton’s second law for the gravitational force in these vector 
forms:

      F 
→

    g   = − F  g    ̂ j  = −mg  ̂ j  = m  g →  ,   (5.2.2)

where ĵ is the unit vector that points upward along a y axis, directly away from 
the ground, and    g →    is the free- fall acceleration (written as a vector), directed 
downward.

Weight
The weight W of a body is the magnitude of the net force required to prevent the 
body from falling freely, as measured by someone on the ground. For example, 
to keep a ball at rest in your hand while you stand on the ground, you must pro-
vide an upward force to balance the gravitational force on the ball from Earth. 
Suppose the magnitude of the gravitational force is 2.0 N. Then the  magnitude of 
your upward force must be 2.0 N, and thus the weight W of the ball is 2.0 N. We 
also say that the ball weighs 2.0 N and speak about the ball weighing 2.0 N.

A ball with a weight of 3.0 N would require a greater force from you—  
namely, a 3.0 N force— to keep it at rest. The reason is that the gravitational force 
you must balance has a greater magnitude— namely, 3.0 N. We say that this sec-
ond ball is heavier than the first ball.

Now let us generalize the situation. Consider a body that has an acceleration  
   a →    of zero relative to the ground, which we again assume to be an iner tial frame. 
Two forces act on the body: a downward gravitational force     F 

→
    g    and a balancing 

upward force of magnitude W. We can write Newton’s second law for a vertical y 
axis, with the positive direction upward, as

Fnet,y = may.

In our situation, this becomes

 W − Fg = m(0) (5.2.3)

or W = Fg (weight, with ground as inertial frame). (5.2.4)

This equation tells us (assuming the ground is an inertial frame) that

Substituting mg for Fg from Eq. 5.2.1, we find

 W = mg   (weight), (5.2.5)

which relates a body’s weight to its mass.
Weighing. To weigh a body means to measure its weight. One way to do this 

is to place the body on one of the pans of an equal- arm balance (Fig. 5.2.1) and 
then place reference bodies (whose masses are known) on the other pan until 
we strike a balance (so that the gravitational forces on the two sides match). The 
masses on the pans then match, and we know the mass of the body. If we know 
the value of g for the location of the balance, we can also find the weight of the 
body with Eq. 5.2.5.

We can also weigh a body with a spring scale (Fig. 5.2.2). The body stretches 
a spring, moving a pointer along a scale that has been calibrated and marked in 

 The weight W of a body is equal to the magnitude Fg of the gravitational force 
on the body.
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Figure 5.2.3 (a) A block resting on a table experiences a normal force     F 
→

    N    perpendicular 
to the tabletop. (b) The free- body diagram for the block.

Block

Normal force FN

(a) (b)

y

x

Block

Fg
Fg

FN

The normal force
is the force on
the block from the
supporting table.

The gravitational
force on the block
is due to Earth’s
downward pull.

The forces
balance.

 either mass or weight units. (Most bathroom scales in the United States work 
this way and are marked in the force unit pounds.) If the scale is marked in 
mass units, it is accurate only where the value of g is the same as where the scale 
was calibrated.

The weight of a body must be measured when the body is not accelerating 
vertically relative to the ground. For example, you can measure your weight on 
a  scale in your bathroom or on a fast train. However, if you repeat the measure-
ment with the scale in an accelerating elevator, the reading differs from your 
weight because of the acceleration. Such a measurement is called an apparent 
weight.

Caution: A body’s weight is not its mass. Weight is the magnitude of a force 
and is related to mass by Eq. 5.2.5. If you move a body to a point where the 
value of g is different, the body’s mass (an intrinsic property) is not different but  
the weight is. For example, the weight of a bowling ball having a mass of 7.2 kg is 
71 N on Earth but only 12 N on the Moon. The mass is the same on Earth and the 
Moon, but the free- fall acceleration on the Moon is only 1.6 m/s2.

The Normal Force
If you stand on a mattress, Earth pulls you downward, but you remain stationary. 
The reason is that the mattress, because it deforms downward due to you, pushes 
up on you. Similarly, if you stand on a floor, it deforms (it is compressed, bent, or 
buckled ever so slightly) and pushes up on you. Even a seemingly rigid concrete 
floor does this (if it is not sitting directly on the ground, enough people on the 
floor could break it).

The push on you from the mattress or floor is a normal force     F 
→

    N   . The name 
comes from the mathematical term normal, meaning perpendicular: The force on 
you from, say, the floor is perpendicular to the floor.

Figure 5.2.3a shows an example. A block of mass m presses down on a table, 
deforming it somewhat because of the gravitational force     F 

→
    g    on the block. The 

table pushes up on the block with normal force     F 
→

    N   . The free- body diagram for the 
block is given in Fig. 5.2.3b. Forces     F 

→
    g    and     F 

→
    N    are the only two forces on the block 

and they are both vertical. Thus, for the block we can write Newton’s  second law 
for a positive- upward y axis (Fnet, y = may) as

FN − Fg = may.

 When a body presses against a surface, the surface (even a seemingly rigid 
one)  deforms and pushes on the body with a normal force     F 

→
    N    that is perpen-

dicular to the surface.
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Figure 5.2.4 A frictional force    f 
→

    
opposes the attempted slide of a body 
over a surface.

f

Direction of
attempted 

slide

From Eq. 5.2.1, we substitute mg for Fg, finding

FN − mg = may.

Then the magnitude of the normal force is

 FN = mg + may = m(g + ay) (5.2.6)

for any vertical acceleration ay of the table and block (they might be in an accel-
erating elevator). (Caution: We have already included the sign for g but ay can be 
positive or negative here.) If the table and block are not accelerating relative to 
the ground, then ay = 0 and Eq. 5.2.6 yields

 FN = mg. (5.2.7)

Checkpoint 5.2.1
In Fig. 5.2.3, is the magnitude of the normal force     F 

→
    N    greater than, less than, or equal 

to mg if the block and table are in an elevator moving upward (a) at constant speed 
and (b) at increasing speed?

Friction
If we either slide or attempt to slide a body over a surface, the motion is resisted 
by a bonding between the body and the surface. (We discuss this bonding more in 
the next chapter.) The resistance is considered to be a single force    f 

→
   , called either 

the frictional force or simply friction. This force is directed along the  surface, 
opposite the direction of the intended motion (Fig. 5.2.4). Sometimes, to simplify 
a situation, friction is assumed to be negligible (the surface, or even the body, is 
said to be  frictionless).

Tension
When a cord (or a rope, cable, or other such object) is attached to a body and 
pulled taut, the cord pulls on the body with a force   T 

→
    directed away from the body 

and along the cord (Fig. 5.2.5a). The force is often called a tension force  because 
the cord is said to be in a state of tension (or to be under tension), which means 
that it is being pulled taut. The tension in the cord is the magnitude T of the force 
on the body. For example, if the force on the body from the cord has magnitude 
T = 50 N, the tension in the cord is 50 N.

A cord is often said to be massless (meaning its mass is negligible compared 
to the body’s mass) and unstretchable. The cord then exists only as a connection 
between two bodies. It pulls on both bodies with the same force magnitude T, 

T

(a) (b) (c)

T T

T

T

TThe forces at the two ends of
the cord are equal in magnitude.

Figure 5.2.5 (a) The cord, pulled taut, is under tension. If its mass is negligible, the cord 
pulls on the body and the hand with force   T 

→
   , even if the cord runs around a massless, 

 frictionless pulley as in (b) and (c).
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even if the bodies and the cord are accelerating and even if the cord runs around 
a massless, frictionless pulley (Figs. 5.2.5b and c). Such a pulley has negligible 
mass compared to the bodies and negligible friction on its axle opposing its rota-
tion. If the cord wraps halfway around a pulley, as in Fig. 5.2.5c, the net force on 
the pulley from the cord has the magnitude 2T.

5.3 APPLYING NEWTON’S LAWS 
Learning Objectives 
After reading this module, you should be able to . . .

5.3.1 Identify Newton’s third law of motion and third- law 
force pairs.

5.3.2 For an object that moves vertically or on a horizon-
tal or inclined plane, apply Newton’s second law to a 
free- body diagram of the object.

5.3.3 For an arrangement where a system of several 
objects moves rigidly together, draw a free- body 
diagram and apply Newton’s second law for the 
individual objects and also for the system taken as 
a composite object.

Key Ideas 
● The net force     F 

→
    net    on a body with mass m is related to 

the body’s acceleration    a →    by

    F 
→

    net   = m  a →  , 

which may be written in the component versions

   F  net,x   = m  a   x     F  net,y   = m  a   y    and   F  net,z   = m  a   z   . 

● If a force     F 
→

    BC    acts on body B due to body C, then 
there is a force     F 

→
    CB    on body C due to body B:

    F 
→

    BC   =    F 
→

    CB  . 

The forces are equal in magnitude but opposite in 
direction.

Checkpoint 5.2.2
The suspended body in Fig. 5.2.5c weighs 75 N. Is T equal to, greater than, or less than 
75 N when the body is moving upward (a) at constant speed, (b) at increasing speed, 
and (c) at decreasing speed?

Newton’s Third Law
Two bodies are said to interact when they push or pull on each other— that is, 
when a force acts on each body due to the other body. For example, suppose 
you position a book B so it leans against a crate C (Fig. 5.3.1a). Then the  
book and crate interact: There is a horizontal force     F 

→
    BC    on the book from the 

crate (or due to the crate) and a horizontal force     F 
→

    CB    on the crate from the 
book (or due to the book). This pair of forces is shown in Fig. 5.3.1b. New-
ton’s third law states that

For the book and crate, we can write this law as the scalar relation

FBC = FCB    (equal magnitudes)

or as the vector relation

      F 
→

    BC   = −    F 
→

    CB        (equal magnitudes and opposite directions), (5.3.1)

where the minus sign means that these two forces are in opposite directions. 
We can call the forces between two interacting bodies a third- law force pair. 

Newton’s Third Law: When two bodies interact, the forces on the bodies 
from each other are always equal in magnitude and opposite in direction.

Figure 5.3.1 (a) Book B leans against crate  
C. (b) Forces     F 

→
    BC    (the force on the book 

from the crate) and     F 
→

    CB    (the force on 
the crate from the book) have the same 
magnitude and are opposite in direction.

Crate CBook B

(a)

(b)

C

FCBFBC

B

The force on B 
due to C has the same 
magnitude as the 
force on C due to B.
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Earth E

Table T

Cantaloupe C

(a)

(b)

(c)

FCE  (gravitational force)

FCT

(d)

FTC

Earth

Cantaloupe

FCT  (normal force from table)

FCE

FEC

These forces 
just happen 
to be balanced.

These are 
third-law force
pairs.

So are these.

Figure 5.3.2 (a) A cantaloupe lies on a table that stands on Earth. (b) The forces on  
the cantaloupe are     F 

→
    CT    and     F 

→
    CE   . (c) The third- law force pair for the cantaloupe– Earth 

interaction. (d) The third- law force pair for the cantaloupe– table interaction.

When any two bodies interact in any situation, a third- law force pair is present. 
The book and crate in Fig. 5.3.1a are stationary, but the third law would still hold 
if they were moving and even if they were accelerating.

As another example, let us find the third- law force pairs involving the can-
taloupe in Fig. 5.3.2a, which lies on a table that stands on Earth. The cantaloupe 
interacts with the table and with Earth (this time, there are three bodies whose 
interactions we must sort out).

Let’s first focus on the forces acting on the cantaloupe (Fig. 5.3.2b). Force     F 
→

    CT   
is the normal force on the cantaloupe from the table, and force     F 

→
    CE    is the gravi-

tational force on the cantaloupe due to Earth. Are they a third- law force pair? 
No, because they are forces on a single body, the cantaloupe, and not on two 
interacting bodies.

To find a third- law pair, we must focus not on the cantaloupe but on the 
 interaction between the cantaloupe and one other body. In the cantaloupe– 
Earth interaction (Fig. 5.3.2c), Earth pulls on the cantaloupe with a gravitational 
force     F 

→
    CE    and the cantaloupe pulls on Earth with a gravitational force     F 

→
    EC   . Are 

these forces a third- law force pair? Yes, because they are forces on two interacting 
bodies, the force on each due to the other. Thus, by Newton’s third law,

    F 
→

    CE   = −    F 
→

    EC      (cantaloupe–Earth interaction). 

Next, in the cantaloupe– table interaction, the force on the cantaloupe from 
the table is     F 

→
    CT    and, conversely, the force on the table from the cantaloupe is     F 

→
    TC    

(Fig. 5.3.2d). These forces are also a third- law force pair, and so

    F 
→

    CT   = −    F 
→

    TC       (cantaloupe–table interaction).

Checkpoint 5.3.1
Suppose that the cantaloupe and table of Fig. 5.3.2 are in an elevator cab that begins 
to accelerate upward. (a) Do the magnitudes of     F 

→
    TC    and     F 

→
    CT    increase, decrease, or stay 

the same? (b) Are those two forces still equal in magnitude and opposite in  direction? 
(c) Do the magnitudes of     F 

→
    CE    and     F 

→
    EC    increase,  decrease, or stay the same? (d) Are 

those two forces still equal in magnitude and  opposite in direction?
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Applying Newton’s Laws
The rest of this chapter consists of sample problems. You should pore over them, 
learning their procedures for attacking a problem. Especially important is know-
ing how to translate a sketch of a situation into a free- body diagram with appro-
priate axes, so that Newton’s laws can be applied. 

Sample Problem 5.3.1 Block on table, block hanging

Figure 5.3.3 shows a block S (the sliding block) with mass 
M = 3.3 kg. The block is free to move along a horizontal 
 frictionless surface and connected, by a cord that wraps over 
a frictionless pulley, to a second block H (the hanging block), 
with mass m = 2.1 kg. The cord and pulley have negligible 
masses compared to the blocks (they are “massless”). The 
hanging block H falls as the sliding block S accelerates to 
the right. Find (a) the acceleration of block S, (b) the accel-
eration of block H, and (c) the tension in the cord.

Q  What is this problem all about?
You are given two bodies— sliding block and hang-

ing block— but must also consider Earth, which pulls on 
both bodies. (Without Earth, nothing would happen 
here.) A total of five forces act on the blocks, as shown 
in Fig. 5.3.4:

1. The cord pulls to the right on sliding block S with a 
force of magnitude T.

2. The cord pulls upward on hanging block H with a force 
of the same magnitude T.  This upward force keeps 
block H from falling freely.

3. Earth pulls down on block S with the gravitational 
force     F 

→
    gS   , which has a magnitude equal to Mg.

4. Earth pulls down on block H with the gravitational 
force     F 

→
    gH   , which has a magnitude equal to mg.

5. The table pushes up on block S with a normal force     F 
→

    N   .

There is another thing you should note. We assume 
that the cord does not stretch, so that if block H falls 1 mm 

in a  certain time, block S moves 1 mm to the right in that 
same time. This means that the blocks move  together and 
their  accelerations have the same magnitude a.

Q How do I classify this problem? Should it suggest a 
particular law of physics to me?
Yes. Forces, masses, and accelerations are involved, 

and they should suggest Newton’s second law of  motion,  
   F 
→

    net   = m  a →   . That is our starting key idea.

Q If I apply Newton’s second law to this problem, to 
which body should I apply it?
We focus on two bodies, the sliding block and the 

hanging block. Although they are extended objects (they 
are not points), we can still treat each block as a par-
ticle because every part of it moves in exactly the same 
way. A second key idea is to apply Newton’s second law 
 separately to each block.

Q What about the pulley?
We cannot represent the pulley as a particle  because 

 different parts of it move in different ways. When we discuss 
rotation, we shall deal with pulleys in detail. Meanwhile, 
we eliminate the pulley from consideration by assuming its 
mass to be negligible compared with the masses of the two 
blocks. Its only function is to change the cord’s orientation.

Q OK. Now how do I apply     F 
→

    net   = m  a →    to the sliding block?
Represent block S as a particle of mass M and draw all 

the forces that act on it, as in Fig. 5.3.5a. This is the block’s 
free- body diagram. Next, draw a set of axes. It makes sense 

Figure 5.3.3 A block S of mass M is connected to a block H of 
mass m by a cord that wraps over a pulley.

Sliding 
block S

Hanging 
block H

Frictionless
surface

M

m

FgH

T

T

FgS

Block H

Block S

m

M

FN

Figure 5.3.4 The forces acting on the two blocks of Fig. 5.3.3.
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to draw the x axis parallel to the table, in the direction in 
which the block moves.

Q Thanks, but you still haven’t told me how to apply  
    F 
→

    net   = m  a →    to the sliding block. All you’ve done is 
 explain how to draw a free- body diagram.
You are right, and here’s the third key idea: The 

 expression    F 
→

    net   = M    a →    is a vector equation, so we can write 
it as three component equations:

 Fnet,x = Max   Fnet,y = May   Fnet,z = Maz   (5.3.2)

in which Fnet,x, Fnet,y, and Fnet,z are the components of the 
net force along the three axes. Now we apply each com-
ponent equation to its corresponding direction. Because 
block S does not accelerate vertically, Fnet,y = May 
becomes

 FN − FgS = 0   or   FN = FgS.   (5.3.3)

Thus in the y direction, the magnitude of the normal force is 
equal to the magnitude of the gravitational force.

No force acts in the z direction, which is perpendicu-
lar to the page.

In the x direction, there is only one force component, 
which is T. Thus, Fnet, x = Max becomes

 T = Ma. (5.3.4)

This equation contains two unknowns, T and a; so we can-
not yet solve it. Recall, however, that we have not said 
anything about the hanging block.

Q I agree. How do I apply     F 
→

    net   = m  a →    to the hanging 
block?
We apply it just as we did for block S: Draw a free- body 

diagram for block H, as in Fig. 5.3.5b. Then apply    F 
→

    net   =  
m  a →    in component form. This time, because the accelera-
tion is along the y axis, we use the y part of Eq. 5.3.2 (Fnet, y =  
may) to write

 T − FgH = may.   (5.3.5)

We can now substitute mg for FgH and −a for ay (negative 
 because block H accelerates in the negative direction of 
the y axis). We find
 T − mg = −ma. (5.3.6)

Now note that Eqs. 5.3.4 and 5.3.6 are simultaneous equa-
tions with the same two unknowns, T and a. Subtracting 
these equations eliminates T. Then solving for a yields

   a =   m _______ 
M + m

   g.   (5.3.7)

Substituting this result into Eq. 5.3.4 yields

   T =   Mm _______ 
M + m

   g.   (5.3.8)

Putting in the numbers gives, for these two quantities,

  a =   m _______ 
M + m

   g =   
2.1 kg
 _____________  

3.3 kg + 2.1 kg
   (9.8  m / s  2 )

 = 3.8  m / s  2   (Answer)

and  T =   Mm _______ 
M + m

   g =   
(3.3 kg)(2.1 kg)

  ______________  
3.3 kg + 2.1 kg

   (9.8  m / s  2 )

 = 13 N. (Answer) 

Q The problem is now solved, right?
That’s a fair question, but the problem is not really 

finished until we have examined the results to see whether 
they make sense. (If you made these calculations on the 
job, wouldn’t you want to see whether they made sense 
before you turned them in?)

Look first at Eq. 5.3.7. Note that it is dimensionally 
 correct and that the acceleration a will always be less than 
g (because of the cord, the hanging block is not in free fall).

Look now at Eq. 5.3.8, which we can rewrite in 
the form

 
  T =   M _______ 

M + m
   mg.   (5.3.9)

In this form, it is easier to see that this equation is also 
 dimensionally correct, because both T and mg have dimen-
sions of forces. Equation 5.3.9 also lets us see that the ten-
sion in the cord is always less than mg, and thus is always 
less than the gravitational force on the hanging block. That 
is a comforting thought because, if T were greater than mg, 
the hanging block would accelerate  upward.

We can also check the results by studying special cases, 
in which we can guess what the answers must be. A simple 
 example is to put g = 0, as if the experiment were carried out 
in interstellar space. We know that in that case, the blocks 
would not move from rest, there would be no forces on the 
ends of the cord, and so there would be no tension in the 
cord. Do the formulas predict this? Yes, they do. If you put 
g = 0 in Eqs. 5.3.7 and 5.3.8, you find a = 0 and T = 0. Two 
more special cases you might try are M = 0 and m → ∞.

Figure 5.3.5 (a) A free- body diagram for block S of Fig. 5.3.3.  
(b) A free- body diagram for block H of Fig. 5.3.3.

M

Sliding 
block S

x

y

m

Hanging 
block H

x

y

FgH

T

FgS

T

a

a

(a) (b)

FN

Hdditional examples, video, and practice available at WileyPLUS
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Sample Problem 5.3.2 Cord accelerates box up a ramp

Many students consider problems involving ramps 
(inclined planes) to be especially hard. The difficulty is 
probably visual because we work with (a) a tilted coordi-
nate system and (b) the components of the gravitational 
force, not the full force. Here is a typical example with all 
the tilting and angles explained. (In WileyPLUS, the fig-
ure is available as an animation with voiceover.) In spite 
of the tilt, the key idea is to apply Newton’s second law to 
the axis along which the motion occurs.

In Fig. 5.3.6a, a cord pulls a box of sea biscuits up 
along a frictionless plane inclined at angle θ = 30.0°. The 
box has mass m = 5.00 kg, and the force from the cord has 
magnitude T = 25.0 N. What is the box’s acceleration a 
along the inclined plane?

KEY IDEA

The acceleration along the plane is set by the force 
components along the plane (not by force components 

perpendicular to the plane), as expressed by Newton’s 
second law (Eq. 5.1.1).

Calculations: We need to write Newton’s second law for 
motion along an axis. Because the box moves along the 
inclined plane, placing an x axis along the plane seems 
reasonable (Fig. 5.3.6b). (There is nothing wrong with 
using our usual coordinate system, but the expressions for 
components would be a lot messier because of the mis-
alignment of the x axis with the motion.)

After choosing a coordinate system, we draw a 
free- body diagram with a dot representing the box 
(Fig. 5.3.6b). Then we draw all the vectors for the forces 
acting on the box, with the tails of the vectors anchored 
on the dot. (Drawing the vectors willy- nilly on the dia-
gram can easily lead to errors, especially on exams, so 
always anchor the tails.)

Force   T 
→

    from the cord is up the plane and has magni- 
tude T = 25.0 N. The gravitational force     F 

→
    g    is downward (of

θ

y

xFN

Fg

T

(b)

Cord

θ

(a)

The box accelerates.

Normal force

Cord’s pull

Gravitational
force

x

T

mg sinθ

(g) (h)

θ mg cos
mg 

θ
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y

xFN

(i)

mg cos θ
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component of
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Figure 5.3.6 (a) A box is pulled up a plane 
by a cord. (b) The three forces acting on 
the box: the cord’s force   T 

→
   , the gravita-

tional force     F 
→

    g   , and the normal force     F 
→

    N   .  
(c)–(i)  Finding the force components  
along the plane and perpendicular to it.  
In WileyPLUS, this figure is available as 
an animation with voiceover.
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course) and has magnitude mg = (5.00 kg)(9.80 m/s2) = 
49.0 N. That direction means that only a component of the 
force is along the plane, and only that component (not the 
full force) affects the box’s acceleration along the plane. 
Thus, before we can write Newton’s second law for motion 
along the x axis, we need to find an expression for that 
important component.

Figures 5.3.6c to h indicate the steps that lead to the 
expression. We start with the given angle of the plane and 
work our way to a triangle of the force components (they are 
the legs of the triangle and the full force is the hypotenuse). 
Figure 5.3.6c shows that the angle between the ramp and  
    F 
→

    g    is 90° − θ. (Do you see a right triangle there?) Next, 
Figs. 5.3.6d to f show     F 

→
    g    and its components: One compo-

nent is parallel to the plane (that is the one we want) and 
the other is perpendicular to the plane.

Because the perpendicular component is perpendicu-
lar, the angle between it and     F 

→
    g    must be θ (Fig. 5.3.6d). 

The component we want is the far leg of the component 
right triangle. The magnitude of the hypotenuse is mg 
(the magnitude of the gravitational force). Thus, the com-
ponent we want has magnitude mg sin θ (Fig. 5.3.6g).

We have one more force to consider, the normal 
force     F 

→
    N    shown in Fig. 5.3.6b. However, it is perpendicular to 

the plane and thus cannot affect the motion along the plane. 
(It has no component along the plane to accelerate the box.)

We are now ready to write Newton’s second law for 
motion along the tilted x axis:

Fnet, x = max.

The component ax is the only component of the acceleration 
(the box is not leaping up from the plane, which would be 
strange, or descending into the plane, which would be even 
stranger). So, let’s simply write a for the acceleration along the 
plane. Because   T 

→
    is in the positive x direction and the com-

ponent mg sin θ is in the negative x direction, we next write

 T − mg sin θ = ma. (5.3.10)

Substituting data and solving for a, we find

 a = 0.100 m/s2. (Answer)

The result is positive, indicating that the box acceler-
ates up the inclined plane, in the positive direction of the 
tilted x axis. If we decreased the magnitude of   T 

→
    enough 

to make a = 0, the box would move up the plane at con-
stant speed. And if we decrease the magnitude of   T 

→
    even 

more, the acceleration would be negative in spite of the 
cord’s pull.

x

(c)

(d)

(b)(a)

x'T

T 1
10

x x'T

T 9
10 Mg sin θ

Mg sin θ

θ

Figure 5.3.7 A roller coaster with (a) the first car on a slope and (b) all but the last car 
on the slope. (c) Free- body diagrams for the cars on the plateau and the car on the slope 
in (a). (d) Free- body diagrams for (b).

Sample Problem 5.3.3 Fear and trembling on a roller coaster

Many roller- coaster enthusiasts prefer riding in the first car 
because they enjoy being the first to go over an “edge” and 
onto a downward slope. However, many other enthusiasts 
prefer the rear car, claiming that going over the edge is far 

more frightening there. What produces that fear factor in 
the last car of a traditional gravity- driven roller coaster? 
Let’s consider a coaster having 10 identical cars with total 
mass M and massless interconnections. Figure 5.3.7a shows 
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Sample Problem 5.3.4 Forces within an elevator cab

Although people would surely avoid getting into the 
elevator with you, suppose that you weigh yourself 
while on an elevator that is moving. Would you weigh 
more than, less than, or the same as when the scale is on 
a stationary floor?

In Fig. 5.3.8a, a passenger of mass m = 72.2 kg stands 
on a platform scale in an elevator cab. We are concerned 
with the  scale readings when the cab is stationary and 
when it is moving up or down.

(a) Find a general solution for the scale reading, whatever 
the vertical motion of the cab.

KEY IDEAS

(1) The reading is equal to the magnitude of the normal 
force     F 

→
    N    on the passenger from the scale. The only other 

force  acting on the passenger is the gravitational force     F 
→

    g   ,  
as shown in the free- body diagram of Fig. 5.3.8b. (2) We can 
relate the forces on the  passenger to his acceleration    a →     
by using  Newton’s second law  (   F 

→
    net   = m  a →  ) . However, recall 

that we can use this law only in an inertial frame. If the cab 
accelerates, then it is not an  inertial frame. So we choose 
the ground to be our inertial frame and make any measure 
of the passenger’s acceleration relative to it.

the coaster just after the first car has begun its descent along 
a frictionless slope with angle θ. Figure 5.3.7b shows the 
coaster just before the last car begins its descent. What is the 
acceleration of the coaster in these two situations?

KEY IDEAS

(1) The net force on an object causes the object’s acc el-
eration, as related by Newton’s second law  (   F 

→
    net   = m  a →  ).   

(2) When the motion is along a single axis, we write that law 
in component form (such as Fnet, x = max) and we use only 
force components along that axis. (3) When several objects 
move together with the same velocity and the same accel-
eration, they can be regarded as a single composite object. 
Internal forces act between the individual objects, but only 
external forces can cause the composite object to accelerate.

Calculations for Fig. 5.3.7a: Figure 5.3.7c shows free- 
body diagrams associated with Fig. 5.3.7a, with conve-
nient axes superimposed. The tilted   x ′    axis has its positive 
direction up the slope. T is the magnitude of the inter-
connection force between the car on the slope and the 
cars still on the plateau. Because the coaster consists of 
10 identical cars with total mass M, the mass of the car 
on the slope is    1 __ 10   M  and the mass of the cars on the pla-
teau is    9 __ 10   M.  Only a single external force acts along the 
x axis on the nine- car composite— namely, the intercon-
nection force with magnitude T. (The forces between 
the nine cars are internal forces.) Thus, Newton’s second 
law for motion along the x axis (Fnet, x = max) becomes

 
T =   9 __ 10   Ma, 

where a is the magnitude of the acceleration ax along the 
x axis.

Along the tilted   x ′    axis, two forces act on the car on the 
slope: the interconnection force with magnitude T (in the 
positive direction of the axis) and the   x ′    component of the 
gravitational force (in the negative direction of the axis). 

From Sample Problem 5.3.2, we know to write that gravi-
tational component as  − mg sin θ,  where m is the mass. 
Because we know that the car accelerates down the slope 
in the negative   x ′    direction with magnitude a, we can write 
the acceleration as −a. Thus, for this car, with mass    1 __ 10   M  we 
write Newton’s second law for motion along the   x ′    axis as

 
T −   1 __ 10   Mg sin θ =   1 __ 10   M(−a). 

Substituting our result of  T =   9 __ 10   Ma,  we find

 
 
a =   1 __ 10   g sin θ.  (Answer)

Calculations for Fig. 5.3.7b: Figure 5.3.7d shows free- body 
diagrams associated with Fig. 5.3.7b. For the car still on the 
plateau, we rewrite our previous result for the tension as

 
T =   1 __ 10   Ma. 

Similarly, we rewrite the equation for motion along the   
x ′    axis as

 
T −   9 __ 10   Mg sin θ =   9 __ 10   M(−a). 

Again solving for a, we now find

  
a =   9 __ 10   g sin θ.  (Answer)

The fear factor: This last answer is 9 times the first answer. 
Thus, in general, the acceleration of the cars greatly 
increases as more of them go over the edge and onto the 
slope. That increase in acceleration occurs regardless of 
your car choice, but your interpretation of the acceleration 
depends on the choice. In the first car, most of the accelera-
tion occurs on the slope and is due to the component of the 
gravitational force along the slope, which is reasonable. In 
the last car, most of the acceleration occurs on the plateau 
and is due to the push on you from the back of your seat. 
That push rapidly increases as you approach the edge, giv-
ing you the frightening sensation that you are about to be 
hurled off the plateau and into the air.

Hdditional examples, video, and practice available at WileyPLUS
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(a) What is the acceleration of the blocks?

Serious Error: Because force     F 
→

    app    is applied directly 
to block A, we use Newton’s second law to relate that force 
to the  acceleration    a →    of block A. Because the motion is along 
the x axis, we use that law for x components (Fnet, x = max), 
 writing it as

Fapp = mAa.

Sample Problem 5.3.5 Acceleration of block pushing on block

Some homework problems involve objects that move 
together, because they are either shoved together or tied 
together. Here is an example in which you apply Newton’s 
second law to the composite of two blocks and then to the 
individual blocks.

In Fig. 5.3.9a, a constant horizontal force     F 
→

    app    of mag-
nitude 20  N is applied to block A of mass mA = 4.0 kg, 
which pushes against block B of mass mB = 6.0 kg. The 
blocks slide over a frictionless surface, along an x axis.

FN

y

(b)(a)

Passenger

Fg

These forces 
compete.
Their net force 
causes a vertical 
acceleration.

Figure 5.3.8 (a) A passenger stands on a platform scale  
that indicates either his weight or his apparent weight.  
(b) The free- body diagram for the passenger, showing the 
normal force     F 

→
    N    on him from the scale and the gravitational 

force     F 
→

    g   .

Calculations: Because the two forces on the passenger 
and his acceleration are all directed vertically, along the y 
axis in Fig. 5.3.8b, we can use Newton’s second law writ-
ten for y components (Fnet, y = may) to get

 FN − Fg = ma

or FN = Fg + ma. (5.3.11)

This tells us that the scale reading, which is equal to normal 
force magnitude FN,  depends on the vertical acceleration. 
Substituting mg for Fg gives us

 FN = m(g + a) (Answer) (5.3.12)

for any choice of acceleration a. If the acceleration is 
upward, a is positive; if it is downward, a is negative.

(b) What does the scale read if the cab is stationary or 
 moving upward at a constant 0.50 m/s?

KEY IDEA

For any constant velocity (zero or otherwise), the accel-
eration a of the passenger is zero. 

Calculation: Substituting this and other known values 
into Eq. 5.3.12, we find

 FN = (72.2 kg)(9.8 m/s2 + 0) = 708 N.  (Answer)

This is the weight of the passenger and is equal to the 
magnitude Fg of the gravitational force on him.

(c) What does the scale read if the cab accelerates  upward 
at 3.20 m/s2 and downward at 3.20 m/s2?

Calculations: For a = 3.20 m/s2, Eq. 5.3.12 gives

 FN = (72.2 kg)(9.8 m/s2 + 3.20 m/s2)

 = 939 N, (Answer)

and for a = −3.20 m/s2, it gives

 FN = (72.2 kg)(9.8 m/s2 − 3.20 m/s2)

 = 477 N. (Answer)

For an upward acceleration (either the cab’s upward 
speed is increasing or its downward speed is decreas-
ing), the scale reading is greater than the passenger’s 
weight. That reading is a measurement of an apparent 
weight, because it is made in a noninertial frame. For 
a  downward acceleration (either  decreasing upward 
speed or increasing downward speed), the scale reading 
is less than the passenger’s weight.

(d) During the upward acceleration in part (c), what is 
the magnitude Fnet of the net force on the passenger, and 
what is the magnitude ap,cab of his acceleration as mea-
sured in the frame of the cab? Does     F 

→
    net   = m   a →    p,cab   ?

Calculation: The magnitude Fg of the gravitational force 
on the passenger does not depend on the motion of the 
passenger or the cab; so, from part (b), Fg is 708 N. From 
part (c), the magnitude FN of the normal force on the pas-
senger during the upward acceleration is the 939 N reading 
on the scale. Thus, the net force on the passenger is

 Fnet = FN − Fg = 939 N − 708 N = 231 N, (Answer)

during the upward acceleration. However, his accelera-
tion ap,cab relative to the frame of the cab is zero. Thus, in 
the noninertial frame of the accelerating cab, Fnet is not 
equal to map,cab, and Newton’s second law does not hold.
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Newtonian Mechanics  The velocity of an object can 
change (the object can accelerate) when the object is acted on 
by one or more forces (pushes or pulls) from other  objects. New-
tonian mechanics relates accelerations and forces.

Force  Forces are vector quantities. Their magnitudes are 
defined in terms of the acceleration they would give the standard 
kilogram. A force that accelerates that standard body by exactly 
1 m/s2 is defined to have a magnitude of 1 N. The  direction of 
a force is the direction of the acceleration it causes. Forces are 
combined according to the rules of vector algebra. The net force 
on a body is the vector sum of all the forces acting on the body.

Newton’s First Law  If there is no net force on a body, the 
body remains at rest if it is initially at rest or moves in a straight 
line at constant speed if it is in motion.

Review & Summary

Inertial Reference Frames  Reference frames in which 
Newtonian mechanics holds are called inertial reference frames 
or inertial frames. Reference frames in which Newtonian 
mechanics does not hold are called noninertial reference frames 
or noninertial frames.

Mass  The mass of a body is the characteristic of that body 
that relates the body’s acceleration to the net force causing the 
acceleration. Masses are scalar quantities.

Newton’s Second Law  The net force     F 
→

    net    on a body with 
mass m is related to the body’s acceleration    a →    by

      F 
→

    net   = m  a →  ,   (5.1.1)

which may be written in the component versions

 Fnet, x = max   Fnet, y = may   and   Fnet, z = maz. (5.1.2)

FBA

(c)

x

B

(a)

x
A

B

Fapp

(b)

xA FABFapp

This force causes the
acceleration of the full
two-block system.

This is the only force
causing the acceleration
of block B.

These are the two forces
acting on just block A.
Their net force causes
its acceleration.

Figure 5.3.9 (a) A constant horizontal force     F 
→

    app    is applied to 
block A, which pushes against block B. (b) Two horizontal forces 
act on block A. (c) Only one horizontal force acts on block B.

However, this is seriously wrong because     F 
→

    app    is not the 
only horizontal force acting on block A. There is also the 
force     F 

→
    AB    from block B (Fig. 5.3.9b).

Dead- End Solution: Let us now include force     F 
→

    AB    by 
writing, again for the x axis,

Fapp − FAB = mAa.

(We use the minus sign to include the direction of     F 
→

    AB   .)  
Because FAB is a second unknown, we cannot solve this 
equation for a.

Successful Solution: Because of the direction in 
which force     F 

→
    app    is applied, the two blocks form a rigidly 

connected system. We can relate the net force on the system 
to the acceleration of the system with Newton’s second law. 
Here, once again for the x axis, we can write that law as

Fapp = (mA + mB)a,

where now we properly apply     F 
→

    app    to the system with
total mass mA + mB. Solving for a and substituting known 
values, we find

 a =   
 F  app  
 ________  m  A   +  m  B     =   20 N _____________  

4.0 kg + 6.0 kg
   = 2.0   m / s  2 . 

 (Answer)

Thus, the acceleration of the system and of each block is 
in the positive direction of the x axis and has the magnitude 
2.0 m/s2.

(b) What is the (horizontal) force     F 
→

    BA    on block B from 
block A (Fig. 5.3.9c)?

KEY IDEA 

We can relate the net force on block B to the block’s 
acceleration with Newton’s second law. 

Calculation: Here we can write that law, still for compo-
nents along the x axis, as

FBA = mBa,

which, with known values, gives

 FBA = (6.0 kg)(2.0 m/s2) = 12 N. (Answer)

Thus, force     F 
→

    BA    is in the positive direction of the x axis 
and has a magnitude of 12 N.

Hdditional examples, video, and practice available at WileyPLUS
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The second law indicates that in SI units

   1 N = 1 kg ⋅ m /  s  2 .   (5.1.3)

A free- body diagram is a stripped- down diagram in which 
only one body is considered. That body is represented by  either a 
sketch or a dot. The external forces on the body are drawn, and 
a coordinate system is superimposed, oriented so as to simplify 
the solution.

Some Particular Forces  A gravitational force     F 
→

    g    on a 
body is a pull by another body. In most situations in this book, 
the other body is Earth or some other astronomical body. For 
Earth, the force is directed down toward the ground, which is 
assumed to be an inertial frame. With that assumption, the mag-
nitude of     F 

→
    g    is

 Fg = mg, (5.2.1)

where m is the body’s mass and g is the magnitude of the free- 
fall acceleration.

The weight W of a body is the magnitude of the upward 
force needed to balance the gravitational force on the body. A 
body’s weight is related to the body’s mass by

 W = mg. (5.2.5)

A normal force     F 
→

    N    is the force on a body from a surface 
against which the body presses. The normal force is always per-
pendicular to the surface.

A frictional force    f 
→

    is the force on a body when the body 
slides or attempts to slide along a surface. The force is always 
parallel to the surface and directed so as to oppose the sliding. 
On a frictionless surface, the frictional force is negligible.

When a cord is under tension, each end of the cord pulls on 
a body. The pull is directed along the cord, away from the point 
of attachment to the body. For a massless cord (a cord with neg-
ligible mass), the pulls at both ends of the cord have the same 
magnitude T, even if the cord runs around a massless, friction-
less pulley (a pulley with negligible mass and  negligible friction 
on its axle to oppose its rotation).

Newton’s Third Law  If a force     F 
→

    BC    acts on body B due to 
body C, then there is a force     F 

→
    CB    on body C due to body B: 

    F 
→

    BC   = −    F 
→

    CB  . 

1  Figure 5.1 gives the free- body diagram for four situations 
in which an object is pulled by several forces across a friction-
less floor, as seen from overhead. In which situations does 
the acceleration    a →    of the object have (a) an x component and  

(b) a y component? (c) In each situation, give the direction of    a →    
by naming either a quadrant or a direction along an axis. (Don’t 
reach for the calculator because this can be answered with a few 
mental calculations.)

Questions

2  Two horizontal forces,

    F 
→

    1   = (3 N) ̂ i  − (4 N) ̂ j  and    F 
→

    2   = − (1 N) ̂ i  − (2 N) ̂ j  ,

pull a banana split across a fric-
tionless lunch counter. Without 
 using a calculator, determine 
which of the vectors in the 
 free - body  diagram of Fig. 5.2 
best represent (a)     F 

→
    1    and (b)     F 

→
    2   .  

What is the net- force component 
along (c) the x axis and (d) the 
y axis? Into which quadrants 
do (e) the net- force vector and  
(f) the split’s acceleration vector 
point?

y

x

58

4

32

67

1

Figure 5.2 Question 2.

x x

y y

7 N

3 N

2 N

4 N 4 N

2 N

2 N

6 N

5 N

3 N

(1) (2)

x x

y y

3 N

3 N

3 N
4 N

4 N

5 N

6 N

2 N

5 N

5 N
4 N

(3) (4)

Figure 5.1 Question 1.

3  In Fig. 5.3, forces     F 
→

    1    and     F 
→

    2    are 
applied to a lunchbox as it slides at 
constant velocity over a frictionless 
floor. We are to decrease angle θ 
without changing the magnitude 
of     F 

→
    1   . For constant velocity, should 

we  in crease, decrease, or maintain 
the magnitude of     F 

→
    2   ?

4  At time t = 0, constant    F 
→

    begins to act on a rock moving 
through deep space in the +x direction. (a) For time t > 0, which 
are possible  functions x(t) for the rock’s position: (1) x = 4t − 3, 
(2) x = −4t2 + 6t − 3, (3) x = 4t2 + 6t − 3? (b) For which function 
is    F 

→
    directed opposite the rock’s initial direction of motion?

5  Figure 5.4 shows overhead views of four situations in which 
forces act on a block that lies on a frictionless floor. If the force 

Figure 5.3 Question 3.

θF2

F1
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8  Figure 5.7 gives three graphs of velocity component vx(t) and 
three graphs of velocity component vy(t). The graphs are not to 
scale. Which vx(t) graph and which vy(t) graph best correspond 
to each of the four situations in Question 1 and Fig. 5.1?

9  Figure 5.8 shows a train of four blocks being pulled across 
a frictionless floor by force    F 

→
   . What total mass is accelerated 

to the right by (a) force    F 
→

   , (b) cord 3, and (c) cord 1? (d) Rank 
the blocks according to their accelerations, greatest first.  
(e) Rank the cords according to their tension, greatest first.

10  Figure 5.9 shows three 
blocks being pushed across 
a  frictionless floor by horizon-
tal force    F 

→
   . What total mass 

is  accelerated to the right by  
(a) force    F 

→
   , (b) force     F 

→
    21    on 

block 2  from block 1, and (c) 
force     F 

→
    32    on block 3 from block 2? (d) Rank the blocks accord-

ing to their acceleration magnitudes, greatest first. (e) Rank 
forces    F 

→
   ,     F 
→

    21   , and     F 
→

    32    according to magnitude, greatest first.

11  A vertical force    F 
→

    is applied to a block of mass m that lies on 
a floor. What happens to the magnitude of the normal force     F 

→
    N    

on the block from the floor as magnitude F is  increased from 
zero if force    F 

→
    is (a) downward and (b) upward?

12  Figure 5.10 shows four choices for the direction of a force 
of magnitude F to be applied to a block on an inclined plane. 
The directions are  either hori-
zontal or vertical. (For choice b, 
the force is not enough to lift the 
block off the plane.) Rank the 
choices according to the mag-
nitude of the normal force act-
ing on the block from the plane, 
greatest first.

magnitudes are chosen properly, in which situations is it pos-
sible that the block is (a) stationary and (b) moving with a con-
stant velocity?

(1) F2

F1

F3

(3) (4)

(2) F1

F1

F1

F3

F2

F2

F2

Figure 5.4 Question 5.

6  Figure 5.5 shows the same breadbox in four situations  
where horizontal forces are applied. Rank the situations accord-
ing to the magnitude of the box’s acceleration, greatest first.

6 N3 N

(a)

60 N58 N

(b)

15 N13 N

(c)

25 N

20 N

43 N

(d)

Figure 5.5 Question 6.

7 FCP  July 17, 1981, Kansas City: The newly opened Hyatt 
Regency is packed with people listening and dancing to a 
band playing favorites from the 1940s. Many of the people are 
crowded onto the walkways that hang like bridges across the 
wide atrium. Suddenly two of the walkways collapse, falling 
onto the merrymakers on the main floor.

The walkways were suspended one above another on ver-
tical rods and held in place by nuts threaded onto the rods. 
In the original design, only two long rods were to be used, 
each extending through all three walkways (Fig. 5.6a). If each 
walkway and the merrymakers on it have a combined mass of 
M, what is the total mass supported by the threads and two 
nuts on (a) the lowest walkway and (b) the highest walkway?

Apparently someone responsible for the actual construc-
tion realized that threading nuts on a rod is impossible except 
at the ends, so the design was changed: Instead, six rods were 
used, each connecting two walkways (Fig. 5.6b). What now is 
the total mass supported by the threads and two nuts on (c) the 
lowest walkway, (d) the upper side of the highest walkway, and 
(e) the lower side of the highest walkway? It was this design 
that failed on that tragic night—a simple engineering error. 

Cord
1

Cord
2

Cord
3

10 kg 3 kg 5 kg 2 kg
F

Figure 5.8 Question 9.

30°

a
c

b

d

Figure 5.10 Question 12.

21

2 kg

10 kg
5 kg

3

F

Figure 5.9 Question 10.

Rods

Nuts

Walkways

(a) (b)
Figure 5.6 Question 7.

Figure 5.7 Question 8.
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8 M  A 2.00 kg object is subjected to three forces that give it 
an acceleration    a →   = − (8.00  m / s  2 ) ̂ i  + (6.00  m / s  2 ) ̂ j  . If two of the 
three forces are     F 

→
    1   = (30.0 N) ̂ i  + (16.0 N) ̂ j   and     F 

→
    2   = −(12.0 N) ̂ i  + 

(8.00 N) ̂ j  , find the third force.

9 M  CALC  A 0.340 kg particle moves in an xy plane according to 
x(t) = −15.00 + 2.00t − 4.00t3 and y(t) = 25.00 + 7.00t − 9.00t2, 
with x and y in meters and t in seconds. At t = 0.700 s, what 
are (a) the magnitude and (b) the angle (relative to the posi-
tive direction of the x axis) of the net force on the particle, and  
(c) what is the angle of the particle’s direction of travel?

10 M  CALC  GO  A 0.150 kg particle moves along an x axis 
according to x(t) = −13.00 + 2.00t + 4.00t2 − 3.00t3, with x in 
meters and t in seconds. In unit- vector notation, what is the net 
force acting on the particle at t = 3.40 s?

11 M  A 2.0 kg particle moves along an x axis, being propelled by 
a variable force directed along that axis. Its position is given by 
x = 3.0 m + (4.0 m/s)t + ct2 − (2.0 m/s3)t3, with x in meters and t 
in seconds. The factor c is a constant. At t = 3.0 s, the force on 
the particle has a magnitude of 36 N and is in the negative direc-
tion of the axis. What is c?

12 H  GO  Two horizontal forces     F 
→

    1    and     F 
→

    2    act on a 4.0 kg disk 
that slides over frictionless ice, on which an xy coordinate sys-
tem is laid out. Force     F 

→
    1    is in the positive direction of the x axis 

and has a magnitude of 7.0 N. Force     F 
→

    2    has a magnitude of 
9.0 N. Figure 5.14 gives the x component vx of the velocity of the 
disk as a function of time t during the sliding. What is the angle 
between the constant directions of forces     F 

→
    1    and     F 

→
    2   ?

Module 5.2  Some Particular Forces
13 E  Figure 5.15 shows an arrangement 
in which four disks are suspended by 
cords. The longer, top cord loops over a 
frictionless pulley and pulls with a force 
of magnitude 98 N on the wall to which 
it is attached. The tensions in the three 
shorter cords are T1 = 58.8 N, T2 = 49.0 N, 
and T3 = 9.8 N. What are  the masses 
of (a) disk A, (b) disk B, (c) disk C, and  
(d) disk D?

14 E  A block with a weight of 3.0 N is 
at rest on a horizontal surface. A 1.0 N 
upward force is applied to the block by 

Module 5.1  Newton’s First and Second Laws
1 E  Only two horizontal forces act on a 3.0 kg body that can 
move over a frictionless floor. One force is 9.0 N, acting due 
east, and the other is 8.0 N, acting 62° north of west. What is the 
magnitude of the body’s acceleration?

2 E  Two horizontal forces act on a 2.0 kg chopping block that 
can slide over a frictionless kitchen counter, which lies in an xy 
plane. One force is     F 

→
    1   = (3.0 N) ̂ i  + (4.0 N) ̂ j  . Find the acceleration 

of the chopping block in unit- vector notation when the other 
force is (a)     F 

→
    2   = (−3.0 N) ̂ i  + (−4.0 N) ̂ j  , (b)     F 

→
    2   = (−3.0 N) ̂ i  +  

(4.0 N) ̂ j  , and (c)     F 
→

    2   = (3.0 N) ̂ i  + (−4.0 N) ̂ j  .

3 E  If the 1 kg standard body has an acceleration of 2.00 m/s2 
at 20.0° to the positive direction of an x axis, what are (a) the x 
component and (b) the y component of the net force acting on 
the body, and (c) what is the net force in unit- vector notation?

4 M  While two forces act on it, a  particle is to move at the con-
stant velocity    v →   = (3 m / s) ̂ i  − (4 m / s) ̂ j  . One of the forces is     F 

→
    1   =  

(2 N) ̂ i  + (−6 N) ̂ j  . What is the other force?

5 M  GO  Three astronauts, pro-
pelled by jet backpacks, push and 
guide a 120 kg asteroid toward 
a processing dock, exerting the 
forces shown in Fig. 5.11, with 
F1 = 32 N, F2 = 55 N, F3 = 41 N, 
θ1 = 30°, and θ3 = 60°. What is 
the asteroid’s acceleration (a) in 
unit- vector notation and as (b) 
a magnitude and (c) a direction 
relative to the positive direction 
of the x axis?

6 M  In a two- dimensional tug- 
of- war, Alex, Betty, and Charles 
pull horizontally on an automo-
bile tire at the angles shown in the 
overhead view of Fig. 5.12. The 
tire remains  stationary in spite of 
the three pulls. Alex pulls with 
force     F 

→
    A    of magnitude 220 N, 

and Charles pulls with force     F 
→

    C    
of magnitude 170 N. Note that 
the direction of     F 

→
    C    is not given. 

What is the magnitude of Betty’s 
force     F 

→
    B   ?

7 M  SSM  There are two forces 
on the 2.00 kg box in the over-
head view of Fig. 5.13, but only 
one is shown. For F1 = 20.0 N,  
a = 12.0 m/s2, and θ  = 30.0°, find 
the second force (a) in unit- vector 
notation and as (b) a magnitude 
and (c) an angle  relative to the 
positive direction of the x axis.

x
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F2

F3

1θ

3θ

Figure 5.11 Problem 5.

Figure 5.12 Problem 6.
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Figure 5.13 Problem 7.
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Figure 5.14 Problem 12.
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Figure 5.15   
Problem 13.

Problems

          Tutoring problem available (at instructor’s discretion) in WileyPLUS

 Worked-out solution available in Student Solutions Manual

E  Easy M  Medium H  Hard

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

CALC  Requires calculus

BIO  Biomedical application

GO

FCP

SSM
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means of an attached vertical string. What are the (a) mag nitude 
and (b) direction of the force of the block on the  horizontal 
surface?

15 E  SSM  (a) An 11.0 kg salami is supported by a cord that runs 
to a spring scale, which is supported by a cord hung from the ceil-
ing (Fig. 5.16a). What is the reading on the scale, which is marked 
in SI weight units? (This is a way to measure weight by a deli 
owner.) (b) In Fig. 5.16b the salami is supported by a cord that 
runs around a pulley and to a scale. The opposite end of the scale 
is attached by a cord to a wall. What is the reading on the scale? 
(This is the way by a physics major.) (c) In Fig. 5.16c the wall has 
been replaced with a second 11.0 kg salami, and the assembly is 
stationary. What is the reading on the scale? (This is the way by 
a deli owner who was once a physics major.)

S A L A M
 I 

G
 E

 N O
 A

 

Spring scale

Spring scale

Spring
scale

(b)

(c)

(a)

Figure 5.16 Problem 15.

16 M  BIO  Some insects can walk 
below a thin rod (such as a twig) 
by hanging from it. Suppose that 
such an insect has mass m and 
hangs from a horizontal rod as 
shown in Fig.  5.17, with angle 
θ = 40°. Its six legs are all under 
the same tension, and the leg sec-
tions nearest the body are horizontal. (a) What is the ratio of the 
tension in each tibia (forepart of a leg) to the insect’s weight?  
(b) If the insect straightens out its legs somewhat, does the ten-
sion in each tibia increase,  decrease, or stay the same?

Module 5.3  Applying 
Newton’s Laws
17 E  SSM  In Fig. 5.18, let 
the mass of the block be 
8.5 kg and the angle θ be 
30°. Find (a) the tension in 
the cord and (b) the normal 
force acting on the block. 
(c) If the cord is cut, find the 
magnitude of the resulting 
acceleration of the block.

18 E  FCP  In April 1974, 
John Massis of Belgium man-
aged to move two passen-
ger railroad cars. He did so 
by clamping his teeth down 
on a bit that was attached 
to the cars with a rope and 
then leaning backward while 
pressing his feet against the 
railway ties (Fig. 5.19). The 
cars together weighed 700 kN 
(about 80 tons). Assume that he pulled with a constant force that 
was 2.5 times his body weight, at an upward angle θ of 30° from the 
horizontal. His mass was 80 kg, and he moved the cars by 1.0 m. 
Neglecting any retarding force from the wheel rotation, find the 
speed of the cars at the end of the pull.

19 E  SSM  A 500 kg rocket sled can be accelerated at a constant 
rate from rest to 1600 km/h in 1.8 s. What is the magnitude of 
the required net force?

20 E  A car traveling at 53 km/h hits a bridge abutment. A pas-
senger in the car moves forward a distance of 65 cm (with respect 
to the road) while being brought to rest by an inflated air bag. 
What magnitude of force (assumed constant) acts on the pas-
senger’s upper torso, which has a mass of 41 kg?

21 E  A constant horizontal force     F 
→

    a    pushes a 2.00 kg FedEx 
package across a frictionless floor on which an xy coordinate 
system has been drawn. Figure 5.20 gives the package’s x and y 
velocity components versus time t. What are the (a) magnitude 
and (b)  direction of     F 

→
    a   ?
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m
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Figure 5.20 Problem 21.

θ
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joint Tibia

Rod

Figure 5.17 Problem 16.

m Frictionless

θ

Figure 5.18 Problem 17.

22 E  FCP  A customer sits in an amusement park ride in which 
the compartment is to be pulled downward in the negative direc-
tion of a y axis with an acceleration magnitude of 1.24g, with 
g = 9.80 m/s2. A 0.567 g coin rests on the customer’s knee. Once 
the motion begins and in unit- vector notation, what is the coin’s 
acceleration relative to (a) the ground and (b) the customer?  
(c) How long does the coin take to reach the  compartment 

Figure 5.19 Problem 18.
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ceiling, 2.20 m above the knee? In unit- vector notation, what 
are (d) the actual force on the coin and (e) the apparent force 
according to the customer’s measure of the coin’s acceleration?

23 E  Tarzan, who weighs 820 N, swings from a cliff at the end of 
a 20.0 m vine that hangs from a high tree limb and initially makes 
an angle of 22.0° with the vertical. Assume that an x axis extends 
horizontally away from the cliff edge and a y axis extends upward. 
Immediately after Tarzan steps off the cliff, the tension in the vine 
is 760 N. Just then, what are (a) the force on him from the vine in 
unit- vector notation and the net force on him (b) in unit- vector 
notation and as (c) a magnitude and (d) an angle relative to the 
 positive direction of the x axis? What are the (e) magnitude and 
(f)  angle of Tarzan’s acceleration just then?

24 E  There are two horizontal 
forces on the 2.0 kg box in the 
overhead view of Fig. 5.21 but 
only  one (of magnitude F1 =  
20 N) is shown. The box moves 
along the x axis. For each of the following values for the accelera-
tion ax of the box, find the second force in unit- vector notation:  
(a) 10 m/s2, (b) 20 m/s2, (c) 0, (d) −10 m/s2, and (e) −20 m/s2.

25 E  Sunjamming. A “sun yacht” is a spacecraft with a large sail 
that is pushed by sunlight. Although such a push is tiny in every-
day circumstances, it can be large enough to send the spacecraft 
 outward from the Sun on a cost- free but slow trip. Suppose 
that the spacecraft has a mass of 900 kg and receives a push of 
20 N. (a) What is the magnitude of the resulting  acceleration? 
If the craft starts from rest, (b) how far will it travel in 1 day and  
(c) how fast will it then be moving?

26 E  The tension at which a fishing line snaps is commonly called 
the line’s “strength.” What minimum strength is needed for a line 
that is to stop a salmon of weight 85 N in 11 cm if the fish is initially 
drifting at 2.8 m/s? Assume a constant deceleration.

27 E  SSM  An electron with a speed of 1.2 × 107 m/s moves 
horizontally into a region where a constant vertical force 
of 4.5 × 10−16 N acts on it. The mass of the electron is 9.11 ×  
10−31 kg. Determine the vertical distance the electron is 
deflected  during the time it has moved 30 mm horizontally.

28 E  A car that weighs 1.30 × 104 N is initially moving at 
40 km/h when the brakes are applied and the car is brought to a 
stop in 15 m. Assuming the force that stops the car is constant, 
find (a) the magnitude of that force and (b) the time  required 
for the change in speed. If the initial speed is  doubled, and 
the car experiences the same force during the braking, by what 
factors are (c) the stopping distance and (d) the stopping time 
multiplied? (There could be a lesson here about the danger of 
driving at high speeds.)

29 E  A firefighter who weighs 712 N slides down a vertical pole 
with an acceleration of 3.00 m/s2, directed downward. What are 
the (a) magnitude and (b) direction (up or down) of the verti-
cal force on the firefighter from the pole and the (c) magni-
tude and (d) direction of the vertical force on the pole from the 
firefighter?

30 E  FCP  The high- speed winds around a tornado can drive 
projectiles into trees, building walls, and even metal traffic signs. 
In a laboratory simulation, a standard wood toothpick was shot 
by pneumatic gun into an oak branch. The toothpick’s mass was 

0.13 g, its speed before entering the branch was 220 m/s, and its 
penetration depth was 15 mm. If its speed was decreased at a 
uniform rate, what was the magnitude of the force of the branch 
on the toothpick?

31 M  SSM  A block is projected up a frictionless inclined plane 
with initial speed v0 = 3.50 m/s. The angle of incline is θ = 32.0°. 
(a) How far up the plane does the block go? (b) How long does 
it take to get there? (c) What is its speed when it gets back to the 
bottom?

32 M  Figure 5.22 shows an over-
head view of a 0.0250 kg lemon 
half and two of the three horizontal 
forces that act on it as it is on a fric-
tionless table. Force     F 

→
    1    has a mag-

nitude of 6.00 N and is at θ1 = 30.0°. 
Force     F 

→
    2    has a magnitude of 7.00 N 

and is at θ2 = 30.0°. In unit- vector 
notation, what is the third force  
if the  lemon half (a) is  station-
ary, (b) has the constant ve loc ity  
   v →   = (13.0 ̂ i  − 14.0 ̂ j  )  m / s , and (c) has the varying velocity    v →   =  
(13.0t  ̂ i  − 14.0t  ̂ j )  m / s  2  , where t is time?

33 M  An elevator cab and its load have a combined mass of 
1600 kg. Find the tension in the supporting cable when the cab, 
originally moving downward at 12 m/s, is brought to rest with 
constant acceleration in a distance of 42 m.

34 M  GO  In Fig. 5.23, a crate 
of mass m = 100 kg is pushed at 
constant speed up a frictionless 
ramp (θ = 30.0°) by a horizontal 
force    F 

→
   . What are the magni-

tudes of (a)    F 
→

    and (b) the force 
on the crate from the ramp?

35 M  CALC  The velocity of 
a 3.00 kg particle  is given by    v →   = 
(8.00t  ̂ i  + 3.00  t   2   ̂ j  )  m/s, with time t in seconds. At the instant the 
net force on the particle has a magnitude of 35.0 N, what are  
(a) the direction (relative to the positive direction of the x axis) 
of the net force and (b) the particle’s direction of travel?

36 M  Holding on to a towrope moving parallel to a frictionless 
ski slope, a 50 kg skier is pulled up the slope, which is at an angle 
of 8.0° with the horizontal. What is the magnitude Frope of the 
force on the skier from the rope when (a) the magnitude v of 
the skier’s velocity is constant at 2.0 m/s and (b) v = 2.0 m/s as v 
increases at a rate of 0.10 m/s2?

37 M  A 40 kg girl and an 8.4 kg sled are on the frictionless ice  
of a frozen lake, 15 m apart but connected by a rope of negligible 
mass. The girl exerts a horizontal 5.2 N force on the rope. What 
are the acceleration magnitudes of (a) the sled and (b) the girl? 
(c) How far from the girl’s initial position do they meet?

38 M  A 40 kg skier skis directly down a frictionless slope angled 
at 10° to the horizontal. Assume the skier moves in the negative 
direction of an x axis along the slope. A wind force with compo-
nent Fx acts on the skier. What is Fx if the magnitude of the ski-
er’s velocity is (a) constant, (b) increasing at a rate of 1.0 m/s2, 
and (c) increasing at a rate of 2.0 m/s2?

39 M  A sphere of mass 3.0 × 10−4 kg is suspended from a cord. 
A steady horizontal breeze pushes the sphere so that the cord 

m

θ

F

Figure 5.23 Problem 34.

y

x

F1

F2
2θ

1θ

Figure 5.22 Problem 32.

x
F1

Figure 5.21 Problem 24.

c05ForceAndMotionI.indd   126 06/05/21   10:29 PM



127AERobLTMS

makes a constant angle of 37° with the vertical. Find (a) the push 
magnitude and (b) the tension in the cord.

40 M  GO  A dated box of dates, of mass 5.00 kg, is sent sliding up 
a frictionless ramp at an angle of θ to the horizontal. Figure 5.24 
gives, as a function of time t, the component vx of the box’s velocity 
along an x axis that extends directly up the ramp. What is the mag-
nitude of the normal force on the box from the ramp?

41 M  Using a rope that will snap if the tension in it exceeds 387 N, 
you need to lower a bundle of old roofing material weighing 449 N 
from a point 6.1 m above the ground. Obviously if you hang the 
bundle on the rope, it will snap. So, you allow the bundle to accel-
erate downward. (a) What magnitude of the bundle’s acceleration 
will put the rope on the verge of snapping? (b) At that accelera-
tion, with what speed would the bundle hit the ground?

42 M  GO  In earlier days, horses pulled barges down canals 
in the manner shown in Fig. 5.25. Suppose the horse pulls on 
the rope with a force of 7900 N at an angle of θ = 18° to the 
 direction of motion of the barge, which is headed straight 
along the positive direction of an x axis. The mass of the barge 
is 9500 kg, and the magnitude of its acceleration is 0.12 m/s2. 
What are the (a) magnitude and (b) direction (relative to posi-
tive x) of the force on the barge from the water?

43 M  SSM  In Fig. 5.26, a chain consisting of 
five links, each of mass 0.100 kg, is lifted verti-
cally with constant acceleration of magnitude 
a = 2.50 m/s2. Find the magnitudes of (a) the 
force on link 1 from link 2, (b) the force on 
link 2 from link 3, (c) the force on link 3 from 
link 4, and (d) the force on link 4 from link 5. 
Then find the magnitudes of (e) the force    F 

→
    on 

the top link from the person lifting the chain 
and (f) the net force accelerating each link.

44 M  A lamp hangs vertically from a cord in 
a descending elevator that decelerates at 2.4 m/s2. 
(a) If the tension in the cord is 89 N, what is the 
lamp’s mass? (b) What is the cord’s tension when 
the elevator ascends with an upward acceleration of 2.4 m/s2?

45 M  An elevator cab that weighs 27.8 kN moves upward. What 
is the tension in the cable if the cab’s speed is (a) increasing at 
a rate of 1.22 m/s2 and (b) decreasing at a rate of 1.22 m/s2?

46 M  An elevator cab is pulled upward by a cable. The cab and 
its single occupant have a combined mass of 2000 kg. When 
that occupant drops a coin, its acceleration relative to the cab is 
8.00 m/s2 downward. What is the tension in the  cable?

47 M  BIO  GO  FCP  The Zacchini family was renowned for their 
human- cannonball act in which a family member was shot from 
a  cannon using either elastic bands or compressed air. In one 
version of the act, Emanuel Zacchini was shot over three Ferris 
wheels to land in a net at the same height as the open end of the 
cannon and at a range of 69 m. He was propelled inside the barrel 
for 5.2 m and launched at an angle of 53°. If his mass was 85 kg 
and he underwent constant acceleration inside the barrel, what 
was the magnitude of the force propelling him? (Hint: Treat the 
launch as though it were along a ramp at 53°. Neglect air drag.)

48 M  GO  In Fig. 5.27, elevator cabs A and B 
are connected by a short cable and can be pulled 
upward or lowered by the  cable above cab A. Cab A  
has mass 1700 kg; cab B has mass 1300  kg.  
A 12.0 kg box of catnip lies on the floor of cab A.  
The tension in the cable connecting the cabs is 
1.91 × 104 N. What is the magnitude of the normal 
force on the box from the floor?

49 M  In Fig. 5.28, a block of mass m = 5.00 kg is 
pulled along a horizontal frictionless floor by a 
cord that exerts a force of magnitude F = 12.0 N 
at an angle θ = 25.0°. (a) What is the magnitude 
of the block’s acceleration? (b) The force magni-
tude F is slowly increased. What is its value just 
before the block is lifted (completely) off the floor? (c) What is 
the magnitude of the block’s acceleration just  before it is lifted 
(completely) off the floor?

50 M  GO  In Fig. 5.29, three bal-
lot boxes are connected by cords, 
one of which wraps over a pul-
ley having negligible friction on 
its axle and negligible mass. The 
three masses are mA = 30.0 kg, 
mB = 40.0 kg, and mC = 10.0 kg. 
When the assembly is  released from rest, 
(a) what is the tension in the cord connect-
ing B and C, and (b) how far does A move 
in the first 0.250 s  (assuming it does not 
reach the pulley)?

51 M  GO  Figure 5.30 shows two blocks 
connected by a cord (of negligible mass) 
that passes over a frictionless pulley (also of 
negligible mass). The arrangement is known 
as Atwood’s  machine. One block has mass 
m1 = 1.30 kg; the other has mass m2 = 2.80 kg. 
What are (a) the magnitude of the blocks’ 
acceleration and (b) the tension in the cord?

A

B

Figure 5.27   
Problem 48.

Fθm

Figure 5.28   
Problems 49 and 60.

A

B

C

Figure 5.29 Problem 50.
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Figure 5.24 Problem 40.
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Figure 5.25 Problem 42.
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Figure 5.26   
Problem 43.

m1

m2

Figure 5.30   
Problems 51  

and 65.
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52 M  An 85 kg man lowers himself to the ground from a height 
of 10.0 m by holding onto a rope that runs over a frictionless 
pulley to a 65 kg sandbag. With what speed does the man hit the 
ground if he started from rest?

53 M  In Fig. 5.31, three connected blocks are pulled to the right 
on a horizontal frictionless table by a force of  magnitude T3 = 
65.0 N. If m1 = 12.0 kg, m2 = 24.0 kg, and m3 = 31.0 kg, calculate 
(a) the magnitude of the system’s  acceleration, (b) the tension T1, 
and (c) the tension T2.

m1
m2 m3

T1 T2 T3

Figure 5.31 Problem 53.

54 M  GO  Figure 5.32 shows four penguins that are being 
playfully pulled along very slippery (frictionless) ice by a cura-
tor. The masses of three penguins and the tension in two of the 
cords are m1 = 12 kg, m3 = 15 kg, m4 = 20 kg, T2 = 111 N, and 
T4 = 222 N. Find the penguin mass m2 that is not given.

m1
m3

m4

T2 T4

Figure 5.32 Problem 54.

55 M  SSM  Two blocks are in contact 
on a frictionless table. A  horizontal 
force is applied to the larger block, as 
shown in  Fig. 5.33. (a) If m1 = 2.3 kg, 
m2  = 1.2 kg, and F = 3.2 N, find the 
magnitude of the force between the 
two blocks. (b) Show that if a force of 
the same magnitude F is applied to the 
smaller block but in the opposite direction, the mag nitude of the 
force between the blocks is 2.1 N, which is not the same value 
calculated in (a). (c) Explain the difference.

56 M  GO  In Fig. 5.34a, a constant horizontal force     F 
→

    a    is applied 
to block A, which pushes against block B with a 20.0 N force 
directed horizontally to the right. In Fig. 5.34b, the same force  
    F 
→

    a    is applied to block B; now block A pushes on block B with a 
10.0 N force  directed horizontally to the left. The blocks have a 
combined mass of 12.0 kg. What are the magnitudes of (a) their 
acceleration in Fig. 5.34a and (b) force     F 

→
    a   ?

BA

Fa

(a)

B A

Fa

(b)

Figure 5.34 Problem 56.

57 M  A block of mass m1 = 3.70 kg on a frictionless plane inclined  
at angle θ = 30.0° is connected by a cord over a m assless, friction-
less pulley to a second block of mass m2 = 2.30 kg (Fig. 5.35). 
What are (a) the magnitude of the acceleration of each block, 
(b) the direction of the acceleration of the hanging block, and 
(c) the tension in the cord?

m2

θ

m1

Figure 5.35 Problem 57.

58 M  Figure 5.36 shows a man 
sitting in a bosun’s chair that dan-
gles from a massless rope, which 
runs over a massless, friction-
less pulley and back down to the 
man’s hand. The combined mass 
of man and chair is 95.0 kg. With 
what force magnitude must the 
man pull on the rope if he is to 
rise (a) with a constant velocity 
and (b) with an upward accel-
eration of 1.30 m/s2? (Hint: A 
free- body diagram can really 
help.) If the rope on the right 
extends to the ground and is 
pulled by a co- worker, with 
what force magnitude must the 
co- worker pull for the man to rise (c) with a constant velocity 
and (d) with an upward acceleration of 1.30 m/s2? What is the 
magnitude of the force on the ceiling from the pulley system 
in (e) part a, (f ) part b, (g) part c, and (h) part d?

59 M  SSM  A 10 kg monkey 
climbs up a massless rope that 
runs over a frictionless tree limb 
and back down to a 15 kg pack-
age on the ground (Fig. 5.37).  
(a) What is the magnitude of the 
least acceleration the monkey 
must have if it is to lift the package 
off the ground? If, after the pack-
age has been lifted, the monkey 
stops its climb and holds onto the 
rope, what are the (b) magnitude 
and (c) direction of the monkey’s 
acceleration and (d) the tension in 
the rope?

60 M  CALC  Figure 5.28 shows 
a 5.00 kg block being pulled 
along a frictionless floor by a cord that applies a force of 
constant magnitude 20.0 N but with an angle θ(t) that varies 
with time. When angle θ = 25.0°, at what rate is the accelera-
tion of the block changing if (a) θ(t) = (2.00 × 10−2 deg/s)t and 
(b) θ(t) = −(2.00 × 10−2 deg/s)t? (Hint: The angle should be in 
radians.)

61 M  SSM  A hot- air balloon of mass M is descending 
 vertically with downward acceleration of magnitude a. How 
much mass (ballast) must be thrown out to give the balloon an 
 upward acceleration of magnitude a? Assume that the  upward 
force from the air (the lift) does not change because of the 
decrease in mass.

62 H  BIO  FCP  In shot putting, many athletes elect to launch the 
shot at an angle that is smaller than the theoretical one (about 

Figure 5.36 Problem 58.

Bananas

Figure 5.37 Problem 59.

m1

m2
F

Figure 5.33   
Problem 55.
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42°) at which the distance of a projected ball at the same speed 
and height is greatest. One reason has to do with the speed 
the athlete can give the shot during the acceleration phase of 
the throw. Assume that a 7.260 kg shot is accelerated along a 
straight path of length 1.650 m by a constant applied force of 
magnitude 380.0 N, starting with an initial speed of 2.500 m/s 
(due to the athlete’s preliminary motion). What is the shot’s 
speed at the end of the acceleration phase if the angle between 
the path and the horizontal is (a) 30.00° and (b) 42.00°? (Hint: 
Treat the motion as though it were along a ramp at the given 
angle.) (c) By what percent is the launch speed decreased if the 
athlete increases the angle from 30.00° to 42.00°?

63 H  CALC  GO  Figure 5.38 gives, as a function of time t, the 
force component Fx that acts on a 3.00 kg ice block that can 
move only along the x axis. At t = 0, the block is moving in the 
positive direction of the axis, with a speed of 3.0 m/s. What are its 
(a) speed and (b) direction of travel at t = 11 s?

t (s)

F x
 (

N
)

6

0

–4

2 4 6 8 10 12

Figure 5.38 Problem 63.

64 H  GO  Figure 5.39 shows a box of mass m2 = 1.0 kg on a fric-
tionless plane inclined at angle θ = 30°. It is connected by a cord 
of negligible mass to a box of mass m1 = 3.0 kg on a horizontal 
frictionless surface. The pulley is frictionless and massless. (a) If 
the magnitude of horizontal force    F 

→
    is 2.3 N, what is the tension 

in the connecting cord? (b) What is the largest value the magni-
tude of    F 

→
    may have without the cord becoming slack?

θ

F

m2

m1

Figure 5.39 Problem 64.

65 H  GO  CALC  Figure 5.30 shows Atwood’s machine, in which 
two containers are connected by a cord (of negligible mass) 
passing over a frictionless pulley (also of negligible mass). At 
time t = 0, container 1 has mass 1.30 kg and container 2 has mass 
2.80 kg, but container 1 is losing mass (through a leak) at the con-
stant rate of 0.200 kg/s. At what rate is the acceleration magnitude 
of the containers changing at (a) t = 0 and (b) t = 3.00 s? (c) When 
does the acceleration reach its maximum value?

66 H  GO  Figure 5.40 shows a section of a cable- car system. 
The maximum permissible mass of each car with occupants is 
2800 kg. The cars, riding on a support cable, are pulled by a sec-
ond cable attached to the support tower on each car. Assume 
that the cables are taut and inclined at angle θ = 35°. What is 
the difference in tension between adjacent sections of the pull 

cable if the cars are at the maximum permissible mass and are 
being accelerated up the incline at 0.81 m/s2?

Support cable
Pull cable

θ

Figure 5.40 Problem 66.

67 H  Figure 5.41 shows three 
blocks attached by cords that loop 
over frictionless pulleys. Block 
B lies on a frictionless table; the 
masses are mA = 6.00 kg, mB =  
8.00 kg, and mC = 10.0 kg. When 
the blocks are released, what is 
the  tension in the cord at the 
right?

68 H  BIO  FCP  A shot putter launches a 7.260 kg shot by push-
ing it along a straight line of length 1.650 m and at an angle of 
34.10° from the horizontal, accelerating the shot to the launch 
speed from its initial speed of 2.500 m/s (which is due to the ath-
lete’s preliminary motion). The shot leaves the hand at a height 
of 2.110 m and at an angle of 34.10°, and it lands at a horizon-
tal distance of 15.90 m. What is the magnitude of the athlete’s 
average force on the shot during the acceleration phase? (Hint: 
Treat the motion during the acceleration phase as though it 
were along a ramp at the given angle.)

Additional Problems
69  In Fig. 5.42, 4.0 kg block A and 6.0 kg block B are con-
nected by a string of negligible mass. Force     F 

→
    A   = (12 N) ̂ i   acts on 

block A; force     F 
→

    B   = (24 N) ̂ i   acts on block B. What is the tension 
in the string?

x

A BFA FB

Figure 5.42 Problem 69.

70 FCP  An 80 kg man drops to a concrete patio from a window 
0.50 m above the patio. He neglects to bend his knees on landing, 
taking 2.0 cm to stop. (a) What is his average acceleration from 
when his feet first touch the patio to when he stops? (b) What is 
the magnitude of the average stopping force exerted on him by 
the patio?

71  Rocket thrust. A rocket and its payload have a total mass of  
5.0 ×  10  4   kg. How large is the force produced by the engine (the 
thrust) when (a) the rocket hovers over the launchpad just after 
ignition, and (b) the rocket is accelerating upward at 20 m/s2? 

A

B

C

Figure 5.41 Problem 67.
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72  Block and three cords. In Fig. 5.43, a block B of mass M = 
15.0 kg hangs by a cord from a knot K of mass mK, which hangs 
from a ceiling by means of two cords. The cords have negligible 
mass, and the magnitude of the gravitational force on the knot is 
negligible compared to the gravitational force on the block. The 
angles are θ1 = 28° and θ2 = 47°. What is the tension in (a) cord 
3, (b) cord 1, and (c) cord 2?

Cord 1 Cord 2

Cord 3

Knot K

Block BM

θ1 θ2

Figure 5.43 Problem 72.

73  Forces stick−block. In Fig. 5.44, a 33 kg block is pushed 
across a frictionless floor by means of a 3.2 kg stick. The block 
moves from rest through distance d = 77 cm in 1.7 s at constant 
acceleration. (a) Identify all horizontal third- law force pairs.  
(b) What is the magnitude of the force on the stick from the 
hand? (c) What is the magnitude of the force on the block from 
the stick? (d) What is the magnitude of the net force on the stick?

Frictionless
surface

a

m
M

Figure 5.44 Problem 73.

74  Lifting cable danger. Cranes are used to lift steel beams at 
construction sites (Fig. 5.45a). Let’s look at the danger in such 
a lift for a beam with length L = 12.0 m, a square cross- section 
with edge length w = 0.540 m, and density ρ = 7900 kg/m3. The 
main cable from the crane is attached to two short cables of 
length h = 7.00 m symmetrically attached to the beam at distance 
d from the midpoint (Fig. 5.45b). (a) What is the tension Tmain in 
the main cable when the beam is lifted at constant speed? What is 
the tension Tshort in each short cable if d is (b) 1.60 m, (c) 4.24 m, 
and (d) 5.91 m? (e) As d increases, what happens to the danger 
of the short cables snapping?

(a)  

Main cable

Beamhh

(b)

L

d d

Figure 5.45 Problem 74.
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75  Sled pull. Two people pull with constant forces 90.0 N and 
92.0 N in opposite directions on a 25.0 kg sled on frictionless ice. 
The sled is initially stationary. At the end of 3.00 s, what are its 
(a) displacement and (b) speed?

76  Dockside lifting. Figure 5.46 shows the cable rigging for 
a crane to lift a large container with mass  2.80 ×  10  4   kg onto or 
from a ship. Assume that the mass is uniformly spread within 
the container. The container is supported at its corners by four 
identical cables that are under tension T4 and that are at an angle 
θ4 = 60.0° with the vertical. They are attached to a horizontal bar 
that is supported by two identical cables under tension T2 and 
at angle θ2 = 40.0° with the vertical. They are attached to the 
main crane cable that is under tension T1 and vertical. Assume 
the mass of the bar is negligible compared to the weight of the 
container. What are the values of (a) T1, (b) T2, and (c) T4?

Main cable

Horizontal
bar

θ2
θ2

θ4

θ4 θ4

θ4

Worldwide
Shipping

Worldwide
Shipping

Figure 5.46 Problem 76.

77  Crate on truck. A 360 kg crate rests on the bed of a truck 
that is moving at speed v0 = 120 km/h in the positive direction 
of an x axis. The driver applies the brakes and slows to a speed  
v = 62 km/h in 17 s at a constant rate and without the crate slid-
ing. What magnitude of force acts on the crate during this 17 s? 

78  Noninertial frame projectile. A device shoots a small ball 
horizontally with speed 0.200 m/s from height h = 0.800 m above 
an elevator floor. The ball lands at distance d from the base of 
the device directly below the ejection point. The vertical accel-
eration of the elevator can be controlled. What is the elevator’s 
acceleration magnitude a if d is (a) 14.0 cm, (b) 20.0 cm, and  
(c) 7.50 cm?

79 BIO  A car crashes head on into a wall and stops, with the 
front collapsing by 0.500 m. The 70 kg driver is firmly held to 
the seat by a seat belt and thus moves forward by 0.500 m during  
the crash. Assume that the acceleration (or deceleration) is con-
stant during the crash. What is its magnitude of the force on the 
driver from the seat belt during the crash if the initial speed of 
the car is (a) 35 mi/h and (b) 70 mi/h?

80  Redesigning a ramp. Figure 5.47 shows a block that is 
released on a frictionless ramp at angle θ = 30.0° and that then 
slides down through distance d = 0.800 m along the ramp in a 
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certain time t1. What should the angle be to increase the sliding 
time by 0.100 s?

Block

θ

d

Figure 5.47 Problem 80

81  Two forces. The only two forces acting on a body have 
magnitudes of F1 = 20 N and F2 = 35 N and directions that differ 
by 80°. The resulting acceleration has a magnitude of 20 m/s2. 
What is the mass of the body?

82  Physics circus train. You are charged with moving a circus 
to the next town. You have two engines and need to attach four 
boxcars to each, as shown in Fig. 5.48 for one of the engines. The 
mass of each boxcar is given below in kilograms, and each engine 
produces the same accelerating force. (a) Determine which box-
cars should be connected to each engine so that the accelera-
tions of the trains are both a = 2.00 m/s2. (b) Next, determine the 
sequence of boxcars in each train that minimizes the tensions 
in the interconnections between boxcars. Here is an example of 
an answer: CBAF—boxcar C would be the last (leftmost) one 
and boxcar F would be the first (rightmost) one. For the train 
with boxcar B, what are the interconnection tensions between  
(c) the front boxcar and the boxcar behind it and (d) the last 
boxcar and the boxcar in front of it?

A  7.50 ×  10  5  , B  7.00 ×  10  5  , C  6.00 ×  10  5  , D  5.00 ×  10  5  , E  4.00 ×  10  5  ,  
F  3.50 ×  10  5  , G  2.00 ×  10  5  , H  1.00 ×  10  5  

Physics Circus

Figure 5.48 Problem 82.

83  Penguin’s weight. A weight- conscious penguin with a mass 
of 15.0 kg rests on a bathroom scale (Fig. 5.49). What is the pen-
guin’s weight in (a) newtons and (b) pounds? What is the mag-
nitude (newtons) of the normal force on the penguin from the 
scale? 

Scale

Figure 5.49 Problem 83. 

84 BIO  Pop. If a person drinks a can of Diet Coke before enter-
ing the doctor’s office to be weighed, how much will the drink 
increase the weight measurement? Answer in pounds. The can 
has 12 US fluid ounces and the drink is flavored water with a 
density of 997 kg/m3.
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What Is Physics?
In this chapter we focus on the physics of three common types of force:  frictional 
force, drag force, and centripetal force. An engineer preparing a car for the India-
napolis 500 must consider all three types. Frictional forces acting on the tires are 
crucial to the car’s acceleration out of the pit and out of a curve (if the car hits an 
oil slick, the friction is lost and so is the car). Drag forces acting on the car from 
the passing air must be minimized or else the car will consume too much fuel and 
have to pit too early (even one 14 s pit stop can cost a driver the race). Centrip-
etal forces are crucial in the turns (if there is insufficient  centripetal force, the car 
slides into the wall). We start our discussion with frictional forces.

Friction
Frictional forces are unavoidable in our daily lives. If we were not able to counteract 
them, they would stop every moving object and bring to a halt every  rotating shaft. 
About 20% of the gasoline used in an automobile is needed to counteract friction in 
the engine and in the drive train. On the other hand, if friction were totally absent, 
we could not get an automobile to go anywhere, and we could not walk or ride a 

C H A P T E R  6

Force and Motion—II

6.1 FRICTION
Learning Objectives 
After reading this module, you should be able to . . .

6.1.1 Distinguish between friction in a static situation 
and in a kinetic situation.

6.1.2 Determine direction and magnitude of a frictional 
force.

6.1.3 For objects on horizontal, vertical, or inclined 
planes in situations involving friction, draw free-body 
diagrams and apply Newton’s second law.

Key Ideas 
● When a force    F 

→
    tends to slide a body along a 

surface, a frictional force from the surface acts on 
the body. The frictional force is parallel to the surface 
and directed so as to oppose the sliding. It is due to 
bonding between the body and the surface.

If the body does not slide, the frictional force is a 
static frictional force     f 

→
    s   . If there is sliding, the frictional 

force is a kinetic frictional force     f 
→

    k   . 

● If a body does not move, the static frictional force     f 
→

    s    
and the component of    F 

→
    parallel to the surface are 

equal in magnitude, and     f 
→

    s    is directed opposite 
that component. If the component increases,   f  s    also 
increases.

● The magnitude of     f 
→

    s    has a maximum value     f 
→

    s,max     
given by

fs,max = μsFN,

where μs is the coefficient of static friction and FN is the 
magnitude of the normal force. If the component of    F 

→
    

parallel to the surface exceeds fs,max, the body slides on 
the surface.

● If the body begins to slide on the surface, the 
magnitude of the frictional force rapidly decreases to a 
constant value     f 

→
    k    given by

fk = μkFN,

where μk is the coefficient of kinetic friction.
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1336.1 Friction

bicycle. We could not hold a pencil, and, if we could, it would not write. Nails and 
screws would be useless, woven cloth would fall apart, and knots would untie.

Three Experiments. Here we deal with the frictional forces that exist between 
dry solid surfaces, either stationary relative to each other or moving across each 
other at slow speeds. Consider three simple thought experiments:

1. Send a book sliding across a long horizontal counter. As expected, the book 
slows and then stops. This means the book must have an acceleration paral-
lel to the counter surface, in the direction opposite the book’s velocity. From 
Newton’s second law, then, a force must act on the book parallel to the coun-
ter surface, in the direction opposite its velocity. That force is a frictional force.

2. Push horizontally on the book to make it travel at constant velocity along the 
counter. Can the force from you be the only horizontal force on the book? 
No,  because then the book would accelerate. From Newton’s second law, 
there must be a second force, directed opposite your force but with the same 
magnitude, so that the two forces balance. That second force is a frictional 
force,  directed parallel to the counter.

3. Push horizontally on a heavy crate. The crate does not move. From Newton’s 
second law, a second force must also be acting on the crate to counteract your 
force. Moreover, this second force must be directed opposite your force and 
have the same magnitude as your force, so that the two forces balance. That 
second force is a frictional force. Push even harder. The crate still does not 
move. Apparently the frictional force can change in magnitude so that the two 
forces still balance. Now push with all your strength. The crate begins to slide. 
Evidently, there is a maximum magnitude of the frictional force. When you 
 exceed that maximum magnitude, the crate slides.

Two Types of Friction. Figure 6.1.1 shows a similar situation. In Fig. 6.1.1a, 
a block rests on a tabletop, with the gravitational force     F 

→
    g    balanced by a nor-

mal force     F 
→

    N   . In Fig. 6.1.1b, you exert a force    F 
→

    on the block, attempting to pull 
it to the left. In response, a  frictional force     f 

→
    s    is directed to the right, exactly 

(a)

(b)

(c)

(d)

fs

fs

fs

Fg

Fg

Fg

Fg

F

F

F

FN

FN

FN

FNThere is no attempt
at sliding. Thus,
no friction and
no motion.

Frictional force = 0

Force F  attempts
sliding but is balanced
by the frictional force.
No motion.

Force F  is now 
stronger but is still
balanced by the
frictional force.
No motion.

Force F  is now even
stronger but is still
balanced by the
frictional force.
No motion.

Frictional force = F

Frictional force = F

Frictional force = F

Figure 6.1.1 (a) The forces on a 
 stationary block. (b–d) An exter-
nal force    F 

→
   , applied to the block, 

is  balanced by a static frictional 
force     f 

→
    s   . As F is increased, fs also 

 increases, until fs reaches a certain 
maximum value.  (Figure continues)

A
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134 chapter 6 Force and Motion—ii

balancing your force. The force     f 
→

    s    is called the static frictional force. The block 
does not move.

Figures 6.1.1c and 6.1.1d show that as you increase the magnitude of your 
 applied force, the magnitude of the static frictional force     f 

→
    s    also increases and 

the block remains at rest. When the applied force reaches a certain magnitude, 
however, the block “breaks away” from its intimate contact with the tabletop 
and accelerates leftward (Fig. 6.1.1e). The frictional force that then opposes the 
motion is called the kinetic frictional force     f 

→
    k   .

Usually, the magnitude of the kinetic frictional force, which acts when there 
is motion, is less than the maximum magnitude of the static frictional force, which 
acts when there is no motion. Thus, if you wish the block to move across the 
surface with a constant speed, you must usually decrease the magnitude of the 
 applied force once the block begins to move, as in Fig. 6.1.1f. As an example,  
Fig. 6.1.1g shows the results of an experiment in which the force on a block was 
slowly increased until breakaway occurred. Note the reduced force needed to 
keep the block moving at constant speed after breakaway.

Microscopic View. A frictional force is, in essence, the vector sum of many 
forces acting  between the surface atoms of one body and those of another body. If 
two highly polished and carefully cleaned metal surfaces are brought together in 
a very good vacuum (to keep them clean), they cannot be made to slide over each 
other. Because the surfaces are so smooth, many atoms of one surface contact 
many atoms of the other surface, and the surfaces cold-weld together instantly, 
forming a single piece of metal. If a machinist’s specially polished gage blocks are 
brought  together in air, there is less atom-to-atom contact, but the blocks stick 
firmly to each other and can be separated only by means of a wrenching motion. 
Usually, however, this much atom-to-atom contact is not possible. Even a highly 
polished metal surface is far from being flat on the atomic scale. Moreover, the 
surfaces of everyday objects have layers of oxides and other contaminants that 
reduce cold-welding.

When two ordinary surfaces are placed together, only the high points touch 
each other. (It is like having the Alps of Switzerland turned over and placed down 
on the Alps of Austria.) The actual microscopic area of contact is much less than 
the apparent macroscopic contact area, perhaps by a factor of 104. Nonetheless, 

(e)

( f )

fk

fkF

Time
M

ag
n

it
ud

e 
of

fr
ic

ti
on

al
 fo

rc
e

Maximum value of fs
fk is approximately
constant

Breakaway

(g)
0

Fg

F

Fg

a

v

FN

FN

Finally, the applied force
has overwhelmed the
static frictional force.
Block slides and
accelerates.

Static frictional force
can only match growing
applied force.

Weak kinetic
frictional force

Same weak kinetic
frictional force

Kinetic frictional force
has only one value
(no matching).

To maintain the speed,
weaken force F  to match
the weak frictional force.

Figure 6.1.1 (Continued) (e) Once 
fs reaches its maximum value, the 
block “breaks away,” accelerating 
 suddenly in the direction of    F 

→
   .  

( f ) If the block is now to move 
with  constant velocity, F must be 
 reduced from the maximum value 
it had just before the block broke 
away. (g) Some experimental 
results for the sequence (a) through  
( f ). In WileyPLUS, this figure is 
available as an animation with 
voiceover.
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1356.1 Friction

many contact points do cold-weld together. These welds produce static friction 
when an applied force attempts to slide the surfaces relative to each other.

If the applied force is great enough to pull one surface across the other, there 
is first a tearing of welds (at breakaway) and then a continuous re-forming and 
tearing of welds as movement occurs and chance contacts are made (Fig. 6.1.2). 
The kinetic frictional force     f 

→
    k    that opposes the motion is the vector sum of the 

forces at those many chance contacts.
If the two surfaces are pressed together harder, many more points cold-weld. 

Now getting the surfaces to slide relative to each other requires a greater applied 
force: The static frictional force     f 

→
    s    has a greater maximum value. Once the sur-

faces are sliding, there are many more points of momentary cold-welding, so the 
kinetic frictional force     f 

→
    k    also has a greater magnitude.

Often, the sliding motion of one surface over another is “jerky” because the two 
surfaces alternately stick together and then slip. Such repetitive stick-and-slip can pro-
duce squeaking or squealing, as when tires skid on dry pavement,  fingernails scratch 
along a chalkboard, or a rusty hinge is opened. It can also produce beautiful and capti-
vating sounds, as in music when a bow is drawn properly across a violin string. FCP

Properties of Friction
Experiment shows that when a dry and unlubricated body presses against a sur-
face in the same condition and a force    F 

→
    attempts to slide the body along the 

surface, the resulting frictional force has three properties:

Property 1.  If the body does not move, then the static frictional force     f 
→

    s    and the 
component of    F 

→
    that is parallel to the surface balance each other. They are 

equal in magnitude, and     f 
→

    s    is directed opposite that component of    F 
→

   .

Property 2.  The magnitude of     f 
→

    s    has a maximum value fs,max that is given by

 fs,max = μsFN, (6.1.1)

 where μs is the coefficient of static friction and FN is the magnitude of the nor-
mal force on the body from the surface. If the magnitude of the component 
of    F 

→
    that is parallel to the surface exceeds fs,max, then the body begins to slide 

along the surface.

Property 3.  If the body begins to slide along the surface, the magnitude of the 
frictional force rapidly decreases to a value fk given by

 fk = μkFN, (6.1.2)

 where μk is the coefficient of kinetic friction. Thereafter, during the sliding, 
a kinetic frictional force     f 

→
    k    with magnitude given by Eq. 6.1.2 opposes the 

 motion.

The magnitude FN of the normal force appears in properties 2 and 3 as a 
measure of how firmly the body presses against the surface. If the body presses 
harder, then, by Newton’s third law, FN is greater. Properties 1 and 2 are worded 
in terms of a single applied force    F 

→
   , but they also hold for the net force of  several 

applied forces acting on the body. Equations 6.1.1 and 6.1.2 are not vector equa-
tions; the direction of     f 

→
    s    or     f 

→
    k    is always parallel to the surface and opposed to the 

attempted sliding, and the normal force     F 
→

    N    is perpendicular to the  surface.
The coefficients μs and μk are dimensionless and must be determined exper-

imentally. Their values depend on certain properties of both the body and the 
 surface; hence, they are usually referred to with the preposition “between,” as in 
“the value of μs between an egg and a Teflon-coated skillet is 0.04, but that  between 
rock-climbing shoes and rock is as much as 1.2.” We assume that the value of μk 
does not depend on the speed at which the body slides along the surface.

Figure 6.1.2 The mechanism of sliding  
friction. (a) The upper surface is 
sliding to the right over the lower  
surface in this enlarged view.  
(b) A detail, showing two spots 
where cold-welding has occurred. 
Force is required to break the welds 
and maintain the motion.

(a)

(b)
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136 chapter 6 Force and Motion—ii

 FN − mg − F sin θ = m(0), (6.1.4)

which gives us

 FN = mg + F sin θ. (6.1.5)

Now we can evaluate fs,max = 𝜇sFN:

 fs,max = 𝜇s(mg + F sin θ)

 = (0.700)((8.00 kg)(9.8 m/s2) + (12.0 N)(sin 30°))

 = 59.08 N. (6.1.6)

Because the magnitude Fx (= 10.39 N) of the force com-
ponent attempting to slide the block is less than fs,max  
(= 59.08 N), the block remains stationary. That means 
that the magnitude fs of the frictional force matches Fx. 
From Fig. 6.1.3d, we can write Newton’s second law for 
x components as

 Fx − fs = m(0), (6.1.7)

and thus fs = Fx = 10.39 N ≈ 10.4 N. (Answer)

Sample Problem 6.1.1 Angled force applied to an initially stationary block

This sample problem involves a tilted applied force, which 
requires that we work with components to find a frictional 
force. The main challenge is to sort out all the compo-
nents. Figure 6.1.3a shows a force of magnitude F = 12.0 N  
applied to an 8.00 kg block at a downward angle of  
θ = 30.0°. The coefficient of static friction between block 
and floor is 𝜇s = 0.700; the coefficient of kinetic friction is 
𝜇k = 0.400. Does the block begin to slide or does it remain 
stationary? What is the magnitude of the frictional force 
on the block?

KEY IDEAS

(1) When the object is stationary on a surface, the static 
frictional force balances the force component that is 
attempting to slide the object along the surface. (2) The 
maximum possible magnitude of that force is given by Eq. 
6.1.1 ( fs,max = 𝜇sFN). (3) If the component of the applied 
force along the surface exceeds this limit on the static fric-
tion, the block begins to slide. (4) If the object slides, the 
kinetic frictional force is given by Eq. 6.1.2 ( fk = 𝜇kFN).

Calculations: To see if the block slides (and thus to calcu-
late the magnitude of the frictional force), we must compare 
the applied force component Fx with the maximum magni-
tude fs,max that the static friction can have. From the trian-
gle of components and full force shown in Fig. 6.1.3b, we  
see that

 Fx = F cos θ
 = (12.0 N) cos 30° = 10.39 N. (6.1.3)

From Eq. 6.1.1, we know that fs,max = 𝜇sFN, but we need 
the magnitude FN of the normal force to evaluate fs,max. 
Because the normal force is vertical, we need to write 
Newton’s second law (Fnet,y = may) for the vertical force 
components acting on the block, as displayed in Fig. 
6.1.3c. The gravitational force with magnitude mg acts 
downward. The applied force has a downward compo-
nent Fy = F sin θ. And the vertical acceleration ay is just 
zero. Thus, we can write Newton’s second law as

F

y

x θ

(a)

(c)

Fg

Fy

FN

Block

Block
θ

F
Fy

Fx

(b)

fs Fx

(d)

Figure 6.1.3 (a) A force is applied to an initially stationary block. 
(b) The  components of the applied force. (c) The vertical force 
components. (d) The horizontal force components.

Checkpoint 6.1.1
A block lies on a floor. (a) What is the magnitude of the frictional force on it from the 
floor? (b) If a horizontal force of 5 N is now applied to the block, but the block does 
not move, what is the magnitude of the frictional force on it? (c) If the maximum 
value fs,max of the static frictional force on the block is 10 N, will the block move if 
the magnitude of the horizontally applied force is 8 N? (d) If it is 12 N? (e) What is 
the magnitude of the frictional force in part (c)?

additional examples, video, and practice available at WileyPLUS

c06ForceAndMotionII.indd   136 05/05/21   4:32 PM



1376.1 Friction

wind-packed snow, the board’s passage is too brief for the 
air to be squeezed out and is momentarily trapped. For a 
board with a length of 1.5 m and moving at 15 m/s, how 
long is it over any given part of the snow?

  t =   L _ v   =   1.5 m _ 
15 m/s

   = 0.10 s.  (Answer)

(c) For such a brief interval, the compression by the snow-
boarder increases the pressure of the trapped air, which 
then contributes 2/3 of the normal force. What is the con-
tribution Fair for the 70 kg snowboarder?

  F  air   =   2 _ 3   mg cos θ
 =   2 _ 3   (70   kg)(9.8 m/s  2 )(cos 18°) 

(Answer)= 435 N. 

(a)

x

y

mg sin θ

mg cos θ

FN

Fg

fk

θ θ

(b)

Sample Problem 6.1.2 Snowboarding

Most snowboarders (Fig. 6.1.4a) realize that a snowboard 
will easily slide down a snowy slope because the fric-
tion between the snow and the moving board warms the 
snow, producing a micron-thick layer of meltwater with 
a low coefficient of kinetic friction. However, few snow-
boarders realize that the normal force supporting them 
is mainly due to air pressure, not the snow itself. Here 
we examine the forces on a 70 kg snowboarder sliding 
directly down the fall line of an 18° slope, which is a blue 
square slope in the rating system of North America. The 
coefficient of kinetic friction is 0.040. We will use an x axis 
that is directed down the slope (Fig. 6.1.4b). (a) What is 
the acceleration down the slope? 

KEY IDEAS

(1) The snowboarder accelerates (the speed increases) 
down the slope due to a net force Fnet,x, which is the vec-
tor sum of the frictional force     f 

→
    k    up the slope and the 

component Fg,x of the gravitational force down the slope. 
(2) The frictional force is a kinetic frictional force with a 
magnitude given by Eq. 6.1.2 ( fk = 𝜇kFN), in which FN is 
the magnitude of the normal force on the snowboarder 
 (perpendicular to the slope). (3) We can relate the accel-
eration of the snowboarder to the net force along the 
slope by writing Newton’s second law (Fnet,x = max) for 
motion along the slope.

Calculations: Figure 6.1.4b shows the component mg 
sin  θ of the gravitational force down the slope and the 
component mg cos θ perpendicular to it. The normal 
force FN matches that perpendicular component, so

  F  N   = mg cos θ 

and thus the magnitude of the frictional force up the slope is 

  f  k   =  μ  k    F  N   =  μ  k   mg cos θ. 

We then find the acceleration ax along the x axis from 
Newton’s second law:

  F  net,x   = m a  x  
−  f  k   + mg sin θ = m a  x  

−  μ  k   mg cos θ + mg sin θ = m a  x  
g(− μ  k   cos θ + sin θ) =  a  x  

  a  x   = (9.8  m/s  2 )(−0.040 cos 18° + sin 18°)
= − 2.7  m/s  2 .   (Answer) 

(b) If the board’s speed is less than 10 m/s, the air between 
the snow particles beneath the board flows off to the sides 
and the normal force is provided directly by the particles. 
The result is the same for fresh snow for even faster 
speeds because the snow is porous so that the air can 
be squeezed out. However, for those faster speeds over 

Figure 6.1.4 (a) Snowboarding. (b) A free-body diagram for 
the snowboarder.
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138 chapter 6 Force and Motion—ii

6.2 THE DRAG FORCE AND TERMINAL SPEED 
Learning Objectives 
After reading this module, you should be able to . . .

6.2.1 Apply the relationship between the drag force on an 
 object moving through air and the speed of the object.

6.2.2 Determine the terminal speed of an object falling 
through air.

Key Ideas 
● When there is relative motion between air (or some 
other fluid) and a body, the body experiences a drag 
force   D 

→
    that opposes the relative motion and points in the 

direction in which the fluid flows relative to the body. The 
magnitude of   D 

→
    is related to the relative speed v by an 

experimentally determined drag coefficient C according to

 D =   1 _ 2   CρA v   2 , 

where 𝜌 is the fluid density (mass per unit volume) and 
A is the effective cross-sectional area of the body (the 

area of a cross section taken perpendicular to the rela-
tive  velocity    v →   ).

● When a blunt object has fallen far enough through  
air, the magnitudes of the drag force   D 

→
    and the gravi-

tational force     F 
→

    g    on the body become equal. The body 
then falls at a constant terminal speed vt given by

  v  t   =  √ 

_____

   
2 F  g   _____ 

CρA
    . 

The Drag Force and Terminal Speed
A fluid is anything that can flow—generally either a gas or a liquid. When there 
is a relative velocity between a fluid and a body (either because the body moves 
through the fluid or because the fluid moves past the body), the body experiences 
a drag force   D 

→
    that opposes the relative motion and points in the direction in 

which the fluid flows relative to the body.
Here we examine only cases in which air is the fluid, the body is blunt (like 

a  baseball) rather than slender (like a javelin), and the relative motion is fast 
enough so that the air becomes turbulent (breaks up into swirls) behind the body. 
In such cases, the magnitude of the drag force   D 

→
    is related to the relative speed v 

by an experimentally determined drag coefficient C according to

   D =   1 _ 2   CρA v   2 ,   (6.2.1)

where 𝜌 is the air density (mass per volume) and A is the effective cross- sectional 
area of the body (the area of a cross section taken perpendicular to the 
 velocity    v →   ). The drag coefficient C (typical values range from 0.4 to 1.0) is not 
truly a  constant for a given body because if v varies significantly, the value of C 
can vary as well. Here, we ignore such complications.

Downhill speed skiers know well that drag depends on A and v2. To reach 
high speeds a skier must reduce D as much as possible by, for example, riding the 
skis in the “egg position” (Fig. 6.2.1) to minimize A.

Falling. When a blunt body falls from rest through air, the drag force   D 
→

    
is directed upward; its magnitude gradually increases from zero as the speed of 
the body  increases. This upward force   D 

→
    opposes the downward gravitational 

force     F 
→

    g    on the body. We can relate these forces to the body’s acceleration by 
writing Newton’s second law for a vertical y axis (Fnet,y = may) as

 D − Fg = ma, (6.2.2)

where m is the mass of the body. As suggested in Fig. 6.2.2, if the body falls long 
enough, D eventually equals Fg. From Eq. 6.2.2, this means that a = 0, and so the 
body’s speed no longer increases. The body then falls at a constant speed, called 
the terminal speed vt.

Figure 6.2.1 This skier crouches in 
an “egg position” so as to minimize 
her effective cross- sectional area 
and thus minimize the air drag act-
ing on her.
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1396.2 the draG Force and terMinaL Speed 

To find vt, we set a = 0 in Eq. 6.2.2 and substitute for D from Eq. 6.2.1, 
 obtaining

   1 _ 2  CρA v t  2  −  F  g   = 0, 

 which gives    v  t   =  √ 

_____

   
2 F  g   _____ 

CρA
     .   (6.2.3)

Table 6.2.1 gives values of vt for some common objects.
According to calculations* based on Eq. 6.2.1, a cat must fall about six 

floors to reach terminal speed. Until it does so, Fg > D and the cat acceler-
ates downward because of the net downward force. Recall from Chapter 2  
that  your body is an accelerometer, not a speedometer. Because the cat 
also senses the acceleration, it is frightened and keeps its feet underneath 
its body, its head tucked in, and its spine bent upward, making A small, vt 
large, and injury likely.

However, if the cat does reach vt during a longer fall, the acceleration 
vanishes and the cat relaxes somewhat, stretching its legs and neck horizon-
tally outward and straightening its spine (it then resembles a flying squir-
rel). These  actions increase area A and thus also, by Eq. 6.2.1, the drag D. 
The cat begins to slow because now D > Fg (the net force is upward), until 
a new, smaller vt is reached. The decrease in vt reduces the possibility of 
serious injury on landing. Just before the end of the fall, when it sees it is 
nearing the ground, the cat pulls its legs back beneath its body to prepare 
for the landing. FCP

Humans often fall from great heights for the fun of skydiving. How-
ever, in April 1987, during a jump, sky diver Gregory Robertson noticed 
that fellow sky diver Debbie Williams had been knocked unconscious in 
a collision with a  third sky diver and was unable to open her parachute. 
 Robertson, who was well above Williams at the time and who had not yet 
opened his parachute for the 4 km plunge, reoriented his body head-down 
so as to minimize A and maximize his downward speed. Reaching an esti-
mated vt of 320 km/h, he caught up with Williams and then went into a hori-
zontal “spread eagle” (as in Fig. 6.2.3) to  increase D so that he could grab 
her. He opened her parachute and then, after  releasing her, his own, a scant 
10 s before impact. Williams  received extensive  internal injuries due to her 
lack of control on landing but survived. FCP

Table 6.2.1 Some Terminal Speeds in Air

Object Terminal Speed (m/s) 95% Distancea (m)

Shot (from shot put) 145 2500
Sky diver (typical) 60 430
Baseball 42 210
Tennis ball 31 115
Basketball 20 47
Ping-Pong ball 9 10
Raindrop (radius = 1.5 mm) 7 6
Parachutist (typical) 5 3

aThis is the distance through which the body must fall from rest to reach 95% of its terminal speed.

Based on Peter J. Brancazio, Sport Science, 1984, Simon & Schuster, New York.

Figure 6.2.2 The forces that act on a body 
falling through air: (a) the body when it 
has just  begun to fall and (b) the free-body 
diagram a  little later, after a drag force 
has  developed. (c) The drag force has 
 increased until it balances the  gravitational 
force on the body. The body now falls at its 
constant terminal speed.

Fg

(a)

Falling 
body D

D

(b) (c)

Fg
Fg

As the cat’s speed
increases, the upward
drag force increases
until it balances the
gravitational force.

*W. O. Whitney and C. J. Mehlhaff, “High-Rise Syndrome in Cats.” The Journal of the American  
Veterinary Medical Association, 1987.

Figure 6.2.3 Sky divers in a horizontal 
“spread eagle” maximize air drag.
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140 chapter 6 Force and Motion—ii

Checkpoint 6.2.1
Is the terminal speed for a large raindrop greater than, less than, or the same as that 
for a small raindrop, assuming that both drops are spherical?

Sample Problem 6.2.1 Terminal speed of falling raindrop

A raindrop with radius R = 1.5 mm falls from a cloud 
that is at height h = 1200 m above the ground. The drag 
coefficient C for the drop is 0.60. Assume that the drop 
is spherical throughout its fall. The density of water 𝜌w is 
1000 kg/m3, and the  density of air 𝜌a is 1.2 kg/m3.

(a) As Table 6.1.1 indicates, the raindrop reaches  terminal 
speed after falling just a few meters. What is the terminal 
speed?

KEY IDEA

The drop reaches a  terminal speed vt when the gravita-
tional force on it is balanced by the air drag force on it, 
so its acceleration is zero. We could then  apply Newton’s 
second law and the drag force equation to find vt, but Eq. 
6.2.3 does all that for us.

Calculations: To use Eq. 6.2.3, we need the drop’s effec-
tive cross- sectional area A and the magnitude Fg of the 
gravitational force. Because the drop is spherical, A is 
the area of a circle (𝜋R2) that has the same radius as the 
sphere. To find Fg, we use three facts: (1) Fg = mg, where 
m is the drop’s mass; (2) the (spherical) drop’s volume is  
V =   4 _ 3   π R   3  ; and (3) the density of the water in the drop is 
the mass per volume, or 𝜌w = m/V. Thus, we find

  F  g   = V ρ  w  g =   4 _ 3  π R   3  ρ  w  g. 

We next substitute this, the expression for A, and the given 
data into Eq. 6.2.3. Being careful to distinguish  between the 
air density 𝜌a and the water density 𝜌w, we obtain

  

 v  t   

  

=

  

 √ 

______

   
2 F  g   ______ 

C ρ  a  A
     =  √ 

_________

   
8π R   3  ρ  w  g

 _________ 
3C ρ  a  π R   2 

     =  √ 

_______

   
8R ρ  w  g

 _______ 
3C ρ  a  

    

  

 

     
 
  
=

  
 √ 

___________________________________

      
  (  8 )    (1.5 ×  10  −3  m) (1000 kg /  m  3 )  (9.8 m /  s  2 )  

    ___________________________________   
(3) (0.60)  (1.2 kg /  m  3 ) 

    
  
 
     

 

  

=

  

7.4 m / s ≈ 27 km / h.

  

 

  

Note that the height of the cloud does not enter into the 
 calculation. 

(b) What would be the drop’s speed just before impact if 
there were no drag force?

KEY IDEA

With no drag force to reduce the drop’s speed during the 
fall, the drop would fall with the  constant free-fall accel-
eration g, so the constant- acceleration equations of Table 
2.4.1 apply. 

Calculation: Because we know the acceleration is g, the 
 initial velocity v0 is 0, and the  displacement x − x0 is −h, 
we use Eq. 2.4.6 to find v:

  v  =   √ 
____

 2gh   =  √ 
___________________

  (2) (9.8 m /  s  2 )  (1200 m)           
 
  
=

  
153 m / s ≈ 550 km / h.

  
  (  Answer )   

  

Had he known this, Shakespeare would scarcely have 
written, “it droppeth as the gentle rain from heaven, upon 
the place beneath.” In fact, the speed is close to that of a 
bullet from a large-caliber handgun!

   (  Answer )    

6.3 UNIFORM CIRCULAR MOTION
Learning Objectives 
After reading this module, you should be able to . . .

6.3.1 Sketch the path taken in uniform circular motion 
and  explain the velocity, acceleration, and force vec-
tors (magnitudes and directions) during the motion.

6.3.2 ldentify that unless there is a radially inward net 
force (a centripetal force), an object cannot move in 
circular  motion.

6.3.3 For a particle in uniform circular motion, apply 
the relationship between the radius of the path, the 
 particle’s speed and mass, and the net force acting 
on the particle.

additional examples, video, and practice available at WileyPLUS
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1416.3 UniForM circULar Motion

Key Ideas 
● If a particle moves in a circle or a circular arc of 
radius R at constant speed v, the particle is said to 
be in uniform circular motion. It then has a centripetal 
 acceleration    a →    with magnitude given by

 a =    v   2  __ 
R

   . 

● This acceleration is due to a net centripetal force on 
the particle, with magnitude given by

 F =   m v   2  ____ 
R

  , 

where m is the particle’s mass. The vector quantities    a →    
and    F 

→
    are directed toward the center of curvature of the 

particle’s path.

Uniform Circular Motion
From Module 4.5, recall that when a body moves in a circle (or a circular arc) at 
constant speed v, it is said to be in uniform circular motion. Also recall that the 
body has a centripetal acceleration (directed toward the center of the circle) of 
constant magnitude given by

   a =    v   2  __ 
R

     (  centripetal acceleration )   ,   (6.3.1) 

where R is the radius of the circle. Here are two examples:

1. Rounding a curve in a car. You are sitting in the center of the rear seat of a car 
moving at a constant high speed along a flat road. When the driver suddenly 
turns left, rounding a corner in a circular arc, you slide across the seat toward 
the right and then jam against the car wall for the rest of the turn. What is 
 going on?

While the car moves in the circular arc, it is in uniform circular motion; that is, 
it has an acceleration that is directed toward the center of the circle. By Newton’s 
second law, a force must cause this acceleration. Moreover, the force must also 
be directed toward the center of the circle. Thus, it is a centripetal force, where 
the adjective indicates the direction. In this example, the  centripetal force is a 
frictional force on the tires from the road; it makes the turn possible.

If you are to move in uniform circular motion along with the car, there 
must also be a centripetal force on you. However, apparently the frictional 
force on you from the seat was not great enough to make you go in a circle 
with the car. Thus, the seat slid beneath you, until the right wall of the car 
jammed into you. Then its push on you provided the needed centripetal force 
on you, and you joined the car’s uniform circular motion.

2. Orbiting Earth. This time you are a passenger in the space shuttle Atlantis. As 
it and you orbit Earth, you float through your cabin. What is going on?

Both you and the shuttle are in uniform circular motion and have accel-
erations directed toward the center of the circle. Again by Newton’s second 
law, centripetal forces must cause these accelerations. This time the centrip-
etal forces are gravitational pulls (the pull on you and the pull on the shuttle) 
exerted by Earth and directed radially inward, toward the center of Earth.

In both car and shuttle you are in uniform circular motion, acted on by a cen-
tripetal force—yet your sensations in the two situations are quite different. In the 
car, jammed up against the wall, you are aware of being compressed by the wall. 
In the orbiting shuttle, however, you are floating around with no sensation of any 
force acting on you. Why this difference?

The difference is due to the nature of the two centripetal forces. In the 
car, the centripetal force is the push on the part of your body touching the car 
wall. You can sense the compression on that part of your body. In the shuttle, 
the  centripetal force is Earth’s gravitational pull on every atom of your body. 
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Figure 6.3.1 An overhead view of a hockey puck moving with constant speed v in a  
circular path of radius R on a horizontal frictionless surface. The centripetal force on 
the puck is   T 

→
   , the pull from the string, directed inward along the radial axis r extending 

through the puck.

String

Puck

R

v r

T The puck moves
in uniform
circular motion
only because
of a toward-the-
center force.

Thus, there is no compression (or pull) on any one part of your body and 
no sensation of a force acting on you. (The sensation is said to be one of 
 “weightlessness,” but that description is tricky. The pull on you by Earth has 
certainly not disappeared and, in fact, is only a little less than it would be with 
you on the ground.)

Another example of a centripetal force is shown in Fig. 6.3.1. There a hockey 
puck moves around in a circle at constant speed v while tied to a string looped 
around a central peg. This time the centripetal force is the radially inward pull on 
the puck from the string. Without that force, the puck would slide off in a straight 
line instead of moving in a circle.

Note again that a centripetal force is not a new kind of force. The name 
merely indicates the direction of the force. It can, in fact, be a frictional force, 
a gravitational force, the force from a car wall or a string, or any other force. For 
any situation:

From Newton’s second law and Eq. 6.3.1 (a = v2/R), we can write the magnitude 
F of a centripetal force (or a net centripetal force) as

   F = m    v   2  __ 
R

     (  magnitude of centripetal force )   .   (6.3.2)

Because the speed v here is constant, the magnitudes of the acceleration and the 
force are also constant.

However, the directions of the centripetal acceleration and force are not con-
stant; they vary continuously so as to always point toward the center of the circle. 
For this reason, the force and acceleration vectors are sometimes drawn along a 
radial axis r that moves with the body and always extends from the  center of the 
circle to the body, as in Fig. 6.3.1. The positive direction of the axis is radially 
outward, but the acceleration and force vectors point radially inward.

Checkpoint 6.3.1
As every amusement park fan knows, a Ferris wheel is a ride consisting of seats 
mounted on a tall ring that rotates around a horizontal axis. When you ride in a 
 Ferris wheel at constant speed, what are the directions of your acceleration    a →    and the 
normal force     F 

→
    N    on you (from the always upright seat) as you pass through (a) the 

highest point and (b) the lowest point of the ride? (c) How does the magnitude of  
the acceleration at the highest point compare with that at the lowest point? (d) How 
do the magnitudes of the normal force compare at those two points?

A centripetal force accelerates a body by changing the direction of the body’s 
 velocity without changing the body’s speed.
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KEY IDEA

We can assume that Diavolo and his  bicycle travel through 
the top of the loop as a single  particle in uniform circular 
motion. Thus, at the top, the  acceleration    a →    of this par-
ticle must have the magnitude a = v2/R given by Eq. 
6.3.1 and be directed downward, toward the center of 
the  circular loop.

Calculations: The forces on the particle when it is at 
the top of the loop are shown in the free-body diagram of 
Fig 6.3.2b. The gravitational force     F 

→
    g    is downward along 

a y axis; so is the normal force     F 
→

    N    on the  particle from the 
loop (the loop can push down, not pull up); so also is the 
centripetal acceleration of the particle. Thus, Newton’s 
second law for y components (Fnet,y = may) gives us

 −FN − Fg = m(−a)

and   −  F  N   − mg = m  (  −   v   2  __ 
R

   )   .  
 

(6.3.3)

If the particle has the least speed v needed to remain 
in contact, then it is on the verge of losing contact with 
the loop (falling away from the loop), which means that 
FN = 0 at the top of the loop (the particle and loop touch 
but without any normal force). Substituting 0 for FN in 
Eq. 6.3.3, solving for v, and then substituting known val-
ues give us

  
v
  
=

  
 √ 

___
 gR   =  √ 

_______________
    (  9.8 m /s  2  )     (  2.7 m )     
  
 
    

 
  
=

  
5.1 m / s.

  
   (  Answer )   

  

Comments: Diavolo made certain that his speed at the 
top of the loop was greater than 5.1 m/s so that he did 
not lose contact with the loop and fall away from it. Note 
that this speed requirement is independent of the mass of 
Diavolo and his bicycle. Had he feasted on, say, pierogies 
before his performance, he still would have had to exceed 
only 5.1 m/s to maintain contact as he passed through the 
top of the loop.

Largely because of riding in cars, you are used to hori-
zontal circular motion. Vertical circular motion would be 
a novelty. In this sample problem, such motion seems to 
defy the gravitational force.

In a 1901 circus performance, Allo “Dare Devil” Dia-
volo  introduced the stunt of riding a bicycle in a loop-the-
loop (Fig. 6.3.2a). Assuming that the loop is a circle with 
radius R = 2.7 m, what is the least speed v that Diavolo 
and his bicycle could have at the top of the loop to remain 
in contact with it there? FCP

Sample Problem 6.3.1 Vertical circular loop, Diavolo

Figure 6.3.2 (a) Contemporary advertisement for Diavolo 
and (b) free-body diagram for the performer at the top of 
the loop.

y
Diavolo 

and bicycle

a

Fg

FN
The net force
provides the
toward-the-center
acceleration.

The normal force
is from the
overhead loop.

(b)
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Sample Problem 6.3.2 Driving in flat turns and upside down

Upside-down racing: A modern race car is designed 
so that the passing air pushes down on it, allowing the 
car to travel much faster through a flat turn in a Grand 
Prix without friction failing. This downward push is called 
negative lift. Can a race car have so much negative lift that 
it could be driven upside down on a long ceiling, as done 
fictionally by a sedan in the first Men in Black movie?

Figure 6.3.3a represents a Grand Prix race car of mass  
m = 600 kg as it travels on a flat track in a circular arc of 
 radius R = 100 m. Because of the shape of the car and the 
wings on it, the passing air exerts a negative lift     F 

→
    L    down-

ward on the car. The coefficient of static  friction between 

the tires and the track is 0.75. (Assume that the forces on 
the four tires are identical.) 

(a) If the car is on the verge of sliding out of the turn when 
its speed is 28.6 m/s, what is the magnitude of the negative 
lift     F 

→
    L    acting downward on the car?

KEY IDEAS

1. A centripetal force must act on the car because the 
car is  moving around a circular arc; that force must 
be  directed toward the center of curvature of the arc 
(here, that is horizontally).

FCP

additional examples, video, and practice available at WileyPLUS
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(b)

r
CarCenter fs

a

Fg

FN

y

R

(a)

r

FL

v

fs

The toward-the-
center force is
the frictional force.

Friction: toward the
center

Track-level view 
of the forces

Normal force:
helps support car

Gravitational force:
pulls car downward

Negative lift: presses
car downward

Figure 6.3.3 (a) A race car moves around a flat curved track at constant speed v. The  frictional 
force     f 

→
    s    provides the necessary centripetal force along a radial axis r. (b) A free-body diagram 

(not to scale) for the car, in the vertical plane containing r.

2. The only horizontal force acting on the car is a fric-
tional force on the tires from the road. So the  required 
centripetal force is a frictional force.

3. Because the car is not sliding, the frictional force must 
be a static frictional force     f 

→
    s    (Fig. 6.3.3a).

4. Because the car is on the verge of sliding, the magni-
tude fs is equal to the maximum value fs,max = 𝜇sFN, 
where FN is the magnitude of the normal force     F 

→
    N    act-

ing on the car from the track.

Radial calculations: The frictional force     f 
→

    s    is shown in 
the free-body diagram of Fig. 6.3.3b. It is in the  negative 
direction of a radial axis r  that always extends from the 
center of curvature through the car as the car moves. 
The  force produces a  centripetal  acceleration of magni-
tude v2/R. We can relate the force and acceleration by 
writing Newton’s second law for components along the r 
axis (Fnet,r = mar) as

    − f  s   = m  (  −   v   2  __ 
R

   )   .   (6.3.4)

Substituting fs,max = 𝜇sFN for fs leads us to

    μ  s   F  N   = m  (      v   2  __ 
R

   )   .   (6.3.5)

Vertical calculations: Next, let’s consider the verti-
cal forces on the car. The normal force     F 

→
    N    is directed 

up, in the positive direction of the  y  axis in Fig. 6.3.3b. 
The gravitational force     F 

→
    g   = m  g →    and the negative lift     F 

→
    L    

are directed down. The acceleration of the car along the 
y axis is zero. Thus we can write Newton’s second law for 
components along the y axis (Fnet,y = may) as

FN − mg − FL = 0,

or FN = mg + FL. (6.3.6)

Combining results: Now we can combine our results 
along the two axes by substituting Eq. 6.3.6 for FN in Eq. 
6.3.5. Doing so and then solving for FL lead to

  

 F  L  

  

=

  

m  (      v   2  ____ 
 μ  s  R

    − g )   

  

 

     
 
  
=

  
  (  600 kg )     (     

 (  28.6 m / s)    2 
  _____________  

  (  0.75 )     (  100 m )   
   − 9.8   m / s  2  )   

  
 
     

 

  

=

  

663.7 N ≈ 660 N.

  

     

  

(b) The magnitude FL of the negative lift on a car  depends 
on the square of the car’s speed v2, just as the drag force 
does (Eq. 6.2.1). Thus, the negative lift on the car here is 
greater when the car travels faster, as it does on a straight 
section of track. What is the magnitude of the negative lift 
for a speed of 90 m/s?

KEY IDEA 

FL is proportional to v2. 

Calculations: Thus we can write a ratio of the negative 
lift FL,90 at v = 90 m/s to our result for the negative lift FL 
at v = 28.6 m/s as

   
 F  L  , 90 ______ 
 F  L  

   =   
(90 m / s)    2 

 __________ 
(28.6 m / s )  2 

  . 

Substituting our known negative lift of FL = 663.7 N and 
solving for FL,90 give us

   F  L,90   = 6572 N ≈ 6600 N.     (  Answer )     

Upside-down racing: The gravitational force is, of course, 
the force to beat if there is a chance of racing upside down:

Fg = mg = (600 kg)(9.8 m/s2)

 = 5880 N.

With the car upside down, the negative lift is an upward 
force of 6600 N, which exceeds the downward 5880 N. 
Thus, the car could run on a long ceiling provided that 
it moves at about 90 m/s (= 324 km/h = 201 mi/h). How-
ever, moving that fast while right side up on a horizontal 
track is dangerous enough, so you are not likely to see 
upside-down racing except in the movies.

  (  Answer )   
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Friction  When a force    F 
→

    tends to slide a body along a surface, 
a frictional force from the surface acts on the body. The fric-
tional force is parallel to the surface and directed so as to oppose 
the sliding. It is due to bonding between the atoms on the body 
and the atoms on the surface, an effect called cold-welding.

If the body does not slide, the frictional force is a static fric-
tional force     f 

→
    s   . If there is sliding, the frictional force is a kinetic 

frictional force     f 
→

    k   .

1. If a body does not move, the static frictional force     f 
→

    s    and the 
component of    F 

→
    parallel to the surface are equal in magni-

tude, and     f 
→

    s    is directed opposite that component. If the com-
ponent increases, fs also increases.

2. The magnitude of     f 
→

    s    has a maximum value fs,max given by

 fs,max = 𝜇sFN, (6.1.1)

 where 𝜇s is the coefficient of static friction and FN is the mag-
nitude of the normal force. If the component of    F 

→
     parallel to 

the surface exceeds fs,max, the static friction is overwhelmed 
and the body slides on the surface.

3. If the body begins to slide on the surface, the magnitude of  
the frictional force rapidly decreases to a constant value fk 
given by

 fk = 𝜇kFN, (6.1.2)

 where 𝜇k is the coefficient of kinetic friction.

Drag Force  When there is relative motion between air (or 
some other fluid) and a body, the body experiences a drag force   
D 
→

    that opposes the relative motion and points in the  direction in 
which the fluid flows relative to the body. The magnitude of   D 

→
    is 

Review & Summary

 related to the relative speed v by an experimentally determined 
drag coefficient C according to

   D =   1 _ 2   CρA v   2 ,   (6.2.1)

where 𝜌 is the fluid density (mass per unit volume) and A is the 
effective cross-sectional area of the body (the area of a cross 
section taken perpendicular to the relative velocity    v →   ).

Terminal Speed  When a blunt object has fallen far enough 
through air, the magnitudes of the drag force   D 

→
    and the gravita-

tional force     F 
→

    g    on the body become equal. The body then falls at 
a constant terminal speed vt given by

    v  t   =  √ 

_____

   
2 F  g   _____ 

CρA
     .   (6.2.3)

Uniform Circular Motion  If a particle moves in a circle 
or a circular arc of radius R at constant speed v, the particle is 
said to be in uniform circular motion. It then has a centripetal 
 acceleration    a →    with magnitude given by

   a =    v   2  __ 
R

  .   (6.3.1)

This acceleration is due to a net centripetal force on the particle, 
with magnitude given by

   F =    mv   2  ____ 
R

  ,   (6.3.2)

where m is the particle’s mass. The vector quantities    a →    and    F 
→

    
are directed toward the center of curvature of the particle’s 
path. A particle can move in circular motion only if a net cen-
tripetal force acts on it. 

1  In Fig. 6.1, if the box is station-
ary and the angle θ between the 
horizontal and force    F 

→
    is increased 

somewhat, do the following quan-
tities increase, decrease, or remain 
the same: (a) Fx; (b) fs; (c) FN; (d) fs,max? (e) If, instead, the box 
is sliding and θ is increased, does the magnitude of the frictional 
force on the box increase, decrease, or remain the same?

2  Repeat Question 1 for force    F 
→

    angled upward instead of 
downward as drawn.

3  In Fig. 6.2, horizontal force     F 
→

    1    of magnitude 10 N is  applied to 
a box on a floor, but the box does 
not slide. Then, as the magnitude 
of vertical force     F 

→
    2    is increased 

from zero, do the following quan-
tities increase, decrease, or stay 
the same: (a) the magnitude of the 
frictional force     f 

→
    s    on the box; (b) the magnitude of the normal 

force     F 
→

    N    on the box from the floor; (c) the maximum value fs,max 
of the magnitude of the static frictional force on the box? (d) 
Does the box eventually slide?

F2

F1

Figure 6.2 Question 3.

4  In three experiments, three different horizontal forces are 
applied to the same block lying on the same countertop. The 
force magnitudes are F1 = 12 N, F2 = 8 N, and F3 = 4 N. In 
each experiment, the block remains stationary in spite of the 
applied force. Rank the forces according to (a) the magnitude 
fs of the static frictional force on the block from the counter-
top and (b) the maximum value fs,max of that force, greatest 
first.

5  If you press an apple crate against a wall so hard that the 
crate cannot slide down the wall, what is the direction of (a) the 
static frictional force     f 

→
    s    on the crate from the wall and (b) 

the normal force     F 
→

    N    on the crate from the wall? If you  increase 
your push, what happens to (c) fs, (d) FN, and (e) fs,max?

6  In Fig. 6.3, a block of mass m is held 
stationary on a ramp by the frictional force 
on it from the ramp. A force   F 

→
   , directed 

up the ramp, is then applied to the block 
and gradually  increased in magnitude from 
zero. During the increase, what happens 
to the direction and magnitude of the fric-
tional force on the block?

F

θ

Figure 6.3  
Question 6.

Questions

x

F

θ

Figure 6.1 Question 1.
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7  Reconsider Question 6 but with the force    F 
→

    now directed 
down the ramp. As the magnitude of    F 

→
    is increased from zero, 

what happens to the direction and magnitude of the frictional 
force on the block?

8  In Fig. 6.4, a horizontal force of 100 N is to be applied to a 
10 kg slab that is initially stationary on a frictionless floor, to 
accelerate the slab. A 10 kg block lies on top of the slab; the 
coefficient of friction 𝜇 between the block and the slab is not 
known, and the block might slip. In fact, the contact between 
the block and the slab might even be frictionless. (a) Consid-
ering that possibility, what is the possible range of values for 
the magnitude of the slab’s acceleration aslab? (Hint: You don’t 
need written  calculations; just consider extreme values for 𝜇.) 
(b) What is the possible range for the magnitude ablock of the 
block’s  acceleration?

9  Figure 6.5 shows the overhead view of the path of an 
amusement-park ride that travels at constant speed through five 
circular arcs of radii R0, 2R0, and 3R0. Rank the arcs according 
to the magnitude of the centripetal force on a rider traveling in 
the arcs, greatest first.

fall just west of Chicago. The stunt was great fun until the last 
sky diver with the pumpkin opened his parachute. The pump-
kin broke free from his grip, plummeted about 0.5 km, ripped 
through the roof of a house, slammed into the kitchen floor, and 
splattered all over the newly remodeled kitchen. From the sky 
diver’s viewpoint and from the pumpkin’s viewpoint, why did 
the sky diver lose control of the pumpkin?

11  A person riding a Ferris wheel moves through positions 
at (1)  the top, (2) the bottom, and (3) midheight. If the wheel 
rotates at a constant rate, rank these three positions according 
to (a) the magnitude of the person’s centripetal acceleration,  
(b) the magnitude of the net centripetal force on the person, and 
(c) the magnitude of the normal force on the  person, greatest first.

12  During a routine flight in 1956, test pilot Tom Attridge put 
his jet fighter into a 20° dive for a test of the aircraft’s 20 mm 
machine cannons. While traveling faster than sound at 4000 m 
altitude, he shot a burst of rounds. Then, after allowing the can-
nons to cool, he shot another burst at 2000 m; his speed was then 
344 m/s, the speed of the rounds relative to him was 730 m/s, and 
he was still in a dive. 

Almost immediately the canopy around him was shredded 
and his right air intake was damaged. With little flying capability 
left, the jet crashed into a wooded area, but Attridge managed 
to escape the resulting explosion. Explain what apparently hap-
pened just after the second burst of cannon rounds. (Attridge 
has been the only pilot who has managed to shoot himself down.)

13  A box is on a ramp that is at angle θ to the horizontal. 
As θ is increased from zero, and before the box slips, do the 
following increase, decrease, or remain the same: (a) the com-
ponent of the gravitational force on the box, along the ramp,  
(b) the magnitude of the static frictional force on the box from 
the ramp, (c) the component of the gravitational force on the 
box, perpendicular to the ramp, (d) the magnitude of the nor-
mal force on the box  from the ramp, and (e) the maximum 
value fs,max of the static frictional force?

1

2 3

4

5

Figure 6.5 Question 9.

100 N
Block

Slab

Figure 6.4 Question 8.

10 FCP  In 1987, as a Halloween stunt, two sky divers passed a 
pumpkin back and forth between them while they were in free 

Module 6.1  Friction
1 E  The floor of a railroad flatcar is loaded with loose crates 
having a coefficient of static friction of 0.25 with the floor. If the 
train is initially moving at a speed of 48 km/h, in how short a dis-
tance can the train be stopped at constant acceleration without 
causing the crates to slide over the floor?

2 E  In a pickup game of dorm shuffleboard, students crazed 
by final exams use a broom to propel a calculus book along the 
dorm hallway. If the 3.5 kg book is pushed from rest through a 
distance of 0.90 m by the horizontal 25 N force from the broom 
and then has a speed of 1.60 m/s, what is the coefficient of kinetic 
friction between the book and floor?

3 E  SSM  A bedroom bureau with a mass of 45 kg, including 
 drawers and clothing, rests on the floor. (a) If the coefficient 

of static friction between the bureau and the floor is 0.45, what 
is the magnitude of the minimum horizontal force that a per-
son must apply to start the bureau moving? (b) If the drawers 
and clothing, with 17 kg mass, are removed before the bureau is 
pushed, what is the new minimum magnitude?

4 E  A slide-loving pig slides down a certain 35° slide in twice the 
time it would take to slide down a frictionless 35° slide. What is 
the coefficient of kinetic friction  between the pig and the slide?

5 E  GO  A 2.5 kg block is initially at rest on a horizontal surface. 
A horizontal force    F 

→
    of magnitude 6.0 N and a vertical force    P 

→
    

are then applied to the block (Fig. 6.6). The coefficients of fric-
tion for the block and surface are 𝜇s = 0.40 and 𝜇k = 0.25. Deter-
mine the magnitude of the frictional force acting on the block if 
the magnitude of    P 

→
    is (a) 8.0 N, (b) 10 N, and (c) 12 N.

Problems

          Tutoring problem available (at instructor’s discretion) in WileyPLUS

 Worked-out solution available in Student Solutions Manual

E  Easy M  Medium H  Hard

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

CALC  Requires calculus

BIO  Biomedical application

GO

FCP

SSM
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P

F

Figure 6.6 Problem 5.

6 E  A baseball player with mass m = 79 kg, sliding into sec-
ond base, is retarded by a frictional force of magnitude 470 N. 
What is the coefficient of kinetic friction 𝜇k between the player 
and the ground?

7 E  SSM  A person pushes horizontally with a force of 220 N 
on a 55 kg crate to move it across a level floor. The coefficient 
of kinetic friction between the crate and the floor is 0.35. What is 
the magnitude of (a) the frictional force and (b) the  acceleration 
of the crate?

8 E  FCP  The mysterious sliding stones. Along the remote 
Race track Playa in Death Valley, California, stones some-
times gouge out prominent trails in the desert floor, as if 
the stones had been migrating (Fig. 6.7). For years curiosity 
mounted about why the stones moved. One explanation was 
that strong winds during occasional rainstorms would drag 
the rough stones over ground softened by rain. When the des-
ert dried out, the trails behind the stones were hard-baked in 
place. According to measurements, the coefficient of  kinetic 
friction between the stones and the wet playa ground is 
about 0.80. What horizontal force must act on a 20 kg stone  
(a typical mass) to maintain the stone’s motion once a gust 
has started it moving? (Story continues with Problem 37.)

0.500mg is then applied at upward angle θ = 20°. What is the 
magnitude of the acceleration of the block across the floor if 
the friction coefficients are (a) 𝜇s = 0.600 and 𝜇k = 0.500 and  
(b) 𝜇s = 0.400 and 𝜇k = 0.300?

11 E  SSM  A 68 kg crate is dragged across a floor by pulling on 
a rope attached to the crate and inclined 15° above the horizon-
tal. (a) If the coefficient of static friction is 0.50, what minimum 
force magnitude is required from the rope to start the crate 
moving? (b)  If 𝜇k = 0.35, what is the magnitude of the initial 
acceleration of the crate?

12 E  BIO  In about 1915, Henry Sincosky of 
Philadelphia suspended himself from a rafter 
by gripping the rafter with the thumb of each 
hand on one side and the fingers on the oppo-
site side (Fig. 6.10). Sincosky’s mass was 79 kg. 
If the coefficient of static friction between 
hand and rafter was 0.70, what was the least 
magnitude of the normal force on the rafter 
from each thumb or opposite fingers? (After 
suspending himself, Sincosky chinned himself 
on the rafter and then moved hand-over-hand 
along the rafter. If you do not think Sincosky’s 
grip was remarkable, try to repeat his stunt.)

13 E  A worker pushes horizontally on a 35 kg 
crate with a force of magnitude 110 N. The 
coefficient of static friction  between the crate 
and the floor is 0.37. (a) What is the value of 
fs,max under the circumstances? (b) Does the 
crate move? (c) What is the frictional force on 
the crate from the floor? (d)  Suppose, next, 
that a second worker pulls directly upward on the crate to help 
out. What is the least vertical pull that will allow the first work-
er’s 110 N push to move the crate? (e) If, instead, the second 
worker pulls horizontally to help out, what is the least pull that 
will get the crate moving?

14 E  Figure 6.11 shows the 
cross section of a road cut into 
the side of a mountain. The 
solid line AAʹ represents a weak 
bedding plane along which slid-
ing is possible. Block B  directly 
above the highway is separated 
from uphill rock by a large crack 
(called a joint), so that only fric-
tion between the block and the bedding plane prevents sliding. 
The mass of the block is 1.8 × 107 kg, the dip angle θ of the bed-
ding plane is 24°, and the coefficient of static friction between 
block and plane is 0.63. (a) Show that the block will not slide 
under these circumstances. (b) Next, water seeps into the joint 
and expands upon freezing, exerting on the block a force    F 

→
    

parallel to AAʹ. What minimum value of force magnitude F 
will trigger a slide down the plane?

15 E  The coefficient of static friction between Teflon and 
scrambled eggs is about 0.04. What is the smallest angle from 
the horizontal that will cause the eggs to slide across the bottom 
of a Teflon-coated skillet?

16 M  A loaded penguin sled weighing 80 N rests on a plane 
inclined at angle θ = 20° to the horizontal (Fig. 6.12). Between  
the sled and the plane, the coefficient of static  friction is 0.25, and 
the coefficient of kinetic friction is 0.15. (a)  What is the  

Figure 6.10  
Problem 12.

Joint with ice

A

A'B

F

θ

Figure 6.11 Problem 14.

9 E  GO  A 3.5 kg block is pushed 
along a horizontal floor by a force  
   F 
→

    of magnitude 15 N at an 
angle θ = 40° with the horizon-
tal (Fig.  6.8). The coefficient of 
kinetic friction between the block 
and the floor is 0.25. Calculate the 
magnitudes of (a)  the frictional 
force on the block from the floor 
and (b) the block’s acceleration.  

10 E  Figure 6.9 shows an ini-
tially stationary block of mass m 
on a floor. A force of magnitude 

F

x

y

θ

Figure 6.9 Problem 10.

F

θ

Figure 6.8  
Problems 9 and 32.

Figure 6.7 Problem 8. What moved the stone?Jerry Schad/Science Source
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least  magnitude of the force    F 
→

   , 
parallel to the plane, that will 
prevent the sled from slipping 
down the plane? (b) What is the 
minimum magnitude F that will 
start the sled moving up the 
plane? (c) What value of F is 
required to move the sled up the 
plane at constant velocity?

17 M  In Fig. 6.13, a force    P 
→

    acts 
on a block weighing 45 N. The 
block is initially at rest on a plane 
inclined at angle θ = 15° to the 
horizontal. The positive direction 
of the x axis is up the plane. Between block and plane, the coeffi-
cient of static friction is 𝜇s = 0.50 and the coefficient of kinetic fric-
tion is 𝜇k = 0.34. In unit-vector notation, what is the frictional force 
on the block from the plane when    P 

→
    is (a)    (  −5.0 N )    ̂ i  , (b)    (  −8.0 N )    ̂ i  ,  

and (c)    (  −15 N )    ̂ i  ?

18 M  GO  You testify as an expert witness in a case involving 
an accident in which car A slid into the rear of car B, which 
was stopped at a red light along a road headed down a hill 
(Fig. 6.14). You find that the slope of the hill is θ = 12.0°, that 
the cars were separated by distance d = 24.0 m when the driver 
of car A put the car into a slide (it lacked any automatic anti-
brake-lock system), and that the speed of car A at the onset of 
braking was v0 = 18.0 m/s. With what speed did car A hit car B if 
the coefficient of kinetic friction was (a) 0.60 (dry road surface) 
and (b) 0.10 (road surface covered with wet leaves)?

P
x

θ

Figure 6.13 Problem 17.

19 M  A 12 N horizontal force    F 
→

    
pushes a block weighing 5.0 N against 
a vertical wall (Fig. 6.15). The coef-
ficient of  static friction between the 
wall and the block is 0.60, and the 
coefficient of kinetic friction is 0.40. 
Assume that the block is not moving 
initially. (a) Will the block move? (b) In unit- vector notation, 
what is the force on the block from the wall?

20 M  GO  In Fig. 6.16, a box of 
Cheerios (mass mC = 1.0 kg) and 
a box of Wheaties (mass mW = 
3.0 kg) are accelerated across a 
horizontal surface by a horizon-
tal force    F 

→
    applied to the Cheerios box. The magnitude of the 

frictional force on the Cheerios box is 2.0 N, and the magni-
tude of the frictional force on the Wheaties box is 4.0 N. If the 
magnitude of    F 

→
    is 12 N, what is the magnitude of the force on 

the Wheaties box from the Cheerios box?

mC

F mW

Figure 6.16 Problem 20.

21 M  CALC  An initially stationary box of sand is to be pulled 
across a floor by means of a cable in which the tension should 
not  exceed 1100 N. The coefficient of static friction between the 
box and the floor is 0.35. (a) What should be the angle  between 
the cable and the horizontal in order to pull the greatest possible 
amount of sand, and (b) what is the weight of the sand and box 
in that situation?

22 M  GO  In Fig. 6.12, a sled 
is held on an inclined plane 
by a cord pulling directly up 
the plane. The sled is to be on 
the verge of moving up the 
plane. In Fig. 6.17, the magni-
tude F required of the cord’s 
force on the sled is plotted 
versus a range of values for 
the coefficient of static friction 𝜇s between sled and plane:  
F1 = 2.0 N, F2 = 5.0 N, and 𝜇2 = 0.50. At what angle θ is the plane 
inclined?

23 M  When the three blocks in 
Fig.  6.18 are released from rest, 
they accelerate with a magnitude 
of 0.500 m/s2. Block 1 has mass M,  
block 2 has 2M, and block 3 has 
2M. What is the coefficient of 
kinetic friction between block 2 
and the table?

24 M  A 4.10 kg block is pushed 
along a floor by a constant applied 
force that is horizontal and has a 
magnitude of 40.0 N. Figure 6.19 
gives the block’s speed v versus 
time t as the block moves along an 
x axis on the floor. The scale of 
the figure’s vertical axis is set by 
vs = 5.0 m/s. What is the  coefficient 
of  kinetic friction between the 
block and the floor?

25 M  SSM  Block B in Fig. 6.20 
weighs 711 N. The coefficient of 
static friction between block and 
table is 0.25; angle θ is 30°; assume 
that the cord between B and the 
knot is horizontal. Find the maxi-
mum weight of block A for which 
the system will be stationary.

26 M  GO  Figure 6.21 shows three  
crates being pushed over a con-
crete floor by a horizontal force    F 

→
    

of magnitude 440 N. The masses 
of the crates are m1 = 30.0 kg, m2 
= 10.0 kg, and m3 = 20.0 kg. The 
coefficient of kinetic friction 
between the floor and each of the 
crates is 0.700. (a) What is the 
magnitude F32 of the force on 
crate 3 from crate 2? (b) If the crates then slide onto a polished 
floor, where the coefficient of  kinetic friction is less than 0.700, is 

F

F2

F1

0 2
sµ µ

Figure 6.17 Problem 22.

3

2

1

Figure 6.18 Problem 23.

v 
(m

/s
)

0 0.5
t (s)

1.0

vs

Figure 6.19 Problem 24.

B

A

Knot
θ

Figure 6.20 Problem 25.

m1

m2
m3

F

Figure 6.21 Problem 26.

Figure 6.12  
Problems 16 and 22.

F

θ

x

y

F

Figure 6.15 Problem 19.

B

A

d

v0

θ

Figure 6.14 Problem 18.
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31 M  SSM  Two blocks, of weights 3.6 N and 7.2 N, are con-
nected by a massless string and slide down a 30° inclined plane. 
The coefficient of kinetic friction between the lighter block and 
the plane is 0.10, and the coefficient between the heavier block 
and the plane is 0.20. Assuming that the lighter block leads, find 
(a) the magnitude of the acceleration of the blocks and (b) the 
tension in the taut string. 

32 M  GO  A block is pushed across a floor by a constant force that 
is applied at downward angle θ (Fig. 6.8). Figure 6.25 gives the 
acceleration magnitude a versus a range of values for the coeffi-
cient of kinetic friction 𝜇k between block and floor: a1 = 3.0 m/s2,  
𝜇k2 = 0.20, and 𝜇k3 = 0.40. What is the value of θ?

magnitude F32 more than, less than, or the same as it was when 
the coefficient was 0.700?

27 M  GO  Body A in Fig. 6.22 
weighs 102 N, and body B weighs 
32 N. The coefficients of friction 
between A and the incline are 𝜇s =  
0.56 and 𝜇k  = 0.25. Angle θ is 
40°. Let the positive  direction 
of an x axis be up the incline. In 
unit-vector notation, what is the 
acceleration of A if A is initially 
(a) at rest, (b)  moving up the 
incline, and (c) moving down 
the incline?

28 M  In Fig. 6.22, two blocks are connected over a pulley. The 
mass of block A is 10 kg, and the coefficient of kinetic friction 
between A and the incline is 0.20. Angle θ of the  incline is 30°. 
Block A slides down the incline at constant speed. What is the 
mass of block B? Assume the connecting rope has negligible 
mass. (The pulley’s function is only to redirect the rope.)

29 M  GO  In Fig. 6.23, blocks A and B have weights of 44 N and 
22 N, respectively. (a) Determine the minimum weight of block 
C to keep A from sliding if 𝜇s between A and the table is 0.20. 
(b) Block C suddenly is lifted off A. What is the acceleration of 
block A if 𝜇k between A and the table is 0.15?

Frictionless,
massless pulley

A

B

θ

Figure 6.22  
Problems 27 and 28.

a
a1

–a1

0 μk2 μk3
μk

Figure 6.25 Problem 32.

Figure 6.24 Problem 30.

θ

Figure 6.23 Problem 29.

Frictionless,
massless pulley

B

C

A

30 M  CALC  A toy chest and its contents have a combined 
weight of 180 N. The coefficient of static friction between toy 
chest and floor is 0.42. The child in Fig. 6.24 attempts to move 
the chest across the floor by pulling on an attached rope. (a) If 
θ is 42°, what is the magnitude of the force    F 

→
    that the child must 

exert on the rope to put the chest on the verge of moving? (b) 
Write an expression for the magnitude F required to put the 
chest on the verge of moving as a function of the angle θ. Deter-
mine (c) the value of θ for which F is a minimum and (d) that 
minimum magnitude.

33 H  SSM  A 1000 kg boat is traveling at 90 km/h when its 
 engine is shut off. The magnitude of the frictional force     f 

→
    k    

between boat and water is proportional to the speed v of the boat: 
fk = 70v, where v is in meters per second and fk is in newtons. 
Find the time required for the boat to slow to 45 km/h.

34 H  GO  In Fig. 6.26, a slab of 
mass m1 = 40 kg rests on a fric-
tionless floor, and a block of mass  
m2 = 10 kg rests on top of the slab. 
Between block and slab, the coef-
ficient of static friction is 0.60, and the coefficient of kinetic fric-
tion is 0.40. A horizontal force    F 

→
    of magnitude 100 N begins to 

pull directly on the block, as shown. In unit-vector notation, what 
are the resulting accelerations of (a) the block and (b) the slab?

35 H  The two blocks (m = 16 kg 
and M = 88 kg) in Fig. 6.27 are not 
attached to each other. The coef-
ficient of static friction between 
the blocks is 𝜇s = 0.38, but the 
surface  beneath the larger block is 
frictionless. What is the minimum 
magnitude of the horizontal force    F 

→
    required to keep the smaller 

block from slipping down the larger block?

Module 6.2  The Drag Force and Terminal Speed
36 E  The terminal speed of a sky diver is 160 km/h in the spread-
eagle position and 310 km/h in the nosedive position. Assuming 
that the diver’s drag coefficient C does not change from one posi-
tion to the other, find the ratio of the effective  cross-sectional 
area A in the slower position to that in the faster position.

37 M  FCP  Continuation of Problem 8. Now assume that Eq. 
6.2.1 gives the magnitude of the air drag force on the typical  
20 kg stone, which presents to the wind a vertical cross- sectional 
area of 0.040 m2 and has a drag coefficient C of 0.80. Take 

Figure 6.26 Problem 34.

m2
m1

x
 = 0

F

μ

Frictionless

m

M
F

Figure 6.27 Problem 35.
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the air density to be 1.21 kg/m3, and the coefficient of kinetic 
 friction to be 0.80. (a) In kilometers per hour, what wind speed 
V along the ground is needed to maintain the stone’s motion 
once it has started moving? Because winds along the ground are 
retarded by the ground, the wind speeds reported for storms 
are often measured at a height of 10 m. Assume wind speeds 
are 2.00 times those along the ground. (b) For your  answer to 
(a), what wind speed would be reported for the storm? (c) Is 
that value reasonable for a high-speed wind in a storm? (Story 
continues with Problem 65.)

38 M  Assume Eq. 6.2.1 gives the drag force on a pilot plus ejec-
tion seat just after they are ejected from a plane traveling horizon-
tally at 1300 km/h. Assume also that the mass of the seat is equal 
to the mass of the pilot and that the drag coefficient is that of a sky 
diver. Making a reasonable guess of the pilot’s mass and using the  
appropriate vt value from Table 6.2.1, estimate the magnitudes 
of (a) the drag force on the pilot + seat and (b) their horizon-
tal deceleration (in terms of g), both just after ejection. (The 
result of (a) should indicate an engineering requirement: The 
seat must include a protective  barrier to deflect the initial wind 
blast away from the pilot’s head.)

39 M  Calculate the ratio of the drag force on a jet flying at 
1000 km/h at an altitude of 10 km to the drag force on a prop-
driven transport flying at half that speed and altitude. The den-
sity of air is 0.38 kg/m3 at 10 km and 0.67 kg/m3 at 5.0 km. Assume 
that the airplanes have the same effective cross- sectional area 
and drag coefficient C.

40 M  FCP  In downhill speed skiing a skier is retarded by both 
the air drag force on the body and the kinetic frictional force on 
the skis. (a) Suppose the slope angle is θ = 40.0°, the snow is dry 
snow with a coefficient of kinetic friction 𝜇k = 0.0400, the mass of 
the skier and equipment is m = 85.0 kg, the cross- sectional area of 
the (tucked) skier is A = 1.30 m2, the drag  coefficient is C = 0.150, 
and the air density is 1.20 kg/m3. (a) What is the  terminal speed? 
(b) If a skier can vary C by a slight amount dC by adjusting, say, 
the hand positions, what is the corresponding variation in the 
terminal speed?

Module 6.3  Uniform Circular Motion
41 E  A cat dozes on a stationary merry-go-round in an amuse-
ment park, at a radius of 5.4 m from the center of the ride. Then 
the operator turns on the ride and brings it up to its proper 
turning rate of one complete rotation every 6.0 s. What is the 
least coefficient of static friction between the cat and the merry-
go-round that will allow the cat to stay in place, without sliding 
(or the cat clinging with its claws)?

42 E  Suppose the coefficient of static friction between the road 
and the tires on a car is 0.60 and the car has no negative lift. 
What speed will put the car on the verge of sliding as it rounds a 
level curve of 30.5 m radius?

43 E  What is the smallest radius of an unbanked (flat) track 
around which a bicyclist can travel if her speed is 29 km/h and 
the 𝜇s between tires and track is 0.32?

44 E  During an Olympic bobsled run, the Jamaican team makes 
a turn of radius 7.6 m at a speed of 96.6 km/h. What is their 
acceleration in terms of g?

45 M  SSM  FCP  A student of weight 667 N rides a steadily 
rotating Ferris wheel (the student sits upright). At the highest 
point, the magnitude of the normal force     F 

→
    N    on the student from 

the seat is 556 N. (a) Does the student feel “light” or “heavy” 
there? (b)  What is the magnitude of     F 

→
    N    at the lowest point? 

If the wheel’s speed is doubled, what is the magnitude FN at the 
(c) highest and (d) lowest point?

46 M  A police officer in hot pursuit drives her car through a cir-
cular turn of radius 300 m with a constant speed of 80.0 km/h. 
Her mass is 55.0 kg. What are (a) the magnitude and (b) the 
angle (relative to vertical) of the net force of the officer on the 
car seat? (Hint: Consider both horizontal and vertical forces.)

47 M  FCP  A circular-motion addict of mass 80 kg rides a Fer-
ris wheel around in a vertical circle of radius 10 m at a constant 
speed of 6.1 m/s. (a) What is the period of the motion? What is 
the magnitude of the normal force on the addict from the seat 
when both go through (b) the highest point of the circular path 
and (c) the lowest point?

48 M  FCP  A roller-coaster car at an amusement park has a 
mass of 1200 kg when fully loaded with passengers. As the car 
passes over the top of a circular hill of radius 18 m, assume that 
its speed is not changing. At the top of the hill,  what are the 
(a) magnitude FN and (b) direction (up or down) of the normal 
force on the car from the track if the car’s speed is v = 11 m/s? 
What are (c) FN and (d) the  direction if v = 14 m/s? 

49 M  GO  In Fig. 6.28, a car is driven at constant speed over a 
circular hill and then into a circular valley with the same radius. 
At the top of the hill, the normal force on the driver from the car 
seat is 0. The driver’s mass is 70.0 kg. What is the magnitude of 
the normal force on the driver from the seat when the car passes 
through the bottom of the valley?

Radius

Radius

Figure 6.28 Problem 49.

50 M  CALC  An 85.0 kg passenger is made to move along a 
circular path of radius r = 3.50 m in uniform circular motion. 
(a) Figure 6.29a is a plot of the required magnitude F of the net 
centripetal force for a range of possible values of the  passenger’s 
speed v. What is the plot’s slope at v = 8.30 m/s? (b) Figure 6.29b 
is a plot of F for a range of possible values of T, the period of the 
motion. What is the plot’s slope at T = 2.50 s?

F

v

(a)

F

T
(b)

Figure 6.29 Problem 50.

51 M  SSM  An airplane is flying 
in a horizontal circle at a speed of 
480 km/h (Fig. 6.30). If its wings 
are tilted at angle θ = 40° to the 
horizontal, what is the radius of 
the circle in which the plane is 
flying? Assume that the required 
force is provided  entirely by an 
“aerodynamic lift” that is perpen-
dicular to the wing surface.

θ

Figure 6.30 Problem 51.
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52 M  FCP  An amusement park ride consists of a car moving in 
a vertical circle on the end of a rigid boom of negligible mass. 
The combined weight of the car and riders is 5.0 kN, and the 
circle’s radius is 10 m. At the top of the circle, what are the (a) 
magnitude FB and (b) direction (up or down) of the force on the 
car from the boom if the car’s speed is v = 5.0 m/s? What are (c) 
FB and (d) the direction if v = 12 m/s? 

53 M  An old streetcar rounds a flat corner of radius 9.1 m, 
at 16  km/h. What angle with the vertical will be made by the 
loosely hanging hand straps?

54 M  CALC  FCP  In designing circular rides for amusement 
parks,  mechanical engineers must consider how small variations 
in certain parameters can alter the net force on a passenger. 
Consider a passenger of mass m riding around a horizontal cir-
cle of radius r at speed v. What is the variation dF in the net 
force magnitude for (a)  a variation dr in the radius with v 
held constant, (b) a variation dv in the speed with r held  constant, 
and (c) a variation dT in the period with r held  constant? 

55 M  A bolt is threaded onto 
one end of a thin horizontal rod, 
and the rod is then rotated hori-
zontally about its other end. An 
engineer monitors the motion by 
flashing a strobe lamp onto the 
rod and bolt, adjusting the strobe 
rate until the bolt appears to be in 
the same eight places during each 
full rotation of the rod (Fig. 6.31). The strobe rate is 2000 flashes 
per second; the bolt has mass 30 g and is at radius 3.5 cm. What 
is the magnitude of the force on the bolt from the rod?

56 M  GO  A banked circular highway curve is designed for traf-
fic moving at 60 km/h. The radius of the curve is 200 m. Traffic 
is moving along the highway at 40 km/h on a rainy day. What 
is the minimum coefficient of friction between tires and road 
that will allow cars to take the turn without sliding off the road? 
(Assume the cars do not have negative lift.)

57 M  GO  A puck of mass m = 1.50 kg 
slides in a circle of radius r = 20.0 cm on 
a frictionless table while attached to a 
hanging cylinder of mass M = 2.50 kg  
by means of a cord that extends 
through a hole in the table (Fig. 6.32). 
What speed keeps the  cylinder at rest?

58 M  FCP  Brake or turn? Figure 
6.33 depicts an overhead view of a 
car’s path as the car travels toward a 
wall. Assume that the driver begins 
to brake the car when the distance to 
the wall is d = 107 m, and take the 
car’s mass as m = 1400 kg, its initial 
speed as v0 = 35 m/s, and the coeffi-
cient of static friction as 𝜇s  = 0.50. 
Assume that the car’s weight is dis-
tributed evenly on the four wheels, 
even during braking. (a) What mag-
nitude of static friction is needed 
(between tires and road) to stop the 
car just as it reaches the wall? (b) 
What is the maximum possible static 
friction fs,max? (c) If the coefficient of kinetic friction between 
the (sliding) tires and the road is 𝜇k = 0.40, at what speed will 

Strobed
positions

Bolt

Rod

Figure 6.31 Problem 55.

the car hit the wall? To avoid the crash, a driver could elect to 
turn the car so that it just barely misses the wall, as shown in 
the figure. (d) What magnitude of frictional force would be 
required to keep the car in a circular path of radius d and at 
the given speed v0, so that the car moves in a quarter circle 
and then parallel to the wall? (e) Is the required force less 
than fs,max so that a circular path is possible? 

59 H  SSM  In Fig. 6.34, a 1.34 kg ball 
is connected by means of two massless 
strings, each of length L = 1.70 m, to 
a vertical, rotating rod. The strings are 
tied to the rod with separation d = 1.70 m  
and are taut. The tension in the upper 
string is 35 N. What are the (a) tension 
in the lower string, (b) magnitude of the 
net force     F 

→
    net    on the ball, and (c) speed 

of the ball? (d)  What is the direction  
of     F 

→
    net   ?

Additional Problems
60 GO  In Fig. 6.35, a box of ant aunts (total mass m1 = 1.65 kg) 
and a box of ant uncles (total mass m2 = 3.30 kg) slide down an 
inclined plane while attached by a massless rod parallel to the 
plane. The angle of incline is θ = 30.0°. The coeffi cient of kinetic 
friction between the aunt box and the incline is 𝜇1 = 0.226; that 
between the uncle box and the incline is 𝜇2 = 0.113. Compute 
(a) the tension in the rod and (b) the magnitude of the common 
acceleration of the two boxes. (c) How would the answers to (a) 
and (b) change if the uncles trailed the aunts?

d
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L

Figure 6.34  
Problem 59.
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Figure 6.32 Problem 57.
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Figure 6.33  
Problem 58.
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θ

Figure 6.35 Problem 60.

61 SSM  A block of mass mt = 4.0 kg is put on top of a block 
of mass mb = 5.0 kg. To cause the top block to slip on the bot-
tom one while the bottom one is held fixed, a horizontal force 
of at least 12 N must be applied to the top block. The assem-
bly of  blocks is now placed on a horizontal, frictionless table 
(Fig. 6.36). Find the magnitudes of (a) the maximum horizon-
tal force    F 

→
    that can be applied to the lower block so that the 

blocks will move together and (b) the resulting acceleration of 
the blocks.

mt

Fmb

Figure 6.36 Problem 61.

62  A 5.00 kg stone is rubbed across the horizontal ceiling of a 
cave passageway (Fig. 6.37). If the coefficient of kinetic friction 
is 0.65 and the force applied to the stone is angled at θ = 70.0°, 
what must the magnitude of the force be for the stone to move at 
constant velocity?
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63 BIO  FCP  In Fig. 6.38, a 49 kg rock climber is climbing a 
“chimney.” The coefficient of static friction between her shoes 
and the rock is 1.2; between her back and the rock is 0.80. She 
has reduced her push against the rock until her back and her 
shoes are on the verge of slipping. (a) Draw a free-body  diagram 
of her. (b) What is the magnitude of her push against the rock? 
(c) What fraction of her weight is supported by the frictional 
force on her shoes?

67  In Fig. 6.40, a crate slides down an inclined right-angled 
trough. The coefficient of kinetic friction between the crate and 
the trough is 𝜇k. What is the acceleration of the crate in terms 
of 𝜇k, θ, and g?

Stone

F

θ

Figure 6.37 Problem 62.

Figure 6.38 Problem 63.

m1

m2

θ

Figure 6.39 Problem 66.

64  A high-speed railway car goes around a flat, horizontal cir-
cle of radius 470 m at a constant speed. The magnitudes of the 
horizontal and vertical components of the force of the car on a 
51.0 kg passenger are 210 N and 500 N, respectively. (a) What 
is the magnitude of the net force (of all the forces) on the pas-
senger? (b) What is the speed of the car?

65 FCP  Continuation of Problems 8 and 37. Another explana-
tion is that the stones move only when the water dumped on 
the playa during a storm freezes into a large, thin sheet of ice. 
The stones are trapped in place in the ice. Then, as air flows 
across the ice during a wind, the air-drag forces on the ice and 
stones move them both, with the stones gouging out the trails. 
The magnitude of the air-drag force on this horizontal “ice sail” 
is given by Dice = 4Cice𝜌Aicev

2, where Cice is the drag coefficient 
(2.0 × 10−3), 𝜌 is the air density (1.21 kg/m3), Aice is the horizon-
tal area of the ice, and v is the wind speed along the ice.

Assume the following: The ice sheet measures 400 m by  
500 m by 4.0 mm and has a coefficient of kinetic friction of 0.10 
with the ground and a density of 917 kg/m3. Also assume that 
100 stones identical to the one in Problem 8 are trapped in the 
ice. To maintain the motion of the sheet, what are the  required 
wind speeds (a)  near the sheet and (b) at a height of 10 m?  
(c) Are these reasonable values for high-speed winds in a storm?

66 GO  In Fig. 6.39, block 1 of mass m1 = 2.0 kg and block 2 
of mass m2 = 3.0 kg are connected by a string of negligible mass 
and are initially held in place. Block 2 is on a frictionless  surface 
tilted at θ = 30°. The coefficient of kinetic friction  between block 
1 and the horizontal surface is 0.25. The pulley has negligible 
mass and friction. Once they are released, the blocks move. 
What then is the tension in the string?

90°

θ

Figure 6.40 Problem 67.

68  Engineering a highway curve. If a car goes through a curve too 
fast, the car tends to slide out of the curve. For a banked curve with 
friction, a frictional force acts on a fast car to oppose the tendency 
to slide out of the curve; the force is directed down the bank (in the 
direction water would drain). Consider a circular curve of radius  
R = 200 m and bank angle θ, where the coefficient of static fric-
tion between tires and pavement is 𝜇s. A car (without nega-
tive lift) is driven around the curve. (a) Find an expression 
for the car speed vmax that puts the car on the verge of sliding 
out. (b)  On the same graph, plot vmax versus angle θ for the 
range 0° to 50°, first for 𝜇s = 0.60 (dry pavement) and then for 
𝜇s = 0.050 (wet or icy pavement). In kilometers per hour, evaluate 
vmax for a bank angle of θ = 10° and for (c) 𝜇s = 0.60 and (d) 𝜇s =  
0.050. (Now you can see why accidents occur in highway curves 
when icy conditions are not obvi-
ous to drivers, who tend to drive 
at normal speeds.)

69  A student, crazed by final 
exams, uses a force    P 

→
    of magni-

tude 80 N and angle θ = 70° to 
push a 5.0 kg block across the 
ceiling of his room (Fig. 6.41). If 
the coefficient of kinetic  friction 
between the block and the ceiling 
is 0.40, what is the magnitude of 
the block’s acceleration?

70 GO  Figure 6.42 shows a coni-
cal pendulum, in which the bob 
(the small object at the lower end 
of the cord) moves in a horizon-
tal circle at constant speed. (The 
cord sweeps out a cone as the bob 
rotates.) The bob has a mass of 
0.040 kg, the string has length L =  
0.90 m and negligible mass, and 
the bob follows a circular path of 
circumference 0.94 m. What are 
(a) the tension in the string and 
(b) the period of the motion?

P

θ

Figure 6.41 Problem 69.

L

Bob

Cord

r

Figure 6.42 Problem 70.
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71  An 8.00 kg block of steel is at rest on a horizontal table. 
The coefficient of static friction between the block and the 
table is 0.450. A force is to be applied to the block. To three sig-
nificant figures, what is the magnitude of that applied force if it 
puts the block on the verge of sliding when the force is  directed 
(a) horizontally, (b) upward at 60.0° from the horizontal, and 
(c) downward at 60.0° from the horizontal?

72  A box of canned goods slides down a ramp from street level 
into the basement of a grocery store with acceleration 0.75 m/s2 
directed down the ramp. The ramp makes an angle of 40° with 
the horizontal. What is the coefficient of kinetic friction between 
the box and the ramp?

73  In Fig. 6.43, the coefficient of kinetic fric-
tion between the block and inclined plane is 0.20, 
and angle θ is 60°. What are the (a) magnitude a 
and (b) direction (up or down the plane) of the 
block’s acceleration if the block is sliding down 
the plane? What are (c) a and (d) the direction if 
the block is sent sliding up the plane?

74  A 110 g hockey puck sent sliding over ice is stopped in 15 m 
by the frictional force on it from the ice. (a) If its initial speed is 
6.0 m/s, what is the magnitude of the frictional force? (b) What is 
the coefficient of friction between the puck and the ice?

75  A locomotive accelerates a 25-car train along a level track. 
Every car has a mass of 5.0 × 104 kg and is subject to a frictional 
force f = 250v, where the speed v is in meters per second and the 
force f is in newtons. At the instant when the speed of the train is 
30 km/h, the magnitude of its acceleration is 0.20 m/s2. (a) What 
is  the tension in the coupling between the first car and the  
locomotive? (b) If this tension is equal to the maximum force 
the locomotive can exert on the train, what is the steepest grade 
up which the locomotive can pull the train at 30 km/h?

76  A house is built on the top of a hill with a nearby slope at angle  
θ = 45° (Fig. 6.44). An engineering study indicates that the slope 
angle should be reduced because the top layers of soil along the 
slope might slip past the lower layers. If the  coefficient of static 
friction between two such layers is 0.5, what is the least angle ϕ 
through which the present slope should be reduced to prevent 
slippage?

θ

Figure 6.43  
Problem 73.

the plank. When the angle of inclination with the horizontal 
reaches 30°, the box starts to slip, and it then slides 2.5 m down 
the plank in 4.0 s at constant acceleration. What are (a) the 
 coefficient of static friction and (b) the coefficient of kinetic 
friction between the box and the plank?

79 SSM  Block A in Fig. 6.45 has mass mA = 4.0 kg, and block B 
has mass mB = 2.0 kg. The coefficient of kinetic friction  between 
block B and the horizontal plane is 𝜇k = 0.50. The  inclined plane 
is frictionless and at angle θ = 30°. The pulley serves only to 
change the direction of the cord connecting the blocks. The cord 
has negligible mass. Find (a) the tension in the cord and (b) the 
magnitude of the acceleration of the blocks.

New slope

Original slope

θ

ϕ

Figure 6.44 Problem 76.

77  What is the terminal speed of a 6.00 kg spherical ball that 
has a radius of 3.00 cm and a drag coefficient of 1.60? The den-
sity of the air through which the ball falls is 1.20 kg/m3.

78  A student wants to determine the coefficients of static 
friction and kinetic friction between a box and a plank. She 
places the box on the plank and gradually raises one end of 

Frictionless,
massless pulley mB

mA
A

B

θ

μk

Figure 6.45 Problem 79.

80  Calculate the magnitude of the drag force on a missile 
53 cm in diameter cruising at 250 m/s at low altitude, where the 
density of air is 1.2 kg/m3. Assume C = 0.75.

81 SSM  A bicyclist travels in a circle of radius 25.0 m at a con-
stant speed of 9.00 m/s. The bicycle–rider mass is 85.0 kg. Calcu-
late the magnitudes of (a) the force of friction on the  bicycle 
from the road and (b) the net force on the bicycle from the road.

82  In Fig. 6.46, a stuntman 
drives a car (without negative lift) 
over the top of a hill, the cross sec-
tion of which can be  approximated 
by a circle of radius R = 250 m. 
What is the greatest speed at 
which he can drive without the car leaving the road at the top of  
the hill?

83  You must push a crate across a floor to a docking bay. The 
crate weighs 165 N. The coefficient of static friction  between 
crate and floor is 0.510, and the coefficient of kinetic friction is 
0.32. Your force on the crate is directed horizontally. (a) What 
magnitude of your push puts the crate on the verge of sliding? 
(b) With what magnitude must you then push to keep the crate 
moving at a constant velocity? (c) If, instead, you then push 
with the same magnitude as the answer to (a), what is the mag-
nitude of the crate’s acceleration?

84  In Fig. 6.47, force   F 
→

    is 
applied to a crate of mass m on 
a floor where the coefficient of 
static friction between crate and 
floor is 𝜇s. Angle θ is initially 0° 
but is gradually increased so that 
the force vector rotates clockwise 
in the figure. During the rotation, the magnitude F of the force 
is continuously  adjusted so that the crate is always on the verge 
of sliding. For 𝜇s = 0.70, (a) plot the ratio F/mg versus θ and  
(b) determine the angle θinf at which the ratio approaches an 
infinite value. (c) Does lubricating the floor increase or decrease 
θinf, or is the value unchanged? (d) What is θinf for 𝜇s = 0.60?

R

Figure 6.46 Problem 82.

y

x

F

θ

Figure 6.47 Problem 84.
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85  In the early afternoon, a car is parked on a street that runs 
down a steep hill, at an angle of 35.0° relative to the horizontal. 
Just then the coefficient of static friction between the tires and 
the street surface is 0.725. Later, after nightfall, a sleet storm hits 
the area, and the coefficient decreases due to both the ice and a 
chemical change in the road surface  because of the temperature 
decrease. By what percentage must the coefficient decrease if 
the car is to be in danger of sliding down the street?

86 FCP  A sling-thrower puts a stone (0.250 kg) in the sling’s 
pouch (0.010 kg) and then begins to make the stone and pouch 
move in a vertical circle of radius 0.650 m. The cord  between 
the pouch and the person’s hand has negligible mass and will 
break when the tension in the cord is 33.0 N or more. Suppose 
the sling-thrower can gradually increase the speed of the stone. 
(a) Will the breaking occur at the lowest point of the circle or 
at the highest point? (b) At what speed of the stone will that  
breaking occur?

87 SSM  A car weighing 10.7 kN and traveling at 13.4 m/s with-
out negative lift attempts to round an unbanked curve with a 
 radius of 61.0 m. (a) What magnitude of the frictional force on 
the tires is required to keep the car on its circular path? (b) If the 
coefficient of static friction between the tires and the road is 
0.350, is the attempt at taking the curve successful?

88  In Fig. 6.48, block 1 of mass 
m1 = 2.0 kg and block 2 of mass 
m2 = 1.0 kg are connected by a 
string of negligible mass.  Block 
2 is pushed by force    F 

→
    of magni-

tude 20 N and  angle θ = 35°. The 
coefficient of kinetic friction between each block and the hori-
zontal surface is 0.20. What is the tension in the string?

89 SSM  A filing cabinet weighing 556 N rests on the floor. The 
 coefficient of static friction between it and the floor is 0.68, and 
the coefficient of kinetic friction is 0.56. In four different 
attempts to move it, it is pushed with horizontal forces of magni-
tudes (a) 222 N, (b) 334 N, (c) 445 N, and (d) 556 N. For each 
attempt, calculate the magnitude of the frictional force on it 
from the floor. (The cabinet is initially at rest.) (e) In which of 
the attempts does the cabinet move?

90  In Fig. 6.49, a block weighing 22 N is held 
at rest against a vertical wall by a horizontal 
force    F 

→
    of magnitude 60 N. The coefficient of 

static friction between the wall and the block 
is  0.55, and the coefficient of kinetic friction 
between them is 0.38. In six experiments, a sec-
ond force    P 

→
    is applied to the block and directed 

parallel to the wall with these magnitudes and 
directions: (a) 34 N, up, (b) 12 N, up, (c) 48 N, up,  
(d) 62 N, up, (e) 10 N, down, and (f) 18 N, down. 
In each experiment, what is the magnitude of the frictional 
force on the block? In which does the block move (g) up the 
wall and (h) down the wall? (i) In which is the frictional force 
directed down the wall?

91  Down and up. (a) Let an x axis extend up a plane inclined 
at angle θ = 60° with the horizontal. What is the acceleration 
of a block sliding down the plane if the coefficient of kinetic 
friction between the block and plane is 0.20? (b) What is the 

F

m1 m2

θ

Figure 6.48 Problem 88.

F

Figure 6.49  
Problem 90.

acceleration if the block is given an upward shove and is still 
sliding up the slope?

92  Airport luggage. In an airport, luggage is transported from 
one location to another by a conveyor belt. At a certain loca-
tion, the belt moves down an incline that makes an angle of 2.5° 
with the horizontal. Assume that with such a slight angle there 
is no slipping of the luggage and that an x axis extends up the 
incline. Determine the frictional force from the belt on a box 
with weight 69 N when the box is on that incline for the fol-
lowing situations: (a) The belt is stationary. (b) The belt has a 
constant speed of 0.65 m/s. (c) The belt has a speed of 0.65 m/s 
that is increasing at a rate of 0.20 m/s2. (d) The belt has a speed 
of 0.65 m/s that is decreasing at a rate of 0.20 m/s2. (e) The belt 
has a speed of 0.65 m/s that is increasing at a rate of 0.57 m/s2. 

93  How far? A block slides down an inclined plane of slope 
angle θ with a constant velocity. It is then projected up the plane 
with an initial speed v0. (a) How far up the plane will it move 
before coming to rest? (b) Will it slide down again?

94  Turntable candy. An M&M candy piece is placed on a sta-
tionary turntable, at a distance of 6.6 cm from the center. Then 
the turntable is turned on and its turning rate adjusted so that 
it makes 2.00 full turns in 2.45 s. The candy rides the turntable 
without slipping. (a) What is the magnitude of its acceleration? 
(b) If the turntable rate is gradually increased to 2.00 full turns 
every 1.80 s, the candy piece then begins to slide. What is the 
coefficient of static friction between it and the turntable?

95  Circling the Galaxy. The Solar System is moving along an 
approximately circular path of radius  2.5 ×  10  4   ly  (light-years) 
around the center of the Milky Way Galaxy with a speed of 205 
km/s. (a) In years, what is the period of the circling? (b) The 
mass of the Solar System is approximately equal to the mass of 
the Sun  (1.99 ×  10  30   kg) . What is the magnitude of the centrip-
etal force on the Solar System in the circling?

96 BIO  Icy curb ramps. Slipping and falling while walking on an 
icy surface is a very common occurrence in winter weather. The 
danger comes when a person steps forward because then the full 
weight is over only the rear foot while that foot pushes back-
ward. The static coefficient of friction of a common shoe (flat 
shoe or pump) on ice is μs = 0.050. Let the person’s mass be m =  
70 kg. (a) On a level surface, what magnitude F of the horizon-
tal backward push puts the person on the verge of slipping?  
(b) Most urban communities require curb ramps (Fig. 6.50) so 
that wheelchairs can travel between sidewalk and street. The 
common allowed slope is for a rise of 1 distance unit to a (hori-
zontal) length of 12 distance units, which gives a slope of 8.33%. 
If the person attempted to stand on such a ramp that is covered 
with ice, what would be the magnitude of the component of 
the gravitational force on the person down the ramp? (c) What 
would be the maximum magnitude of the static frictional force 
up the ramp? (d) Can the person stand like that without slipping 
(or walk up the ramp)? (e) What is the maximum angle θverge of 
a ramp such that the person is on the verge of slipping? (f) Some 
brands of winter footwear allow a person to walk up a ramp that 
is at the maximum allowed angle of 7.0° without slipping. If the 
backward force magnitude that puts the person on the verge of 
slipping is 34 N, what is the coefficient of static friction between 
the footwear and the ice?
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Figure 6.50 Problem 96.

97  Braking distance in snow. You are driving at 60 mi/h  
(= 26.8 m/s). Assume that you then brake at a constant accelera-
tion with the maximum static friction on the tires from the road-
way (no sliding). What is your minimum braking distance if the 
coefficient of static friction μs is (a) 0.70 for dry asphalt, (b) 0.30  
for a snow layer of depth 2.5 mm, and (c) 0.15 for a snow layer 
of a depth 3.20 cm? (The lesson here is simple: Slow down when 
driving in snow.)

98 BIO  Rock climbing chalk. Many rock climbers, whether 
outdoors or in a gym, periodically dip their fingers into a chalk 
bag hanging from the back of their belt to coat their fingers 
(Fig. 6.51a). (The chalk is magnesium carbonate, not classroom 
chalk.) Climbers claim that the chalk dries their fingers from 
sweat, allowing better grips on the holds but other climbers 
doubt that effect. In a research experiment, experienced climb-
ers supported their weight on a hang bar, something commonly 
used in training. However, this hang bar could be tilted (Fig. 
6.51b). On its wood support, researchers attached a stone plate 
from which a climber would hang by one hand, and then the 
researchers increased the tilt angle θ until the climber slipped 
off. From the slip angle θslip we can calculate the coefficient of 
static friction μs between the fingers and the stone plate. What 
is μs for limestone when θslip is (a) 32.6° for unchalked fingers 
and (b) 37.2° for chalked fingers? What is μs for sandstone 
when θslip is (a) 36.5° for unchalked fingers and (b) 41.9° for 
chalked fingers? 
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Wood plate
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Figure 6.51 Problem 98. (a) Chalk used in rock climbing.  
(b) Hang bar arrangement.

99  Sliding down a ski slope on your back. Suppose you fall off 
your skis while skiing down a uniform slope at a moderate speed 
of 12 m/s. If you are wearing common ski overalls and land on 
your back, the coefficient of kinetic friction between the overalls 
and the snow is 0.25. Assume an x axis extends up the slope. 
What is your velocity along the axis when you hit a tree after 
sliding for 7.0 s if you are on (a) a blue slope (for beginners) at 
slope angle 12°, (b) a red slope at angle 18°, and (c) a black slope 
at angle 25°? (d) If you avoid all obstacles, on which slope will 
you slide to a stop and how far will that take?

100  Car on an icy hill—destined for YouTube video. Some of 
the funniest videos on YouTube show cars in uncontrolled slides 
on icy roads, especially icy hills. Here is an example of such a 
slide. A car with an initial speed v0 = 10.0 m/s slides down a long 
icy road with an inclination of θ = 5.00° (a mild incline, nothing 
like the hills of San Francisco). The coefficient of kinetic friction 
between the tires and the ice is μk = 0.10. How far does the car 
take to slide to a stop if we assume that it does not hit anything 
along the way?

101  Controlled platoon of cars. A platoon of cars moves 
along a road under computer control with uniform spacings and 
equal speeds that are set by a dynamic system that monitors the 
weather road conditions. It determines the speed for a given 
spacing such that, in an emergency, each car would stop just as 
it reached the car in front of it. The coefficient of static friction 
μs is 0.700 for dry asphalt and 0.300 for rain-wetted asphalt. The 
cars each have length L = 4.50 m. What should the controlled 
speed be (meters per second, miles per hour, and kilometers per 
hour) if the bumper–bumper spacing is 2L for (a) dry asphalt 
and (b) wet asphalt? What should it be if the spacing is 5L for 
(a) dry asphalt and (b) wet asphalt?
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7.1 KINETIC ENERGY
Learning Objectives 
After reading this module, you should be able to . . .

7.1.1 Apply the relationship between a particle’s kinetic 
energy, mass, and speed.

7.1.2 Identify that kinetic energy is a scalar quantity.

Key Idea 
● The kinetic energy K associated with the motion of a particle of mass m and speed v, where v is well  below the speed of 
light, is

 K =   1 _ 2   m v   2   (kinetic energy).

What Is Physics?
One of the fundamental goals of physics is to investigate something that everyone 
talks about: energy. The topic is obviously important. Indeed, our civilization is 
based on acquiring and effectively using energy.

For example, everyone knows that any type of motion requires energy: Flying 
across the Pacific Ocean requires it. Lifting material to the top floor of an office 
building or to an orbiting space station requires it. Throwing a fastball  requires 
it. We spend a tremendous amount of money to acquire and use  energy. Wars 
have been started because of energy resources. Wars have been ended  because 
of a sudden, overpowering use of energy by one side. Everyone knows many 
examples of energy and its use, but what does the term energy  really mean?

What Is Energy?
The term energy is so broad that a clear definition is difficult to write. Techni-
cally, energy is a scalar quantity associated with the state (or condition) of one or 
more objects. However, this definition is too vague to be of help to us now.

A looser definition might at least get us started. Energy is a number that 
we associate with a system of one or more objects. If a force changes one of the 
 objects by, say, making it move, then the energy number changes. After count-
less experiments, scientists and engineers realized that if the scheme by which we 
 assign energy numbers is planned carefully, the numbers can be used to predict 
the outcomes of experiments and, even more important, to build machines, such 
as flying machines. This success is based on a wonderful property of our universe: 
Energy can be transformed from one type to another and transferred from one 
object to another, but the total amount is always the same (energy is conserved). 
No exception to this principle of energy conservation has ever been found.

C H A P T E R  7

Kinetic Energy and Work
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1577.1 Kinetic energy

Money. Think of the many types of energy as being numbers representing 
money in many types of bank accounts. Rules have been made about what such 
money numbers mean and how they can be changed. You can transfer money 
 numbers from one account to another or from one system to another, perhaps 
 electronically with nothing material actually moving. However, the total amount 
(the  total of all the money numbers) can always be accounted for: It is always 
 conserved. In this chapter we focus on only one type of energy (kinetic energy) 
and on only one way in which energy can be transferred (work). 

Kinetic Energy
Kinetic energy K is energy associated with the state of motion of an object. The 
faster the object moves, the greater is its kinetic energy. When the object is 
 stationary, its kinetic energy is zero.

For an object of mass m whose speed v is well below the speed of light,

  K =   1 _ 2   m v   2   (kinetic energy). (7.1.1)

For example, a 3.0 kg duck flying past us at 2.0 m/s has a kinetic energy of 
6.0 kg ⋅ m2/s2; that is, we associate that number with the duck’s motion.

The SI unit of kinetic energy (and all types of energy) is the joule (J), named 
for James Prescott Joule, an English scientist of the 1800s, and  defined  as

 1 joule = 1 J = 1 kg ⋅ m2/s2. (7.1.2)

Thus, the flying duck has a kinetic energy of 6.0 J.

Checkpoint 7.1.1
The speed of a car (treat it as being a particle) increases from 5.0 m/s to 15.0 m/s. 
What is the ratio of the final kinetic energy Kf to the initial kinetic energy Ki?

Sample Problem 7.1.1 Kinetic energy, train crash

In 1896 in Waco, Texas, William Crush parked two loco-
motives at opposite ends of a 6.4-km-long track, fired 
them up, tied their throttles open, and then allowed them 
to crash head-on at full speed (Fig. 7.1.1) in front of 30,000 
spectators. Hundreds of people were hurt by  flying debris; 
several were killed. Assuming each locomotive weighed 
1.2 × 106 N and its acceleration was a constant 0.26 m/s2, 
what was the total  kinetic energy of the two locomotives 
just before the  collision? FCP

KEY IDEAS

(1) We need to find the kinetic energy of each locomotive 
with Eq. 7.1.1, but that means we need each  locomotive’s 
speed just before the collision and its mass. (2) Because 
we can assume each locomotive had constant  acceleration, 
we can use the equations in Table 2.1.1 to find its speed v 
just before the collision. 

Figure 7.1.1 The aftermath of an 1896 crash of two 
locomotives.

Courtesy Library of Congress
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158 cHAPter 7 Kinetic energy And WorK

Calculations: We choose Eq. 2.4.6 because we know 
 values for all the variables except v:

  v   2  =  v 0  2  + 2a(x −  x  0  ). 

With v0 = 0 and x − x0 = 3.2 × 103 m (half the initial sepa-
ration), this yields

 v2 = 0 + 2(0.26 m/s2)(3.2 × 103 m),

or v = 40.8 m/s = 147 km/h.

We can find the mass of each  locomotive by dividing 
its given weight by g:

 m =   1.2 ×  10  6  N __________ 
9.8  m/s  2 

   = 1.22 ×  10  5  kg. 

Now, using Eq. 7.1.1, we find the total kinetic energy 
of the two locomotives just before the collision as

 K = 2(  1 _ 2   m v   2 ) = (1.22 ×  10  5  kg)  (40.8 m/s)  2  

 = 2.0 ×  10  8  J. (Answer)

This collision was like an  exploding bomb.

7.2 WORK AND KINETIC ENERGY
Learning Objectives 
After reading this module, you should be able to . . .

7.2.1 Apply the relationship between a force (magnitude 
and direction) and the work done on a particle by the 
force when the particle undergoes a displacement.

7.2.2 Calculate work by taking a dot product of the 
force vector and the displacement vector, in either 
 magnitude-angle or unit-vector notation.

7.2.3 If multiple forces act on a particle, calculate the 
net work done by them.

7.2.4 Apply the work–kinetic energy theorem to relate 
the work done by a force (or the net work done by 
multiple forces) and the resulting change in kinetic 
energy.

Key Ideas 
● Work W is energy transferred to or from an object via 
a force acting on the object. Energy transferred to the 
 object is positive work, and from the object, negative 
work.

● The work done on a particle by a constant force    F 
→

    dur-
ing displacement    d 

→
    is

 W = Fd cos  ϕ =  F 
→

   ⋅   d 
→

   (work, constant force),

in which ϕ is the constant angle between the directions 
of    F 

→
    and    d 

→
   .

● Only the component of    F 
→

    that is along the displace-
ment    d 

→
    can do work on the object. 

● When two or more forces act on an object, their 
net work is the sum of the individual works done by 
the forces, which is also equal to the work that would 
be done on the object by the net force     F 

→
    net    of those 

forces.

● For a particle, a change ΔK in the kinetic energy 
equals the net work W done on the particle:

ΔK = Kf − Ki = W (work–kinetic energy theorem),

in which Ki is the initial kinetic energy of the particle 
and Kf is the kinetic energy after the work is done. The 
equation  rearranged gives us

Kf = Ki + W.

Work
If you accelerate an object to a greater speed by applying a force to the object, you 
increase the kinetic energy  K (=   1 _ 2   m v   2 )  of the object. Similarly, if you decelerate 
the object to a lesser speed by applying a force, you decrease the kinetic  energy 
of the object. We account for these changes in kinetic energy by saying that your 
force has transferred energy to the object from yourself or from the  object to 

Additional examples, video, and practice available at WileyPLUS
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1597.2 WorK And Kinetic energy

yourself. In such a transfer of energy via a force, work W is said to be done on the 
 object by the force. More formally, we define work as follows:

 Work W is energy transferred to or from an object by means of a force acting on 
the object. Energy transferred to the object is positive work, and energy trans-
ferred from the object is negative work.

“Work,” then, is transferred energy; “doing work” is the act of transferring the 
 energy.  Work has the same units as energy and is a scalar quantity.

The term transfer can be misleading. It does not mean that anything mate-
rial flows into or out of the object; that is, the transfer is not like a flow of water. 
Rather, it is like the electronic transfer of money between two bank accounts: 
The number in one account goes up while the number in the other account goes 
down, with nothing material passing between the two accounts.

Note that we are not concerned here with the common meaning of the word 
“work,” which implies that any physical or mental labor is work. For example, 
if you push hard against a wall, you tire because of the continuously repeated 
muscle contractions that are required, and you are, in the common sense, work-
ing. However, such effort does not cause an energy transfer to or from the wall 
and thus is not work done on the wall as defined here.

To avoid confusion in this chapter, we shall use the symbol W only for work 
and shall represent a weight with its equivalent mg.

Work and Kinetic Energy
Finding an Expression for Work
Let us find an expression for work by considering a bead that can slide along 
a frictionless wire that is stretched along a horizontal x axis (Fig. 7.2.1). A con-
stant force    F 

→
   , directed at an angle ϕ to the wire, accelerates the bead along the 

wire. We  can relate the force and the acceleration with Newton’s second law, 
written for components along the x axis:

 Fx = max, (7.2.1)

where m is the bead’s mass. As the bead moves through a displacement    d 
→

   , the 
force changes the bead’s velocity from an initial value     v →    0    to some other value    v →   .  
Because the force is constant, we know that the acceleration is also constant. 
Thus, we can use Eq. 2.4.6 to write, for components along the x axis,

    v   2  =  v 0  2  + 2 a  x  d.   (7.2.2)

Solving this equation for ax, substituting into Eq. 7.2.1, and rearranging then  
give us

     1 _ 2   m v   2  −   1 _ 2   m v 0  2  =  F  x  d.   (7.2.3)

The first term is the kinetic energy Kf of the bead at the end of the displacement 
d, and the second term is the kinetic energy Ki of the bead at the start. Thus, the 
left side of Eq. 7.2.3 tells us the kinetic energy has been changed by the force, and 
the right side tells us the change is equal to Fxd. Therefore, the work W done on 
the bead by the force (the energy transfer due to the force) is

 W = Fxd. (7.2.4)

If we know values for Fx and d, we can use this equation to calculate the work W. 

 To calculate the work a force does on an object as the object moves through some 
displacement, we use only the force component along the object’s displacement. 
The force component perpendicular to the displacement does zero work.
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160 cHAPter 7 Kinetic energy And WorK

From Fig. 7.2.1, we see that we can write Fx as F cos ϕ, where ϕ is the angle 
 between the directions of the displacement    d 

→
    and the force    F 

→
   . Thus,

 W = Fd cos ϕ (work done by a constant force). (7.2.5)

We can use the definition of the scalar (dot) product (Eq. 3.3.1) to write

  W =   F 
→

   ⋅   d 
→

     (work done by a constant force), (7.2.6)

where F is the magnitude of    F 
→

   . (You may wish to review the discussion of  scalar 
products in Module 3.3.) Equation 7.2.6 is especially useful for calculating the 
work when    F 

→
    and    d 

→
    are given in unit-vector notation.

Cautions. There are two restrictions to using Eqs. 7.2.4 through 7.2.6 to cal-
culate work done on an object by a force. First, the force must be a constant 
force; that is, it must not change in magnitude or direction as the object moves. 
(Later, we shall discuss what to do with a variable force that changes in magni-
tude.) Second, the object must be particle-like. This means that the object must 
be rigid; all parts of it must move together, in the same direction. In this chapter 
we consider only particle-like objects, such as the bed and its occupant being 
pushed in Fig. 7.2.2.

Signs for Work. The work done on an object by a force can be either positive 
work or negative work. For example, if angle ϕ in Eq. 7.2.5 is less than 90°, then cos ϕ 
is positive and thus so is the work. However, if ϕ is greater than 90° (up to 180°), then 
cos ϕ is  negative and thus so is the work. (Can you see that the work is zero when 
ϕ = 90°?) These results lead to a simple rule. To find the sign of the work done by a 
force, consider the force vector component that is parallel to the  displacement:

 A force does positive work when it has a vector component in the same direction 
as the displacement, and it does negative work when it has a vector component in 
the opposite direction. It does zero work when it has no such vector component.

Units for Work. Work has the SI unit of the joule, the same as kinetic 
energy. However, from Eqs. 7.2.4 and 7.2.5 we can see that an equivalent unit 

Figure 7.2.2 A contestant in a bed 
race. We can approximate the bed 
and its occupant as  being a particle 
for the purpose of calculating the 
work done on them by the force 
applied by the contestant.

F

Figure 7.2.1 A constant force    F 
→

    directed at angle ϕ to 
the displacement    d 

→
    of a bead on a wire accelerates the 

bead along the wire, changing the velocity of the bead 
from     v →    0    to    v →   . A “kinetic energy gauge” indicates the 
resulting change in the kinetic energy of the bead, from 
the value Ki to the value Kf.  
In WileyPLUS, this figure is available as an  animation 
with voiceover.
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1617.2 WorK And Kinetic energy

is the newton-meter (N ⋅ m). The corresponding unit in the British system is the 
foot-pound (ft ⋅ lb). Extending Eq. 7.1.2, we have

 1 J = 1 kg · m2/s2 = 1 N · m = 0.738 ft · lb. (7.2.7)

Net Work. When two or more forces act on an object, the net work done 
on the object is the sum of the works done by the individual forces. We can 
 calculate the net work in two ways. (1) We can find the work done by each force 
and then sum those works. (2) Alternatively, we can first find the net force     F 

→
    net    

of those forces. Then we can use Eq. 7.2.5, substituting the magnitude Fnet for F 
and also the angle between the directions of     F 

→
    net    and    d 

→
    for ϕ. Similarly, we can use 

Eq. 7.2.6 with     F 
→

    net    substituted for    F 
→

   .

Work–Kinetic Energy Theorem
Equation 7.2.3 relates the change in kinetic energy of the bead (from an initial   K  i   =  
  1 _ 2   m v 0  

2   to a later   K  f   =   1 _ 2   m v   2  ) to the work W (= Fxd) done on the bead. For such 
particle-like objects, we can generalize that equation. Let ΔK be the change in 
the kinetic energy of the object, and let W be the net work done on it. Then 

 ΔK = Kf − Ki = W, (7.2.8)

which says that

  (
 change in the kinetic   
energy of a particle

  
)  =  ( 

net work done on
   the particle  ) . 

We can also write

 Kf = Ki + W, (7.2.9)

which says that

  (  
kinetic energy after

   
the net work is done

 )  =  (  
kinetic energy

   
before the net work

 )  +  (  
the net

  
work done

 ) . 

These statements are known traditionally as the work–kinetic energy theorem  
for particles. They hold for both positive and negative work: If the net work done 
on a particle is positive, then the particle’s kinetic energy increases by the amount 
of the work. If the net work done is negative, then the particle’s kinetic energy 
 decreases by the amount of the work.

For example, if the kinetic energy of a particle is initially 5 J and there is a 
net transfer of 2 J to the particle (positive net work), the final kinetic energy is 
7 J. If, instead, there is a net transfer of 2 J from the particle (negative net work), 
the final kinetic energy is 3 J.

Checkpoint 7.2.1
A particle moves along an x axis. Does the kinetic energy of the particle increase, 
decrease, or remain the same if the particle’s velocity changes (a) from −3 m/s to 
−2 m/s and (b) from −2 m/s to 2 m/s? (c) In each situation, is the work done on the 
particle positive, negative, or zero?

Sample Problem 7.2.1 Work done by two constant forces, industrial spies

Figure 7.2.3a shows two industrial spies sliding an initially 
 stationary 225 kg floor safe a displacement    d 

→
    of magni-

tude 8.50 m. The push     F 
→

    1    of spy 001 is 12.0 N at an angle 
of 30.0° downward from the horizontal; the pull     F 

→
    2    of spy 

002 is 10.0 N at 40.0° above the  horizontal. The magnitudes 

and directions of these forces do not change as the safe 
moves, and the floor and safe make  frictionless contact.

(a) What is the net work done on the safe by forces     F 
→

    1    
and     F 

→
    2    during the displacement    d 

→
   ?
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162 cHAPter 7 Kinetic energy And WorK

KEY IDEAS

(1) The net work W done on the safe by the two forces is 
the sum of the works they do individually. (2) Because we 
can treat the safe as a  particle and the forces are constant 
in both magnitude and  direction, we can use either Eq. 
7.2.5 (W = Fd cos ϕ) or Eq. 7.2.6  (W =   F 

→
   ⋅   d 

→
  )  to calculate 

those works. Let’s choose Eq. 7.2.5. 

Calculations: From Eq. 7.2.5 and the free-body diagram 
for the safe in Fig. 7.2.3b, the work done by     F 

→
    1    is

 W1 = F1d cos ϕ1 = (12.0 N)(8.50 m)(cos 30.0°)

 = 88.33 J,

and the work done by     F 
→

    2    is

 W2 = F2d cos ϕ2 = (10.0 N)(8.50 m)(cos 40.0°)

 = 65.11 J.

Thus, the net work W is

 W = W1 + W2 = 88.33 J + 65.11 J

 = 153.4 J ≈ 153 J. (Answer)

During the 8.50 m displacement, therefore, the spies 
transfer 153 J of energy to the kinetic energy of the safe.

(b) During the displacement, what is the work Wg done on 
the safe by the gravitational force     F 

→
    g    and what is the work 

WN done on the safe by the normal force     F 
→

    N    from the floor?

KEY IDEA

Because these forces are  constant in both magnitude and 
direction, we can find the work they do with Eq. 7.2.5.

Calculations: Thus, with mg as the magnitude of the 
gravitational force, we write

 Wg = mgd cos 90° = mgd(0) = 0 (Answer)

and WN = FNd cos 90° = FNd(0) = 0. (Answer)

We should have known this result. Because these forces 
are perpendicular to the displacement of the safe, they do 
zero work on the safe and do not transfer any energy to or 
from it.

(c) The safe is initially stationary. What is its speed vf at 
the end of the 8.50 m displacement?

KEY IDEA

The speed of the safe changes because its kinetic energy 
is changed when energy is transferred to it by     F 

→
    1    and     F 

→
    2   .

Calculations: We relate the speed to the work done by 
combining Eqs. 7.2.8 (the work–kinetic energy theorem) 
and 7.1.1 (the definition of kinetic energy):

  W =  K  f   −  K  i   =   1 _ 2   m v f  2  −   1 _ 2   m v i  2 .  
The initial speed vi is zero, and we now know that the 
work done is 153.4 J. Solving for vf and then substituting 
known data, we find that

   v  f   =  √ 
____

   2W ____ m     =  √ 

_________

   
2(153.4 J )  

 _________ 
225 kg

      

  = 1.17 m / s. (Answer)

Figure 7.2.3 (a) Two spies move a floor safe through a displace-
ment    d 

→
   . (b) A free-body  diagram for the safe.

(a)

Safe

(b)

40.0°
30.0°

Spy 001
Spy 002

Fg

FN

F1

F2

d

Only force components
parallel to the displacement
do work.

Sample Problem 7.2.2 Work done by a constant force in unit-vector notation

During a storm, a crate of crepe is sliding across a slick, 
oily  parking lot through a displacement    d 

→
   = (−3.0  m) ̂ i   

while a steady wind pushes against the crate with a force  
   F 
→

   = (2.0  N) ̂ i  + (−6.0  N) ̂ j  . The situation and coordinate 
axes are shown in Fig. 7.2.4.

(a) How much work does this force do on the crate during 
the displacement?

KEY IDEA

Because we can treat the crate as a particle and because 
the wind force is constant (“steady”) in both magnitude 

Figure 7.2.4 Force    F 
→

    
slows a crate during 
displacement    d 

→
   .

y

x
F

d

The parallel force component does
negative work, slowing the crate.

and direction during the  dis placement, we can use either 
Eq. 7.2.5 (W = Fd cos ϕ) or Eq. 7.2.6  (W =   F 

→
   ⋅   d 

→
  )  to cal-

culate the work. Since we know    F 
→

    and    d 
→

    in unit-vector 
 notation, we choose Eq. 7.2.6.
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7.3 WORK DONE BY THE GRAVITATIONAL FORCE
Learning Objectives 
After reading this module, you should be able to . . . 

7.3.1 Calculate the work done by the gravitational 
force when an object is lifted or lowered.

7.3.2 Apply the work–kinetic energy theorem to situa-
tions where an object is lifted or lowered.

Key Ideas 
● The work Wg done by the gravitational force     F 

→
    g    on 

a  particle-like object of mass m as the object moves 
through a displacement    d 

→
    is given by

Wg = mgd cos ϕ,

in which ϕ is the angle between     F 
→

    g    and    d 
→

   .

● The work Wa done by an applied force as a particle- 
like  object is  either lifted or lowered is related to 

the work Wg done by the gravitational force and the 
change ΔK in the  object’s  kinetic  energy by

ΔK = Kf − Ki = Wa + Wg.

If Kf = Ki, then the equation reduces to

Wa = −Wg,

which tells us that the applied force transfers as much 
 energy to the object as the gravitational force transfers 
from it.

Calculations: We write

 W =   F 
→

   ⋅   d 
→

   = [(2.0 N) ̂ i  + (−6.0 N) ̂ j ] ⋅ [(−3.0 m )   ̂ i ]. 

Of the possible unit-vector dot products, only   ̂ i  ⋅  ̂ i  ,   ̂ j  ⋅  ̂ j  , and  
   ̂  k   ·    ̂  k   are nonzero (see Appendix E). Here we obtain

 W = (2.0 N)(−3.0 m)  ̂ i   ·   ̂ i   + (−6.0 N)(−3.0 m)  ̂ j   ·   ̂ i  

 = (−6.0 J)(1) + 0 = −6.0 J. (Answer)

Thus, the force does a negative 6.0 J of work on the crate, 
transferring 6.0 J of energy from the kinetic  energy of the 
crate.

(b) If the crate has a kinetic energy of 10 J at the  beginning 
of displacement    d 

→
   , what is its kinetic energy at the end of    d 

→
   ?

KEY IDEA

Because the force does negative work on the crate, it 
reduces the crate’s kinetic  energy. 

Calculation: Using the work–kinetic energy theorem in 
the form of Eq. 7.2.9, we have

 Kf = Ki + W = 10 J + (−6.0 J) = 4.0 J. (Answer)

Less kinetic energy means that the crate has been slowed.

Work Done by the Gravitational Force
We next examine the work done on an object by the gravitational force acting on 
it. Figure 7.3.1 shows a particle-like tomato of mass m that is thrown upward with 
initial speed v0 and thus with initial kinetic energy   K  i   =   1 _ 2   m v 0  2  . As the tomato rises, 
it is slowed by a gravitational force     F 

→
    g   ; that is, the tomato’s kinetic energy decreases 

because     F 
→

    g    does work on the tomato as it rises. Because we can treat the tomato 
as a particle, we can use Eq. 7.2.5 (W = Fd cos ϕ) to express the work done during 
a displacement    d 

→
   . For the force  magnitude F, we use mg as the magnitude of     F 

→
    g   . 

Thus, the work Wg done by the gravitational force     F 
→

    g    is

 Wg = mgd cos ϕ (work done by gravitational force). (7.3.1)

Additional examples, video, and practice available at WileyPLUS

c07KineticEnergyAndWork.indd   163 05/05/21   4:47 PM



164 cHAPter 7 Kinetic energy And WorK

For a rising object, force     F 
→

    g    is directed opposite the displacement    d 
→

   , as 
indicated in Fig. 7.3.1. Thus, ϕ = 180° and

 Wg = mgd cos 180° = mgd(−1) = −mgd. (7.3.2)

The minus sign tells us that during the object’s rise, the gravitational force act-
ing on the object transfers energy in the amount mgd from the kinetic energy 
of the object. This is consistent with the slowing of the object as it rises.

After the object has reached its maximum height and is falling back down, 
the angle ϕ between force     F 

→
    g    and displacement    d 

→
    is zero. Thus,

 Wg = mgd cos 0° = mgd(+1) = +mgd. (7.3.3)

The plus sign tells us that the gravitational force now transfers energy in the 
amount mgd to the kinetic energy of the falling object (it speeds up, of course). 

Work Done in Lifting and Lowering an Object
Now suppose we lift a particle-like object by applying a vertical force    F 

→
    to it. 

During the upward displacement, our applied force does positive work Wa 
on the object while the gravitational force does negative work Wg on it. Our 
applied force tends to transfer energy to the object while the gravitational 
force tends to transfer energy from it. By Eq. 7.2.8, the change ΔK in the 
kinetic energy of the object due to these two energy transfers is

 ΔK = Kf − Ki = Wa + Wg, (7.3.4)

in which Kf is the kinetic energy at the end of the displacement and Ki is that at 
the start of the displacement. This equation also applies if we lower the object, 
but then the gravitational force tends to transfer energy to the object while our 
force tends to transfer energy from it.

If an object is stationary before and after a lift (as when you lift a book from the 
floor to a shelf), then Kf and Ki are both zero, and Eq. 7.3.4 reduces to

Wa + Wg = 0

or Wa = −Wg. (7.3.5)

Note that we get the same result if Kf and Ki are not zero but are still equal. 
Either way, the result means that the work done by the applied force is the nega-
tive of the work done by the gravitational force; that is, the applied force transfers 
the same amount of energy to the object as the gravitational force transfers from 
the object. Using Eq. 7.3.1, we can rewrite Eq. 7.3.5 as

 Wa = −mgd cos ϕ (work done in lifting and lowering; Kf = Ki), (7.3.6)

with ϕ being the angle between     F 
→

    g    and    d 
→

   . If the displacement is vertically upward
(Fig. 7.3.2a), then ϕ = 180° and the work done by the applied force equals mgd. 
If the displacement is vertically downward (Fig. 7.3.2b), then ϕ = 0° and the work 
done by the applied force equals −mgd.

Equations 7.3.5 and 7.3.6 apply to any situation in which an object is lifted or 
lowered, with the object stationary before and after the lift. They are indepen-
dent of the magnitude of the force used. For example, if you lift a mug from the 
floor to over your head, your force on the mug varies considerably during the lift. 
Still, because the mug is stationary before and after the lift, the work your force 
does on the mug is given by Eqs. 7.3.5 and 7.3.6, where, in Eq. 7.3.6, mg is the 
weight of the mug and d is the distance you lift it.

Figure 7.3.1 Because the gravitational 
force     F 

→
    g    acts on it, a particle-like tomato 

of mass m thrown upward slows from 
velocity     v →    0    to velocity    v →    during displace-
ment    d 

→
   . A kinetic  energy gauge indi-

cates the resulting change in the kinetic 
energy of the tomato, from   K  i   =   1 _ 2   m v 0  2   to   
K  f   =   1 _ 2   m v   2  .

Kf

Ki

Fg

Fg

Fg

v0

v

d

The force does negative
work, decreasing speed
and kinetic energy.

Figure 7.3.2 (a) An applied force    F 
→

    
lifts an object. The object’s displace-
ment    d 

→
    makes an angle ϕ = 180° 

with the gravitational force     F 
→

    g    on the 
object. The applied force does 
 positive work on the object. (b) An 
applied force    F 

→
    lowers an object. The 

displacement    d 
→

    of the object makes 
an angle ϕ = 0° with the gravita-
tional force     F 

→
    g   . The  applied force 

does negative work on the object.

(a)

Fg

F

d

Object

Does
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work

Upward
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Does
negative
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(b)
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Does
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Sample Problem 7.3.1 Work in pulling a sleigh up a snowy slope

In this problem an object is pulled along a ramp but the 
object starts and ends at rest and thus has no overall change 
in its kinetic energy (that is important). Figure 7.3.3a shows 
the situation. A rope pulls a 200 kg sleigh (which you may 
know) up a slope at incline angle θ = 30°, through distance 
d = 20 m. The sleigh and its contents have a total mass of 
200 kg. The snowy slope is so slippery that we take it to be 
frictionless. How much work is done by each force acting 
on the sleigh?

KEY IDEAS

(1) During the motion, the forces are constant in mag-
nitude and direction and thus we can calculate the work 
done by each with Eq. 7.2.5 (W = Fd cos ϕ) in which ϕ 
is the angle between the force and the displacement. We 
reach the same result with Eq. 7.2.6  (W =   F 

→
   ⋅   d 

→
  )  in which 

we take a dot product of the force vector and displace-
ment vector. (2) We can relate the net work done by 
the forces to the change in  kinetic energy (or lack of a 
change, as here) with the work–kinetic energy theorem 
of Eq. 7.2.8 (ΔK = W).

Calculations: The first thing to do with most physics 
problems involving forces is to draw a free-body diagram to 
organize our thoughts. For the sleigh, Fig.7.3.3b is our free-
body diagram, showing the gravitational force     F 

→
    g   , the force   

T 
→

    from the rope, and the normal force     F 
→

    N    from the slope.

Work WN by the normal force. Let’s start with this easy 
calculation. The normal force is perpendicular to the 
slope and thus also to the sleigh’s displacement. Thus the 
normal force does not affect the sleigh’s motion and does 
zero work. To be more formal, we can apply Eq. 7.2.5 to 
write

 WN = FNd cos 90° = 0. (Answer)

Work Wg by the gravitational force. We can find the 
work done by the gravitational force in either of two 
ways (you pick the more appealing way). From an ear-
lier discussion about ramps (Sample Problem 5.3.2 and 
Fig. 5.3.6), we know that the component of the gravita-
tional force along the slope has magnitude mg sin θ and is 
directed down the slope. Thus the magnitude is

 Fgx = mg sin θ = (200 kg)(9.8 m/s2) sin 30°
 = 980 N.

The angle ϕ between the displacement and this force 
component is 180°. So we can apply Eq. 7.2.5 to write

 Wg = Fgxd cos 180° = (980 N)(20 m)(−1)

 = −1.96 × 104 J. (Answer)

The negative result means that the gravitational force 
removes energy from the sleigh.

The second (equivalent) way to get this result is to 
use the full gravitational force     F 

→
    g    instead of a component. 

The angle between     F 
→

    g    and    d 
→

    is 120° (add the incline angle 
30° to 90°). So, Eq. 7.2.5 gives us

 Wg = Fgd cos 120° = mgd cos 120°
 = (200 kg)(9.8 m/s2)(20 m) cos 120°
 = −1.96 × 104 J. (Answer)

Work WT by the rope’s force. We have two ways of 
calculating this work. The quicker way is to use the work–
kinetic energy theorem of Eq. 7.2.8 (ΔK = W), where the 
net work W done by the forces is WN + Wg + WT and the 
change ΔK in the kinetic energy is just zero (because the ini-
tial and final kinetic energies are the same—namely, zero). 
So, Eq. 7.2.8 gives us

 0 = WN + Wg + WT = 0 − 1.96 × 104 J + WT

and WT = 1.96 × l04 J. (Answer)

Instead of doing this, we can apply Newton’s second law 
for motion along the x axis to find the magnitude FT of 
the rope’s force. Assuming that the acceleration along the 
slope is zero (except for the brief starting and stopping), 
we can write

 Fnet,x = max,

 FT − mg sin 30° = m(0),

to find
FT = mg sin 30°.

This is the magnitude. Because the force and the displace-
ment are both up the slope, the angle between those two 
vectors is zero. So, we can now write Eq. 7.2.5 to find the 
work done by the rope’s force:

 WT = FTd cos 0° = (mg sin 30°)d cos 0°

 = (200 kg)(9.8 m/s2)(sin 30°)(20 m) cos 0°

 = 1.96 × 104 J. (Answer)

Figure 7.3.3 (a) A sleigh is pulled up a snowy slope. (b) The 
free-body diagram for the sleigh.
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Sample Problem 7.3.2 Work done on an accelerating elevator cab

An elevator cab of mass m = 500 kg is descending with 
speed vi = 4.0 m/s when its  supporting cable begins to slip, 
allowing it to fall with constant acceleration    a →   =   g →   / 5  (Fig. 
7.3.4a).

(a) During the fall through a distance d = 12 m, what is the 
work Wg done on the cab by the gravitational force     F 

→
    g   ?

KEY IDEA

We can treat the cab as a particle and thus use Eq. 7.3.1 
(Wg = mgd cos ϕ) to find the work Wg.

Calculation: From Fig. 7.3.4b, we see that the  angle 
between the directions of     F 

→
    g    and the cab’s displacement    d 

→
    

is 0°. So, 

 Wg = mgd cos 0° = (500 kg)(9.8 m/s2)(12 m)(1)

 = 5.88 × 104 J ≈ 59 kJ. (Answer)

(b) During the 12 m fall, what is the work WT done on the 
cab by the upward pull   T 

→
    of the elevator cable?

KEY IDEA

We can calculate work WT with Eq. 7.2.5 (W = Fd cos ϕ)  
by first writing Fnet,y = may for the components in Fig. 
7.3.4b. 

Calculations: We get

 T − Fg = ma. (7.3.7)

Solving for T, substituting mg for Fg, and then substituting 
the result in Eq. 7.2.5, we obtain

 WT = Td cos ϕ = m(a + g)d cos ϕ. (7.3.8)

Next, substituting −g/5 for the (downward) acceleration 
a and then 180° for the angle ϕ between the directions of 
forces   T 

→
    and  m  g →   , we find

   W  T   = m (−  g __ 
5
   + g)  d cos  ϕ =   4 __ 

5
   mgd cos ϕ 

  =   4 __ 
5
   (500 kg)(9.8  m / s  2 )(12 m) cos 180° 

  = − 4.70 ×  10  4  J ≈ −47 kJ .  (Answer)

Caution: Note that WT is not simply the negative of Wg 
because the cab accelerates during the fall. Thus, Eq. 7.3.5 
(which assumes that the initial and final kinetic energies 
are equal) does not apply here.

(c) What is the net work W done on the cab during the 
fall?

Calculation: The net work is the sum of the works done 
by the forces acting on the cab:

 W = Wg + WT = 5.88 × 104 J − 4.70 × 104 J

 = 1.18 × 104 J ≈ 12 kJ. (Answer)

(d) What is the cab’s kinetic energy at the end of the 12 m 
fall?

KEY IDEA

The kinetic energy changes because of the net work done 
on the cab, according to Eq. 7.2.9 (Kf = Ki + W).

Calculation: From Eq. 7.1.1, we write the initial kinetic 
 energy as   K  i   =   1 _ 2   m v i  2  . We then write Eq. 7.2.9 as

   K  f   =  K  i   + W =   1 _ 2   m v i  2  + W 

   =   1 _ 2  (500 kg)(4.0 m/s )  2  + 1.18 ×  10  4  J 

 = 1.58 ×  10  4  J ≈ 16 kJ. (Answer)

Figure 7.3.4 An 
elevator cab, 
descending with 
speed vi, suddenly 
begins to acceler-
ate downward. (a) 
It moves through 
a displacement    d 

→
    

with constant accel-
eration    a →   =   g →   / 5 . 
(b) A free-body 
diagram for the 
cab, displacement 
included.
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Does
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Checkpoint 7.3.1
We do work W1 in pulling some boxy fruit up along a frictionless ramp by a rope 
through a distance d. We then increase the angle of the ramp and again pull the boxy 
fruit up the ramp through the same distance d. Is our work greater than, less than, or 
the same as W1?

Additional examples, video, and practice available at WileyPLUS
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Work Done by a Spring Force
We next want to examine the work done on a particle-like object by a particular 
type of variable force—namely, a spring force, the force from a spring. Many 
forces in nature have the same mathematical form as the spring force. Thus, by 
examining this one force, you can gain an understanding of many others.

The Spring Force
Figure 7.4.1a shows a spring in its relaxed state—that is, neither compressed nor 
extended. One end is fixed, and a particle-like object—a block, say—is attached 
to the other, free end. If we stretch the spring by pulling the block to the right 
as in Fig. 7.4.1b, the spring pulls on the block toward the left. (Because a spring 
force acts to restore the relaxed state, it is sometimes said to be a restoring force.) 
If we compress the spring by pushing the block to the left as in Fig. 7.4.1c, the 
spring now pushes on the block toward the right.

To a good approximation for many springs, the force     F 
→

    s    from a spring is pro-
portional to the displacement    d 

→
    of the free end from its position when the spring 

is in the relaxed state. The spring force is given by

     F 
→

    s   = − k  d 
→

      (Hooke’s law), (7.4.1)

which is known as Hooke’s law after Robert Hooke, an English scientist of the 
late 1600s. The minus sign in Eq. 7.4.1 indicates that the direction of the spring 

7.4 WORK DONE BY A SPRING FORCE
Learning Objectives 
After reading this module, you should be able to . . . 

7.4.1 Apply the relationship (Hooke’s law) between the 
force on an object due to a spring, the stretch or com-
pression of the spring, and the spring constant of the 
spring.

7.4.2 Identify that a spring force is a variable force.
7.4.3 Calculate the work done on an object by a spring 

force by integrating the force from the initial position 

to the final position of the object or by using the 
known generic result of that integration.

7.4.4 Calculate work by graphically integrating on a 
graph of force versus position of the object.

7.4.5 Apply the work–kinetic energy theorem to situa-
tions in which an object is moved by a spring force.

Key Ideas 
● The force     F 

→
    s    from a spring is

   F 
→

    s   = − k  d 
→

   (Hooke’s law),

where    d 
→

   is the displacement of the spring’s free end 
from its position when the spring is in its relaxed state 
(neither  com pressed nor extended), and k is the spring 
constant (a measure of the spring’s stiffness). If an x axis 
lies along the spring, with the origin at the location of the 
spring’s free end when the spring is in its relaxed state, 
we can write

Fx = −kx (Hooke’s law).

● A spring force is thus a variable force: It varies with 
the  displacement of the spring’s free end.

● If an object is attached to the spring’s free end, the 
work Ws done on the object by the spring force when 
the object is moved from an initial position xi to a final 
position xf is

  W  s   =   1 _ 2   k x i  2  −   1 _ 2   k x f  2 . 

If xi = 0 and xf = x, then the equation becomes

  W  s   = −   1 _ 2   k x   2 . 

Figure 7.4.1 (a) A spring in its relaxed state. The origin of an x axis has been placed 
at the end of the spring that is attached to a block. (b) The block is  displaced by    d 

→
   , 

and the spring is stretched by a positive amount x. Note the restoring force     F 
→

    s    exerted 
by the spring. (c) The spring is compressed by a negative amount x. Again, note the 
restoring force.

Block
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x
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x

0
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168 cHAPter 7 Kinetic energy And WorK

force is always opposite the direction of the displacement of the spring’s free end. 
The constant k is called the spring constant (or force constant) and is a measure 
of the stiffness of the spring. The larger k is, the stiffer the spring; that is, the 
larger k is, the stronger the spring’s pull or push for a given displacement. The SI 
unit for k is the newton per meter.

In Fig. 7.4.1 an x axis has been placed parallel to the length of the spring, with 
the origin (x = 0) at the position of the free end when the spring is in its relaxed 
state. For this common arrangement, we can write Eq. 7.4.1 as

 Fx = −kx (Hooke’s law), (7.4.2)

where we have changed the subscript. If x is positive (the spring is stretched 
 toward the right on the x axis), then Fx is negative (it is a pull toward the left). If 
x is negative (the spring is compressed toward the left), then Fx is positive (it is 
a push toward the right). Note that a spring force is a variable force because it is 
a function of x, the  position of the free end. Thus Fx can be symbolized as F(x). 
Also note that Hooke’s law is a linear relationship between Fx and x.

The Work Done by a Spring Force
To find the work done by the spring force as the block in Fig. 7.4.1a moves, let us 
make two simplifying assumptions about the spring. (1) It is massless; that is, its 
mass is negligible relative to the block’s mass. (2) It is an ideal spring; that is, it 
obeys Hooke’s law exactly. Let us also assume that the contact between the block 
and the floor is frictionless and that the block is particle-like.

We give the block a rightward jerk to get it moving and then leave it alone. As 
the block moves rightward, the spring force Fx does work on the block,  decreasing 
the kinetic energy and slowing the block. However, we cannot find this work by 
using Eq. 7.2.5 (W = Fd cos ϕ) because there is no one value of F to plug into that 
equation—the value of F increases as the block stretches the spring.

There is a neat way around this problem. (1) We break up the block’s dis-
placement into tiny segments that are so small that we can neglect the variation 
in F in each segment. (2) Then in each segment, the force has (approximately) 
a single value and thus we can use Eq. 7.2.5 to find the work in that segment. 
(3) Then we add up the work results for all the segments to get the total work. 
Well, that is our intent, but we don’t really want to spend the next several days 
adding up a great many results and, besides, they would be only approximations. 
Instead, let’s make the segments infinitesimal so that the error in each work 
result goes to zero. And then let’s add up all the results by integration  instead 
of by hand. Through the ease of calculus, we can do all this in minutes instead 
of days.

Let the block’s initial position be xi and its later position be xf. Then divide 
the distance between those two  positions into many segments, each of tiny length 
Δx. Label these segments, starting from xi, as segments 1, 2, and so on. As the 
block moves through a segment, the spring force hardly varies because the seg-
ment is so short that x hardly varies. Thus, we can approximate the force mag-
nitude as being constant within the segment. Label these magnitudes as Fx1 in 
 segment 1, Fx2 in segment 2, and so on.

With the force now constant in each segment, we can find the work done 
within each segment by using Eq. 7.2.5. Here ϕ = 180°, and so cos ϕ = −1. Then 
the work done is −Fx1 Δx in segment 1, −Fx2 Δx in segment 2, and so on. The net 
work Ws done by the spring, from xi to xf, is the sum of all these works:

   W  s   =  ∑     −F  xj   Δx,  (7.4.3)
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where j labels the segments. In the limit as Δx goes to zero, Eq. 7.4.3 becomes

 
  W  s   =   

 x  i  
  

 x  f  
  − F  x   dx .  (7.4.4)

From Eq. 7.4.2, the force magnitude Fx is kx. Thus, substitution leads to

   W  s   =   
 x  i  

  
 x  f  

  −kx dx  = −k   
 x  i  

  
 x  f  

  x dx  

  = (−  1 _ 2   k) [ x   2 ] x  i  
   x  f    = (−  1 _ 2   k)( x f  2  −  x i  2 ).  (7.4.5)

Multiplied out, this yields

  W  s   =   1 _ 2   k x i  2  −   1 _ 2   k x f  2  (work by a spring force). (7.4.6)

This work Ws done by the spring force can have a positive or negative value, 
 depending on whether the net transfer of energy is to or from the block as the 
block moves from xi to xf. Caution: The final position xf appears in the second 
term on the right side of Eq. 7.4.6. Therefore, Eq. 7.4.6 tells us:

 Work Ws is positive if the block ends up closer to the relaxed position (x = 0) than 
it was initially. It is negative if the block ends up farther away from x = 0. It is zero 
if the block ends up at the same distance from x = 0.

If xi = 0 and if we call the final position x, then Eq. 7.4.6 becomes

   W  s   = −   1 _ 2   k x   2   (work by a spring force). (7.4.7)

The Work Done by an Applied Force
Now suppose that we displace the block along the x axis while continuing to  apply a 
force     F 

→
    a    to it. During the displacement, our applied force does work Wa on the block

while the spring force does work Ws. By Eq. 7.2.8, the change ΔK in the kinetic 
energy of the block due to these two energy transfers is 

 ΔK = Kf − Ki = Wa + Ws, (7.4.8)

in which Kf is the kinetic energy at the end of the displacement and Ki is that at 
the start of the displacement. If the block is stationary before and after the dis-
placement, then Kf and Ki are both zero and Eq. 7.4.8 reduces to

 Wa = −Ws. (7.4.9)

 If a block that is attached to a spring is stationary before and after a displace-
ment, then the work done on it by the applied force displacing it is the negative 
of the work done on it by the spring force.

Caution: If the block is not stationary before and after the displacement, then this 
statement is not true.

Checkpoint 7.4.1
For three situations, the initial and final positions, respectively, along the x axis for the 
block in Fig. 7. 4.1 are (a) −3 cm, 2 cm; (b) 2 cm, 3 cm; and (c) −2 cm, 2 cm. In each situ-
ation, is the work done by the spring force on the block positive, negative, or zero?
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Sample Problem 7.4.1 Work done by a spring to change kinetic energy

When a spring does work on an object, we cannot find 
the work by simply multiplying the spring force by the 
object’s displacement. The reason is that there is no one 
value for the force—it changes. However, we can split 
the displacement up into an infinite number of tiny parts 
and then approximate the force in each as being constant. 
Integration sums the work done in all those parts. Here 
we use the generic result of the integration.

In Fig. 7.4.2, a cumin canister of mass m = 0.40 kg 
slides across a horizontal frictionless counter with speed v = 
0.50 m/s. It then runs into and compresses a spring of spring 
constant k = 750 N/m. When the canister is  momentarily 
stopped by the spring, by what distance d is the spring 
 compressed?

KEY IDEAS

1. The work Ws done on the canister by the spring force 
is  related to the requested distance d by Eq. 7.4.7  
 ( W  s   = −   1 _ 2   k x   2 ) , with d replacing x.

2. The work Ws is also related to the kinetic energy of 
the  canister by Eq. 7.2.8 (Kf − Ki = W).

3. The canister’s kinetic energy has an initial value of  
K =   1 _ 2   m v   2   and a value of zero when the canister is 
momentarily at rest.

Calculations: Putting the first two of these ideas  together, 
we write the work–kinetic energy theorem for the canister 
as

  K  f   −  K  i   = −   1 _ 2   k d   2 . 
Substituting according to the third key idea gives us this 
 expression:

 0 −   1 _ 2   m v   2  = −   1 _ 2   k d   2 . 
Simplifying, solving for d, and substituting known data 
then give us

  d = v √ 
___

   m __ 
k

     = (0.50 m / s) √ 

________

   
0.40 kg

 ________ 
750 N / m     

  = 1.2 ×  10  −2  m = 1.2 cm.  (Answer)

Figure 7.4.2 A canister moves toward a spring.

k
mFrictionless

First touchStop

v

d

The spring force does
negative work, decreasing
speed and kinetic energy.

7.5 WORK DONE BY A GENERAL VARIABLE FORCE
Learning Objectives 
After reading this module, you should be able to . . .

7.5.1 Given a variable force as a function of posi-
tion, calculate the work done by it on an object by 
integrating the function from the initial to the final 
position of the object, in one or more dimensions.

7.5.2 Given a graph of force versus position, calculate 
the work done by graphically integrating from the 
initial  position to the final position of the object.

7.5.3 Convert a graph of acceleration versus position 
to a graph of force versus position.

7.5.4 Apply the work–kinetic energy theorem to situa-
tions where an object is moved by a variable force.

Key Ideas 
● When the force    F 

→
    on a particle-like object depends 

on the position of the object, the work done by    F 
→

    
on the object while the object moves from an initial 
position ri with coordinates (xi, yi, zi) to a final posi-
tion rf with coordinates (xf, yf, zf) must be found by 
integrating the force. If we assume that component Fx 
may depend on x but not on y or z, component Fy may 

depend on y but not on x or z, and component Fz may 
depend on z but not on x or y, then the work is

 W =   
 x  i  

  
 x  f  

   F  x   dx  +   
 y  i  

  
 y  f  

   F  y   dy  +   
 z  i  

  
 z  f  

   F  z   dz.  

● If    F 
→

    has only an x component, then this reduces to

 W =   
 x  i  

  
 x  f  

  F  (  x )    dx . 

Additional examples, video, and practice available at WileyPLUS
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Work Done by a General Variable Force
One-Dimensional Analysis
Let us return to the situation of Fig. 7.2.1 but now consider the force to be in the 
positive direction of the x axis and the force magnitude to vary with position x. 
Thus, as the bead (particle) moves, the magnitude F(x) of the force doing work 
on it changes. Only the magnitude of this variable force changes, not its direction, 
and the magnitude at any position does not change with time.

Figure 7.5.1a shows a plot of such a one-dimensional variable force. We 
want an expression for the work done on the particle by this force as the particle 
moves from an initial point xi to a final point xf. However, we cannot use Eq. 7.2.5 
(W = Fd cos ϕ) because it applies only for a constant force    F 

→
   . Here, again, we 

shall use calculus. We divide the area under the curve of Fig. 7.5.1a into a number 
of narrow strips of width Δx (Fig. 7.5.1b). We choose Δx small enough to permit 
us to take the force F(x) as being reasonably constant over that interval. We let 
Fj,avg be the average value of F(x) within the jth interval. Then in Fig. 7.5.1b, Fj,avg 
is the height of the jth strip.

With Fj,avg considered constant, the increment (small amount) of work ΔWj 
done by the force in the jth interval is now approximately given by Eq. 7.2.5 
and is

 ΔWj = Fj,avg Δx. (7.5.1)

In Fig. 7.5.1b, ΔWj is then equal to the area of the jth rectangular, shaded strip.
To approximate the total work W done by the force as the particle moves 

from xi to xf, we add the areas of all the strips between xi and xf in Fig. 7.5.1b:

  W =  ∑  Δ   W  j   =  ∑   F  j,avg    Δx.  (7.5.2)

Equation 7.5.2 is an approximation because the broken “skyline” formed by the 
tops of the rectangular strips in Fig. 7.5.1b only approximates the actual curve 
of F(x).

We can make the approximation better by reducing the strip width Δx and 
using more strips (Fig. 7.5.1c). In the limit, we let the strip width approach zero; 
the number of strips then becomes infinitely large and we have, as an exact result,

   W =   lim  
Δx→0

    ∑   F  j,avg    Δx.   (7.5.3)

This limit is exactly what we mean by the integral of the function F(x) between 
the limits xi and xf . Thus, Eq. 7.5.3 becomes

  W =   
 x  i  

  
 x  f  

  F(x) dx    (work: variable force). (7.5.4)

If we know the function F(x), we can substitute it into Eq. 7.5.4, introduce 
the proper limits of integration, carry out the integration, and thus find the work. 
(Appendix E contains a list of common integrals.) Geometrically, the work is 
equal to the area between the F(x) curve and the x axis, between the limits xi and 
xf (shaded in Fig. 7.5.1d).

Three-Dimensional Analysis
Consider now a particle that is acted on by a three-dimensional force

    F 
→

   =  F  x   ̂ i  +  F  y   ̂ j  +  F  z    ̂  k ,  (7.5.5)

in which the components Fx, Fy, and Fz can depend on the position of the par-
ticle; that is, they can be functions of that position. However, we make three 

Figure 7.5.1 (a) A one-dimensional 
force    F 

→
    (  x )     plotted against the dis-

placement x of a   particle on which it 
acts. The particle moves from xi to xf.  
(b) Same as (a) but with the area 
under the curve divided into narrow 
strips. (c) Same as (b) but with the 
area divided into narrower strips.  
(d) The limiting case. The work done 
by the force is given by Eq. 7.5.4 and 
is represented by the shaded area 
between the curve and the x axis and 
between xi and xf.

F(x)

xxi xf0
(a)

Work is equal to the
area under the curve.

F(x)

xxi xf

Fj, avg

Δx
0

(b)

ΔWj

We can approximate that area
with the area of these strips.

F(x)

xxi xf0
Δx(c)

We can do better with
more, narrower strips.

F(x)

xxi xf0

W

(d)

For the best, take the limit of
strip widths going to zero.
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simplifications: Fx may depend on x but not on y or z, Fy may depend on y but not 
on x or z, and Fz may depend on z but not on x or y. Now let the particle move 
through an incremental displacement

   d   r →   = dx ̂ i  + dy ̂ j  + dz  ̂  k .   (7.5.6)

The increment of work dW done on the particle by    F 
→

    during the displacement  d  r →    
is, by Eq. 7.2.6,

   dW =   F 
→

   ⋅ d   r →   =  F  x   dx +  F  y   dy +  F  z   dz.   (7.5.7)

The work W done by    F 
→

   while the particle moves from an initial position ri having 
coordinates (xi, yi, zi) to a final position rf having coordinates (xf, yf, zf) is then

 W =   
 r  i  
  

 r  f  
  dW  =    

 x  i  
  

 x  f  
   F  x     dx +    

 y  i  
  

 y  f  
   F  y   dy   +    

 z  i  
  

 z  f  
  Fz dz  . 

If    F 
→

    has only an x component, then the y and z terms in Eq. 7.5.8 are zero and the 
equation reduces to Eq. 7.5.4.

Work–Kinetic Energy Theorem with a Variable Force
Equation 7.5.4 gives the work done by a variable force on a particle in a one- 
dimensional situation. Let us now make certain that the work is equal to the 
change in kinetic energy, as the work–kinetic energy theorem states.

Consider a particle of mass m, moving along an x axis and acted on by a 
net force F(x) that is directed along that axis. The work done on the particle 
by this force as the particle moves from position xi to position xf is given by 
Eq. 7.5.4 as

  W =   
 x  i  

  
 x  f  

  F (  x )   dx  =   
 x  i  

  
 x  f  

  ma dx ,  (7.5.9)

in which we use Newton’s second law to replace F(x) with ma. We can write the 
quantity ma dx in Eq. 7.5.9 as

   ma dx = m   dv ___ 
dt

   dx.   (7.5.10)

From the chain rule of calculus, we have

     dv ___ 
dt

   =   dv ___ 
dx

     dx ___ 
dt

   =   dv ___ 
dx

   v,   (7.5.11)

and Eq. 7.5.10 becomes

   ma dx = m   dv ___ 
dx

   v dx = mv dv.   (7.5.12)

Substituting Eq. 7.5.12 into Eq. 7.5.9 yields

  W =   
 v  i  

  
 v  f  

  mv dv  = m   
 v  i  

  
 v  f  

  v dv   

 =   1 _ 2   m v f  2  −   1 _ 2   m v i  2 .  (7.5.13)

Note that when we change the variable from x to v we are required to express 
the limits on the integral in terms of the new variable. Note also that because the 
mass m is a constant, we are able to move it outside the integral.

Recognizing the terms on the right side of Eq. 7.5.13 as kinetic energies 
allows us to write this equation as

W = Kf − Ki = ΔK,

which is the work–kinetic energy theorem.

(7.5.8)
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Checkpoint 7.5.1
A particle moves along an x axis from x = 0 to x = 2.0 m as a force    F 

→
  = (3 x   2  N) ̂ i   acts 

on it. How much work does the force do on the particle in that displacement?

Sample Problem 7.5.1 Epidural

In a procedure commonly used in childbirth, a surgeon 
or an anesthetist must run a needle through the skin on 
the patient’s back (Fig. 7.5.2a), then through various tis-
sue layers and into a narrow region called the epidural 
space that lies within the spinal canal surrounding the spi-
nal cord. The needle is intended to deliver an anesthetic 
fluid. This tricky procedure requires much practice so 
that the doctor knows when the needle has reached the 
epidural space and not overshot it, a mistake that could 
result in serious complications. In the past, that practice 
has been done with actual patients. Now, however, new 
doctors can practice on virtual-reality simulations before 
injecting their first patient, allowing a doctor to learn how 
the force varies with a needle’s penetration. 

Figure 7.5.2b is a graph of the force magnitude F ver-
sus displacement x of the needle tip in a typical epidural 
procedure. (The line segments have been straightened 
somewhat from the original data.) As x increases from 0, 
the skin resists the needle, but at x = 8.0 mm the force 
is finally great enough to pierce the skin, and then the 
required force decreases. Similarly, the needle finally 
pierces the interspinous ligament at x = 18 mm and the 
relatively tough ligamentum flavum at x = 30 mm. The 
needle then enters the epidural space (where it is to 
deliver the anesthetic fluid), and the force drops sharply. 
A new doctor must learn this pattern of force versus 
displacement to recognize when to stop pushing on the 
needle. Thus, this is the pattern to be programmed into 
a virtual-reality simulation of epidural procedure. How 
much work W is done by the force exerted on the needle 
to get the needle to the epidural space at x = 30 mm?

KEY IDEAS

(1) We can calculate the work W done by a variable force 
F(x) by integrating the force versus position x. Equation 
7.5.4 tells us that

 
W =   

 x  i  
  

 x  f  
  F(x)  dx . 

We want the work done by the force during the displace-
ment from xi = 0 to xf = 0.030 m.

(2) We can evaluate the integral by finding the area under 
the curve on the graph of Fig 7.5.2b.

(a)

Figure 7.5.2 (a) Epidural injection. (b) The force magnitude F 
versus displacement x of the needle. (c) Splitting up the graph 
to find the area under the curve. 
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Calculations: Because our graph consists of straight-line 
segments, we can find the area by splitting the region 
below the curve into rectangular and triangular regions, 
as shown in Fig. 7.5.2c. For example, the area in triangular 
region A is 

 
 area  A   =   1 _ 2   (0.0080 m)(12 N) = 0.048 N ⋅ m = 0.048 J. 

Once we’ve calculated the areas for all the labeled regions 
in the figure, we find that the total work is

Power
The time rate at which work is done by a force is said to be the power due to the 
force. If a force does an amount of work W in an amount of time Δt, the  average 
power due to the force during that time interval is

   P  avg   =   W ___ Δt
    (average power). (7.6.1)

The instantaneous power P is the instantaneous time rate of doing work, which 
we can write as

 P =    dW ____ 
dt

    (instantaneous power). (7.6.2)

Suppose we know the work W(t) done by a force as a function of time. Then to 
get the instantaneous power P at, say, time t = 3.0 s during the work, we would 
first take the time derivative of W(t) and then evaluate the result for t = 3.0 s.

7.6 POWER
Learning Objectives 
After reading this module, you should be able to . . . 

7.6.1 Apply the relationship between average power, 
the work done by a force, and the time interval in 
which that work is done.

7.6.2 Given the work as a function of time, find the 
instantaneous power.

7.6.3 Determine the instantaneous power by taking 
a dot product of the force vector and an object’s 
velocity vector, in magnitude-angle and unit-vector 
notations.

Key Ideas 
● The power due to a force is the rate at which that 
force does work on an object.

● If the force does work W during a time interval Δt,  
the average power due to the force over that time  
interval is

  P  avg   =   W ___ Δt
  . 

● Instantaneous power is the instantaneous rate of 
doing work:

 P =   dW ____ 
dt

  . 

● For a force    F 
→

    at an angle ϕ to the direction of travel 
of the instantaneous velocity    v →  , the instantaneous 
power is

 P = Fv cos ϕ =   F 
→

   ⋅   v →  . 

  W = (sum of the areas of regions A through K)

 = 0.048 + 0.024 + 0.012 + 0.036 + 0.009 + 0.001 + 0.016

 + 0.048 + 0.016 + 0.004 + 0.024

 = 0.238 J. 

Additional examples, video, and practice available at WileyPLUS
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The SI unit of power is the joule per second. This unit is used so 
often that it has a special name, the watt (W), after James Watt, who 
greatly improved the rate at which steam engines could do work. In 
the British system, the unit of power is the foot-pound per second. 
Often the horsepower is used.  These are related by

   1 watt = 1 W = 1 J / s = 0.738 ft ⋅ lb / s   (7.6.3)

and   1 horsepower = 1 hp = 550 ft ⋅ lb / s = 746 W.   (7.6.4)

Inspection of Eq. 7.6.1 shows that work can be expressed as power 
multiplied by time, as in the common unit kilowatt-hour. Thus,

  1 kilowatt-hour = 1 kW ⋅ h = ( 10  3  W )  (3600 s) 

  = 3.60 ×  10  6  J = 3.60 MJ.  (7.6.5)

Perhaps because they appear on our utility bills, the watt and the kilowatt-hour 
have become identified as electrical units. They can be used equally well as units 
for other examples of power and energy. Thus, if you pick up a book from the 
floor and put it on a tabletop, you are free to report the work that you have done 
as, say, 4 × 10−6 kW · h (or more conveniently as 4 mW · h).

We can also express the rate at which a force does work on a particle (or 
 particle-like object) in terms of that force and the particle’s velocity. For a  par ticle 
that is moving along a straight line (say, an x axis) and is acted on by a  constant 
force    F 

→
    directed at some angle ϕ to that line, Eq. 7.6.2 becomes

 P =   dW ___ 
dt

   =   
F cos ϕ dx

 __________ 
dt

   = F cos ϕ  (  dx ___ 
dt

  ) , 

or P = Fv cos ϕ. (7.6.6)

Reorganizing the right side of Eq. 7.6.6 as the dot product    F 
→

   ⋅   v →   , we may also 
write the equation as

  P =   F 
→

   ⋅   v →    (instantaneous power). 

For example, the truck in Fig. 7.6.1 exerts a force    F 
→

    on the trailing load, which 
has velocity    v →    at some instant. The instantaneous power due to    F 

→
    is the rate at 

which    F 
→

    does work on the load at that instant and is given by Eqs. 7.6.6 and 7.6.7. 
Saying that this power is “the power of the truck” is often acceptable, but keep in 
mind what is meant: Power is the rate at which the applied force does work.

(7.6.7)

Figure 7.6.1 The power due to the truck’s applied 
force on the trailing load is the rate at which that 
force does work on the load.

© Reglain/ZUMA

Checkpoint 7.6.1
A block moves with uniform circular motion because a cord tied to the block is 
anchored at the center of a circle. Is the power due to the force on the block from the 
cord positive, negative, or zero?

Sample Problem 7.6.1 Power, force, and velocity

Here we calculate an instantaneous work—that is, the rate 
at which work is being done at any given instant rather than 
averaged over a time interval. Figure 7.6.2 shows constant 
forces     F 

→
    1    and     F 

→
    2    acting on a box as the box slides right-

ward across a frictionless floor. Force     F 
→

    1    is horizontal, with 

magnitude 2.0 N; force     F 
→

    2    is angled upward by 60° to the 
floor and has magnitude 4.0 N. The speed v of the box at 
a certain  instant is 3.0 m/s. What is the power due to each 
force acting on the box at that instant, and what is the net 
power? Is the net power changing at that instant?

R
eg

la
in

/Z
um

a 
P

re
ss

c07KineticEnergyAndWork.indd   175 05/05/21   4:48 PM



176 cHAPter 7 Kinetic energy And WorK

KEY IDEA

We want an instantaneous power, not an average power 
over a time period. Also, we know the box’s velocity 
(rather than the work done on it). 

This negative result tells us that force     F 
→

    1    is transferring 
energy from the box at the rate of 6.0 J/s.

For force     F 
→

    2   , at angle ϕ2 = 60° to velocity    v →   , we have

 P2 = F2v cos ϕ2 = (4.0 N)(3.0 m/s) cos 60°

 = 6.0 W. (Answer)

This positive result tells us that force    F 
→

  2 is transferring 
energy to the box at the rate of 6.0 J/s.

The net power is the sum of the individual powers 
 (complete with their algebraic signs):

 Pnet = P1 + P2

 = −6.0 W + 6.0 W = 0, (Answer)

which tells us that the net rate of transfer of energy to or  
from the box is zero. Thus, the  kinetic energy  (K =   1 _ 2   m v   2 )   
of the box is not changing, and so the speed of the box will 
 remain at 3.0 m/s. With neither the forces     F 

→
    1    and     F 

→
    2    nor 

the  velocity    v →    changing, we see from Eq. 7.6.7 that P1 and 
P2 are constant and thus so is Pnet.

Figure 7.6.2 Two forces     F 
→

    1    and     F 
→

    2    act on a box that slides  
rightward across a frictionless floor. The velocity of the box  
is    v →   .

60°
Frictionless F1

F2

v

Negative power.
(This force is
removing energy.)

Positive power.
(This force is
supplying energy.)

Calculation: We use Eq. 7.6.6 for each force. For 
force     F 

→
    1   , at  angle ϕ1 = 180° to velocity    v →   , we have

 P1 = F1v cos ϕ1 = (2.0 N)(3.0 m/s) cos 180°
 = −6.0 W. (Answer)

Kinetic Energy  The kinetic energy K associated with the 
motion of a particle of mass m and speed v, where v is well  below 
the speed of light, is

  K =   1 _ 2   m v   2   (kinetic energy). (7.1.1)

Work  Work W is energy transferred to or from an object via 
a force acting on the object. Energy transferred to the  object 
is positive work, and from the object, negative work.

Work Done by a Constant Force  The work done on a 
particle by a constant force    F 

→
    during displacement    d 

→
    is

  W = Fd cos ϕ =   F 
→

   ⋅   d 
→

    (work, constant force), (7.2.5, 7.2.6)

in which ϕ is the constant angle between the directions of    F 
→

    
and    d 

→
   . Only the component of    F 

→
    that is along the displace-

ment    d 
→

    can do work on the object. When two or more forces act 
on an object, their net work is the sum of the individual works 
done by the forces, which is also equal to the work that would 
be done on the object by the net force     F 

→
    net    of those forces.

Work and Kinetic Energy  For a particle, a change ΔK in 
the kinetic energy equals the net work W done on the particle:

 ΔK = Kf − Ki = W  (work–kinetic energy theorem), (7.2.8)

in which Ki is the initial kinetic energy of the particle and Kf is the 
kinetic energy after the work is done. Equation 7.2.8  rearranged 
gives us

 Kf = Ki + W. (7.2.9)

Review & Summary

Work Done by the Gravitational Force  The work Wg 
done by the gravitational force     F 

→
    g    on a particle-like object of mass 

m as the object moves through a displacement    d 
→

    is given by

 Wg = mgd cos ϕ, (7.3.1)

in which ϕ is the angle between     F 
→

    g    and    d 
→

   .

Work Done in Lifting and Lowering an Object  The 
work Wa done by an applied force as a particle-like object is 
 either lifted or lowered is related to the work Wg done by the 
gravitational force and the change ΔK in the object’s  kinetic 
 energy by

 ΔK = Kf − Ki = Wa + Wg. (7.3.4)

If Kf = Ki , then Eq. 7.3.4 reduces to

 Wa = −Wg, (7.3.5)

which tells us that the applied force transfers as much  energy to 
the object as the gravitational force transfers from it.

Spring Force  The force     F 
→

    s    from a spring is

     F 
→

    s   = − k  d 
→

    (Hooke’s law), (7.4.1)

where    d 
→

    is the displacement of the spring’s free end from its posi-
tion when the spring is in its relaxed state (neither  com pressed 
nor extended), and k is the spring constant (a measure of the 
spring’s stiffness). If an x axis lies along the spring, with the 

Additional examples, video, and practice available at WileyPLUS
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origin at the location of the spring’s free end when the spring is 
in its relaxed state, Eq. 7.4.1 can be written as

 Fx = −kx (Hooke’s law). (7.4.2)

A spring force is thus a variable force: It varies with the 
 displacement of the spring’s free end.

Work Done by a Spring Force  If an object is attached 
to the spring’s free end, the work Ws done on the object by the 
spring force when the object is moved from an initial position xi 
to a final position xf is

    W  s   =   1 _ 2   k x i  2  −   1 _ 2   k x f  2 .   (7.4.6)

If xi = 0 and xf = x, then Eq. 7.4.6 becomes

    W  s   = −   1 _ 2   k  x   2 .   (7.4.7)

Work Done by a Variable Force  When the force    F 
→

    on a par-
ticle-like object depends on the position of the object, the work done 
by    F 

→
    on the object while the object moves from an initial position 

ri with coordinates (xi, yi, zi) to a final position rf with coordinates 
(xf, yf, zf) must be found by integrating the force. If we assume that 
component Fx may depend on x but not on y or z, component Fy 

may depend on y but not on x or z, and component Fz may depend 
on z but not on x or y, then the work is

  W =   
 x  i  

  
 x  f  

   F  x   dx  +   
 y  i  

  
 y  f  

   F  y   dy  +   
 z  i  

  
 z  f  

   F  z   dz  . (7.5.8)

If   F 
→

    has only an x component, then Eq. 7.5.8 reduces to

  W =   
 x  i  

  
 x  f  

  F  (  x )    dx .  (7.5.4)

Power  The power due to a force is the rate at which that force 
does work on an object. If the force does work W during a time 
interval Δt, the average power due to the force over that time inter-
val is

 
  P  avg   =   W ___ Δt

  .  (7.6.1)

Instantaneous power is the instantaneous rate of doing work:

 
 P =   dW ___ 

dt
  .  (7.6.2)

For a force    F 
→

    at an angle ϕ to the direction of travel of the 
instantaneous velocity    v →   , the instantaneous power is

  P = Fv cos ϕ =   F 
→

   ⋅   v →  .  (7.6.6, 7.6.7)

1  Rank the following velocities according to the kinetic  en ergy 
a particle will have with each velocity, greatest first: (a)    v →   = 4 ̂ i  + 
3 ̂ j  , (b)    v →   = − 4 ̂ i  + 3 ̂ j  , (c)    v →   = − 3 ̂ i  + 4 ̂ j  , (d)    v →   = 3 ̂ i  − 4 ̂ j  , (e)    v →   = 5 ̂ i  , 
and (f) v = 5 m/s at 30° to the  horizontal.

2  Figure 7.1a shows two horizontal forces that act on a block 
that is sliding to the right across a frictionless floor. Figure 7.1b 
shows three plots of the block’s kinetic energy K versus time t. 
Which of the plots best corresponds to the following three 
situations: (a) F1 = F2, (b) F1 > F2, (c) F1 < F2?

F2F1

(a) (b)

3

2

1

K

t

Figure 7.1 Question 2.

3  Is positive or negative work done by a constant force    F 
→

    on a 
particle during a straight-line displacement    d 

→
    if (a) the angle 

between    F 
→

    and    d 
→

    is 30°; (b) the angle is 100°; (c)    F 
→

   = 2 ̂ i  − 3 ̂ j   
and    d 

→
   = − 4 ̂ i  ?

4  In three situations, a briefly applied horizontal force changes 
the velocity of a hockey puck that slides over fric tionless ice. The 
overhead views of Fig. 7.2 indicate, for each situation, the puck’s 
initial speed vi, its final speed vf, and the directions of the corre-
sponding velocity vectors. Rank the  situations according to the 
work done on the puck by the  applied force, most positive first and 
most negative last.

(a) (b) (c)

y
vf  = 5 m/s

vi = 6 m/s
x

y

vf  = 3 m/s

vi = 4 m/s
x

y vf  = 4 m/s

vi = 2 m/s

x

Figure 7.2 Question 4.

5   The graphs in Fig. 7.3 give the x component Fx of a force 
acting on a particle moving along an x axis. Rank them accord-
ing to the work done by the force on the particle from x = 0 to 
x = x1, from most positive work first to most negative work last.

Fx

F1

–F1

x1 x

(a)

Fx

F1

–F1

x1 x

(b)

Fx

F1

–F1

x1 x

(c)

Fx

F1

–F1

x1
x

(d )
Figure 7.3  
Question 5.

Questions
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6  Figure 7.4 gives the x com-
ponent Fx of a force that can 
act on a particle. If the particle 
begins at rest at x = 0, what is 
its coordinate when it has (a) its  
greatest kinetic energy, (b) its 
greatest speed, and (c) zero 
speed? (d) What is the parti-
cle’s direction of travel after it 
reaches x = 6 m?

7  In Fig. 7.5, a greased pig has a choice of three frictionless slides 
along which to slide to the ground. Rank the slides  according to 
how much work the gravitational force does on the pig during the 
descent, greatest first.

(a) (b) (c)

Figure 7.5 Question 7.

8  Figure 7.6a shows four situations in which a horizontal force 
acts on the same block, which is initially at rest. The force mag-
nitudes are F2 = F4 = 2F1 = 2F3. The horizontal component vx of 
the block’s velocity is shown in Fig. 7.6b for the four situations. 
(a) Which plot in Fig. 7.6b best corresponds to which force in Fig. 
7.6a? (b) Which plot in Fig. 7.6c (for kinetic energy K versus 
time t) best corresponds to which plot in Fig. 7.6b?

F1 F2 F4F3

x

(a)

(b)

vx

t

D
C

B
A

(c)

K

t

H
G

F
E

Figure 7.6 Question 8.

9  Spring A is stiffer than spring B (kA > kB). The spring force of 
which spring does more work if the springs are compressed (a) the 
same distance and (b) by the same applied force?

10  A glob of slime is launched or dropped from the edge of a 
cliff. Which of the graphs in Fig. 7.7 could possibly show how the 
kinetic energy of the glob changes during its flight?

K

K

K

K

K

K

K

K

t

t

t

t

t

t

t

t

(a) (b) (c) (d)

(e) ( f ) (g) (h)

Figure 7.7 Question 10.

11  In three situations, a single force acts on a moving par-
ticle. Here are the velocities (at that instant) and the forces:  
(1)    v →   =  (−4 ̂ i )  m / s ,    F 

→
   = (6 ̂ i  − 20 ̂ j ) N ; (2)    v →   =  (2 ̂ i  − 3 ̂ j )  m / s ,    F 

→
   =  

 (−2 ̂ j  + 7  ̂  k )  N ; (3)    v →   =  (−3 ̂ i  +  ̂ j )  m/s ,    F 
→

   =  (2 ̂ i  + 6 ̂ j )  N . Rank the 
 situations according to the rate at which energy is being trans-
ferred, greatest transfer to the particle ranked first, greatest 
transfer from the particle ranked last.

12  Figure 7.8 shows three arrangements of a block attached to 
identical springs that are in their relaxed state when the block 
is centered as shown. Rank the arrangements according to  
the magnitude of the net force on the block, largest first, when the  
block is displaced by distance d (a) to the right and (b) to the 
left. Rank the arrangements according to the work done on  
the block by the spring forces, greatest first, when the block is 
displaced by d (c) to the right and (d) to the left.

(1) (2) (3)

Figure 7.8 Question 12.

1 2 3 4 5 6 7 8
x (m)

F2

F1

Fx

–F1

–F2

Figure 7.4 Question 6.
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Module 7.1  Kinetic Energy
1 E  SSM  A proton (mass m = 1.67 × 10−27 kg) is being acceler-
ated along a straight line at 3.6 × 1015 m/s2 in a machine. If the 
proton has an initial speed of 2.4 × 107 m/s and travels 3.5 cm, 
what then is (a) its speed and (b) the increase in its kinetic 
 energy?

2 E  If a Saturn V rocket with an Apollo spacecraft attached 
had a combined mass of 2.9 × 105 kg and reached a speed of 
11.2 km/s, how much kinetic energy would it then have?

3 E  FCP  On August 10, 1972, a large meteorite skipped across 
the atmosphere above the western United States and western 
 Canada, much like a stone skipping across water. The accompa-
nying fireball was so bright that it could be seen in the  daytime 
sky and was brighter than the usual meteorite trail. The meteor-
ite’s mass was about 4 × 106 kg; its speed was about 15 km/s. Had 
it entered the atmosphere vertically, it would have hit Earth’s 
surface with about the same speed. (a) Calculate the meteorite’s 
loss of kinetic energy (in joules) that would have been associated 
with the vertical  impact. (b) Express the energy as a multiple of 
the explosive energy of 1 megaton of TNT, which is 4.2 × 1015 J. 
(c) The  energy associated with the atomic bomb explosion 
over Hiroshima was equivalent to 13 kilotons of TNT. To how 
many Hiroshima bombs would the meteorite impact have been 
equivalent? 

4 E  FCP  An explosion at ground level leaves a crater with a 
diameter that is proportional to the energy of the explosion 
raised to the    1 _ 3    power; an explosion of 1 megaton of TNT leaves 
a crater with a 1 km diameter. Below Lake Huron in Michi-
gan there appears to be an ancient impact crater with a 50 km 
 diameter. What was the kinetic energy associated with that 
impact, in terms of (a) megatons of TNT (1 megaton yields 
4.2 × 1015 J) and (b) Hiroshima bomb equivalents (13 kilotons 
of TNT each)? (Ancient meteorite or comet impacts may have 
significantly  altered the climate, killing off the  dinosaurs and 
other life-forms.)

5 M  A father racing his son has half the kinetic energy of the 
son, who has half the mass of the father. The father speeds up by 
1.0 m/s and then has the same kinetic energy as the son. What 
are the original speeds of (a) the father and (b) the son?

6 M  A bead with mass 1.8 × 10−2 kg is moving along a wire in 
the positive direction of an x axis. Beginning at time t = 0, when 
the bead passes through x = 0 with speed 12 m/s, a  constant 
force acts on the bead. Figure 7.9 indicates the bead’s position 
at these four times: t0 = 0, t1 = 1.0 s, t2 = 2.0 s, and t3 = 3.0 s. 
The bead  momentarily stops at t = 3.0 s. What is the kinetic 
energy of the bead at t = 10 s?

0 5 10 15 20

t0 t1 t2 t3

x (m)

Figure 7.9 Problem 6.

Problems

Module 7.2  Work and Kinetic Energy
7 E  A 3.0 kg body is at rest on a frictionless horizontal air track 
when a constant horizontal force    F 

→
    acting in the positive direction 

of an x axis along the track is applied to the body. A stroboscopic 
graph of the position of the body as it slides to the right is shown 
in Fig. 7.10. The force    F 

→
    is applied to the body at t = 0, and the 

graph records the position of the body at 0.50 s intervals. How 
much work is done on the body by the applied force    F 

→
    between 

t = 0 and t = 2.0 s?

0 0.2 0.4 0.6 0.8

t = 0 0.5 s 1.0 s 1.5 s 2.0 s

x (m)

Figure 7.10 Problem 7.

8 E  A ice block floating in a river is pushed through a displace-
ment    d 

→
   = (15  m) ̂ i  − (12  m) ̂ j   along a straight embankment by 

rushing water, which exerts a force    F 
→

   = (210 N )   ̂ i  − (150 N )   ̂ j   on 
the block. How much work does the force do on the block during 
the displacement?

9 E  The only force acting on a 2.0 kg canister that is moving in 
an xy plane has a magnitude of 5.0 N. The canister initially has a 
velocity of 4.0 m/s in the positive x direction and some time later 
has a velocity of 6.0 m/s in the positive y direction. How much 
work is done on the canister by the 5.0 N force during this time?

10 E  A coin slides over a frictionless plane and across an xy 
 coordinate system from the origin to a point with xy coordinates 
(3.0 m, 4.0 m) while a constant force acts on it. The force has 
magnitude 2.0 N and is directed at a counterclockwise  angle of 
100° from the positive direction of the x axis. How much work is 
done by the force on the coin during the  dis placement?

11 M  A 12.0 N force with a fixed orientation does work on 
a particle as the particle moves through the three-dimensional 
displacement    d 

→
   = (2.00  ̂ i  − 4.00  ̂ j  + 3.00   ̂  k ) m . What is the angle 

between the force and the displacement if the change in the par-
ticle’s  kinetic energy is (a) +30.0 J and (b) −30.0 J?

12 M  A can of bolts and nuts is pushed 2.00 m along an x axis 
by a broom along the greasy (frictionless) floor of a car repair 
shop in a version of shuffleboard. Figure 7.11 gives the work 
W done on the can by the con-
stant horizontal force from the 
broom, versus the can’s posi-
tion x. The scale of the figure’s 
vertical axis is set by Ws = 6.0 J.  
(a) What is the magnitude of 
that force? (b) If the can had 
an initial kinetic energy of 
3.00 J, moving in the positive 
direction of the x axis, what is 
its kinetic energy at the end of 
the 2.00 m?

          Tutoring problem available (at instructor’s discretion) in WileyPLUS

 Worked-out solution available in Student Solutions Manual

E  Easy M  Medium H  Hard

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

CALC  Requires calculus

BIO  Biomedical application

GO

FCP

SSM

W
 (

J)

Ws

0 1
x (m)

2

Figure 7.11 Problem 12.
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13 M  A luge and its rider, with a total mass of 85 kg, emerge 
from a downhill track onto a horizontal straight track with 
an initial speed of 37 m/s. If a force slows them to a stop at a con-
stant rate of 2.0 m/s2, (a) what magnitude F is required for the 
force, (b) what distance d do they travel while slowing, and  
(c) what work W is done on them by the force? What are (d) F, 
(e) d, and (f) W if they, instead, slow at 4.0 m/s2?

14 M  GO  Figure 7.12 shows an 
overhead view of three horizon-
tal forces acting on a cargo can-
ister that was initially stationary 
but now moves across a friction-
less floor. The force magnitudes 
are F1 = 3.00 N, F2 = 4.00 N, 
and F3 = 10.0 N, and the indi-
cated angles are θ2 = 50.0° and 
θ3 = 35.0°. What is the net work 
done on the canister by the 
three forces during the first 4.00 m of displacement?

15 M  GO  Figure 7.13 shows 
three forces applied to a trunk 
that moves leftward by 3.00 m 
over a frictionless floor. The 
force magnitudes are F1 =  
5.00 N, F2 = 9.00 N, and F3 =  
3.00 N, and the indicated angle 
is θ = 60.0°. During the dis-
placement, (a)  what is the net 
work done on the trunk by the 
three forces and (b) does the 
kinetic energy of the trunk increase or  decrease?

16 M  GO  An 8.0 kg object is moving in the positive direc-
tion of an x axis. When it passes through x = 0, a constant force 
 directed along the axis begins 
to act on it. Figure 7.14 gives 
its kinetic  energy K versus 
position x as it moves from 
x = 0 to x  = 5.0 m; K0 = 
30.0 J. The force continues 
to act. What is v when the 
 object moves back through 
x = −3.0 m?

Module 7.3  Work Done by the Gravitational Force
17 E  SSM  A helicopter lifts a 72 kg astronaut 15 m vertically 
from the ocean by means of a cable. The acceleration of the 
astronaut is g/10. How much work is done on the astronaut by 
(a) the force from the helicopter and (b) the gravitational force 
on her? Just before she reaches the helicopter, what are her  
(c) kinetic energy and (d) speed?

18 E  BIO  FCP  (a) In 1975 the roof of Montreal’s Velodrome, 
with a weight of 360 kN, was lifted by 10 cm so that it could be 
 centered. How much work was done on the roof by the forces 
making the lift? (b) In 1960 a Tampa, Florida, mother report-
edly raised one end of a car that had fallen onto her son when a 
jack failed. If her panic lift effectively raised 4000 N (about    1 _ 4    of 

F1

F2

F3

y

x
θ3

θ2

Figure 7.12 Problem 14.

F1

F3

F2

θ

Figure 7.13 Problem 15.

Figure 7.14 Problem 16.

x (m)

K0

0 5

K (J)

the car’s weight) by 5.0 cm, how much work did her force do on 
the car?

19 M  GO  In Fig. 7.15, a block of 
ice slides down a frictionless ramp 
at angle θ = 50° while an ice worker 
pulls on the block (via a rope) with 
a force     F 

→
    r    that has a magnitude of 

50 N and is directed up the ramp. 
As the block slides through dis-
tance d = 0.50 m along the ramp, 
its kinetic energy increases by 80 J. 
How much greater would its 
kinetic energy have been if the 
rope had not been attached to the block?

20 M  A block is sent up a friction-
less ramp along which an x axis 
extends upward. Figure 7.16 gives 
the kinetic energy of the block as 
a function of position x; the scale 
of the figure’s vertical axis is set 
by Ks = 40.0 J. If the block’s ini-
tial speed is 4.00 m/s, what is the 
normal force on the block?

21 M  SSM  A cord is used to vertically lower an initially station-
ary block of mass M at a constant downward acceleration of g/4. 
When the block has fallen a distance d, find (a) the work done by 
the cord’s force on the block, (b) the work done by the gravitational 
force on the block, (c) the kinetic energy of the block, and (d) the 
speed of the block.

22 M  A cave rescue team lifts an injured spelunker directly 
upward and out of a sinkhole by means of a motor-driven  cable. 
The lift is performed in three stages, each requiring a vertical dis-
tance of 10.0 m: (a) the initially stationary spelunker is accelerated 
to a speed of 5.00 m/s; (b) he is then lifted at the constant speed of 
5.00 m/s; (c) finally he is decelerated to zero speed. How much 
work is done on the 80.0 kg rescuee by the force lifting him during 
each stage?

23 M  In Fig. 7.17, a constant 
force     F 

→
    a    of magnitude 82.0 N is 

applied to a 3.00 kg shoe box at 
angle ϕ = 53.0°, causing the box to 
move up a frictionless ramp at con-
stant speed. How much work is 
done on the box by     F 

→
    a    when the 

box has moved through vertical 
distance h = 0.150 m?

24 M  GO  In Fig. 7.18, a hori-
zontal force     F 

→
    a    of magnitude 

20.0 N is applied to a 3.00 kg 
psychology book as the book 
slides a  distance d = 0.500 m up 
a frictionless ramp at angle 
θ = 30.0°. (a) During the dis-
placement, what is the net work 
done on the book by     F 

→
    a   , the 

gravitational force on the book, 
and the normal force on the book? (b) If the book has zero kinetic 

d
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θ

Figure 7.15 Problem 19.
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Figure 7.16 Problem 20.

Fa
ϕ

Figure 7.17 Problem 23.
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Figure 7.18 Problem 24.
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energy at the start of the displacement, what is its speed at the end 
of the displacement?

25 H  GO  In Fig. 7.19, a 0.250 kg block of 
cheese lies on the floor of a 900 kg elevator cab 
that is being pulled upward by a cable through 
distance d1 = 2.40 m and then through distance 
d2 = 10.5 m. (a) Through d1, if the normal force 
on the block from the floor has constant mag-
nitude FN = 3.00 N, how much work is done 
on the cab by the force from the cable? (b) 
Through d2, if the work done on the cab by 
the (constant) force from the cable is 92.61 kJ, 
what is the magnitude of FN?

Module 7.4  Work Done by a Spring Force
26 E  In Fig. 7.4.1, we must apply a force of magnitude 80 N to hold 
the block stationary at x = −2.0 cm. From that position, we then 
slowly move the block so that our force does +4.0 J of work on the 
spring–block system; the block is then again  stationary. What is the 
block’s position? (Hint: There are two  answers.)

27 E  A spring and block are in the arrangement of Fig. 7.4.1. When 
the block is pulled out to x = +4.0 cm, we must apply a  force of 
magnitude 360 N to hold it there. We pull the block to x = 11 cm 
and then release it. How much work does the spring do on the 
block as the block moves from xi = +5.0 cm to (a) x = +3.0 cm,  
(b) x = −3.0 cm, (c) x = −5.0 cm, and (d) x = −9.0 cm?

28 E  During spring semester at MIT, residents of the parallel 
buildings of the East Campus dorms battle one another with large 
catapults that are made with surgical hose mounted on a window 
frame. A balloon filled with dyed water is placed in a  pouch 
attached to the hose, which is then stretched through the width of 
the room. Assume that the stretching of the hose obeys Hooke’s 
law with a spring constant of 100 N/m. If the hose is stretched by 
5.00 m and then released, how much work does the force from the 
hose do on the balloon in the pouch by the time the hose reaches 
its relaxed length?

29 M  In the arrangement of Fig. 7.4.1, we gradually pull the 
block from x = 0 to x = +3.0 cm, where it is stationary. Figure 
7.20 gives the work that our force does on the block. The scale 
of the figure’s vertical axis is set by Ws = 1.0 J. We then pull the 
block out to x = +5.0 cm and release it from rest. How much 
work does the spring do on the block when the block moves 
from xi = +5.0 cm to (a) x = +4.0 cm, (b) x = −2.0 cm, and (c) 
x = −5.0 cm?

0
x (cm)

1 2 3

W
 (

J)

Ws

Figure 7.20 Problem 29.

Figure 7.19  
Problem 25.

30 M  In Fig. 7.4.1a, a block 
of mass m lies on a horizon-
tal  frictionless surface and is 
attached to one end of a hori-
zontal spring (spring constant 
k) whose other end is fixed. The 
block is initially at rest at the posi-
tion where the spring is  unstretched (x = 0) when a constant hori-
zontal force    F 

→
    in the positive direction of the x axis is applied to 

it. A plot of the  resulting kinetic energy of the block versus its 
position x is shown in Fig. 7.21. The scale of the figure’s verti-
cal axis is set by Ks = 4.0 J. (a) What is the magnitude of     F 

→
   ?  

(b) What is the value of k?

31 M  CALC  SSM  The only force acting on a 2.0 kg body as it 
moves along a positive x axis has an x component Fx = −6x N, 
with x in meters. The velocity at x = 3.0 m is 8.0 m/s. (a) What is 
the velocity of the body at x = 4.0 m? (b) At what positive value 
of x will the body have a velocity of 5.0 m/s?

32 M  Figure 7.22 gives spring 
force Fx versus position x for 
the spring–block arrangement 
of Fig. 7.4.1. The scale is set 
by Fs = 160.0 N. We release 
the block at x = 12 cm. How 
much work does the spring do 
on the  block when the block 
moves from xi = +8.0 cm to (a) 
x = +5.0 cm, (b) x = −5.0 cm, 
(c) x = −8.0 cm, and (d) x = −10.0 cm?

33 H  GO  The block in Fig. 7.4.1a lies on a horizontal frictionless 
surface, and the spring constant is 50 N/m. Initially, the spring 
is at its relaxed length and the block is stationary at position 
x = 0. Then an applied force with a constant magnitude of 3.0 N 
pulls the block in the positive direction of the x axis, stretch-
ing the spring until the block stops. When that stopping point 
is reached, what are (a) the position of the block, (b) the work 
that has been done on the block by the applied force, and (c) the 
work that has been done on the block by the spring force? Dur-
ing the block’s displacement, what are (d) the block’s position 
when its kinetic energy is maximum and (e)  the value of that 
maximum kinetic energy?

Module 7.5  Work Done by a General Variable Force
34 E  CALC  A 10 kg brick moves along an x axis. Its acceleration 
as a function of its position is shown in Fig. 7.23. The scale of the 
figure’s vertical axis is set by as = 20.0 m/s2. What is the net work 
performed on the brick by the force causing the acceleration as 
the brick moves from x = 0 to x = 8.0 m?

a 
 (

m
/s

2 )
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0

x (m)
4 6 820

Figure 7.23 Problem 34.
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Figure 7.22 Problem 32.
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Figure 7.21 Problem 30.
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35 E  CALC  SSM  The force on a particle is directed along an x 
axis and given by F = F0(x/x0 − 1). Find the work done by the force 
in moving the particle from x = 0 to x = 2x0 by (a) plotting F(x) and 
measuring the work from the graph and (b) integrating F(x).

36 E  CALC  GO  A 5.0 kg block 
moves in a straight line on a hor-
izontal frictionless surface under 
the influence of a force that var-
ies with position as shown in Fig. 
7.24. The scale of the figure’s 
vertical axis is set by Fs = 10.0 N. 
How much work is done by the 
force as the block moves from 
the origin to x = 8.0 m?

37 M  CALC  GO  Figure 7.25 gives the acceleration of a 2.00 kg 
particle as an applied force     F 

→
    a    moves it from rest along an x axis 

from x = 0 to x = 9.0 m. The scale of the figure’s vertical axis is set 
by as = 6.0 m/s2. How much work has the force done on the par-
ticle when the  particle reaches (a) x = 4.0 m, (b) x = 7.0 m, and 
(c) x = 9.0 m? What is the particle’s speed and direction of travel 
when it reaches (d) x = 4.0 m, (e) x = 7.0 m, and (f) x = 9.0 m?

a 
(m

/s
2 )

as

0

–as

2 4 6 8
x (m)

Figure 7.25 Problem 37.

38 M  CALC  A 1.5 kg block is initially at rest on a horizontal 
 frictionless surface when a horizontal force along an x axis is 
 applied to the block. The force is given by    F 

→
    (  x )    =   (  2.5 −  x   2  )    ̂ i  N ,  

where x is in meters and the initial  position of the block is x = 0. 
(a) What is the kinetic energy of  the block as it passes through 
x = 2.0 m? (b) What is the maximum kinetic energy of the block 
between x = 0 and x = 2.0 m?

39 M  CALC  GO  A force    F 
→

   =  (cx − 3.00  x   2 )  ̂ i   acts on a particle 
as the particle moves along an x axis, with    F 

→
    in newtons, x in 

meters, and c a constant. At x = 0, the particle’s kinetic energy is 
20.0 J; at x = 3.00 m, it is 11.0 J. Find c. 

40 M  CALC  A can of sardines is made to move along an x axis 
from x = 0.25 m to x = 1.25 m by a force with a magnitude given by 
F = exp(−4x2), with x in meters and F in newtons. (Here exp is the 
exponential function.) How much work is done on the can by the 
force?

41 M  CALC  A single force acts on a 3.0 kg particle-like object 
whose position is given by x = 3.0t − 4.0t2 + 1.0t3, with x in 
meters and t in seconds. Find the work done by the force from 
t = 0 to t = 4.0 s.

42 H  GO  Figure 7.26 shows a cord attached to a cart that can 
slide along a frictionless horizontal rail aligned along an x axis. 
The left end of the cord is pulled over a pulley, of negligible 
mass and friction and at cord height h = 1.20 m, so the cart slides 
from x1 = 3.00 m to x2 = 1.00 m. During the move, the tension in 

Fo
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4
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82

Figure 7.24 Problem 36.

the cord is a constant 25.0 N. What is the change in the kinetic 
energy of the cart during the move?

h

x

T

x2 x1

y

Figure 7.26 Problem 42.

Module 7.6  Power
43 E  CALC  SSM  A force of 5.0 N acts on a 15 kg body initially 
at rest. Compute the work done by the force in (a) the first, (b) 
the second, and (c) the third seconds and (d) the instantaneous 
power due to the force at the end of the third second.

44 E  A skier is pulled by a towrope up a frictionless ski slope 
that makes an angle of 12° with the horizontal. The rope 
moves parallel to the slope with a constant speed of 1.0 m/s. 
The force of the rope does 900 J of work on the skier as 
the skier moves a distance of 8.0 m up the incline. (a) If the 
rope moved with a constant speed of 2.0 m/s, how much work 
would the force of the rope do on the skier as the skier moved 
a distance of 8.0 m up the incline? At what rate is the force of 
the rope doing work on the skier when the rope moves with a 
speed of (b) 1.0 m/s and (c) 2.0 m/s?

45 E  SSM  A 100 kg block is pulled at a constant speed of 
5.0 m/s across a horizontal floor by an applied force of 122 N 
directed 37° above the horizontal. What is the rate at which the 
force does work on the block?

46 E  The loaded cab of an elevator has a mass of 3.0 × 103 kg 
and moves 210 m up the shaft in 23 s at constant speed. At what 
average rate does the force from the cable do work on the cab?

47 M  A machine carries a 4.0 kg package from an initial  position 
of     d 

→
    i   = (0.50  m) ̂ i  +  (0.75  m)  ̂ j  +  (0.20  m)   ̂  k   at t = 0 to a final 

position of     d 
→

    f   =   (  7.50 m )    ̂ i  +   (  12.0 m )    ̂ j  +   (  7.20 m )     ̂  k   at t = 12 s. The 
constant force applied by the machine on the package is     F 

→
   =  

  (  2.00 N )    ̂ i  +   (  4.00 N )    ̂ j  +   (  6.00 N )     ̂  k  . For that displacement, find (a) 
the work done on the package by the machine’s force and (b) the 
average power of the machine’s force on the package.

48 M  A 0.30 kg ladle sliding on a horizontal frictionless  surface 
is attached to one end of a horizontal spring (k = 500  N/m) 
whose other end is fixed. The ladle has a kinetic  energy of 10 J 
as it passes through its equilibrium position (the point at which 
the spring force is zero). (a) At what rate is the spring doing 
work on the ladle as the ladle passes through its equilibrium 
position? (b) At what rate is the spring doing work on the ladle 
when the spring is compressed 0.10 m and the ladle is moving 
away from the equilibrium position?

49 M  SSM  A fully loaded, slow-moving freight elevator has 
a cab with a total mass of 1200 kg, which is required to travel 
 upward 54 m in 3.0 min, starting and ending at rest. The ele-
vator’s counterweight has a mass of only 950 kg, and so the 
 elevator motor must help. What average power is required of 
the force the motor exerts on the cab via the cable?

50 M  (a) At a certain instant, a particle-like object is acted on 
by a force    F 

→
   =   (  4.0 N )    ̂ i  −   (  2.0 N )    ̂ j  +   (  9.0 N )     ̂  k   while the object’s 
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velocity is    v →   = −   (  2.0 m / s )    ̂ i  +   (  4.0 m / s )     ̂  k  . What is the instanta-
neous rate at which the force does work on the  object? (b) At 
some other time, the velocity consists of only a y component. If 
the force is unchanged and the instantaneous power is −12 W, 
what is the velocity of the object?

51 M  A force    F 
→

   =   (  3.00  N )    ̂ i  +   (  7.00  N )    ̂ j  +   (  7.00  N )     ̂  k   acts on 
a 2.00 kg mobile object that moves from an initial position of  
    d 
→

    i   =   (  3.00 m )    ̂ i  −   (  2.00 m )    ̂ j  +   (  5.00 m )     ̂  k    to a final position of     d 
→

    f   =  
−   (  5.00 m )    ̂ i  +   (  4.00 m )    ̂ j  +   (  7.00 m )     ̂  k   in 4.00 s. Find (a) the work 
done on the object by the force in the 4.00 s  interval, (b) the aver-
age power due to the force during that  interval, and (c) the angle 
between vectors    d 

→
  i and    d 

→
  f.

52 H  CALC  A funny car accelerates from rest through a mea-
sured track distance in time T with the engine operating at a con-
stant power P. If the track crew can increase the engine power by 
a differential amount dP, what is the change in the time required 
for the run?

Additional Problems
53  Figure 7.27 shows a cold package of hot dogs sliding right-
ward across a frictionless floor through a distance d = 20.0 cm 
while three forces act on the package. Two of them are hori-
zontal and have the magnitudes F1 = 5.00 N and F2 = 1.00 N; 
the third is angled down by θ = 60.0° and has the magnitude 
F3 = 4.00 N. (a)  For the 20.0 cm displacement, what is the net 
work done on the package by the three applied forces, the gravi-
tational force on the package, and the normal force on the pack-
age? (b) If the package has a mass of 2.0 kg and an initial kinetic 
energy of 0, what is its speed at the end of the displacement?

F2 F1

d

F3

θ

Figure 7.27 Problem 53.

54 GO  The only force acting 
on a 2.0 kg body as the body 
moves along an x axis varies as 
shown in Fig. 7.28. The scale of 
the figure’s vertical axis is set 
by Fs = 4.0 N. The velocity of 
the body at x = 0 is 4.0 m/s. (a) 
What is the kinetic energy of 
the body at x = 3.0 m? (b) At what value of x will the body have 
a kinetic energy of 8.0 J? (c) What is the maximum kinetic  energy 
of the body between x = 0 and x = 5.0 m?

55 SSM  BIO  A horse pulls a cart with a force of 40 lb at an angle 
of 30° above the horizontal and moves along at a speed of 6.0 mi/h. 
(a) How much work does the force do in 10 min? (b) What is the 
average power (in horsepower) of the force?

56  An initially stationary 2.0 kg object accelerates horizontally 
and uniformly to a speed of 10 m/s in 3.0 s. (a) In that 3.0 s interval, 
how much work is done on the object by the force accelerating it? 
What is the instantaneous power due to that force (b) at the end of 
the interval and (c) at the end of the first half of the interval?

57  A 230 kg crate hangs from the end of a rope of length L =  
12.0 m. You push horizontally on the crate with a  varying force    F 

→
    

Fx  (N)

0

–Fs

x  (m)
4321

Fs

5

Figure 7.28 Problem 54.

to move it distance d = 4.00 m to the 
side (Fig. 7.29). (a) What is the magni-
tude of    F 

→
    when the crate is in this final 

position? During the crate’s displace-
ment, what  are (b) the  total work 
done on it, (c) the work done by the 
grav itational force on the crate, and 
(d) the work done by the pull on the 
crate from the rope? (e) Knowing 
that  the  crate is motionless before 
and after its displacement, use  the 
answers to (b), (c), and (d) to find the 
work your force    F 

→
    does on the crate. 

(f) Why is the work of your force not equal to the product of the 
horizontal displacement and the answer to (a)?

58  To pull a 50 kg crate across a horizontal frictionless floor, a 
worker applies a force of 210 N, directed 20° above the horizon-
tal. As the crate moves 3.0 m, what work is done on the crate by 
(a) the worker’s force, (b) the gravitational force, and (c) the nor-
mal force? (d) What is the total work?

59  A force     F 
→

    a    is applied to a bead as 
the bead is moved along a straight wire 
through displacement +5.0 cm. The 
magnitude of     F 

→
    a    is set at a certain value, 

but the angle ϕ between     F 
→

    a    and the 
bead’s displacement can be chosen. Fig-
ure 7.30 gives the work W done by     F 

→
    a    

on the bead for a range of ϕ values; 
W0 = 25 J. How much work is done 
by     F 

→
    a    if ϕ is (a) 64° and (b) 147°?

60  A frightened child is restrained by her mother as the child 
slides down a frictionless playground slide. If the force on the 
child from the mother is 100 N up the slide, the child’s kinetic 
energy increases by 30 J as she moves down the slide a distance 
of 1.8 m. (a) How much work is done on the child by the gravi-
tational force during the 1.8 m descent? (b) If the child is not 
restrained by her mother, how much will the child’s kinetic 
energy increase as she comes down the slide that same distance 
of 1.8 m?

61 CALC  How much work is done by a force    F 
→

   =   (  2x N )    ̂ i  +   (  3 N )    ̂ j  ,  
with x in meters, that moves a particle from a position     r →    i   =   (  2 m )    ̂ i   
+   (  3 m )    ̂ j   to a position     r →    f   = −   (  4 m )    ̂ i  −   (  3 m )    ̂ j  ?

62  A 250 g block is dropped onto a relaxed 
vertical spring that has a spring constant of 
k = 2.5 N/cm (Fig. 7.31). The block becomes 
attached to the spring and compresses the spring 
12 cm before momentarily stopping. While the 
spring is being compressed, what work is done 
on the block by (a) the gravitational force on it 
and (b) the spring force? (c) What is the speed of 
the block just before it hits the spring? (Assume 
that friction is negligible.) (d) If the speed at 
impact is doubled, what is the maximum com-
pression of the spring?

63  SSM   To push a 25.0 kg crate up a frictionless incline, angled 
at 25.0° to the horizontal, a worker exerts a force of 209 N par-
allel to the incline. As the crate slides 1.50 m, how much work 
is done on the crate by (a) the worker’s applied force, (b) the 

W
 (

J)

W0

0
ϕ

Figure 7.30  
Problem 59.

Figure 7.31   
Problem 62.

L

d

F

Figure 7.29 Problem 57.
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gravitational force on the crate, and (c) the normal force  exerted 
by the incline on the crate? (d) What is the total work done on 
the crate?

64  Boxes are transported from one location to another in a 
warehouse by means of a conveyor belt that moves with a con-
stant speed of 0.50 m/s. At a certain location the conveyor belt 
moves for 2.0 m up an incline that makes an angle of 10° with 
the horizontal, then for 2.0 m horizontally, and finally for 2.0 m 
down an incline that makes an angle of 10° with the  horizontal. 
Assume that a 2.0 kg box rides on the belt without slipping. At 
what rate is the force of the conveyor belt doing work on the box 
as the box moves (a) up the 10° incline, (b) horizontally, and (c) 
down the 10° incline?

65  In Fig. 7.32, a cord runs around two massless, frictionless 
pulleys. A canister with mass m = 20 kg hangs from one  pulley, 
and you exert a force    F 

→
    on the 

free end of the cord. (a) What 
must be the magnitude of    F 

→
    

if you are to lift the  canister at 
a constant speed? (b) To lift 
the canister by 2.0 cm, how far 
must you pull the free end of 
the cord? During that lift, what 
is the work done on the canis-
ter by (c) your force (via the 
cord) and (d) the gravitational 
force? (Hint: When a  cord 
loops around a pulley as shown, 
it pulls on the pulley with a net 
force that is twice the tension in 
the cord.)

66  If a car of mass 1200 kg is moving along a highway at 
120  km/h, what is the car’s kinetic energy as determined by 
someone standing alongside the highway?

67 SSM  A spring with a pointer attached is hanging next to a 
scale marked in millimeters. Three different packages are hung 
from the spring, in turn, as shown in Fig. 7.33. (a) Which mark 
on the scale will the pointer indicate when no package is hung 
from the spring? (b) What is the weight W of the third package?

mm
0

30

W

mm
0

40

110 N

mm
0

60

240 N

Figure 7.33 Problem 67.

68  An iceboat is at rest on a frictionless frozen lake when 
a  sudden wind exerts a constant force of 200 N, toward the 
east, on the boat. Due to the angle of the sail, the wind causes 

mF

Figure 7.32 Problem 65.

the boat to slide in a straight line for a distance of 8.0 m in 
a direction 20° north of east. What is the kinetic energy of the 
iceboat at the end of that 8.0 m?

69  If a ski lift raises 100 passengers averaging 660 N in weight 
to a height of 150 m in 60.0 s, at constant speed, what average 
power is required of the force making the lift?

70  A force    F 
→

   =   (  4.0 N )    ̂ i  + c ̂ j   acts on a particle as the par ticle 
travels through displacement    d 

→
   =   (  3.0  m )    ̂ i  −   (  2.0  m )    ̂ j  . (Other 

forces also act on the particle.) What is c if the work done on the 
particle by force    F 

→
    is (a) 0, (b) 17 J, and (c) −18 J?

71  Kinetic energy. If a vehicle with a mass of 1500 kg has a 
speed of 120 km/h, what is the vehicle’s kinetic energy as deter-
mined by someone passing the vehicle at 140 km/h?

72 CALC  Work calculated by graphical integration. In Fig. 7.34b, 
an 8.0 kg block slides along a frictionless floor as a force acts on 
it, starting at x1 = 0 and ending at x3 = 6.5 m. As the block moves,  
the magnitude and direction of the force vary according to the 
graph shown in Fig. 7.34a. For example, from x = 0 to x = 1 m, 
the force is positive (in the positive direction of the x axis) and 
increases in magnitude from 0 to 40 N. And from x = 4 m to  
x = 5 m, the force is negative and increases in magnitude from 
0 to 20 N. The block’s kinetic energy at x1 is K1 = 280 J. What is 
the block’s speed at (a) x1 = 0, (b) x2 = 4.0 m, and (c) x3 = 6.5 m?

2
0

–20

40

4 6

20 4 6

x (m)

x (m)

F (N)

(a)

(b)

v1 v2 v3
F F

Figure 7.34 Problem 72.

73  Brick load. A load of bricks with mass m = 420 kg is to be 
lifted by a winch to a stationary position at height h = 120 m in 
5.00 min. What must be the average power of the winch motion 
in kilowatts and horsepower?

74 BIO  CALC  Hip fracture and body mass index. Hip fracture 
due to a fall is a chronic problem, especially with older people 
and people subject to seizures. One research focus is on the cor-
relation between fracture risk and weight, specifically, the body 
mass index (BMI). That index is defined as m/h2, where m is the 
mass (in kilograms) and h is the height (in meters) of a person. 
Is a person with a higher BMI more or less likely to fracture a 
hip in a fall on a floor? 
 One way to measure the fracture risk is to measure the amount 
of energy absorbed as the hip impacts the floor and any cover-
ing in a sideways fall. During the impact and compression of 
the floor and covering, the force from the hip does work on the 
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floor and covering. A larger amount of work implies a smaller 
amount of energy left to fracture the hip. In an experiment, a 
participant is held horizontally in a sling with the left hip 5.0 cm 
above a force plate with a floor covering. When the participant 
is dropped, measurements are made of the force magnitude F on 
the plate during impact and the plate’s deflection d. Figure 7.35 
gives idealized plots for two participants. For A: m = 55.0 kg,  
h = 1.70 m, peak force FA = 1400 N, and maximum plate deflec-
tion dA = 2.00 cm. For B: m = 110 kg, h = 1.70 m, FB2 = 1600 N,  
dB2 = 6.00 cm, and intermediate force FB1 = 500 N at deflection 
dB1 = 4.00 cm.
 What is the BMI for (a) (lighter) participant A and (b) 
(heavier) participant B? (c) Which participant experiences the 
greater peak force from the plate, the lighter one or the heavier 
one? How much energy is absorbed by the plate and covering 
(how much work is done on the plate) for (d) participant A and 
(e) participant B? What is the absorbed energy per unit mass 
of (f) participant A and (g) participant B? (h) Do the results 
indicate higher plate absorption (and thus lower fracture risk for 
the participant) for the higher BMI or lower BMI? (i) Does this 
correlate with the peak force results? 

F

FB2

FB1

dB1dA dB2
d

FA

Figure 7.35 Problem 74.

75  Car crash force from seat belt. A car crashes head on into a 
wall and stops, with the front collapsing by 0.500 m. The 70 kg  

driver is firmly held to the seat by a seat belt and thus moves 
forward by 0.500 m during the crash. Assume that the force on 
the driver from the seat belt is constant during the crash. Use 
the work−kinetic energy theorem to find the magnitude of that 
force during the crash if the initial speed of the car is (a) 35 mi/h 
and (b) 70 mi/h? (c) If the initial speed is multiplied by 2, as 
here, by what multiplying factor is the force increased?

76 CALC  Work and power as functions of time. A body of mass 
m accelerates uniformly from rest to speed vf in time tf. In terms 
of these symbols, at time t, what is (a) the work done on the 
body and (b) the power delivered to the body?

77  Work, train observer, ground observer. An object with mass 
m is initially stationary inside a train that moves at constant 
speed u along an x axis. A constant force then gives the object 
an acceleration a in the forward direction for time t. In terms 
of these given symbols, how much work is done by the force 
as measured by (a) an observer stationary inside the train and  
(b) an observer stationary alongside the track? 

78 CALC  Work and power, graphical integration. A single force 
acts on a 3.0 kg body that moves along an x axis. Figure 7.36 
gives the velocity v versus time t due to the motion. What is the 
work done on the body (sign included) for the time intervals 
(a) 0 to 2.0 ms, (b) 2.0 to 5.0 ms, (c) 5.0 to 8.0 ms, and (d) 8.0 to 
11 ms? What is the average power supplied to the body (sign 
included) for the time intervals (e) 0 to 2.0 ms, (f) 2.0 to 5.0 ms, 
(g) 5.0 to 8.0 ms, and (h) 8.0 to 11 ms?

2.0

7.0

–7.0
5.0 8.0 11

v (m/s)

t (ms)

Figure 7.36 Problem 78.
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C H A P T E R  8

Potential Energy and 
Conservation of Energy

8.1 POTENTIAL ENERGY
Learning Objectives 
After reading this module, you should be able to  . . .

8.1.1 Distinguish a conservative force from a noncon-
servative force.

8.1.2 For a particle moving between two points, iden-
tify that the work done by a conservative force does 
not depend on which path the particle takes.

8.1.3 Calculate the gravitational potential energy 
of a particle (or, more properly, a particle– Earth 
system).

8.1.4 Calculate the elastic potential energy of a block– 
spring system.   

Key Ideas 
● A force is a conservative force if the net work it does 
on a particle moving around any closed path, from an 
initial point and then back to that point, is zero. Equiva-
lently, a force is conservative if the net work it does on 
a particle moving between two points does not depend 
on the path taken by the particle. The gravitational 
force and the spring force are conservative forces; the 
kinetic frictional force is a nonconservative force.

● Potential energy is energy that is  associated with the 
configuration of a system in which a conservative force 
acts. When the conservative force does work W on a 
particle within the system, the change ∆U in the poten-
tial energy of the system is

∆U = −W.

If the particle moves from point xi to point xf, the 
change in the potential energy of the system is

 ΔU = −    
 x  t  
  

 x  f  
  F  (  x )     dx  . 

● The potential energy associated with a system con-
sisting of Earth and a nearby particle is gravitational 

potential energy. If the particle moves from height yi 
to height yf, the change in the gravitational potential 
energy of the particle– Earth system is

∆U = mg(yf − yi) = mg ∆y.

● If the reference point of the particle is set as yi = 0 
and the corresponding gravitational potential energy 
of the system is set as Ui = 0, then the gravitational 
potential energy U when the particle is at any height 
y is

U(y) = mgy.

● Elastic potential energy is the  energy associated with 
the state of compression or exten sion of an  elastic object. 
For a spring that exerts a spring force F = −kx when 
its free end has displacement x, the elastic  potential 
energy is

 U (x)  =   1 _ 2   k x   2 . 

● The reference configuration has the spring at its 
relaxed length, at which x = 0 and U = 0.
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What Is Physics?
One job of physics is to identify the different types of energy in the world, 
 especially those that are of common importance. One general type of energy is 
potential energy U. Technically, potential energy is energy that can be associated 
with the configuration (arrangement) of a system of objects that exert forces on 
one another.

This is a pretty formal definition of something that is actually familiar to you. 
An example might help better than the definition: A bungee- cord jumper plunges 
from a staging platform (Fig. 8.1.1). The system of objects consists of Earth and the 
jumper. The force between the objects is the gravitational force. The configu ration 
of the system changes (the separation between the jumper and Earth  decreases—
that is, of course, the thrill of the jump). We can account for the jumper’s motion and 
increase in kinetic energy by defining a gravitational potential energy U. This is the 
energy associated with the state of separation between two objects that attract 
each other by the gravitational force, here the jumper and Earth.

When the jumper begins to stretch the bungee cord near the end of the plunge, 
the system of objects consists of the cord and the jumper. The force  between the 
objects is an elastic (spring- like) force. The configuration of the system changes 
(the cord stretches). We can account for the jumper’s decrease in  kinetic energy 
and the cord’s increase in length by defining an elastic potential energy U. This 
is the energy associated with the state of compression or extension of an elastic 
object, here the bungee cord.

Physics determines how the potential energy of a system can be calculated 
so that energy might be stored or put to use. For example, before any particu-
lar bungee- cord jumper takes the plunge, someone (probably a mechanical engi-
neer) must determine the correct cord to be used by calculating the gravitational 
and elastic potential energies that can be expected. Then the jump is only thrilling 
and not fatal.

Work and Potential Energy
In Chapter 7 we discussed the relation between work and a change in kinetic  energy. 
Here we discuss the relation between work and a change in potential  energy.

Let us throw a tomato upward (Fig. 8.1.2). We already know that as the tomato 
rises, the work Wg done on the tomato by the gravitational force is negative  because 
the force transfers energy from the kinetic energy of the tomato. We can now finish 
the story by saying that this energy is transferred by the gravitational force to the 
gravitational potential energy of the tomato– Earth system.

Figure 8.1.1 The kinetic energy of a 
bungee- cord jumper increases during 
the free fall, and then the cord begins 
to stretch, slowing the jumper.

Figure 8.1.2 A tomato is thrown upward. As it rises, the 
gravitational force does negative work on it, decreasing its 
kinetic energy. As the tomato descends, the gravitational 
force does positive work on it, increasing its kinetic energy.
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188 CHaPter 8 Potential energy and Conservation of energy

The tomato slows, stops, and then begins to fall back down because of the 
gravitational force. During the fall, the transfer is reversed: The work Wg done on 
the tomato by the gravitational force is now positive— that force transfers energy 
from the gravitational potential energy of the tomato– Earth system to the  kinetic 
energy of the tomato.

For either rise or fall, the change ∆U in gravitational potential energy is 
 defined as being equal to the negative of the work done on the tomato by the 
gravitational force. Using the general symbol W for work, we write this as

 ∆U = −W. (8.1.1)

This equation also applies to a block– spring system, as in Fig. 8.1.3. If we 
abruptly shove the block to send it moving rightward, the spring force acts leftward 
and thus does negative work on the block, transferring energy from the  kinetic 
energy of the block to the elastic potential energy of the spring– block system. The 
block slows and eventually stops, and then begins to move leftward because the 
spring force is still leftward. The transfer of energy is then  reversed— it is from 
potential energy of the spring– block system to kinetic  energy of the block.

Conservative and Nonconservative Forces
Let us list the key elements of the two situations we just discussed:

1. The system consists of two or more objects.

2. A force acts between a particle- like object (tomato or block) in the system and 
the rest of the system.

3. When the system configuration changes, the force does work (call it W1) on the 
particle- like object, transferring energy between the kinetic energy K of the 
object and some other type of energy of the system.

4. When the configuration change is reversed, the force reverses the energy 
transfer, doing work W2 in the process.

In a situation in which W1 = −W2 is always true, the other type of energy is 
a potential energy and the force is said to be a conservative force. As you might 
suspect, the gravitational force and the spring force are both conservative (since 
otherwise we could not have spoken of gravitational potential energy and elastic 
potential energy, as we did previously).

A force that is not conservative is called a nonconservative force. The kinetic 
frictional force and drag force are nonconservative. For an example, let us send 
a block sliding across a floor that is not frictionless. During the sliding, a kinetic 
frictional force from the floor slows the block by transferring energy from its 
kinetic energy to a type of energy called thermal energy (which has to do with the 
random motions of atoms and molecules). We know from experiment that this 
energy transfer cannot be reversed (thermal  energy cannot be transferred back to 
kinetic energy of the block by the kinetic frictional force). Thus, although we have 
a system (made up of the block and the floor), a force that acts between parts of 
the system, and a transfer of energy by the force, the force is not conservative. 
Therefore, thermal energy is not a potential energy.

When only conservative forces act on a particle- like object, we can greatly 
 simplify otherwise difficult problems involving motion of the object. Let’s next 
develop a test for identifying conservative forces, which will provide one means 
for simplifying such problems.

Path Independence of Conservative Forces
The primary test for determining whether a force is conservative or nonconserva-
tive is this: Let the force act on a particle that moves along any closed path, begin-
ning at some initial position and eventually returning to that position (so that the 

Figure 8.1.3 A block, attached to a 
spring and initially at rest at x = 0, is 
set in motion  toward the right. (a) As 
the block moves rightward (as indi-
cated by the arrow), the spring force 
does negative work on it. (b) Then, as 
the block moves back toward x = 0,  
the spring force does positive work 
on it.

(a)

(b)

0

x

0

x
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particle makes a round trip beginning and ending at the initial position). The force is 
conservative only if the total energy it transfers to and from the particle during the 
round trip along this and any other closed path is zero. In other words:

The net work done by a conservative force on a particle moving around any 
closed path is zero.

The work done by a conservative force on a particle moving between two points 
does not depend on the path taken by the particle.

We know from experiment that the gravitational force passes this closed- 
path test. An example is the tossed tomato of Fig. 8.1.2. The tomato leaves the launch 
point with speed v0 and kinetic energy    1 _ 2  m v  0  

2  . The gravitational force acting on the 
tomato slows it, stops it, and then causes it to fall back down. When the tomato 
returns to the launch point, it again has speed v0 and kinetic energy    1 _ 2  m v  0  

2  . Thus, the 
gravitational force transfers as much energy from the tomato during the ascent as 
it transfers to the tomato during the descent back to the launch point. The net work 
done on the tomato by the gravitational force during the round trip is zero.

An important result of the closed- path test is that:

For example, suppose that a particle moves from point a to point b in Fig. 8.1.4a 
along either path 1 or path 2. If only a conservative force acts on the particle, then 
the work done on the particle is the same along the two paths. In symbols, we can 
write this result as
 Wab,1 = Wab,2, (8.1.2)

where the subscript ab indicates the initial and final points, respectively, and the 
subscripts 1 and 2 indicate the path.

This result is powerful because it allows us to simplify difficult problems 
when only a conservative force is involved. Suppose you need to calculate the 
work done by a conservative force along a given path between two points, and the 
calculation is difficult or even impossible without additional information. You can 
find the work by substituting some other path between those two points for which 
the calculation is easier and possible.

Proof of Equation 8.1.2
Figure 8.1.4b shows an arbitrary round trip for a particle that is acted upon by a sin-
gle force. The particle moves from an initial point a to point b along path 1 and then 
back to point a along path 2. The force does work on the particle as the  particle 
moves along each path. Without worrying about where positive work is done and 
where negative work is done, let us just represent the work done from a to b along 
path 1 as Wab,1 and the work done from b back to a along path 2 as Wba,2. If the force 
is conservative, then the net work done during the round trip must be zero:

Wab,1 + Wba,2 = 0,
and thus

 Wab,1 = −Wba,2. (8.1.3)

In words, the work done along the outward path must be the negative of the work 
done along the path back.

Let us now consider the work Wab,2 done on the particle by the force when 
the particle moves from a to b along path 2, as indicated in Fig. 8.1.4a. If the force 
is conservative, that work is the negative of Wba,2:

 Wab,2 = −Wba,2. (8.1.4)

b

a

1

2

(a)

b

a

1

2

(b)

The force is 
conservative. Any 
choice of path 
between the points
gives the same
amount of work.

And a round trip
gives a total work
of zero.

Figure 8.1.4 (a) As a conservative force 
acts on it, a particle can move from 
point a to point b along either path 1 
or path 2. (b) The particle moves in 
a round trip, from point a to point b 
along path 1 and then back to point 
a along path 2.
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190 CHaPter 8 Potential energy and Conservation of energy

Substituting Wab,2 for −Wba,2 in Eq. 8.1.3, we obtain

Wab,1 = Wab,2,

which is what we set out to prove.

Determining Potential Energy Values
Here we find equations that give the value of the two types of potential energy 
discussed in this chapter: gravitational potential energy and elastic potential 
 energy. However, first we must find a general relation between a conservative 
force and the associated potential energy.

Checkpoint 8.1.1
The figure shows three paths connecting 
points a and b. A  single force    F 

→
    does the indi-

cated work on a particle moving along each path 
in the  indicated direction. On the basis of this 
information, is force    F 

→
    conservative?

a

b

–60 J

60 J

60 J

Sample Problem 8.1.1 Equivalent paths for calculating work, slippery cheese

The main lesson of this sample problem is this: It is 
 perfectly all right to choose an easy path instead of a 
hard path.  Figure 8.1.5a shows a 2.0 kg block of slippery 
cheese that slides along a frictionless track from point a 
to point b. The cheese travels through a total distance of 
2.0 m along the track, and a net vertical distance of 0.80 
m. How much work is done on the cheese by the gravita-
tional force during the slide?

KEY IDEAS

(1) We cannot calculate the work by using Eq. 7.3.1 
(Wg = mgd cos 𝜙). The reason is that the angle 𝜙 between 
the directions of the gravitational force    F  g   

→
    and the dis-

placement    d 
→

    varies along the track in an unknown way. 
(Even if we did know the shape of the track and could 
calculate 𝜙 along it, the calculation could be very difficult.) 
(2) Because    F  g   

→
    is a conservative force, we can find the work 

by choosing some other path  between a and b— one that 
makes the calculation easy.

Calculations: Let us choose the dashed path in Fig. 8.1.5b; 
it consists of two straight segments. Along the  horizontal 
segment, the angle 𝜙 is a constant 90°. Even though we do 
not know the displacement along that horizontal segment, 
Eq. 7.3.1 tells us that the work Wh done there is

Wh = mgd cos 90° = 0.

Along the vertical segment, the displacement d is 0.80 m  
and, with    F  g   

→
    and    d 

→
    both downward, the angle 𝜙 is a 

constant 0°. Thus, Eq. 7.3.1 gives us, for the work Wv done 
along the vertical part of the dashed path,

 Wv = mgd cos 0°

 = (2.0 kg)(9.8 m/s2)(0.80 m)(1) = 15.7 J.

The total work done on the cheese by    F  g   
→

    as the cheese 
moves from point a to point b along the dashed path 
is then

 W = Wh + Wv = 0 + 15.7 J ≈ 16 J. (Answer)

This is also the work done as the cheese slides along the 
track from a to b.

a

(a) (b)

b

a

b

The gravitational force is conservative.
Any choice of path between the points
gives the same amount of work.

Figure 8.1.5 (a) A block of cheese slides along a frictionless 
track from point a to point b. (b) Finding the work done on 
the cheese by the gravitational force is easier along the dashed 
path than along the actual path taken by the cheese; the result 
is the same for both paths.

additional examples, video, and practice available at WileyPLUS
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1918.1  Potential energy

Consider a particle- like object that is part of a system in which a conserva-
tive force    F 

→
    acts. When that force does work W on the object, the change ∆U in 

the potential energy associated with the system is the negative of the work done. 
We wrote this fact as Eq. 8.1.1 (∆U = −W). For the most general case, in which the 
force may vary with position, we may write the work W as in Eq. 7.5.4:

 
 W =   

 x  i  
  

 x  f  
  F(x)  dx.   (8.1.5)

This equation gives the work done by the force when the object moves from 
point xi to point xf , changing the configuration of the system. (Because the force 
is conservative, the work is the same for all paths between those two points.)

Substituting Eq. 8.1.5 into Eq. 8.1.1, we find that the change in potential 
energy due to the change in configuration is, in general notation, 

 ∆U =  −    
 x  i  

  
 x  f  

  F(x)  dx.   (8.1.6)

Gravitational Potential Energy
We first consider a particle with mass m moving vertically along a y axis (the 
 positive direction is upward). As the particle moves from point yi to point yf , the 
gravitational force     F 

→
    g    does work on it. To find the corresponding change in 

the gravitational potential energy of the particle– Earth system, we use Eq. 8.1.6 
with two changes: (1) We integrate along the y axis instead of the x axis, because 
the gravitational force acts vertically. (2) We substitute −mg for the force symbol F, 
because     F 

→
    g    has the magnitude mg and is directed down the y axis. We then have

 ∆U = −   
 y  i  

  
 y  f  

    (  −mg )     dy = mg   
 y  i  

  
 y  f  

  dy  = mg  [    
 
  y  
 
   ]    

 y  i  

  

 y  f  

 , 

which yields

 ∆U = mg(yf − yi) = mg ∆y. (8.1.7)

Only changes ∆U in gravitational potential energy (or any other type of 
 potential energy) are physically meaningful. However, to simplify a calculation or 
a discussion, we sometimes would like to say that a certain gravitational potential 
value U is associated with a certain particle– Earth system when the particle is at 
a certain height y. To do so, we rewrite Eq. 8.1.7 as

 U − Ui = mg(y − yi). (8.1.8)

Then we take Ui to be the gravitational potential energy of the system when it is 
in a reference configuration in which the particle is at a reference point yi.  Usually 
we take Ui = 0 and yi = 0. Doing this changes Eq. 8.1.8 to

 U( y) = mgy  (gravitational potential energy). (8.1.9)

This equation tells us:

The gravitational potential energy associated with a particle– Earth system 
depends only on the vertical position y (or height) of the particle relative to the 
reference position y = 0, not on the horizontal position.

Elastic Potential Energy
We next consider the block– spring system shown in Fig. 8.1.3, with the block 
 moving on the end of a spring of spring constant k. As the block moves from 
point xi to point xf, the spring force Fx = −kx does work on the block. To find the 
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192 CHaPter 8 Potential energy and Conservation of energy

corresponding change in the elastic potential energy of the block– spring system, 
we substitute −kx for F(x) in Eq. 8.1.6. We then have

  ∆U = −   
 x  i  

  
 x  f  

   (−kx)   dx = k   
 x  i  

  
 x  f  

  x  dx =   1 _ 2  k  [x   2 ]   x  i    
 x  f  

 ,  

or   ∆U =   1 _ 2  k x  f  
2  −   1 _ 2  k x  i  

2 .    (8.1.10)

To associate a potential energy value U with the block at position x, we choose 
the reference configuration to be when the spring is at its relaxed length and the 
block is at xi = 0. Then the elastic potential energy Ui is 0, and Eq. 8.1.10 becomes

 U − 0 =   1 _ 2   k x   2  − 0, 

which gives us

 U  (  x )    =   1 _ 2  k x   2   (elastic potential energy). (8.1.11)

Checkpoint 8.1.2
A particle is to move along an x axis from x = 0 to x1 while 
a conservative force, directed along the x axis, acts on the parti-
cle. The figure shows three situations in which the x component 
of that force varies with x. The force has the same maximum 
magnitude F1 in all three situations. Rank the situations accord-
ing to the change in the associated potential energy during the 
particle’s motion, most  positive first.

F1 F1

–F1

x1

x1x1

(1) (2) (3)

Sample Problem 8.1.2 Choosing reference level for gravitational potential energy, sloth

Here is an example with this lesson plan: Generally you 
can choose any level to be the reference level, but once 
chosen, be consistent. A 2.0 kg sloth hangs 5.0 m above 
the ground (Fig. 8.1.6).

(a) What is the gravitational potential energy U of the 
sloth– Earth system if we take the reference point y = 0 to be 
(1) at the ground, (2) at a balcony floor that is 3.0 m above 
the ground, (3) at the limb, and (4) 1.0 m above the limb? 
Take the gravitational potential energy to be zero at y = 0.

KEY IDEA

Once we have chosen the reference point for y = 0, we 
can calculate the gravitational potential energy U of the 
system relative to that reference point with Eq. 8.1.9.

Calculations: For choice (1) the sloth is at y = 5.0 m, and

U = mgy = (2.0 kg)(9.8 m/s2)(5.0 m)

 = 98 J. (Answer)

For the other choices, the values of U are

(2)  U = mgy = mg(2.0 m) = 39 J,
(3)  U = mgy = mg(0) = 0 J,
(4)  U = mgy = mg(−1.0 m)

 = −19.6 J ≈ −20 J. (Answer)

Figure 8.1.6 Four choices of reference point y = 0. Each y axis 
is marked in units of meters. The choice affects the value of the 
potential energy U of the sloth– Earth system. However, it does 
not affect the change ∆U in potential energy of the system if 
the sloth moves by, say, falling.

0 –3 –5 –6

3 0 –2 –3

5 2 0

6 3 1 0

(1) (2) (3) (4)
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1938.2 Conservation of MeCHaniCal energy

Conservation of Mechanical Energy
The mechanical energy Emec of a system is the sum of its potential energy U and 
the kinetic energy K of the objects within it:

 Emec = K + U (mechanical energy). (8.2.1)

In this module, we examine what happens to this mechanical energy when only 
conservative forces cause energy transfers within the system— that is, when 
 frictional and drag forces do not act on the objects in the system. Also, we shall 
assume that the system is isolated from its environment; that is, no external force 
from an object outside the system causes energy changes inside the system.

When a conservative force does work W on an object within the system, 
that force transfers energy between kinetic energy K of the object and potential 
 energy U of the system. From Eq. 7.2.8, the change ∆K in kinetic energy is

 ∆K = W (8.2.2)

(b) The sloth drops to the ground. For each choice of 
reference point, what is the change ∆U in the potential 
energy of the sloth– Earth system due to the fall?

KEY IDEA

The change in potential energy does not depend on the 
choice of the reference point for y = 0; instead, it depends 
on the change in height ∆y. 

Calculation: For all four situations, we have the same 
∆y = −5.0 m. Thus, for (1) to (4), Eq. 8.1.7 tells us that

 ∆U = mg ∆y = (2.0 kg)(9.8 m/s2)(−5.0 m)

 = −98 J. (Answer)

8.2 CONSERVATION OF MECHANICAL ENERGY
Learning Objectives 
After reading this module, you should be able to . . .

8.2.1 After first clearly defining which objects form a 
system, identify that the mechanical energy of the 
system is the sum of the kinetic energies and poten-
tial energies of those objects.

8.2.2 For an isolated system in which only conservative 
forces act, apply the conservation of mechanical 
energy to relate the initial potential and kinetic ener-
gies to the potential and kinetic energies at a later 
instant.

Key Ideas 
● The mechanical energy Emec of a system is the sum 
of its kinetic energy K and potential energy U:

Emec = K + U.

● An isolated system is one in which no external force 
causes  energy changes. If only conservative forces 
do work within an isolated system, then the mechani-
cal energy Emec of the system cannot change. This 

principle of conservation of mechanical energy is writ-
ten as

K2 + U2 = K1 + U1,

in which the subscripts refer to different instants during 
an  energy transfer process. This conservation principle 
can also be written as

∆Emec = ∆K + ∆U = 0.

additional examples, video, and practice available at WileyPLUS
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194 CHaPter 8 Potential energy and Conservation of energy

and from Eq. 8.1.1, the change ∆U in potential energy is

 ∆U = −W. (8.2.3)

Combining Eqs. 8.2.2 and 8.2.3, we find that

 ∆K = −∆U. (8.2.4)

In words, one of these energies increases exactly as much as the other decreases.
We can rewrite Eq. 8.2.4 as

 K2 − K1 = −(U2 − U1), (8.2.5)

where the subscripts refer to two different instants and thus to two different 
arrangements of the objects in the system. Rearranging Eq. 8.2.5 yields

 K2 + U2 = K1 + U1  (conservation of mechanical energy). (8.2.6)

In words, this equation says:

    (   
the sum of K and U for

   any state of a system   )    =   (    
the sum of K and U for

    any other state of the system  )   , 

when the system is isolated and only conservative forces act on the objects in the 
system. In other words:

In an isolated system where only conservative forces cause energy changes, the 
 kinetic energy and potential energy can change, but their sum, the mechanical 
energy Emec of the system, cannot change.

When the mechanical energy of a system is conserved, we can relate the sum 
of  kinetic energy and potential energy at one instant to that at another instant 
without considering the intermediate motion and without finding the work done 
by the forces  involved.

This result is called the principle of conservation of mechanical energy. (Now you 
can see where conservative forces got their name.) With the aid of Eq. 8.2.4, we 
can write this principle in one more form, as

 ∆Emec = ∆K + ∆U = 0. (8.2.7)

The principle of conservation of mechanical energy allows us to solve 
problems that would be quite difficult to solve using only Newton’s laws:

Figure 8.2.1 shows an example in which the principle of conservation of 
 mechanical energy can be applied: As a pendulum swings, the energy of the 
 pendulum– Earth system is transferred back and forth between kinetic energy K 
and gravitational potential energy U, with the sum K + U being constant. If we 
know the gravitational potential energy when the pendulum bob is at its highest 
point (Fig. 8.2.1c), Eq. 8.2.6 gives us the kinetic energy of the bob at the lowest 
point (Fig. 8.2.1e).

For example, let us choose the lowest point as the reference point, with the 
gravitational potential energy U2 = 0. Suppose then that the potential energy at the 
highest point is U1 = 20 J relative to the reference point. Because the bob momen-
tarily stops at its highest point, the kinetic energy there is K1 = 0. Putting these 
values into Eq. 8.2.6 gives us the kinetic energy K2 at the lowest point:

K2 + 0 = 0 + 20 J    or    K2 = 20 J.
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1958.2 Conservation of MeCHaniCal energy

Note that we get this result without considering the motion between the highest 
and lowest points (such as in Fig. 8.2.1d) and without finding the work done by 
any forces involved in the motion.

Figure 8.2.1 A pendulum, with its 
mass concentrated in a bob at the 
lower end, swings back and forth. 
One full cycle of the motion is 
shown. During the cycle the values 
of the potential and kinetic ener-
gies of the pendulum– Earth system 
vary as the bob rises and falls, but 
the mechanical energy Emec of the 
system remains constant. The energy 
Emec can be  described as continu-
ously shifting between the kinetic 
and potential forms. In stages (a) and 
(e), all the energy is kinetic energy. 
The bob then has its greatest speed 
and is at its lowest point. In stages 
(c) and (g), all the energy is potential 
energy. The bob then has zero speed 
and is at its highest point. In stages 
(b), (d), ( f ), and (h), half the energy 
is kinetic  energy and half is potential 
energy. If the swinging involved a 
frictional force at the point where the 
pendulum is attached to the ceiling, 
or a drag force due to the air, then 
Emec would not be conserved, and 
eventually the pendulum would stop.

(a)

KU

(b)

KU

(c)

KU

(d)

KU

(e)

KU

(h)

KU

( f )

KU

(g)

KU

v = +vmax

v = 0

v = –vmax

v = 0

v

v

v

v

v

v

All potential
energy

All potential
energy

The total energy
does not change
(it is conserved).

All kinetic energy

All kinetic energy

Checkpoint 8.2.1
The figure shows 
four situations— one 
in which an initially 
 stationary block is 
dropped and three 
in which the block is 
allowed to slide down 
 frictionless ramps. 
(a) Rank the situa-
tions according to the 
kinetic energy of the block at point B, greatest first. (b) Rank them according to the 
speed of the block at point B, greatest first.

A

B B B B

(1) (2) (3) (4)
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196 CHaPter 8 Potential energy and Conservation of energy

Sample Problem 8.2.1 Conservation of mechanical energy, water slide

The huge advantage of using the conservation of energy 
instead of Newton’s laws of motion is that we can jump 
from the initial state to the final state without consider-
ing all the intermediate motion. Here is an example. In 
Fig. 8.2.2, a child of mass m is released from rest at the top 
of a water slide, at height h = 8.5 m above the bottom of 
the slide. Assuming that the slide is frictionless because 
of the  water on it, find the child’s speed at the bottom of 
the slide.

KEY IDEAS

(1) We cannot find her speed at the bottom by using her 
acceleration along the slide as we might have in earlier 
chapters because we do not know the slope (angle) of 
the slide. However, because that speed is  related to her 
kinetic energy, perhaps we can use the principle of con-
servation of mechanical energy to get the speed. Then we 
would not need to know the slope. (2) Mechanical energy 
is conserved in a system if the system is isolated and if 
only conservative forces cause energy transfers within it. 
Let’s check.

Forces: Two forces act on the child. The gravitational 
force, a conservative force, does work on her. The normal 
force on her from the slide does no work because its direc-
tion at any point during the descent is always perpendicu-
lar to the direction in which the child moves.

System: Because the only force doing work on the 
child is the gravitational force, we choose the child– Earth 
system as our system, which we can take to be isolated.

Thus, we have only a conservative force doing work in 
an isolated system, so we can use the principle of conser-
vation of mechanical energy. 

Calculations: Let the mechanical energy be Emec,t when 
the child is at the top of the slide and Emec,b when she is at 
the bottom. Then the conservation principle tells us

 Emec,b = Emec,t. (8.2.8)

To show both kinds of mechanical energy, we have

 Kb + Ub = Kt + Ut, (8.2.9)

or    1 _ 2  m v  b  2  + mg y  b   =   1 _ 2  m v  t  
2  + mg y  t  .  

Dividing by m and rearranging yield

  v  b  2  =  v  t  
2  + 2g  (   y  t   −  y  b  ) . 

Putting vt = 0 and yt − yb = h leads to

  v  b   =  √ 
____

 2gh   =  √ 
__________________

   (2)  (9.8  m/s  2 )  (8.5 m)    

   = 13 m / s.  (Answer)

This is the same speed that the child would reach if she fell 
8.5 m vertically. On an actual slide, some frictional forces 
would act and the child would not be moving quite so fast.

Comments: Although this problem is hard to solve 
directly with Newton’s laws, using conservation of mechan-
ical energy makes the solution much easier. However, if 
we were asked to find the time taken for the child to reach 
the bottom of the slide, energy methods would be of no 
use; we would need to know the shape of the slide, and we 
would have a difficult problem.

Figure 8.2.2 A child slides down a water slide as she descends 
a height h.

h

The total mechanical 
energy at the top
is equal to the total 
at the bottom.

8.3 READING A POTENTIAL ENERGY CURVE
Learning Objectives 
After reading this module, you should be able to . . .

8.3.1 Given a particle’s potential energy as a function 
of its position x, determine the force on the particle.

8.3.2 Given a graph of potential energy versus x, deter-
mine the force on a particle.

8.3.3 On a graph of potential energy versus x, super-
impose a line for a particle’s mechanical energy and 
determine the particle’s kinetic energy for any given 
value of x.

additional examples, video, and practice available at WileyPLUS
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Reading a Potential Energy Curve
Once again we consider a particle that is part of a system in which a conservative 
force acts. This time suppose that the particle is constrained to move along an 
x axis while the conservative force does work on it. We want to plot the potential 
energy U(x) that is associated with that force and the work that it does, and then 
we want to consider how we can relate the plot back to the force and to the kinetic 
energy of the particle. However, before we discuss such plots, we need one more 
relationship between the force and the potential energy.

Finding the Force Analytically
Equation 8.1.6 tells us how to find the change ∆U in potential energy between two 
points in a one- dimensional situation if we know the force F(x). Now we want to 
go the other way; that is, we know the potential energy function U(x) and want 
to find the force.

For one- dimensional motion, the work W done by a force that acts on a par-
ticle as the particle moves through a distance ∆x is F(x) ∆x. We can then write 
Eq. 8.1.1 as

 ∆U(x) = −W = −F(x) ∆x. (8.3.1)

Solving for F(x) and passing to the differential limit yield

 
 F  (  x )    = −   dU  (  x )    _ 

dx
    (one- dimensional motion), (8.3.2)

which is the relation we sought.
We can check this result by putting  U  (  x )    =  1 _ 2  k x   2  , which is the elastic poten-

tial energy function for a spring force. Equation 8.3.2 then yields, as expected, 
F(x) = −kx, which is Hooke’s law. Similarly, we can substitute U(x) = mgx, which 
is the  gravitational potential energy function for a particle– Earth system, with 
a particle of mass m at height x above Earth’s surface. Equation 8.3.2 then yields 
F = −mg, which is the gravitational force on the particle.

The Potential Energy Curve
Figure 8.3.1a is a plot of a potential energy function U(x) for a system in which 
a particle is in one- dimensional motion while a conservative force F(x) does work 
on it. We can easily find F(x) by (graphically) taking the slope of the U(x) curve at 

8.3.4 If a particle moves along an x axis, use a potential 
energy graph for that axis and the conservation of 
mechanical energy to relate the energy values at one 
position to those at another position.

8.3.5 On a potential energy graph, identify any  turning 
points and any regions where the particle is not 
allowed because of energy requirements.

8.3.6 Explain neutral equilibrium, stable equilibrium, 
and unstable equilibrium.

Key Ideas 
● If we know the potential energy function U(x) for a 
system in which a one- dimensional force F(x) acts on 
a particle, we can find the force as

 F  (  x )    = −   dU  (  x )    _ 
dx

  . 

● If U(x) is given on a graph, then at any value of x, 
the force F(x) is the negative of the slope of the curve 
there and the  kinetic energy of the particle is given by

K(x) = Emec − U(x),

where Emec is the mechanical energy of the system.

● A turning point is a point x at which the particle 
reverses its motion (there, K = 0). 

● The particle is in equilibrium at points where the 
slope of the U(x) curve is zero (there, F(x) = 0).
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198 CHaPter 8 Potential energy and Conservation of energy

various points. (Equation 8.3.2 tells us that F(x) is the negative of the slope of the 
U(x) curve.) Figure 8.3.1b is a plot of F(x) found in this way.

Turning Points
In the absence of a nonconservative force, the mechanical energy E of a system 
has a constant value given by

 U(x) + K(x) = Emec. (8.3.3)

Here K(x) is the kinetic energy function of a particle in the system (this K(x) 
gives the kinetic energy as a function of the particle’s location x). We may 
rewrite Eq. 8.3.3 as

 K(x) = Emec − U(x). (8.3.4)

Suppose that Emec (which has a constant value, remember) happens to be 5.0 J.  
It would be represented in Fig. 8.3.1c by a horizontal line that runs through the 
value 5.0 J on the energy axis. (It is, in fact, shown there.)

Equation 8.3.4 and Fig. 8.3.1d tell us how to determine the kinetic energy K 
for any location x of the particle: On the U(x) curve, find U for that location x and 
then subtract U from Emec. In Fig. 8 .3.1e, for example, if the particle is at any point 
to the right of x5, then K = 1.0 J. The value of K is greatest (5.0 J) when the particle 
is at x2 and least (0 J) when the particle is at x1.

Since K can never be negative (because v2 is always positive), the particle can 
never move to the left of x1, where Emec − U is negative. Instead, as the particle 
moves toward x1 from x2, K decreases (the particle slows) until K = 0 at x1 (the 
particle stops there).

Note that when the particle reaches x1, the force on the particle, given by 
Eq. 8.3.2, is positive (because the slope dU/dx is negative). This means that the 
particle does not remain at x1 but instead begins to move to the right, opposite its 
earlier motion. Hence x1 is a turning point, a place where K = 0 (because U = Emec)  
and the particle changes direction. There is no turning point (where K = 0) on 
the right side of the graph. When the particle heads to the right, it will continue 
indefinitely.
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Figure 8.3.1 (a) A plot of U(x), the potential energy function of a system containing a 
 particle confined to move along an x axis. There is no friction, so mechanical energy is 
 conserved. (b) A plot of the force F(x) acting on the particle, derived from the potential 
 energy plot by taking its slope at various points. (Figure continues)
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Equilibrium Points
Figure 8.3.1f shows three different values for Emec superposed on the plot of the 
potential energy function U(x) of Fig. 8.3.1a. Let us see how they change the 
situation. If Emec = 4.0 J (purple line), the turning point shifts from x1 to a point 
 between x1 and x2. Also, at any point to the right of x5, the system’s mechanical 
energy is equal to its potential energy; thus, the particle has no kinetic energy and 
(by Eq. 8.3.2) no force acts on it, and so it must be stationary. A particle at such 
a position is said to be in neutral equilibrium. (A marble placed on a horizontal 
tabletop is in that state.)

If Emec = 3.0 J (pink line), there are two turning points: One is between x1 and 
x2, and the other is between x4 and x5. In addition, x3 is a point at which K = 0. If 
the particle is located exactly there, the force on it is also zero, and the particle 
remains stationary. However, if it is displaced even slightly in either  direction, 
a nonzero force pushes it farther in the same direction, and the particle contin-
ues to move. A particle at such a position is said to be in unstable equilibrium. 
(A marble balanced on top of a bowling ball is an example.)
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Figure 8.3.1 (Continued) (c)–(e) How to determine the kinetic energy. ( f ) The U(x) plot 
of (a) with three possible values of Emec shown. In WileyPLUS, this figure is available as 
an animation with voiceover.

8.3 reading a Potential energy CUrve
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200 CHaPter 8 Potential energy and Conservation of energy

Next consider the particle’s behavior if Emec = 1.0 J (green line). If we place it 
at x4, it is stuck there. It cannot move left or right on its own because to do so would 
require a negative kinetic energy. If we push it slightly left or right, a restoring force 
appears that moves it back to x4. A particle at such a position is said to be in stable 
equilibrium. (A marble placed at the bottom of a hemispher ical bowl is an example.) 
If we place the particle in the cup- like potential well  centered at x2, it is between two 
turning points. It can still move  somewhat, but only partway to x1 or x3.

Checkpoint 8.3.1
The figure gives the potential energy function 
U(x) for a system in which a particle is in one- 
dimensional motion. (a) Rank regions AB, 
BC, and CD according to the magnitude of the 
force on the particle, greatest first. (b) What is 
the direction of the force when the particle is in 
region AB?

U
(x

) 
(J

) 5

3

1

A B C D
x

Sample Problem 8.3.1 Reading a potential energy graph

A 2.00 kg particle moves along an x axis in one- dimensional  
motion while a conservative force along that axis acts on 
it. The potential energy U(x) associated with the force is 
plotted in Fig. 8.3.2a. That is, if the particle were placed at 
any position between x = 0 and x = 7.00 m, it would have 
the plotted value of U. At x = 6.5 m, the particle has veloc-
ity     v →    0   =   (  −4.00 m/s )    ̂ i  .

(a) From Fig. 8.3.2a, determine the particle’s speed at x1 = 
4.5 m.

KEY IDEAS

(1) The particle’s kinetic energy is given by Eq. 7.1.1   (K =  
  1 _ 2  m v   2 )  . (2) Because only a conservative force acts on the 
particle, the mechanical energy Emec (= K + U ) is con-
served as the particle moves. (3) Therefore, on a plot of 
U(x) such as Fig. 8.3.2a, the  kinetic energy is equal to the 
difference between Emec and U.

Calculations: At x = 6.5 m, the particle has kinetic energy

   K  0   =   1 _ 2  m v  0  
2  =   1 _ 2   (2.00 kg)  (4.00 m/s)  2   

  = 16.0 J. 

Because the potential energy there is U = 0, the mechani-
cal energy is

  E  mec   =  K  0   +  U  0   = 16.0 J + 0 = 16.0 J  .

This value for Emec is plotted as a horizontal line in 
Fig. 8.3.2a. From that figure we see that at x = 4.5 m, the 
potential energy is U1 = 7.0 J. The kinetic energy K1 is the 
difference between Emec and U1:

  K  1   =  E  mec   −  U  1   = 16.0 J − 7.0 J = 9.0 J. 

Because   K  1   =   1 _ 2  m v  1  
2  , we find

   v  1   = 3.0 m / s . (Answer)

(b) Where is the particle’s turning point located?

KEY IDEA

The turning point is where the force momentarily stops 
and then reverses the particle’s motion. That is, it is where 
the particle momentarily has v = 0 and thus K = 0.

Figure 8.3.2 (a) A plot of potential energy U versus position x. 
(b) A section of the plot used to find where the particle turns 
around.

Kinetic energy is the difference
between the total energy and
the potential energy.
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(b)

The kinetic energy is zero
at the turning point (the
particle speed is zero).
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2018.4 Work done on a systeM by an external forCe

Calculations: Because K is the difference between Emec 
and U, we want the point in Fig. 8.3.2a where the plot 
of U rises to meet the horizontal line of Emec, as shown 
in Fig. 8.3.2b. Because the plot of U is a straight line in 
Fig. 8.3.2b, we can draw nested right triangles as shown 
and then write the proportionality of distances

   16 − 7.0 _ 
d

   =   20 − 7.0 _ 
4.0 − 1.0

   ,

which gives us d = 2.08 m. Thus, the turning point is at

 x = 4.0 m − d = 1.9 m. (Answer)

(c) Evaluate the force acting on the particle when it is in 
the region 1.9 m < x < 4.0 m.

KEY IDEA

The force is given by Eq. 8.3.2 (F(x) = −dU(x)/dx): The force 
is equal to the negative of the slope on a graph of U(x).

Calculations: For the graph of Fig. 8.3.2b, we see that for 
the range 1.0 m < x < 4.0 m the force is

 F = −    20 J − 7.0 J ____________  
1.0 m − 4.0 m

    = 4.3 N. (Answer)

Thus, the force has magnitude 4.3 N and is in the positive 
direction of the x axis. This result is consistent with the 
fact that the initially leftward- moving particle is stopped 
by the force and then sent rightward.

8.4 WORK DONE ON A SYSTEM BY AN EXTERNAL FORCE
Learning Objectives 
After reading this module, you should be able to . . .

8.4.1 When work is done on a system by an exter-
nal force with no friction involved, determine the 
changes in kinetic energy and potential energy.

8.4.2 When work is done on a system by an external 
force with friction involved, relate that work to the 
changes in  kinetic energy, potential energy, and 
thermal energy.

Key Ideas 
● Work W is energy transferred to or from a system by 
means of an external force acting on the system. 

● When more than one force acts on a system, their 
net work is the transferred energy. 

● When friction is not involved, the work done on 
the system and the change ∆Emec in the mechanical 
energy of the system are equal:

W = ∆Emec = ∆K + ∆U.

● When a kinetic frictional force acts within the system, 
then the thermal energy Eth of the system changes. 

(This energy is associated with the random motion of 
atoms and molecules in the system.) The work done on 
the system is then

W = ∆Emec + ∆Eth.

● The change ∆Eth is related to the magnitude fk of the 
frictional force and the magnitude d of the displace-
ment caused by the external force by

∆Eth = fkd.

Work Done on a System by an External Force
In Chapter 7, we defined work as being energy transferred to or from an object 
by means of a force acting on the object. We can now extend that definition to an 
external force acting on a system of objects.

Work is energy transferred to or from a system by means of an external force 
acting on that system.

additional examples, video, and practice available at WileyPLUS
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202 CHaPter 8 Potential energy and Conservation of energy

Figure 8.4.1a represents positive work (a transfer of energy to a system), and 
Fig. 8.4.1b represents negative work (a transfer of energy from a system). When 
more than one force acts on a system, their net work is the energy transferred to 
or from the system.

These transfers are like transfers of money to and from a bank account. If a sys-
tem consists of a single particle or particle- like object, as in Chapter 7, the work 
done on the system by a force can change only the kinetic energy of the  system. 
The energy statement for such transfers is the work– kinetic energy theorem of 
Eq. 7.2.8 (∆K = W); that is, a single particle has only one energy account, called 
kinetic energy. External forces can transfer energy into or out of that  account. If 
a system is more complicated, however, an external force can change other forms 
of energy (such as potential energy); that is, a more complicated  system can have 
multiple energy accounts.

Let us find energy statements for such systems by examining two basic situa-
tions, one that does not involve friction and one that does.

No Friction Involved
To compete in a bowling- ball- hurling contest, you first squat and cup your hands 
under the ball on the floor. Then you rapidly straighten up while also pulling 
your hands up sharply, launching the ball upward at about face level. During your 
 upward motion, your applied force on the ball obviously does work; that is, it is an 
external force that transfers energy, but to what system?

To answer, we check to see which energies change. There is a change ∆K 
in the ball’s kinetic energy and, because the ball and Earth become more sepa-
rated, there is a change ∆U in the gravitational potential energy of the ball– 
Earth system. To include both changes, we need to consider the ball– Earth 
system. Then your force is an external force doing work on that system, and 
the work is

 W = ∆K + ∆U, (8.4.1)

or W = ∆Emec  (work done on system, no friction involved), (8.4.2)

where ∆Emec is the change in the mechanical energy of the system. These two 
equations, which are represented in Fig. 8.4.2, are equivalent energy statements 
for work done on a system by an external force when friction is not involved.

Friction Involved
We next consider the example in Fig. 8.4.3a. A constant horizontal force    F 

→
    pulls 

a block along an x axis and through a displacement of magnitude d, increasing 
the block’s velocity from    v →    0   to    v →   . During the motion, a constant kinetic frictional 
force     f 

→
    k    from the floor acts on the block. Let us first choose the block as our 

 system and apply Newton’s second law to it. We can write that law for compo-
nents along the x axis (Fnet, x = max) as

 F − fk = ma. (8.4.3)

Because the forces are constant, the acceleration a is a also constant. Thus, we can 
use Eq. 2.4.6 to write

  v   2  =  v  0  
2  + 2ad. 

Solving this equation for a, substituting the result into Eq. 8.4.3, and rearranging 
then give us

 
  Fd =   1 _ 2    mv   2  −   1 _ 2  m v  0  

2  +  f  k  d   (8.4.4)

Positive W

System

(a)

Negative W

System

(b)

Figure 8.4.1 (a) Positive work W done 
on an arbitrary system means a trans-
fer of  energy to the system. (b) Nega-
tive work W means a transfer of 
energy from the  system.

W
ΔEmec = ΔK + ΔU

Ball–Earth
system

Your lifting force
transfers energy to
kinetic energy and
potential energy.

Figure 8.4.2 Positive work W is done 
on a system of a bowling ball and 
Earth, causing a change ∆Emec in 
the mechanical energy of the system, 
a change ∆K in the ball’s kinetic 
 energy, and a change ∆U in the sys-
tem’s gravitational potential energy.
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2038.4 Work done on a systeM by an external forCe

or, because    1 _ 2   m v   2  −   1 _ 2   m v  0  
2  = ∆K  for the block,

 Fd = ∆K + fkd. (8.4.5)

In a more general situation (say, one in which the block is moving up a ramp), there 
can be a change in potential energy. To include such a possible change, we general-
ize Eq. 8.4.5 by writing

 Fd = ∆Emec + fkd. (8.4.6)

By experiment we find that the block and the portion of the floor along which 
it slides become warmer as the block slides. As we shall discuss in Chapter 18, the 
temperature of an object is related to the object’s thermal energy Eth (the energy 
associated with the random motion of the atoms and molecules in the  object). 
Here, the thermal energy of the block and floor increases because (1)  there is 
friction between them and (2) there is sliding. Recall that friction is due to the 
cold- welding between two surfaces. As the block slides over the floor, the sliding 
causes repeated tearing and re- forming of the welds between the block and the 
floor, which makes the block and floor warmer. Thus, the sliding  increases their 
thermal energy Eth.

Through experiment, we find that the increase ∆Eth in thermal energy is 
equal to the product of the magnitudes fk and d:

 ∆Eth = fkd  (increase in thermal energy by sliding). (8.4.7)

Thus, we can rewrite Eq. 8.4.6 as

 Fd = ∆Emec + ∆Eth. (8.4.8)

Fd is the work W done by the external force    F 
→

    (the energy transferred by the 
force), but on which system is the work done (where are the energy transfers made)? 
To answer, we check to see which energies change. The block’s mechanical energy 
changes, and the thermal energies of the block and floor also change. Therefore, the 
work done by force    F 

→
    is done on the block– floor system. That work is

 W = ∆Emec + ∆Eth  (work done on system, friction involved). (8.4.9)

This equation, which is represented in Fig. 8.4.3b, is the energy statement for the 
work done on a system by an external force when friction is involved.

fk

v0 v

F

d

x

(a)

The applied force supplies energy.
The frictional force transfers some
of it to thermal energy.

(b)

Block–�oor
system

ΔEmec

ΔEth

W

So, the work done by the applied
force goes into kinetic energy
and also thermal energy.

Figure 8.4.3 (a) A block is pulled across a floor by force    F 
→

    while a kinetic frictional 
force     f 

→
    k    opposes the motion. The block has velocity     v →    0    at the start of a displacement    d 

→
    

and velocity    v →    at the end of the displacement. (b) Positive work W is done on the block– 
floor system by force    F 

→
   , resulting in a change ∆Emec in the block’s mechanical energy 

and a change ∆Eth in the thermal energy of the block and floor.

c08PotentialEnergyAndConservationOfEnergy.indd   203 05/05/21   4:54 PM



204 CHaPter 8 Potential energy and Conservation of energy

Checkpoint 8.4.1
In three trials, a block is 
pushed by a horizontal applied 
force across a floor that is not 
frictionless, as in Fig. 8.4.3a. 
The magnitudes F of the 
 applied force and the results 
of the pushing on the block’s 
speed are given in the table. In all three trials, the block is pushed through the same 
distance d. Rank the three trials according to the change in the thermal energy of the 
block and floor that occurs in that distance d, greatest first.

Sample Problem 8.4.1 Easter Island

The prehistoric people of Easter Island carved hundreds 
of gigantic stone statues in a quarry and then moved them 
to sites all over the island (Fig. 8.4.4). How they managed 
to move the statues by as much as 10 km without the use 
of sophisticated machines has been hotly debated. They 
most likely cradled each statue in a wooden sled and then 
pulled the sled over a “runway” consisting of almost iden-
tical logs acting as rollers. In a modern reenactment of this 
technique, 25 men were able to move a 9000 kg Easter 
Island– type statue 45 m over level ground in 2 min.

(a) Estimate the work the net force    F 
→

    from the men did 
during the 45 m displacement of the statue, and determine 
the system on which that force did work.

KEY IDEAS

(1) We can calculate the work done with  W = Fd cos ϕ.  
(2) To determine the system on which the work is done we 
see which energies change.

Calculations: In the work equation, d is 45 m, F is the mag-
nitude of the net force on the statue from the 25 men, and ϕ 
is 0°. Let’s assume that each man pulled with a force magni-
tude equal to twice his weight, which we take to be the same 
value mg for all the men. Thus, the magnitude of the net 
force from the men was F = (25)(2mg) = 50mg. Estimating 
a man’s mass as 80 kg, we can then write Eq. 7.2.5 as

W = Fd cos 𝜙 = 50mgd cos 𝜙

= (50)(80 kg)(9.8 m/s2)(45 m)cos 0°

= 1.8 × 106 J = 2 MJ. (Answer)

Because the statue moved, there was certainly a change 
∆K in its kinetic energy during the motion. We can eas-
ily guess that there must have been considerable kinetic 
friction between the sled, logs, and ground, resulting in 
a change ∆Eth in thermal energies. Thus, the system on 
which the work was done consisted of the statue, sled, 
logs, and ground. 

(b) What was the increase ∆Eth in the thermal energy of 
the system during the 45 m displacement?

KEY IDEA

We can relate ∆Eth to the work W done by    F 
→

    with the 
energy statement of Eq. 8.4.9 for a system that involves 
friction: 

 W = ∆Emec + ∆Eth. 

Calculations: We know the value of W from (a). The 
change ∆Emec in the statue’s mechanical energy was zero 
because the statue was stationary at the beginning and at 
the end of the move and its elevation did not change. Thus, 
we find

  ∆Eth = W = 1.8 × 106 J ≈ 2 MJ. (Answer)

(c) Estimate the work that would have been done by the 
25 men if they had moved the statue 10 km across level 
ground on Easter Island. Also estimate the total change 
∆Eth that would have occurred in the statue– sled– logs– 
ground system.

Figure 8.4.4 Easter Island stone statues.

Trial F Result on Block’s Speed

a 5.0 N decreases
b 7.0 N remains constant
c 8.0 N increases
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Calculation: We calculate W as in (a), but with 1 × 104 m 
substituted for d. Also, we again equate ∆Eth to W. We get

 W = ∆Eth = 3.9 × 108 J ≈ 400 MJ. (Answer)

This would have been a staggering amount of energy 
for the men to have transferred during the movement of 
a statue. Still, the 25 men could have moved the statue 
10 km without some mysterious energy source.

8.5 CONSERVATION OF ENERGY
Learning Objectives 
After reading this module, you should be able to . . .

8.5.1 For an isolated system (no net external force), 
apply the conservation of energy to relate the initial 
total energy (energies of all kinds) to the total energy 
at a later instant.

8.5.2 For a nonisolated system, relate the work done 
on the system by a net external force to the changes 
in the various types of energies within the system.

8.5.3 Apply the relationship between average power, 
the associated energy transfer, and the time interval 
in which that transfer is made.

8.5.4 Given an energy transfer as a function of time 
(either as an equation or a graph), determine the 
instantaneous power (the transfer at any given 
instant).  

Key Ideas 
● The total energy E of a system (the sum of its 
mechanical energy and its internal energies,  including 
thermal energy) can change only by amounts of 
 energy that are transferred to or from the system. This 
experimental fact is known as the law of conservation 
of energy. 

● If work W is done on the system, then

W = ∆E = ∆Emec + ∆Eth + ∆Eint.

If the system is isolated (W = 0), this gives

∆Emec + ∆Eth + ∆Eint = 0

and Emec,2 = Emec,1 − ∆Eth − ∆Eint,

where the subscripts 1 and 2 refer to two different 
instants.

● The power due to a force is the rate at which that 
force transfers energy. If an amount of energy ∆E is 
transferred by a force in an amount of time ∆t, the 
average power of the force is

  P  avg   =   ∆E _ 
∆t

  . 

● The instantaneous power due to a force is

 P =   dE _ 
dt

  . 

On a graph of energy E versus time t, the power is the 
slope of the plot at any given time.

Conservation of Energy
We now have discussed several situations in which energy is transferred to or 
from objects and systems, much like money is transferred between accounts. 
In each situation we assume that the energy that was involved could always be 
accounted for; that is, energy could not magically appear or disappear. In more 
formal language, we assumed (correctly) that energy obeys a law called the law of 
conservation of energy, which is concerned with the total energy E of a system. 
That total is the sum of the system’s mechanical energy, thermal energy, and any 
type of internal energy in addition to thermal energy. (We have not yet discussed 
other types of internal energy.) The law states that

The total energy E of a system can change only by amounts of energy that are 
 transferred to or from the system.

additional examples, video, and practice available at WileyPLUS
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206 CHaPter 8 Potential energy and Conservation of energy

The only type of energy transfer that we have considered is work W done on a sys-
tem by an external force. Thus, for us at this point, this law states that

 W = ∆E = ∆Emec + ∆Eth + ∆Eint, (8.5.1)

where ∆Emec is any change in the mechanical energy of the system, ∆Eth is 
any change in the thermal energy of the system, and ∆Eint is any change in any 
other type of internal energy of the system. Included in ∆Emec are changes ∆K in 
 kinetic energy and changes ∆U in potential energy (elastic, gravitational, or any 
other type we might find).

This law of conservation of energy is not something we have derived from 
 basic physics principles. Rather, it is a law based on countless experiments. 
 Scientists and engineers have never found an exception to it. Energy simply can-
not magically appear or disappear.

Isolated System
If a system is isolated from its environment, there can be no energy transfers to or 
from it. For that case, the law of conservation of energy states:

The total energy E of an isolated system cannot change.

In an isolated system, we can relate the total energy at one instant to the total 
 energy at another instant without considering the energies at intermediate times.

 ∆Emec + ∆Eth + ∆Eint = 0  (isolated system). (8.5.2)

We can also let ∆Emec = Emec,2 − Emec,1, where the subscripts 1 and 2 refer to two 
different instants— say, before and after a certain process has occurred. Then Eq. 
8.5.2 becomes
 Emec,2 = Emec,1 − ∆Eth − ∆Eint. (8.5.3)

Equation 8.5.3 tells us:

Figure 8.5.1 To descend, the rock 
climber must transfer energy from 
the gravitational  potential energy of 
a system consisting of him, his gear, 
and Earth. He has wrapped the rope 
around metal rings so that the rope 
rubs against the rings. This allows 
most of the transferred energy to go 
to the thermal energy of the rope 
and rings rather than to his  kinetic 
energy.

This fact can be a very powerful tool in solving problems about isolated systems 
when you need to relate energies of a system before and after a certain process 
occurs in the system.

In Module 8.2, we discussed a special situation for isolated systems— namely, 
the situation in which nonconservative forces (such as a kinetic frictional force) 

Many energy transfers may be going on within an isolated system— between, 
say, kinetic energy and a potential energy or between kinetic energy and ther-
mal  energy. However, the total of all the types of energy in the system cannot 
change. Here again, energy cannot magically appear or disappear.

We can use the rock climber in Fig. 8.5.1 as an example, approximating 
him, his gear, and Earth as an isolated system. As he rappels down the rock 
face, changing the configuration of the system, he needs to control the transfer 
of  energy from the gravitational potential energy of the system. (That energy 
 cannot just disappear.) Some of it is transferred to his kinetic energy. However, 
he obviously does not want very much transferred to that type or he will be 
moving too quickly, so he has wrapped the rope around metal rings to produce 
friction between the rope and the rings as he moves down. The sliding of the 
rings on the rope then transfers the gravitational potential energy of the system 
to thermal energy of the rings and rope in a way that he can control. The total 
energy of the climber– gear– Earth system (the total of its gravitational potential 
energy, kinetic energy, and thermal energy) does not change during his descent.

For an isolated system, the law of conservation of energy can be written in 
two ways. First, by setting W = 0 in Eq. 8.5.1, we get
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do not act within them. In that special situation, ∆Eth and ∆Eint are both zero, 
and so Eq. 8.5.3 reduces to Eq. 8.2.7. In other words, the mechanical energy of an 
 isolated system is conserved when nonconservative forces do not act in it.

External Forces and Internal Energy Transfers
An external force can change the kinetic energy or potential energy of an object 
without doing work on the object— that is, without transferring energy to the 
 object. Instead, the force is responsible for transfers of energy from one type to 
another inside the object.

Figure 8.5.2 shows an example. An initially stationary ice- skater pushes away 
from a railing and then slides over the ice (Figs. 8.5.2a and b). Her kinetic energy 
increases because of an external force    F 

→
    on her from the rail. However, that force 

does not transfer energy from the rail to her. Thus, the force does no work on 
her. Rather, her kinetic energy increases as a result of internal transfers from the 
biochemical energy in her muscles.

Figure 8.5.3 shows another example. An engine increases the speed of a car 
with four- wheel drive (all four wheels are made to turn by the engine). During the 
acceleration, the engine causes the tires to push backward on the road surface. This 
push produces frictional forces    f 

→
    that act on each tire in the forward  direction. The 

net external force    F 
→

    from the road, which is the sum of these frictional forces, accel-
erates the car, increasing its kinetic energy. However,    F 

→
    does not transfer energy 

from the road to the car and so does no work on the car. Rather, the car’s kinetic 
energy increases as a result of internal transfers from the energy stored in the fuel.

In situations like these two, we can sometimes relate the external force    F 
→

    on 
an object to the change in the object’s mechanical energy if we can simplify the 
situation. Consider the ice- skater example. During her push through distance d 
in Fig. 8.5.2c, we can simplify by assuming that the acceleration is constant, her 
speed changing from v0 = 0 to v. (That is, we assume    F 

→
    has constant magnitude 

F and angle 𝜙.) After the push, we can simplify the skater as being a particle 
and neglect the fact that the exertions of her muscles have increased the ther-
mal  energy in her muscles and changed other physiological features. Then we can 
 apply Eq. 7.2.3   (  1 _ 2    mv   2  −   1 _ 2  m v  0  

2  =  F  x  d)   to write

K − K0 = (F cos 𝜙)d,

or ∆K = Fd cos 𝜙. (8.5.4)

If the situation also involves a change in the elevation of an object, we can 
 include the change ∆U in gravitational potential energy by writing

 ∆U + ∆K = Fd cos 𝜙. (8.5.5)

The force on the right side of this equation does no work on the object but is still 
responsible for the changes in energy shown on the left side.

Figure 8.5.2 (a) As a skater pushes herself away from a railing, the force on her from the rail-
ing is    F 

→
   . (b) After the skater leaves the railing, she has velocity    v →   . (c) External force    F 

→
    acts on 

the skater, at angle 𝜙 with a horizontal x axis. When the skater goes through displacement    d 
→

   , 
her velocity is changed from     v →    0    (= 0)   to    v →    by the horizontal component of    F 

→
   .

Ice

(a)

F

(c)

v0

x

F

v

d

(b)

v

Her push on the rail causes 
a transfer of internal energy
to kinetic energy.

ϕ
ϕ

Figure 8.5.3 A vehicle accelerates 
to the right using four- wheel drive. 
The road exerts four frictional forces 
(two of them shown) on the bottom 
surfaces of the tires. Taken together, 
these four forces make up the net 
external force    F 

→
    acting on the car.

acom

f f
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Power
Now that you have seen how energy can be transferred from one type to another, we 
can expand the definition of power given in Module 7.6. There power is  defined as 
the rate at which work is done by a force. In a more general sense, power P is the rate 
at which energy is transferred by a force from one type to  another. If an amount of 
energy ∆E is transferred in an amount of time ∆t, the  average power due to the force is

    P  avg   =   ∆E _ 
∆t

  .  
 

(8.5.6)

Similarly, the instantaneous power due to the force is

   P =   dE _ 
dt

  .   
 

(8.5.7)

Sample Problem 8.5.1 Lots of energies at an amusement park water slide

Figure 8.5.4 shows a water- slide ride in which a glider is 
shot by a spring along a water- drenched (frictionless) track 
that takes the glider from a horizontal section down to 
ground level. As the glider then moves along the ground- 
level track, it is gradually brought to rest by friction. The 
total mass of the glider and its rider is m = 200 kg, the 
initial compression of the spring is d = 5.00 m, the spring 
constant is k = 3.20 × 103 N/m, the initial height is h = 35.0 
m, and the coefficient of kinetic friction along the ground- 
level track is 𝜇k = 0.800. Through what distance L does 
the glider slide along the ground- level track until it stops?

KEY IDEAS

Before we touch a calculator and start plugging numbers 
into equations, we need to examine all the forces and then 
determine what our system should be. Only then can we 
decide what equation to write. Do we have an isolated 

system (our equation would be for the conservation of 
energy) or a system on which an external force does work 
(our equation would relate that work to the system’s 
change in energy)?

Forces: The normal force on the glider from the track 
does no work on the glider because the direction of this force 
is always perpendicular to the direction of the glider’s dis-
placement. The gravitational force does work on the glider, 
and because the force is conservative we can associate a 
potential energy with it. As the spring pushes on the glider 
to get it moving, a spring force does work on it, transferring 
energy from the elastic potential energy of the compressed 
spring to kinetic energy of the glider. The spring force also 
pushes against a rigid wall. Because there is friction between 
the glider and the ground- level track, the sliding of the glider 
along that track section increases their thermal energies.

System: Let’s take the system to contain all the inter-
acting bodies: glider, track, spring, Earth, and wall. Then, 
because all the force interactions are within the system, the 
system is isolated and thus its total energy cannot change. 
So, the equation we should use is not that of some external 
force doing work on the system. Rather, it is a conservation 
of energy. We write this in the form of Eq. 8.5.3:

 Emec,2 = Emec,1 − ∆Eth. (8.5.8)

This is like a money equation: The final money is equal to 
the initial money minus the amount stolen away by a thief. 
Here, the final mechanical energy is equal to the initial 
mechanical energy minus the amount stolen away by fric-
tion. None has magically appeared or disappeared.

L
μk

μ = 0

k

h

Figure 8.5.4 A spring- loaded amusement park water slide.

Checkpoint 8.5.1
A 2.0 kg box can slide along a track with elevated ends and a flat central part of 
length L. The curved parts of the track are frictionless, but along the flat part there 
is friction between box and track. The box is released from rest at point A, at height 
h = 0.50 m. Between the release point and the stopping point, how much energy is 
transferred to thermal energy of the box and track?
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Calculations: Now that we have an equation, let’s find 
distance L. Let subscript 1 correspond to the initial state 
of the glider (when it is still on the compressed spring) 
and subscript 2 correspond to the final state of the glider 
(when it has come to rest on the ground- level track). For 
both states, the mechanical energy of the system is the 
sum of any potential energy and any kinetic energy.

We have two types of potential energy: the elastic 
potential energy (Ue =    1 _ 2    kx2) associated with the com-
pressed spring and the gravitational potential energy  
(Ug = mgy) associated with the glider’s elevation. For the 
latter, let’s take ground level as the reference level. That 
means that the glider is initially at height y = h and finally 
at height y = 0.

In the initial state, with the glider stationary and ele-
vated and the spring compressed, the energy is

Emec,1 = K1 + Ue1 + Ug1

= 0 +     1 _ 2    kd2 + mgh. (8.5.9)

In the final state, with the spring now in its relaxed state 
and the glider again stationary but no longer elevated, the 
final mechanical energy of the system is

Emec,2 = K2 + Ue2 + Ug2

 = 0 + 0 + 0. (8.5.10)

Let’s next go after the change ∆Eth of the thermal energy 
of the glider and ground- level track. From Eq. 8.4.7, we 
can substitute for ∆Eth with fkL (the product of the fric-
tional force magnitude and the distance of rubbing). From 
Eq. 6.1.2, we know that fk = 𝜇kFN, where FN is the normal 

force. Because the glider moves horizontally through the 
region with friction, the magnitude of FN is equal to mg 
(the upward force matches the downward force). So, the 
friction’s theft from the mechanical energy amounts to

 ∆Eth = 𝜇kmgL. (8.5.11)

(By the way, without further experiments, we cannot say 
how much of this thermal energy ends up in the glider 
and how much in the track. We simply know the total 
amount.) Substituting Eqs. 8.5.9 through 8.5.11 into Eq. 
8.5.8, we find

   0 =   1 _ 2   k d   2  + mgh −  μ  k  mgL,   (8.5.12)
and

 L =   k d   2  _ 
2  μ  k   mg

   +   h _  μ  k       

  =   
 (3.20 ×  10  3  N / m)   (  5.00 m )    2 

   ___________________   
2  (  0.800 )     (  200 kg )    (9.8  m / s  2 ) 

   +   35 m _ 
0.800

     

  = 69.3 m.  (Answer)

Finally, note how algebraically simple our solution is. 
By carefully defining a system and realizing that we have 
an isolated system, we get to use the law of the conserva-
tion of energy. That means we can relate the initial and 
final states of the system with no consideration of the 
intermediate states. In particular, we did not need to con-
sider the glider as it slides over the uneven track. If we 
had, instead, applied Newton’s second law to the motion, 
we would have had to know the details of the track and 
would have faced a far more difficult calculation.

Conservative Forces  A force is a conservative force if the 
net work it does on a particle moving around any closed path, from 
an initial point and then back to that point, is zero. Equivalently, 
a force is conservative if the net work it does on a particle moving 
between two points does not depend on the path taken by the par-
ticle. The gravitational force and the spring force are conservative 
forces; the kinetic frictional force is a nonconservative force.

Potential Energy  A potential energy is energy that is 
 associated with the configuration of a system in which a conser-
vative force acts. When the conservative force does work W on a 
particle within the system, the change ∆U in the potential energy 
of the system is

 ∆U = −W. (8.1.1)

If the particle moves from point xi to point xf , the change in the 
potential energy of the system is

   ΔU = −   
 x  i  

  
 x  f  

  F (x)   dx.   (8.1.6)

Review & Summary

Gravitational Potential Energy  The potential energy asso-
ciated with a system consisting of Earth and a nearby particle is 
gravitational potential energy. If the particle moves from height 
yi to height yf, the change in the gravitational potential energy of 
the particle– Earth system is

 ∆U = mg(yf − yi) = mg ∆y. (8.1.7)

If the reference point of the particle is set as yi = 0 and the cor-
responding gravitational potential energy of the system is set as  
Ui = 0, then the gravitational potential energy U when the par-
ticle is at any height y is

 U(y) = mgy. (8.1.9)

Elastic Potential Energy  Elastic potential energy is the 
 energy associated with the state of compression or exten sion of an 
elastic object. For a spring that exerts a spring force F = −kx when 
its free end has displacement x, the elastic  potential energy is

   U (x)  =   1 _ 2   k x   2 .   (8.1.11)

additional examples, video, and practice available at WileyPLUS
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is not involved, the work done on the system and the  change 
∆Emec in the mechanical energy of the system are equal:

 W = ∆Emec = ∆K + ∆U. (8.4.1, 8.4.2)

When a kinetic frictional force acts within the system, then the 
thermal energy Eth of the system changes. (This energy is asso-
ciated with the random motion of atoms and molecules in the 
system.) The work done on the system is then

 W = ∆Emec + ∆Eth. (8.4.9)

The change ∆Eth is related to the magnitude fk of the frictional 
force and the magnitude d of the displacement caused by the 
external force by

 ∆Eth = fkd. (8.4.7)

Conservation of Energy  The total energy E of a system 
(the sum of its mechanical energy and its internal energies, 
 including thermal energy) can change only by amounts of  energy 
that are transferred to or from the system. This experimental fact 
is known as the law of conservation of energy. If work W is done 
on the system, then

 W = ∆E = ∆Emec + ∆Eth + ∆Eint. (8.5.1)

If the system is isolated (W = 0), this gives

 ∆Emec + ∆Eth + ∆Eint = 0 (8.5.2)

and Emec,2 = Emec,1 − ∆Eth − ∆Eint, (8.5.3)

where the subscripts 1 and 2 refer to two different instants.

Power  The power due to a force is the rate at which that force 
transfers energy. If an amount of energy ∆E is transferred by 
a force in an amount of time ∆t, the average power of the force is

    P  avg   =   ∆E _ 
∆t

  .   (8.5.6)

The instantaneous power due to a force is

   P =   dE _ 
dt

  .   (8.5.7)

The reference configuration has the spring at its relaxed length, 
at which x = 0 and U = 0.

Mechanical Energy  The mechanical energy Emec of a sys-
tem is the sum of its kinetic energy K and potential energy U:

 Emec = K + U. (8.2.1)

An isolated system is one in which no external force causes 
 energy changes. If only conservative forces do work within an 
isolated system, then the mechanical energy Emec of the system 
cannot change. This principle of conservation of mechanical 
energy is written as

 K2 + U2 = K1 + U1, (8.2.6)

in which the subscripts refer to different instants during an 
 energy transfer process. This conservation principle can also be 
written as

 ∆Emec = ∆K + ∆U = 0. (8.2.7)

Potential Energy Curves  If we know the potential energy 
function U(x) for a system in which a one- dimensional force 
F(x) acts on a particle, we can find the force as

   F (x)  = −   
dU (x) 

 _ 
dx

  .   (8.3.2)

If U(x) is given on a graph, then at any value of x, the force F(x) 
is the negative of the slope of the curve there and the  kinetic 
energy of the particle is given by

 K(x) = Emec − U(x), (8.3.4)

where Emec is the mechanical energy of the system. A turning 
point is a point x at which the particle reverses its motion (there, 
K = 0). The particle is in equilibrium at points where the slope of 
the U(x) curve is zero (there, F(x) = 0).

Work Done on a System by an External Force  Work 
W is energy transferred to or from a system by means of an exter-
nal force acting on the system. When more than one force acts on 
a system, their net work is the transferred energy. When friction 

1  In Fig. 8.1, a horizontally moving block can take three fric-
tionless routes, differing only in elevation, to reach the dashed 
finish line. Rank the routes according to (a) the speed of the 
block at the finish line and (b) the travel time of the block to the 
finish line, greatest first.

2  Figure 8.2 gives the potential energy function of a particle. 
(a) Rank regions AB, BC, CD, and DE according to the mag-
nitude of the force on the particle, greatest first. What value 
must the mechanical energy Emec of the particle not  exceed if 
the particle is to be (b) trapped in the potential well at the left,  

Questions

(1)

Finish line

(2)

(3)

v

Figure 8.1 Question 1.
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1
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(J
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Figure 8.2  Question 2.
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211QUestions

shown in Fig. 8.6c: The kinetic energy K increases by 50 J, and 
the gravitational potential energy Ug increases by 20 J. The only 
other change in energy within the system is for the thermal 
energy Eth. What is the change ∆Eth?

System’s energies:

ΔK = +50 J

ΔUg = +20 J

ΔE th = ?

W = +100 J

(b)(a) (c)

Cylinder

Earth

Rope
Rod

System

Work W

Figure 8.6 Question 6.

7  The arrangement shown in 
Fig. 8.7 is similar to that in Ques-
tion 6. Here you pull downward 
on the rope that is  attached to 
the cylinder, which fits tightly 
on the rod. Also, as  the cylinder 
descends, it pulls on a block via a 
second rope, and the block slides 
over a lab  table. Again consider 
the  cylinder– rod– Earth system, 
similar to that shown in Fig. 8.6b. 
Your work on the system is 200 J.  
The system does work of 60 J on 
the block. Within the system, the 
kinetic  energy  increases by 130 J and the gravitational potential 
 energy  decreases by 20 J. (a) Draw an “energy statement” for 
the  system, as in Fig. 8.6c. (b) What is the change in the thermal 
energy within the system?

8  In Fig. 8.8, a block slides along a track that descends through 
distance h. The track is frictionless except for the lower section. 
There the block slides to a stop in a certain distance D because 
of friction. (a) If we decrease h, will the block now slide to a stop 
in a distance that is greater than, less than, or equal to D? (b) 
If, instead, we increase the mass of the block, will the stopping 
distance now be greater than, less than, or equal to D?

h D

Figure 8.8 Question 8.

9  Figure 8.9 shows three situations involving a plane that is not 
frictionless and a block sliding along the plane. The block begins 
with the same speed in all three situations and slides until the 
kinetic frictional force has stopped it. Rank the situations according 
to the increase in thermal energy due to the sliding, greatest first.

(1) (3)(2)

Figure 8.9 Question 9.

(c) trapped in the potential well at the right, and (d) able to 
move between the two potential wells but not to the right of 
point H? For the situation of (d), in which of  regions BC, DE, 
and FG will the particle have (e)  the greatest kinetic energy 
and (f) the least speed?

3  Figure 8.3 shows one direct 
path and four indirect paths from 
point i to point f. Along the direct 
path and three of the indirect 
paths, only a conservative force 
Fc acts on a certain object. Along 
the fourth indirect path, both Fc 
and a nonconservative force Fnc 
act on the object. The change 
∆Emec in the object’s mechanical energy (in joules) in going 
from i to f is  indicated along each straight- line segment of the 
indirect paths. What is ∆Emec (a) from i to f along the direct path 
and (b) due to Fnc along the one path where it acts?

4  In Fig. 8.4, a small, initially stationary block is released on a 
frictionless ramp at a height of 3.0 m. Hill heights along the ramp 
are as shown in the figure. The hills have identical circular tops, 
and the block does not fly off any hill. (a) Which hill is the first 
the block cannot cross? (b) What does the block do after failing 
to cross that hill? Of the hills that the block can cross, on which 
hilltop is (c) the centripetal acceleration of the block greatest 
and (d) the normal force on the block least?

Figure 8.4 Question 4.
(1)

0.5 m

1.5 m

3.0 m

2.5 m

3.5 m

(2)

(3)

(4)

5  In Fig. 8.5, a block slides from A to C along a frictionless 
ramp, and then it passes through horizontal region CD, where a 
frictional force acts on it. Is the block’s kinetic energy  increasing, 
decreasing, or constant in (a) region AB, (b) region BC, and (c) 
region CD? (d)  Is the block’s mechanical energy increasing, 
decreasing, or constant in those regions?

A

B

C D

Figure 8.5 Question 5.

6  In Fig. 8.6a, you pull upward on a rope that is attached to a 
cylinder on a vertical rod. Because the cylinder fits tightly on the 
rod, the cylinder slides along the rod with consid erable friction. 
Your force does work W = +100 J on the cylinder– rod– Earth 
system (Fig. 8.6b). An “energy statement” for the system is 

–30

40

32 10

2
–10

–6
–420

i f
15

7

–30

Figure 8.3 Question 3.

Cylinder

Rod

Block

Rope

Figure 8.7 Question 7.
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11  When a particle moves from 
f to i and from j to i along the 
paths shown in Fig. 8.11, and in 
the  indicated directions, a conser-
vative force    F 

→
    does the indicated 

amounts of work on it. How much 
work is done on the particle by    F 

→
    

when the particle moves directly from f to j?

10  Figure 8.10 shows three 
plums that are launched from the 
same level with the same speed. 
One moves straight upward, one 
is launched at a small angle to 
the vertical, and one is launched 
along a frictionless incline. Rank 
the plums according to their 
speed when they reach the level 
of the dashed line, greatest first.

(1) (2) (3)

Figure 8.10 Question 10.

f

i

j

20 J

–20 J

Figure 8.11 Question 11.

4 E  Figure 8.14 shows a ball with mass m =  
0.341 kg attached to the end of a thin rod 
with length L = 0.452 m and negligible 
mass. The other end of the rod is pivoted so 
that the ball can move in a vertical circle. 
The rod is held horizontally as shown and 
then given enough of a downward push to 
cause the ball  to swing down and around 
and just reach the vertically up   position, 
with zero speed there. How much work is 
done on the ball by the gravitational force from the initial point 
to (a) the lowest point, (b) the highest point, and (c) the point on 
the right level with the initial point? If the gravitational poten-
tial energy of the ball– Earth system is taken to be zero at the 
initial point, what is it when the ball reaches (d) the lowest point, 
(e) the highest point, and (f) the point on the right level with 
the initial point? (g) Suppose the rod were pushed harder so 
that the ball passed through the highest point with a nonzero 
speed. Would ∆Ug from the lowest point to the highest point 
then be greater than, less than, or the same as it was when the 
ball stopped at the highest point?

5 E  SSM  In Fig. 8.15, a 2.00 g ice 
flake is released from the edge 
of  a hemispherical bowl whose 
radius r is 22.0 cm. The flake– bowl 
contact is frictionless. (a) How 
much work  is done on the flake 
by the  gravitational force dur-
ing the flake’s  descent to the bot-
tom of the bowl? (b) What is the 
change in the potential energy of 
the flake– Earth system during 
that  descent? (c) If that potential 
energy is taken to be zero at the 
bottom of the bowl, what is its value when the flake is  released? 
(d) If, instead, the potential energy is taken to be  zero at the 
release point, what is its value when the flake reaches the bottom 
of the bowl? (e) If the mass of the flake were doubled, would the 
magnitudes of the answers to (a) through (d) increase, decrease, 
or remain the same?

Module 8.1  Potential Energy
1 E  SSM  What is the spring constant of a spring that stores 25 J 
of elastic potential energy when compressed by 7.5 cm?

2 E  In Fig. 8.12, a single frictionless roller- coaster car of mass  
m = 825 kg tops the first hill with speed v0 = 17.0 m/s at height  
h = 42.0 m. How much work does the gravitational force do on 
the car from that point to (a) point A, (b) point B, and (c) point 
C? If the gravitational potential energy of the car– Earth system 
is taken to be zero at C, what is its value when the car is at (d) B 
and (e) A? (f) If mass m were doubled, would the change in the 
gravitational potential energy of the system between points A and 
B increase, decrease, or remain the same?

First
hill

A

B

C

h h
h/2

v0

Figure 8.12 Problems 2 and 9.

3 E  You drop a 2.00 kg book to a 
friend who stands on the ground at dis-
tance D = 10.0 m below. If your friend’s 
outstretched hands are at distance d = 
1.50 m above the ground (Fig. 8.13), 
(a) how much work Wg does the 
gravitational force do on the book as 
it drops to her hands? (b) What is the 
change ∆U in the gravitational poten-
tial energy of the book– Earth system 
during the drop? If the gravitational 
 potential energy U of that system is 
taken to be zero at ground level, what 
is U (c) when the book is released and 
(d) when it reaches her hands? Now 
take U to be 100 J at ground level and 
again find (e) Wg, (f) ∆U, (g) U at the release point, and (h) U at 
her hands.

Problems

          Tutoring problem available (at instructor’s discretion) in WileyPLUS

 Worked-out solution available in Student Solutions Manual

E  Easy M  Medium H  Hard

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

CALC  Requires calculus

BIO  Biomedical application

GO

FCP

SSM

r

Ice
flake

Figure 8.15 Problems 5  
and 11.

L

Figure 8.14 Prob-
lems 4 and 14.

d

D

Figure 8.13 Problems 3 
and 10.
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6 M  In Fig. 8.16, a small block of 
mass m = 0.032 kg can slide along 
the frictionless loop- the- loop, with 
loop radius R = 12 cm. The block 
is released from rest at point P, 
at height h = 5.0R above the bot-
tom of the loop. How much work 
does the gravitational force do on 
the block as the block travels from 
point P to (a) point Q and (b) 
the top of the loop? If the gravi-
tational potential energy of the 
block– Earth system is taken to be 
zero at the bottom of the loop, what is that potential  energy when 
the block is (c) at point P, (d) at point Q, and (e) at the top of the 
loop? (f) If, instead of merely being  released, the block is given 
some initial speed downward along the track, do the answers to 
(a) through (e) increase,  decrease, or remain the same?

7 M  Figure 8.17 shows a thin rod, of 
length L = 2.00 m and negligible mass, 
that can pivot about one end to rotate 
in a vertical circle. A ball of mass m = 
5.00 kg is attached to the other end. The 
rod is pulled aside to angle θ0 = 30.0° and 
 released with initial velocity     v →    0   = 0 . As 
the ball descends to its lowest point, (a) 
how much work does the gravitational 
force do on it and (b) what is the change 
in the gravitational potential energy of 
the ball– Earth system? (c) If the gravi-
tational potential energy is taken to 
be zero at the lowest point, what is its 
value just as the ball is released? (d) Do 
the magnitudes of the answers to (a) 
through (c) increase, decrease, or remain the same if angle θ0 
is increased?

8 M  A 1.50 kg snowball is fired from a cliff 12.5 m high. The 
snowball’s initial velocity is 14.0 m/s, directed 41.0° above the 
horizontal. (a) How much work is done on the snowball by 
the gravitational force during its flight to the flat ground  below 
the cliff? (b) What is the change in the gravitational potential 
energy of the snowball– Earth system during the flight? (c) If 
that gravitational potential energy is taken to be zero at the 
height of the cliff, what is its value when the snowball reaches 
the ground?

Module 8.2  Conservation of Mechanical Energy
9 E  GO  In Problem 2, what is the speed of the car at (a) point 
A, (b) point B, and (c) point C? (d) How high will the car go on 
the last hill, which is too high for it to cross? (e) If we substitute 
a second car with twice the mass, what then are the  answers to 
(a) through (d)?

10 E  (a) In Problem 3, what is the speed of the book when it 
reaches the hands? (b) If we substituted a second book with 
twice the mass, what would its speed be? (c) If, instead, the book 
were thrown down, would the answer to (a) increase,  decrease, 
or remain the same?

11 E  SSM  (a) In Problem 5, what is the speed of the flake 
when it reaches the bottom of the bowl? (b) If we substituted 

a second flake with twice the mass, what would its speed be?  
(c) If,  instead, we gave the flake an initial downward speed along 
the bowl, would the answer to (a) increase, decrease, or remain 
the same?

12 E  (a) In Problem 8, using energy techniques rather than the 
techniques of Chapter 4, find the speed of the snowball as it 
reaches the ground below the cliff. What is that speed (b) if the 
launch angle is changed to 41.0° below the horizontal and (c) if 
the mass is changed to 2.50 kg?

13 E  SSM  A 5.0 g marble is fired vertically upward using a 
spring gun. The spring must be compressed 8.0 cm if the marble 
is to just reach a target 20 m above the marble’s position on the 
compressed spring. (a) What is the change ∆Ug in the gravita-
tional potential energy of the marble– Earth system during the 
20 m ascent? (b) What is the change ∆Us in the elastic  potential 
energy of the spring during its launch of the marble? (c) What is 
the spring constant of the spring?

14 E  (a) In Problem 4, what initial speed must be given the ball 
so that it reaches the vertically upward position with zero speed? 
What then is its speed at (b) the lowest point and (c) the point on 
the right at which the ball is level with the  initial point? (d) If the 
ball’s mass were doubled, would the answers to (a) through (c) 
increase, decrease, or remain the same?

15 E  SSM  In Fig. 8.18, a runaway truck with failed brakes is 
moving downgrade at 130 km/h just before the driver steers the 
truck up a frictionless emergency escape ramp with an incli-
nation of θ = 15°. The truck’s mass is 1.2 × 104 kg. (a) What 
minimum length L must the ramp have if the truck is to stop 
(momentarily) along it? (Assume the truck is a particle, and 
justify that assumption.) Does the minimum length L increase, 
decrease, or remain the same if (b) the truck’s mass is decreased 
and (c) its speed is decreased?

L

θ

Figure 8.18 Problem 15.

16 M  A 700 g block is released from rest at height h0 above 
a vertical spring with spring constant k = 400 N/m and negli-
gible mass. The block sticks to the spring and momentarily stops 
after compressing the spring 19.0 cm. How much work is done  
(a) by the block on the spring and (b) by the spring on the block? 
(c) What is the value of h0? (d) If the block were  released from 
height 2.00h0 above the spring, what would be the maximum 
compression of the spring?

17 M  In Problem 6, what are the magnitudes of (a) the horizon-
tal component and (b) the vertical component of the net force 
acting on the block at point Q? (c) At what height h should the 
block be released from rest so that it is on the verge of losing 
contact with the track at the top of the loop? (On the verge of 
losing contact means that the normal force on the block from the 
track has just then become zero.) (d) Graph the magnitude of the 
normal force on the block at the top of the loop versus initial 
height h, for the range h = 0 to h = 6R.

h

P

R
Q

R

Figure 8.16 Problems 6 
and 17.

L

v0

m

θ0

Figure 8.17 Prob-
lems 7, 18, and 21.
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18 M  (a) In Problem 7, what is the speed of the ball at the lowest 
point? (b) Does the speed increase, decrease, or remain the same 
if the mass is increased?

19 M  GO  Figure 8.19 shows an 8.00 kg 
stone at rest on a spring. The spring is 
compressed 10.0 cm by the stone. (a) 
What is the spring constant? (b) The 
stone is pushed down an additional 
30.0 cm and released. What is the elas-
tic potential energy of the compressed 
spring just before that release? (c) What 
is the change in the gravitational potential 
energy of the stone– Earth system when the stone moves from the 
release point to its maximum height? (d) What is that maximum 
height, measured from the release point?

20 M  GO  A pendulum consists of a 2.0 kg stone swinging on a 
4.0 m string of negligible mass. The stone has a speed of 8.0 m/s 
when it passes its lowest point. (a) What is the speed when the 
string is at 60° to the vertical? (b) What is the greatest angle with 
the vertical that the string will reach during the stone’s motion? 
(c)  If the potential energy of the  pendulum– Earth system is 
taken to be zero at the stone’s lowest point, what is the total 
mechanical energy of the  system?

21 M  Figure 8.17 shows a pendulum of length L = 1.25 m. Its 
bob (which effectively has all the mass) has speed v0 when the 
cord makes an angle θ0 = 40.0° with the vertical. (a) What is the 
speed of the bob when it is in its lowest position if v0 = 8.00 m/s? 
What is the least value that v0 can have if the pendulum is to 
swing down and then up (b) to a horizontal position, and (c) to 
a vertical position with the cord remaining straight? (d) Do the 
answers to (b) and (c) increase, decrease, or remain the same if 
θ0 is increased by a few degrees?

22 M  FCP  A 60 kg skier starts from rest at height H = 20 m 
above the end of a ski- jump ramp (Fig. 8.20) and leaves the ramp 
at angle θ = 28°. Neglect the effects of air resistance and assume 
the ramp is frictionless. (a) What is the maximum height h of his 
jump above the end of the ramp? (b) If he increased his weight by 
putting on a backpack, would h then be greater, less, or the same? 

H

h

End of
ramp

θ

Figure 8.20 Problem 22.

23 M  The string in Fig. 8.21 is 
L = 120 cm long, has a ball 
 attached to one end, and is 
fixed at its other end. The 
distance d from the fixed 
end to a fixed peg at point P 
is 75.0 cm. When the initially 
stationary ball is released 
with the string horizontal 
as shown, it will swing along 
the dashed arc. What is its 

speed when it reaches (a) its lowest point 
and (b) its highest point after the string 
catches on the peg?

24 M  A block of mass m = 2.0 kg is dropped 
from height h = 40 cm onto a spring of spring 
constant k = 1960 N/m (Fig. 8.22). Find the 
maximum distance the spring is compressed.

25 M  At t = 0 a 1.0 kg ball is thrown from 
a tall tower with    v →   =   (  18  m / s )    ̂ i  +   (  24  m / s )    ̂ j  .  
What is ∆U of the ball– Earth system between 
t = 0 and t = 6.0 s (still free fall)?

26 M  A conservative force    F 
→

   =  
  (  6.0x − 12 )    ̂ i    N, where x is in meters, 
acts on a particle moving along an 
x axis. The  potential energy U asso-
ciated with this force is assigned a 
value of 27 J at x = 0. (a) Write an 
expression for U as a function of 
x, with U in joules and x in meters. 
(b) What is the  maximum positive 
potential energy? At what (c) neg-
ative value and (d) positive value 
of x is the potential energy equal 
to zero?

27 M  Tarzan, who weighs 688 N, 
swings from a cliff at the end of a 
vine 18 m long (Fig. 8.23). From 
the  top of the cliff to the bottom 
of the swing, he descends by 3.2 m. 
The vine will break if the force on 
it exceeds 950 N. (a) Does the vine 
break? (b) If no, what is the great-
est force on it during the swing? If 
yes, at what angle with the vertical 
does it break?

28 M  Figure 8.24a applies to the 
spring in a cork gun (Fig. 8.24b); it 
shows the spring force as a function 
of the stretch or compression of the 
spring. The spring is compressed by 
5.5 cm and used to propel a 3.8 g 
cork from the gun. (a) What is the 
speed of the cork if it is released 
as the spring passes through its 
relaxed position? (b)  Suppose, 
instead, that the cork sticks to the spring and stretches it 1.5 cm 
before separation occurs. What now is the speed of the cork at the 
time of release?

29 M  SSM  In Fig. 8.25, a block 
of mass m = 12 kg is released 
from rest on a frictionless incline 
of angle θ = 30°. Below the block 
is a spring that can be compressed 
2.0 cm by a force of 270 N. The 
block momentarily stops when it 
compresses the spring by 5.5 cm. 
(a) How far does the block 
move down the incline from its 
rest position to this stopping 

k

Figure 8.19  
Problem 19.

r
P

L

d

Figure 8.21 Problems 23 and 70.

h

k

m

Figure 8.22  
Problem 24.

Figure 8.23 Problem 27.

x (cm)
2 4–2–4

0.4

0.2

(a)

x
0

(b)

Compressed
spring

Cork

 

 

–0.2

–0.4

Force (N)

Figure 8.24 Problem 28.

m

θ

Figure 8.25 Problems 29 
and 35.
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point? (b) What is the speed of the block just as it touches  
the spring?

30 M  GO  A 2.0 kg breadbox on a frictionless incline of angle  
θ = 40° is connected, by a cord that runs over a pulley, to a light 
spring of spring constant k = 120 N/m, as shown in Fig. 8.26. The 
box is released from rest when the spring is  unstretched. Assume 
that the pulley is massless and frictionless. (a) What is the speed 
of the box when it has moved 10 cm down the incline? (b) How 
far down the incline from its point of release does the box slide 
before momentarily stopping, and what are the (c) magnitude 
and (d) direction (up or down the incline) of the box’s accelera-
tion at the instant the box momentarily stops?

θ

Figure 8.26 Problem 30.

31 M  A block with mass m = 2.00 kg is placed against a spring 
on a frictionless incline with angle θ = 30.0° (Fig. 8.27). (The block 
is not attached to the spring.) The spring, with spring constant  
k = 19.6 N/cm, is compressed 20.0 cm and then released. (a) What 
is the elastic potential energy of the 
compressed spring? (b) What is the 
change in the gravitational poten-
tial energy of the block– Earth sys-
tem as the block moves from the 
release point to its highest point on 
the incline? (c) How far along the 
incline is the highest point from the 
release point?

32 M  CALC  In Fig. 8.28, a chain 
is held on a frictionless table with 
one- fourth of its length hang-
ing over the edge. If the chain 
has length L  = 28 cm and mass 
m = 0.012 kg, how much work is 
required to pull the hanging part 
back onto the table?

33 H  GO  In Fig. 8.29, a spring 
with k = 170 N/m is at the top of 
a frictionless incline of angle θ = 
37.0°. The lower end of the  incline 
is distance D = 1.00 m from the 
end of the spring, which is at its 
relaxed length. A 2.00 kg canister 
is pushed against the spring until 
the spring is compressed 0.200 m 
and released from rest. (a) What 
is the speed of the canister at the instant the spring returns to its 
relaxed length (which is when the canister loses contact with the 
spring)? (b) What is the speed of the canister when it reaches the 
lower end of the incline?

34 H  GO  A boy is initially seated on the top of a hemispherical 
ice mound of radius R = 13.8 m. He begins to slide down the ice, 

with a negligible initial speed 
(Fig. 8.30). Approximate the ice 
as being frictionless. At what 
height does the boy lose  contact 
with the ice?

35 H  GO  In Fig. 8.25, a block of 
mass m = 3.20 kg slides from rest 
a distance d down a frictionless 
incline at angle θ = 30.0° where it runs into a spring of spring 
constant 431 N/m. When the block momentarily stops, it has 
compressed the spring by 21.0 cm. What are (a) distance d and 
(b) the distance between the point of the first block– spring con-
tact and the point where the block’s speed is greatest?

36 H  GO  Two children are playing a game in which they try to 
hit a small box on the floor with a marble fired from a spring- 
loaded gun that is mounted on a table. The target box is horizon-
tal distance D = 2.20 m from the edge of the table; see Fig. 8.31. 
Bobby compresses the spring 1.10 cm, but the center of the mar-
ble falls 27.0 cm short of the center of the box. How far should 
Rhoda compress the spring to score a direct hit? Assume that 
neither the spring nor the ball encounters friction in the gun.

D

Figure 8.31 Problem 36.

37 H  CALC  A uniform cord of length 25 cm and mass 15 g is  initially 
stuck to a ceiling. Later, it hangs vertically from the ceiling with only 
one end still stuck. What is the change in the gravitational potential 
energy of the cord with this change in orientation? (Hint: Consider 
a differential slice of the cord and then use integral calculus.)

Module 8.3  Reading a Potential Energy Curve
38 M  Figure 8.32 shows a plot of potential energy U versus posi-
tion x of a 0.200 kg particle that can travel only along an x axis 
under the influence of a conservative force. The graph has these 
values:UA = 9.00 J, UC = 20.00 J, and UD = 24.00 J. The particle is 
released at the point where U forms a “potential hill” of “height” 
UB = 12.00 J, with kinetic energy 4.00 J. What is the speed of the 
particle at (a) x = 3.5 m and (b) x = 6.5 m? What is the position 
of the turning point on (c) the right side and (d) the left side?

UA

UB

UC

UD

U
 (

J)

1 2 3 4 5 6 7 8 90
x (m)

Figure 8.32 Problem 38.

m

k
θ

Figure 8.27 Problem 31.

D

θ

Figure 8.29 Problem 33.

R

Figure 8.30 Problem 34.

Figure 8.28 Problem 32.

ProbleMs

c08PotentialEnergyAndConservationOfEnergy.indd   215 05/05/21   4:55 PM



216 CHaPter 8 Potential energy and Conservation of energy

39 M  GO  Figure 8.33 shows 
a plot of potential energy 
U versus position x of a 
0.90 kg particle that can 
travel only along an x axis. 
(Nonconservative forces 
are not involved.) Three 
values are UA = 15.0 J,  
UB = 35.0 J, and UC = 45.0 J.  
The particle is released at 
x = 4.5 m with an initial 
speed of 7.0 m/s, headed in the negative x direction. (a) If the 
particle can reach x = 1.0 m, what is its speed there, and if 
it cannot, what is its  turning point? What are the (b) mag-
nitude and (c) direction of the force on the particle as it 
begins to move to the left of x  = 4.0 m? Suppose, instead, 
the particle is headed in the positive x direction when it 
is released at x = 4.5 m at speed 7.0 m/s. (d) If the particle 
can reach x = 7.0 m, what is its speed there, and if it cannot, 
what is its turning point? What are the (e) magnitude and  
(f ) direction of the force on the particle as it begins to move to 
the right of x = 5.0 m?

40 M  CALC  The potential energy of a diatomic molecule (a two- 
atom system like H2 or O2) is given by

 U =   A _ 
 r   12 

   −   B _ 
 r   6 

  , 

where r is the separation of the two atoms of the molecule and 
A and B are positive constants. This potential energy is associ-
ated with the force that binds the two atoms together. (a) Find 
the equilibrium separation— that is, the distance between the atoms 
at which the force on each atom is zero. Is the force  repulsive (the 
atoms are pushed apart) or attractive (they are pulled together) if 
their separation is (b) smaller and (c) larger than the equilibrium 
separation?

41 H  CALC  A single conservative force F(x) acts on a 1.0 kg 
particle that moves along an x axis. The potential energy U(x) 
associated with F(x) is given by

U(x) = −4xe−x/4 J,

where x is in meters. At x = 5.0 m the particle has a kinetic 
 energy of 2.0 J. (a) What is the mechanical energy of the  system? 
(b) Make a plot of U(x) as a function of x for 0 ≤ x ≤ 10 m, and 
on the same graph draw the line that represents the  mechanical 
energy of the system. Use part (b) to determine (c) the least 
value of x the particle can reach and (d) the greatest value 
of x the particle can reach. Use part (b) to determine (e) the 
maximum kinetic energy of the particle and (f) the value of x 
at which it occurs. (g) Determine an expression in newtons and 
meters for F(x) as a function of x. (h) For what (finite) value of 
x does F(x) = 0?

Module 8.4  Work Done on a System by an 
External Force
42 E  A worker pushed a 27 kg block 9.2 m along a level floor 
at constant speed with a force directed 32° below the horizontal. 
If the coefficient of kinetic friction between block and floor was 
0.20, what were (a) the work done by the worker’s force and (b) 
the increase in thermal energy of the block– floor system?

43 E  A collie drags its bed box across a floor by applying a hori-
zontal force of 8.0 N. The kinetic frictional force acting on the box 

has magnitude 5.0 N. As the box is dragged through 0.70 m along 
the way, what are (a) the work done by the collie’s applied force 
and (b) the increase in thermal energy of the bed and floor?

44 M  A horizontal force of magnitude 35.0 N pushes a block of 
mass 4.00 kg across a floor where the coefficient of kinetic friction 
is 0.600. (a) How much work is done by that applied force on the 
block– floor system when the block slides through a displacement 
of 3.00 m across the floor? (b) During that displacement, the ther-
mal energy of the block increases by 40.0 J. What is the increase in 
thermal energy of the floor? (c) What is the increase in the kinetic 
energy of the block?

45 M  SSM  A rope is used to pull a 3.57 kg block at constant 
speed 4.06 m along a horizontal floor. The force on the block 
from the rope is 7.68 N and directed 15.0° above the horizontal. 
What are (a) the work done by the rope’s force, (b) the  increase 
in thermal energy of the block– floor system, and (c)  the coef-
ficient of kinetic friction between the block and floor?

Module 8.5  Conservation of Energy
46 E  An outfielder throws a baseball with an initial speed of 
81.8 mi/h. Just before an infielder catches the ball at the same 
level, the ball’s speed is 110 ft/s. In foot- pounds, by how much is 
the mechanical energy of the ball– Earth system reduced because 
of air drag? (The weight of a baseball is 9.0 oz.)

47 E  A 75 g Frisbee is thrown from a point 1.1 m above the 
ground with a speed of 12 m/s. When it has reached a height of 
2.1 m, its speed is 10.5 m/s. What was the reduction in Emec of the 
Frisbee– Earth system because of air drag?

48 E  In Fig. 8.34, a block slides 
down an incline. As it moves from 
point A to point B, which are 5.0 m  
apart, force    F 

→
    acts on the block, 

with magnitude 2.0 N and directed 
down the  incline. The magnitude 
of the frictional force acting on 
the block is 10 N. If the kinetic 
energy of the block increases by 35 J between A and B, how much 
work is done on the block by the gravitational force as the block 
moves from A to B?

49 E  SSM  A 25 kg bear slides, from rest, 12 m down a lodge-
pole pine tree, moving with a speed of 5.6 m/s just before hit-
ting the ground. (a) What change occurs in the gravitational 
 potential energy of the bear– Earth system during the slide?(b) 
What is the kinetic energy of the bear just before hitting the 
ground? (c) What is the average frictional force that acts on 
the sliding bear?

50 E  FCP  A 60 kg skier leaves the end of a ski- jump ramp with 
a velocity of 24 m/s directed 25° above the horizontal. Sup-
pose that as a result of air drag the skier returns to the ground 
with a speed of 22 m/s, landing 14 m vertically below the end 
of the ramp. From the launch to the return to the ground, by 
how much is the mechanical energy of the skier– Earth system 
 reduced because of air drag?

51 E  During a rockslide, a 520 kg rock slides from rest down 
a hillside that is 500 m long and 300 m high. The coefficient of 
kinetic friction between the rock and the hill surface is 0.25. (a) 
If the gravitational potential energy U of the rock– Earth system 
is zero at the bottom of the hill, what is the value of U just before 

UC

UB

UA

2 4 6
x (m)

U
 (

J)
Figure 8.33 Problem 39.

A

B

Figure 8.34 Problems 48  
and 71.
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the slide? (b) How much energy is transferred to thermal energy 
during the slide? (c) What is the kinetic energy of the rock as it 
reaches the bottom of the hill? (d) What is its speed then?

52 M  A large fake cookie sliding on a horizontal surface is 
attached to one end of a horizontal spring with spring constant  
k = 400 N/m; the other end of the spring is fixed in place.  
The cookie has a kinetic energy of 20.0 J as it passes through 
the spring’s equilibrium position. As the cookie slides, a  frictional 
force of magnitude 10.0 N acts on it. (a) How far will the cookie 
slide from the equilibrium position before coming momentarily 
to rest? (b) What will be the kinetic energy of the cookie as it 
slides back through the equilibrium position?

53 M  GO  In Fig. 8.35, a 3.5 kg 
block is accelerated from rest 
by a compressed spring of 
spring constant 640 N/m. The 
block leaves the spring at the 
spring’s relaxed length and 
then travels over a horizon-
tal floor with a coefficient of kinetic friction 𝜇k = 0.25. The fric-
tional force stops the block in distance D = 7.8 m. What are (a) the 
increase in the thermal energy of the block– floor system, (b) the 
maximum kinetic energy of the block, and (c) the original com-
pression distance of the spring?

54 M  A child whose weight is 267 N slides down a 6.1 m playground 
slide that makes an angle of 20° with the horizontal. The coefficient 
of kinetic friction between slide and child is 0.10. (a) How much 
energy is transferred to thermal energy? (b) If she starts at the top 
with a speed of 0.457 m/s, what is her speed at the bottom?

55 M  In Fig. 8.36, a block of 
mass m = 2.5 kg slides head 
on into a spring of spring con-
stant k = 320 N/m. When the 
block stops, it has compressed 
the spring by 7.5 cm. The coeffi-
cient of kinetic friction between 
block and floor is 0.25. While the block is in contact with the spring 
and being brought to rest, what are (a) the work done by the spring 
force and (b) the  in crease in thermal energy of the block– floor sys-
tem? (c) What is the block’s speed just as it reaches the spring?

56 M  You push a 2.0 kg block against a horizontal spring, com-
pressing the spring by 15 cm. Then you release the block, and 
the spring sends it sliding across a tabletop. It stops 75 cm from 
where you released it. The spring constant is 200 N/m. What is 
the block– table coefficient of kinetic friction?

57 M  GO  In Fig. 8.37, a block slides along a track from one level to 
a higher level after passing through an intermediate valley. The track 
is frictionless until the block reaches the higher level. There a fric-
tional force stops the block in a distance d. The block’s initial speed 
v0 is 6.0 m/s, the height difference h is 1.1 m, and 𝜇k is 0.60. Find d.

hv0

d

μ = 0 μk

Figure 8.37 Problem 57.

No friction D
(μk)

Figure 8.35 Problem 53.

58 M  A cookie jar is moving up a 40° incline. At a point 55 cm 
from the bottom of the incline (measured along the  incline), 
the jar has a speed of 1.4 m/s. The coefficient of  kinetic friction 
between jar and incline is 0.15. (a) How much farther up the 
incline will the jar move? (b) How fast will it be going when it 
has slid back to the bottom of the incline? (c) Do the answers to 
(a) and (b) increase, decrease, or remain the same if we decrease 
the coefficient of kinetic friction (but do not change the given 
speed or location)?

59 M  A stone with a weight of 5.29 N is launched vertically from 
ground level with an initial speed of 20.0 m/s, and the air drag on it 
is 0.265 N throughout the flight. What are (a) the maximum height 
reached by the stone and (b) its speed just before it hits the ground?

60 M  A 4.0 kg bundle starts up a 30° incline with 128 J of  kinetic 
energy. How far will it slide up the incline if the coefficient of 
kinetic friction between bundle and incline is 0.30?

61 M  BIO  FCP  When a click beetle is upside down on its back, 
it jumps upward by suddenly arching its back, transferring energy 
stored in a muscle to mechanical energy. The launch produces an 
audible click, giving the beetle its name. Videotape of a certain click- 
beetle jump shows that a beetle of mass m = 4.0 × 10−6 kg moved 
directly upward by 0.77 mm during the launch and then to a maxi-
mum height of h = 0.30 m. During the launch, what are the average 
mag nitudes of (a) the external force on the beetle’s back from the 
floor and (b) the acceleration of the beetle in terms of g?

62 H  GO  In Fig. 8.38, a block slides along a path that is without 
friction until the block reaches the section of length L = 0.75 m, 
which begins at height h = 2.0 m on a ramp of angle θ = 30°. In 
that section, the coefficient of kinetic friction is 0.40. The block 
passes through point A with a speed of 8.0 m/s. If the block can 
reach point B (where the friction ends), what is its speed there, 
and if it cannot, what is its greatest height above A?

A
h

L
B

θ

Figure 8.38 Problem 62.

63 H  The cable of the 1800 kg elevator 
cab in Fig. 8.39 snaps when the cab is 
at rest at the first floor, where the cab 
bottom is a distance d = 3.7 m above 
a spring of spring constant k = 0.15 
MN/m. A safety device clamps the cab 
against guide rails so that a constant 
frictional force of 4.4 kN opposes the 
cab’s motion. (a) Find the speed of the 
cab just before it hits the spring. (b) 
Find the maximum distance x that the 
spring is compressed (the frictional 
force still acts during this compression). 
(c) Find the distance that the cab will 
bounce back up the shaft. (d) Using 
conservation of energy, find the approximate total distance that 
the cab will move before  coming to rest. (Assume that the fric-
tional force on the cab is negligible when the cab is stationary.)

x
0

Figure 8.36 Problem 55.

d

k

Figure 8.39  
Problem 63.

ProbleMs
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64 H  GO  In Fig. 8.40, a block is released from rest at height d = 
40 cm and slides down a frictionless ramp and onto a first pla-
teau, which has length d and where the coefficient of  kinetic 
friction is 0.50. If the block is still moving, it then slides down a 
second frictionless ramp through height d/2 and onto a lower 
plateau, which has length d/2 and where the coefficient of 
kinetic friction is again 0.50. If the block is still moving, it then 
slides up a frictionless ramp until it (momentarily) stops. 
Where does the block stop? If its final stop is on a plateau, 
state which one and give the distance L from the left edge of 
that plateau. If the block reaches the ramp, give the height 
H above the lower plateau where it momentarily stops.

d

d/2

d

d/2

Figure 8.40 Problem 64.

65 H  GO  A particle can slide 
along a track with elevated ends 
and a flat central part, as shown in 
Fig. 8.41. The flat part has length 
L = 40 cm. The curved portions 
of the track are frictionless, but 
for the flat part the coefficient of 
kinetic friction is 𝜇k = 0.20. The particle is released from rest at 
point A, which is at height h = L/2. How far from the left edge of 
the flat part does the particle finally stop?

Additional Problems
66  A 3.2 kg sloth hangs 3.0 m above the ground. (a) What is 
the gravitational potential energy of the sloth– Earth system if 
we take the reference point y = 0 to be at the ground? If the 
sloth drops to the ground and air drag on it is assumed to be 
negligible, what are the (b) kinetic energy and (c) speed of 
the sloth just before it reaches the ground?

67 SSM  A spring (k = 200 N/m) is 
fixed at the top of a frictionless plane 
inclined at angle θ = 40° (Fig. 8.42). 
A 1.0 kg block is projected up the 
plane, from an initial position that 
is distance d = 0.60 m from the end 
of the relaxed spring, with an ini-
tial kinetic energy of 16 J. (a) What 
is the kinetic energy of the block at 
the instant it has compressed the 
spring 0.20 m? (b) With what kinetic 
energy must the block be projected up the plane if it is to stop 
momentarily when it has compressed the spring by 0.40 m?

68  From the edge of a cliff, a 0.55 kg projectile is launched 
with an initial kinetic energy of 1550 J. The projectile’s maximum 
upward displacement from the launch point is +140 m. What 
are the (a) horizontal and (b) vertical components of its launch 
velocity? (c) At the instant the vertical component of its veloc-
ity is 65 m/s, what is its vertical displacement from the launch 
point?

L

h

A

Figure 8.41 Problem 65.

d

θ

Figure 8.42 Problem 67.

69 SSM  In Fig. 8.43, the pulley 
has negligible mass, and both it 
and the inclined plane are fric-
tionless. Block A has a mass of 
1.0 kg, block B has a mass of 
2.0 kg, and angle θ is 30°. If the 
blocks are released from rest with 
the connecting cord taut, what is 
their total kinetic energy when block B has fallen 25 cm?

70 GO  In Fig. 8.21, the string is L = 120 cm long, has a ball 
 attached to one end, and is fixed at its other end. A fixed peg is at 
point P. Released from rest, the ball swings down until the string 
catches on the peg; then the ball swings up, around the peg. If 
the ball is to swing completely around the peg, what value must 
distance d exceed? (Hint: The ball must still be moving at the top 
of its swing. Do you see why?)

71 SSM  In Fig. 8.34, a block is sent sliding down a frictionless 
ramp. Its speeds at points A and B are 2.00 m/s and 2.60 m/s, 
 respectively. Next, it is again sent sliding down the ramp, but this 
time its speed at point A is 4.00 m/s. What then is its speed at 
point B?

72  Two snowy peaks are at heights H = 850 m and h = 750 m 
above the valley between them. A ski run extends  between 
the peaks, with a total length of 3.2 km and an average slope of θ = 
30° (Fig. 8.44). (a) A skier starts from rest at the top of the higher 
peak. At what speed will he arrive at the top of the lower peak if 
he coasts without using ski poles? Ignore friction. (b) Approxi-
mately what coefficient of kinetic friction  between snow and skis 
would make him stop just at the top of the lower peak?

Hh

θ θ

Figure 8.44 Problem 72.
73 SSM  The temperature of a plastic cube is monitored while 
the cube is pushed 3.0 m across a floor at constant speed by 
a horizontal force of 15 N. The thermal energy of the cube 
increases by 20 J. What is the increase in the thermal energy of 
the floor along which the cube slides?

74  A skier weighing 600 N goes over a frictionless circular 
hill of radius R = 20 m (Fig. 8.45). Assume that the effects of 
air resistance on the skier are negligible. As she comes up 
the hill, her speed is 8.0 m/s at point B, at angle θ = 20°. (a) 
What is her speed at the hilltop (point A) if she coasts without 
using her poles? (b) What minimum speed can she have at B 
and still coast to the hilltop? (c) Do the answers to these two 
questions increase, decrease, or remain the same if the skier 
weighs 700 N instead of 600 N?

R

AB

θ

Figure 8.45 Problem 74.

BA

θ

Figure 8.43 Problem 69.
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is 0.400. After a short time, slipping between the belt and the 
crate ceases, and the crate then moves along with the belt. For 
the period of time during which the crate is being brought to 
rest relative to the belt, calculate, for a coordinate system at 
rest in the factory, (a) the kinetic energy supplied to the crate, 
(b) the magnitude of the kinetic frictional force  acting on the 
crate, and (c) the energy supplied by the motor. (d) Explain 
why answers (a) and (c) differ.

79 SSM  A 1500 kg car begins sliding down a 5.0° inclined road 
with a speed of 30 km/h. The engine is turned off, and the only 
forces acting on the car are a net frictional force from the road 
and the gravitational force. After the car has traveled 50 m along 
the road, its speed is 40 km/h. (a) How much is the  mechanical 
energy of the car reduced because of the net frictional force?  
(b) What is the magnitude of that net frictional force?

80  In Fig. 8.48, a 1400 kg block of granite is pulled up an  incline 
at a constant speed of 1.34 m/s by a cable and winch. The indi-
cated distances are d1 = 40 m and d2 = 30 m. The  coefficient of 
kinetic friction between the block and the  incline is 0.40. What 
is the power due to the force applied to the block by the cable?

d2

d1

Figure 8.48 Problem 80.

81  A particle can move along only an x axis, where conserva-
tive forces act on it (Fig. 8.49 and the following table). The par-
ticle is released at x = 5.00 m with a kinetic energy of K = 14.0 J 
and a potential energy of U = 0. If its motion is in the negative 
direction of the x axis, what are its (a) K and (b) U at x = 2.00 m 
and its (c) K and (d) U at x = 0? If its  motion is in the positive 
direction of the x axis, what are its (e) K and (f) U at x = 11.0 m, 
its (g) K and (h) U at x = 12.0 m, and its (i) K and ( j) U at x = 
13.0 m? (k) Plot U(x) versus x for the range x = 0 to x = 13.0 m.

0 2 4 6 8 10 12

F1 F2 F3 F4

x (m)

Figure 8.49 Problems 81 and 82.

Next, the particle is released from rest at x = 0. What are (l) 
its kinetic energy at x  = 5.0 m and (m) the maximum positive 
 position xmax it reaches? (n) What does the particle do after it 
reaches xmax?

Range Force

0 to 2.00 m      F 
→

    1   = +   (  3.00 N )    ̂ i  

2.00 m to 3.00 m      F 
→

    2   = +   (  5.00 N )    ̂ i  

3.00 m to 8.00 m F = 0
8.00 m to 11.0 m      F 

→
    3   = −   (  4.00 N )    ̂ i  

11.0 m to 12.0 m      F 
→

    4   = −   (  1.00 N )    ̂ i  

12.0 m to 15.0 m F = 0

75 SSM  To form a pendulum, a 0.092 kg ball is attached to one 
end of a rod of length 0.62 m and negligible mass, and the other 
end of the rod is mounted on a pivot. The rod is rotated until it 
is straight up, and then it is released from rest so that it swings 
down around the pivot. When the ball reaches its  lowest point, 
what are (a) its speed and (b) the tension in the rod? Next, the 
rod is rotated until it is horizontal, and then it is again released 
from rest. (c) At what angle from the ver tical does the tension in 
the rod equal the weight of the ball? (d) If the mass of the ball 
is increased, does the answer to (c) increase, decrease, or remain 
the same?

76  We move a particle along an x axis, first outward from x = 1.0 m  
to x = 4.0 m and then back to x = 1.0 m, while an external force 
acts on it. That force is directed along the x axis, and its x com-
ponent can have different values for the outward trip and for the 
return trip. Here are the values (in newtons) for four situations, 
where x is in meters:

Outward Inward

(a) +3.0 −3.0
(b) +5.0 +5.0
(c)  +2.0x −2.0x

(d) +3.0x2 +3.0x2

Find the net work done on the particle by the external force for 
the round trip for each of the four situations. (e) For which, if any, 
is the external force conservative?

77 CALC  SSM  A conservative force F(x) acts on a 2.0 kg par-
ticle that moves along an x axis. The potential energy U(x) asso-
ciated with F(x) is graphed in Fig. 8.46. When the particle is at 
x = 2.0 m, its velocity is −1.5 m/s. What are the (a) magnitude and 
(b) direction of F(x) at this position? Between what positions on 
the (c) left and (d) right does the particle move? (e) What is the 
particle’s speed at x = 7.0 m?

0
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5
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Figure 8.46 Problem 77.

78  At a certain factory, 300 kg 
crates are dropped vertically 
from a packing machine onto a 
conveyor belt moving at 1.20 m/s 
(Fig. 8.47). (A motor maintains 
the belt’s constant speed.) The 
coefficient of kinetic friction 
between the belt and each crate 

FRAGILE

FRAGILE

Figure 8.47 Problem 78.

ProbleMs
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82  For the arrangement of forces in Problem 81, a 2.00 kg par-
ticle is released at x = 5.00 m with an initial velocity of 3.45 m/s 
in the negative direction of the x axis. (a) If the particle can reach 
x = 0 m, what is its speed there, and if it cannot, what is its turn-
ing point? Suppose, instead, the particle is headed in the positive 
x direction when it is released at x = 5.00 m at speed 3.45 m/s. (b) 
If the particle can reach x = 13.0 m, what is its speed there, and if 
it cannot, what is its turning point?

83 SSM  A 15 kg block is accelerated at 2.0 m/s2 along a hori-
zontal frictionless surface, with the speed increasing from 10 
m/s to 30 m/s. What are (a) the change in the block’s mechanical 
energy and (b) the average rate at which energy is transferred to 
the block? What is the instantaneous rate of that transfer when 
the block’s speed is (c) 10 m/s and (d) 30 m/s?

84 CALC  A certain spring is found not to conform to Hooke’s 
law. The force (in newtons) it exerts when stretched a distance 
x (in meters) is found to have magnitude 52.8x + 38.4x2 in the 
direction opposing the stretch. (a) Compute the work  required 
to stretch the spring from x = 0.500 m to x = 1.00 m. (b) With 
one end of the spring fixed, a particle of mass 2.17 kg is attached 
to the other end of the spring when it is stretched by an amount 
x = 1.00 m. If the particle is then released from rest, what is its 
speed at the instant the stretch in the spring is x = 0.500 m? (c) 
Is the force exerted by the spring conservative or nonconserva-
tive? Explain.

85 SSM  Each second, 1200 m3 of water passes over a water-
fall 100 m high. Three- fourths of the kinetic energy gained by the 
water in falling is transferred to electrical energy by a hydroelec-
tric generator. At what rate does the generator produce electrical 
energy? (The mass of 1 m3 of water is 1000 kg.)

86 GO  In Fig. 8.50, a small block is sent through point A with a 
speed of 7.0 m/s. Its path is without friction until it reaches the 
section of length L = 12 m, where the coefficient of kinetic fric-
tion is 0.70. The indicated heights are h1 = 6.0 m and h2 = 2.0 m. 
What are the speeds of the block at (a) point B and (b) point C? 
(c) Does the block reach point D? If so, what is its speed there; if 
not, how far through the section of friction does it travel?

A

B

C Dh1

h2
L

Figure 8.50 Problem 86.

87 SSM  A massless rigid rod of 
length L has a ball of mass m 
 attached to one end (Fig. 8.51). 
The other end is pivoted in such 
a way that the ball will move in a 
vertical circle. First,  assume that 
there is no friction at the pivot. 
The system is launched down-
ward from the horizontal posi-
tion A with initial speed v0. The 
ball just barely reaches point D 
and then stops. (a) Derive an 

expression for v0 in terms of L, m, and g. (b) What is the ten-
sion in the rod when the ball passes through B? (c) A little grit 
is placed on the pivot to increase the friction there. Then the 
ball just barely reaches C when launched from A with the same 
speed as before. What is the decrease in the mechanical energy 
during this motion? (d) What is the  decrease in the  mechanical 
energy by the time the ball finally comes to rest at B after sev-
eral oscillations? 

88  A 1.50 kg water balloon is shot straight up with an initial 
speed of 3.00 m/s. (a) What is the kinetic energy of the balloon just 
as it is launched? (b) How much work does the gravitational force 
do on the balloon during the balloon’s full ascent? (c) What is the 
change in the gravitational potential energy of the balloon– Earth 
system during the full ascent? (d) If the gravitational potential 
energy is taken to be zero at the launch point, what is its value 
when the balloon reaches its maximum height? (e) If, instead, the 
gravitational potential energy is taken to be zero at the maximum 
height, what is its value at the launch point? (f) What is the maxi-
mum height?

89  A 2.50 kg beverage can is thrown directly downward from 
a height of 4.00 m, with an initial speed of 3.00 m/s. The air drag 
on the can is negligible. What is the kinetic energy of the can (a) 
as it reaches the ground at the end of its fall and (b) when it is 
halfway to the ground? What are (c) the kinetic energy of the 
can and (d) the gravitational potential energy of the can– Earth 
system 0.200 s before the can reaches the ground? For the latter, 
take the reference point y = 0 to be at the ground.

90  A constant horizontal force moves a 50 kg trunk 6.0 m up 
a 30° incline at constant speed. The coefficient of kinetic friction 
is 0.20. What are (a) the work done by the applied force and (b) 
the increase in the thermal energy of the trunk and incline?

91 GO  Two blocks, of masses M =  
2.0 kg and 2M, are connected 
to a spring of spring constant 
k = 200 N/m that has one end 
fixed, as shown in Fig. 8.52. The 
horizontal surface and the  pulley 
are frictionless, and the pulley 
has negligible mass. The blocks 
are released from rest with the 
spring relaxed. (a) What is the 
combined kinetic energy of the two blocks when the hanging 
block has fallen 0.090 m? (b) What is the kinetic  energy of the 
hanging block when it has fallen that 0.090 m? (c) What maxi-
mum distance does the hanging block fall  before momentarily 
stopping?

92  A volcanic ash flow is moving across horizontal ground 
when it encounters a 10° upslope. The front of the flow then 
travels 920 m up the slope before stopping. Assume that the 
gases entrapped in the flow lift the flow and thus make the fric-
tional force from the ground negligible; assume also that the 
mechanical energy of the front of the flow is conserved. What 
was the initial speed of the front of the flow?

93  A playground slide is in the form of an arc of a circle that 
has a radius of 12 m. The maximum height of the slide is h = 4.0 
m, and the ground is tangent to the circle (Fig. 8.53). A 25 kg 
child starts from rest at the top of the slide and has a speed of 6.2 
m/s at the bottom. (a) What is the length of the slide? (b) What 
average frictional force acts on the child over this distance? If, 

2M

M

Figure 8.52 Problem 91.
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Figure 8.51 Problem 87.
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instead of the ground, a vertical line through the top of the slide 
is tangent to the circle, what are (c) the length of the slide and 
(d) the average frictional force on the child?

h

Figure 8.53 Problem 93.

94  The luxury liner Queen Elizabeth 2 has a diesel- electric 
power plant with a maximum power of 92 MW at a cruising 
speed of 32.5 knots. What forward force is exerted on the ship at 
this speed? (1 knot = 1.852 km/h.)

95  A factory worker accidentally releases a 180 kg crate that 
was being held at rest at the top of a ramp that is 3.7 m long 
and inclined at 39° to the horizontal. The coefficient of kinetic 
friction between the crate and the ramp, and between the crate 
and the horizontal factory floor, is 0.28. (a) How fast is the crate 
moving as it reaches the bottom of the ramp? (b) How far will 
it subsequently slide across the floor? (Assume that the crate’s 
kinetic energy does not change as it moves from the ramp onto 
the floor.) (c) Do the answers to (a) and (b) increase, decrease, 
or remain the same if we halve the mass of the crate?

96  If a 70 kg baseball player steals home by sliding into the 
plate with an initial speed of 10 m/s just as he hits the ground, (a) 
what is the decrease in the player’s kinetic energy and (b) what 
is the increase in the thermal energy of his body and the ground 
along which he slides?

97  A 0.50 kg banana is thrown directly upward with an  initial 
speed of 4.00 m/s and reaches a maximum height of 0.80  m. 
What change does air drag cause in the mechanical  energy of 
the  banana– Earth system during the ascent?

98  A metal tool is sharpened by being held against the rim of 
a wheel on a grinding machine by a force of 180 N. The frictional 
forces between the rim and the tool grind off small pieces of 
the tool. The wheel has a radius of 20.0 cm and  rotates at 2.50 
rev/s. The coefficient of kinetic friction between the wheel and 
the tool is 0.320. At what rate is energy being transferred from 
the motor driving the wheel to the thermal energy of the wheel 
and tool and to the kinetic energy of the material thrown from 
the tool?

99 BIO  A swimmer moves through the water at an average 
speed of 0.22 m/s. The average drag force is 110 N. What average 
power is required of the swimmer?

100  An automobile with passengers has weight 16 400 N and is 
moving at 113 km/h when the driver brakes, sliding to a stop. The 
frictional force on the wheels from the road has a magnitude of 
8230 N. Find the stopping distance.

101  A 0.63 kg ball thrown directly upward with an initial speed 
of 14 m/s reaches a maximum height of 8.1 m. What is the change 
in the mechanical energy of the ball– Earth system during the 
ascent of the ball to that maximum height?

102 BIO  The summit of Mount Everest is 8850 m above sea 
level. (a)  How much energy would a 90 kg climber expend 
against the gravitational force on him in climbing to the summit 
from sea level? (b) How many candy bars, at 1.25 MJ per bar, 
would supply an energy equivalent to this? Your answer should 
suggest that work done against the gravitational force is a very 
small part of the energy expended in climbing a mountain.

103 BIO  A sprinter who weighs 670 N runs the first 7.0 m of a 
race in 1.6 s, starting from rest and accelerating uniformly. What 
are the sprinter’s (a) speed and (b) kinetic energy at the end of 
the 1.6 s? (c) What average power does the sprinter generate 
during the 1.6 s interval?

104 CALC  A 20 kg object is acted on by a conservative force 
given by F = −3.0x − 5.0x2, with F in newtons and x in meters. 
Take the potential energy associated with the force to be zero 
when the object is at x = 0. (a) What is the potential energy of 
the system associated with the force when the object is at x = 
2.0 m? (b) If the object has a velocity of 4.0 m/s in the negative 
 direction of the x axis when it is at x = 5.0 m, what is its speed 
when it passes through the origin? (c) What are the answers to 
(a) and (b) if the potential energy of the system is taken to be 
−8.0 J when the object is at x = 0?

105  A machine pulls a 40 kg trunk 2.0 m up a 40° ramp at 
constant velocity, with the machine’s force on the trunk  directed 
parallel to the ramp. The coefficient of kinetic friction between 
the trunk and the ramp is 0.40. What are (a) the work done on 
the trunk by the machine’s force and (b) the increase in thermal 
energy of the trunk and the ramp?

106  The spring in the muzzle of a child’s spring gun has a spring 
constant of 700 N/m. To shoot a ball from the gun, first the spring 
is compressed and then the ball is placed on it. The gun’s trigger 
then releases the spring, which pushes the ball through the muz-
zle. The ball leaves the spring just as it leaves the outer end of the 
muzzle. When the gun is inclined upward by 30° to the horizontal, 
a 57 g ball is shot to a maximum height of 1.83 m above the gun’s 
muzzle. Assume air drag on the ball is negligible. (a) At what 
speed does the spring launch the ball? (b) Assuming that fric-
tion on the ball within the gun can be neglected, find the spring’s 
initial compression  distance.

107  The only force acting on a particle is conservative force    F 
→

   .  
If the particle is at point A, the potential energy of the  system 
associated with    F 

→
    and the particle is 40 J. If the particle moves 

from point A to point B, the work done on the particle by    F 
→

    is 
+25 J. What is the potential energy of the  system with the par-
ticle at B?

108 BIO  In 1981, Daniel Goodwin climbed 443 m up the exterior 
of the Sears Building in Chicago using suction cups and metal 
clips. (a) Approximate his mass and then compute how much 
energy he had to transfer from biomechanical (internal)  energy 
to the gravitational potential energy of the Earth– Goodwin sys-
tem to lift himself to that height. (b) How much energy would he 
have had to transfer if he had, instead, taken the stairs inside the 
building (to the same height)?

109  A 60.0 kg circus performer slides 4.00 m down a pole to 
the circus floor, starting from rest. What is the kinetic energy of 
the performer as she reaches the floor if the frictional force on 
her from the pole (a) is negligible (she will be hurt) and (b) has 
a magnitude of 500 N?

ProbleMs
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119 SSM  A 50 g ball is thrown from a window with an initial 
 velocity of 8.0 m/s at an angle of 30° above the horizontal. Using 
energy methods, determine (a) the kinetic energy of the ball at 
the top of its flight and (b) its speed when it is 3.0 m  below the 
window. Does the answer to (b) depend on either (c) the mass of 
the ball or (d) the initial angle?

120  A spring with a spring constant of 3200 N/m is initially 
stretched until the elastic potential energy of the spring is 
1.44 J. (U = 0 for the relaxed spring.) What is ∆U if the initial 
stretch is changed to (a) a stretch of 2.0 cm, (b) a compression of 
2.0 cm, and (c) a compression of 4.0 cm?

121 CALC  A locomotive with a power capability of 1.5 MW can 
 accelerate a train from a speed of 10 m/s to 25 m/s in 6.0 min. 
(a) Calculate the mass of the train. Find (b) the speed of the 
train and (c) the force accelerating the train as functions of time 
(in seconds) during the 6.0 min interval. (d) Find the  distance 
moved by the train during the interval.

122 SSM  A 0.42 kg shuffleboard disk is initially at rest when 
a player uses a cue to increase its speed to 4.2 m/s at con-
stant acceleration. The acceleration takes place over a 2.0 m 
distance, at the end of which the cue loses contact with the 
disk. Then the disk slides an additional 12 m before stopping. 
Assume that the shuffleboard court is level and that the force 
of friction on the disk is constant. What is the increase in the 
thermal energy of the disk– court system (a) for that additional 
12 m and (b) for the entire 14 m distance? (c) How much work 
is done on the disk by the cue?

123  A river descends 15 m through rapids. The speed of the 
water is 3.2 m/s upon entering the rapids and 13 m/s upon leav-
ing. What percentage of the gravitational potential energy of the 
water– Earth system is transferred to kinetic energy during the 
descent? (Hint: Consider the descent of, say, 10 kg of water.)

124 CALC  The magnitude of the gravitational force between a 
particle of mass m1 and one of mass m2 is given by

 F  (  x )    = G   
 m  1    m  2   _ 

 x   2 
  , 

where G is a constant and x is the distance between the particles. 
(a) What is the corresponding potential energy function U(x)? 
Assume that U(x) → 0 as x → ∞ and that x is positive. (b) How 
much work is required to increase the separation of the particles 
from x = x1 to x = x1 + d?

125  Approximately 5.5 × 106 kg of water falls 50 m over Niag-
ara Falls each second. (a) What is the decrease in the gravita-
tional potential energy of the water– Earth system each second? 
(b) If all this energy could be converted to electrical energy (it 
cannot be), at what rate would electrical energy be supplied? 
(The mass of 1 m3 of water is 1000 kg.) (c) If the electrical energy 
were sold at 1 cent/kW · h, what would be the yearly income?

126  To make a pendulum, a 300 g ball is attached to one end 
of a string that has a length of 1.4 m and negligible mass. (The 
other end of the string is fixed.) The ball is pulled to one side 
until the string makes an angle of 30.0° with the vertical; then 
(with the string taut) the ball is released from rest. Find (a) the 
speed of the ball when the string makes an angle of 20.0° with 
the vertical and (b) the maximum speed of the ball. (c) What  
is the angle between the string and the vertical when the speed 
of the ball is one- third its maximum value?

110  A 5.0 kg block is projected at 5.0 m/s up a plane that 
is  inclined at 30° with the horizontal. How far up along the 
plane does the block go (a) if the plane is frictionless and (b) 
if the  coefficient of kinetic friction between the block and 
the plane is 0.40? (c) In the latter case, what is the increase in 
 thermal energy of block and plane during the block’s ascent? 
(d) If the block then slides back down against the frictional 
force, what is the block’s speed when it reaches the original pro-
jection point?

111  A 9.40 kg projectile is fired vertically upward. Air 
drag  decreases the mechanical energy of the projectile– 
Earth  system by 68.0 kJ during the projectile’s ascent. How much 
higher would the projectile have gone were air drag  negligible?

112  A 70.0 kg man jumping from a window lands in an ele-
vated fire rescue net 11.0 m below the window. He momentarily 
stops when he has stretched the net by 1.50 m. Assuming that 
mechanical energy is conserved during this process and that 
the net functions like an ideal spring, find the elastic  potential 
energy of the net when it is stretched by 1.50 m.

113  A 30 g bullet moving a horizontal velocity of 500 m/s 
comes to a stop 12 cm within a solid wall. (a) What is the change 
in the bullet’s mechanical energy? (b) What is the magnitude of 
the average force from the wall stopping it?

114  A 1500 kg car starts from rest on a horizontal road and 
gains a speed of 72 km/h in 30 s. (a) What is its kinetic energy at 
the end of the 30 s? (b) What is the average power required of 
the car during the 30 s interval? (c) What is the instantaneous 
power at the end of the 30 s interval, assuming that the accel-
eration is constant?

115  A 1.50 kg snowball is shot upward at an angle of 34.0° to 
the horizontal with an initial speed of 20.0 m/s. (a) What is its 
initial kinetic energy? (b) By how much does the gravitational 
potential energy of the snowball– Earth system change as the 
snowball moves from the launch point to the point of maximum 
height? (c) What is that maximum height?

116 CALC  A 68 kg sky diver falls at a constant terminal speed of 
59 m/s. (a) At what rate is the gravitational potential energy of 
the Earth– sky diver system being reduced? (b) At what rate is 
the system’s mechanical energy being reduced?

117  A 20 kg block on a horizontal surface is attached to 
a horizontal spring of spring constant k = 4.0 kN/m. The block is 
pulled to the right so that the spring is stretched 10 cm  beyond 
its relaxed length, and the block is then released from rest. The 
frictional force between the sliding block and the surface has a 
magnitude of 80 N. (a) What is the kinetic energy of the block 
when it has moved 2.0 cm from its point of  release? (b) What is 
the kinetic energy of the block when it first slides back through 
the point at which the spring is  relaxed? (c) What is the maxi-
mum kinetic energy attained by the block as it slides from its 
point of release to the point at which the spring is relaxed?

118  Resistance to the motion of an automobile consists of 
road friction, which is almost independent of speed, and air drag, 
which is proportional to speed- squared. For a certain car with a 
weight of 12 000 N, the total resistant force F is given by F = 300 +  
1.8v2, with F in newtons and v in meters per second. Calculate 
the power (in horsepower) required to accelerate the car at 0.92 
m/s2 when the speed is 80 km/h.
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127  Bungee- cord jump. A 61.0 kg bungee- cord jumper is on 
a bridge 45.0 m above a river. In its relaxed state, the elastic bun-
gee cord has length L = 25.0 m. Assume that the cord obeys 
Hooke’s law, with a spring constant of 160 N/m. (a) If the jumper 
stops before reaching the water, what is the height h of her feet 
above the water at her lowest point? (b) What is the net force on 
her at her lowest points (in particular, is it zero)? 

128  Ball shot into sand. A steel ball with mass m = 5.2 g is 
fired vertically downward from a height h1 of 18 m with an initial 
speed v0 of 14 m/s. It buries itself in sand to a depth h2 of 21 cm. 
(a) What is the change in the mechanical energy of the ball? (b) 
What is the change in the internal energy of the ball– Earth– sand 
system? (c) What is the magnitude Favg of the average force on 
the ball from the sand?

129  Block sliding onto a 
spring. A block with mass m =  
3.20 kg starts at rest and slides 
distance d down a frictionless 
30.0° incline, where it runs 
into a spring (Fig. 8.54). The 
block slides an additional 
21.0 cm before it is brought 
to rest momentarily by com-
pressing a spring, with spring 
constant k = 431 N/m. (a) What is the value of d? (b) What is the 
distance between the point of first contact and the point where 
the block’s speed is greatest?

130  Spring gun. The spring of a spring gun is compressed dis-
tance d = 3.2 cm from its relaxed state, and a ball of mass m = 
12 g is put in the barrel. With what speed will the ball leave the 
barrel once the gun is fired? The spring constant k is 7.5 N/cm. 
Assume no friction and a horizontal gun barrel.

131  Compressing a spring. A block of mass m of 1.7 kg and 
moving along a horizontal surface with speed v of 2.3 m/s runs 
into and compresses a spring with spring constant k of 320 N/m. 
(a) By what distance x is the spring compressed? (b) By what 
distance x is the energy equally divided between potential and 
kinetic energies?

132  Redesigning a track. Figure 8.55 shows a small block that 
is released on a slope, which then slides through a valley and up 
onto a plateau and then through a distance d = 2.50 m in a cer-
tain time ∆t1. The whole track is frictionless, and the height dif-
ference ∆h = h1 – h2 between the release point and the plateau is 
2.00 m. You want to decrease the time through d by 0.100 s. What 
should the value of ∆h then be?

d

h2

h1

Figure 8.55 Problem 132.

133  Robot retrieval on volcano crater. Figure 8.56 shows a dis-
abled robot of mass m = 40 kg being dragged by a cable up the 

30° inclined wall inside a volcano crater. The applied force    F 
→

    
exerted on the robot by the cable has a magnitude of 380 N. The 
kinetic frictional force    f 

→
   k acting on the robot has a magnitude of 

140 N. The robot moves through a displacement    d 
→

    of magnitude 
0.50 m along the crater wall. (a) How much of the mechanical 
energy of the robot−Earth system is dissipated by the kinetic 
frictional force    f 

→
   k during the displacement? (b) What is the 

work Wg done on the robot by its weight during the displace-
ment? (c) What is the work Wapp done by the applied force    F 

→
   ? 

F

fk

d

mg30°

Figure 8.56 Problem 133.

134  Redesigning a track with friction. Figure 8.57 shows a small 
block that is released from rest, which then slides through a val-
ley and up onto and along a plateau. There it slides through 
length L = 8.00 cm, where the coefficient of kinetic friction is 
0.600, and then through distance d = 25.0 cm in a certain time 
∆t1. The only region of friction is length L. The height difference 
∆h = h1 – h2 between the release point and the plateau is 15.0 cm. 
You want to decrease the time through d by 0.100 s. What should 
the value of ∆h then be?

h2

dLh1

kµ

Figure 8.57 Problem 134.

135  Skating into a railing. A 110 kg ice hockey player skates 
at 3.00 m/s toward a railing at the edge of the ice and then stops 
himself by grasping the railing with outstretched arms. During 
this stopping process, the player’s torso moves 30.0 cm toward 
the railing. (a) What is the change in the kinetic energy of 
the center of mass during the stop? (b) What average force is 
exerted on the railing?

136  Fly- fishing and speed amplification. If you throw a loose 
fishing fly, it will travel horizontally only about 1 m. However, if 
you throw that fly attached to a fishing line by casting the line 
with a rod, the fly will easily travel horizontally to the full length 
of the line, say, 20 m.

The cast is depicted in Fig. 8.58: Initially (Fig. 8.58a) 
the line of length L is extended horizontally leftward and 

Figure 8.54 Problem 129.

d
m

k

30.0°

ProbleMs
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moving rightward with speed v0. As the fly at the end of the 
line moves forward, the line doubles over, with the upper sec-
tion still moving and the lower section stationary (Fig. 8.58b). 
The upper section decreases in length as the lower section 
increases in length (Fig. 8.58c), until the line is extended 
rightward and there is only a lower section (Fig. 8.58d). If 
air drag is neglected, the initial kinetic energy of the line in 
Fig. 8.58a becomes progressively concentrated in the fly and 
the decreasing portion of the line that is still moving, result-
ing in an amplification (increase) in the speed of the fly and 
that portion.

(a) Using the x axis indicated, show that when the fly 
position is x, the length of the still- moving (upper) section of 
line is (L – x)/2. (b) Assuming that the line is uniform with 
a linear density ρ (mass per unit length), what is the mass of 
the still- moving section? Next, let mf represent the mass of 
the fly and assume that the kinetic energy of the moving sec-
tion does not change from its initial value (when the moving 
section had length L and speed v0) even though the length 
of the moving section is decreasing during the cast. (c) Find 
an expression for the speed of the still- moving section and 
the fly.

Assume that initial speed v0 = 6.0 m/s, line length L = 20 m, 
fly mass mf = 0.80 g, and linear density ρ = 1.3 g/m. (d) Plot the 
fly’s speed v versus its position x. (e) What is the fly’s speed just 
as the line approaches its final horizontal orientation and the fly 
is about to flip over and stop? (The fly then pulls out more line 
from the reel. In more realistic calculations, air drag reduces this 
final speed.) Speed amplification can also be produced with a 
bullwhip and even a rolled- up wet towel that is popped against a 
victim in a common locker- room prank.

Figure 8.58 Problem 136.

Fly
Line

Rod

0

Moving

x
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v

v0

L

(a)

(b)

(c)
(d)
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C H A P T E R  9

 Center of Mass and  
Linear Momentum

9.1 CENTER OF MASS 
Learning Objectives 
After reading this module, you should be able to . . .

9.1.1 Given the positions of several particles along an 
axis or a plane, determine the location of their center 
of mass.

9.1.2 Locate the center of mass of an extended, 
 symmetric object by using the symmetry.

9.1.3 For a two-dimensional or three-dimensional 
extended object with a uniform distribution of mass, 
determine the center of mass by (a) mentally divid-
ing the object into simple geometric figures, each of 
which can be replaced by a particle at its center and 
(b)  finding the center of mass of those particles.

Key Idea 
● The center of mass of a system of n particles is defined to be the point whose coordinates are given by

  x  com   =   1 ___ 
M

     ∑ 
i=1

  
n

     m  i    x  i  ,     y  com   =   1 ___ 
M

     ∑ 
i=1

  
n

     m  i    y  i  ,     z  com   =   1 ___ 
M

     ∑ 
i=1

  
n

     m  i    z  i  , 

or      r →    com   =   1 ___ 
M

     ∑ 
i=1

  
n

     m  i      r →    i  , 

where M is the total mass of the system.

What Is Physics?
Every mechanical engineer who is hired as a courtroom expert witness to recon-
struct a traffic  accident uses physics. Every dance trainer who coaches a ballerina 
on how to leap uses physics. Indeed, analyzing complicated motion of any sort 
requires simplification via an understanding of physics. In this chapter we discuss 
how the complicated motion of a system of objects, such as a car or a ballerina, 
can be simplified if we determine a special point of the system—the center of 
mass of that system.

Here is a quick example. If you toss a ball into the air without much spin on the 
ball (Fig. 9.1.1a), its motion is simple—it follows a parabolic path, as we discussed in 
Chapter 4, and the ball can be treated as a particle. If, instead, you flip a baseball bat 
into the air (Fig. 9.1.1b), its motion is more complicated. Because every part of the 
bat moves differently, along paths of many different shapes, you cannot represent 
the bat as a particle. Instead, it is a system of particles each of which follows its own 
path through the air. However, the bat has one special point—the center of mass—
that does move in a simple parabolic path. The other parts of the bat move around 
the center of mass. (To locate the center of mass, balance the bat on an outstretched 
finger; the point is above your finger, on the bat’s central axis.)
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You cannot make a career of flipping baseball bats into the air, but you 
can make a career of advising long-jumpers or dancers on how to leap properly 
into the air while either moving their arms and legs or rotating their torso. Your 
 starting point would be to determine the person’s center of mass because of its 
simple motion.

The Center of Mass
We define the center of mass (com) of a system of particles (such as a person) in 
order to predict the possible motion of the system.

Here we discuss how to determine where the center of mass of a system of parti-
cles is located. We start with a system of only a few particles, and then we  consider 
a system of a great many particles (a solid body, such as a baseball bat). Later in 
the chapter, we discuss how the center of mass of a system moves when external 
forces act on the system.

Systems of Particles
Two Particles. Figure 9.1.2a shows two particles of masses m1 and m2 separated 
by distance d. We have arbitrarily chosen the origin of an x axis to coincide with 
the particle of mass m1. We define the position of the center of mass (com) of this 
two-particle system to be

    x  com   =   
 m  2   _______  m  1   +  m  2  

   d.   (9.1.1)

Suppose, as an example, that m2 = 0. Then there is only one particle, of 
mass m1, and the center of mass must lie at the position of that particle; Eq. 9.1.1 
 dutifully reduces to xcom = 0. If m1 = 0, there is again only one particle (of mass 
m2), and we have, as we expect, xcom = d. If m1 = m2, the center of mass should 
be halfway between the two particles; Eq. 9.1.1 reduces to   x  com   =  1 _ 2  d , again as we 
 expect. Finally, Eq. 9.1.1 tells us that if neither m1 nor m2 is zero, xcom can have 
only values that lie between zero and d; that is, the center of mass must lie some-
where between the two particles.

 The center of mass of a system of particles is the point that moves as though 
(1) all of the system’s mass were concentrated there and (2) all external forces 
were applied there.

Figure 9.1.1 (a) A ball tossed into 
the air follows a parabolic path. 
(b) The center of mass (black dot) 
of a  baseball bat flipped into the 
air  follows a parabolic path, but all 
other points of the bat follow more 
complicated curved paths.

(a)

(b)
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Figure 9.1.2 (a) Two particles of masses m1 and m2 are separated by distance d. The dot 
 labeled com shows the position of the center of mass, calculated from Eq. 9.1.1. (b) The 
same as (a) except that the origin is located farther from the particles. The position of 
the center of mass is calculated from Eq. 9.1.2. The location of the center of mass with 
respect to the particles is the same in both cases.
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We are not required to place the origin of the coordinate system on one 
of the particles. Figure 9.1.2b shows a more generalized situation, in which the 
coordi nate system has been shifted leftward. The position of the center of mass 
is now defined as

    x  com   =   
 m  1   x  1   +  m  2   x  2    _____________  m  1   +  m  2  

  .   (9.1.2)

Note that if we put x1 = 0, then x2 becomes d and Eq. 9.1.2 reduces to Eq. 9.1.1, 
as it must. Note also that in spite of the shift of the coordinate system, the center 
of mass is still the same distance from each particle. The com is a property of the 
physical particles, not the coordinate system we happen to use.

We can rewrite Eq. 9.1.2 as

    x  com   =   
 m  1    x  1   +  m  2    x  2    _____________ 

M
  ,   (9.1.3)

in which M is the total mass of the system. (Here, M = m1 + m2.)
Many Particles. We can extend this equation to a more general  situation in 

which n particles are strung out along the x axis. Then the total mass is M = m1 + 
m2 + . . . + mn, and the location of the center of mass is

   
 x  com  

  
=

  
  
 m  1   x  1   +  m  2    x  2   +  m  3    x  3   + . . . +  m  n    x  n  

   ____________________  
M

  
  
 
     

 
  
=

  
  1 _ 
M

     ∑ 
i=1

  
n

    m  i    x  i  .
    

(9.1.4)

The subscript i is an index that takes on all integer values from 1 to n. 
Three Dimensions. If the particles are distributed in three dimensions, the 

center of mass must be identified by three coordinates. By extension of Eq. 9.1.4, 
they are

   x  com   =   1 _ 
M

     ∑ 
i=1

  
n

     m  i    x  i  ,  y  com   =   1 _ 
M

     ∑ 
i=1

  
n

     m  i    y  i  ,  z  com   =   1 _ 
M

     ∑ 
i=1

  
n

     m  i    z  i  .   (9.1.5)

We can also define the center of mass with the language of vectors. First 
 recall that the position of a particle at coordinates xi, yi, and zi is given by a posi-
tion vector (it points from the origin to the particle):

      r →    i   =  x  i    ̂ i  +  y  i    ̂ j  +  z  i     ̂  k .   (9.1.6)

Here the index identifies the particle, and   ̂ i  ,   ̂ j  , and    ̂  k   are unit vectors pointing, 
 respectively, in the positive direction of the x, y, and z axes. Similarly, the position 
of the center of mass of a system of particles is given by a position vector:

      r →    com   =  x  com    ̂ i  +  y  com    ̂ j  +  z  com    ̂  k .   (9.1.7)

If you are a fan of concise notation, the three scalar equations of Eq. 9.1.5 can 
now be replaced by a single vector equation,

      r →    com   =   1 _ 
M

     ∑ 
i=1

  
n

     m  i     r →    i  ,   (9.1.8)

where again M is the total mass of the system. You can check that this equation 
is correct by substituting Eqs. 9.1.6 and 9.1.7 into it, and then separating out the 
x, y, and z components. The scalar relations of Eq. 9.1.5 result.
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Solid Bodies
An ordinary object, such as a baseball bat, contains so many particles (atoms) 
that we can best treat it as a continuous distribution of matter. The “particles” 
then become differential mass elements dm, the sums of Eq. 9.1.5 become inte-
grals, and the coordinates of the center of mass are defined as

    x  com   =   1 ___ 
M

     
 
      x  dm,   y  com   =   1 ___ 

M
    

 
      y  dm,   z  com   =   1 ___ 

M
     

 
      z  dm,         (9.1.9)

where M is now the mass of the object. The integrals effectively allow us to use 
Eq. 9.1.5 for a huge number of particles, an effort that otherwise would take 
many years.

Evaluating these integrals for most common objects (such as a television 
set or a moose) would be difficult, so here we consider only uniform objects. 
Such objects have uniform density, or mass per unit volume; that is, the density  
ρ (Greek letter rho) is the same for any given element of an object as for the 
whole object. From Eq. 1.3.2, we can write

   ρ =   dm ___ 
dV

   =   M ___ 
V

  ,   (9.1.10)

where dV is the volume occupied by a mass element dm, and V is the total volume 
of the object. Substituting dm = (M/V) dV from Eq. 9.1.10 into Eq. 9.1.9 gives

     x  com   =   1 _ 
V

     
 
      x  dV,   y  com   =   1 _ 

V
     

 
      y  dV,   z  com    =   1 _ 

V
     

 
      z  dV.   (9.1.11)

Symmetry as a Shortcut. You can bypass one or more of these integrals if an 
object has a point, a line, or a plane of symmetry. The center of mass of such an 
object then lies at that point, on that line, or in that plane. For example, the cen-
ter of mass of a uniform sphere (which has a point of symmetry) is at the  center of 
the sphere (which is the point of symmetry). The center of mass of a uniform cone 
(whose axis is a line of symmetry) lies on the axis of the cone. The center of mass 
of a banana (which has a plane of symmetry that splits it into two equal parts) lies 
somewhere in the plane of symmetry.

The center of mass of an object need not lie within the object. There is no 
dough at the com of a doughnut, and no iron at the com of a horseshoe.

Sample Problem 9.1.1 com of three particles

Three particles of masses m1 = 1.2 kg, m2 = 2.5 kg, and 
m3 = 3.4 kg form an equilateral triangle of edge length 
a = 140 cm. Where is the center of mass of this system?

KEY IDEA

We are dealing with particles instead of an extended solid 
body, so we can use Eq. 9.1.5 to locate their center of 
mass. The particles are in the plane of the equilateral tri-
angle, so we need only the first two equations. 

Calculations: We can simplify the calculations by choos-
ing the x and y axes so that one of the particles is located 
at the origin and the x axis coincides with one of the tri-
angle’s sides (Fig. 9.1.3). The three particles then have the 
following coordinates:

Particle Mass (kg) x (cm) y (cm)

1 1.2   0   0

2 2.5 140   0

3 3.4  70 120
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The total mass M of the system is 7.1 kg.
From Eq. 9.1.5, the coordinates of the center of mass are

   

 x  com  

  

=

  

  1 ___ 
M

     ∑ 
i=1

  
3
     m  i    x  i   =   

 m  1    x  1   +  m  2    x  2   +  m  3    x  3    __________________ 
M

  

  

 

      
 
  
=

  
  
(1.2 kg)(0) + (2.5 kg)(140 cm) + (3.4 kg)(70 m)

    _________________________________________   
7.1 kg

  
  

 
      

 

  

=

  

83 cm

    

  and

     

 y  com  

  

=

  

  1 _ 
M

     ∑ 
i=1 

  
3
    m  i    y  i   =   

 m  1    y  1   +  m  2    y  2   +  m  3    y  3    _____________ 
M

  

  

 

     
 
  
=

  
  
(1.2 kg)(0) + (2.5 kg)(0) + (3.4 kg)(120 m)

    __________________________  
7.1 kg

  
  

 
     

 

  

=

  

58 cm.

  

 

  

   (  Answer )    

(Answer)
Figure 9.1.3 Three particles form an equilateral triangle of 
edge length a. The center of mass is located by the position 
vector     r →    com   .

y

x0
50 100 150

50

100

150

ycom

xcomm1

m2

m3

rcom

a a

0

This is the position
vector rcom for the
com (it points from
the origin to the com).

9.2 NEWTON’S SECOND LAW FOR A SYSTEM OF PARTICLES
Learning Objectives 
After reading this module, you should be able to . . .

9.2.1 Apply Newton’s second law to a system of par-
ticles by relating the net force (of the forces acting 
on the  particles) to the acceleration of the system’s 
center of mass.

9.2.2 Apply the constant-acceleration equations to  
the motion of the individual particles in a system  
and to the motion of the system’s center of  
mass.

9.2.3 Given the mass and velocity of the particles in a 
system, calculate the velocity of the system’s center 
of mass.

9.2.4 Given the mass and acceleration of the particles 
in a system, calculate the acceleration of the sys-
tem’s center of mass.

9.2.5 Given the position of a system’s center of mass 
as a function of time, determine the velocity of the 
center of mass.

9.2.6 Given the velocity of a system’s center of mass 
as a function of time, determine the acceleration of 
the center of mass.

9.2.7 Calculate the change in the velocity of a com 
by integrating the com’s acceleration function with 
respect to time.

9.2.8 Calculate a com’s displacement by integrating 
the com’s velocity function with respect to time.

9.2.9 When the particles in a two-particle system move 
without the system’s com moving, relate the displace-
ments of the particles and the velocities of the particles.

Checkpoint 9.1.1
The figure shows a uniform square plate from which four identical 
squares at the corners will be removed. (a) Where is the center of mass 
of the plate originally? Where is it after the removal of (b) square 1;  
(c) squares 1 and 2; (d) squares 1 and 3; (e) squares 1, 2, and 3; (f) all 
four squares? Answer in terms of quadrants, axes, or points (without 
calculation, of course).

y

x

1 2

4 3

In Fig. 9.1.3, the center of mass is located by the position 
vector     r →    com   , which has components xcom and ycom. If we 
had  chosen some other orientation of the coordinate sys-
tem, these coordinates would be different but the location 
of the com relative to the particles would be the same.

additional examples, video, and practice available at WileyPLUS
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Newton’s Second Law for a System of Particles
Now that we know how to locate the center of mass of a system of particles, we 
discuss how external forces can move a center of mass. Let us start with a simple 
system of two billiard balls.

If you roll a cue ball at a second billiard ball that is at rest, you expect that 
the two-ball system will continue to have some forward motion after impact. You 
would be surprised, for example, if both balls came back toward you or if both 
moved to the right or to the left. You already have an intuitive sense that some-
thing continues to move forward.

What continues to move forward, its steady motion completely unaffected 
by the collision, is the center of mass of the two-ball system. If you focus on 
this point—which is always halfway between these bodies because they have 
identical masses—you can easily convince yourself by trial at a billiard table that 
this is so. No matter whether the collision is glancing, head-on, or somewhere in 
 between, the center of mass continues to move forward, as if the collision had 
never occurred. Let us look into this center-of-mass motion in more detail.

Motion of a System’s com. To do so, we replace the pair of billiard balls 
with a system of n particles of (possibly) different masses. We are interested not 
in the individual  motions of these particles but only in the motion of the center 
of mass of the system. Although the center of mass is just a point, it moves like a 
particle whose mass is equal to the total mass of the system; we can assign a posi-
tion, a velocity, and an acceleration to it. We state (and shall prove next) that the 
 vector equation that governs the motion of the center of mass of such a system 
of particles is

      F 
→

    net   = M   a →    com          (  system of particles )   .   (9.2.1)

This equation is Newton’s second law for the motion of the center of mass of 
a system of particles. Note that its form is the same as the form of the equation   
(    F 

→
    net   = m  a →  )   for the motion of a single particle. However, the three quantities that 

appear in Eq. 9.2.1 must be evaluated with some care:

1.     F 
→

    net    is the net force of all external forces that act on the system. Forces on one 
part of the system from another part of the system (internal forces) are not 
included in Eq. 9.2.1.

2. M is the total mass of the system. We assume that no mass enters or leaves the 
system as it moves, so that M remains constant. The system is said to be closed.

3.     a →    com    is the acceleration of the center of mass of the system. Equation 9.2.1 
gives no information about the acceleration of any other point of the system.

Equation 9.2.1 is equivalent to three equations involving the components 
of     F 

→
    net    and     a →    com    along the three coordinate axes. These equations are

      F  net, x   =  Ma  com, x         F  net, y   =  Ma  com, y       F  net, z   =  Ma  com, z  .        (9.2.2)

Billiard Balls. Now we can go back and examine the behavior of the bil-
liard balls. Once the cue ball has begun to roll, no net external force acts on the 

Key Idea 
● The motion of the center of mass of any system of 
particles is  governed by Newton’s second law for a 
system of particles, which is

     F 
→

    net   = M    a →    com  .  

Here     F 
→

    net    is the net force of all the external forces  
acting on the system, M is the total mass of the  
system, and     a →    com    is the acceleration of the system’s 
center of mass.
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Figure 9.2.1 A fireworks rocket explodes in 
flight. In the absence of air drag, the center 
of mass of the fragments would continue 
to follow the original parabolic path, until 
 fragments began to hit the ground.

The internal forces of the
explosion cannot change
the path of the com.

(two-ball) system. Thus, because     F 
→

    net   = 0 , Eq. 9.2.1 tells us that     a →    com   = 0  also. 
Because accelera tion is the rate of change of velocity, we conclude that the veloc-
ity of the center of mass of the system of two balls does not change. When the two 
balls collide, the forces that come into play are internal forces, on one ball from 
the other. Such forces do not contribute to the net force     F 

→
    net   , which remains zero. 

Thus, the center of mass of the system, which was moving forward before the 
collision, must continue to move forward after the collision, with the same speed 
and in the same direction.

Solid Body. Equation 9.2.1 applies not only to a system of particles but also 
to a solid body, such as the bat of Fig. 9.1.1b. In that case, M in Eq. 9.2.1 is the 
mass of the bat and     F 

→
    net   = 0  is the gravitational force on the bat. Equation 9.2.1 

then tells us that     a →    com   =   g →   . In other words, the center of mass of the bat moves as 
if the bat were a single particle of mass M, with force     F 

→
    g    acting on it.

Exploding Bodies. Figure 9.2.1 shows another interesting case. Suppose that 
at a fireworks display, a rocket is launched on a parabolic path. At a certain point, 
it explodes into fragments. If the explosion had not occurred, the rocket would 
have continued along the trajectory shown in the figure. The forces of the explo-
sion are internal to the system (at first the system is just the rocket, and later it is 
its fragments); that is, they are forces on parts of the system from other parts. If 
we ignore air drag, the net external force     F 

→
    net    acting on the system is the gravita-

tional force on the system, regardless of whether the rocket  explodes. Thus, from 
Eq. 9.2.1, the acceleration     a →    com    of the center of mass of the fragments (while they 
are in flight) remains equal to    g →   . This means that the center of mass of the frag-
ments follows the same parabolic trajectory that the rocket would have followed 
had it not exploded.

Ballet Leap. When a ballet dancer leaps across the stage in a grand jeté, she 
raises her arms and stretches her legs out horizontally as soon as her feet leave 
the stage (Fig. 9.2.2). These actions shift her center of mass upward through her 
body. Although the shifting center of mass faithfully follows a parabolic path 
across the stage, its movement relative to the body decreases the height that is 
attained by her head and torso, relative to that of a normal jump. The result is 
that the head and torso follow a nearly horizontal path, giving an illusion that the 
dancer is floating. FCP

Proof of Equation 9.2.1
Now let us prove this important equation. From Eq. 9.1.8 we have, for a system 
of n particles,

   M   r →    com   =  m  1     r →    1   +  m  2     r →    2   +  m  3     r →    3   + . . . +  m  n     r →    n  ,   (9.2.3)

in which M is the system’s total mass and     r →    com    is the vector locating the position 
of the system’s center of mass.

9.2 newton’s seCond Law for a systeM of PartiCLes
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Differentiating Eq. 9.2.3 with respect to time gives

   M     v →    com   =  m  1     v →    1   +  m  2     v →    2   +  m  3     v →    3   + . . . +  m  n     v →    n  .   (9.2.4)

Here     v →    i    (= d   r →    i   / dt)   is the velocity of the ith particle, and     v →    com    (= d    r →    com   / dt)   is the 
velocity of the center of mass.

Differentiating Eq. 9.2.4 with respect to time leads to

     M    a →     com   =  m  1     a →    1   +  m  2     a →    2   +  m  3     a →    3   + . . . +  m  n     a →    n  .   (9.2.5)

Here     a →    i    (= d   v →    i   / dt)   is the acceleration of the ith particle, and     a →    com    (= d   v →    com   / dt)   
is the acceleration of the center of mass. Although the center of mass is just a 
 geo metrical point, it has a position, a velocity, and an acceleration, as if it were 
a particle.

From Newton’s second law,   m  i     a →    i    is equal to the resultant force     F 
→

    i    that acts on 
the ith particle. Thus, we can rewrite Eq. 9.2.5 as

    M    a →    com   =    F 
→

    1   +    F 
→

    2   +    F 
→

    3   + . . . +    F 
→

    n  .   (9.2.6)

Among the forces that contribute to the right side of Eq. 9.2.6 will be forces 
that the particles of the system exert on each other (internal forces) and 
forces   exerted on the particles from outside the system (external forces). By 
 Newton’s third law, the internal forces form third-law force pairs and cancel 
out in the sum that appears on the right side of Eq. 9.2.6. What remains is the 
vector sum of all the external forces that act on the system. Equation 9.2.6 then 
reduces to Eq. 9.2.1, the relation that we set out to prove.

Path of head

Path of center of mass

Figure 9.2.2 A grand jeté. (Based on The Physics of Dance, by Kenneth Laws, Schirmer 
Books, 1984.)

Checkpoint 9.2.1
Two skaters on frictionless ice hold opposite ends of a pole of negligible mass. An axis runs 
along it, with the origin at the  center of mass of the two-skater system. One skater, Fred, 
weighs twice as much as the other skater, Ethel. Where do the skaters meet if (a) Fred 
pulls hand over hand along the pole so as to draw himself to Ethel, (b) Ethel pulls hand 
over hand to draw herself to Fred, and (c) both skaters pull hand over hand?
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Sample Problem 9.2.1 Motion of the com of three particles

If the particles in a system all move together, the com 
moves with them—no trouble there. But what happens 
when they move in different directions with different 
accelerations? Here is an example.

The three particles in Fig. 9.2.3a are initially at rest. 
Each  experiences an external force due to bodies out-
side the three-particle system. The directions are indi-
cated, and the magnitudes are F1 = 6.0 N, F2 = 12 N, and 
F3 = 14 N. What is the acceleration of the center of mass 
of the system, and in what direction does it move?

KEY IDEAS

The position of the center of mass is marked by a dot in 
the figure. We can treat the center of mass as if it were a 
real  particle, with a mass equal to the  system’s total mass 
M = 16 kg. We can also treat the three  external forces as 
if they act at the center of mass (Fig. 9.2.3b).

Calculations: We can now apply Newton’s second law   
(   F 
→

    net   = m  a →  )   to the center of mass, writing

      F 
→

    net   = M    a →    com     (9.2.7)

or     F 
→

    1   +    F 
→

    2   +    F 
→

    3   = M    a →    com   

so      a →    com   =   
   F 
→

    1   +    F 
→

    2   +    F 
→

    3    ___________ 
M

  .   (9.2.8)

Equation 9.2.7 tells us that the acceleration     a →    com    of the 
center of mass is in the same direction as the net exter-
nal force     F 

→
    net    on the system (Fig. 9.2.3b). Because the 

particles are initially at rest, the center of mass must 
also be at rest. As the center of mass then begins to 
accelerate, it must move off in the common direction of  
    a →    com    and     F 

→
    net   .

We can evaluate the right side of Eq. 9.2.8 directly on 
a vector-capable calculator, or we can rewrite Eq. 9.2.8 in 
component form, find the components of     a →    com   , and then 
find     a →    com   . Along the x axis, we have

  
 a  com, x  

  
=

  
  
 F  1x   +  F  2x   +  F  3x    ____________ 

M
  

   
 
  
=

  
  
− 6.0 N + (12 N ) cos  45° + 14 N

   __________________________  
16 kg

   = 1.03   m / s  2 .
  

Along the y axis, we have

  
 a  com, y  

  
=

  
  
 F  1y   +  F  2y   +  F  3y    ____________ 

M
  

   
 
  
=

  
  
0 + (12 N) sin 45° + 0

  _______________  
16 kg

   = 0.530  m / s  2 .
  

From these components, we find that     a →    com    has the 
magnitude

   
 a  com  

  
=

  
 √ 

_________________
   ( a  com, x  )  2  +  ( a  com, y  )  2   
  
 
    

 
  

=
  
  1.16 m / s   2  ≈ 1.2   m / s  2 

  
   
   

(Answer)

and the angle (from the positive direction of the x axis)

   θ =  tan  −1    
 a  com, y   _  a  com, x     = 27°.  

 
   (Answer)

Figure 9.2.3 (a) Three particles, initially at rest in the positions 
shown, are acted on by the external forces shown. The center 
of mass (com) of the system is marked. (b) The forces are now 
transferred to the center of mass of the system, which behaves 
like a particle with a mass M equal to the total mass of the 
 system. The net external force     F 

→
    net    and the acceleration     a →    com     

of the center of mass are shown. 

x

y

1

1

2

3

1

2

3

2 3 4 5

1 2 3 4 5
x

y

45°

8.0 kgcom

4.0 kg

4.0 kg

com

M = 16 kg

(b)

(a)

F1 F2

F3

F3

F1

F2 Fnet

acom

The com of the system
will move as if all the
mass were there and
the net force acted there.

–1
–1

–2

–3

–2–3

–1–2–3
0

0

θ

9.2 newton’s seCond Law for a systeM of PartiCLes

additional examples, video, and practice available at WileyPLUS
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Linear Momentum
Here we discuss only a single particle instead of a system of particles, in order to 
define two important quantities. Then we shall extend those definitions to sys-
tems of many particles.

The first definition concerns a familiar word—momentum—that has several 
meanings in everyday language but only a single precise meaning in physics and 
engineering. The linear momentum of a particle is a vector quantity    p →    that is 
 defined as

       p →   = m  v →      (linear momentum of a particle),    (9.3.1)

in which m is the mass of the particle and    v →    is its velocity. (The adjective linear 
is often dropped, but it serves to distinguish    p →    from angular momentum, which 
is  introduced in Chapter 11 and which is associated with rotation.) Since m is 
 always a  positive scalar quantity, Eq. 9.3.1 tells us that    p →    and    v →    have the same 
 direction. From Eq. 9.3.1, the SI unit for momentum is the kilogram-meter per 
second (kg · m/s).

Force and Momentum. Newton expressed his second law of motion in terms 
of momentum:

In equation form this becomes

      F 
→

    net   =   
d  p →  

 ____ 
dt

  .   (9.3.2)

9.3 LINEAR MOMENTUM
Learning Objectives 
After reading this module, you should be able to . . .

9.3.1 Identify that momentum is a vector quantity and 
thus has both magnitude and direction and also 
components.

9.3.2 Calculate the (linear) momentum of a particle as 
the product of the particle’s mass and velocity.

9.3.3 Calculate the change in momentum (magnitude 
and direction) when a particle changes its speed 
and direction of travel.

9.3.4 Apply the relationship between a particle’s 
momentum and the (net) force acting on the particle.

9.3.5 Calculate the momentum of a system of particles 
as the product of the system’s total mass and its 
center-of-mass velocity.

9.3.6 Apply the relationship between a system’s 
center-of-mass momentum and the net force acting 
on the system.

Key Ideas 
● For a  sin gle particle, we define a quantity    p →    called its 
linear  momentum as

   p →   = m  v →  , 

which is a vector quantity that has the same direction 
as the particle’s velocity. We can write Newton’s 
second law in terms of this momentum:

    F 
→

    net   =   
d  p →  

 ___ 
dt

  . 

● For a system of particles these relations become

   P 
→

   =  M   v →    com     and      F 
→

    net   =   d  P 
→

   ___ 
dt

  . 

 The time rate of change of the momentum of a particle is equal to the net force  
acting on the particle and is in the direction of that force.
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In words, Eq. 9.3.2 says that the net external force     F 
→

    net    on a particle changes the 
particle’s linear momentum    p →   . Conversely, the linear momentum can be changed 
only by a net external force. If there is no net external force,    p →    cannot change. 
As we shall see in Module 9.5, this last fact can be an extremely powerful tool in 
solving problems.

Manipulating Eq. 9.3.2 by substituting for    p →    from Eq. 9.3.1 gives, for constant 
mass m,

    F 
→

    net   =   
d  p →  

 ___ 
dt

   =   d _ 
dt

   (m  v →  )  = m   d  v →   ___ 
dt

   = m  a →  . 

Thus, the relations     F 
→

    net   = d  p →   / dt  and     F 
→

    net   = m  a →    are equivalent expressions of 
Newton’s second law of motion for a particle.

 The linear momentum of a system of particles is equal to the product of the total 
mass M of the system and the velocity of the center of mass.

Checkpoint 9.3.1
The figure gives the magnitude p of the linear 
momentum versus time t for a particle moving 
along an axis. A force directed along the axis acts 
on the particle. (a) Rank the four regions indicated 
according to the magnitude of the force, greatest 
first. (b) In which region is the particle slowing?

p

t

1

2

3

4

The Linear Momentum of a System of Particles
Let’s extend the definition of linear momentum to a system of particles. Consider 
a system of n particles, each with its own mass, velocity, and linear momentum. 
The particles may interact with each other, and external forces may act on them. 
The system as a whole has a total linear momentum    P 

→
   , which is defined to be the 

vector sum of the  individual particles’ linear momenta. Thus,

     P 
→

    =     p →    1   +    p →    2    +   p →    3   + . . . +    p →    n          
 
  
=

  
 m  1     v →    1   +  m  2     v →    2   +  m  3     v →    3   + . . . +   m  n     v →    n  .

    
(9.3.3)

If we compare this equation with Eq. 9.2.4, we see that

       P 
→

   = M    v →    com      (linear momentum, system of particles),    (9.3.4)

which is another way to define the linear momentum of a system of particles:

Force and Momentum. If we take the time derivative of Eq. 9.3.4 (the veloc-
ity can change but not the mass), we find

     d  P 
→

   ____ 
dt

   = M   
 d  v →    com  

 _____ 
dt

   =  M   a →    com  .   (9.3.5)

Comparing Eqs. 9.2.1 and 9.3.5 allows us to write Newton’s second law for a sys-
tem of particles in the equivalent form

        F 
→

    net   =   d  P 
→

   ____ 
dt

      (system of particles),    (9.3.6)

9.3 Linear MoMentUM
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Collision and Impulse
The momentum    p →    of any particle-like body cannot change unless a net exter-
nal  force changes it. For example, we could push on the body to change its 
momentum. More dramatically, we could arrange for the body to collide with a 
baseball bat. In such a collision (or crash), the external force on the body is brief, 
has large magnitude, and suddenly changes the body’s momentum. Collisions 
occur commonly in our world, but before we get to them, we need to consider 
a simple collision in which a moving particle-like body (a projectile) collides with 
some other body (a target).

9.4 COLLISION AND IMPULSE
Learning Objectives 
After reading this module, you should be able to . . .

9.4.1 Identify that impulse is a vector quantity and 
thus has both magnitude and direction and also 
components.

9.4.2 Apply the relationship between impulse and 
momentum change.

9.4.3 Apply the relationship between impulse,  
average force, and the time interval taken by  
the impulse.

9.4.4 Apply the constant-acceleration equations to 
relate impulse to average force.

9.4.5 Given force as a function of time, calculate the 
impulse (and thus also the momentum change) by 
integrating the function.

9.4.6 Given a graph of force versus time, calculate the 
impulse (and thus also the momentum change) by 
graphical integration.

9.4.7 In a continuous series of collisions by projectiles, 
calculate the average force on the target by relat-
ing it to the rate at which mass collides and to the 
velocity change experienced by each projectile.

Key Ideas 
● Applying Newton’s second law in momentum form to 
a  particle-like body involved in a collision leads to the 
impulse–linear momentum theorem:

    p →    f   −    p →    i   = Δ  p →   =   J 
→

  , 

where     p →    f   −    p →    i   = Δ  p →    is the change in the body’s linear 
momentum, and    J 

→
    is the impulse due to the force  

   F 
→

    (  t )     exerted on the body by the other body in the collision:

   J 
→

   =   
 t  i  
  
 t  f   
    F 
→

   (t) dt.   

● If Favg is the average magnitude of    F 
→

    (  t )     during the 
collision and Δt is the duration of the collision, then for 
one- dimensional motion

 J =  F  avg    Δt. 

● When a steady stream of bodies, each with mass m 
and speed v, collides with a body whose position is 
fixed, the average force on the fixed body is

  F  avg   = −   n _ Δt   Δp = −   n _ Δt   m Δv, 

where n/Δt is the rate at which the bodies collide with 
the fixed body, and Δv is the change in velocity of each 
colliding body. This average force can also be written as

  F  avg   = −   Δm _ Δt   Δv, 

where Δm/Δt is the rate at which mass collides with 
the fixed body. The change in velocity is Δv = −v if the 
bodies stop upon impact and Δv = −2v if they bounce 
directly backward with no change in their speed.

where     F 
→

    net    is the net external force acting on the system. This equation is the 
generalization of the single-particle equation     F 

→
    net   = d  p →   / dt  to a system of many 

particles. In words, the equation says that the net external force     F 
→

    net    on a sys-
tem of particles changes the linear momentum    P 

→
    of the system. Conversely, the 

linear momentum can be changed only by a net external force. If there is no net 
external force,    P 

→
    cannot change. Again, this fact gives us an extremely powerful 

tool for solving problems.
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Single Collision
Let the projectile be a ball and the target be a bat (Fig. 9.4.1). The collision is brief, 
and the ball experiences a force that is great enough to slow, stop, or even reverse 
its motion. Figure 9.4.2 depicts the collision at one instant. The ball experiences a 
force    F 

→
    (  t )     that varies during the collision and changes the linear momentum    p →    of 

the ball. That change is related to the force by Newton’s second law written in the 
form    F 

→
   = d  p →   / dt . By rearranging this second-law expression, we see that, in time 

interval dt, the change in the ball’s momentum is

   d  p →   =   F 
→

    (  t )    dt.   (9.4.1)

We can find the net change in the ball’s momentum due to the collision if we 
integrate both sides of Eq. 9.4.1 from a time ti just before the collision to a time tf 
just after the collision:

     
ti
  
tf
  d   p →    =   

ti
  
tf
    F 
→

  (t)  dt.   (9.4.2)

The left side of this equation gives us the change in momentum:     p →    f   −    p →    i   = Δ  p →   . 
The right side, which is a measure of both the magnitude and the duration of the 
collision force, is called the impulse    J 

→
    of the collision:

       J 
→

   =   
ti
  
tf
    F 
→

  (t)  dt    (impulse defined).    (9.4.3)

Thus, the change in an object’s momentum is equal to the impulse on the object:

     Δ  p →   =   J 
→

          (  linear momentum−impulse theorem )  .     (9.4.4)

This expression can also be written in the vector form

      p →    f   −    p →    i   =   J 
→

     (9.4.5)

and in such component forms as

     Δp   x   =  J  x     (9.4.6)

and    p  
fx
   −  p  

ix
   =   

ti
  
tf
   F  x    dt.   (9.4.7)

Integrating the Force. If we have a function for    F 
→

    (  t )     we can evaluate    J 
→

    (and 
thus the change in momentum) by integrating the function. If we have a plot of    F 

→
    

versus time t, we can evaluate    J 
→

    by finding the area between the curve and the t 
axis, such as in Fig. 9.4.3a. In many situations we do not know how the force var-
ies with time but we do know the average magnitude Favg of the force and the 
duration Δt (= tf − ti) of the collision. Then we can write the magnitude of the 
impulse as

   J =  F  avg   Δt.   (9.4.8)

The average force is plotted versus time as in Fig. 9.4.3b. The area under that 
curve is equal to the area under the curve for the actual force F(t) in Fig. 9.4.3a 
because both areas are equal to impulse magnitude J.

Instead of the ball, we could have focused on the bat in Fig. 9.4.2. At 
any  instant, Newton’s third law tells us that the force on the bat has the same 
 magnitude but the opposite direction as the force on the ball. From Eq. 9.4.3, 
this means that the impulse on the bat has the same magnitude but the opposite 
 direction as the impulse on the ball.

Figure 9.4.2 Force    F 
→

    (  t )     acts on a ball 
as the ball and a bat collide.

x

Bat Ball

F (t)

Figure 9.4.1 The collision of a ball 
with a bat  collapses part of the ball.
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Checkpoint 9.4.1
A paratrooper whose chute fails to open lands in snow; he is hurt slightly. 
Had he landed on bare ground, the stopping time would have been 10 times 
shorter and the collision lethal. Does the presence of the snow increase, 
 decrease, or leave unchanged the values of (a) the paratrooper’s change 
in momentum, (b) the impulse stopping the paratrooper, and (c) the force 
stopping the  paratrooper? FCP

Series of Collisions
Now let’s consider the force on a body when it undergoes a series of identi-
cal, repeated collisions. For example, as a prank, we might adjust one of 
those  machines that fire tennis balls to fire them at a rapid rate directly 
at a wall. Each collision would produce a force on the wall, but that is not 
the force we are seeking. We want the average force Favg on the wall dur-
ing the bombardment—that is, the average force during a large number 
of collisions.

In Fig. 9.4.4, a steady stream of projectile bodies, with identical mass 
m and linear momenta  m  v →    moves along an x axis and collides with a target 
body that is fixed in place. Let n be the number of projectiles that collide 
in a time  interval Δt. Because the motion is along only the x axis, we can 
use the components of the momenta along that axis. Thus, each projectile 
has initial momentum mv and  undergoes a change Δp in linear momen-
tum because of the  collision. The total change in linear momentum for  
n  projectiles during interval Δt is n Δp. The  resulting impulse    J 

→
    on the  

target during Δt is along the x axis and has the same magnitude of n Δp 
but is in the opposite direction. We can write this relation in component 
form as

   J = − n Δp,   (9.4.9)

where the minus sign indicates that J and Δp have opposite directions.
Average Force. By rearranging Eq. 9.4.8 and substituting Eq. 9.4.9, 

we find the average force Favg acting on the target during the collisions:

    F  avg   =   J _ Δt   = −   n _ Δt   Δp = −   n _ Δt   m Δv.   (9.4.10)

This equation gives us Favg in terms of n/Δt, the rate at which the projectiles  collide 
with the target, and Δv, the change in the velocity of those projectiles.

Velocity Change. If the projectiles stop upon impact, then in Eq. 9.4.10 we 
can substitute, for Δv,

 Δv = vf − vi = 0 − v = −v, (9.4.11)

where vi (= v) and vf (= 0) are the velocities before and after the collision, 
 respectively. If, instead, the projectiles bounce (rebound) directly backward from 
the target with no change in speed, then vf = −v and we can substitute

   Δv =  v  f   −  v  i   = − v − v = − 2v.   (9.4.12)

In time interval Δt, an amount of mass Δm = nm collides with the target. 
With this result, we can rewrite Eq. 9.4.10 as

    F  avg   = −   Δm _ Δt   Δv.   (9.4.13)

This equation gives the average force Favg in terms of Δm/Δt, the rate at which 
mass collides with the target. Here again we can substitute for Δv from Eq. 9.4.11 
or 9.4.12 depending on what the projectiles do.

Figure 9.4.3 (a) The curve shows the mag-
nitude of the time-varying force F(t) that 
acts on the ball in the collision of Fig. 9.4.2. 
The area under the curve is equal to the 
magnitude of the impulse    J 

→
   on the ball in 

the collision. (b) The height of the rectangle 
represents the average force Favg  acting on 
the ball over the time  interval Δt. The area 
within the  rectangle is equal to the area 
under the curve in (a) and thus is also equal 
to the  magnitude of the impulse    J 

→
    in the 

collision.

ti

F

J
F(t)

tf
Δt

Δt

t

ti

F

Favg

tf

t

J

(a)

(b)

The impulse in the collision
is equal to the area under
the curve.

The average force gives
the same area under the
curve.

Figure 9.4.4 A steady stream of 
projectiles, with identical linear 
momenta, collides with a target, 
which is fixed in place. The average 
force Favg on the target is to the right 
and has a magnitude that depends on 
the rate at which the projectiles col-
lide with the target or, equivalently, 
the rate at which mass collides with 
the target.

xTarget

v

Projectiles
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Checkpoint 9.4.2
The figure shows an overhead view of a ball bouncing from a vertical wall without 
any change in its speed. Consider the change  Δ  p →    in the ball’s linear momentum. (a) Is 
Δp

x
 positive, negative, or zero? (b) Is Δp

y
 positive, negative, or zero? (c) What is the 

direction of  Δ  p →   ?
y

x

θ θ

Sample Problem 9.4.1 Heading in soccer (football)

In a soccer heading, a player strikes at an incoming ball 
with the forehead to send it toward a team member 
(Fig. 9.4.5). Could the head−ball impact cause a con-
cussion, which is attributed to head accelerations of 
95g or greater? Assume that a punted ball reaches the 
player at a speed of v = 65 km/h and the player strikes 
the ball directly back along the ball’s incoming path with 
a speed of 20 km/h. The ball has a regulation mass of  
m = 400 grams, and the collision occurs in ∆t = 11 ms. 
Take the mass of the player’s head to be 5.11 kg (about 
7.3% of the body mass). What are the magnitudes of (a) 
the impulse J and (b) the average force Favg on the ball? 
What are the magnitudes of (c) the impulse and (d) the 
average force on the head? What are the magnitudes of 
(e) the change in velocity ∆vhead and (f) the acceleration 
ahead of the player’s head? (g) Is ahead in the range of a con-
cussive acceleration? (Well, the answer should be obvious 
because otherwise soccer games would all be very short.)

KEY IDEAS

(1) In a collision of two bodies, the impulse J is equal to 
the change in momentum ∆p of either colliding body. 
(2) It is also equal to the product of the average force on 
either body and the collision duration ∆t. (3) Accelera-
tion a of a body is equal to the ratio of the change in veloc-
ity to the duration of that change.

Calculations: (a) Take an x to be along the ball’s path 
and extending away from the head. To find the magnitude 
of the impulse on the ball from the change in the ball’s 
momentum, we write

 J = Δ p = m Δv = m( v  f   −  v  i  )

 = (0.400 kg) [(20 km/h)  −  (−65 km/h)]  (  1000 m _ 
1 km

  )  (  1 h _ 
3600 s

  ) 

 = 9.444 kg ⋅ m/s ≈ 9.4 kg ⋅ m/s.  (Answer)

Note that the velocities are vector quantities. The ini-
tial velocity is in the negative direction of our x axis. 

(Neglecting signs is a common error in homework and 
exams.) The impulse vector is in the positive direction. 

(b) To find the magnitude of the average force, we use  
 J =  F  avg   Δt  to write

    F  avg   =   J _ Δt   =   
9.444 kg ⋅ m/s

  ______________  
11 ×  10  −3  s

   = 858 N ≈ 860 N.  (Answer)

(c) – (d) The magnitudes of the impulse and average force 
on the player’s head are identical to our answers for (a) 
and (b), but the directions of the impulse and average force 
(both are vector quantities) are opposite those on the ball.
(e) We find the magnitude of the change ∆v in the veloc-
ity of the head from the impulse on the head:

 J = Δ  p  head   =  m   head   Δ v  head   

 Δ v  head   =   J _  m   head     =   
9.444 kg ⋅ m/s

  ______________ 
5.11 kg

   = 1.848 m/s ≈ 1.8 m/s. 
 (Answer)

(f) We now know the change in the velocity and the time 
that change took, so we write

   a   head   =   
Δ v   head  

 _ Δt   =   1.848 m/s _ 
11 ×  10  −3  s

   = 167.8  m/s  2 

    = (167.8  m/s  2 ) (  
1g
 _ 

9.8  m/s  2 
  )  = 17.1g.  (Answer)

(g) The acceleration magnitude is large but not near the 
concussive level.

Figure 9.4.5 Heading a ball.

9.4 CoLLision and iMPULse
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9.5 CONSERVATION OF LINEAR MOMENTUM
Learning Objectives 
After reading this module, you should be able to . . .

9.5.1 For an isolated system of particles, apply the 
conservation of linear momenta to relate the initial 
momenta of the particles to their momenta at a later 
instant.

9.5.2 Identify that the conservation of linear momentum 
can be done along an individual axis by using com-
ponents along that axis, provided that there is no net 
external force component along that axis.

Key Ideas 
● If a system is closed and isolated so that no net 
 external force acts on it, then the linear momentum    P 

→
    

must be constant even if there are internal changes:

  P 
→

   = constant   (closed, isolated system) .

● This conservation of linear momentum can also be 
written in terms of the system’s initial momentum and 
its momentum at some later instant:

    P 
→

    i   =    P 
→

    f     (closed, isolated system) . 

Conservation of Linear Momentum
Suppose that the net external force     F 

→
    net    (and thus the net impulse    J 

→
   ) acting  

on a system of particles is zero (the system is isolated) and that no particles leave 
or enter the system (the system is closed). Putting     F 

→
    net    in Eq. 9.3.6 then yields  

 d  P 
→

  /dt = 0 , which means that

   P 
→

   = constant  (closed, isolated system )  . (9.5.1)

In words,

 If the component of the net external force on a closed system is zero along an 
axis, then the component of the linear momentum of the system along that axis 
cannot change.

This result is called the law of conservation of linear momentum and is an 
extremely powerful tool in solving problems. In the homework we usually write 
the law as

        P 
→

    i   =    P 
→

    f        (closed, isolated system).    (9.5.2)

In words, this equation says that, for a closed, isolated system,

   (   
total linear momentum

   
at some initial time   t  i  

   )    =   (   
total linear momentum

   
at some later time   t  f  

   )   . 

Caution: Momentum should not be confused with energy. In the sample prob-
lems of this module, momentum is conserved but energy is definitely not.

Equations 9.5.1 and 9.5.2 are vector equations and, as such, each is equivalent 
to three equations corresponding to the conservation of linear momentum in three 
mutually perpendicular directions as in, say, an xyz coordinate system. Depend-
ing on the forces acting on a system, linear momentum might be  conserved in one 
or two directions but not in all directions. However,

 If no net external force acts on a system of particles, the total linear momentum  
   P 
→

    of the system cannot change.
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In a homework problem, how can you know if linear momentum can be 
conserved along, say, an x axis? Check the force components along that axis. 
If the net of any such components is zero, then the conservation applies. As an 
example, suppose that you toss a grapefruit across a room. During its flight, the 
only external force acting on the grapefruit (which we take as the  system) is the 
gravitational force     F 

→
    g   , which is directed vertically downward. Thus, the vertical 

component of the linear momentum of the grapefruit changes, but since no hori-
zontal external force acts on the grapefruit, the horizontal  component of the lin-
ear momentum cannot change.

Note that we focus on the external forces acting on a closed system. Although 
internal forces can change the linear momentum of portions of the system, they 
cannot change the total linear momentum of the entire system. For example, 
there are plenty of forces acting between the organs of your body, but they do 
not propel you across the room (thankfully).

The sample problems in this module involve explosions that are either one-
dimensional (meaning that the motions before and after the explosion are along a 
single axis) or two-dimensional (meaning that they are in a plane containing two 
axes). In the following modules we consider collisions.

Checkpoint 9.5.1
An initially stationary device lying on a frictionless floor  explodes into two pieces, 
which then slide across the floor, one of them in the positive x direction. (a) What is 
the sum of the momenta of the two pieces after the explosion? (b) Can the second 
piece move at an angle to the x axis? (c) What is the direction of the momentum of 
the second piece?

Sample Problem 9.5.1 One‑dimensional explosion, relative velocity, space hauler

One-dimensional explosion: Figure 9.5.1a shows a space 
hauler and cargo module, of total mass M, traveling along 
an x axis in deep space. They have an initial velocity     v →    i    
of  magnitude 2100 km/h relative to the Sun. With a small 
explosion, the hauler ejects the cargo module, of mass 
0.20M (Fig.  9.5.1b). The hauler then travels 500 km/h 
faster than the module along the x axis; that is, the relative 
speed vrel  between the hauler and the module is 500 km/h. 
What then is the velocity     v →    HS    of the hauler relative to 
the Sun?

KEY IDEA

Because the hauler–module system is closed and isolated, 
its total linear momentum is conserved; that is,

      P 
→

    i   =    P 
→

    f  ,   (9.5.3)

where the subscripts i and f refer to values before and after 
the ejection, respectively. (We need to be careful here: 
Although the momentum of the system does not change, 
the momenta of the hauler and module certainly do.)

Calculations: Because the motion is along a  single axis, 
we can write momenta and velocities in terms of their x 

components, using a sign to indicate direction. Before the 
ejection, we have

    P  i   =  Mv  i  .   (9.5.4)

Let vMS be the velocity of the ejected module relative to 
the Sun. The total linear momentum of the system after 
the ejection is then

    P  f   =   (  0.20M )   v  MS    +   (  0.80M )    v  HS  ,   (9.5.5)

Figure 9.5.1 (a) A space hauler, with a cargo module, moving at 
initial velocity     v →    i   . (b) The hauler has ejected the cargo module. 
Now the velocities relative to the Sun are     v →    MS    for the module 
and     v →    HS    for the hauler.

(a) (b)

Cargo module

Hauler
0.20M

vMS vHSvi

0.80M

x x

The explosive separation can change the momentum
of the parts but not the momentum of the system.

9.5 ConserVation of Linear MoMentUM
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where the first term on the right is the linear momentum 
of the module and the second term is that of the hauler.

We can relate the vMS to the known velocities with

In symbols, this gives us

    v  HS   =  v  rel   +  v  MS     (9.5.6)
or   v  MS   =  v  HS   −  v  rel  . 

   
(

    
velocity of

   hauler relative  
to Sun

   
)

    =   
(

    
velocity of

   hauler relative   
to module

   
)

    +   
(

    
velocity of

   module relative  
to Sun

   
)

   . 

Substituting this expression for vMS into Eq. 9.5.5, and 
then substituting Eqs. 9.5.4 and 9.5.5 into Eq. 9.5.3, we find

  Mv  i   = 0.20M    (   v  HS   −  v  rel   )   + 0.80M v  HS  , 

which gives us

 vHS = vi + 0.20vrel,

or vHS = 2100 km/h + (0.20)(500 km/h)

 = 2200 km/h. (Answer)

Sample Problem 9.5.2 Two‑dimensional explosion, momentum, coconut

Two-dimensional explosion: A firecracker placed inside a 
 coconut of mass M, initially at rest on a frictionless floor, 
blows the coconut into three pieces that slide across the 
floor. An overhead view is shown in Fig. 9.5.2a. Piece C, 
with mass 0.30M, has final speed vfC = 5.0 m/s.

(a) What is the speed of piece B, with mass 0.20M?

KEY IDEA

First we need to see whether linear momentum is con-
served. We note that (1) the coconut and its pieces form 
a closed system, (2) the explosion forces are internal to 
that system, and (3) no net external force acts on the 
system. Therefore, the linear momentum of the system 
is conserved. (We need to be careful here: Although the 
momentum of the system does not change, the momenta 
of the pieces certainly do.)

Calculations: To get started, we superimpose an xy coor-
dinate system as shown in Fig. 9.5.2b, with the negative 
direction of the x axis coinciding with the direction of     v →    fA   .  
The x axis is at 80° with the direction of     v →    fC    and 50° with 
the direction of     v →    fB   .

Linear momentum is conserved separately along 
each axis. Let’s use the y axis and write

 Piy = Pfy, (9.5.7)

where subscript i refers to the initial value (before the 
ex plosion), and subscript y refers to the y component 
of     P 

→
    i    or     P 

→
    f   .

The component Piy of the initial linear momentum 
is zero, because the coconut is initially at rest. To get an 
ex pression for Pfy, we find the y component of the final 
 linear  momentum of each piece, using the y-component 
version of Eq. 9.3.1 ( py = mvy):

 pfA,y = 0,

 pfB,y = −0.20MvfB,y = −0.20MvfB sin 50°,

 pfC,y = 0.30MvfC,y = 0.30MvfC sin 80°.

(Note that pfA,y = 0 because of our nice choice of axes.) 
Equation 9.5.7 can now be written as

Piy = Pfy = pfA,y + pfB,y + pfC,y.

Then, with vfC = 5.0 m/s, we have

0 = 0 − 0.20MvfB sin 50° + (0.30M)(5.0 m/s) sin 80°,

from which we find

 vfB = 9.64 m/s ≈ 9.6 m/s. (Answer)

(b) What is the speed of piece A?

Calculations: Linear momentum is also conserved along 
the x axis because there is no net external force acting on 
the coconut and pieces along that axis. Thus we have

 Pix = Pfx, (9.5.8)

Figure 9.5.2 Three pieces of 
an exploded coconut move 
off in three directions along 
a  frictionless floor. (a) An 
overhead view of the event. 
(b) The same with a two- 
dimensional axis system 
imposed.

A

B

C

vfB

vfCvfA

100°

130°

(a)

B

C

vfB

vfC
vfA

80°

(b)

x

y

50°

A

The explosive separation
can change the momentum
of the parts but not the
momentum of the system.

additional examples, video, and practice available at WileyPLUS
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where Pix = 0 because the coconut is initially at rest. To 
get Pfx, we find the x components of the final momenta, 
 using the  fact that piece A must have a mass of 0.50M 
(= M − 0.20M − 0.30M):

 pfA,x = −0.50MvfA,

 pfB,x = 0.20MvfB,x = 0.20MvfB cos 50°,

 pfC,x = 0.30MvfC,x = 0.30MvfC cos 80°.

Equation 9.5.8 for the conservation of momentum along 
the x axis can now be written as

Pix = Pfx = pfA,x + pfB,x + pfC,x.

Then, with vfC = 5.0 m/s and vfB = 9.64 m/s, we have

0 = −0.50MvfA + 0.20M(9.64 m/s) cos 50°

+ 0.30M(5.0 m/s) cos 80°,

from which we find

 vfA = 3.0 m/s. (Answer)

9.6 MOMENTUM AND KINETIC ENERGY IN COLLISIONS
Learning Objectives 
After reading this module, you should be able to . . .

9.6.1 Distinguish between elastic collisions, inelastic 
collisions, and completely inelastic collisions.

9.6.2 Identify a one-dimensional collision as one where 
the objects move along a single axis, both before 
and after the collision.

9.6.3 Apply the conservation of momentum for an isolated 
one-dimensional collision to relate the initial momenta 
of the objects to their momenta after the collision.

9.6.4 Identify that in an isolated system, the 
momentum and velocity of the center of mass are 
not changed even if the objects collide.

Key Ideas 
● In an inelastic col lision of two bodies, the kinetic 
energy of the two-body  system is not conserved. If the 
system is closed and isolated, the total linear momen-
tum of the system must be conserved, which we can 
write in vector form as

    p →    1i   +    p →    2i   =    p →    1f   +    p →    2f  , 

where subscripts i and f refer to values just before and 
just  after the collision, respectively.

● If the motion of the bodies is along a single axis, 
the  collision is one-dimensional and we can write the 

equation in terms of  velocity components along  
that axis:

  m  1   v  1i   +  m  2   v  2i   =  m  1   v  1f   +  m  2   v  2f   . 

● If the bodies stick together, the collision is a 
completely  inelastic collision and the bodies have the 
same final velo c ity V (because they are stuck together).

● The center of mass of a closed, isolated system 
of two colliding bodies is not affected by a collision. 
In particular, the velocity     v →    com    of the center of mass 
cannot be changed by the collision.

Momentum and Kinetic Energy in Collisions
In Module 9.4, we considered the collision of two particle-like bodies but  focused on 
only one of the bodies at a time. For the next several modules we switch our focus 
to the system itself, with the assumption that the system is closed and isolated. In 
Module 9.5, we discussed a rule about such a system: The total linear momentum    P 

→
    

of the system cannot change because there is no net external force to change it. This 
is a very powerful rule because it can allow us to determine the results of a collision 
without knowing the details of the collision (such as how much damage is done).

We shall also be interested in the total kinetic energy of a system of two 
colliding bodies. If that total happens to be unchanged by the collision, then the 

additional examples, video, and practice available at WileyPLUS
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 kinetic energy of the system is conserved (it is the same before and after the 
 collision). Such a collision is called an elastic collision. In everyday collisions of 
common bodies, such as two cars or a ball and a bat, some energy is always trans-
ferred from kinetic energy to other forms of energy, such as thermal energy or 
 energy of sound. Thus, the kinetic energy of the system is not conserved. Such a 
collision is called an inelastic collision.

However, in some situations, we can approximate a collision of common bod-
ies as elastic. Suppose that you drop a Superball onto a hard floor. If the colli-
sion between the ball and floor (or Earth) were elastic, the ball would lose no 
kinetic energy because of the collision and would rebound to its original height. 
However, the actual rebound height is somewhat short, showing that at least 
some kinetic energy is lost in the collision and thus that the collision is somewhat 
inelastic. Still, we might choose to neglect that small loss of kinetic energy to 
approximate the collision as elastic.

The inelastic collision of two bodies always involves a loss in the kinetic 
 energy of the system. The greatest loss occurs if the bodies stick together, in 
which case the collision is called a completely inelastic collision. The collision of 
a baseball and a bat is inelastic. However, the collision of a wet putty ball and a 
bat is completely inelastic because the putty sticks to the bat. 

Inelastic Collisions in One Dimension
One-Dimensional Inelastic Collision
Figure 9.6.1 shows two bodies just before and just after they have a one- 
dimensional collision. The velocities before the collision (subscript i) and after 
the collision (subscript f ) are indicated. The two bodies form our system, which 
is closed and isolated. We can write the law of conservation of linear momentum 
for this two-body system as

   (   total momentum     P 
→

    i     
before the collision

   )    =   (   total momentum    P 
→

    f     
after the collision

   )   , 

which we can symbolize as

        P 
→

    1i   +    P 
→

    2i   =    P 
→

    1f   +    P 
→

    2f        (  conservation of linear momentum )   .    (9.6.1)

Because the motion is one-dimensional, we can drop the overhead arrows for 
vectors and use only components along the axis, indicating direction with a sign. 
Thus, from p = mv, we can rewrite Eq. 9.6.1 as

 m1v1i + m2v2i = m1v1f + m2v2f. (9.6.2)

If we know values for, say, the masses, the initial velocities, and one of the final 
velocities, we can find the other final velocity with Eq. 9.6.2.

One-Dimensional Completely Inelastic Collision
Figure 9.6.2 shows two bodies before and after they have a completely inelastic 
collision (meaning they stick together). The body with mass m2 happens to be ini-
tially at rest (v2i = 0). We can refer to that body as the target and to the  incoming 
body as the projectile. After the collision, the stuck-together bodies move with 
velocity V. For this situation, we can rewrite Eq. 9.6.2 as

 m1v1i = (m1 + m2)V (9.6.3)

or   V =   
 m  1   _  m  1   +  m  2  

    v  1i  .   (9.6.4)

If we know values for, say, the masses and the initial velocity v1i of the projectile, 
we can find the final velocity V with Eq. 9.6.4. Note that V must be less than v1i 
because the mass ratio m1/(m1 + m2) must be less than unity.

Figure 9.6.1 Bodies 1 and 2 move 
along an x axis, before and after they 
have an inelastic collision.

m1 m2

Before

Body 1 Body 2

x

v1i v2i

m1 m2

After
x

v1f v2f

Here is the generic setup
for an inelastic collision.

c09CenterOfMassAndLinearMomentum.indd   244 05/05/21   5:30 PM



245

Velocity of the Center of Mass
In a closed, isolated system, the velocity     v →    com    of the center of mass of the system 
cannot be changed by a collision because, with the system isolated, there is no 
net external force to change it. To get an expression for     v →    com   , let us return to the  
two-body system and one-dimensional collision of Fig. 9.6.1. From Eq. 9.3.4  
  (  P 
→

   = M   v →    com  )  , we can relate     v →    com    to the total linear momentum    P 
→

    of that two-body 
system by writing

     P 
→

   = M   v →    com   =   (    m  1   +  m  2   )      v →    com  .   (9.6.5)

The total linear momentum    P 
→

    is conserved during the collision; so it is given by 
either side of Eq. 9.6.1. Let us use the left side to write

     P 
→

   =    p →    1i   +    p →    2i  .   (9.6.6)

Substituting this expression for    P 
→

    in Eq. 9.6.5 and solving for     v →    com    give us

      v →    com   =     P 
→

   _________  m  1   +  m  2  
   =   

   p →    1i   +    p →    2i   _________  m  1   +  m  2  
  .   (9.6.7)

The right side of this equation is a constant, and     v →    com    has that same constant 
value before and after the collision.

For example, Fig. 9.6.3 shows, in a series of freeze-frames, the motion of the 
center of mass for the completely inelastic collision of Fig. 9.6.2. Body 2 is the 

Figure 9.6.2 A completely inelastic  collision between 
two bodies. Before the collision, the body with mass 
m2 is at rest and the body with mass m1 moves directly 
toward it. After the collision, the  stuck-together 
 bodies move with the same velocity   V 

→
   .

m1
Projectile

m2
Target

x

x

V

v1i

After

Before

m1 + m2

v2i = 0

In a completely inelastic
collision, the bodies
stick together.

x

m1

v1i v2i = 0
m2

m1 +  m2

V   = vcom

Collision!

vcom

The com of the two
bodies is between
them and moves at a
constant velocity.

Here is the
incoming projectile.

The com moves at the
same velocity even after
the bodies stick together.

Here is the
stationary target.

Figure 9.6.3 Some freeze-frames of the two-body 
system in Fig. 9.6.2, which undergoes a completely 
inelastic collision. The system’s center of mass is 
shown in each freeze-frame. The velocity     v →    com    of 
the center of mass is unaffected by the collision. 
Because the bodies stick together after the collision, 
their common velocity    V 

→
    must be equal to     v →    com   .

9.6 MoMentUM and KinetiC enerGy in CoLLisions
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target, and its initial linear momentum in Eq. 9.6.7 is     p →    2i   =  m  2      v →    2i   = 0 . Body 1 is 
the projectile, and its initial linear momentum in Eq. 9.6.7 is     p →    1i   =  m  1      v →    1i   . Note 
that as the series of freeze-frames progresses to and then beyond the collision, the 
center of mass moves at a constant velocity to the right. After the collision, the 
common final speed V of the bodies is equal to     v →    com    because then the center of 
mass travels with the stuck-together bodies.

Checkpoint 9.6.1
Body 1 and body 2 are in a completely inelastic one- dimen sional collision. What is 
their final momentum if their initial momenta are,  respectively, (a) 10 kg · m/s and 0; 
(b) 10 kg · m/s and 4 kg · m/s; (c) 10 kg · m/s and −4 kg · m/s?

Sample Problem 9.6.1 Survival in a head‑on crash

The most dangerous type of collision between two cars is 
a head-on crash (Fig. 9.6.4a). Surprisingly, data suggest 
that the risk of fatality to a driver is less if that driver has 
a passenger in the car. Let’s see why.

Figure 9.6.4b represents two identical cars about to 
collide head-on in a completely inelastic,  one-dimensional 
collision along an x axis. For each, the total mass is 
1400 kg. During the collision, the two cars form a closed 
system. Let’s assume that during the collision the impulse 
between the cars is so great that we can neglect the rela-
tively minor impulses due to the frictional forces on the 
tires from the road. Then we can assume that there is no 
net external force on the two-car system. 

The x component of the initial velocity of car 1 along 
the x axis is v1i = +25 m/s, and that of car 2 is v2i =  − 25 
m/s. During the collision, the force (and thus the impulse) 
on each car causes a change ∆v in the car’s velocity. The 
probability of a driver being killed depends on the magni-
tude of ∆v for that driver’s car. (a) We want to calculate 
the changes ∆v1 and ∆v2 in the velocities of the two cars.

KEY IDEA

Because the system is closed and isolated, its total linear 
momentum is conserved.

Calculations: From Eq. 9.6.2, we can write this as 

  m   1   v  1i   +  m   2   v  2i   =  m   1   v  1f   +  m   2   v  2f   . 

Because the collision is completely inelastic, the two cars 
stick together and thus have the same velocity V after the 
collision. Substituting V for the two final velocities, we find

 V =   
 m   1   v   1i   +  m   2   v   2i    ___________  m   1   +  m   2  

   . 

Substitution of the given data then results in

 V =   
(1400 kg)(+25 m/s) + (1400 kg)(−25 m/s)

    _____________________________________   
1400 kg + 1400 kg

    = 0. 

Thus, the change in the velocity of car 1 is

 Δ v  1   =  v  1f   −  v  1i   = V −  v  1i  

 = 0 − (+ 25 m/s) = − 25 m/s,  (Answer)

and the change in the velocity of car 2 is

 Δ v  2   =  v  2f   −  v  2i   = V −  v  2i  

  = 0 − (−25 m/s) = + 25 m/s.  (Answer)

(b) Next, we reconsider the collision, but this time with 
an 80 kg passenger in car 1. What are ∆v1 and ∆v2 now?

Calculations: Repeating our steps but now substituting 
m1 = 1480 kg, we find that

 V = 0.694 m/s, 
which gives

 
Δ v  1   = − 24.3 m/s    and      Δ v  2   = + 25.7 m/s . (Answer)

(c) The data on head-on collisions do not include values 
of ∆v, but they do include the car masses and whether 
a collision was fatal. Fitting a function to the collected 
data, researchers found that the fatality risk r1 of driver 
1 is given by

  r  1   = c  (  
 m  2   _  m  1    )   

1.79
 , 

where c is a constant. Justify why the ratio m2/m1 appears 
in this equation, and then use the equation to compare the 
fatality risks for driver 1 with and without the passenger.

Calculations: We first rewrite our equation for the con-
servation of momentum as

  m  1  ( v  1f   −  v  1i  ) = −  m    2  ( v  2f   −  v  2i  ). 

Substituting  Δ v  1   =  v  1f   −  v  1i    and  Δ v  2   =  v  2f   −  v  2i    and re-
arranging give us

   
 m   2   _  m   1     = −    

Δ v  1   _ Δ v  2  
   . 
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A driver’s fatality risk depends on the change ∆v for that 
driver. Thus, we see that the ratio of ∆v values in a col-
lision is the inverse of the ratio of the masses, and this is 
the reason researchers can link fatality risk to the ratio 
of masses in the equation for r. For our calculation when 
driver 1 does not have a passenger, the risk is

  r  1   = c  (  
1400 kg

 _ 
1400 kg

  )   
1.79

  = c. 

When the passenger rides with driver 1, the risk is

   r ′    1   = c   (  
1400 kg
 ______________  

1400 kg + 80 kg
  )   

1.79

  = 0.9053c. 

Substituting c = r1, we find

  
  r ′    1   = 0.9053 r  1   ≈ 0.91 r  1  .   (Answer)

In words, the fatality risk for driver 1 is about 9% less 
when the passenger is in the car.

(a)

x
m1

v1i

m2

v2iBefore
Car 2Car 1

(b)

Figure 9.6.4 (a) A head-on crash. (b) Two cars about to collide 
head-on.

9.7 ELASTIC COLLISIONS IN ONE DIMENSION
Learning Objectives 
After reading this module, you should be able to . . .

9.7.1 For isolated elastic collisions in one dimension, 
apply the conservation laws for both the total energy 
and the net momentum of the colliding bodies to 
relate the initial values to the values after the collision.

9.7.2 For a projectile hitting a stationary target, identify 
the resulting motion for the three general cases: 
equal masses, target more massive than projectile, 
projectile more massive than target.

Key Idea 
● An elastic collision is a special type of collision 
in which the kinetic energy of a system of colliding 
bodies is conserved. If the system is closed and 
isolated, its linear momentum is also conserved. For a 
one-dimensional collision in which body 2 is a target 
and body 1 is an incoming projectile, conservation 
of kinetic  energy and linear momentum yield the 

following expressions for the velocities immediately 
after the collision:

   v  1f   =   
 m  1   −  m  2   _  m  1   +  m  2  

    v  1i   

and           v  2f   =   
 2m  1   _  m  1   +  m  2  

    v  1i  . 

Elastic Collisions in One Dimension
As we discussed in Module 9.6, everyday collisions are inelastic but we can 
 approximate some of them as being elastic; that is, we can approximate that the 
total kinetic energy of the colliding bodies is conserved and is not transferred to 
other forms of energy:

     (   total kinetic energy   
before the collision

   )    =   (   total kinetic energy   
after the collision

   )   .   (9.7.1)
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This means:

Figure 9.7.1 Body 1 moves along an x 
axis before having an elastic collision 
with body 2, which is initially at rest. 
Both  bodies move along that axis 
after the  collision.

x

Before v1i

m1
Projectile

m2
Target

v2i = 0

x
After

v1f

m1 m2

v2f 

Here is the generic setup
for an elastic collision with
a stationary target.

*In this step, we use the identity a2 − b2 = (a − b)(a + b). It reduces the amount of algebra needed to 
solve the simultaneous equations Eqs. 9.7. 4 and 9.7. 5.

 In an elastic collision, the kinetic energy of each colliding body may change, but  
the total kinetic energy of the system does not change.

For example, the collision of a cue ball with an object ball in a game of pool 
can be approximated as being an elastic collision. If the collision is head-on 
(the cue ball heads directly toward the object ball), the kinetic energy of the cue 
ball can be transferred almost entirely to the object ball. (Still, the collision trans-
fers some of the energy to the sound you hear.)

Stationary Target
Figure 9.7.1 shows two bodies before and after they have a one-dimensional col-
lision, like a head-on collision between pool balls. A projectile body of mass m1 
and initial velocity v1i moves toward a target body of mass m2 that is initially at 
rest (v2i = 0). Let’s assume that this two-body system is closed and isolated. Then 
the net linear momentum of the system is conserved, and from Eq. 9.6.2 we can 
write that conservation as

 m1v1i = m1v1f + m2v2f   (linear momentum). (9.7.2)

If the collision is also elastic, then the total kinetic energy is conserved and we can 
write that conservation as

       1 _ 2    m  1   v 1i  2   =   1 _ 2    m  1   v 1f  2   +   1 _ 2    m  2   v 2f  2       (kinetic energy).    (9.7.3)

In each of these equations, the subscript i identifies the initial velocities and the 
subscript f the final velocities of the bodies. If we know the masses of the bodies 
and if we also know v1i, the initial velocity of body 1, the only unknown quantities 
are v1f and v2f, the final velocities of the two bodies. With two equations at our 
disposal, we should be able to find these two unknowns.

To do so, we rewrite Eq. 9.7.2 as

 m1(v1i − v1f) = m2v2f (9.7.4)
and Eq. 9.7.3 as*

    m  1  ( v  1i   −  v  1f  )( v  1i   +  v  1f  ) =  m  2   v 2f  2     . (9.7.5)

After dividing Eq. 9.7.5 by Eq. 9.7.4 and doing some more algebra, we obtain

    v  1f   =   
 m  1   −  m  2   _  m  1   +  m  2  

    v  1i     (9.7.6)

and    v  2f   =   
 2m  1   _  m  1   +  m  2  

    v  1i  .   (9.7.7)
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Note that v2f is always positive (the initially stationary target body with mass m2 
always moves forward). From Eq. 9.7.6 we see that v1f may be of either sign (the 
projectile body with mass m1 moves forward if m1 > m2 but rebounds if m1 < m2).

Let us look at a few special situations.

1. Equal masses  If m1 = m2, Eqs. 9.7.6 and 9.7.7 reduce to

v1f = 0  and  v2f = v1i,

 which we might call a pool player’s result. It predicts that after a head-on col-
lision of bodies with equal masses, body 1 (initially moving) stops dead in its 
tracks and body 2 (initially at rest) takes off with the initial speed of body 1. 
In head-on collisions, bodies of equal mass simply exchange velocities. This is 
true even if body 2 is not initially at rest.

2. A massive target  In Fig. 9.7.1, a massive target means that m2 ⪢ m1. For 
 example, we might fire a golf ball at a stationary cannonball. Equations 9.7.6 
and 9.7.7 then reduce to

     v  1f    ≈  − v  1i    and    v  2f    ≈   (     
 2m  1   _  m  2     )   v  1i  .             (9.7.8)

 This tells us that body 1 (the golf ball) simply bounces back along its  incoming 
path, its speed essentially unchanged. Initially stationary body 2 (the  cannonball) 
moves forward at a low speed, because the quantity in  paren theses in Eq. 9.7.8 
is much less than unity. All this is what we should expect.

3. A massive projectile  This is the opposite case; that is, m1 ⪢ m2. This time, we 
fire a cannonball at a stationary golf ball. Equations 9.7.6 and 9.7.7 reduce to

 v1f  ≈ v1i  and  v2f ≈ 2v1i. (9.7.9)

 Equation 9.7.9 tells us that body 1 (the cannonball) simply keeps on going, 
scarcely slowed by the collision. Body 2 (the golf ball) charges ahead at 
twice the speed of the cannonball. Why twice the speed? Recall the collision 
described by Eq. 9.7.8, in which the velocity of the incident light body (the 
golf ball) changed from +v to −v, a velocity change of 2v. The same change in 
velocity (but now from zero to 2v) occurs in this example also.

Moving Target
Now that we have examined the elastic collision of a projectile and a stationary 
target, let us examine the situation in which both bodies are moving before they 
undergo an elastic collision.

For the situation of Fig. 9.7.2, the conservation of linear momentum is writ-
ten as

    m  1   v  1i   +  m  2   v  2i   =  m  1   v  1f   +  m  2   v  2f   ,   (9.7.10)

and the conservation of kinetic energy is written as

     1 _ 2    m  1   v 1i  2   +   1 _ 2    m  2   v 2i  2   =   1 _ 2    m  1   v 1f  2   +   1 _ 2    m  2   v 2f  2     . (9.7.11)

To solve these simultaneous equations for v1f and v2f, we first rewrite Eq. 9.7.10 as

    m  1  ( v  1i   −  v  1f  ) = −  m  2  ( v  2i   −  v  2f  ),   (9.7.12)

and Eq. 9.7.11 as

    m  1  ( v  1i   −  v  1f  )( v  1i   −  v  1f   ) = −  m  2  ( v  2i   −  v  2f   ) ( v  2i   −  v  2f  ).   (9.7.13)

After dividing Eq. 9.7.13 by Eq. 9.7.12 and doing some more algebra, we obtain

    v  1f   =   
 m  1   −  m  2   _  m  1   +  m  2  

    v  1i   +   
2  m  2   _  m  1   +  m  2  

    v  2i     (9.7.14)

and    v  2f   =   
 2m  1   _  m  1   +  m  2  

    v  1i   +   
 m  2   −  m  1   _  m  1   +  m  2  

    v  2i   .   (9.7.15)
Figure 9.7.2 Two bodies headed for a 
one-dimensional elastic collision.

x
m1

v1i

m2

v2i

Here is the generic setup
for an elastic collision with
a moving target.

9.7 eLastiC CoLLisions in one diMension
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Note that the assignment of subscripts 1 and 2 to the bodies is arbitrary. If we exchange 
those subscripts in Fig. 9.7.2 and in Eqs. 9.7.14 and 9.7.15, we end up with the same 
set of equations. Note also that if we set v2i = 0, body 2 becomes a  stationary target 
as in Fig. 9.7.1, and Eqs. 9.7.14 and 9.7.15 reduce to Eqs. 9.7.6 and 9.7.7, respectively.

Checkpoint 9.7.1
What is the final linear momentum of the target in Fig. 9.7. 1 if the initial linear 
momentum of the projectile is 6 kg · m/s and the final linear  momentum of the 
projectile is (a) 2 kg · m/s and (b) −2 kg · m/s? (c) What is the final kinetic energy of 
the target if the initial and final kinetic energies of the projectile are, respectively, 5 J 
and 2 J?

Sample Problem 9.7.1 Chain reaction of elastic collisions

In Fig. 9.7.3a, block 1 approaches a line of two station-
ary blocks with a velocity of v1i = 10 m/s. It collides with 
block 2, which then collides with block 3, which has mass 
m3 = 6.0 kg. After the second collision, block 2 is again 
stationary and block 3 has velocity v3f = 5.0 m/s (Fig. 
9.7.3b). Assume that the collisions are elastic. What are 
the masses of blocks 1 and 2? What is the final velocity 
v1f of block 1?

KEY IDEAS

Because we assume that the collisions are elastic, we are 
to conserve mechanical energy (thus energy losses to 
sound, heating, and oscillations of the blocks are negli-
gible). Because no external horizontal force acts on the 
blocks, we are to conserve linear momentum along the x 
axis. For these two reasons, we can apply Eqs. 9.7.6 and 
9.7.7 to each of the collisions.

Calculations: If we start with the first collision, we have 
too many unknowns to make any progress: We do not 
know the masses or the final velocities of the blocks. So, 
let’s start with the second collision in which block 2 stops 
because of its collision with block 3. Applying Eq. 9.7.6 to 
this collision, with changes in notation, we have

  v  2f   =   
 m  2   −  m  3   ________  m  2   +  m  3  

    v  2i  , 

where v2i is the velocity of block 2 just before the collision 
and v2f is the velocity just afterward. Substituting v2f = 0 
(block 2 stops) and then m3 = 6.0 kg gives us

    m  2   =  m  3   = 6.00 kg.     (  Answer )     

With similar notation changes, we can rewrite Eq. 9.7.7 
for the second collision as

  v  3f   =   
 2m  2   _  m  2   +  m  3  

    v  2i  , 

where v3f is the final velocity of block 3. Substituting m2 = m3  
and the given v3f = 5.0 m/s, we find

v2i = v3f = 5.0 m/s.

Next, let’s reconsider the first collision, but we have 
to be careful with the notation for block 2: Its velocity v2f 
just after the first collision is the same as its velocity v2i 
(= 5.0 m/s) just before the second collision. Applying Eq. 
9.7.7 to the first collision and using the given v1i = 10 m/s, 
we have

   
 v  2f  

  
=

  
  

2 m  1   _  m  1   +  m  2  
    v  1i  ,

   
5.0 m / s

  
=

  
  

2 m  1   _  m  1   +  m  2  
    (  10 m / s )   ,

  

which leads to

    m  1   =   1 _ 3    m  2   =   1 _ 3    (  6.0 kg )    = 2.0 kg.     (  Answer )     

Finally, applying Eq. 9.7.6 to the first collision with this 
result and the given v1i, we write

   

 v  1f  

  

=
  

  
 m  1   −  m  2   _  m  1   +  m  2  

    v  1i  ,

  

 

     
 
  

=
  
  
 1 _ 3   m  2   −  m  2   _ 
 1 _ 3   m  2   +  m  2  

    (  10 m / s )    = − 5.0 m / s.
  
   (  Answer )   

  
Figure 9.7.3 Block 1 collides with stationary block 2, which 
then collides with stationary block 3.

(a)

(b)

v1i

v1f

v3f

m1 m2 m3

x

x 

additional examples, video, and practice available at WileyPLUS
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Collisions in Two Dimensions
When two bodies collide, the impulse between them determines the directions 
in which they then travel. In particular, when the collision is not head-on, the 
bodies do not end up traveling along their initial axis. For such two-dimensional 
 collisions in a closed, isolated system, the total linear momentum must still be 
conserved:

      P 
→

    1i   +    P 
→

    2i   =    P 
→

    1f    +    P 
→

    2f  .   (9.8.1)

If the collision is also elastic (a special case), then the total kinetic energy is also 
conserved:

 K1i + K2i = K1f + K2f . (9.8.2)

Equation 9.8.1 is often more useful for analyzing a two-dimensional collision if 
we write it in terms of components on an xy coordinate system. For example, Fig. 
9.8.1 shows a glancing collision (it is not head-on) between a projectile body and a 
target body initially at rest. The impulses between the bodies have sent the bodies 
off at angles θ1 and θ2 to the x axis, along which the projectile  initially  traveled. In 
this situation we would rewrite Eq. 9.8.1 for components along the x axis as

 m1v1i = m1v1f cos θ1 + m2v2f cos θ2, (9.8.3)
and along the y axis as

   0 =  − m  1   v  1f    sin  θ  1   +  m  2   v  2f    sin  θ  2  .   (9.8.4)

We can also write Eq. 9.8.2 (for the special case of an elastic collision) in terms 
of speeds:

     1 _ 2   m  1   v 1i  2   =   1 _ 2   m  1   v 1f  2   +   1 _ 2   m  2   v 2f  2         (  kinetic energy )  .    (9.8.5)

Equations 9.8.3 to 9.8.5 contain seven variables: two masses, m1 and m2; three 
speeds, v1i, v1f, and v2f ; and two angles, θ1 and θ2. If we know any four of these 
quantities, we can solve the three equations for the remaining three quantities.

9.8 COLLISIONS IN TWO DIMENSIONS
Learning Objectives 
After reading this module, you should be able to . . .

9.8.1 For an isolated system in which a two-
dimensional collisi on occurs, apply the conservation 
of momentum along each axis of a coordinate 
system to relate the momentum components along 
an axis before the  collision to the momentum 
components along the same axis after the collision.

9.8.2 For an isolated system in which a two-
dimensional  elastic collision occurs, (a) apply 

the conservation of  momentum along each axis 
of a coordinate system to relate the momentum 
components along an axis before the collision to the 
momentum components along the same axis after 
the collision and (b) apply the conservation of total 
kinetic energy to relate the kinetic energies before 
and after the collision.

Key Idea 
● If two bodies collide and their motion is not along a 
single axis (the collision is not head-on), the collision is 
two-dimensional. If the two-body system is closed and 
isolated, the law of conservation of  momentum applies 
to the collision and can be written as

    P 
→

    1i   +    P 
→

    2i   =    P 
→

    1f   +    P 
→

    2f  . 

In component form, the law gives two equations that 
describe the collision (one equation for each of the two 
dimensions). If the collision is also elastic (a special 
case), the conservation of kinetic energy during the 
collision gives a third equation:

  K  1i   +  K  2i   =  K  1f   +  K  2f  . 

Figure 9.8.1 An elastic collision 
between two bodies in which the 
collision is not head-on. The body 
with mass m2 (the target) is initially 
at rest.

x

y

v1i

v2f

v1f

m1

m2

A glancing collision
that conserves
both momentum and
kinetic energy.

θ2

θ1
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9.9 SYSTEMS WITH VARYING MASS: A ROCKET
Learning Objectives 
After reading this module, you should be able to . . .

9.9.1 Apply the first rocket equation to relate the rate at 
which the rocket loses mass, the speed of the exhaust 
products relative to the rocket, the mass of the rocket, 
and the acceleration of the rocket.

9.9.2 Apply the second rocket equation to relate the 
change in the rocket’s speed to the relative speed of 

the exhaust products and the initial and final mass 
of the rocket.

9.9.3 For a moving system undergoing a change in 
mass at a given rate, relate that rate to the change 
in momentum.

Key Ideas 
● In the absence of external forces a rocket accelerates 
at an instantaneous rate given by

    Rv   rel   = Ma       (  first rocket equation )  ,   

in which M is the rocket’s instantaneous mass (including 
 unexpended fuel), R is the fuel consumption rate, and 

vrel is the fuel’s exhaust speed relative to the rocket. 
The term Rvrel is the thrust of the rocket engine.

● For a rocket with constant R and vrel, whose speed 
changes from vi to vf when its mass changes from Mi 
to Mf,

   v  f   −  v  i   =  v  rel   ln   
 M  i   _ 
 M  f  

    
 
    (  second rocket equation )  .   

Checkpoint 9.8.1
In Fig. 9.8.1, suppose that the projectile has an initial  momentum of 6 kg · m/s, a final 
x component of momentum of 4 kg · m/s, and a final y component of momentum of 
−3 kg · m/s. For the target, what then are (a) the final x component of momentum and 
(b) the final y component of momentum?

Systems with Varying Mass: A Rocket
So far, we have assumed that the total mass of the system remains constant. 
Sometimes, as in a rocket, it does not. Most of the mass of a rocket on its launch-
ing pad is fuel, all of which will eventually be burned and ejected from the nozzle 
of the rocket engine. We handle the variation of the mass of the rocket as the 
rocket accelerates by applying Newton’s second law, not to the rocket alone but 
to the rocket and its ejected combustion products taken together. The mass of 
this system does not change as the rocket accelerates.

Finding the Acceleration
Assume that we are at rest relative to an inertial reference frame, watching a 
rocket accelerate through deep space with no gravitational or atmospheric drag 
forces acting on it. For this one-dimensional motion, let M be the mass of the 
rocket and v its velocity at an arbitrary time t (see Fig. 9.9.1a).

Figure 9.9.1b shows how things stand a time interval dt later. The rocket now 
has velocity v + dv and mass M + dM, where the change in mass dM is a negative 
quantity. The exhaust products released by the rocket during interval dt have 
mass −dM and velocity U relative to our inertial reference frame.

Conserve Momentum. Our system consists of the rocket and the exhaust 
products released during interval dt. The system is closed and isolated, so the 
linear momentum of the system must be conserved during dt; that is,

 Pi = Pf , (9.9.1)
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where the subscripts i and f indicate the values at the beginning and end of time 
interval dt. We can rewrite Eq. 9.9.1 as

 Mv = −dM U + (M + dM)(v + dv), (9.9.2)

where the first term on the right is the linear momentum of the exhaust products 
released during interval dt and the second term is the linear momentum of the 
rocket at the end of interval dt.

Use Relative Speed. We can simplify Eq. 9.9.2 by using the relative speed vrel 
between the rocket and the exhaust products, which is related to the velocities relative 
to the reference frame with

   (   
velocity of rocket

   
relative to frame   )   =    (    

velocity of rocket
   relative to products  )    +   (   

velocity of products
   

relative to frame   )   . 

In symbols, this means

(v + dv) = vrel + U,

or U = v + dv − vrel. (9.9.3)

Substituting this result for U into Eq. 9.9.2 yields, with a little algebra,

 −dM vrel = M dv. (9.9.4)

Dividing each side by dt gives us

   −   dM _ 
dt

    v  rel   = M   dv _ 
dt

  .   (9.9.5)

We replace dM/dt (the rate at which the rocket loses mass) by −R, where R is 
the (positive) mass rate of fuel consumption, and we recognize that dv/dt is the 
acceleration of the rocket. With these changes, Eq. 9.9.5 becomes

 Rvrel = Ma  (first rocket equation). (9.9.6)

Equation 9.9.6 holds for the values at any given instant.
Note the left side of Eq. 9.9.6 has the dimensions of force (kg/s· m/s =  

kg · m/s2 = N) and depends only on design characteristics of the rocket engine—
namely, the rate R at which it consumes fuel mass and the speed vrel with which 
that mass is ejected relative to the rocket. We call this term Rvrel the thrust of the 
rocket engine and represent it with T. Newton’s second law emerges if we write 
Eq. 9.9.6 as T = Ma, in which a is the acceleration of the rocket at the time that 
its mass is M.

Finding the Velocity
How will the velocity of a rocket change as it consumes its fuel? From Eq. 9.9.4 
we have

 dv =  − v  rel     
dM _ 
M

  . 

Integrating leads to

   
 v  i  
  

 v  f  
  dv    =  − v  rel    

 M  i  
  

 M  f  
    dM _ 

M
   , 

in which Mi is the initial mass of the rocket and Mf its final mass. Evaluating the 
integrals then gives

      v  f   −  v  i   =  v  rel   ln   
 M  i   _ 
 M  f  

        (second rocket equation)    (9.9.7)

for the increase in the speed of the rocket during the change in mass from Mi to 
Mf . (The symbol “ln” in Eq. 9.9.7 means the natural logarithm.) We see here the 

Figure 9.9.1 (a) An accelerating 
rocket of mass M at time t, as seen 
from an inertial  reference frame. 
(b) The same but at time t + dt. The 
exhaust products released during 
interval dt are shown.

x

vM

System boundary

(a)

x

v + dvM + dM

System boundary

(b)

–dM

U

The ejection of mass from
the rocket’s rear increases
the rocket’s speed.

9.9 systeMs witH VaryinG Mass: a roCKet
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advantage of multistage rockets, in which Mf is reduced by discarding successive 
stages when their fuel is depleted. An ideal rocket would reach its destination 
with only its payload remaining.

Checkpoint 9.9.1
(a) What is the value of ln(Mi/Mf) when Mf = Mi (the fuel has not yet been 
consumed)? (b) As fuel is consumed, does the value of ln(Mi/Mf) increase, decrease, 
or stay the same?

Sample Problem 9.9.1 Rocket engine, thrust, acceleration

In all previous examples in this chapter, the mass of a 
system is constant (fixed as a certain number). Here is 
an example of a system (a rocket) that is losing mass. A 
rocket whose initial mass Mi is 850 kg consumes fuel at 
the rate R = 2.3 kg/s. The speed vrel of the exhaust gases 
relative to the rocket engine is 2800 m/s. (a) What thrust 
does the rocket engine provide?

KEY IDEA

Thrust T is equal to the product of the fuel consumption 
rate R and the relative speed vrel at which exhaust gases 
are expelled, as given by Eq. 9.9.6.

Calculation: Here we find

  T  
=

  
  Rv   rel   =   (  2.3 kg / s )     (  2800 m / s )   

  
 
    

 
  

 =
  
6440 N ≈ 6400 N.

  
   
  

(b) What is the initial acceleration of the rocket?

KEY IDEA

We can relate the thrust T of a rocket to the magni-
tude a of the resulting acceleration with T = Ma, where 

  (  Answer )   

M is the rocket’s mass. However, M decreases and a 
increases as fuel is consumed. Because we want the ini-
tial value of a here, we must use the intial value Mi of 
the mass.

Calculation: We find

   a =   T _ 
 M  i  

   =   6440 N _ 
850 kg

   = 7.6  m / s  2 .  
   
   (Answer)

To be launched from Earth’s surface, a rocket must 
have an initial acceleration greater than g = 9.8 m/s2. 
That is, it must be greater than the gravitational accel-
eration at the surface. Put another way, the thrust T of 
the rocket engine must exceed the initial gravitational 
force on the rocket, which here has the magnitude Mig, 
which gives us 

(850 kg)(9.8 m/s2) = 8330 N. 

Because the acceleration or thrust requirement is not met 
(here T = 6400 N), our rocket could not be launched from 
Earth’s surface by itself; it would require another, more 
powerful, rocket.

Center of Mass  The center of mass of a system of n par-
ticles is defined to be the point whose coordinates are given by

   x  com   =   1 _ 
M

     ∑ 
i=1

  
n

    m  i    x  i  ,  y  com   =   1 _ 
M

     ∑ 
i=1

  
n

    m  i    y  i  ,  z  com   =   1 _ 
M

     ∑ 
i=1

  
n

    m  i    z  i  ,   (9.1.5)

or      r →    com   =   1 _ 
M

     ∑ 
i=1

  
n

     m  i      r →    i  ,   (9.1.8)

where M is the total mass of the system.

Review & Summary

Newton’s Second Law for a System of Particles  The 
motion of the center of mass of any system of particles is 
 governed by Newton’s second law for a system of particles, 
which is

      F 
→

    net   = M    a →    com  .   (9.2.1)

Here     F 
→

    net    is the net force of all the external forces acting on the 
system, M is the total mass of the system, and     a →    com    is the accel-
eration of the system’s center of mass.

additional examples, video, and practice available at WileyPLUS

c09CenterOfMassAndLinearMomentum.indd   254 05/05/21   5:30 PM



255

and isolated, the total linear momentum of the system must be 
conserved (it is a constant), which we can write in  vector form as

      p →    1i   +    p →    2i   =    p →    1f   +    p →    2f  ,   (9.6.1)

where subscripts i and f refer to values just before and just  after 
the collision, respectively.

If the motion of the bodies is along a single axis, the 
 collision is one-dimensional and we can write Eq. 9.6.1 in terms 
of  velocity components along that axis:

 m1v1i + m2v2i = m1v1f + m2v2f . (9.6.2)

If the bodies stick together, the collision is a completely 
 inelastic collision and the bodies have the same final velo c ity V 
(because they are stuck together).

Motion of the Center of Mass  The center of mass of a 
closed, isolated system of two colliding bodies is not affected by 
a collision. In particular, the velocity     v →    com    of the center of mass 
cannot be changed by the collision.

Elastic Collisions in One Dimension  An elastic collision 
is a special type of collision in which the kinetic energy of a 
system of colliding bodies is conserved. If the system is closed 
and  isolated, its linear momentum is also conserved. For a one- 
dimensional collision in which body 2 is a target and body 1 is 
an incoming projectile, conservation of kinetic  energy and lin-
ear  momentum yield the following expressions for the velocities 
 immediately after the collision:

    v  1f   =   
 m  1   −  m  2   _  m  1   +  m  2  

    v  1i     (9.7.6)

and    v  2f   =   
 2m  1   _  m  1   +  m  2  

    v  1i  .   (9.7.7)

Collisions in Two Dimensions  If two bodies collide and 
their motion is not along a single axis (the collision is not head-
on), the collision is two-dimensional. If the two-body system 
is closed and isolated, the law of conservation of  momentum 
applies to the collision and can be written as

      P 
→

    1i   +    P 
→

    2i   =    P 
→

    1f   +    P 
→

    2f  .   (9.8.1)

In component form, the law gives two equations that describe 
the collision (one equation for each of the two dimensions). If 
the collision is also elastic (a special case), the conservation of 
kinetic energy during the collision gives a third equation:

 K1i + K2i = K1f + K2f. (9.8.2)

Variable-Mass Systems  In the absence of external forces 
a rocket accelerates at an instantaneous rate given by

 Rvrel = Ma    (first rocket equation), (9.9.6)

in which M is the rocket’s instantaneous mass (including unex-
pended fuel), R is the fuel consumption rate, and vrel is the fuel’s 
exhaust speed relative to the rocket. The term Rvrel is the thrust 
of the rocket engine. For a rocket with constant R and vrel, whose 
speed changes from vi to vf when its mass changes from Mi to Mf,

    v  f   −  v  i   =  v  rel   ln   
 M  i   _ 
 M  f  

           (  second rocket equation )  .    (9.9.7)

Linear Momentum and Newton’s Second Law  For a 
 sin gle particle, we define a quantity    p →    called its linear  momentum as

     p →   = m  v →  ,   (9.3.1)

and can write Newton’s second law in terms of this momentum:

      F 
→

    net   =   
d   p →  

 ____ 
dt

  .   (9.3.2)

For a system of particles these relations become

     P 
→

   = M    v →    com     and      F 
→

    net   =   d  P 
→

   ____ 
dt

  .   (9.3.4, 9.3.6)

Collision and Impulse  Applying Newton’s second law in 
momentum form to a particle-like body involved in a collision 
leads to the linear momentum–impulse theorem:

      p →    f   −    p →    i   = Δ  p →   =   J 
→

  ,   (9.4.4, 9.4.5)

where     p →    f   −    p →    i   = Δ  p →    is the change in the body’s linear  momentum, 
and    J 

→
    is the impulse due to the force    F 

→
    (  t )      exerted on the body 

by the other body in the collision:

     J 
→

   =   
 t  i  
  
tf 

    F 
→

    (  t )     dt.   (9.4.3)

If Favg is the average magnitude of    F 
→

    (  t )     during the collision and 
Δt is the duration of the collision, then for one- dimensional 
motion

 J = Favg Δt. (9.4.8)

When a steady stream of bodies, each with mass m and speed v,  
collides with a body whose position is fixed, the average force 
on the fixed body is

    F  avg   = −   n _ Δt   Δp = −   n _ Δt   m Δv,   (9.4.10)

where n/Δt is the rate at which the bodies collide with the fixed 
body, and Δv is the change in velocity of each colliding body. 
This average force can also be written as

    F  avg   = −   Δm _ Δt   Δv,   (9.4.13)

where Δm/Δt is the rate at which mass collides with the fixed 
body. In Eqs. 9.4.10 and 9.4.13, Δv = −v if the bodies stop upon 
impact and Δv = −2v if they bounce directly backward with no 
change in their speed.

Conservation of Linear Momentum  If a system is iso-
lated so that no net external force acts on it, the linear momen-
tum    P 

→
    of the system remains constant:

    P 
→

   = constant    (  closed, isolated system )   .  (9.5.1)

This can also be written as

        P 
→

    i   =    P 
→

    f        (  closed, isolated system )   ,    (9.5.2)

where the subscripts refer to the values of    P 
→

    at some initial time 
and at a later time. Equations 9.5.1 and 9.5.2 are equi v alent 
statements of the law of conservation of linear  momentum.

Inelastic Collision in One Dimension  In an inelastic col-
lision of two bodies, the kinetic energy of the two-body  system 
is not conserved (it is not a constant). If the system is closed 

reView & sUMMary
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1  Figure 9.1 shows an overhead 
view of three particles on which 
external forces act. The magni-
tudes and directions of the forces 
on two of the particles are indi-
cated. What are the magnitude 
and direction of the force acting 
on the third  particle if the center 
of mass of the three- particle sys-
tem is (a) stationary, (b) moving at a constant velocity right-
ward, and (c) accelerating rightward?

2  Figure 9.2 shows an 
overhead view of four par-
ticles of equal mass sliding 
over a frictionless surface 
at constant  velocity. The 
directions of the velocities 
are indicated; their mag-
nitudes are equal. Con-
sider pairing the particles. 
Which pairs form a system 
with a center of mass that 
(a) is stationary, (b) is stationary and at the origin, and (c) passes 
through the origin?

3  Consider a box that explodes into two pieces while moving 
with a constant posit ive velocity along an x axis. If one piece, with 
mass m1, ends up with positive velocity     v →    1   , then the second piece, 
with mass m2, could end up with (a) a positive velocity     v →    2    (Fig. 
9.3a), (b) a negative velocity     v →    2    (Fig. 9.3b), or (c) zero velocity 
(Fig. 9.3c). Rank those three possible results for the second piece 
according to the corresponding magnitude of     v →    1   , greatest first.

c d

a

y (m)

2

–2 2 4–4

–2

x (m)

b

Figure 9.2 Question 2.

8  Figure 9.8 shows a snapshot 
of block 1 as it slides along an x 
axis on a frictionless floor, before 
it undergoes an elastic collision 
with stationary block 2. The figure also shows three  possible 
positions of the center of mass (com) of the two-block system at 
the time of the snapshot. (Point B is halfway between the centers 

as the boxes move over a frictionless confectioner’s counter. For 
each box, is its linear momentum conserved along the x axis and 
the y axis?

6  Figure 9.6 shows four groups of three or four identical parti-
cles that move parallel to either the x axis or the y axis, at identi-
cal speeds. Rank the groups according to center-of-mass speed, 
greatest first.

y

1
5 N

3 N2

3
x

Figure 9.1 Question 1.

v2 v2v1 v1

(b) (c)(a)

v1

Figure 9.3 Question 3.

2F0

4F0

6t0
t

F F

t t

F

(a) (b) (c)

3t0 12t0

2F0

Figure 9.4 Question 4.

xxx

y y y

60°

60°

60°60°
8 N 6 N

5 N

4 N

6 N

8 N
3 N

4 N

2 N
2 N

6 N 5 N2 N3 N

(a) (b) (c)

Figure 9.5 Question 5.

4  Figure 9.4 shows graphs of force magnitude versus time for 
a body involved in a collision. Rank the graphs according to the 
magnitude of the impulse on the body, greatest first.

5  The free-body diagrams in Fig. 9.5 give, from overhead 
views, the horizontal forces acting on three boxes of chocolates 

y

x

(a)

y

x

(c)

y

x

(b)

y

x

(d)

Figure 9.6 Question 6.

7  A block slides along a frictionless floor and into a stationary 
second block with the same mass. Figure 9.7 shows four choices 
for a graph of the kinetic energies K of the blocks. (a) Deter-
mine which represent physically impossible situations. Of the 
others, which best represents (b) an elastic collision and (c) an 
inelastic collision?

K K

t
(a)

t
(b)

K

t

(c)

K

t
(d)

Figure 9.7 Question 7.

1 2A B C

Figure 9.8 Question 8.

Questions
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of the two blocks.) Is block 1 stationary, moving forward, or 
moving backward after the collision if the com is located in the 
snapshot at (a) A, (b) B, and (c) C?

9  Two bodies have undergone 
an elastic one-dimensional colli-
sion along an x axis. Figure 9.9 is 
a graph of position versus time for 
those bodies and for their center 
of mass. (a) Were both bodies ini-
tially moving, or was one initially 
stationary? Which line segment 
corresponds to the motion of the center of mass (b) before the 
collision and (c) after the collision? (d) Is the mass of the body 
that was moving faster before the collision greater than, less 
than, or equal to that of the other body?

10  Figure 9.10: A block on a horizontal floor is initially 
either stationary, sliding in the positive direction of an x axis, 

or sliding in the negative direction of that axis. Then the 
block explodes into two pieces that slide along the x axis. 
Assume the block and the two pieces form a closed, isolated 
system. Six choices for a graph of the momenta of the block 
and the pieces are given, all versus time t. Determine which 
choices represent physically impossible situations and 
explain why.

11  Block 1 with mass m1 slides 
along an x axis across a friction-
less floor and then undergoes an 
elastic collision with a stationary 
block 2 with mass m2. Figure 9.11 
shows a plot of position x versus 
time t of block 1 until the colli-
sion occurs at position xc and 
time tc. In which of the lettered 
regions on the graph will the plot 
be continued (after the collision) 
if (a)  m1 < m2 and (b) m1 > m2? 
(c) Along which of the numbered dashed lines will the plot be 
continued if m1 = m2?

12  Figure 9.12 shows four 
graphs of position versus time 
for two bodies and their center 
of mass. The two bodies form 
a closed, isolated system and 
undergo a completely inelastic, 
one-dimensional collision on an x 
axis. In graph 1, are (a) the two 
bodies and (b) the center of mass 
moving in the positive or negative 
direction of the x axis? (c) Which 
of the graphs correspond to a 
physically impossible situation? 
Explain.
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Figure 9.11 Question 11.
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Figure 9.10 Question 10.

3 M  Figure 9.14 shows a slab with dimensions d1 = 11.0 cm, 
d2 = 2.80 cm, and d3 = 13.0 cm. Half the slab consists of 
aluminum (density = 2.70 g/cm3) and half consists of iron  

Module 9.1  Center of Mass
1 E  A 2.00 kg particle has the xy coordinates (−1.20 m, 
0.500 m), and a 4.00 kg particle has the xy coordinates (0.600 m, 
−0.750 m). Both lie on a horizontal plane. At what (a) x and 
(b) y coordinates must you place a 3.00 kg particle such that the 
center of mass of the three-particle system has the coordinates 
(−0.500 m, −0.700 m)?

2 E  Figure 9.13 shows a three- particle system, with masses 
m1 = 3.0 kg, m2 = 4.0 kg, and m3 = 8.0 kg. The scales on the axes 
are set by xs = 2.0 m and ys = 2.0 m. What are (a) the x coordi-
nate and (b) the y coordinate of the system’s center of mass? 
(c) If m3 is gradually increased, does the center of mass of the 
system shift toward or away from that particle, or does it remain 
stationary?

y (m)

x (m)

ys

0 xs

m1

m3

m2

Figure 9.13 Problem 2.

Problems

          Tutoring problem available (at instructor’s discretion) in WileyPLUS

 Worked-out solution available in Student Solutions Manual

E  Easy M  Medium H  Hard

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

CALC  Requires calculus

BIO  Biomedical application

GO

FCP

SSM
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(density = 7.85 g/cm3). What are (a) the x coordinate, (b) the y 
coordinate, and (c) the z coordinate of the slab’s center of mass?

Aluminum

Iron Midpoint

2d1

d2

d1

d1

d 3

y

z

x

Figure 9.14 Problem 3.

4 M  In Fig. 9.15, three uniform thin 
rods, each of length L = 22 cm, form 
an inverted U. The vertical rods each 
have a mass of 14 g; the horizontal 
rod has a mass of 42 g. What are (a) 
the x coordinate and (b) the y coor-
dinate of the system’s center of mass?

5 M  GO  What are (a) the x coordi-
nate and (b) the y coordinate of the 
center of mass for the uniform plate 
shown in Fig. 9.16 if L = 5.0 cm?

3L

4L

2L

2L

2L

4L

L

x

y

Figure 9.16 Problem 5.

6 M  Figure 9.17 shows a cubi-
cal box that has been constructed 
from uniform metal plate of neg-
ligible thickness. The box is open 
at the top and has edge length 
L = 40 cm. Find (a) the x coordi-
nate, (b) the y coordinate, and (c) 
the z coordinate of the center of 
mass of the box.

7 H  In the ammonia (NH3) mole-
cule of Fig. 9.18, three  hydrogen 
(H) atoms form an equilateral tri-
angle, with the center of the triangle at distance d = 9.40 × 10−11 m 
from each hydrogen atom. The nitrogen (N) atom is at the apex 
of a pyramid, with the three hydrogen atoms forming the base. 

L

x

y

L

L

Figure 9.15 Problem 4.

L
O y

x

z

Figure 9.17 Problem 6.

The nitrogen-to-hydrogen atomic 
mass ratio is 13.9, and the 
 nitrogen-to-hydrogen distance is 
L = 10.14 × 10−11 m. What are the (a) 
x and (b) y coordinates of the mole-
cule’s center of mass?

8 H  CALC  GO  A uniform soda can of 
mass 0.140 kg is 12.0 cm tall and filled 
with 0.354 kg of soda (Fig. 9.19). Then 
small holes are drilled in the top and 
bottom (with negligible loss of metal) 
to drain the soda. What is the height h 
of the com of the can and contents (a) 
 initially and (b) after the can loses all 
the soda? (c) What happens to h as the 
soda drains out? (d) If x is the height 
of the remaining soda at any given 
instant, find x when the com reaches 
its lowest point.

Module 9.2  Newton’s Second Law for a System 
of Particles
9 E  A stone is dropped at t = 0. A second stone, with twice the 
mass of the first, is dropped from the same point at t = 100 ms. 
(a) How far below the release point is the center of mass of the 
two stones at t = 300 ms? (Neither stone has yet reached the 
ground.) (b) How fast is the center of mass of the two-stone sys-
tem moving at that time?

10 E  GO  A 1000 kg automobile is at rest at a traffic signal. 
At the instant the light turns green, the automobile starts to 
move with a constant acceleration of 4.0 m/s2. At the same 
instant a 2000 kg truck, traveling at a constant speed of 8.0 m/s, 
 overtakes and passes the automobile. (a) How far is the com of 
the  automobile–truck system from the traffic light at t = 3.0 s? 
(b) What is the speed of the com then?

11 E  A big olive (m = 0.50 kg) lies at the origin of an xy 
 coordinate system, and a big Brazil nut (M = 1.5 kg) lies at the 
point (1.0, 2.0) m. At t = 0, a force     F 

→
    o   =  (2.0 ̂ i  + 3.0 ̂ j )   N begins 

to act on the olive, and a force     F 
→

    n   =  (−3.0 ̂ i  − 2.0 ̂ j )   N begins to 
act on the nut. In unit-vector notation, what is the displacement 
of the center of mass of the olive–nut system at t = 4.0 s, with 
respect to its position at t = 0?

12 E  Two skaters, one with mass 65 kg and the other with mass 
40 kg, stand on an ice rink holding a pole of length 10 m and 
negligible mass. Starting from the ends of the pole, the skaters 
pull themselves along the pole until they meet. How far does the 
40 kg skater move?

13 M  SSM  A shell is shot with an initial velocity     v →    0    of 20 m/s, 
at an angle of   θ  0   = 60°  with the horizontal. At the top of the 
trajectory (Fig. 9.20), the shell explodes into two fragments of 

x

Figure 9.19 Problem 8.

N

L

H

H

H

d

x

y

Figure 9.18 Problem 7.

v0

Explosion

θ0

Figure 9.20 Problem 13.
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shore. It walks 2.4 m along the boat toward shore and then stops. 
Assuming no friction between the boat and the water, find how 
far the dog is then from the shore. (Hint: See Fig. 9.23b.)

Module 9.3  Linear Momentum
18 E  A 0.70 kg ball moving horizontally at 5.0 m/s strikes a vertical 
wall and rebounds with speed 2.0 m/s. What is the magnitude of the 
change in its  linear momentum?

19 E  A 2100 kg truck traveling north at 41 km/h turns east and 
accelerates to 51 km/h. (a) What is the change in the  truck’s 
kinetic energy? What are the (b) magnitude and (c) direction of 
the change in its momentum?

20 M  GO  At time t = 0, a ball is struck at ground level and sent 
over level ground. The momentum p versus t during the flight is 
given by Fig. 9.24 (with p0 = 6.0 kg · m/s and p1 = 4.0 kg · m/s). 
At what initial angle is the ball launched? (Hint: Find a solution 
that does not  require you to read the time of the low point of 
the plot.)

21 M  A 0.30 kg softball has a velocity of 15 m/s at an angle of 
35° below the horizontal just before making contact with the 
bat. What is the magnitude of the change in momentum of the 
ball while in contact with the bat if the ball leaves with a velocity 
of (a) 20 m/s, vertically downward, and (b) 20 m/s, horizontally 
back toward the pitcher?

22 M  Figure 9.25 gives an overhead view of the path taken 
by a 0.165 kg cue ball as it bounces from a rail of a pool table. 
The ball’s initial speed is 2.00 m/s, and the angle θ1 is 30.0°. The 
bounce reverses the y component of the ball’s velocity but does 
not alter the x component. What are (a) angle θ2 and (b) the 
change in the ball’s linear momentum in unit-vector notation? 
(The fact that the ball rolls is irrelevant to the problem.)

Module 9.4  Collision and Impulse
23 E  BIO  FCP  Until his seventies, Henri LaMothe (Fig. 9.26) 
excited audiences by belly-flopping from a height of 12 m into 
30 cm of water. Assuming that he stops just as he reaches the 
bottom of the water and estimating his mass, find the magnitude 
of the impulse on him from the water.

equal mass. One fragment, whose speed immediately  after the 
explosion is zero, falls vertically. How far from the gun does the 
other fragment land, assuming that the terrain is level and that 
air drag is negligible? 

14 M  In Figure 9.21, two particles are launched from the ori-
gin of the coordinate system at time t = 0. Particle 1 of mass 
m1 = 5.00 g is shot directly along the x axis on a frictionless floor, 
with constant speed 10.0 m/s. Particle 2 of mass m2 = 3.00 g is 
shot with a velocity of  magnitude 20.0 m/s, at an upward angle 
such that it always stays directly above particle 1. (a) What is the 
maximum height Hmax reached by the com of the two-particle 
system? In unit-vector notation, what are the (b) velocity and 
(c) acceleration of the com when the com reaches Hmax?

Figure 9.21 Problem 14.

x

y

1

2

15 M  Figure 9.22 shows an arrangement with an air track, in 
which a cart is connected by a cord to a hanging block. The cart 
has mass m1 = 0.600 kg, and its center is  initially at xy  coordinates 
(−0.500 m, 0 m); the block has mass m2 = 0.400 kg, and its cen-
ter is initially at xy coordinates (0, −0.100 m). The mass of the 
cord and pulley are negligible. The cart is released from rest, and 
both cart and block move until the cart hits the pulley. The fric-
tion between the cart and the air track and between the pulley 
and its axle is negligible. (a) In unit-vector notation, what is the 
acceleration of the center of mass of the cart–block system? (b) 
What is the  velocity of the com as a function of time t? (c) Sketch 
the path taken by the com. (d) If the path is curved, determine 
whether it bulges upward to the right or downward to the left, 
and if it is straight, find the angle between it and the x axis.

Figure 9.22 Problem 15.

y

x

m2

m1

16 H  GO  Ricardo, of mass 80 kg, 
and Carmelita, who is lighter, are 
enjoying Lake Merced at dusk in 
a 30 kg canoe. When the canoe is 
at rest in the placid water, they 
exchange seats, which are 3.0 m 
apart and symmetrically located 
with respect to the canoe’s center. 
If the canoe moves 40 cm hori-
zontally relative to a pier post, 
what is Carmelita’s mass?

17 H  GO  In Fig. 9.23a, a 4.5 kg 
dog stands on an 18 kg flatboat 
at distance D = 6.1 m from the 

Dog’s displacement dd

Boat’s displacement db

(b)

D

(a)

Figure 9.23 Problem 17.
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Figure 9.24 Problem 20.
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Figure 9.25 Problem 22.
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collision. Assume that during the impact the hand is indepen-
dent of the arm and has a mass of 0.70 kg. What are the magni-
tudes of the (a) impulse and (b) average force on the hand from 
the target?

29 E  Suppose a gangster sprays Superman’s chest with 3 g bul-
lets at the rate of 100 bullets/min, and the speed of each bullet is 
500 m/s. Suppose too that the bullets rebound straight back with 
no change in speed. What is the magnitude of the average force 
on Superman’s chest?

30 M  Two average forces. A steady stream of 0.250 kg snow-
balls is shot perpendicularly into a wall at a speed of 4.00 m/s. 
Each ball sticks to the wall. Figure 9.27 gives the magnitude 
F of the force on the wall as a function of time t for two of the 
snowball impacts. Impacts occur with a repetition time interval 
Δtr = 50.0 ms, last a duration time interval Δtd = 10 ms, and pro-
duce isosceles triangles on the graph, with each  impact reaching 
a force maximum Fmax = 200 N. During each impact, what are 
the magnitudes of (a) the impulse and (b) the average force on 
the wall? (c) During a time interval of many impacts, what is the 
magnitude of the average force on the wall?

Δtr

Δtd Δtd

F

Fmax

t

Figure 9.27 Problem 30.

31 M  FCP  Jumping up before the elevator hits. After the cable 
snaps and the safety system fails, an elevator cab free-falls from a 
height of 36 m. During the collision at the bottom of the elevator 
shaft, a 90 kg passenger is stopped in 5.0 ms. (Assume that neither 
the passenger nor the cab rebounds.) What are the magnitudes 
of the (a) impulse and (b) average force on the passenger during 
the collision? If the passenger were to jump upward with a speed 
of 7.0 m/s relative to the cab floor just before the cab hits the bot-
tom of the shaft, what are the magnitudes of the (c) impulse and 
(d) average force (assuming the same stopping time)?

32 M  A 5.0 kg toy car can move along an x axis; Fig. 9.28 gives 
Fx of the force acting on the car, which begins at rest at time t = 0.  
The scale on the Fx axis is set 
by Fxs = 5.0 N. In unit-vector 
notation, what is    p →    at (a) t = 
4.0 s and (b) t = 7.0 s, and (c) 
what is    v →    at t = 9.0 s?

33 M  GO  Figure 9.29 shows 
a 0.300 kg baseball just before 
and just after it collides with 
a bat. Just before, the ball 
has velocity     v →    1    of magnitude 
12.0 m/s and angle θ1 = 35.0°. 
Just after, it is traveling directly 
upward with velocity     v →    2    of 
magnitude 10.0 m/s. The dura-
tion of the collision is 2.00 ms. 
What are the (a) magnitude 
and (b) direction (relative to 
the positive  direction of the x 
axis) of the impulse on the ball 
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Figure 9.26 Problem 23. Belly-flopping into 30 cm of water.

24 E  FCP  BIO  In February 1955, a paratrooper fell 370 m from 
an airplane without being able to open his chute but happened 
to land in snow, suffering only minor injuries. Assume that 
his speed at impact was 56 m/s (terminal speed), that his mass 
(including gear) was 85 kg, and that the magnitude of the force 
on him from the snow was at the survivable limit of 1.2 × 105 N. 
What are (a) the minimum depth of snow that would have 
stopped him safely and (b) the magnitude of the impulse on him 
from the snow?

25 E  A 1.2 kg ball drops vertically onto a floor, hitting with a 
speed of 25 m/s. It rebounds with an initial speed of 10 m/s. (a) 
What impulse acts on the ball during the contact? (b) If the ball 
is in contact with the floor for 0.020 s, what is the magnitude of 
the average force on the floor from the ball?

26 E  In a common but dangerous prank, a chair is pulled away 
as a person is moving downward to sit on it, causing the victim 
to land hard on the floor. Suppose the victim falls by 0.50 m, the 
mass that moves downward is 70 kg, and the collision on the 
floor lasts 0.082 s. What are the magnitudes of the (a) impulse 
and (b) average force acting on the victim from the floor during 
the collision?

27 E  SSM  A force in the negative direction of an x axis is 
applied for 27 ms to a 0.40 kg ball initially moving at 14 m/s in 
the positive direction of the axis. The force varies in magnitude, 
and the impulse has magnitude 32.4 N · s. What are the ball’s (a) 
speed and (b) direction of travel just after the force is  applied? 
What are (c) the average magnitude of the force and (d) the 
direction of the impulse on the ball?

28 E  BIO  FCP  In taekwondo, a hand is slammed down onto a 
target at a speed of 13 m/s and comes to a stop during the 5.0 ms  

2 4 86
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Figure 9.28 Problem 32.
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Figure 9.29 Problem 33.
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contact with the ball for 3.0 × 10−3 s, and the force of the kick 
is given by

F(t) = [(6.0 × 106)t − (2.0 × 109)t2] N

for 0 ≤ t ≤ 3.0 × 10−3 s, where t is in seconds. Find the mag-
nitudes of (a) the impulse on the ball due to the kick, (b) the 
av erage force on the ball from the player’s foot during the period 
of contact, (c) the maximum force on the ball from the player’s 
foot during the period of contact, and (d) the ball’s velocity 
immediately after it loses contact with the player’s foot.

38 M  In the overhead view of 
Fig. 9.32, a 300 g ball with a speed 
v of 6.0 m/s strikes a wall at an 
angle θ of 30° and then  rebounds 
with the same speed and angle. 
It is in contact with the wall for 
10 ms. In unit-vector notation, 
what are (a) the  impulse on the ball from the wall and (b) the 
average force on the wall from the ball?

Module 9.5  Conservation of Linear Momentum
39 E  SSM  A 91 kg man lying on a surface of negligible fric-
tion shoves a 68 g stone away from himself, giving it a speed of 
4.0 m/s. What speed does the man acquire as a result?

40 E  A space vehicle is traveling at 4300 km/h relative to Earth 
when the exhausted rocket motor (mass 4m) is disengaged and 
sent backward with a speed of 82 km/h relative to the command 
module (mass m). What is the speed of the command module 
relative to Earth just after the separation?

41 M  Figure 9.33 shows a two-
ended “rocket” that is initially 
stationary on a frictionless floor, 
with its center at the origin of 
an x axis. The rocket consists 
of a central block C (of mass 
M = 6.00 kg) and blocks L and R 
(each of mass m = 2.00 kg) on the left and right sides. Small 
explosions can shoot either of the side blocks away from block 
C and along the x axis. Here is the sequence: (1) At time t = 0, 
block L is shot to the left with a speed of 3.00 m/s relative to 
the velocity that the explosion gives the rest of the rocket. 
(2) Next, at time t = 0.80 s, block R is shot to the right with a 
speed of 3.00 m/s relative to the velocity that block C then has. 
At t = 2.80 s, what are (a) the velocity of block C and (b) the 
 position of its center?

42 M  An object, with mass m and speed v relative to an 
 observer, explodes into two pieces, one three times as  massive 
as the other; the explosion takes place in deep space. The less 
massive piece stops relative to the observer. How much kinetic 
energy is added to the system during the explosion, as measured 
in the observer’s reference frame?

43 M  BIO  FCP  In the Olympiad of 708 b.c., some athletes com-
peting in the standing long jump used handheld weights called 
halteres to lengthen their jumps (Fig. 9.34). The weights were 
swung up in front just before liftoff and then swung down and 
thrown backward during the flight. Suppose a modern 78 kg 
long jumper similarly uses two 5.50 kg halteres, throwing them 
horizontally to the rear at his maximum height such that their 
horizontal velocity is zero relative to the ground. Let his liftoff 
velocity be    v →   =  (9.5 ̂ i  + 4.0 ̂ j )   m/s with or without the halteres, and 

y

xv
v

θ θ

Figure 9.32 Problem 38.

x

L R
C

0

Figure 9.33 Problem 41.

from the bat? What are the (c) magnitude and (d) direction of 
the average force on the ball from the bat?

34 M  BIO  FCP  Basilisk lizards can run across the top of a water 
surface (Fig. 9.30). With each step, a lizard first slaps its foot 
against the water and then pushes it down into the water rapidly 
enough to form an air cavity around the top of the foot. To avoid 
having to pull the foot back up against water drag in order to 
complete the step, the lizard withdraws the foot before water 
can flow into the air cavity. If the lizard is not to sink, the aver-
age upward impulse on the lizard during this full action of slap, 
downward push, and withdrawal must match the downward 
impulse due to the gravitational force. Suppose the mass of a 
basilisk lizard is 90.0 g, the mass of each foot is 3.00 g, the speed 
of a foot as it slaps the water is 1.50 m/s, and the time for a single 
step is 0.600 s. (a) What is the magnitude of the impulse on the 
lizard during the slap? (Assume this impulse is directly upward.) 
(b) During the 0.600 s duration of a step, what is the downward 
impulse on the lizard due to the gravitational force? (c) Which 
action, the slap or the push, provides the primary support for the 
lizard, or are they approximately equal in their support?
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Figure 9.30 Problem 34. Lizard running across water.

35 M  CALC  GO  Figure 
9.31 shows an approximate 
plot of force magnitude 
F versus time t during the 
collision of a 58 g Super-
ball with a wall. The initial 
velocity of the ball is 34 m/s 
 perpendicular to the wall; 
the ball rebounds directly 
back with  approximately the 
same speed, also perpendic-
ular to the wall. What is Fmax, the maximum magnitude of the 
force on the ball from the wall during the collision?

36 M  CALC  A 0.25 kg puck is initially stationary on an ice surface 
with negligible friction. At time t = 0, a horizontal force  begins 
to move the puck. The force is given by    F 

→
   =  (12.0 −  3.00t   2 )  ̂ i  ,  

with    F 
→

    in newtons and t in seconds, and it acts until its magni-
tude is zero. (a) What is the magnitude of the  impulse on the 
puck from the force between t = 0.500 s and t = 1.25 s? (b) What 
is the change in momentum of the puck between t = 0 and the 
instant at which F = 0?

37 M  CALC  SSM  A soccer player kicks a soccer ball of mass 
0.45 kg that is initially at rest. The foot of the player is in 

2 4
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(N
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Figure 9.31 Problem 35.
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assume that he lands at the liftoff level. What distance would the 
use of the halteres add to his range? 
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Figure 9.34 Problem 43.

44 M  GO  In Fig. 9.35, a stationary block explodes into two 
pieces L and R that slide across a frictionless floor and then into 
regions with friction, where they stop. Piece L, with a mass of 
2.0 kg, encounters a coefficient of kinetic friction μL = 0.40 and 
slides to a stop in distance dL = 0.15 m. Piece R encounters a 
coefficient of kinetic friction μR = 0.50 and slides to a stop in 
distance dR = 0.25 m. What was the mass of the block?

dRdL

μ = 0μL μR

Figure 9.35 Problem 44.

45 M  SSM  A 20.0 kg body is moving through space in the posi-
tive direction of an x axis with a speed of 200 m/s when, due 
to  an internal explosion, it breaks into three parts. One part,  
with a mass of 10.0 kg, moves away from the point of explosion with  
a speed of 100 m/s in the positive y direction. A  second part, 
with a mass of 4.00 kg, moves in the negative x direction with a 
speed of 500 m/s. (a) In unit-vector notation, what is the velocity 
of the third part? (b) How much  energy is released in the explo-
sion? Ignore effects due to the gravitational force.

46 M  A 4.0 kg mess kit sliding on a frictionless surface  explodes 
into two 2.0 kg parts: 3.0 m/s, due north, and 5.0 m/s, 30° north 
of east. What is the original speed of the mess kit?

47 M  A vessel at rest at the origin of an xy coordinate  system 
explodes into three pieces. Just after the explosion, one piece, of 
mass m, moves with velocity  (− 30 m / s)  ̂ i   and a second piece, also 
of mass m, moves with velocity  (− 30 m / s)  ̂ j  . The third piece has 
mass 3m. Just after the explosion, what are the (a) magnitude 
and (b) direction of the  velocity of the third piece?

48 H  GO  Particle A and particle B are held together with a 
compressed spring between them. When they are released, the 
spring pushes them apart, and they then fly off in opposite direc-
tions, free of the spring. The mass of A is 2.00 times the mass of B,  
and the energy stored in the spring was 60 J. Assume that the 
spring has negligible mass and that all its stored energy is trans-
ferred to the particles. Once that transfer is complete, what are 
the kinetic energies of (a) particle A and (b) particle B?

Module 9.6  Momentum and Kinetic Energy in Collisions
49 E  A 10 g bullet is fired horizontally into a 2.0 kg block at the 
lower end of a vertical rod of negligible mass that is pivoted at 
the top like a pendulum. The com of the block rises 12 cm. What 
was the bullet’s initial speed?

50 E  A 5.20 g bullet moving at 672 m/s strikes a 700 g wooden 
block at rest on a frictionless surface. The bullet emerges, travel-
ing in the same direction with its speed  reduced to 428 m/s. (a) 
What is the resulting speed of the block? (b) What is the speed 
of the  bullet–block center of mass?

51 M  GO  In Fig. 9.36a, a 3.50 g bullet is fired horizontally 
at two blocks at rest on a frictionless table. The bullet passes 
through block 1 (mass 1.20 kg) and embeds itself in block 2 
(mass 1.80 kg). The blocks end up with speeds v1 = 0.630 m/s 
and v2 = 1.40 m/s (Fig. 9.36b). Neglecting the material  removed 
from block 1 by the bullet, find the speed of the  bullet as it (a) 
leaves and (b) enters block 1.

1 2
Frictionless

(a)

(b)

v1 v2

Figure 9.36 Problem 51.

52 M  GO  In Fig. 9.37, a 10 g 
bullet moving directly upward 
at 1000 m/s strikes and passes 
through the center of mass of 
a 5.0 kg block initially at rest. 
The bullet emerges from the 
block moving directly upward 
at 400 m/s. To what maximum 
height does the block then rise 
above its initial position?

53 M  In Anchorage, collisions of a vehicle with a moose are so 
common that they are referred to with the abbreviation MVC. 
Suppose a 1000 kg car slides into a stationary 500 kg moose on 
a very slippery road, with the moose being thrown through the 
windshield (a common MVC result). (a) What percent of the 
original kinetic energy is lost in the collision to other forms of 
energy? A similar danger occurs in Saudi Arabia because of 
camel–vehicle collisions (CVC). (b) What percent of the origi-
nal kinetic energy is lost if the car hits a 300 kg camel? (c) Gen-
erally, does the percent loss increase or decrease if the animal 
mass decreases?

54 M  A completely inelastic collision occurs between two balls 
of wet putty that move directly toward each other along a ver-
tical axis. Just before the collision, one ball, of mass 3.0 kg, is 
moving upward at 20 m/s and the other ball, of mass 2.0 kg, is 
moving downward at 12 m/s. How high do the combined two 
balls of putty rise above the collision point? (Neglect air drag.)

55 M  A 5.0 kg block with a speed of 3.0 m/s collides with a 10 kg 
block that has a speed of 2.0 m/s in the same direction. After the 
collision, the 10 kg block travels in the original  direction with a 
speed of 2.5 m/s. (a) What is the velocity of the 5.0 kg block imme-
diately after the collision? (b) By how much does the total kinetic 
energy of the system of two blocks change because of the collision? 
(c) Suppose, instead, that the 10 kg block ends up with a speed 
of 4.0 m/s. What then is the change in the total kinetic energy?  
(d) Account for the result you obtained in (c).

Bullet

Figure 9.37 Problem 52.
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56 M  In the “before” part of Fig. 9.38, car A (mass 1100 kg) is 
stopped at a traffic light when it is rear-ended by car B (mass 
1400 kg). Both cars then slide with locked wheels until the fric-
tional force from the slick road (with a low μk of 0.13) stops them, 
at  distances dA = 8.2 m and dB = 6.1 m. What are the speeds of 
(a) car A and (b) car B at the start of the sliding, just after the 
collision? (c) Assuming that linear momentum is conserved dur-
ing the collision, find the speed of car B just before the collision. 
(d) Explain why this assumption may be invalid.

Figure 9.38 Problem 56.

A B

A B

dA

dB

Before

After

v0

57 M  GO  In Fig. 9.39, a ball of 
mass m = 60 g is shot with speed 
vi = 22 m/s into the barrel of a 
spring gun of mass M = 240 g ini-
tially at rest on a  frictionless sur-
face. The ball sticks in the barrel at the point of maximum 
compression of the spring. Assume that the increase in thermal 
energy due to friction between the ball and the barrel is negli-
gible. (a) What is the speed of the spring gun after the ball stops 
in the barrel? (b) What fraction of the initial kinetic energy of 
the ball is stored in the spring?

58 H  In Fig. 9.40, block 2 (mass 
1.0 kg) is at rest on a frictionless 
surface and touching the end of 
an unstretched spring of spring 
constant 200 N/m. The other end 
of the spring is fixed to a wall. Block 1 (mass 2.0 kg), traveling at 
speed v1 = 4.0 m/s, collides with block 2, and the two blocks stick 
together. When the blocks momentarily stop, by what distance 
is the spring compressed?

59 H  In Fig. 9.41, block 1 (mass 2.0 kg) is moving rightward at 
10 m/s and block 2 (mass 5.0 kg) is moving rightward at 3.0 m/s. 
The surface is frictionless, and a spring with a spring constant of 
1120 N/m is fixed to block 2. When the blocks collide, the com-
pression of the spring is maximum at the instant the blocks have 
the same velocity. Find the maximum compression.

1 2

Figure 9.41 Problem 59.

Module 9.7  Elastic Collisions in One Dimension
60 E  In Fig. 9.42, block A (mass 1.6 kg) slides into block B (mass  
2.4 kg), along a frictionless surface. The directions of three 
velocities before (i) and after ( f ) the collision are indicated; the 
corresponding speeds are vAi = 5.5 m/s, vBi = 2.5 m/s, and vBf = 
4.9 m/s. What are the (a) speed and (b)  direction (left or right) 
of velocity     v →    Af   ? (c) Is the collision elastic?

vi
m

M

Figure 9.39 Problem 57.

1 2
v1

Figure 9.40 Problem 58.

vAf  = ? vBf 

vAi vBi

Figure 9.42 Problem 60.

61 E  SSM  A cart with mass 340 g moving on a frictionless lin-
ear air track at an initial speed of 1.2 m/s undergoes an elastic 
collision with an initially stationary cart of unknown mass. After 
the collision, the first cart continues in its original direction at 
0.66 m/s. (a) What is the mass of the second cart? (b) What is its 
speed after impact? (c) What is the speed of the two-cart center 
of mass?

62 E  Two titanium spheres approach each other head-on with 
the same speed and collide elastically. After the  collision, one 
of the spheres, whose mass is 300 g, remains at rest. (a) What 
is the mass of the other sphere? (b) What is the speed of the 
two-sphere center of mass if the initial speed of each sphere is 
2.00 m/s?

63 M  Block 1 of mass m1 slides along a frictionless floor and into 
a one-dimensional elastic collision with stationary block 2 of 
mass m2 = 3m1. Prior to the collision, the center of mass of the 
two-block system had a speed of 3.00 m/s. Afterward, what are 
the speeds of (a) the center of mass and (b) block 2?

64 M  GO  A steel ball of mass 
0.500 kg is fastened to a cord that 
is 70.0 cm long and fixed at the 
far end. The ball is then  released 
when the cord is horizontal (Fig. 
9.43). At the bottom of its path, 
the ball strikes a 2.50 kg steel 
block initially at rest on a friction-
less surface. The collision is elastic. 
Find (a) the speed of the ball and 
(b) the speed of the block, both just after the collision.

65 M  SSM  A body of mass 2.0 kg makes an elastic collision 
with another body at rest and continues to move in the origi-
nal  direction but with one-fourth of its original speed. (a) What 
is the mass of the other body? (b) What is the speed of the 
two-body center of mass if the initial speed of the 2.0 kg body 
was 4.0 m/s?

66 M  Block 1, with mass m1 and speed 4.0 m/s, slides along an x 
axis on a frictionless floor and then undergoes a one- dimensional 
elastic collision with stationary block 2, with mass m2 = 0.40m1. 
The two blocks then slide into a region where the coefficient of 
kinetic friction is 0.50; there they stop. How far into that region 
do (a) block 1 and (b) block 2 slide?

67 M  In Fig. 9.44, particle 1 of 
mass m1 = 0.30 kg slides right-
ward along an x axis on a friction-
less floor with a speed of 2.0 m/s. 
When it reaches x = 0, it under-
goes a one- dimensional elastic 
collision with stationary particle 2 of mass m2 = 0.40 kg. When 
particle 2 then reaches a wall at xw = 70 cm, it bounces from the 

Figure 9.43 Problem 64.

x (cm)
0 xw

1 2

Figure 9.44 Problem 67.
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wall with no loss of speed. At what position on the x axis does 
particle 2 then collide with particle 1?

68 M  GO  In Fig. 9.45, block 1 of mass m1 slides from rest along 
a frictionless ramp from height h = 2.50 m and then collides with 
stationary block 2, which has mass m2 = 2.00m1. After the colli-
sion, block 2 slides into a region where the coefficient of kinetic 
friction μk is 0.500 and comes to a stop in distance d within that 
region. What is the value of distance d if the collision is (a) elas-
tic and (b) completely inelastic?

h

1

2
Frictionless μk

Figure 9.45 Problem 68.

69 H  GO  FCP  A small ball of 
mass m is aligned above a larger 
ball of mass M = 0.63 kg (with 
a slight separation, as with the 
baseball and basketball of Fig. 
9.46a), and the two are dropped 
simultaneously from a height of 
h = 1.8 m. (Assume the radius of 
each ball is negligible relative to 
h.) (a) If the larger ball rebounds 
elastically from the floor and 
then the small ball rebounds elas-
tically from the larger ball, what 
value of m results in the larger 
ball stopping when it collides 
with the small ball? (b) What 
height does the small ball then reach (Fig. 9.46b)?

70 H  GO  In Fig. 9.47, puck 1 of mass m1 = 0.20 kg is sent  sliding 
across a frictionless lab bench, to undergo a one- dimensional 
elastic collision with stationary puck 2. Puck 2 then slides off the 
bench and lands a distance d from the base of the bench. Puck 
1 rebounds from the collision and slides off the opposite edge 
of the bench, landing a distance 2d from the base of the bench. 
What is the mass of puck 2? (Hint: Be careful with signs.)

1 2

2d d

Figure 9.47 Problem 70.

Module 9.8  Collisions in Two Dimensions
71 M  In Fig. 9.8.1, projectile particle 1 is an alpha particle 
and target  particle 2 is an oxygen nucleus. The alpha particle 
is  scattered at angle θ1 = 64.0° and the oxygen nucleus recoils 
with speed 1.20 × 105 m/s and at angle θ2 = 51.0°. In atomic mass 
units, the mass of the alpha particle is 4.00 u and the mass of the 
oxygen nucleus is 16.0 u. What are the (a) final and (b) initial 
speeds of the alpha particle?

72 M  Ball B, moving in the positive direction of an x axis at speed 
v, collides with stationary ball A at the origin. A and B have differ-
ent masses. After the collision, B moves in the negative direction 

Basketball

Baseball

(a) Before (b) After

Figure 9.46 Problem 69.

of the y axis at speed v/2. (a) In what direction does A move? 
(b) Show that the speed of A cannot be determined from the 
given information.

73 M  After a completely inelastic collision, two objects of the 
same mass and same initial speed move away together at half 
their initial speed. Find the angle between the initial  velocities 
of the objects.

74 M  Two 2.0 kg bodies, A and B, collide. The velocities  before 
the collision are     v →    A   = (15 ̂ i  + 30 ̂ j ) m / s  and     v →    B   = (− 10 ̂ i  + 5.0 ̂ j ) m / s .  
After the collision,     v →    A  ′   = (− 5.0 ̂ i  + 20 ̂ j )  m/s. What are (a) the 
final velocity of B and (b) the change in the total kinetic energy 
(including sign)?

75 M  GO  A projectile proton with a speed of 500 m/s collides 
elastically with a target proton initially at rest. The two protons 
then move along perpendicular paths, with the projectile path at 
60° from the original direction. After the collision, what are the 
speeds of (a) the target proton and (b) the projectile proton?

Module 9.9  Systems with Varying Mass: A Rocket
76 E  A 6090 kg space probe moving nose-first toward Jupiter 
at 105 m/s relative to the Sun fires its rocket engine, ejecting 
80.0 kg of exhaust at a speed of 253 m/s relative to the space 
probe. What is the final velocity of the probe?

77 E  CALC  SSM  In Fig. 9.48, two long barges are moving in 
the same  direction in still water, one with a speed of 10 km/h 
and the other with a speed of 20 km/h. While they are passing 
each other, coal is shoveled from the slower to the faster one 
at a rate of 1000 kg/min. How much additional force must be 
 provided by the driving engines of (a) the faster barge and (b) 
the slower barge if neither is to change speed? Assume that the 
shoveling is always perfectly sideways and that the frictional 
forces between the barges and the water do not  depend on the 
mass of the barges. 

Figure 9.48 Problem 77.

78 E  Consider a rocket that is in deep space and at rest rela-
tive to an inertial reference frame. The rocket’s engine is to be 
fired for a certain interval. What must be the rocket’s mass ratio 
(ratio of initial to final mass) over that interval if the rocket’s 
original speed relative to the inertial frame is to be equal to (a) 
the exhaust speed (speed of the exhaust products relative to the 
rocket) and (b) 2.0 times the exhaust speed?

79 E  SSM  A rocket that is in deep space and initially at rest 
 relative to an inertial reference frame has a mass of 2.55 × 105 kg, 

c09CenterOfMassAndLinearMomentum.indd   264 05/05/21   5:30 PM



265ProbLeMs

of which 1.81 × 105 kg is fuel. The rocket engine is then fired 
for 250 s while fuel is consumed at the rate of 480  kg/s. The 
speed of the exhaust products relative to the rocket is 3.27 km/s.  
(a) What is the rocket’s thrust? After the 250 s firing, what are 
(b) the mass and (c) the speed of the rocket?

Additional Problems
80 CALC  An object is tracked by a radar station and determined 
to have a position vector given by    r →   = (3500 − 160t) ̂ i  + 2700 ̂ j  +  
300  ̂  k   with    r →    in meters and t in seconds. The radar station’s x 
axis points east, its y axis north, and its z axis vertically up. If 
the object is a 250 kg meteorological missile, what are (a) its 
linear momentum, (b) its direction of motion, and (c) the net 
force on it?

81  The last stage of a rocket, which is traveling at a speed of 
7600 m/s, consists of two parts that are clamped together: a rocket  
case with a mass of 290.0 kg and a payload capsule with a mass 
of 150.0 kg. When the clamp is released, a compressed spring 
causes the two parts to separate with a relative speed of 
910.0 m/s. What are the speeds of (a) the rocket case and (b) the 
payload after they have separated? Assume that all velocities 
are along the same line. Find the total kinetic energy of the two 
parts (c) before and (d) after they separate. (e) Account for the 
difference.

82 FCP  Pancake collapse of a tall 
building. In the section of a tall 
building shown in Fig. 9.49a, the 
infrastructure of any given floor 
K must support the weight W of 
all higher floors. Normally the 
infrastructure is constructed with 
a safety factor s so that it can 
withstand an even greater down-
ward force of sW. If, however, 
the support columns between K 
and L suddenly collapse and allow the higher floors to free-fall 
together onto floor K (Fig. 9.49b), the force in the collision can 
exceed W and, after a brief pause, cause K to collapse onto floor 
J, which collapses on floor I, and so on until the ground is 
reached. Assume that the floors are separated by d = 4.0 m and 
have the same mass. Also assume that when the floors above K 
free-fall onto K, the collision lasts 1.5 ms. Under these simplified 
conditions, what value must the safety factor s exceed to prevent 
pancake collapse of the building?

83  “Relative” is an important 
word. In Fig. 9.50, block L of 
mass mL = 1.00 kg and block R 
of mass mR = 0.500 kg are held 
in place with a compressed spring 
between them. When the blocks are released, the spring sends 
them sliding across a frictionless floor. (The spring has negli-
gible mass and falls to the floor after the blocks leave it.) (a) If 
the spring gives block L a release speed of 1.20 m/s relative to 
the floor, how far does block R travel in the next 0.800 s? (b) If, 
instead, the spring gives block L a release speed of 1.20 m/s rela-
tive to the velocity that the spring gives block R, how far does 
block R travel in the next 0.800 s?

84  Figure 9.51 shows an overhead view of two parti cles  sliding 
at constant velocity over a frictionless surface. The particles 
have the same mass and the same initial speed v = 4.00 m/s, and 

N

M

L

K

J

I

d

(a) (b)

Figure 9.49 Problem 82.

L R

Figure 9.50 Problem 83.

they collide where their paths inter-
sect. An x  axis is arranged to bisect 
the angle between their incoming 
paths, such that θ = 40.0°. The region 
to the right of the  collision is divided 
into four lettered sections by the x 
axis and four numbered dashed lines. 
In what region or along what line do 
the particles travel if the collision is 
(a)  completely  inelastic, (b) elastic, 
and (c) inelastic? What are their final speeds if the collision is 
(d) completely inelastic and (e)  elastic?

85 FCP  Speed deamplifier. In Fig. 
9.52, block 1 of mass m1 slides 
along an x axis on a frictionless 
floor at speed 4.00 m/s. Then it 
undergoes a one-dimensional  
elastic collision with station ary block 2 of mass m2 = 2.00m1. 
Next, block 2 undergoes a one-dimensional elastic collision with 
stationary block 3 of mass m3 = 2.00m2. (a) What then is the 
speed of block 3? Are (b) the speed, (c) the kinetic energy, and 
(d) the momentum of block 3 greater than, less than, or the 
same as the initial values for block 1? 

86 FCP  Speed amplifier. In 
Fig. 9.53, block 1 of mass m1 
slides along an x axis on a fric-
tionless floor with a speed of 
v1i = 4.00 m/s. Then it undergoes 
a one-dimensional elastic collision with stationary block 2  of 
mass m2 = 0.500m1. Next, block 2 undergoes a one-dimensional 
elastic collision with stationary block 3 of mass m3 = 0.500m2. 
(a) What then is the speed of block 3? Are (b) the speed, (c) the 
kinetic energy, and (d) the momentum of block 3 greater than, 
less than, or the same as the initial values for block 1?  

87  A ball having a mass of 150 g strikes a wall with a speed of 
5.2 m/s and rebounds with only 50% of its initial kinetic energy. 
(a) What is the speed of the ball immediately after  rebounding? 
(b) What is the magnitude of the impulse on the wall from the 
ball? (c) If the ball is in contact with the wall for 7.6 ms, what 
is the magnitude of the average force on the ball from the wall 
during this time interval?

88  A spacecraft is separated into two parts by detonating the 
explosive bolts that hold them together. The masses of the parts 
are 1200 kg and 1800 kg; the magnitude of the  impulse on each 
part from the bolts is 300 N · s. With what  relative speed do the 
two parts separate because of the detonation?

89 SSM  A 1400 kg car moving at 5.3 m/s is initially traveling 
north along the positive direction of a y axis. After completing 
a 90° right-hand turn in 4.6 s, the inattentive operator drives 
into a tree, which stops the car in 350 ms. In unit-vector nota-
tion, what is the impulse on the car (a) due to the turn and 
(b) due to the collision? What is the magnitude of the  average 
force that acts on the car (c) during the turn and (d) during the 
collision? (e) What is the direction of the average force during 
the turn?

90  A certain radioactive (parent) nucleus transforms to a dif-
ferent (daughter) nucleus by emitting an electron and a neutrino. 
The parent nucleus was at rest at the origin of an xy coordinate 
system. The electron moves away from the  origin with linear 
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Figure 9.52 Problem 85.
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Figure 9.53 Problem 86.
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momentum   ( − 1.2 × 10  −22  kg ⋅ m / s)  ̂ i  ; the neutrino moves away 
from the origin with linear momentum  ( − 6.4 × 10  −23  kg ⋅ m / s) ̂ j  .  
What are the (a) magnitude and (b)  direction of the linear 
momentum of the daughter  nucleus? (c) If the daughter nucleus 
has a mass of 5.8 × 10−26 kg, what is its kinetic energy? 

91  A 75 kg man rides on a 39 kg cart moving at a  velocity of 
2.3 m/s. He jumps off with zero horizontal  velocity relative to 
the ground. What is the resulting change in the cart’s  velocity, 
including sign?

92  Two blocks of masses 1.0 kg and 3.0 kg are connected by a 
spring and rest on a frictionless surface. They are given veloci-
ties toward each other such that the 1.0 kg block travels initially 
at 1.7 m/s toward the center of mass, which remains at rest. 
What is the initial speed of the other block?

93 SSM  A railroad freight car of mass 3.18 × 104 kg collides 
with a stationary caboose car. They couple together, and 27.0% 
of the initial kinetic energy is transferred to thermal energy, 
sound, vibrations, and so on. Find the mass of the  caboose.

94  An old Chrysler with mass 2400 kg is moving along a 
straight stretch of road at 80 km/h. It is followed by a Ford with 
mass 1600 kg moving at 60 km/h. How fast is the center of mass 
of the two cars moving?

95 SSM  In the arrangement of Fig. 9.8.1, billiard ball 1 moving 
at a speed of 2.2 m/s undergoes a glancing collision with identi-
cal billiard ball 2 that is at rest. After the collision, ball 2 moves 
at speed 1.1 m/s, at an angle of θ2 = 60°. What are (a) the mag-
nitude and (b) the direction of the velocity of ball 1 after the 
collision? (c) Do the given data suggest the collision is elastic 
or inelastic?

96  A rocket is moving away from the solar system at a  
speed of 6.0 × 103 m/s. It fires its engine, which ejects exhaust 
with a speed of 3.0 × 103 m/s relative to the rocket. The mass  
of the rocket at this time is 4.0 × 104 kg, and its acceleration  
is 2.0 m/s2. (a) What is the thrust of the engine? (b) At what  
rate, in kilograms per second, is exhaust ejected during the 
firing?

97  The three balls in the 
overhead view of Fig. 9.54 
are identical. Balls 2 and 3 
touch each other and are 
aligned perpendicular to the 
path of ball 1. The velocity of ball 1 has magnitude v0 = 10 m/s 
and is directed at the contact point of balls 1 and 2. After the 
collision, what are the (a) speed and (b) direction of the velocity 
of ball 2, the (c) speed and (d) direction of the velocity of ball 3,  
and the (e) speed and (f) direction of the velocity of ball 1? 
(Hint: With friction  absent, each impulse is directed along the 
line connecting the centers of the colliding balls, normal to the 
colliding  s urfaces.)

98  A 0.15 kg ball hits a wall with a velocity of  (5.00 m / s) ̂ i  + 
(6.50  m / s) ̂ j  + (4.00  m / s)  ̂  k  . It rebounds from the wall with a 
 velocity of    (  2.00  m / s )    ̂ i  +   (  3.50  m / s )    ̂ j  +   (  −3.20  m / s )     ̂  k  . What are 
(a) the change in the ball’s momentum, (b) the impulse on the 
ball, and (c) the impulse on the wall?

99  Center of mass motion. At a certain instant, four particles 
have the xy coordinates and velocities given in the following 
table. For the center of mass at that instant, what are (a) the 
coordinates and (b) the velocity?

Figure 9.54 Problem 97.

1

2

3

v0 x

Particle Mass (kg) Position (m) Velocity (m/s)

1 2.0 0, 3.0  − 9.0  j ̂   

2 4.0 3.0, 0  6.0 i ̂   

3 3.0 0,  − 2.0  6.0  j ̂   

4 12  − 1.0,  0  − 2.0 i ̂   

100  Limits on separating rocket. Figure 9.55 shows a rocket of 
mass M moving along an x axis at the constant speed vi = 40 m/s.  
A small explosion separates the rocket into a rear section (of 
mass m1) and a front section; both sections move along the  
x axis. The relative speed between the two sections is 20 m/s. 
Approximately what are the (a) minimum possible and (b) max-
imum possible values of the final speed vf of the front section 
and for what limiting values of m1 do they occur?

x

M

Figure 9.55 Problem 100. 

101 BIO  Jumping from a crouch. A cheerleader with mass m 
crouches from a standing position, lowering the center of mass 
18 cm in the process. Then the cheerleader jumps vertically. The 
average force exerted on the floor during the jump is 3.00mg. 
What is the upward speed as the cheerleader passes through the 
standing position in leaving the floor?

102  Child walking on boat. A child who is standing in a 95 kg 
flat-bottom boat is initially 6.0 m from shore. The child starts 
to walk along the boat toward the shore. After walking 2.5 m 
relative to the boat, the child is 4.1 m from the shore. Assuming 
there is no drag from the water, find the child’s mass.

103  Moderator in a nuclear reactor. When fast neutrons are 
produced in a nuclear reactor, they must be slowed before they 
can participate in a chain-reaction process. This is done by allow-
ing them to collide with the nuclei of atoms in a moderator. (a) By 
what fraction is the kinetic energy of a neutron (mass m1) reduced 
in a head-on elastic collision with a nucleus (mass m2) initially at 
rest? (b) Evaluate the fraction for lead, carbon, and hydrogen. 
The ratios of nuclear mass to neutron mass (m2/m1) for those 
nuclei are 206 for lead, 12 for carbon, and about 1 for hydrogen.

104  Ball within a 
shell. In Fig. 9.56, a ball 
of mass m and radius R 
is placed inside a spheri-
cal shell of the same 
mass m and inner radius 
2R. The combination is 
at rest on a floor. The 
ball is released, rolls 
back and forth inside 
the shell, and finally 
comes to rest at the bot-
tom. What is the horizontal displacement d of the shell during 
this process?

105  Air track collision. A target glider with mass m2 = 350 g is 
at rest on an air track at distance d = 53 cm from the track’s end. 

2R
R

y

x0

Figure 9.56 Problem 104.
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A projectile glider with mass m1 = 590 g approaches the target 
glider with velocity v1i = −75 cm/s on an x axis along the track 
(Fig. 9.57a). It collides elastically with the target glider, and then 
the target glider hits and rebounds with the same speed from a 
short spring at its end of the track, the left end. That glider then 
catches up and collides elastically with the projectile glider for 
a second time (Fig. 9.57b). (a) How far from the left end of the 
track does this second collision occur? (b) If we halve the initial 
speed of glider 1, what then is the answer?

v1i
d

m2 m1

x

(a)

v2f v1f

m2 m1

x

x

d

(b)

Figure 9.57 Problem 105.

106  Bubbles in lava and creamy stouts. Some solidified lava 
contains a pattern of horizontal bubble layers separated verti-
cally with few intermediate bubbles. (Researchers must slice 
open solidified lava to see these bubbles.) Apparently, as the lava 
was cooling, bubbles rising from the bottom of the lava separated 
into these layers and then were locked into place when the lava 
solidified. Similar layering of bubbles has been studied in certain 
creamy stouts poured fresh from a tap into a clear glass. The ris-
ing bubbles quickly become sorted into layers (Fig. 9.58). The 
bubbles trapped within a layer rise at speed vt. The free bubbles 
between the layers rise at a greater speed vf. Bubbles breaking 
free from the top of one layer rise to join the bottom of the next 
layer. Assume that the rate at which a layer loses height at its top 
is dy/dt = vf and the rate at which it gains height at the bottom is 
also dy/dt = vf. If vf = 2.0vt = 1.0 cm/s, (a) what is the layer’s center 
of mass speed and (b) does the layer move upward or downward? 

Bubble layer

y

Free bubbles

vf

Figure 9.58 Problem 106.

107  Series of bullets into block. Bullets, each of mass m = 3.80 g, 
are fired horizontally with speed v = 1100 m/s into a large wood 
block of mass M = 12 kg that is initially at rest on a horizontal table. 
Assume the block can slide over the table with negligible friction. 
What is the block’s speed after the eighth bullet is embedded?

108 BIO  Go kart collision. In an inspection at a commercial go 
kart track (Fig. 9.59), you arrange for go kart A moving at a top 
speed of 19.3 km/h to directly rear-end a stationary go kart B. 
The mass for each go kart plus driver is 314 kg, and the motion 
is the positive direction of an x axis. Your instrumentation mea-
sures the duration of the collision ∆t and the coefficient of res-
titution e, which is the ratio of the relative velocities after the 
collision to that before the collision: 

 e =   
 v  2f   −  v  1f   _  v  2i   −  v  1i     . 

You find e = 0.230 and ∆t = 48.0 ms. (a) What is the magnitude of 
the acceleration of each driver in g units? (b) If safety standards 
disallow acceleration magnitudes more than 10g, is this track con-
sidered safe? (c) What is the change in the total kinetic energy? 

Figure 9.59 Problem 108.
109  Cannonball. A cannon with mass M = 1300 kg fires a ball 
with mass m = 72 kg in the positive direction of an x axis along 
the ground and with a velocity    v →    relative to the cannon, which 
recoils freely with velocity   V 

→
   relative to the ground. The magni-

tude of    v →    is 55 m/s. What are (a)   V 
→

    and (b) the velocity   v  g    of the 
ball relative to the ground?

110 BIO  Paintball strike. In a paintball game (Fig. 9.60), a paint-
ball hits a person’s arm along a path perpendicular to the arm. The 
ball has diameter 17.3 mm, mass m = 2.0 g, initial speed vi = 90 m/s,  
and final speed vf = 0, with the collision lasting for time interval 
∆t = 0.050 ms. What are (a) the impulse J and (b) the average 
force Favg? (c) How much kinetic energy K is lost in the colli-
sion and (d) what is that loss per unit area of the collision? The 
answers reveal that the collision will probably cause a bruise or 
welt on skin, but a direct collision to an unprotected eye can 
cause permanent blindness, with the eye being ruptured.

Figure 9.60 Problem 110. 
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111 CALC  Silbury Hill center of mass. Silbury Hill (Fig. 9.61a), 
a mound on the plains near Stonehenge, was built 4600 years 
ago for unknown reason. It is an incomplete right-circular cone 
(Fig. 9.61b) with a flattened top of radius r2 = 16 m, a base radius 
r1 = 88 m, and a height h = 40 m. If the cone were complete, it 
would have a height of H = 50.8 m. (a) What is the height of the 
mound’s center of mass? (b) If Silbury Hill has a density ρ =  1.5 ×  
 10  3   kg/m3, then how much work was required to lift the dirt from 
the level of the base to build the mound?

(a)

y

x

h

r2

r1

(b)

θ

Figure 9.61 Problem 111.

112 BIO  Hammer-fist strike. Figure 9.62a shows a taekwondo 
hammer-fist strike where the fist (mass   m  1   = 0.70 kg)  is brought 
down hard on a slender object that is supported at each end. 
That object is either a 0.14 kg board or a 3.2 kg concrete slab. 
The strike bends the object until it breaks (Fig. 9.62c). Treat 
the bending as being the compression of a spring with a spring 
constant k of  4.1 ×  10  4  N/m  for the board and  2.6 ×  10  6  N/m 
for the slab. Breaking occurs at a deflection d of 16 mm for the 
board and 1.1 mm for the slab. Just before they break, what is 
the energy stored in (a) the board and (b) the slab? At first con-
tact, what fist speed v is required to break (c) the board and 
(d) the slab? Assume that mechanical energy is conserved dur-
ing the bending, that the fist and struck objects stop just before 
the break, and the fist–object collision at the onset of bending is 
totally inelastic.

113  Blocks on a spring. Two blocks with masses m1 and m2 are 
connected by a spring and are free to slide on a frictionless hori-
zontal surface. The blocks are pulled apart along an x axis and 
then released from rest. At any later time, (a) what fraction frac1 
of the total kinetic energy of the system will block 1 have and (b) 
what fraction frac2 will block 2 have? (c) If   m  1   >  m  2  , which block 
has more kinetic energy?

114  Pregnancy shift of com. Figure 9.63 gives a simplified view 
of the weight supported on each foot of someone with weight 
mg standing upright with half the weight supported by each foot. 
An x axis lies along the foot, with xf = 0 at the forefoot and 
xh = 25 cm at the heel. On each forefoot the downward force 
is f(mg/2), where f is the fraction of the weight on a foot that 
is supported by the forefoot. Similarly, on each heel the down-
ward force is h(mg/2). The foot (and the person) is in equilib-
rium around the center of mass. During pregnancy, the center 
of mass shifts toward the heels by 41 mm. What percent of the 
weight shifts toward the heels? (The center of mass shifts back 
to its initial position after pregnancy.) 

com

HeelForefoot
xh

f(mg/2) h(mg/2)

x = 0
x

Figure 9.63 Problem 114.
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d

Figure 9.62 Problem 112.
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115  Race car–wall collision. Figure 9.64 is an overhead view 
of the path taken by a race car driver as the car collides with the 
racetrack wall. Just before the collision, the car travels at speed 
vi = 70 m/s along a straight line at 30° from the wall. Just after 
the collision, the car travels at speed vf = 50 m/s along a straight 
line at 10° from the wall. The driver’s mass is m = 80 kg, and 
the collision lasts 14 ms. (a) What is the impulse    J 

→
   on the driver 

due to the collision, in unit-vector notation and in magnitude-
angle notation? During the collision, what are the magnitudes of  
(b) the average force on the driver and (c) the driver’s accelera-
tion in g-units? Treat the driver as a particle-like body.

Wall

x

y

30°
10°

Path

Figure 9.64 Problem 115.

116 BIO  Falling onto an outstretched hand. Falling is a chronic 
and serious condition among skateboarders (Fig. 9.65), in-line 
skaters, elderly people, people with seizures, and many others. 
The average force on the hand that results in fracture of the 
wrist is F = 2.1 kN. Assume that the arm has a mass of 3.3 kg 
and the duration of the impact is 5.0 ms. (a) What initial height h 
of the palm will result in that fracture force? (b) During impact, 
the distance between the shoulder and palm undergoes a spring-
like compression. If the effective spring constant is k = 27 kN/m, 
what is the compression? 

Figure 9.65 Problem 116.

117 BIO  Running, tripping dinosaur. Tyrannosaurus rex (Fig. 
9.66) may have known from experience not to run particularly 
fast because of the danger of tripping, in which case their short 
forearms would have been no help in cushioning the fall. Sup-
pose a T. Rex of mass m trips while walking, toppling over, with 
its center of mass falling freely a distance of 1.5 m. Then its cen-
ter of mass descends an additional 0.30 m owing to compression 
of its body and the ground. (a) In multiples of the dinosaur’s 
weight, what is the approximate magnitude of the average verti-
cal force on the dinosaur during its collision with the ground 
(during the descent of 0.30 m)? Now assume that the dinosaur 
is running at a speed of 19 m/s (fast) when it trips, falls to the 
ground, and then slides to a stop with a coefficient of kinetic 
friction of 0.60. Also assume that the average vertical force dur-
ing the collision and sliding is that in (a). What approximately 
are (b) the magnitude of the average total force on it from the 
ground (again, in multiples of its weight) and (c) the sliding dis-
tance? The force magnitudes of (a) and (b) strongly suggest that 
the collision would injure the torso of the dinosaur. The head, 
which would fall farther, would suffer even greater injury.

Figure 9.66 Problem 117.

Se
rg

ii 
G

na
tiu

k/
12

3 
R

F

le
on

el
lo

 c
al

ve
tt

i/1
23

 R
F

c09CenterOfMassAndLinearMomentum.indd   269 05/05/21   5:31 PM



270

 Rotation
10.1 ROTATIONAL VARIABLES
Learning Objectives 
After reading this module, you should be able to . . .

10.1.1 Identify that if all parts of a body rotate around 
a fixed axis locked together, the body is a rigid 
body. (This chapter is about the motion of such 
bodies.)

10.1.2 Identify that the angular position of a rotating 
rigid body is the angle that an internal reference line 
makes with a fixed, external reference line. 

10.1.3 Apply the relationship between angular 
displacement and the initial and final angular 
positions.

10.1.4 Apply the relationship between average angular 
velocity, angular displacement, and the time interval 
for that displacement.

10.1.5 Apply the relationship between average angular 
acceleration, change in angular velocity, and the 
time interval for that change.

10.1.6 Identify that counterclockwise motion is in the 
positive direction and clockwise motion is in the 
negative direction.

10.1.7 Given angular position as a function of time, 
calculate the instantaneous angular velocity at any 
particular time and the average angular velocity 
between any two particular times.

10.1.8 Given a graph of angular position versus time, 
determine the instantaneous angular velocity at a 
particular time and the average angular velocity 
between any two particular times.

10.1.9 Identify instantaneous angular speed as the 
magnitude of the instantaneous angular velocity.

10.1.10 Given angular velocity as a function 
of time, calculate the instantaneous angular 
acceleration at any particular time and the 
average angular acceleration between any two 
particular times.

10.1.11 Given a graph of angular velocity versus 
time, determine the instantaneous angular 
acceleration at any particular time and the 
average angular acceleration between any two 
particular times. 

10.1.12 Calculate a body’s change in angular velocity 
by integrating its angular acceleration function with 
respect to time.

10.1.13 Calculate a body’s change in angular position 
by integrating its angular velocity function with 
respect to time.

Key Ideas 
● To describe the rotation of a rigid body about a fixed 
axis, called the rotation axis, we assume a reference 
line is fixed in the body, perpendicular to that axis 
and rotating with the body. We measure the angular 
position θ of this line relative to a fixed direction. When 
θ is measured in radians,

 θ =   s _ r     (radian measure),

where s is the arc length of a circular path of radius r 
and angle θ. 

● Radian measure is related to angle measure in 
revolutions and degrees by

1 rev = 360° = 2π rad.

● A body that rotates about a rotation axis, changing 
its angular position from θ1 to θ2, undergoes an angular 
displacement

Δθ = θ2 − θ1,

where Δθ is positive for counterclockwise rotation and 
negative for clockwise rotation.

● If a body rotates through an angular displacement Δθ 
in a time interval Δt, its average  angular velocity ωavg is

  ω  avg   =   Δθ _ 
Δt

  . 

The (instantaneous) angular velocity ω of the body is

 ω =   dθ _ 
dt

  . 

 C H A P T E R  1 0
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What Is Physics?
As we have discussed, one focus of physics is motion. However, so far we 
have examined only the motion of translation, in which an object moves along 
a straight or curved line, as in Fig. 10.1.1a. We now turn to the motion of rotation, 
in which an object turns about an axis, as in Fig. 10.1.1b.

You see rotation in nearly every machine, you use it every time you open a 
beverage can with a pull tab, and you pay to experience it every time you go to an 
amusement park. Rotation is the key to many fun activities, such as hitting a long 
drive in golf (the ball needs to rotate in order for the air to keep it aloft longer) 
and throwing a curveball in baseball (the ball needs to rotate in order for the air 
to push it left or right). Rotation is also the key to more serious  matters, such as 
metal failure in aging airplanes.

Both ωavg and ω are vectors, with directions given by a 
right-hand rule. They are positive for counterclockwise 
rotation and negative for clockwise rotation. The magni-
tude of the body’s angular velocity is the angular speed.

● If the angular velocity of a body changes from ω1 to 
ω2 in a time interval Δt = t2 − t1, the average angular 
acceleration αavg of the body is

  α  avg   =   
 ω  2   −  ω  1   _  t  2   −  t  1  

   =   Δω _ 
Δt

  . 

The (instantaneous) angular acceleration α of the body is

 α =   dω _ 
dt

  . 

Both αavg and α are vectors.

Figure 10.1.1 Figure skater Sasha Cohen in motion of (a) pure translation in a fixed 
 direction and (b) pure rotation about a vertical axis.
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We begin our discussion of rotation by defining the variables for the motion, 
just as we did for translation in Chapter 2. As we shall see, the variables for rota-
tion are analogous to those for one-dimensional motion and, as in Chapter 2, an 
important special situation is where the acceleration (here the rotational accel-
eration) is constant. We shall also see that Newton’s second law can be written 
for rotational motion, but we must use a new quantity called torque instead of 
just force. Work and the work–kinetic energy theorem  can also be applied to 
rotational motion, but we must use a new quantity called rotational inertia instead 
of just mass. In short, much of what we have discussed so far can be applied to 
rotational motion with, perhaps, a few changes.

Caution: In spite of this repetition of physics ideas, many students find this 
and the next chapter very challenging. Instructors have a variety of reasons as to 
why, but two reasons stand out: (1) There are a lot of symbols (with Greek let-
ters) to sort out. (2) Although you are very familiar with linear motion (you can 
get across the room and down the road just fine), you are probably very unfamil-
iar with rotation (and that is one reason why you are willing to pay so much for 
amusement park rides). If a homework problem looks like a foreign language 
to you, see if translating it into the one-dimensional linear motion of Chapter 2 
helps. For example, if you are to find, say, an angular distance, temporarily delete 
the word angular and see if you can work the problem with the Chapter 2 nota-
tion and ideas.

Rotational Variables
We wish to examine the rotation of a rigid body about a fixed axis. A rigid body is 
a body that can rotate with all its parts locked together and without any change in 
its shape. A fixed axis means that the rotation occurs about an axis that does not 
move. Thus, we shall not examine an object like the Sun,  because the parts of the 
Sun (a ball of gas) are not locked together. We also shall not  examine an object 
like a bowling ball rolling along a lane, because the ball  rotates about a moving 
axis (the ball’s motion is a mixture of rotation and  translation).

Figure 10.1.2 shows a rigid body of arbitrary shape in rotation about a fixed 
axis, called the axis of rotation or the rotation axis. In pure rotation (angular  
motion), every point of the body moves in a circle whose center lies on the axis 
of rotation, and every point moves through the same angle during a particular 
time interval. In pure translation (linear motion), every point of the body moves 
in a straight line, and every point moves through the same linear distance during 
a particular time interval. 

We deal now—one at a time—with the angular equivalents of the linear 
quantities position, displacement, velocity, and acceleration.

Figure 10.1.2 A rigid body of arbitrary shape in pure rotation about the z axis of a coordi-
nate system. The position of the reference line with respect to the rigid body is arbitrary, but 
it is perpendicular to the rotation axis. It is fixed in the body and rotates with the body.

z

O

Reference line

Rotation
axis

x

y

Body This reference line is part of the body 
and perpendicular to the rotation axis. 
We use it to measure the rotation of the
body relative to a �xed direction.
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Figure 10.1.3 The rotating rigid body of 
Fig. 10.1.2 in cross section, viewed from 
above. The plane of the cross section is 
perpendicular to the rotation axis, which 
now extends out of the page, toward you. 
In this position of the body, the reference 
line makes an angle θ with the x axis.

x

y

Reference

lin
e

r

s

Rotation
axis

The body has rotated
counterclockwise
by angle θ. This is the
positive direction.

This dot means that
the rotation axis is 
out toward you.

θ

Angular Position
Figure 10.1.2 shows a reference line, fixed in the body, perpendicular to the rota-
tion axis and rotating with the body. The angular position of this line is the angle 
of the line relative to a fixed direction, which we take as the zero angular  position. 
In Fig. 10.1.3, the angular position θ is measured relative to the positive direction 
of the x axis. From geometry, we know that θ is given by

  θ =   s _ r      (radian measure). (10.1.1)

Here s is the length of a circular arc that extends from the x axis (the zero angular 
position) to the reference line, and r is the radius of the circle.

An angle defined in this way is measured in radians (rad) rather than in 
 revolutions (rev) or degrees. The radian, being the ratio of two lengths, is a 
pure number and thus has no dimension. Because the circumference of a circle of 
 radius r is 2πr, there are 2π radians in a complete circle:

   1 rev = 360° =   2πr _ r   = 2π rad,   (10.1.2)

and thus 1 rad = 57.3° = 0.159 rev. (10.1.3)

We do not reset θ to zero with each complete rotation of the reference line about 
the rotation axis. If the reference line completes two revolutions from the zero 
angular position, then the angular position θ of the line is θ = 4π rad.

For pure translation along an x axis, we can know all there is to know about a 
moving body if we know x(t), its position as a function of time. Similarly, for pure 
rotation, we can know all there is to know about a rotating body if we know θ(t), 
the angular position of the body’s reference line as a function of time.

Angular Displacement
If the body of Fig. 10.1.3 rotates about the rotation axis as in Fig. 10.1.4, changing 
the angular position of the reference line from θ1 to θ2, the body undergoes an  
angular displacement Δθ given by

 Δθ = θ2 − θ1. (10.1.4)

This definition of angular displacement holds not only for the rigid body as a 
whole but also for every particle within that body. 

Clocks Are Negative. If a body is in translational motion along an x axis, its 
displacement Δx is  either positive or negative, depending on whether the body 
is moving in the  positive or negative direction of the axis. Similarly, the angular 
displacement Δθ of a rotating body is either positive or negative, according to the 
following rule:

An angular displacement in the counterclockwise direction is positive, and one 
in the clockwise direction is negative.

The phrase “clocks are negative” can help you remember this rule (they certainly 
are negative when their alarms sound off early in the morning).

Checkpoint 10.1.1
A disk can rotate about its  cen tral axis like a merry-go-round. Which of the following 
pairs of values for its initial and final angular positions, respectively, give a negative  
angular displacement: (a) −3 rad, +5 rad, (b) −3 rad, −7 rad, (c) 7 rad, −3 rad?
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Angular Velocity
Suppose that our rotating body is at angular position θ1 at time t1 and at angular 
position θ2 at time t2 as in Fig. 10.1.4. We define the average angular velocity of 
the body in the time interval Δt from t1 to t2 to be

    ω  avg   =   
 θ  2   −  θ  1   _  t  2   −  t  1  

   =   Δθ _ 
Δt

  ,   (10.1.5)

where Δθ is the angular displacement during Δt (ω is the lowercase omega).
The (instantaneous) angular velocity ω, with which we shall be most con-

cerned, is the limit of the ratio in Eq. 10.1.5 as Δt approaches zero. Thus,

   ω =   lim  
Δt→0

     Δθ _ 
Δt

   =   dθ _ 
dt

  .   (10.1.6)

If we know θ(t), we can find the angular velocity ω by differentiation.
Equations 10.1.5 and 10.1.6 hold not only for the rotating rigid body as a 

whole but also for every particle of that body because the particles are all locked 
 together. The unit of angular velocity is commonly the radian per second (rad/s) 
or the revolution per second (rev/s). Another measure of angular velocity was 
used during at least the first three decades of rock: Music was produced by vinyl 
(phonograph) records that were played on turntables at “ 33  1 _ 3   rpm ” or “45 rpm,” 
meaning at  33  1 _ 3   rev / min  or 45 rev/min.

If a particle moves in translation along an x axis, its linear velocity v is either 
positive or negative, depending on its direction along the axis. Similarly, the angu-
lar velocity ω of a rotating rigid body is either positive or negative, depending on 
whether the body is  rotating counterclockwise (positive) or clockwise (negative). 
(“Clocks are negative” still works.) The magnitude of an angular velocity is called 
the angular speed, which is also represented with ω.

Angular Acceleration
If the angular velocity of a rotating body is not constant, then the body has an 
angular acceleration. Let ω2 and ω1 be its angular velocities at times t2 and t1, 
 respectively. The average angular acceleration of the rotating body in the interval 
from t1 to t2 is defined as

    α  avg   =   
 ω  2   −  ω  1   _  t  2   −  t  1  

   =   Δω _ 
Δt

  ,   (10.1.7)

in which Δω is the change in the angular velocity that occurs during the time 
 interval Δt. The (instantaneous) angular acceleration α, with which we shall be 
most concerned, is the limit of this quantity as Δt approaches zero. Thus,

   α =   lim  
Δt→0

     Δω _ 
Δt

   =   dω _ 
dt

  .   (10.1.8)

Figure 10.1.4 The reference line of the rigid body of Figs. 10.1.2 and 10.1.3 is at angular 
position θ1 at time t1 and at angular position θ2 at a later time t2. The quantity Δθ (= θ2 − θ1)  
is the angular displacement that occurs during the interval Δt (= t2 − t1). The body itself is 
not shown.

x

y

Rotation axisO
θ1

θ2

At t2

At t1

Reference line

This change in the angle of the reference line 
(which is part of the body) is equal to the angular
displacement of the body itself during this 
time interval.Δθ
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Sample Problem 10.1.1 Angular velocity derived from angular position

The disk in Fig. 10.1.5a is rotating about its central axis 
like a merry-go-round. The angular position θ(t) of a ref-
erence line on the disk is given by

 θ = −1.00 − 0.600t + 0.250t2, (10.1.9)

with t in seconds, θ in radians, and the zero angular 
position as indicated in the figure. (If you like, you can 
translate all this into Chapter 2 notation by momentarily 
dropping the word “angular” from “angular position” and 
replacing the symbol θ with the symbol x. What you then 
have is an equation that gives the position as a function of 
time, for the one-dimensional motion of Chapter 2.)

(a) Graph the angular position of the disk versus time 
from t = −3.0 s to t = 5.4 s. Sketch the disk and its angu-
lar position reference line at t = −2.0 s, 0 s, and 4.0 s, and 
when the curve crosses the t axis.

KEY IDEA

The angular position of the disk is the  angular position 
θ(t) of its reference line, which is given by Eq. 10.1.9 as 
a function of time t. So we graph Eq. 10.1.9; the result is 
shown in Fig. 10.1.5b.

Calculations: To sketch the disk and its reference line at 
a particular time, we need to determine θ for that time. To 
do so, we substitute the time into Eq. 10.1.9. For t = −2.0 s,  
we get

    θ = − 1.00 −   (  0.600 )     (  −2.0 )    +   (  0.250 )     (  −2.0 )    2  

  = 1.2 rad = 1.2 rad   360° _ 
2π rad

   = 69°. 

This means that at t = −2.0 s the reference line on the 
disk is rotated counterclockwise from the zero position by 

Zero
angular
position

Reference
line

Rotation axis

(a)

(b)

2

0

0
–2

2 4 6

(1) (2) (3) (4) (5)

t (s)

–2

The angular position
of the disk is the angle
between these two lines.

Now, the disk is
at a zero angle.

At t = –2 s, the disk
is at a positive
(counterclockwise)
angle. So, a positive
θ value is plotted.

This is a plot of the angle
of the disk versus time.

Now, it is at a
negative (clockwise)
angle. So, a negative
θ value is plotted.

It has reversed
its rotation and
is again at a
zero angle.

Now, it is
back at a
positive
angle.

(rad)θ

Figure 10.1.5 (a) A rotating disk. (b) A plot of the disk’s angular position θ(t). Five 
sketches indicate the angular position of the reference line on the disk for five points on 
the curve. (c) A plot of the disk’s angular velocity ω(t). Positive values of ω correspond 
to counterclockwise rotation, and negative values to clockwise rotation.

A

As the name suggests, this is the angular acceleration of the body at a given 
instant. Equations 10.1.7 and 10.1.8 also hold for every particle of that body. The 
unit of  angular acceleration is commonly the radian per second-squared (rad/s2) 
or the revolution per second-squared (rev/s2).
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angle 1.2 rad = 69° (counterclockwise because θ is posi-
tive). Sketch 1  in Fig. 10.1.5b shows this position of the 
reference line.

Similarly, for t = 0, we find θ = −1.00 rad = −57°, 
which means that the reference line is rotated clock-
wise from the zero angular position by 1.0 rad, or 57°, as 
shown in sketch 3. For t = 4.0 s, we find θ = 0.60 rad = 34° 
(sketch 5). Drawing sketches for when the curve crosses 
the t axis is easy, because then θ = 0 and the reference 
line is momentarily aligned with the zero angular position 
(sketches 2 and 4).

(b) At what time tmin does θ(t) reach the minimum value 
shown in Fig. 10.1.5b? What is that minimum value?

KEY IDEA

To find the extreme value (here the minimum) of a func-
tion, we take the first  derivative of the function and set 
the result to zero. 

Calculations: The first derivative of θ(t) is

     dθ _ 
dt

   = − 0.600 + 0.500t.   (10.1.10)

Setting this to zero and solving for t give us the time at 
which θ(t) is minimum:

 tmin = 1.20 s. (Answer)

To get the minimum value of θ, we next substitute tmin 
into Eq. 10.1.9, finding

 θ = −1.36 rad ≈ −77.9°. (Answer)

This minimum of θ(t) (the bottom of the curve in Fig. 
10.1.5b) corresponds to the maximum clockwise  rotation 
of the disk from the zero angular position, somewhat 
more than is shown in sketch 3.

(c) Graph the angular velocity ω of the disk versus time 
from t = −3.0 s to t = 6.0 s. Sketch the disk and indicate 
the direction of turning and the sign of ω at t = −2.0 s, 
4.0 s, and tmin.

KEY IDEA

From Eq. 10.1.6, the  angular velocity ω is equal to dθ/dt as 
given in Eq. 10.1.10. So, we have

 ω = −0.600 + 0.500t. (10.1.11)

The graph of this function ω(t) is shown in Fig. 10.1.5c. 
Because the function is linear, the plot is a straight line. 
The slope is 0.500 rad/s2 and the intercept with the verti-
cal axis (not shown) is −0.600 rad/s.

Calculations: To sketch the disk at t = −2.0 s, we substi-
tute that value into Eq. 10.1.11, obtaining

 ω = −1.6 rad/s. (Answer)

The minus sign here tells us that at t = −2.0 s, the disk is 
turning clockwise (as indicated by the left-hand sketch in 
Fig. 10.1.5c).

Substituting t = 4.0 s into Eq. 10.1.11 gives us

 ω = 1.4 rad/s. (Answer)

The implied plus sign tells us that now the disk is turning 
counterclockwise (the right-hand sketch in Fig. 10.1.5c).

For tmin, we already know that dθ/dt = 0. So, we must 
also have ω = 0. That is, the disk momentarily stops when 
the reference line reaches the minimum value of θ in Fig. 
10.1.5b, as suggested by the center sketch in Fig. 10.1.5c. On 
the graph of ω versus t in Fig. 10.1.5c, this momentary stop 
is the zero point where the plot changes from the negative 
clockwise motion to the positive counterclockwise motion. 

(d) Use the results in parts (a) through (c) to describe the 
motion of the disk from t = −3.0 s to t = 6.0 s.

Description: When we first observe the disk at t = −3.0 s, 
it has a positive angular position and is turning clockwise 
but  slowing. It stops at angular position θ = −1.36 rad and 
then  begins to turn counterclockwise, with its angular 
position eventually becoming positive again.

(c)

2

0

0

–2
–2 2 4 6

(rad/s)

t (s)

negative zero positive

This is a plot of the angular
velocity of the disk versus time.

The angular velocity is
initially negative and slowing,
then momentarily zero during
reversal, and then positive and
increasing.

ωωω

ω

additional examples, video, and 
practice available at WileyPLUS
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To evaluate the constant of integration C, we note that 
ω = 5 rad/s at t = 0. Substituting these values in our expres-
sion for ω yields

 5 rad / s = 0 − 0 + C, 

so C = 5 rad/s. Then

 ω =    5 _ 4    t   
4  − 2 t   2  + 5. (Answer)

(b) Obtain an expression for the angular position θ(t) of  
the top.

KEY IDEA

By definition, ω(t) is the derivative of θ (t) with respect to 
time. Therefore, we can find θ (t) by integrating ω(t) with  
respect to time. 

Calculations: Since Eq. 10.1.6 tells us that

dθ = ω dt,
we can write

θ =    
 
  
 

  ω dt   =    
 
  
 

    (     5 _ 4   t   
4  − 2 t   2  + 5 )      dt

 =    1 _ 4     t   
5  −    2 _ 3    t   

3  + 5t + C′

 =    1 _ 4     t   
5  −    2 _ 3    t   

3  + 5t + 2, (Answer)

where C′ has been evaluated by noting that θ = 2 rad at 
t = 0.

A child’s top is spun with angular acceleration

 α = 5 t   3  − 4t, 

with t in seconds and α in radians per second-squared. At 
t = 0, the top has angular velocity 5 rad/s, and a reference 
line on it is at angular position θ = 2 rad.

(a) Obtain an expression for the angular velocity ω(t) of 
the top. That is, find an expression that explicitly indicates 
how the angular velocity depends on time. (We can tell 
that there is such a dependence because the top is under-
going an angular acceleration, which means that its angu-
lar velocity is changing.)

KEY IDEA

By definition, α(t) is the derivative of ω(t) with respect to 
time. Thus, we can find ω(t) by integrating α(t) with respect 
to time. 

Calculations: Equation 10.1.8 tells us

 dω = α dt, 

so       
 
  
 

   dω    =   
 
  
 

    α dt.   

From this we find

 ω =   
 
  
 

   (5  t   3  − 4t)  dt   =   5 _ 4   t   
4  −   4 _ 2   t   

2  + C. 

Sample Problem 10.1.2 Angular velocity derived from angular acceleration

Are Angular Quantities Vectors?
We can describe the position, velocity, and acceleration of a single particle by 
means of vectors. If the particle is confined to a straight line, however, we do not 
really need vector notation. Such a particle has only two directions available to it, 
and we can indicate these directions with plus and minus signs.

In the same way, a rigid body rotating about a fixed axis can rotate only 
clockwise or counterclockwise as seen along the axis, and again we can select 
 between the two directions by means of plus and minus signs. The question arises: 
“Can we treat the angular displacement, velocity, and acceleration of a  rotating 
body as vectors?” The answer is a qualified “yes” (see the caution  below, in con-
nection with angular displacements).

Angular Velocities. Consider the angular velocity. Figure 10.1.6a shows a 
vinyl record rotating on a turntable. The record has a constant angular speed  
 ω  (= 33  1 _ 3    rev / min)   in the clockwise direction. We can represent its angular 
velocity as a vector    ω →    pointing along the axis of rotation, as in Fig. 10.1.6b. 
Here’s how: We choose the length of this vector according to some convenient 
scale, for example, with 1 cm corresponding to 10 rev/min. Then we establish a 
direction for the vector    ω →    by using a right-hand rule, as Fig. 10.1.6c shows: Curl 

additional examples, video, and practice available at WileyPLUS
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278  CHAPTER 10 ROTATION

your right hand about the rotating record, your fingers pointing in the direction 
of rotation. Your extended thumb will then point in the direction of the angu-
lar velocity vector. If the record were to rotate in the opposite sense, the right-
hand rule would tell you that the  angular velocity vector then points in the  
opposite direction.

It is not easy to get used to representing angular quantities as vec-
tors. We instinctively expect that something should be moving along 
the direction of a vector. That is not the case here. Instead, some-
thing (the rigid body) is rotating around the direction of the vector. 
In the world of pure rotation, a vector defines an axis of rotation, 
not a direction in which something moves. Nonetheless, the vector 
also defines the motion. Furthermore, it obeys all the rules for vector 
 manipulation discussed in Chapter 3. The angular acceleration    a →    is 
another  vector, and it too obeys those rules.

In this chapter we consider only rotations that are about a fixed 
axis. For such situations, we need not consider vectors—we can rep-
resent angular velocity with ω and angular acceleration with α, and we 
can indicate direction with an implied plus sign for counterclockwise 
or an explicit minus sign for clockwise.

Angular Displacements. Now for the caution: Angular displace-
ments (unless they are very small) cannot be treated as vectors. Why 
not? We can certainly give them both magnitude and direction, as 
we did for the angular velocity vector in Fig. 10.1.6. However, to be 
represented as a vector, a quantity must also obey the rules of vec-
tor addition, one of which says that if you add two vectors, the order 
in which you add them does not matter. Angular displacements fail 
this test.

Figure 10.1.7 gives an example. An initially horizontal book is 
given two 90° angular displacements, first in the order of Fig. 10.1.7a 
and then in the order of Fig. 10.1.7b. Although the two angular dis-
placements are identical, their order is not, and the book ends up 
with different orientations. Here’s another example. Hold your 
right arm downward, palm toward your thigh. Keeping your wrist 

Figure 10.1.6 (a) A record rotating about a vertical axis that coincides with the axis of 
the spindle. (b) The angular velocity of the rotating record can be represented by the 
vector    ω →   , lying along the axis and pointing down, as shown. (c) We establish the direc-
tion of the angular velocity vector as downward by using a right-hand rule. When the 
fingers of the right hand curl around the record and point the way it is moving, the 
extended thumb points in the direction of    ω →   .

z z z

(a) (b) (c)

Axis Axis Axis

Spindle

This right-hand rule
establishes the
direction of the
angular velocity
vector.

ω ω

Figure 10.1.7 (a) From its initial position, at 
the top, the book is given two successive 90° 
 rotations, first about the (horizontal) x axis and 
then about the (vertical) y axis. (b) The book is 
given the same rotations, but in the reverse order.
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Rotation with Constant Angular Acceleration
In pure translation, motion with a constant linear acceleration (for example, that 
of a falling body) is an important special case. In Table 2.4.1, we displayed a series 
of equations that hold for such motion.

In pure rotation, the case of constant angular acceleration is also important, 
and a parallel set of equations holds for this case also. We shall not derive them 
here, but simply write them from the corresponding linear equations, substitut-
ing equivalent angular quantities for the linear ones. This is done in Table 10.2.1, 
which lists both sets of equations (Eqs. 2.4.1 and 2.4.5 to 2.4.8; 10.2.1 to 10.2.5).

Recall that Eqs. 2.4.1 and 2.4.5 are basic equations for constant linear  
acceleration—the other equations in the Linear list can be derived from them. 
Similarly, Eqs. 10.2.1 and 10.2.2 are the basic equations for constant angular 
 acceleration, and the other equations in the Angular list can be derived from 
them. To solve a simple problem involving constant angular acceleration, you can  
usually use an equation from the Angular list (if you have the list). Choose 
an equation for which the only unknown variable will be the variable requested 
in the problem. A better plan is to remember only Eqs. 10.2.1 and 10.2.2, and then 
solve them as simultaneous equations whenever needed. 

rigid, (1) lift the arm forward until it is horizontal, (2) move it  horizontally 
until it points toward the right, and (3) then bring it down to your side. Your 
palm faces forward. If you start over, but reverse the steps, which way does 
your palm end up facing? From either example, we must conclude that the 
addition of two angular displacements depends on their order and they cannot 
be vectors. FCP

10.2 ROTATION WITH CONSTANT ANGULAR ACCELERATION 
Learning Objective 
After reading this module, you should be able to . . .

10.2.1 For constant angular acceleration, apply the 
relationships between angular position, angular 

displacement, angular velocity, angular acceleration, 
and elapsed time (Table 10.2.1).

Key Idea 
● Constant angular acceleration (α = constant) is an important special case of  
rotational motion. The appropriate kinematic equations are

  ω =  ω  0   + αt, 

  θ −  θ  0   =  ω  0  t +   1 _ 2  α t   2 ,  
   ω   2  =  ω  0  2  + 2α  (  θ −  θ  0   )   , 

  θ −  θ  0   =   1 _ 2    (   ω  0   + ω )   t, 
  θ −  θ  0   = ωt −   1 _ 2  α t   2 . 

Checkpoint 10.2.1
In four situations, a rotating body has angular position θ(t) given by (a) θ = 3t − 4, 
(b) θ = −5t3 + 4t2 + 6, (c) θ = 2/t2 − 4/t, and (d) θ = 5t2 − 3. To which situations do the 
angular equations of Table 10.2.1 apply?
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Table 10.2.1 Equations of Motion for Constant Linear Acceleration and for Constant  
Angular Acceleration

Equation  
Number

Linear 
Equation

Missing 
Variable

Angular 
Equation

Equation 
Number

(2.4.1) v = v0 + at x − x0 θ − θ0 ω = ω0 + αt (10.2.1)

(2.4.5)   x −  x  0   =  v  0  t +   1 _ 2  a t   2  v ω  θ −  θ  0   =  ω  0  t +   1 _ 2  α t   2   (10.2.2)

(2.4.6)   v   2  =  v  0  
2  + 2a (x −  x  0  )   t t   ω   2  =  ω  0  

2  + 2α (θ −  θ  0  )   (10.2.3)

(2.4.7)   x −  x  0   =   1 _ 2   ( v  0   + v) t a α   θ −  θ  0   =   1 _ 2    (   ω  0   + ω )   t (10.2.4)

(2.4.8)  x −  x  0   = vt −   1 _ 2  a t   2   v0 ω0   θ −  θ  0   = ωt −   1 _ 2  α t   2  (10.2.5)

Sample Problem 10.2.1 Constant angular acceleration, grindstone

Sample Problem 10.2.2 Constant angular acceleration, riding a Rotor

A grindstone (Fig. 10.2.1) rotates at constant angular 
acceleration α = 0.35 rad/s2. At time t = 0, it has an angu-
lar velocity of ω0 = −4.6 rad/s and a reference line on it is 
horizontal, at the angular position θ0 = 0.

(a) At what time after t = 0 is the reference line at the 
angular position θ = 5.0 rev?

KEY IDEA

The angular acceleration is constant, so we can use the 
rotation equations of Table 10.2.1. We choose Eq. 10.2.2,

 θ −  θ  0   =  ω  0  t +   1 _ 2   α t   2 , 

because the only unknown variable it contains is the 
desired time t. 

Calculations: Substituting known values and setting  
θ0 = 0 and θ = 5.0 rev = 10π rad give us

 10π rad =  (−4.6 rad/s) t +   1 _ 2   (0.35  rad / s  2 )  t   2 . 

While you are operating a Rotor (a large, vertical, rotating 
cylinder found in amusement parks), you spot a passenger 
in acute distress and decrease the angular velocity of the cyl-
inder from 3.40 rad/s to 2.00 rad/s in 20.0 rev, at constant 

(We converted 5.0 rev to 10π rad to keep the units consis-
tent.) Solving this quadratic equation for t, we find

 t = 32 s. (Answer)

Now notice something a bit strange. We first see the wheel 
when it is rotating in the negative direction and through 
the θ = 0 orientation. Yet, we just found out that 32 s later 
it is at the positive orientation of θ = 5.0 rev. What hap-
pened in that time interval so that it could be at a positive 
orientation?

(b) Describe the grindstone’s rotation between t = 0 and  
t = 32 s.

Description: The wheel is initially rotating in the nega-
tive (clockwise) direction with angular velocity ω0 = −4.6 
rad/s, but its angular acceleration α is  positive. This initial 
opposition of the signs of angular velocity and angular 
acceleration means that the wheel slows in its  rotation in 
the negative  direction, stops, and then reverses to rotate 
in the positive  direction. After the reference line comes 
back through its initial orientation of θ = 0, the wheel 
turns an additional 5.0 rev by time t = 32 s.

(c) At what time t does the grindstone momentarily stop?

Calculation: We again go to the table of equations for 
constant angular acceleration, and again we need an equa-
tion that contains only the desired unknown variable t.  
However, now the equation must also contain the variable 
ω, so that we can set it to 0 and then solve for the corre-
sponding time t. We choose Eq. 10.2.1, which yields

 t =   
ω −  ω  0   _ α   =   

0 −   (  − 4.6 rad/s )   
  ____________  

0.35  rad/s  2 
   = 13 s. (Answer)

angular acceleration. (The passenger is obviously more of a 
“translation person” than a “rotation person.”) FCP

(a) What is the constant angular acceleration during this 
 decrease in angular speed?

Figure 10.2.1 A grindstone. At t = 0 the reference line (which we 
imagine to be marked on the stone) is horizontal.

Axis

Reference
line

Zero angular
position

We measure rotation by using
this reference line.
Clockwise = negative
Counterclockwise = positive
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which we then substitute into Eq. 10.2.2 to write

 θ −  θ  0   =  ω  0    (     
ω −  ω  0   _ α   )    +   1 _ 2   α   (     

ω −  ω  0   _ α   )    
2
 . 

Solving for α, substituting known data, and converting 
20 rev to 125.7 rad, we find

 α =   
 ω   2  −  ω  0  

2 
 _ 

2 (θ −  θ  0  ) 
   =   

  (  2.00 rad / s )    2  −  (3.40 rad / s )  2  
   ____________________  

2  (  125.7 rad )   
   

    = − 0.0301  rad / s  2 . (Answer)

(b) How much time did the speed decrease take?

Calculation: Now that we know α, we can use Eq. 10.2.1 
to solve for t:

 t =   
ω −  ω  0   _ α   =   2.00 rad / s − 3.40 rad / s  ________________  

− 0 .0301 rad / s  2 
   

 = 46.5 s. (Answer)

KEY IDEA

Because the cylinder’s angular acceleration is constant, 
we can relate it to the angular velocity and angular dis-
placement via the basic equations for constant angular 
acceleration (Eqs. 10.2.1 and 10.2.2). 

Calculations: Let’s first do a quick check to see if we can 
solve the basic equations. The initial angular velocity is  
ω0 = 3.40 rad/s, the  angular displacement is θ − θ0 = 20.0 
rev, and the angular  velocity at the end of that displace-
ment is ω = 2.00 rad/s. In addition to the angular accelera-
tion α that we want, both basic equations also contain time 
t, which we do not necessarily want.

To eliminate the unknown t, we use Eq. 10.2.1 to write

 t =   
ω −  ω  0   _ α  , 

10.3 RELATING THE LINEAR AND ANGULAR VARIABLES
Learning Objectives 
After reading this module, you should be able to . . .

10.3.1 For a rigid body rotating about a fixed axis, relate 
the angular variables of the body (angular position, 
angular velocity, and angular acceleration) and the 
linear variables of a particle on the body (position, 
velocity, and acceleration) at any given radius.

10.3.2 Distinguish between tangential acceleration and 
radial acceleration, and draw a vector for each in 
a sketch of a particle on a body rotating about an 
axis, for both an increase in angular speed and a 
decrease.

Key Ideas 
● A point in a rigid rotating body, at a perpendicular 
distance r from the rotation axis, moves in a circle with 
radius r. If the body rotates through an angle θ, the 
point moves along an arc with length s given by

s = θr  (radian measure),

where θ is in radians.

● The linear velocity    v →    of the point is tangent to the 
circle; the point’s linear speed v is given by

v = ωr  (radian measure),

where ω is the angular speed (in radians per second) of 
the body, and thus also the point.

● The linear acceleration    a →    of the point has both 
tangential and radial components. The tangential 
component is

at = αr  (radian measure),

where α is the magnitude of the angular acceleration 
(in radians per second-squared) of the body. The radial 
component of    a →    is

 a  r   =    v   2  _ r   =  ω   2 r  (radian measure).

● If the point moves in uniform circular motion, the 
period T of the motion for the point and the body is

T =   2πr _ v   =   2π _ ω    (radian measure).

Relating the Linear and Angular Variables
In Module 4.5, we discussed uniform circular motion, in which a particle travels at 
constant linear speed v along a circle and around an axis of rotation. When a rigid 
body, such as a merry-go-round, rotates around an axis, each particle in the body 

additional examples, video, and practice available at WileyPLUS

c10Rotation.indd   281 06/05/21   7:39 PM



282  CHAPTER 10 ROTATION

moves in its own circle around that axis. Since the body is rigid, all the particles 
make one revolution in the same amount of time; that is, they all have the same 
angular speed ω.

However, the farther a particle is from the axis, the greater the circumference 
of its circle is, and so the faster its linear speed v must be. You can notice this on 
a merry-go-round. You turn with the same angular speed ω regardless of your 
distance from the center, but your linear speed v increases noticeably if you move 
to the outside edge of the merry-go-round.

We often need to relate the linear variables s, v, and a for a particular point 
in a rotating body to the angular variables θ, ω, and α for that body. The two 
sets of variables are related by r, the perpendicular distance of the point from the 
 rotation axis. This perpendicular distance is the distance between the point and 
the rotation axis, measured along a perpendicular to the axis. It is also the radius r 
of the circle traveled by the point around the axis of rotation.

The Position
If a reference line on a rigid body rotates through an angle θ, a point 
within the body at a position r from the rotation axis moves a distance s 
along a circular arc, where s is given by Eq. 10.1.1:

 s = θr   (radian measure). (10.3.1)

This is the first of our linear–angular relations. Caution: The angle θ 
here must be measured in radians because Eq. 10.3.1 is itself the defini-
tion of angular measure in radians.

The Speed
Differentiating Eq. 10.3.1 with respect to time—with r held constant—
leads to

   ds _ 
dt

   =   dθ _ 
dt

  r. 

However, ds/dt is the linear speed (the magnitude of the linear velocity) 
of the point in question, and dθ/dt is the angular speed ω of the rotating 
body. So

 v = ωr   (radian measure). (10.3.2)

Caution: The angular speed ω must be expressed in radian measure.
Equation 10.3.2 tells us that since all points within the rigid body 

have the same angular speed ω, points with greater radius r have 
greater linear speed v. Figure 10.3.1a reminds us that the linear velocity 
is always tangent to the circular path of the point in question.

If the angular speed ω of the rigid body is constant, then Eq. 10.3.2 
tells us  that the linear speed v of any point within it is also constant. 
Thus, each point within the body undergoes uniform circular motion. 
The period of revolution T for the motion of each point and for the 
rigid body itself is given by Eq. 4.5.2:

 
  T =   2πr _ v  .   (10.3.3)

This equation tells us that the time for one revolution is the distance 2πr 
traveled in one revolution divided by the speed at which that distance 
is traveled. Substituting for v from Eq. 10.3.2 and canceling r, we find 
also that

 T =   2π _ ω     (radian measure). (10.3.4)

Figure 10.3.1 The rotating rigid body of 
Fig. 10.1.2, shown in cross section viewed from 
above. Every point of the body (such as P)  
moves in a circle around the rotation axis. 
(a) The linear velocity    v →    of every point is 
tangent to the circle in which the point moves. 
(b) The linear acceleration    a →    of the point has 
(in general) two components: tangential at and 
radial ar.

x

y

r

Rotation
axis

P

Circle
traveled by P

(a)

v

The velocity vector is
always tangent to this
circle around the
rotation axis.

x

y

ar

P

(b)

at

Rotation
axis

The acceleration always
has a radial (centripetal)
component and may have
a tangential component.
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28310.3 Relating tHe lineaR and angulaR VaRiables

This equivalent equation says that the time for one revolution is the angular dis-
tance 2π rad traveled in one revolution divided by the angular speed (or rate) at 
which that angle is traveled.

The Acceleration
Differentiating Eq. 10.3.2 with respect to time—again with r held constant— 
leads to

      dv _ 
dt

   =   dω _ 
dt

   r.   (10.3.5)

Here we run up against a complication. In Eq. 10.3.5, dv/dt represents only the 
part of the linear acceleration that is responsible for changes in the magnitude v 
of the linear velocity    v →   . Like    v →   , that part of the linear acceleration is tangent to 
the path of the point in question. We call it the tangential component at of the 
linear acceleration of the point, and we write

 at = αr   (radian measure), (10.3.6)

where α = dω/dt. Caution: The angular acceleration α in Eq. 10.3.6 must be 
 expressed in radian measure.

In addition, as Eq. 4.5.1 tells us, a particle (or point) moving in a circular path 
has a radial component of linear acceleration, ar = v2/r (directed radially  inward), 
that is responsible for changes in the direction of the linear velocity    v →   . By substi-
tuting for v from Eq. 10.3.2, we can write this component as

 
 a  r   =    v   2  _ r   =  ω   2 r   (radian measure). (10.3.7)

Thus, as Fig. 10.3.1b shows, the linear acceleration of a point on a rotating rigid 
body has, in general, two components. The radially inward component ar (given 
by Eq. 10.3.7) is present whenever the angular velocity of the body is not zero. 
The tangential component at (given by Eq. 10.3.6) is present whenever the angu-
lar acceleration is not zero.

Checkpoint 10.3.1
A cockroach rides the rim of a rotating merry-go-round. If the angular speed of this 
system (merry-go-round + cockroach) is constant, does the cockroach have (a) radial 
acceleration and (b) tangential acceleration? If ω is decreasing, does the cockroach 
have (c) radial acceleration and (d) tangential acceleration?

Sample Problem 10.3.1 Designing The Giant Ring, a large-scale amusement park ride

We are given the job of designing a large horizontal ring that 
will rotate around a vertical axis and that will have a radius 
of r = 33.1 m (matching that of Beijing’s The Great Obser-
vation Wheel, the largest Ferris wheel in the world). Passen-
gers will enter through a door in the outer wall of the ring 
and then stand next to that wall (Fig. 10.3.2a). We decide 
that for the time interval t = 0 to t = 2.30 s, the angular posi-
tion θ(t) of a reference line on the ring will be given by

 θ = ct3, (10.3.8)

θ

a

ar

at

(b)(a)

Figure 10.3.2 (a) Overhead view 
of a passenger ready to ride The 
Giant Ring. (b) The radial and 
tangential acceleration compo-
nents of the (full) acceleration.
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The tangential acce leration then follows from Eq. 10.3.6:

 at = αr = 6ctr (10.3.11)

  = 6(6.39 × 10−2 rad/s3)(2.20 s)(33.1 m)

 = 27.91 m/s2  ≈  27.9 m/s2, (Answer)

or 2.8g (which is reasonable and a bit exciting). Equation 
10.3.11 tells us that the tangential acceleration is increas-
ing with time (but it will cut off at t = 2.30 s). From Eq. 
10.3.7, we write the radial acceleration as

ar = ω2r.

Substituting from Eq. 10.3.9 leads us to

 ar = (3ct2)2r = 9c2t4r (10.3.12)

= 9(6.39 × 10−2 rad/s3)2(2.20 s)4(33.1 m)

 = 28.49 m/s2  ≈  28.5 m/s2, (Answer)

or 2.9g (which is also reasonable and a bit exciting).
The radial and tangential accelerations are perpendic-

ular to each other and form the components of the rider’s 
acceleration    a →    (Fig. 10.3.2b). The magnitude of    a →    is given by

   a =  √ 
_______

  a  r  
2  +  a  t  

2       (10.3.13)

    =  √ 
__________________________

    (  28.49   m / s  2    )    2  +   (  27.91  m / s  2    )    2     

  ≈  39.9 m/s2, (Answer)

or 4.1g (which is really exciting!). All these values are  
acceptable.

To find the orientation of    a →   , we can calculate the 
angle θ shown in Fig. 10.3.2b:

 tan  θ =   
 a  t   _  a  r  

  . 

However, instead of substituting our numerical results, 
let’s use the algebraic results from Eqs. 10.3.11 and 10.3.12:

  θ =  tan  −1   (    6ctr _ 
9 c   2  t   4 r

   )    =  tan  −1   (    2 _ 
3c t   3 

   )   .   (10.3.14)

The big advantage of solving for the angle algebraically  
is that we can then see that the angle (1) does not depend on 
the ring’s radius and (2) decreases as t goes from 0 to 2.20 s.  
That is, the acceleration vector    a →    swings toward being 
radially inward because the radial acceleration (which 
depends on t 4) quickly dominates over the tangential 
acceleration (which depends on only t). At our given time 
t = 2.20 s, we have

θ =  tan  −1    2  ____________________   
3  (  6.39 ×  10  −2    rad / s  3  )     (  2.20 s )    3 

   = 44.4°. (Answer)

with c = 6.39 × 10−2 rad/s3. After t = 2.30 s, the angular speed 
will be held constant until the end of the ride. Once the ring 
begins to rotate, the floor of the ring will drop away from 
the riders but the riders will not fall—indeed, they feel as 
though they are pinned to the wall. For the time t = 2.20 s,  
let’s determine a rider’s angular speed ω, linear speed v, 
angular acceleration α, tangential acceleration at, radial 
acceleration ar, and acceleration    a →   .

KEY IDEAS

(1) The angular speed ω is given by Eq. 10.1.6 (ω = dθ/dt).  
(2) The linear speed v (along the circular path) is related 
to the angular speed (around the rotation axis) by Eq. 
10.3.2 (v = ωr). (3) The angular acceleration α is given by 
Eq. 10.1.8 (α = dω/dt). (4) The tangential acceleration at 
(along the circular path) is related to the angular accel-
eration (around the rotation axis) by Eq. 10.3.6 (at = αr).  
(5) The radial acceleration ar is given Eq. 10.3.7 (ar = ω2r). 
(6) The tangential and radial accelerations are the (per-
pendicular) components of the (full) acceleration    a →   .

Calculations: Let’s go through the steps. We first find 
the angular velocity by taking the time derivative of the 
given angular position function and then substituting the 
given time of t = 2.20 s:

    ω =   dθ _ 
dt

   =   d _ 
dt

    (c t   3 )  = 3c t   2    (10.3.9)

 = 3(6.39 × 10−2 rad/s3)(2.20 s)2

 = 0.928 rad/s. (Answer)

From Eq. 10.3.2, the linear speed just then is

 v = ωr = 3ct2r (10.3.10)
 = 3(6.39 × 10−2 rad/s3)(2.20 s)2(33.1 m)

 = 30.7 m/s. (Answer)

Although this is fast (111 km/h or 68.7 mi/h), such speeds are 
common in amusement parks and not alarming because (as 
mentioned in Chapter 2) your body reacts to accelerations 
but not to velocities. (It is an accelerometer, not a speed-
ometer.) From Eq. 10.3.10 we see that the linear speed is 
increasing as the square of the time (but this increase will 
cut off at t = 2.30 s).

Next, let’s tackle the angular acceleration by taking 
the time derivative of Eq. 10.3.9:

α =   dω _ 
dt

   =   d _ 
dt

   (3c  t   2 )  = 6ct

= 6(6.39 × 10−2 rad/s3)(2.20 s) = 0.843 rad/s2. (Answer)

additional examples, video, and practice available at WileyPLUS
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Kinetic Energy of Rotation
The rapidly rotating blade of a table saw certainly has kinetic energy due to that 
rotation. How can we express the energy? We cannot apply the familiar formula  
K =   1 _ 2  m v   2   to the saw as a whole because that would give us the kinetic energy only 
of the saw’s center of mass, which is zero.

Instead, we shall treat the table saw (and any other rotating rigid body) as 
a collection of particles with different speeds. We can then add up the kinetic 
 energies of all the particles to find the kinetic energy of the body as a whole. 
In this way we obtain, for the kinetic energy of a rotating body,

  K =   1 _ 2    m  1   v  1  
2  +   1 _ 2    m  2   v  2  

2  +   1 _ 2    m  3   v  3  
2  + . . . 

  =  ∑     1 _ 2     m  i   v  i  
2 ,  (10.4.1)

in which mi is the mass of the ith particle and vi is its speed. The sum is taken over 
all the particles in the body.

The problem with Eq. 10.4.1 is that vi is not the same for all particles. We 
solve this problem by substituting for v from Eq. 10.3.2 (v = ωr), so that we have

   K =  ∑     1 _ 2     m  i    (  ω r  i   )    2  =   1 _ 2   (  ∑    m  i    r  i  
2  )  ω   2 ,   (10.4.2)

in which ω is the same for all particles.
The quantity in parentheses on the right side of Eq. 10.4.2 tells us how the mass 

of the rotating body is distributed about its axis of rotation. We call that quantity 
the rotational inertia (or moment of inertia) I of the body with  respect to the axis 
of rotation. It is a constant for a particular rigid body and a particular rotation axis. 
(Caution: That axis must always be specified if the value of I is to be meaningful.)

We may now write

 I =   ∑    m  i     r  i  
2  (rotational inertia) (10.4.3)

and substitute into Eq. 10.4.2, obtaining

 K =   1 _ 2  I ω   2  (radian measure) (10.4.4)

as the expression we seek. Because we have used the relation v = ωr in deriv-
ing Eq. 10.4.4, ω must be expressed in radian measure. The SI unit for I is the 
 kilogram–square meter (kg ⋅ m2).

10.4 KINETIC ENERGY OF ROTATION
Learning Objectives 
After reading this module, you should be able to . . .

10.4.1 Find the rotational inertia of a particle about  
a point.

10.4.2 Find the total rotational inertia of many particles 
moving around the same fixed axis. 

10.4.3 Calculate the rotational kinetic energy of a  
body in terms of its rotational inertia and its angular  
speed.

Key Idea 
● The kinetic energy K of a rigid body rotating about a 
fixed axis is given by

K =   1 _ 2   I  ω   2    (radian measure),

in which I is the rotational inertia of the body, defined as

 I =  ∑    m  i    r  i  
2  

for a system of discrete particles.
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The Plan. If we have a few particles and a specified rotation axis, 
we find mr2 for each particle and then add the results as in Eq. 10.4.3 to 
get the total rotational inertia I. If we want the total rotational kinetic 
energy, we can then substitute that I into Eq. 10.4.4. That is the plan for 
a few particles, but suppose we have a huge number of particles such as 
in a rod. In the next module we shall see how to handle such continuous 
bodies and do the calculation in only a few minutes.

Equation 10.4.4, which gives the kinetic energy of a rigid body in pure 
rotation, is the angular equivalent of the formula  K =   1 _ 2  M v  com  2   , which gives 
the  kinetic energy of a rigid body in pure translation. In both formulas 
there is a  factor of    1 _ 2   . Where mass M appears in one equation, I (which 
involves both mass a  nd its distribution) appears in the other. Finally, each 
equation contains as a factor the square of a speed—translational or rota-
tional as appropriate. The kinetic energies of translation and of rotation 
are not different kinds of energy. They are both kinetic energy, expressed 
in ways that are appropriate to the  motion at hand.

We noted previously that the rotational inertia of a rotating body 
involves not only its mass but also how that mass is distributed. Here 

is an example that you can literally feel. Rotate a long, fairly heavy rod (a pole, 
a length of lumber, or something similar), first around its central (longitudinal) 
axis (Fig. 10.4.1a) and then around an axis perpendicular to the rod and through 
the center (Fig. 10.4.1b). Both rotations involve the very same mass, but the first 
rotation is much easier than the second. The reason is that the mass is distributed 
much closer to the rotation axis in the first rotation. As a result, the rotational 
inertia of the rod is much smaller in Fig. 10.4.1a than in Fig. 10.4.1b. In general, 
smaller rotational inertia means easier rotation.

10.5 CALCULATING THE ROTATIONAL INERTIA
Learning Objectives 
After reading this module, you should be able to . . .

10.5.1 Determine the rotational inertia of a body if it is 
given in Table 10.5.1.

10.5.2 Calculate the rotational inertia of a body by inte-
gration over the mass elements of the body.

10.5.3 Apply the parallel-axis theorem for a rotation 
axis that is displaced from a parallel axis through the 
center of mass of a body.

Key Ideas 
● I is the rotational inertia of the body, defined as

 I =  ∑    m  i    r  i  
2  

for a system of discrete particles and defined as

 I =   
 
  
 

    r   2   dm 

for a body with continuously distributed mass. The r 
and ri in these expressions represent the perpendicular 
distance from the axis of rotation to each mass element 
in the body, and the integration is carried out over the 
entire body so as to include every mass element.

● The parallel-axis theorem  relates the rotational inertia 
I of a body about any axis to that of the same body 
about a parallel axis through the center of mass:

I = Icom + Mh2.

Here h is the perpendicular distance between the two 
axes, and Icom is the rotational inertia of the body about 
the axis through the com. We can describe h as being 
the distance the actual rotation axis has been shifted 
from the rotation axis through the com.

Checkpoint 10.4.1
The figure shows three small spheres that rotate 
about a vertical axis. The perpendicular distance  
between the axis and the center of each sphere is 
given. Rank the three spheres according to their  
rotational inertia about that axis, greatest first.

Rotation
axis

4 kg
3 m

2 m

1 m

9 kg

36 kg

Figure 10.4.1 A long rod is much easier to 
rotate about (a) its central (longitudinal) axis 
than about (b) an axis through its center and 
perpendicular to its length. The reason for the 
difference is that the mass is distributed closer 
to the rotation axis in (a) than in (b).

Rotation
axis

(a)

(b)

Rod is easy to rotate
this way.

Harder this way.
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Calculating the Rotational Inertia
If a rigid body consists of a few particles, we can calculate its rotational inertia 
about a given rotation axis with Eq. 10.4.3   (I =  ∑    m  i    r  i  

2 )  ; that is, we can find the 
product mr 2 for each particle and then sum the products. (Recall that r is the per-
pendicular distance a particle is from the given rotation axis.)

If a rigid body consists of a great many adjacent particles (it is continuous, like 
a Frisbee), using Eq. 10.4.3 would require a computer. Thus, instead, we  replace the 
sum in Eq. 10.4.3 with an integral and define the rotational inertia of the body as

 I =    
 
  
 
   r   2    dm   (rotational inertia, continuous body). (10.5.1)

Table 10.5.1 gives the results of such integration for nine common body shapes 
and the indicated axes of rotation.

Parallel-Axis Theorem
Suppose we want to find the rotational inertia I of a body of mass M about a given 
axis. In principle, we can always find I with the integration of Eq. 10.5.1. How-
ever, there is a neat shortcut if we happen to already know the rotational inertia 
Icom of the body about a parallel axis that extends through the body’s center of 
mass. Let h be the perpendicular distance between the given axis and the axis 
through the center of mass (remember these two axes must be parallel). Then the 
rotational inertia I about the given axis is

 I = Icom + Mh2   (parallel-axis theorem). (10.5.2)

Think of the distance h as being the distance we have shifted the rotation axis 
from being through the com. This equation is known as the parallel-axis theorem. 
We shall now prove it.

Table 10.5.1 Some Rotational Inertias

Axis

Hoop about
central axis

Axis

Annular cylinder
(or ring) about 

central axis

R

I = MR 2 (b)(a) I =   M(R 1
2  +  R 2

2)  

R 2

R 1

Thin rod about
axis through center 

perpendicular to
length

(e)
I =    ML 2

L

Axis

AxisAxis

Hoop about any 
diameter

Slab about 
perpendicular 
axis through

center 

(i)(h)
I =   MR 2 I =    M(a 2  + b 2)

R

b
a

Axis

Solid cylinder
(or disk) about

central axis

(c)
I =   MR 2

R
L

Axis

Solid cylinder
(or disk) about

central diameter

(d )
I =   MR 2  +    ML 2 

R
L

Axis

Thin 
spherical shell

about any 
diameter

(g)
I =   MR 2

2R

Solid sphere
about any 
diameter

( f )
I =   MR 2

2R

Axis

1__
2 1__

2

2__
5

1__
4

2__
3

1__
2

1__
12

1__
12

1__
12
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Figure 10.5.1 A rigid body in cross sec-
tion, with its center of mass at O. The 
parallel-axis theorem (Eq. 10.5.2) relates 
the rotational inertia of the body about 
an axis through O to that about a parallel 
axis through a point such as P, a distance 
h from the body’s center of mass. 

dm

r

P

h

a
b

x – a

y – b

com
O

Rotation axis
through

center of mass

Rotation axis
through P

y

x

We need to relate the rotational inertia
around the axis at P to that around the
axis at the com.

Proof of the Parallel-Axis Theorem
Let O be the center of mass of the arbitrarily shaped body shown in cross 
section in Fig. 10.5.1. Place the origin of the coordinates at O. Consider an 
axis through O perpendicular to the plane of the figure, and another axis 
through point P parallel to the first axis. Let the x and y coordinates of P 
be a and b.

Let dm be a mass element with the general coordinates x and y. The 
rotational inertia of the body about the axis through P is then, from Eq. 
10.5.1,

  I =   
 
  
 

   r   2   dm =   
 
  
 

  [ (x − a)  2  +  (y − b)  2 ]  dm, 

which we can rearrange as

     I =   
 
  
 

  ( x   2  +  y   2 )    dm − 2a   
 
  
 

  x  dm − 2b   
 
  
 

  y  dm +    
 
  
 

   ( a   2  +  b   2 )    
 
  dm.    (10.5.3)

From the definition of the center of mass (Eq. 9.1.9), the middle two inte-
grals of Eq. 10.5.3 give the coordinates of the center of mass (multiplied 
by a constant) and thus must each be zero. Because x2 + y2 is equal to R2, 
where R is the distance from O to dm, the first integral is simply Icom, the 
rotational inertia of the body about an axis through its center of mass. 
Inspection of Fig. 10.5.1 shows that the last term in Eq. 10.5.3 is Mh2, where 
M is the body’s total mass. Thus, Eq. 10.5.3 reduces to Eq. 10.5.2, which is 
the relation that we set out to prove.

Checkpoint 10.5.1
The figure shows a book-like object (one side is 
longer than the other) and four choices of rotation 
axes, all perpendicular to the face of the object. 
Rank the choices according to the rotational iner-
tia of the object about the axis, greatest first.

(1) (2) (3) (4)

Sample Problem 10.5.1 Rotational inertia of a two-particle system

Figure 10.5.2a shows a rigid body consisting of two par-
ticles of mass m connected by a rod of length L and neg-
ligible mass.

(a) What is the rotational inertia Icom about an axis through 
the center of mass, perpendicular to the rod as shown?

KEY IDEA

Because we have only two particles with mass, we can 
find the body’s rotational inertia Icom by using Eq. 10.4.3 

rather than by integration. That is, we find the rotational 
inertia of each particle and then just add the results.

Calculations: For the two particles, each at perpendicu-
lar distance    1 _ 2   L from the rotation axis, we have

 I =   ∑   m  i    ri
2 =  (m) (   1 _ 2   L)2 +  (m) (   1 _ 2   L)2 

 =   1 _ 2   mL2. (Answer)

(b) What is the rotational inertia I of the body about an 
axis through the left end of the rod and parallel to the first 
axis (Fig. 10.5.2b)?
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KEY IDEAS

This situation is simple enough that we can find I using 
either of two techniques. The first is similar to the one 
used in part (a). The other, more powerful one is to apply 
the parallel-axis theorem.

First technique: We calculate I as in part (a), except 
here the perpendicular distance ri is zero for the particle 
on the left and L for the particle on the right. Now Eq. 
10.4.3 gives us
 I = m(0)2 + mL2 = mL2. (Answer)

Second technique: Because we already know Icom about 
an axis through the center of mass and because the axis  
here is parallel to that “com axis,” we can apply the parallel- 
axis theorem (Eq. 10.5.2). We find

 I =  I  com   + M h   2  =   1 _ 2   m L   2  +   (  2m )    (   1 _ 2   L )  2   

  = m L   2 . (Answer)

m m

(a)

LL

com

Rotation axis
through 

center of mass

m m

(b)

L

com

Rotation axis through
end of rod

1__
2

1__
2

Here the rotation axis is through the com.

Here it has been shifted from the com 
without changing the orientation. We 
can use the parallel-axis theorem.

Figure 10.5.2 A rigid body consisting of two particles of mass m 
joined by a rod of  negligible mass.

Sample Problem 10.5.2 Rotational inertia of a uniform rod, integration

Figure 10.5.3 shows a thin, uniform rod of mass M and 
length L, on an x axis with the origin at the rod’s center.

(a) What is the rotational inertia of the rod about the 
 perpendicular rotation axis through the center?

KEY IDEAS

(1) The rod consists of a huge number of particles at a 
great many different distances from the rotation axis. We 
certainly don’t want to sum their rotational inertias indi-
vidually. So, we first write a general expression for the rota-
tional inertia of a mass element dm at distance r from the 
rotation axis: r2 dm. (2) Then we sum all such rotational 
inertias by integrating the expression (rather than adding 
them up one by one). From Eq. 10.5.1, we write

   I =   
 
  
 

   r   2   dm.   (10.5.4)

(3) Because the rod is uniform and the rotation axis is at 
the center, we are actually calculating the rotational iner-
tia Icom about the center of mass.

Calculations: We want to integrate with respect to coor-
dinate x (not mass m as indicated in the integral), so we 
must relate the mass dm of an element of the rod to its 
length dx along the rod. (Such an element is shown in Fig. 
10.5.3.) Because the rod is uniform, the ratio of mass to 
length is the same for all the elements and for the rod as a 
whole. Thus, we can write

   element’s mass dm  ______________  
element’s length dx

   =   rod’s mass M  ___________  
rod’s length L

   

or  dm =   M _ 
L

   dx. 

We can now substitute this result for dm and x for r in Eq. 
10.5.4. Then we integrate from end to end of the rod (from 
x = −L/2 to x = L/2) to include all the elements. We find

 
 I =  

x=−L/2 
  

x=+L/2 

      x   2   (    M _ 
L

   )    dx

  =   M _ 
3L

     
[

    
 
   x   3   

 
   
]

    
−L/2

  
+L/2

  =   M _ 
3L

    [    (    L _ 
2
   )    

3
  −   (  −   L _ 

2
   )    

3
  ]   

  =   1 __ 12   M L   2 . (Answer)

(b) What is the rod’s rotational inertia I about a new  rotation 
axis that is perpendicular to the rod and through the left end?

KEY IDEAS

We can find I by shifting the origin of the x axis to the left end 
of the rod and then integrating from x = 0 to x = L. However, 
here we shall use a more powerful (and easier) technique by 
applying the parallel-axis theorem (Eq. 10.5.2), in which we 
shift the rotation axis without changing its orientation.

Calculations: If we place the axis at the rod’s end so that 
it is parallel to the axis through the center of mass, then we 
can use the parallel-axis theorem (Eq. 10.5.2). We know 
from part (a) that Icom is   1 __ 12   M L   2 . From Fig. 10.5.3, the per-
pendicular distance h between the new  rotation axis and 
the center of mass is    1 _ 2   L . Equation 10.5.2 then gives us

 I =  I  com   + M h   2  =   1 __ 12  M L   2  +   (  M )    (  1 _ 2   L )  2   

 =   1 _ 3   M L   2 . (Answer)

Actually, this result holds for any axis through the left 
or right end that is perpendicular to the rod.

additional examples, video, and practice available at WileyPLUS
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A

Figure 10.5.3 A uniform rod  
of length L and mass M. An  
element of mass dm and length dx  
is represented.

x

Rotation
axis

L__
2

L__
2

com M

We want the 
rotational inertia.

x

Rotation
axis

x dm

dx

First, pick any tiny element
and write its rotational
inertia as x2 dm.

x

x = –

Rotation
axis

Leftmost Rightmost

L__
2

x = L__
2

Then, using integration, add up
the rotational inertias for all of
the elements, from leftmost to
rightmost.

Sample Problem 10.5.3 Rotational kinetic energy, spin test explosion

Figure 10.5.4 Some 
of the destruction 
caused by the 
explosion of a rapidly 
rotating steel disk. C

ou
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Large machine components that undergo prolonged, 
high-speed rotation are first examined for the possibility 
of failure in a spin test system. In this system, a component 
is spun up (brought up to high speed) while inside a cylin-
drical arrangement of lead bricks and containment liner, 
all within a steel shell that is closed by a lid clamped into 
place. If the rotation causes the component to shatter, the 
soft lead bricks are  supposed to catch the pieces for later 
analysis.

In 1985, Test Devices, Inc. (www.testdevices.com) was 
spin testing a sample of a solid steel rotor (a disk) of mass 
M = 272 kg and radius R = 38.0 cm. When the  sample 
reached an angular speed ω of 14 000 rev/min, the test 
engineers heard a dull thump from the test system, 
which was  located one floor down and one room over 
from them. Investigating, they found that lead bricks 
had been thrown out in the hallway leading to the test 
room, a door to the room had been hurled into the 
adjacent parking lot, one lead brick had shot from the 
test site through the wall of a neighbor’s kitchen, the 
structural beams of the test building had been damaged, 
the concrete floor beneath the spin chamber had been 
shoved downward by about 0.5 cm, and  the 900 kg lid 
had been blown upward through the ceiling and had 
then crashed back onto the test equipment (Fig. 10.5.4). 
The  exploding pieces had not penetrated the room of 
the test  engineers only by luck.

How much energy was released in the explosion of 
the rotor? FCP

KEY IDEA

The released energy was equal to the rotational kinetic 
energy K of the rotor just as it reached the angular speed 
of 14 000 rev/min. 

Calculations: We can find K with Eq. 10.4.4   (K =   1 _ 2   I ω   2 )  , 
but first we need an expression for the rotational inertia I. 
Because the rotor was a disk that rotated like a merry-go-
round, I is given in Table 10.5.1c   (I =   1 _ 2   M R   2 )  . Thus, 

 I =   1 _ 2  M R   2  =   1 _ 2    (  272 kg )     (  0 . 38 m )    2  = 19.64 kg ⋅  m  2 . 

The angular speed of the rotor was

 ω =  (14 000 rev / min) (2π rad / rev)   (    1 min _ 
60 s

   )      

 = 1.466 ×  10  3  rad / s. 

Then, with Eq. 10.4.4, we find the (huge) energy release:

 K =   1 _ 2   I  ω   2  =   1 _ 2   (19.64 kg ⋅  m  2 )  (1.466 ×  10  3  rad / s )  2  

 = 2.1 ×  10  7  J. (Answer)
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additional examples, video, and practice available at WileyPLUS
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10.6 TORQUE
Learning Objectives 
After reading this module, you should be able to . . .

10.6.1 Identify that a torque on a body involves a force 
and a position vector, which extends from a rotation 
axis to the point where the force is applied.

10.6.2 Calculate the torque by using (a) the angle 
between the position vector and the force vector, (b) 
the line of action and the moment arm of the force, 
and (c) the force component perpendicular to the 
position vector.

10.6.3 Identify that a rotation axis must always be 
specified to calculate a torque.

10.6.4 Identify that a torque is assigned a positive or 
negative sign depending on the direction it tends 
to make the body rotate about a specified rotation 
axis: “Clocks are negative.”

10.6.5 When more than one torque acts on a body 
about a rotation axis, calculate the net torque.

Key Ideas 
● Torque is a turning or twisting action on a body 
about a rotation axis due to a force    F 

→
   . If    F 

→
    is exerted 

at a point given by the position vector    r →    relative to the 
axis, then the magnitude of the torque is

 τ = r  F  t   =  r  ⊥  F = rF sin ϕ, 

where Ft is the component of    F 
→

    perpendicular to    r →    and 
ϕ is the angle between    r →    and    F 

→
   . The quantity r⊥ is the 

perpendicular distance between the rotation axis and 
an extended line running through the    F 

→
    vector. This 

line is called the line of action of    F 
→

   , and r⊥ is called the 
moment arm of    F 

→
   . Similarly, r is the moment arm of Ft.

● The SI unit of torque is the newton-meter (N ⋅ m).  
A torque τ is positive if it tends to rotate a body at rest 
counterclockwise and negative if it tends to rotate the 
body clockwise.

Torque
A doorknob is located as far as possible from the door’s hinge line for a good 
rea  son. If you want to open a heavy door, you must certainly apply a force, 
but that is not enough. Where you apply that force and in what direction you 
push are also important. If you apply your force nearer to the hinge line than 
the knob, or at any angle other than 90° to the plane of the door, you must use 
a greater force than if you apply the force at the knob and perpendicular to the 
door’s plane.

Figure 10.6.1a shows a cross section of a body that is free to rotate about 
an axis passing through O and perpendicular to the cross section. A force    F 

→
    is 

 applied at point P, whose position relative to O is defined by a position vec-
tor    r →   . The directions of vectors    F 

→
    and    r →    make an angle ϕ with each other. (For 

simplicity, we consider only forces that have no component parallel to the rota-
tion axis; thus,    F 

→
    is in the plane of the page.)

To determine how    F 
→

    results in a rotation of the body around the rotation 
axis, we resolve    F 

→
    into two components (Fig. 10.6.1b). One component, called 

the radial component Fr, points along    r →   . This component does not cause  rota tion, 
because it acts along a line that extends through O. (If you pull on a door paral-
lel to the plane of the door, you do not rotate the door.) The other component 
of    F 

→
    called the tangential component Ft, is perpendicular to    r →    and has  magnitude 

Ft = F sin ϕ. This component does cause rotation. 
Calculating Torques. The ability of    F 

→
    to rotate the body depends not only 

on the magnitude of its tangential component Ft, but also on just how far from 
O the force is applied. To include both these factors, we define a quantity called 
torque τ as the product of the two factors and write it as

 τ = (r)(F sin ϕ). (10.6.1)
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Two equivalent ways of computing the torque are

 τ = (r)(F sin ϕ) = rFt (10.6.2)

and τ = (r sin ϕ)(F ) = r⊥F, (10.6.3)

where r⊥ is the perpendicular distance between the rotation axis at O and 
an  extended line running through the vector    F 

→
    (Fig. 10.6.1c). This extended 

line is called the line of action of    F 
→

   , and r⊥ is called the moment arm of    F 
→

   . 
 Figure 10.6.1b shows that we can describe r, the magnitude of    r →   , as being the 
moment arm of the force component Ft.

Torque, which comes from the Latin word meaning “to twist,” may be 
loosely identified as the turning or twisting action of the force    F 

→
   . When you 

 apply a force to an object—such as a screwdriver or torque wrench—with 
the purpose of turning that object, you are applying a torque. The SI unit of 
torque is the newton- meter (N ⋅ m). Caution: The newton-meter is also the 
unit of work. Torque and work, however, are quite different quantities and 
must not be confused. Work is often expressed in joules (1 J = 1 N ⋅ m), but 
torque never is.

Clocks Are Negative. In Chapter 11 we shall use vector notation for torques, 
but here, with rotation around a single axis, we use only an algebraic sign. If a 
torque would cause counterclockwise rotation, it is positive. If it would cause 
clockwise rotation, it is negative. (The phrase “clocks are negative” from Module 
10.1 still works.)

Torques obey the superposition principle that we discussed in Chapter 
5 for forces: When several torques act on a body, the net torque (or resul-
tant torque) is the sum of the individual torques. The symbol for net torque  
is τnet.

Figure 10.6.1 (a) A force   F 
→

   acts on a rigid body, with a rotation axis perpendicular to 
the page. The torque can be found with (a) angle ϕ, (b) tangential force component 
Ft, or (c) moment arm r⊥.

(a)

(b)

(c)

O

P

FrFt

Rotation
axis

F

r

O

P

Rotation
axis

Line of
action of F

r
Moment arm
of F

F

r

O

P

Rotation
axis

F

r

The torque due to this force
causes rotation around this axis 
(which extends out toward you).

You calculate the same torque by
using this moment arm distance 
and the full force magnitude.

But actually only the tangential
component of the force causes
the rotation.

ϕ

ϕ

ϕ

ϕ

Checkpoint 10.6.1
The figure shows an overhead view of a 
meter stick that can pivot about the dot 
at the position marked 20 (for 20 cm). All 
five forces on the stick are horizontal and 
have the same magnitude. Rank the forces 
according to the magnitude of the torque 
they produce, greatest first.

0 20 40
Pivot point

100

F1
F2

F3

F4

F5

10.7 NEWTON’S SECOND LAW FOR ROTATION
Learning Objective 
After reading this module, you should be able to . . .

10.7.1 Apply Newton’s second law for rotation to relate 
the net torque on a body to the body’s rotational 

inertia and rotational acceleration, all calculated 
relative to a specified rotation axis.
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Key Idea 
● The rotational analog of Newton’s second law is

τnet = Iα,

where τnet is the net torque acting on a particle or rigid 
body, I is the rotational inertia of the particle or body 
about the  rotation axis, and α is the resulting angular 
acceleration about that axis.

Newton’s Second Law for Rotation
A torque can cause rotation of a rigid body, as when you use a torque to rotate 
a door. Here we want to relate the net torque τnet on a rigid body to the angular 
acceleration α that torque causes about a rotation axis. We do so by analogy with 
Newton’s second law (Fnet = ma) for the acceleration a of a body of mass m due 
to a net force Fnet along a coordinate axis. We replace Fnet with τnet, m with I, and 
a with α in radian measure, writing

 τnet = Iα   (Newton’s second law for rotation). (10.7.1)

Proof of Equation 10.7.1
We prove Eq. 10.7.1 by first considering the simple situation shown in Fig. 10.71. 
The rigid body there consists of a particle of mass m on one end of a massless rod 
of length r. The rod can move only by rotating about its other end, around a rota-
tion axis (an axle) that is perpendicular to the plane of the page. Thus, the particle 
can move only in a circular path that has the rotation axis at its center.

A force    F 
→

    acts on the particle. However, because the particle can move 
only along the circular path, only the tangential component Ft of the force 
(the component that is tangent to the circular path) can accelerate the particle 
along the path. We can relate Ft to the particle’s tangential acceleration at 
along the path with Newton’s second law, writing

Ft = mat.

The torque acting on the particle is, from Eq. 10.6.2,

τ = Ftr = matr.

From Eq. 10.3.6 (at = αr) we can write this as

 τ = m(αr)r = (mr2)α. (10.7.2)

The quantity in parentheses on the right is the rotational inertia of the particle 
about the rotation axis (see Eq. 10.4.3, but here we have only a single particle). 
Thus, using I for the rotational inertia, Eq. 10.7.2 reduces to

 τ = Iα   (radian measure). (10.7.3)

If more than one force is applied to the particle, Eq. 10.7.3 becomes

 τnet = Iα   (radian measure), (10.7.4)

which we set out to prove. We can extend this equation to any rigid body rotating 
about a fixed axis, because any such body can always be analyzed as an  assembly 
of single particles.

Figure 10.7.1 A simple rigid body, 
free to rotate about an axis through 
O, consists of a  particle of mass m 
fastened to the end of a rod of length 
r and negligible mass. An  applied 
force   F 

→
   causes the body to rotate.

O
x

y

Rod

Rotation axis

r

m
Fr

Ft F

The torque due to the tangential
component of the force causes
an angular acceleration around
the rotation axis.

θ

ϕ

c10Rotation.indd   293 06/05/21   7:40 PM



294  CHAPTER 10 ROTATION

Checkpoint 10.7.1
The figure shows an overhead view of a meter stick that can pivot about the point indicated, 
which is to the left of the stick’s midpoint. Two horizontal forces,     F 

→
    1    and     F 

→
    2   , are applied to the 

stick. Only     F 
→

    1    is shown. Force     F 
→

    2    is perpendicular to the stick and is applied at the right end. 
If the stick is not to turn, (a) what should be the direction of     F 

→
    2   , and (b) should F2 be greater 

than, less than, or equal to F1?

F1

Pivot point

Sample Problem 10.7.1 High heels

High heels (Fig. 10.7.2a) have long been popular in spite 
of the pain they commonly cause. Let’s examine one of 
the causes. First, Fig. 10.7.2b is a simplified view of the 
forces on a foot when the person is standing still while 
wearing flat shoes with weight mg = 350 N supported by 
each foot. The normal force FNf on the forefoot supports 
weight fmg with f = 0.40 (that is, 40% of the weight on the 
foot) and acts at distance df = 0.18 m from the ankle. The 
normal force FNb on the heel supports weight bmg with 
b = 0.60, at distance db = 0.070 m from the ankle. The 
Achilles tendon (connecting the heel to the calf muscle) 
pulls on the heel with force   T 

→
    at an angle of ϕ = 5.0° from 

a perpendicular to the plane of the foot. An unknown 
force from the leg bone acts downward on the ankle.  
(a) What is the magnitude of   T 

→
   ?

KEY IDEAS

The foot is our system and is in equilibrium. Thus, the 
sum of the forces must balance both horizontally and 
vertically. Also, the sum of the torques around any point 
must balance. 

Calculations: We cannot find the magnitude T of the pull 
from the Achilles tendon by balancing forces because we 
also do not know the force of the leg bone on the ankle. 
Instead, we can balance torques due to the forces by using 
a rotation axis through the ankle and perpendicular to the 
plane of the figure. The torque due to each force is then 
given by  τ = r F  t    (Eq. 10.6.2), where r is the distance from 
the rotation axis to the point at which a force acts and Ft 
is the component of the force perpendicular to r, here, 
perpendicular to the plane of the foot. 

On the forefoot, the normal force (a) is perpendicu-
lar to that plane, (b) has magnitude FNf = fmg, (c) acts at 
distance r = df = 0.18 m from the rotation axis through 
the ankle, and (d) tends to rotate the foot in the (nega-
tive) clockwise direction. On the heel, the normal force 
(a) is also perpendicular to the foot plane, (b) has mag-
nitude FNb = bmg, (c) acts at distance r = db = 0.070 m, 
and (d) tends to rotate the foot in the (positive) coun-
terclockwise direction. The Achilles tendon also acts 
at distance db. Its component perpendicular to the foot 
plane is T cos ϕ (Fig. 10.7.2c), which tends to produce a 
positive torque.

(a)

(b)
Heel

Foot
plane

Toes

fmg bmgAnkle

T

df db

ϕ T T cos ϕ ϕ

(c)

fmg

bmg

h

T

θ

θ

ϕ

(d)

bmg

bmg cos 

θ
θ

(e)

Figure 10.7.2 Sample Problem 10.7.1 (a) Moderate high heels. (b) Forces on forefoot and heel.  
(c) Components of force from Achilles tendon. (d) Elevated heel. (e) Components of the force 
from the shoe on the heel.

E
vg

en
iy

 S
kr

ip
ni

ch
en

ko
/1

23
R

F

c10Rotation.indd   294 06/05/21   7:40 PM



29510.7 newton’s seCond law foR Rotation

We can now write the balance of torques for this 
equilibrium situation as

  τ   net   = 0
−  d   f   ( fmg) +  d   b  (bmg) +  d   b  (T cos ϕ) = 0. 

Solving for T and substituting known values, we find

 T =   
 d   f    f −  d  b   b _______  d   b   cos ϕ  mg

=   
(0.18 m)(0.40) − (0.070 m)(0.60)

   ____________________________   
(0.070 m) cos 5.0°

   (350 N)

= 151 N ≈ 0.15 kN. 

(b) The person next stands in shoes with moderate heel 
height h = 3.00 in. (7.62 cm), again with the weight of 350 N  
on each foot. The values of df and db are unchanged but 
now f = 0.65 (65% of the weight is on the forefoot) and  
b = 0.35. Now what is the magnitude of   T 

→
   ?

Calculations: From Fig. 10.7.2d, the plane of the foot is 
tilted at angle θ:

 sin θ =   h ______ 
 d   f   +  d   b  

  

θ =  sin  −1    0.0762 m  _________________  
(0.18 m + 0.070 m)

  

= 17.74°. 

On the heel, the vertical force is bmg and the component 
perpendicular to the plane of the foot is now bmg cos θ 
(Fig. 10.7.2e). On the forefoot, the vertical force is fmg 
and the component perpendicular to the plane of the foot 
is now fmg cos θ. The tendon’s pull is still at 5.0° to a per-
pendicular to the plane of the foot. We now write the bal-
ance of torques as

    τ   net   = 0

−  d   f   ( fmg) cos θ +  d   b  (bmg) cos θ +  d  b  (T cos ϕ) = 0. 

Solving for T and substituting known values, we find

 T =   
 d   f   f −  d   b   b

 ________ 
 d   b   cos ϕ   mg cos θ

=   
(0.18 m)(0.65) − (0.070 m)(0.35)

   ____________________________   
(0.070 m) cos 5.0°

   (350 N)(cos 17.74° )

= 442 N ≈ 0.44 kN. 

Thus, the force required of the Achilles tendon for simply 
standing still in even moderate high heels is several times 
that required with flat shoes. Medical and physiological 
researchers believe sustained use of high heels perma-
nently alters the tendon so much that walking barefooted 
or in flat shoes is then painful.

Sample Problem 10.7.2 Using Newton’s second law for rotation in a basic judo hip throw

To throw an 80 kg opponent with a basic judo hip throw, 
you intend to pull his uniform with a force    F 

→
    and a moment 

arm d1 = 0.30 m from a pivot point (rotation axis) on your 
right hip (Fig. 10.7.3). You wish to rotate him about the 
pivot point with an angular acceleration α of −6.0 rad/s2—
that is, with an angular acceleration that is clockwise in the 
figure. Assume that his rotational inertia I relative to the 
pivot point is 15 kg ⋅ m2.

(a) What must the magnitude of    F 
→

    be if, before you throw 
him, you bend your opponent forward to bring his center 
of mass to your hip (Fig. 10.7.3a)?

KEY IDEA 

We can relate your pull    F 
→

    on your opponent to the given 
angular acceleration α via Newton’s second law for rota-
tion (τnet = Iα).

Calculations: As his feet leave the floor, we can assume 
that only three forces act on him: your pull    F 

→
   , a force   N 

→
    on 

him from you at the pivot point (this force is not indicated 
in Fig. 10.7.3), and the gravitational force     F 

→
    g   . To use τnet = 

Iα, we need the corresponding three torques, each about 
the pivot point.

From Eq. 10.6.3 (τ = r⊥F), the torque due to your 
pull    F 

→
    is equal to −d1F, where d1 is the moment arm r⊥ 

and the sign indicates the clockwise rotation this torque 
tends to cause. The torque due to   N 

→
    is zero, because   N 

→
    

acts at the pivot point and thus has moment arm r⊥ = 0.

Figure 10.7.3 A judo hip throw (a) correctly executed and 
(b) incorrectly executed.

Opponent’s
 center of 

mass

Moment arm d1
of your pull

Pivot 
on hip

Moment arm d2 
of gravitational

force on
opponent

Moment 
arm d1

of your pull

FgFg

(a) (b)

F
F

additional examples, video, and practice available at WileyPLUS
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To evaluate the torque due to     F 
→

    g   , we can assume that     F 
→

    g   
acts at your opponent’s center of mass. With the center of 
mass at the pivot point,     F 

→
    g    has moment arm r⊥ = 0 and thus 

the torque due to     F 
→

    g    is zero. So, the only torque on  your 
opponent is due to your pull    F 

→
   , and we can write τnet = Iα as

−d1F = Iα.
We then find

 F =   −Iα _ 
 d  1  

   =   
− (15 kg ⋅  m  2 )  (−6.0  rad / s  2 ) 

   ___________________  
0.30 m

   

 = 300 N. (Answer)

(b) What must the magnitude of    F 
→

    be if your opponent 
remains upright before you throw him, so that     F 

→
    g    has  

a moment arm d2 = 0.12 m (Fig. 10.7.3b)?

KEY IDEA 

Because the moment arm for     F 
→

    g    is no longer zero, the 
torque due to     F 

→
    g    is now equal to d2mg and is positive 

because the torque attempts counterclockwise rotation.

Calculations: Now we write τnet = Iα as

−d1F + d2mg = Iα,

which gives

 F = −  Iα _ 
 d  1  

   +   
 d  2   mg

 _ 
 d  1  

  . 

From (a), we know that the first term on the right is equal 
to 300 N. Substituting this and the given data, we have

 F = 300 N +   
(0.12 m) (80 kg)  (9.8  m / s  2 ) 

   __________________  
0.30 m

  

 = 613.6 N ≈ 610 N. (Answer)

The results indicate that you will have to pull much harder 
if you do not initially bend your opponent to bring his 
center of mass to your hip. A good judo fighter knows this 
lesson from physics. Indeed, physics is the basis of most of 
the martial arts, figured out after countless hours of trial 
and error over the centuries.

10.8 WORK AND ROTATIONAL KINETIC ENERGY
Learning Objectives 
After reading this module, you should be able to . . .

10.8.1 Calculate the work done by a torque acting on a 
rotating body by integrating the torque with respect 
to the angle of rotation.

10.8.2 Apply the work–kinetic energy theorem to relate 
the work done by a torque to the resulting change in 
the rotational kinetic energy of the body.

10.8.3 Calculate the work done by a constant torque 
by relating the work to the angle through which the 
body rotates.

10.8.4 Calculate the power of a torque by finding the 
rate at which work is done.

10.8.5 Calculate the power of a torque at any given 
instant by relating it to the torque and the angular 
velocity at that instant.

Key Ideas 
● The equations used for calculating work and power 
in rotational motion correspond to equations used for 
translational motion and are

W =    
 θ  i   

  
 θ  f   

  τ   dθ

and     P =   dW _ 
dt

   = τω.  

● When τ is constant, the integral reduces to

W = τ(θf − θi).

● The form of the work–kinetic energy theorem used 
for rotating bodies is

 ΔK =  K  f   −  K  i   =   1 _ 2   I ω  f  2  −   1 _ 2   I ω  i  
2  = W. 

additional examples, video, and practice available at WileyPLUS
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Work and Rotational Kinetic Energy
As we discussed in Chapter 7, when a force F causes a rigid body of mass m to 
accelerate along a coordinate axis, the force does work W on the body. Thus, the 
body’s kinetic energy   (K =   1 _ 2   m v   2 )   can change. Suppose it is the only energy of the 
body that changes. Then we relate the change ΔK in kinetic energy to the work 
W with the work–kinetic energy theorem (Eq. 7.2.8), writing

 ΔK =  K  f   −  K  i   =   1 _ 2   m v  f  
2  −   1 _ 2   m v  i  

2  = W   (work– kinetic energy theorem). (10.8.1)

For motion confined to an x axis, we can calculate the work with Eq. 7.5.4,

 
W =   

 x  i   
  

xf

    F dx
 
  (work, one-dimensional motion). (10.8.2)

This reduces to W = Fd when F is constant and the body’s displacement is d.  
The rate at which the work is done is the power, which we can find with Eqs. 7.6.2 
and 7.6.7,

 
P =   dW _ 

dt
   = Fv   (power, one-dimensional motion). (10.8.3)

Now let us consider a rotational situation that is similar. When a torque 
 accelerates a rigid body in rotation about a fixed axis, the torque does work 
W on the body. Therefore, the body’s rotational kinetic energy   (K =   1 _ 2   I ω   2 )   
can change. Suppose that it is the only energy of the body that changes. Then 
we can still relate the change ΔK in kinetic energy to the work W with the 
work–kinetic energy theorem, except now the kinetic energy is a rotational 
kinetic energy:

 ΔK =  K  f   −  K  i   =   1 _ 2   I ω  f  
2  −   1 _ 2   I ω  i  

2  = W   (work–kinetic energy theorem). (10.8.4)

Here, I is the rotational inertia of the body about the fixed axis and ωi and ωf are 
the angular speeds of the body before and after the work is done.

Also, we can calculate the work with a rotational equivalent of Eq. 10.8.2,

 
W =   

 θ  i   
  

 θ  f   
  τ  dθ

 
  (work, rotation about fixed axis), (10.8.5)

where τ is the torque doing the work W, and θi and θf are the body’s angular 
 positions before and after the work is done, respectively. When τ is constant, 
Eq. 10.8.5 reduces to

 W = τ(θf − θi)   (work, constant torque). (10.8.6)

The rate at which the work is done is the power, which we can find with the rota-
tional equivalent of Eq. 10.8.3,

 
P =   dW _ 

dt
   = τω

 
  (power, rotation about fixed axis). (10.8.7)

Table 10.8.1 summarizes the equations that apply to the rotation of a rigid body 
about a fixed axis and the corresponding equations for translational motion.
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Proof of Eqs. 10.8.4 through 10.8.7
Let us again consider the situation of Fig. 10.7.1, in which force    F 

→
    rotates a rigid 

body consisting of a single particle of mass m fastened to the end of a massless 
rod. During the rotation, force    F 

→
    does work on the body. Let us assume that the 

only energy of the body that is changed by    F 
→

    is the kinetic energy. Then we can 
apply the work–kinetic energy theorem of Eq. 10.8.1:

 ΔK = Kf − Ki = W. (10.8.8)

Using   K =   1 _ 2   m v   2    and Eq. 10.3.2 (v = ωr), we can rewrite Eq. 10.8.8 as

 ΔK =    1 _ 2    mr2  ω  f  2   −    1 _ 2   mr2  ω  i  2   = W. (10.8.9)

From Eq. 10.4.3, the rotational inertia for this one-particle body is I = mr2. 
 Substituting this into Eq. 10.8.9 yields

  ΔK =   1 _ 2  I ω  f  2  −   1 _ 2  I ω  i  
2  = W,  

which is Eq. 10.8.4. We derived it for a rigid body with one particle, but it holds 
for any rigid body rotated about a fixed axis.

We next relate the work W done on the body in Fig. 10.7.1 to the torque τ 
on  the body due to force    F 

→
   . When the particle moves a distance ds along its 

 circular path, only the tangential component Ft of the force accelerates the par-
ticle along the path. Therefore, only Ft does work on the particle. We write that 
work dW as Ft ds. However, we can replace ds with r dθ, where dθ is the angle 
through which the particle moves. Thus we have

 dW = Ftr dθ. (10.8.10)

From Eq. 10.6.2, we see that the product Ftr is equal to the torque τ, so we can 
rewrite Eq. 10.8.10 as
 dW = τ dθ. (10.8.11)

The work done during a finite angular displacement from θi to θf is then

  W =   
θi

  
θf

  τ dθ , 

which is Eq. 10.8.5. It holds for any rigid body rotating about a fixed axis. Equa-
tion 10.8.6 comes directly from Eq. 10.8.5.

We can find the power P for rotational motion from Eq. 10.8.11:

 P =   dW _ 
dt

   = τ   dθ _ 
dt

   = τω, 

which is Eq. 10.8.7.

Table 10.8.1 Some Corresponding Relations for Translational and Rotational Motion

Pure Translation (Fixed Direction) Pure Rotation (Fixed Axis)

Position x Angular position θ
Velocity v = dx/dt Angular velocity ω = dθ/dt

Acceleration a = dv/dt Angular acceleration α = dω/dt

Mass m Rotational inertia I

Newton’s second law Fnet = ma Newton’s second law τnet = Iα
Work W = ∫F dx Work W = ∫ τ dθ
Kinetic energy K =    1 _ 2    mv2 Kinetic energy K =    1 _ 2   Iω

2

Power (constant force) P = Fv Power (constant torque) P = τω
Work–kinetic energy theorem W = ΔK Work–kinetic energy theorem W = ΔK
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Checkpoint 10.8.1
Here are four examples of a single torque being applied to a rigid body rotating 
around a fixed axis. At a certain instant, the table gives the torque and the body’s 
angular velocity. (a) Rank the examples according to the power of the torque, most 
positive first, most negative last. (b) In which is the rotation slowing? (c) In which is 
positive work being done by the torque?

Example Torque (N · m) Angular Velocity (rad/s)

A +5 +3

B +5 −3

C −5 −3

D −5 +3

Angular Position  To describe the rotation of a rigid body 
about a fixed axis, called the rotation axis, we assume a reference 
line is fixed in the body, perpendicular to that axis and rotating 
with the body. We measure the angular position θ of this line 
relative to a fixed direction. When θ is measured in radians,

   θ =   s _ r      (  radian measure )   ,   (10.1.1)

where s is the arc length of a circular path of radius r and  angle θ.  
Radian measure is related to angle measure in revolutions and 
degrees by

 1 rev = 360° = 2π rad. (10.1.2)

Angular Displacement  A body that rotates about a rota-
tion axis, changing its angular position from θ1 to θ2, undergoes 
an  angular displacement

 Δθ = θ2 − θ1, (10.1.4)

where Δθ is positive for counterclockwise rotation and negative 
for clockwise rotation.

Angular Velocity and Speed  If a body rotates through 
an angular displacement Δθ in a time interval Δt, its average 
 angular velocity ωavg is

    ω  avg   =   Δθ _ 
Δt

  .   (10.1.5)

The (instantaneous) angular velocity ω of the body is

   ω =   dθ _ 
dt

  .   (10.1.6)

Both ωavg and ω are vectors, with directions given by the right-
hand rule of Fig. 10.1.6. They are positive for counterclockwise 
rotation and negative for clockwise rotation. The magnitude of 
the body’s angular velocity is the angular speed.

Angular Acceleration  If the angular velocity of a body 
changes from ω1 to ω2 in a time interval Δt = t2 − t1, the average 
angular acceleration αavg of the body is

    α  avg   =   
 ω  2   −  ω  1   _  t  2   −  t  1  

   =   Δω _ 
Δt

  .   (10.1.7)

Review & Summary

The (instantaneous) angular acceleration α of the body is

   α =   dω _ 
dt

  .   (10.1.8)

Both αavg and α are vectors.

The Kinematic Equations for Constant Angular 
Accel eration  Constant angular acceleration (α = constant) 
is an important special case of rotational motion. The appropri-
ate kinematic equations, given in Table 10.2.1, are

   ω =  ω  0   + αt,   (10.2.1)

   θ −  θ  0   =  ω  0   t +   1 __ 2   α t   2 ,   (10.2.2)

    ω   2  =  ω  0  
2  + 2α  (  θ −  θ  0   )   ,   (10.2.3)

   θ −  θ  0   =   1 __ 2    (    ω  0   + ω )   t,   (10.2.4)

   θ −  θ  0   = ωt −   1 __ 2   α t   2 .   (10.2.5)

Linear and Angular Variables Related  A point in a 
rigid rotating body, at a perpendicular distance r from the rota-
tion axis, moves in a circle with radius r. If the body rotates 
through an angle θ, the point moves along an arc with length s 
given by

 s = θr   (radian measure), (10.3.1)

where θ is in radians.
The linear velocity    v →    of the point is tangent to the circle; 

the point’s linear speed v is given by

 v = ωr   (radian measure), (10.3.2)

where ω is the angular speed (in radians per second) of the body.
The linear acceleration    a →    of the point has both tangential 

and radial components. The tangential component is

 at = αr   (radian measure), (10.3.6)

where α is the magnitude of the angular acceleration (in radians 
per second-squared) of the body. The radial component of    a →    is

 
 ar =    v

2
 __ r    = ω2r   (radian measure). (10.3.7)
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If the point moves in uniform circular motion, the period T 
of the motion for the point and the body is

 T =    2πr ____ v    =    2π ___ ω      (radian measure). (10.3.3, 10.3.4)

Rotational Kinetic Energy and Rotational Inertia   
The kinetic energy K of a rigid body rotating about a fixed axis 
is given by

   K =   1 _ 2  I  ω   2     (  radian measure )  ,    (10.4.4)

in which I is the rotational inertia of the body, defined as

   I =  ∑    m  i    r  i  
2     (10.4.3)

for a system of discrete particles and defined as

   I =   
 
  
 

   r   2   dm   (10.5.1)

for a body with continuously distributed mass. The r and ri in 
these expressions represent the perpendicular distance from the 
axis of rotation to each mass element in the body, and the inte-
gration is carried out over the entire body so as to include every 
mass element.

The Parallel-Axis Theorem  The parallel-axis theorem 
 relates the rotational inertia I of a body about any axis to that of 
the same body about a parallel axis through the center of mass:

 I = Icom + Mh2. (10.5.2)

Here h is the perpendicular distance between the two axes, and 
Icom is the rotational inertia of the body about the axis through 
the com. We can describe h as being the distance the actual 
rotation axis has been shifted from the rotation axis through 
the com.

Torque  Torque is a turning or twisting action on a body 
about a rotation axis due to a force    F 

→
   . If    F 

→
    is exerted at a point 

given by the position vector    r →    relative to the axis, then the mag-
nitude of the torque is

       τ = r F  t   =  r  ⊥  F = rF sin ϕ.   (10.6.2, 10.6.3, 10.6.1)

where Ft is the component of    F 
→

    perpendicular to    r →    and ϕ is the 
angle between    r →    and    F 

→
   . The quantity r⊥ is the perpendicular 

distance between the rotation axis and an extended line run-
ning through the    F 

→
    vector. This line is called the line of action of  

   F 
→

   , and r⊥ is called the moment arm of    F 
→

   . Similarly, r is the 
moment arm of Ft.

The SI unit of torque is the newton-meter (N ⋅ m). A torque 
τ is positive if it tends to rotate a body at rest counterclockwise 
and negative if it tends to rotate the body clockwise.

Newton’s Second Law in Angular Form  The rota-
tional analog of Newton’s second law is

 τnet = Iα, (10.7.4)

where τnet is the net torque acting on a particle or rigid body, I is the 
rotational inertia of the particle or body about the  rotation axis, and 
α is the resulting angular acceleration about that axis.

Work and Rotational Kinetic Energy  The equations 
used for calculating work and power in rotational motion cor-
respond to equations used for translational motion and are

   W =   
θi

  
θf
  τ dθ     (10.8.5)

and   P =   dW _ 
dt

   = τω.   (10.8.7)

When τ is constant, Eq. 10.8.5 reduces to

 W = τ(θf − θi). (10.8.6)

The form of the work–kinetic energy theorem used for rotating 
bodies is

   ΔK =  K  f   −  K  i   =   1 _ 2  I ω  f  
2  −   1 _ 2   I ω  i  

2  = W.   (10.8.4)

1  Figure 10.1 is a graph of the 
angular velocity versus time for a 
disk rotating like a merry-go-
round. For a point on the disk 
rim, rank the instants a, b, c, and 
d according to the  magnitude of 
the (a) tangential and (b) radial 
acceleration, greatest first.

2  Figure 10.2 shows plots of 
angular position θ versus time t 
for three cases in which a disk is 
rotated like a merry- go-round. 
In each case, the rotation direc-
tion changes at a  certain angu-
lar position θchange. (a) For each 
case, determine whether θchange 
is clockwise or counterclockwise 
from θ = 0, or whether it is at 
θ = 0. For each case, determine (b) whether ω is zero before, 
after, or at t = 0 and (c) whether α is positive,  negative, or zero.

1

2

3

0

–90°

90°

t

θ

Figure 10.2 Question 2.

3  A force is applied to the rim of a disk that can rotate like 
a merry-go-round, so as to change its angular velocity. Its  initial 
and final angular velocities, respectively, for four  situations are: 
(a) −2 rad/s, 5 rad/s; (b) 2 rad/s, 5 rad/s; (c) −2 rad/s, −5 rad/s; 
and (d) 2 rad/s, −5 rad/s. Rank the situations according to the 
work done by the torque due to the force, greatest first.

4  Figure 10.3b is a graph of the angular position of the  rotating 
disk of Fig. 10.3a. Is the angular velocity of the disk positive, 

Questions

t
a b c d

ω

Figure 10.1 Question 1.

Rotation axis

t (s)

   (rad)

1 2 3

(a) (b)

θ

Figure 10.3 Question 4.
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negative, or zero at (a) t = 1 s, (b) t = 2 s, and (c) t = 3 s? (d) Is 
the angular acceleration positive or negative?

5  In Fig. 10.4, two forces     F 
→

    1    
and     F 

→
    2    act on a disk that turns 

about its center like a merry-go-
round. The forces maintain the 
indicated angles during the rota-
tion, which is counterclockwise 
and at a constant rate. However, 
we are to decrease the angle θ 
of     F 

→
    1    without changing the mag-

nitude of     F 
→

    1   . (a)  To keep the angular speed constant, should 
we increase, decrease, or maintain the magnitude of     F 

→
    2   ? Do 

forces (b)     F 
→

    1    and (c)     F 
→

    2    tend to rotate the disk clockwise or 
counterclockwise?

6  In the overhead view of Fig. 
10.5, five forces of the same mag-
nitude act on a strange merry-go-
round; it is a square that can rotate 
about point P, at midlength along 
one of the edges. Rank the forces 
according to the magnitude of the 
torque they create about point P, 
greatest first.

7  Figure 10.6a is an overhead 
view of a horizontal bar that can 
pivot; two horizontal forces act on 
the bar, but it is  stationary. If the angle between the bar and     F 

→
    2    

is now  decreased from 90° and the bar is still not to turn, should 
F2 be made larger, made smaller, or left the same?

Pivot point
F1 F2

Pivot point

(a) (b)

F1

F2

ϕ

Figure 10.6 Questions 7 and 8.

8  Figure 10.6b shows an overhead view of a horizontal bar 
that is rotated about the pivot point by two horizontal forces,     F 

→
    1    

and     F 
→

    2   , with     F 
→

    2    at angle ϕ to the bar. Rank the following values 
of ϕ according to the magnitude of the angular acceleration of 
the bar, greatest first: 90°, 70°, and 110°.

9  Figure 10.7 shows a uniform metal plate that had been 
square before 25% of it was snipped off. Three lettered points 

F1

F2

θ

Figure 10.4 Question 5.

are indicated. Rank them according to the 
rotational inertia of the plate around a per-
pendicular axis through them, greatest first.

10  Figure 10.8 shows three flat disks (of the 
same radius) that can rotate about their cen-
ters like merry-go-rounds. Each disk consists 
of the same two materials, one denser than 
the other (density is mass per unit volume). 
In disks 1 and 3, the denser material forms the outer half of 
the disk area. In disk 2, it forms the inner half of the disk area. 
Forces with identical magnitudes are applied tangentially to the 
disk,  either at the outer edge or at the interface of the two mate-
rials, as shown. Rank the disks according to (a) the torque about 
the disk center, (b) the rotational inertia about the disk  center, 
and (c) the angular acceleration of the disk, greatest first.

F

Denser

Disk 1

Denser

Disk 3

F F

Lighter

Disk 2

Figure 10.8 Question 10.

11  Figure 10.9a shows a meter stick, half wood and half steel, 
that is pivoted at the wood end at O. A force    F 

→
    is applied to 

the steel end at a. In Fig. 10.9b, the stick is reversed and piv-
oted at the steel end at O′, and the same force is applied at the 
wood end at a′. Is the resulting angular acceleration of Fig. 10.9a 
greater than, less than, or the same as that of Fig. 10.9b?

(b)(a)

O O´ áa

F FFigure 10.9  
Question 11.

12  Figure 10.10 shows three 
disks, each with a uniform dis-
tribution of mass. The radii R 
and masses M are indicated. 
Each disk can rotate around 
its central axis (perpendicular 
to the disk face and through 
the center). Rank the disks 
according to their rotational 
inertias calculated about their 
central axes, greatest first.

a

b

c
Figure 10.7  

Question 9.

2 E  What is the angular speed of (a) the second hand, (b) the 
minute hand, and (c) the hour hand of a smoothly running ana-
log watch? Answer in radians per second.

3 M  FCP  When a slice of buttered toast is accidentally pushed 
over the edge of a counter, it rotates as it falls. If the distance to 

Module 10.1  Rotational Variables
1 E  A good baseball pitcher can throw a baseball toward home 
plate at 85 mi/h with a spin of 1800 rev/min. How many revo-
lutions does the baseball make on its way to home plate? For 
simplicity, assume that the 60 ft path is a straight line.

Problems

          Tutoring problem available (at instructor’s discretion) in WileyPLUS

 Worked-out solution available in Student Solutions Manual

E  Easy M  Medium H  Hard

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

CALC  Requires calculus

BIO  Biomedical application

GO

FCP

SSM

Figure 10.5 Question 6.

F5

F4

F3

F2

F1 P

R:
M:

1 m
26 kg

(a)

2 m
7 kg

(b)

3 m
3 kg

(c)

Figure 10.10 Question 12.
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the floor is 76 cm and for rotation less than 1 rev, what are the 
(a) smallest and (b) largest angular speeds that cause the toast 
to hit and then topple to be butter-side down? 

4 M  CALC  The angular position of a point on a rotating wheel 
is given by θ = 2.0 + 4.0t 2 + 2.0t 3, where θ is in radians and t is 
in seconds. At t = 0, what are (a) the point’s angular position 
and (b) its angular velocity? (c) What is its angular velocity at 
t = 4.0 s? (d) Calculate its angular acceleration at t = 2.0 s. (e) Is 
its angular acceleration constant?

5 M  A diver makes 2.5 revolutions on the way from a 10-m-high 
platform to the water. Assuming zero initial vertical  velocity, 
find the average angular velocity during the dive. 

6 M  CALC  The angular position of a point on the rim of a rotating 
wheel is given by θ = 4.0t − 3.0t2 + t3, where θ is in radians and t is 
in seconds. What are the angular velocities at (a) t = 2.0 s and (b) 
t = 4.0 s? (c)  What is the average angular acceleration for the 
time interval that begins at t = 2.0 s and ends at t = 4.0 s? What 
are the instantaneous angular accelerations at (d) the beginning 
and (e) the end of this time interval?

7 H  The wheel in Fig. 10.11 has 
eight equally spaced spokes and 
a radius of 30 cm. It is mounted 
on a fixed axle and is spinning 
at 2.5 rev/s. You want to shoot 
a 20-cm-long arrow parallel to 
this axle and through the wheel 
without  hitting any of the spokes. 
Assume that the  arrow and the 
spokes are very thin. (a) What minimum speed must the arrow 
have? (b) Does it matter where between the axle and rim of 
the wheel you aim? If so, what is the best location?

8 H  CALC  The angular acceleration of a wheel is α = 6.0t4 − 
4.0t2, with α in radians per second-squared and t in seconds. At 
time t = 0, the wheel has an angular velocity of +2.0 rad/s and 
an angular position of +1.0 rad. Write expressions for (a)  the 
angular velocity (rad/s) and (b) the angular position (rad) as 
functions of time (s).

Module 10.2  Rotation with Constant Angular 
Acceleration
9 E  A drum rotates around its central axis at an angular  velocity 
of 12.60 rad/s. If the drum then slows at a constant rate of 
4.20 rad/s2, (a) how much time does it take and (b) through what 
angle does it rotate in coming to rest?

10 E  Starting from rest, a disk rotates about its central axis with 
constant angular acceleration. In 5.0 s, it rotates 25 rad. During 
that time, what are the magnitudes of (a) the angular accelera-
tion and (b) the average angular velocity? (c) What is the instan-
taneous angular velocity of the disk at the end of the 5.0 s? (d) 
With the angular acceleration unchanged, through what addi-
tional angle will the disk turn during the next 5.0 s?

11 E  A disk, initially rotating at 120 rad/s, is slowed down with 
a constant angular acceleration of magnitude 4.0 rad/s2. (a) How 
much time does the disk take to stop? (b) Through what angle 
does the disk rotate during that time?

12 E  The angular speed of an automobile engine is increased 
at a constant rate from 1200 rev/min to 3000 rev/min in 12 s. 

Figure 10.11 Problem 7.

(a) What is its angular acceleration in revolutions per minute-
squared? (b) How many revolutions does the engine make dur-
ing this 12 s interval?

13 M  A flywheel turns through 40 rev as it slows from an  angular 
speed of 1.5 rad/s to a stop. (a) Assuming a constant angular 
acceleration, find the time for it to come to rest. (b) What is its 
angular acceleration? (c) How much time is required for it to 
complete the first 20 of the 40 revolutions? 

14 M  GO  A disk rotates about its central axis starting from rest 
and accelerates with constant angular acceleration. At one time 
it is rotating at 10 rev/s; 60 revolutions later, its angular speed 
is 15 rev/s. Calculate (a) the angular acceleration, (b) the time 
required to complete the 60 revolutions, (c) the time required to 
reach the 10 rev/s angular speed, and (d) the number of revolu-
tions from rest until the time the disk reaches the 10 rev/s angu-
lar speed. 

15 M  SSM  Starting from rest, a wheel has constant α = 3.0  
rad/s2. During a certain 4.0 s interval, it turns through 120 rad. 
How much time did it take to reach that 4.0 s  interval? 

16 M  A merry-go-round rotates from rest with an angular accel-
eration of 1.50 rad/s2. How long does it take to rotate through 
(a) the first 2.00 rev and (b) the next 2.00 rev?

17 M  At t = 0, a flywheel has an angular velocity of 4.7 rad/s, a 
constant angular acceleration of −0.25 rad/s2, and a reference 
line at θ0 = 0. (a) Through what maximum angle θmax will the 
reference line turn in the positive direction? What are the (b) 
first and (c) second times the reference line will be at  θ =   1 _ 2    θ  max   ?  
At what (d) negative time and (e) positive time will the refer-
ence line be at θ = 10.5 rad? (f) Graph θ versus t, and indicate 
your answers. 

18 H  CALC  A pulsar is a rapidly rotating neutron star that 
emits a radio beam the way a lighthouse emits a light beam. We 
 receive a radio pulse for each rotation of the star. The period T 
of rotation is found by measuring the time between pulses. The 
pulsar in the Crab nebula has a period of rotation of T = 0.033 s 
that is increasing at the rate of 1.26 × 10−5 s/y. (a) What is the 
pulsar’s angular acceleration α? (b) If α is constant, how many 
years from now will the pulsar stop  rotating? (c) The pulsar orig-
inated in a supernova explosion seen in the year 1054. Assuming 
constant α, find the  initial T.

Module 10.3  Relating the Linear and Angular Variables
19 E  What are the magnitudes of (a) the angular velocity, 
(b) the radial acceleration, and (c) the tangential acceleration of 
a spaceship taking a circular turn of radius 3220 km at a speed 
of 29 000 km/h?

20 E  CALC  An object rotates about a fixed axis, and the angular 
position of a reference line on the object is given by θ = 0.40e2t, 
where θ is in radians and t is in seconds. Consider a point on the 
object that is 4.0 cm from the axis of rotation. At t = 0, what are 
the magnitudes of the point’s (a) tangential component of accel-
eration and (b) radial component of  acceleration?

21 E  FCP  Between 1911 and 1990, the top of the leaning 
bell tower at Pisa, Italy, moved toward the south at an aver-
age rate of 1.2 mm/y. The tower is 55 m tall. In radians per 
second, what is the average angular speed of the tower’s top 
about its base?
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22 E  BIO  CALC  An astronaut is tested in a centrifuge with 
radius 10 m and rotating  according to θ = 0.30t2. At t = 5.0 s, 
what are the magnitudes of the (a) angular velocity, (b) linear 
velocity, (c) tangential acceleration, and (d) radial acceleration?

23 E  SSM  A flywheel with a diameter of 1.20 m is rotating at 
an angular speed of 200 rev/min. (a) What is the angular speed 
of the flywheel in radians per second? (b) What is the linear 
speed of a point on the rim of the flywheel? (c) What  constant 
angular acceleration (in revolutions per minute-squared) will 
increase the wheel’s angular speed to 1000 rev/min in 60.0 s? (d) 
How many revolutions does the wheel make during that 60.0 s? 

24 E  A vinyl record is played by rotating the record so that an 
approximately circular groove in the vinyl slides under a stylus. 
Bumps in the groove run into the stylus, causing it to oscillate. 
The equipment converts those oscillations to electrical signals 
and then to sound. Suppose that a record turns at the rate of  33  1 _ 3    
rev/min, the groove being played is at a radius of 10.0 cm, and 
the bumps in the groove are uniformly separated by 1.75 mm. 
At what rate (hits per second) do the bumps hit the stylus?

25 M  SSM  (a) What is the angular speed ω about the polar axis 
of a point on Earth’s surface at latitude 40° N? (Earth rotates 
about that axis.) (b) What is the linear speed v of the point? 
What are (c) ω and (d) v for a point at the equator? 

26 M  The flywheel of a steam engine runs with a constant angu-
lar velocity of 150 rev/min. When steam is shut off, the friction 
of the bearings and of the air stops the wheel in 2.2 h. (a) What 
is the constant angular acceleration, in revolutions per minute-
squared, of the wheel during the slowdown? (b)  How many 
revolutions does the wheel make before stopping? (c) At the 
instant the flywheel is turning at 75 rev/min, what is the tangen-
tial component of the linear acceleration of a flywheel particle 
that is 50 cm from the axis of rotation? (d) What is the magni-
tude of the net linear acceleration of the particle in (c)?

27 M  A seed is on a turntable rotating at  33  1 _ 3    rev/min, 6.0 cm 
from the rotation axis. What are (a) the seed’s acceleration and 
(b) the least coefficient of static friction to avoid slippage? (c) If 
the turntable had undergone constant angular acceleration from 
rest in 0.25 s, what is the least coefficient to avoid slippage?

28 M  In Fig. 10.12, wheel A of 
radius rA = 10 cm is coupled 
by belt B to wheel C of radius 
rC = 25 cm. The angular speed of 
wheel A is increased from rest at 
a constant rate of 1.6 rad/s2. Find 
the time needed for wheel C to 
reach an  angular speed of 100 rev/min, assuming the belt does 
not slip. (Hint: If the belt does not slip, the linear speeds at the 
two rims must be equal.)

29 M  Figure 10.13 shows an early method of measuring the 
speed of light that makes use of a rotating slotted wheel. A 
beam of light passes through one of the slots at the outside 
edge of the wheel, travels to a distant mirror, and returns to 
the wheel just in time to pass through the next slot in the 
wheel. One such slotted wheel has a radius of 5.0 cm and 500 
slots around its edge. Measurements taken when the  mirror 
is L = 500 m from the wheel indicate a speed of light of 

B

C

rA

A
rC

Figure 10.12 Problem 28.

3.0 × 105 km/s. (a) What is the (constant) angular speed of 
the wheel? (b) What is the linear speed of a point on the edge 
of the wheel?

30 M  A gyroscope flywheel of radius 2.83 cm is accelerated 
from rest at 14.2 rad/s2 until its angular speed is 2760 rev/min. 
(a) What is the tangential acceleration of a point on the rim of 
the flywheel during this spin-up process? (b) What is the radial 
acceleration of this point when the flywheel is spinning at full 
speed? (c) Through what distance does a point on the rim move 
during the spin-up?

31 M  GO  A disk, with a radius of 0.25 m, is to be rotated like 
a merry-go-round through 800 rad, starting from rest, gaining 
angular speed at the constant rate α1 through the first 400 rad 
and then losing angular speed at the constant rate −α1 until it is 
again at rest. The magnitude of the centripetal acceleration of 
any portion of the disk is not to exceed 400 m/s2. (a) What is the 
least time required for the rotation? (b) What is the correspond-
ing value of α1? 

32 M  A car starts from rest and moves around a circular track 
of radius 30.0 m. Its speed increases at the constant rate of 0.500  
m/s2. (a) What is the magnitude of its net linear acceleration 
15.0 s later? (b) What angle does this net acceleration vector 
make with the car’s velocity at this time?

Module 10.4  Kinetic Energy of Rotation
33 E  SSM  Calculate the rotational inertia of a wheel that has a 
kinetic energy of 24 400 J when rotating at 602 rev/min. 

34 E  Figure 10.14 gives 
angular speed versus time 
for a thin rod that rotates 
around one end. The scale 
on the ω axis is set by ωs = 
6.0 rad/s. (a) What is the 
magnitude of the rod’s angu-
lar acceleration? (b) At t = 
4.0 s, the rod has a rotational 
kinetic energy of 1.60 J. 
What is its kinetic energy at 
t = 0?

0
0 1 2 3 4 5 6

t (s)

ω (rad/s)

sω

Figure 10.14 Problem 34.
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Figure 10.13 Problem 29.
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Module 10.5  Calculating the Rotational Inertia
35 E  SSM  Two uniform solid cylinders, each rotating about its 
central (longitudinal) axis at 235 rad/s, have the same mass of 
1.25 kg but differ in radius. What is the rotational kinetic energy 
of (a) the smaller cylinder, of radius 0.25 m, and (b) the larger 
cylinder, of radius 0.75 m? 

36 E  Figure 10.15a shows a disk that can rotate about an axis 
at a radial distance h from the center of the disk. Figure 10.15b 
gives the rotational inertia I of the disk about the axis as a func-
tion of that distance h, from the center out to the edge of the 
disk. The scale on the I axis is set by IA = 0.050 kg ⋅ m2 and IB = 
0.150 kg ⋅ m2. What is the mass of the disk?

I 
(k

g 
•  m

2 )

IB

IA 0 0.1
h (m)

0.2

(b)(a)

Axis

h

Figure 10.15 Problem 36.

37 E  SSM  Calculate the rotational inertia of a meter stick, with 
mass 0.56 kg, about an axis perpendicular to the stick and 
 located at the 20 cm mark. (Treat the stick as a thin rod.) 

38 E  Figure 10.16 shows three 
0.0100 kg particles that have 
been glued to a rod of length 
L = 6.00 cm and negligible mass. 
The assembly can rotate around a 
perpendicular axis through point 
O at the left end. If we remove 
one particle (that is, 33% of the 
mass), by what percentage does the  rotational inertia of the 
assembly around the rotation axis  decrease when that removed 
particle is (a) the innermost one and (b) the outermost one?

39 M  Trucks can be run on energy stored in a  rotating flywheel, 
with an electric motor getting the flywheel up to its top speed of 
200π rad/s. Suppose that one such flywheel is a solid, uniform 
cylinder with a mass of 500 kg and a radius of 1.0 m. (a) What is 
the kinetic energy of the flywheel after charging? (b) If the truck 
uses an average power of 8.0 kW, for how many minutes can it 
operate between chargings?

40 M  Figure 10.17 shows an arrangement of 15 identical disks 
that have been glued together in a rod-like shape of length 
L = 1.0000 m and (total) mass M = 100.0 mg. The disks are 
uniform, and the disk arrangement can rotate about a perpen-
dicular axis through its central disk at point O. (a) What is the 
rotational inertia of the arrangement about that axis? (b) If we 
approximated the arrangement as being a uniform rod of mass 
M and length L, what percentage error would we make in using 
the formula in Table 10.5.1e to calculate the rotational inertia?

L

O

Figure 10.17 Problem 40.

Figure 10.16 Problems  
38 and 62.

Axis

L

mO

d d d
m m

41 M  GO  In Fig. 10.18, two parti-
cles, each with mass m = 0.85 kg, 
are fastened to each other, and to 
a rotation axis at O, by two thin 
rods, each with length d = 5.6 cm 
and mass M  = 1.2  kg. The com-
bination rotates around the rota-
tion axis with the angular speed 
ω = 0.30 rad/s. Measured about 
O, what are the combination’s (a) rotational inertia and (b) 
kinetic  energy? 

42 M  The masses and coordinates of four particles are as  
follows: 50 g, x = 2.0 cm, y = 2.0 cm; 25 g, x = 0, y = 4.0 cm; 25 g, 
x = −3.0 cm, y = −3.0 cm; 30 g, x = −2.0 cm, y = 4.0 cm. What 
are the rotational inertias of this collection about the (a) x, (b) y, 
and (c) z axes? (d) Suppose that we symbolize the  answers to 
(a) and (b) as A and B, respectively. Then what is the answer to 
(c) in terms of A and B?

43 M  SSM  The uniform solid 
block in Fig. 10.19 has mass 0.172 
kg and edge lengths a = 3.5 cm, 
b = 8.4 cm, and c = 1.4 cm. Cal-
culate its rotational inertia about 
an axis through one  corner and 
perpendicular to the large faces.

44 M  Four identical particles of 
mass 0.50 kg each are placed at 
the vertices of a 2.0 m × 2.0 m 
square and held there by four massless rods, which form the 
sides of the square. What is the rotational inertia of this rigid 
body about an axis that (a) passes through the midpoints of 
opposite sides and lies in the plane of the square, (b) passes 
through the midpoint of one of the sides and is perpendicular 
to the plane of the square, and (c) lies in the plane of the square 
and passes through two diagonally opposite particles?

Module 10.6  Torque
45 E  SSM  The body in 
Fig. 10.20 is pivoted at O, 
and two forces act on it as 
shown. If r1 = 1.30 m, r2 = 
2.15 m, F1 = 4.20 N, F2 = 4.90 
N, θ1 = 75.0°, and θ2 = 60.0°, 
what is the net torque about  
the pivot? 

46 E  The body in Fig. 10.21 
is pivoted at O. Three forces 
act on it: FA = 10 N at point 
A, 8.0 m from O; FB = 16 N 
at B, 4.0 m from O; and 
FC = 19 N at C, 3.0 m from 
O. What is the net torque 
about O?

47 E  SSM  A small ball of  
mass 0.75 kg is attached to 
one end of a 1.25-m-long massless rod, and the other end of the 
rod is hung from a pivot. When the resulting pendulum is 30° 
from the vertical, what is the magnitude of the gravitational 
torque calculated about the pivot? 

48 E  The length of a bicycle pedal arm is 0.152 m, and a down-
ward force of 111 N is applied to the pedal by the rider. What is 

b

a

c
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Figure 10.19 Problem 43.
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Figure 10.18 Problem 41.

Figure 10.20 Problem 45.
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Figure 10.21 Problem 46.
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the magnitude of the torque about the pedal arm’s pivot when 
the arm is at angle (a) 30°, (b) 90°, and (c) 180° with the vertical?

Module 10.7  Newton’s Second Law for Rotation
49 E  SSM  During the launch from a board, a diver’s angular 
speed about her center of mass changes from zero to 6.20 rad/s 
in  220 ms. Her rotational inertia about her center of mass is 
12.0 kg ⋅ m2. During the launch, what are the magnitudes of (a) 
her average angular acceleration and (b) the  average external 
torque on her from the board?

50 E  If a 32.0 N ⋅ m torque on a wheel 
causes angular acceleration 25.0 rad/s2, 
what is the wheel’s rotational inertia?

51 M  GO  In Fig. 10.22, block 1 has mass 
m1 = 460 g, block 2 has mass m2 = 500 g,  
and the pulley, which is mounted on a 
horizontal axle with negligible friction, 
has radius R = 5.00 cm. When released 
from rest, block 2 falls 75.0 cm in 5.00 s 
without the cord slipping on the pulley. 
(a) What is the magnitude of the accel-
eration of the blocks? What are (b) tension T2 and (c) tension 
T1? (d) What is the magnitude of the pulley’s angular accelera-
tion? (e) What is its rotational inertia? 

52 M  GO  In Fig. 10.23, a cylinder having a mass of 2.0 kg can 
 rotate about its central axis through point O. Forces are  applied 
as shown: F1 = 6.0 N, F2 = 4.0 N, F3 = 2.0 N, and F4 = 5.0 N. 
Also, r = 5.0 cm and R = 12 cm. Find the (a) magnitude and (b) 
direction of the angular acceleration of the cylinder. (During the 
rotation, the forces maintain their same angles relative to the 
cylinder.) 

Figure 10.23 Problem 52.
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F4 R

r
O

Rotation
axis

F2

F3

53 M  GO  Figure 10.24 shows a uniform 
disk that can rotate around its center 
like a merry-go-round. The disk has 
a radius of 2.00 cm and a mass of 20.0 
grams and is initially at rest. Starting at 
time t = 0, two forces are to be applied 
tangentially to the rim as indicated, so 
that at time t = 1.25 s the disk has an 
angular velocity of 250 rad/s counterclockwise. Force    F 

→
   1 has a 

magnitude of 0.100 N. What is magnitude F2?

54 M  BIO  FCP  In a judo foot-sweep move, you sweep your 
opponent’s left foot out from under him while pulling on his gi 
(uniform) toward that side. As a result, your opponent rotates 
around his right foot and onto the mat. Figure 10.25 shows 
a simplified diagram of your opponent as you face him, with his 
left foot swept out. The rotational axis is through point O. 

m1

T1 T2

m2

R

Figure 10.22  
Problems 51 and 83.

F2

F1

Figure 10.24  
Problem 53.

The  gravitational force     F 
→

    g    
on him effectively acts at 
his center of mass, which 
is a horizontal distance 
d = 28 cm from point O. His 
mass is 70 kg, and his rota-
tional inertia about point 
O is 65 kg ⋅ m2. What is 
the magnitude of his  initial 
angular acceleration about 
point  O if your pull    F 

→
   a on 

his gi is (a) negligible and 
(b) horizontal with a magni-
tude of 300 N and applied at 
height h = 1.4 m?

55 M  GO  In Fig. 10.26a, an 
irregularly shaped plastic 
plate with uniform thickness 
and density (mass per unit volume) is to be 
rotated around an axle that is perpendicular 
to the plate face and through point O. The 
rotational inertia of the plate about that 
axle is measured with the following method. 
A circular disk of mass 0.500 kg and radius 
2.00 cm is glued to the plate, with its center 
aligned with point O (Fig. 10.26b). A string 
is wrapped around the edge of the disk the 
way a string is wrapped around a top. Then 
the string is pulled for 5.00 s. As a result, the 
disk and plate are rotated by a constant 
force of 0.400 N that is applied by the string 
tangentially to the edge of the disk. The 
resulting angular speed is 114 rad/s. What is the rotational iner-
tia of the plate about the axle?

56 M  GO  Figure 10.27 shows 
particles 1 and 2, each of 
mass m, fixed to the ends of 
a rigid massless rod of length 
L1 + L2, with L1 = 20 cm and 
L2 = 80 cm. The rod is held horizontally on the fulcrum and then 
released. What are the magnitudes of the initial accelerations of 
(a) particle 1 and (b) particle 2?

57 H  CALC  GO  A pulley, with a rotational inertia of 1.0 × 10−3 
kg ⋅ m2 about its axle and a radius of 10 cm, is acted on by a 
force applied tangentially at its rim. The force magnitude varies 
in time as F = 0.50t + 0.30t2, with F in newtons and t in seconds. 
The pulley is initially at rest. At t = 3.0 s what are its (a)  angular 
acceleration and (b) angular speed?

Module 10.8  Work and Rotational Kinetic Energy
58 E  A uniform disk with mass M and radius R is mounted 
on a fixed horizontal axis. A block with mass m hangs from a 
massless cord that is wrapped around the rim of the disk. (a) If 
R = 12 cm, M = 400 g, and m = 50 g, find the speed of the block 
after it has descended 50 cm starting from rest. Solve the prob-
lem using energy conservation principles. (b) Repeat (a) with 
R = 5.0 cm.

59 E  An automobile crankshaft transfers energy from the engine 
to the axle at the rate of 100 hp (= 74.6 kW) when  rotating at a 
speed of 1800 rev/min. What torque (in newton-meters) does 
the crankshaft deliver?

1 2

L1 L2

Figure 10.27 Problem 56.

Figure 10.25 Problem 54.
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Problem 55.
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60 E  A thin rod of length 0.75 m and mass 0.42 kg is suspended 
freely from one end. It is pulled to one side and then allowed to 
swing like a pendulum, passing through its lowest position with 
angular speed 4.0 rad/s. Neglecting friction and air resistance, 
find (a) the rod’s kinetic energy at its lowest position and (b) 
how far above that position the center of mass rises.

61 E  A 32.0 kg wheel, essentially a thin hoop with radius 1.20 m, 
is rotating at 280 rev/min. It must be brought to a stop in 15.0 s. 
(a) How much work must be done to stop it? (b) What is the 
required average power?

62 M  In Fig. 10.16, three 0.0100 kg particles have been glued to 
a rod of length L = 6.00 cm and negligible mass and can rotate 
around a perpendicular axis through point O at one end. How 
much work is required to change the rotational rate (a) from 
0 to 20.0 rad/s, (b) from 20.0 rad/s to 40.0 rad/s, and (c) from 
40.0 rad/s to 60.0 rad/s? (d) What is the slope of a plot of the 
assembly’s kinetic energy (in joules) versus the square of its 
rotation rate (in radians-squared per second-squared)?

63 M  SSM  A meter stick is held vertically with one end on the 
floor and is then allowed to fall. Find the speed of the other end 
just before it hits the floor, assuming that the end on the floor 
does not slip. (Hint: Consider the stick to be a thin rod and use 
the conservation of energy principle.) 

64 M  A uniform cylinder of radius 10 cm and mass 20 kg is 
mounted so as to rotate freely about a horizontal axis that is 
parallel to and 5.0 cm from the central longitudinal axis of the 
cylinder. (a) What is the rotational inertia of the cylinder about 
the axis of rotation? (b) If the cylinder is released from rest with 
its central longitudinal axis at the same height as the axis about 
which the cylinder rotates, what is the angular speed of the cyl-
inder as it passes through its lowest position?

65 H  GO  FCP  A tall, cylindrical chimney falls over when its 
base is ruptured. Treat the chimney as a thin rod of length 
55.0 m. At the instant it makes an angle of 35.0° with the vertical 
as it falls, what are (a) the radial acceleration of the top, and (b) 
the tangential acceleration of the top. (Hint: Use energy con-
siderations, not a torque.) (c) At what angle θ is the tangential 
acceleration equal to g?

66 H  CALC  GO  A uniform spherical shell of mass M = 4.5 kg 
and  radius R = 8.5 cm can rotate about a vertical axis on fric-
tionless bearings (Fig. 10.28). A massless cord passes around 
the equator of the shell, over a pulley of rotational inertia 
I = 3.0 × 10−3 kg · m2 and radius r = 5.0 cm, and is attached to 
a small object of mass m = 0.60 kg. There is no friction on the 
pulley’s axle; the cord does not slip on the pulley. What is the 
speed of the object when it has fallen 82 cm after being  released 
from rest? Use energy considerations.

Figure 10.28 Problem 66.

M, R

I, r

m

67 H  GO  Figure 10.29 shows a 
rigid assembly of a thin hoop (of 
mass m and radius R = 0.150 m) 
and a thin radial rod (of mass m and 
length L = 2.00R). The assembly 
is upright, but if we give it a slight 
nudge, it will rotate around a hori-
zontal axis in the plane of the rod 
and hoop, through the lower end 
of the rod. Assuming that the energy given to the assembly in 
such a nudge is negligible, what would be the  assembly’s  angular 
speed about the rotation axis when it passes through the upside-
down (inverted) orientation? 

Additional Problems
68  Two uniform solid spheres have the same mass of 1.65 kg, 
but one has a radius of 0.226 m and the other has a radius of 
0.854 m. Each can rotate about an axis through its center. (a) 
What is the magnitude τ of the torque required to bring the 
smaller sphere from rest to an angular speed of 317  rad/s in 
15.5 s? (b) What is the magnitude F of the force that must be 
applied tangentially at the sphere’s equator to give that torque? 
What are the corresponding values of (c) τ and (d) F for the 
larger sphere?

69  In Fig. 10.30, a small disk of 
radius r = 2.00 cm has been glued 
to the edge of a larger disk of 
radius R = 4.00 cm so that the disks 
lie in the same plane. The disks can 
be rotated around a perpendicular 
axis through point O at the center 
of the larger disk. The disks both 
have a uniform density (mass per 
unit volume) of 1.40 × 103 kg/m3 and a uniform thickness of 
5.00 mm. What is the rotational inertia of the two-disk  assembly 
about the rotation axis through O?

70  A wheel, starting from rest, rotates with a constant  angular 
acceleration of 2.00 rad/s2. During a certain 3.00 s in terval, it 
turns through 90.0 rad. (a) What is the angular velocity of the 
wheel at the start of the 3.00 s interval? (b) How long has the 
wheel been turning before the start of the 3.00 s interval?

71 SSM  In Fig. 10.31, two 6.20 kg 
blocks are connected by a mass-
less string over a pulley of radius 
2.40 cm and rotational inertia 7.40 
× 10−4 kg ⋅ m2. The string does not 
slip on the  pulley; it is not known 
whether there is friction between 
the table and the sliding block; 
the pulley’s axis is frictionless. 
When this system is released from rest, the pulley turns through 
0.130 rad in 91.0 ms and the acceleration of the blocks is con-
stant. What are (a) the magnitude of the pulley’s angular acceler-
ation, (b) the magnitude of either block’s acceleration, (c) string 
tension T1, and (d) string tension T2? 

72  Attached to each end of a thin steel rod of length 1.20 m 
and mass 6.40 kg is a small ball of mass 1.06 kg. The rod is 
constrained to rotate in a horizontal plane about a vertical 
axis through its midpoint. At a certain instant, it is rotating at 

O

Figure 10.30 Problem 69.
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Figure 10.31 Problem 71.

Figure 10.29 Problem 67.
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39.0 rev/s. Because of friction, it slows to a stop in 32.0 s. Assum-
ing a constant retarding torque due to friction, compute (a) the 
angular acceleration, (b)  the retarding torque, (c)  the total 
energy transferred from mechanical energy to  thermal energy 
by friction, and (d) the number of revolutions rotated during the 
32.0 s. (e) Now suppose that the retarding torque is known not 
to be constant. If any of the quantities (a), (b), (c), and (d) can 
still be computed without additional information, give its value.

73 CALC  A uniform helicopter rotor blade is 7.80 m long, has 
a mass of 110 kg, and is attached to the rotor axle by a single 
bolt. (a) What is the magnitude of the force on the bolt from the 
axle when the rotor is turning at 320 rev/min? (Hint: For this 
calculation the blade can be considered to be a point mass at its 
center of mass. Why?) (b)  Calculate the torque that must be 
applied to the rotor to bring it to full speed from rest in 6.70 s. 
Ignore air resistance. (The blade cannot be considered to be a 
point mass for this calculation. Why not? Assume the mass dis-
tribution of a uniform thin rod.) (c) How much work does the 
torque do on the blade in order for the blade to reach a speed of 
320 rev/min?

74  Racing disks. Figure 10.32 
shows two disks that can  rotate 
about their centers like a merry-
go-round. At time t = 0, the refer-
ence lines of the two disks have 
the same orientation. Disk A is 
already rotating, with a constant 
angular  velocity of 9.5 rad/s. Disk 
B has been stationary but now  begins to rotate at a constant 
angular acceleration of 2.2 rad/s2. (a) At what time t will the ref-
erence lines of the two disks momentarily have the same angular 
displacement θ? (b) Will that time t be the first time since t = 0 
that the  reference lines are momentarily aligned?

75 BIO  FCP  A high-wire walker always attempts to keep his cen-
ter of mass over the wire (or rope). He normally carries a long, 
heavy pole to help: If he leans, say, to his right (his com moves to 
the right) and is in danger of rotating around the wire, he moves 
the pole to his left (its com moves to the left) to slow the rotation 
and allow himself time to adjust his balance. Assume that the 
walker has a mass of 70.0 kg and a rotational inertia of 15.0 kg ⋅ m2  
about the wire. What is the magnitude of his angular accelera-
tion about the wire if his com is 5.0 cm to the right of the wire 
and (a) he carries no pole and (b) the 14.0 kg pole he carries has 
its com 10 cm to the left of the wire? 

76  Starting from rest at t = 0, a wheel undergoes a constant 
angular acceleration. When t = 2.0 s, the angular velocity of the 
wheel is 5.0 rad/s. The acceleration continues until t = 20 s, when 
it abruptly ceases. Through what angle does the wheel rotate in 
the interval t = 0 to t = 40 s?

77 SSM  A record turntable rotating at  33  1 _ 3    rev/min slows down 
and stops in 30 s after the motor is turned off. (a) Find its (con-
stant) angular acceleration in revolutions per minute-squared. 
(b) How many revolutions does it make in this time? 

78 GO  A rigid body is made of 
three identical thin rods, each 
with length L = 0.600 m, fastened 
together in the form of a letter 
H (Fig. 10.33). The body is free 
to rotate about a horizontal axis 

Figure 10.32 Problem 74.
Disk A Disk B

L

L

L

Figure 10.33 Problem 78.

that runs along the length of one of the legs of the H. The body 
is allowed to fall from rest from a position in which the plane of 
the H is horizontal. What is the angular speed of the body when 
the plane of the H is vertical? 

79 SSM  (a) Show that the rotational inertia of a solid cylin-
der of mass M and radius R about its central axis is equal to  
the  rotational inertia of a thin hoop of mass M and radius  R /  √ 

__
 2    

about its central axis. (b) Show that the rotational inertia I of 
any given body of mass M about any given axis is equal to the 
rotational inertia of an equivalent hoop about that axis, if the 
hoop has the same mass M and a radius k given by

k =   √ 
___

   I ___ 
M

     .

The radius k of the equivalent hoop is called the radius of 
 gyration of the given body. 

80  A disk rotates at constant angular acceleration, from angu-
lar position θ1 = 10.0 rad to angular position θ2 = 70.0 rad in 
6.00 s. Its angular velocity at θ2 is 15.0 rad/s. (a) What was its 
angular velocity at θ1? (b) What is the angular acceleration? (c) 
At what angular position was the disk initially at rest? (d) Graph 
θ versus time t and angular speed ω versus t for the disk, from the 
beginning of the motion (let t = 0 then).

81 GO  The thin uniform rod in Fig. 10.34 has 
length 2.0 m and can pivot about a horizontal, 
frictionless pin through one end. It is released 
from rest at angle θ = 40° above the horizon-
tal. Use the principle of conservation of energy 
to determine the angular speed of the rod as it 
passes through the horizontal position.

82 FCP  George Washington Gale Ferris, 
Jr., a civil engineering graduate from Rens-
selaer Polytechnic Institute, built the original Ferris wheel for 
the 1893 World’s Columbian Exposition in Chicago. The wheel, 
an astounding engineering construction at the time, carried 36 
wooden cars, each holding up to 60 passengers, around a circle 
76 m in diameter. The cars were loaded 6 at a time, and once all 
36 cars were full, the wheel made a complete rotation at constant 
angular speed in about 2 min. Estimate the amount of work that 
was required of the machinery to rotate the passengers alone. 

83  In Fig. 10.22, two blocks, of mass m1 = 400 g and m2 = 600 g, 
are connected by a massless cord that is wrapped around a uni-
form disk of mass M = 500 g and radius R = 12.0 cm. The disk can 
rotate without friction about a fixed horizontal axis through its 
center; the cord cannot slip on the disk. The system is released 
from rest. Find (a) the magnitude of the acceleration of the blocks, 
(b) the tension T1 in the cord at the left, and (c) the tension T2 in 
the cord at the right.

84  Newton’s second law for rotation. 
Figure 10.35 shows a uniform disk, with 
mass M = 2.5 kg and radius R = 20 cm, 
mounted on a fixed horizontal axle. A 
block with mass m = 1.2 kg hangs from a 
massless cord that is wrapped around the 
rim of the disk. Find (a) the acceleration 
of the falling block, (b) the tension in the 
cord, and (c) the angular acceleration of 
the disk. The cord does not slip, and there 
is no friction at the axle.

Pin

θ

Figure 10.34  
Problem 81.

m

M

Figure 10.35  
Problem 84.
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308  CHAPTER 10 ROTATION

85  Earth’s rotation rate, then and now. Research with an extinct 
type of clams that lived 70 million years ago involves the daily 
growth rings that formed on the shells. Measurements reveal that 
the day back then was 23.5 hours long. (a) In radians per hour, 
what is Earth’s current rate of rotation ω? (b) What was it back 
then? (c) Back then, how many days were in a year, the time 
Earth takes to make a complete revolution about the Sun?

86 BIO  CALC  Bone screw insertion. An increasingly common 
method of surgically stabilizing a broken bone is by inserting 
a screw into the bone with an automated surgical screwdriver. 
As the screw enters the bone, the medical team monitors the 
torque applied to the screw. The purpose is to drive the screw 
inward until the screw head meets the bone and then to rotate 
the screw a bit more to tighten the screw threads against the 
bone threads that the screw has cut along its path. The danger 
is to tighten the screw too much because then the screw threads 
destroy (strip) the bone threads. Figure 10.36 shows an idealized 
plot of torque magnitude τ versus angle of rotation θ, all the 
way to the failure stage. Initially, as more of the screw enters 
the bone, the required torque increases until it reaches a short 
plateau at τplateau = 0.10 N ⋅ m, which occurs as the head makes 
contact. Then the torque sharply increases as the screw tight-
ens. The surgical team would like to stop at or near the peak at  
τpeak = 1.7 N ⋅ m and avoid passing into the failure region. They 
might be able to predict the peak from the plateau and the work 
done on the screw by the screwdriver. (a) What multiple of the 
plateau torque gives the peak torque? (b) How much work is 
done from the left end of the plot to the peak? 

Tightening
τpeak

τplateau

Plateau

Insertion

0
750º

800º
1000º

1200º

Failure

τ (N∙m)

θ (deg)

Figure 10.36 Problem 86.

87  Pulsars. When a star with a mass at least ten times that of 
the Sun explodes outward in a supernova, its core can be col-
lapsed into a pulsar, which is a spinning star that emits electro-
magnetic radiation (radio waves or light) in two tight beams in 
opposite directions. If a beam sweeps across Earth during the 
rotation, we can detect repeated pulses of the radiation, one 
per revolution. (a) The first pulsar was discovered by Jocelyn 
Bell Burnell and Antony Hewish in 1967; its pulses are sepa-
rated by 1.3373 s. What is its angular speed in revolutions per 
second? (b) To date, the fastest spinning pulsar has an angular 
speed of 716 rev/s. What is the separation of its detected pulses 
in milliseconds?

88  Fastest spinning star. The star VFTS102 in the Large Mag-
ellanic Cloud (a satellite galaxy to our Milky Way Galaxy) is 
spinning so fast that it exceeds traditional expectations. The star 
has 25 times the mass of the Sun and if we consider it to be a 
solid rotating sphere, the surface at the equator is moving at a 
speed of 2.0 × 106 km/h. To find its radius, assume that it has 

the same density as the Sun. What are (a) the star’s radius, (b) 
its rotational period, and (c) the magnitude of the centripetal 
acceleration of a section on the equatorial surface?

89  Rod rotation. Figure 10.37 shows a 2.0 kg uniform rod that 
is 3.0 m long. The rod is mounted to rotate freely about a hori-
zontal axis perpendicular to the rod that passes through a point 
1.0 m from one end of the rod. The rod is released from rest 
when it is horizontal. (a) What is its angular acceleration just 
then? (b) If the rod’s mass were increased, would the answer 
increase, decrease, or stay the same?

1.0 m 2.0 m

Rotation axis

Figure 10.37 Problem 89.

90 BIO  Ballet en pointe. When a ballerina stands en pointe, 
her weight is supported by only the tips of her toes in a rigid 
toe box in her shoes (Fig. 10.38a). Her center of mass must be 
directly above the toes, but that positioning is difficult to main-
tain. To see how her height affects the balancing, treat her as a 
uniform rod of length L that is balanced vertically on one end 
(Fig. 10.38b). (a) What is the angular acceleration α around that 
end if the rod leans by a small angle θ from the vertical? (b) 
For a given angle, is α larger or smaller for a taller ballerina? 
(Does a taller ballerina have less time or more time to correct 
an imbalance?)

(a)

L

θ

(b)

Figure 10.38 Problem 90.

91  Different rotation axes. Five particles, positioned in the xy 
plane according to the following table, form a rigidly connected 
body. What is the rotational inertia of the body about (a) the x 
axis, (b) the y axis, and (c) the z axis? (d) Where is the center of 
mass of the body?

Object 1 2 3 4 5

Mass (g) 500 400 300 600 450

x (cm) 15 −13 17 −4.0 −5.0

y (cm) 20 13 −6.0 −7.0 9.0

92 BIO  The Michael Jackson lean. In his music video “Smooth 
Criminal,” Michael Jackson planted his feet on the stage and 
then leaned forward rigidly by 45°, seemingly defying the gravi-
tational force because his center of mass was then well forward 
of his supporting feet (Fig. 10.39a). The secret was in the shoes 
patented by Jackson: Each heel had a vee-shaped notch that he 
caught on a nail head slightly protruding from the stage. Once 
the heels were snagged on the nail heads, he could lean forward 
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without toppling. The rotation axis was through each nail head, 
which was just below an ankle. The feat required tremendous 
leg strength, particularly of the Achilles tendon that connects 
the calf muscle (at distance d = 40 cm from the ankle) to the 
heel (Fig. 10.39b). That tendon is at ϕ = 5.0° from the leg bone 
and from the rigid orientation of Jackson’s body. Jackson’s mass 
m was 60 kg, his height h was 1.75 m, and his center of mass 
was 0.56h from his ankle. What was the tension T in the tendon 
when Jackson’s body was at θ = 45° from the stage?

(a)

Achilles
tendon

h

d

Heel
Ankle

Stage

com

θ
ϕ

(b)
Figure 10.39 Problem 92.

93  Strobing. A disk that rotates clockwise at angular speed 10π 
rad/s is illuminated by only a flashing stroboscopic light. The 
flashes reveal a small black dot on the rim of the disk. In the 
first flash, the dot appears at the 12:00 position (as on an analog 
clock face). Where does it appear in the next five flashes if the 
time between flashes is (a) 0.20 s, (b) 0.050 s, and (c) 40 ms?

94  Roundabout management. Figure 10.40 shows an overhead 
view of a single-lane roundabout where access is computer con-
trolled. Car 1 is allowed to enter at access point A at time t = 0. 
It accelerates at a = 3.0 m/s2 to the speed limit of v = 13.4 m/s as 
it moves around the roundabout and past access point B where 
car 2 waits to enter. The radius R of the circular road is 45 m, the 
angle θ subtended between A and B is 120°, and both cars have 
length L = 4.5 m. Car 2 is allowed to enter when the rear of car 
1 is 2.0 car lengths past point B. At what time t is car 2 released? 

Car 2

B

R

A R

One lane

Two lanes

Car 1
θ

Figure 10.40 Problem 94.

95 BIO  Grip. In the engineering design of handles (such as on 
manual and powered hand tools) and rails (such as for stair-
ways), the grip and possible slip of a hand must be considered. If 
a hand grips a cylindrical handle with a diameter of 30 mm and 
with a normal force on the hand at 150 N, what is the maximum 
tangential frictional torque when the coefficient of static friction 
is 0.25?

96 BIO  Wheelchair work. A manual (nonmotorized) wheelchair 
(Fig. 10.41) is propelled over level ground when the person 
forces the hand rim to rotate forward. Suppose that the rim has 
a diameter D of 0.55 m, the forward rotation Δθ of each push is 
88°, the average tangential force Favg on the rim during a push 
is 39 N, the time ∆t for a push is 0.38 s, and the frequency f of 
pushing is 53 pushes per minute. How much work is done in (a) 
each push and (b) 3.0 min? What is the average power output in 
(c) each push and (d) 3.0 min?

Figure 10.41 Problem 96.

97  Coin on turntable. A coin is placed a distance R from the 
center of a phonograph turntable. The coefficient of static fric-
tion is µs. The angular spin of the turntable is slowly increased. 
When it reaches ω0, the coin is on the verge of sliding off. Find 
ω0 in terms of µs, R, and g. 
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C H A P T E R  1 1

Rolling, Torque, and Angular 
Momentum

What Is Physics?
As we discussed in Chapter 10, physics includes the study of rotation. Arguably, 
the most important application of that physics is in the rolling motion of wheels and 
wheel- like objects. This applied physics has long been used. For example, when 
the prehistoric people of Easter Island moved their gigantic stone statues from the 
quarry and across the island, they dragged them over logs acting as rollers. Much 
later, when settlers moved westward across America in the 1800s, they rolled their 
possessions first by wagon and then later by train. Today, like it or not, the world 
is filled with cars, trucks, motorcycles, bicycles, and other rolling vehicles.

The physics and engineering of rolling have been around for so long that 
you might think no fresh ideas remain to be developed. However, skateboards 
and inline skates were invented and engineered fairly recently, to become huge 
financial successes. The Onewheel (Fig. 11.1.1), the Dual- Wheel Hovercycle, and 
the Boardless Skateboard provide even newer, innovative rolling fun. Applying 
the physics of rolling can still lead to surprises and rewards. Our starting point in 
 exploring that physics is to simplify rolling motion.

Rolling as Translation and Rotation Combined
Here we consider only objects that roll smoothly along a surface; that is, the  objects 
roll without slipping or bouncing on the surface. Figure 11.1.2 shows how compli-
cated smooth rolling motion can be: Although the center of the object moves in Figure 11.1.1 The Onewheel.
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11.1 ROLLING AS TRANSLATION AND ROTATION COMBINED
Learning Objectives 
After reading this module, you should be able to . . .

11.1.1 Identify that smooth rolling can be consid-
ered as a combination of pure translation and pure 
rotation.

11.1.2 Apply the relationship between the center- of- 
mass speed and the angular speed of a body in 
smooth rolling.

Key Ideas 
● For a wheel of radius R rolling smoothly,

vcom = 𝜔R,

where vcom is the linear speed of the wheel’s center of 
mass and 𝜔 is the angular speed of the wheel about its 
center. 

● The wheel may also be viewed as rotating instan-
taneously about the point P of the “road” that is in 
contact with the wheel. The angular speed of the wheel 
about this point is the same as the angular speed of 
the wheel about its center.
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31111.1 Rolling as TRanslaTion and RoTaTion Combined

a straight line parallel to the surface, a point on the rim certainly does not. How-
ever, we can study this motion by treating it as a combination of translation of the 
center of mass and rotation of the rest of the object around that center.

To see how we do this, pretend you are standing on a sidewalk watching the 
bicycle wheel of Fig. 11.1.3 as it rolls along a street. As shown, you see the center 
of mass O of the wheel move forward at constant speed vcom. The point P on the 
street where the wheel makes contact with the street surface also moves forward 
at speed vcom, so that P always remains directly below O.

During a time interval t, you see both O and P move forward by a distance s. 
The bicycle rider sees the wheel rotate through an angle θ about the center of the 
wheel, with the point of the wheel that was touching the street at the beginning 
of t moving through arc length s. Equation 10.3.1 relates the arc length s to the  
rotation angle θ:

 s = θR, (11.1.1)

where R is the radius of the wheel. The linear speed vcom of the center of the 
wheel (the center of mass of this uniform wheel) is ds/dt. The angular speed 𝜔 of 
the wheel about its center is dθ/dt. Thus, differentiating Eq. 11.1.1 with respect to 
time (with R held constant) gives us

 vcom = 𝜔R   (smooth rolling motion). (11.1.2)

A Combination. Figure 11.1.4 shows that the rolling motion of a wheel 
is a combination of purely translational and purely rotational motions. Fig-
ure 11.1.4a shows the purely rotational motion (as if the rotation axis through 
the center were stationary): Every point on the wheel rotates about the center 
with angular speed 𝜔. (This is the type of motion we considered in Chapter 10.) 
Every point on the outside edge of the wheel has linear speed vcom given by Eq. 
11.1.2. Figure 11.1.4b shows the purely translational motion (as if the wheel did 
not rotate at all): Every point on the wheel moves to the right with speed vcom.

Figure 11.1.2 A time- exposure 
photograph of a rolling disk. Small 
lights have been attached to the 
disk, one at its center and one at its 
edge. The latter traces out a curve 
called a cycloid.

Richard Megna/Fundamental Photographs

P

O
vcom

T

v = 2vcom

v = –vcom + vcom = 0  

P

O
vcom

T

v = vcom

v = vcom 

P

O

T

v = vcom

v = –vcom 

+ = (c) Rolling motion(b) Pure translation(a) Pure rotation

ω ω

Figure 11.1.4 Rolling motion of a wheel as a combination of purely rotational motion and 
purely translational motion. (a) The purely rotational motion: All points on the wheel 
move with the same angular speed 𝜔. Points on the outside edge of the wheel all move 
with the same linear speed v = vcom. The linear velocities    v →    of two such points, at top (T) 
and bottom (P) of the wheel, are shown. (b) The purely translational motion: All points 
on the wheel move to the right with the same linear velocity     v →    com   . (c) The rolling motion 
of the wheel is the combination of (a) and (b).

Figure 11.1.3 The center of mass O of 
a rolling wheel moves a distance s at 
velocity     v →    com    while the wheel rotates 
through angle θ. The point P at 
which the wheel makes contact with 
the surface over which the wheel 
rolls also moves a distance s.
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312 CHaPTeR 11 Rolling, ToRque, and angulaR momenTum

The combination of Figs. 11.1.4a and 11.1.4b yields the actual rolling motion 
of the wheel, Fig. 11.1.4c. Note that in this combination of motions, the portion 
of the wheel at the bottom (at point P) is stationary and the portion at the top 
(at point T) is moving at speed 2vcom, faster than any other portion of the wheel. 
These results are demonstrated in Fig. 11.1.5, which is a time exposure of a rolling 
bicycle wheel. You can tell that the wheel is moving faster near its top than near 
its bottom because the spokes are more blurred at the top than at the bottom.

The motion of any round body rolling smoothly over a surface can be sepa-
rated into purely rotational and purely translational motions, as in Figs. 11.1.4a 
and 11.1.4b.

Rolling as Pure Rotation
Figure 11.1.6 suggests another way to look at the rolling motion of a wheel— 
namely, as pure rotation about an axis that always extends through the point where 
the wheel contacts the street as the wheel moves. We consider the rolling motion 
to be pure rotation about an axis passing through point P in Fig. 11.1.4c and per-
pendicular to the plane of the figure. The vectors in Fig. 11.1.6 then  represent the 
instantaneous velocities of points on the rolling wheel.

Question:  What angular speed about this new axis will a stationary observer 
assign to a rolling bicycle wheel?
Answer:  The same 𝜔 that the rider assigns to the wheel as the rider observes it 
in pure rotation about an axis through its center of mass.

To verify this answer, let us use it to calculate the linear speed of the top of the 
rolling wheel from the point of view of a stationary observer. If we call the wheel’s 
radius R, the top is a distance 2R from the axis through P in Fig. 11.1.6, so the 
linear speed at the top should be (using Eq. 11.1.2)

vtop = (𝜔)(2R) = 2(𝜔R) = 2vcom,

in exact agreement with Fig. 11.1.4c. You can similarly verify the linear speeds 
shown for the portions of the wheel at points O and P in Fig. 11.1.4c.

Figure 11.1.5 A photograph of a roll-
ing bicycle wheel. The spokes near 
the wheel’s top are more blurred 
than those near the bottom because 
the top ones are moving faster, as 
Fig. 11.1.4c shows.

Figure 11.1.6 Rolling can be viewed 
as pure rotation, with angular speed 
𝜔, about an axis that always extends 
through P. The vectors show the 
instantaneous linear velocities of 
 selected points on the rolling wheel. 
You can obtain the vectors by com-
bining the trans lational and rota-
tional motions as in Fig. 11.1.4.

T

Rotation axis at P

O

Checkpoint 11.1.1
The rear wheel on a clown’s bicycle has twice the radius of the front wheel. (a) When  
the bicycle is moving, is the linear speed at the very top of the rear wheel greater than, 
less than, or the same as that of the very top of the front wheel? (b) Is the angular 
speed of the rear wheel greater than, less than, or the same as that of the front wheel?

Courtesy Jearl Walker
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The Kinetic Energy of Rolling
Let us now calculate the kinetic energy of the rolling wheel as measured by the 
stationary observer. If we view the rolling as pure rotation about an axis through 
P in Fig. 11.1.6, then from Eq. 10.4.4 we have

   K =   1 _ 2    I  P    ω   2 ,   (11.2.1)

in which 𝜔 is the angular speed of the wheel and IP is the rotational inertia of 
the wheel about the axis through P. From the parallel- axis theorem of Eq. 10.5.2  
(I = Icom + Mh2), we have
 IP = Icom + MR2, (11.2.2)

in which M is the mass of the wheel, Icom is its rotational inertia about an  
axis through its center of mass, and R (the wheel’s radius) is the perpendicular 
distance h. Substituting Eq. 11.2.2 into Eq. 11.2.1, we obtain

 K =   1 _ 2    I  com    ω   2  +   1 _ 2  M R   2   ω   2 , 

and using the relation vcom = 𝜔R (Eq. 11.1.2) yields

   K =   1 _ 2    I  com    ω   2  +   1 _ 2  M v com  2  .   (11.2.3)

We can interpret the term    1 _ 2    I  com    ω   2   as the kinetic energy associated with the 
rotation of the wheel about an axis through its center of mass (Fig. 11.1.4a), and 
the term    1 _ 2  M v com  2    as the kinetic energy associated with the translational motion of 
the wheel’s center of mass (Fig. 11.1.4b). Thus, we have the following rule:

11.2 FORCES AND KINETIC ENERGY OF ROLLING
Learning Objectives 
After reading this module, you should be able to . . .

11.2.1 Calculate the kinetic energy of a body in smooth 
rolling as the sum of the translational kinetic energy 
of the center of mass and the rotational kinetic 
energy around the center of mass.

11.2.2 Apply the relationship between the work done 
on a smoothly rolling object and the change in its 
kinetic energy.

11.2.3 For smooth rolling (and thus no sliding), con-
serve mechanical energy to relate initial energy val-
ues to the values at a later point.

11.2.4 Draw a free- body diagram of an accelerating 
body that is smoothly rolling on a horizontal surface 
or up or down a ramp.

11.2.5 Apply the relationship between the center- of-  
mass acceleration and the angular acceleration.

11.2.6 For smooth rolling of an object up or down a 
ramp, apply the relationship between the object’s 
acceleration, its rotational inertia, and the angle of 
the ramp.

Key Ideas 
● A smoothly rolling wheel has kinetic energy

 K =   1 _ 2    I  com    ω   2  +   1 _ 2  M  v com  2  , 

where Icom is the rotational inertia of the wheel about its 
center of mass and M is the mass of the wheel. 

● If the wheel is being accelerated but is still rolling 
smoothly, the acceleration of the center of mass  
    a →    com    is related to the angular acceleration 𝛼 about the 
center with

acom = 𝛼R.

● If the wheel rolls smoothly down a ramp of angle θ,  
its acceleration along an x axis extending up the 
ramp is

  a  com, x   = −   
g sin  θ _____________  

1 +  I  com   / M R   2 
  . 

 A rolling object has two types of kinetic energy: a rotational kinetic energy  
  (  1 _ 2   I  com    ω   2 )   due to its rotation about its center of mass and a translational kinetic 
energy   (  1 _ 2  M v com  2  )   due to translation of its center of mass.
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314 CHaPTeR 11 Rolling, ToRque, and angulaR momenTum

The Forces of Rolling
Friction and Rolling
If a wheel rolls at constant speed, as in Fig. 11.1.3, it has no tendency to slide at 
the point of contact P, and thus no frictional force acts there. However, if a net 
force acts on the rolling wheel to speed it up or to slow it, then that net force 
causes acceleration     a →    com    of the center of mass along the direction of travel. It 
also causes the wheel to rotate faster or slower, which means it causes an angular 
 acceleration 𝛼. These accelerations tend to make the wheel slide at P. Thus, a fric-
tional force must act on the wheel at P to oppose that tendency.

If the wheel does not slide, the force is a static frictional force     f 
→

    s    and the 
motion is smooth rolling. We can then relate the magnitudes of the linear accel-
eration     a →    com    and the angular acceleration 𝛼 by differentiating Eq. 11.1.2 with 
 respect to time (with R held constant). On the left side, dvcom/dt is acom, and on 
the right side d𝜔/dt is 𝛼. So, for smooth rolling we have

 acom = 𝛼R   (smooth rolling motion). (11.2.4)

If the wheel does slide when the net force acts on it, the frictional force that  
acts at P in Fig. 11.1.3 is a kinetic frictional force     f 

→
    k   . The motion then is not 

smooth rolling, and Eq. 11.2.4 does not apply to the motion. In this chapter we 
discuss only smooth rolling motion.

Figure 11.2.1 shows an example in which a wheel is being made to rotate 
faster while rolling to the right along a flat surface, as on a bicycle at the start of 
a race. The faster rotation tends to make the bottom of the wheel slide to the left 
at point P. A frictional force at P, directed to the right, opposes this tendency to 
slide. If the wheel does not slide, that frictional force is a static frictional force     f 

→
    s     

(as shown), the motion is smooth rolling, and Eq. 11.2.4 applies to the motion. 
(Without friction, bicycle races would be stationary and very boring.)

If the wheel in Fig. 11.2.1 were made to rotate more slowly, as on a slowing 
bicycle, we would change the figure in two ways: The directions of the center- 
of- mass acceleration     a →    com    and the frictional force     f 

→
    s    at point P would now be 

to the left.

Rolling Down a Ramp
Figure 11.2.2 shows a round uniform body of mass M and radius R rolling smoothly 
down a ramp at angle θ, along an x axis. We want to find an expres sion for the 

Figure 11.2.1 A wheel rolls horizon-
tally without sliding while accelerat-
ing with linear  acceleration     a →    com   , as 
on a bicycle at the start of a race. A 
static frictional force     f 

→
    s    acts on the 

wheel at P, opposing its tendency 
to slide.

P fs

acom

Figure 11.2.2 A round uniform body of radius R rolls down a ramp. The forces that act  
on it are the gravitational force     F 

→
    g   , a normal force     F 

→
    N   , and a frictional force     f 

→
    s    pointing up  

the ramp. (For clarity, vector     F 
→

    N    has been shifted in the direction it points until its tail is 
at the center of the body.)

R

Fg cos

Fg

Fg sin

P

xfs

FN
Forces FN and Fg cos
merely balance.

Forces Fg sin    and fs
determine the linear
acceleration down
the ramp.

The torque due to fs
determines the
angular acceleration
around the com.

θ θ

θ θ

θ

θ
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body’s acceleration acom, x down the ramp. We do this by using Newton’s second 
law in both its linear version (Fnet = Ma) and its angular  version (𝜏net = I𝛼).

We start by drawing the forces on the body as shown in Fig. 11.2.2:

1. The gravitational force     F 
→

    g    on the body is directed downward. The tail of the 
vector is placed at the center of mass of the body. The component along the 
ramp is Fg sin θ, which is equal to Mg sin θ.

2. A normal force     F 
→

    N    is perpendicular to the ramp. It acts at the point of con-
tact P, but in Fig. 11.2.2 the vector has been shifted along its direction until its 
tail is at the body’s center of mass.

3. A static frictional force     f 
→

    s    acts at the point of contact P and is directed up 
the ramp. (Do you see why? If the body were to slide at P, it would slide down 
the ramp. Thus, the frictional force opposing the sliding must be up the ramp.)

We can write Newton’s second law for components along the x axis in 
Fig. 11.2.2 (Fnet, x = max) as
 fs − Mg sin θ = Macom, x. (11.2.5)

This equation contains two unknowns, fs and acom, x. (We should not assume that 
fs is at its maximum value fs, max. All we know is that the value of fs is just right for 
the body to roll smoothly down the ramp, without sliding.)

We now wish to apply Newton’s second law in angular form to the body’s 
rotation about its center of mass. First, we shall use Eq. 10.6.3 (τ = r⊥F) to write 
the torques on the body about that point. The frictional force     f 

→
    s    has moment arm 

R and thus produces a torque Rfs, which is positive because it tends to  rotate the 
body counterclockwise in Fig. 11.2.2. Forces     F 

→
    g    and     F 

→
    N    have zero  moment arms 

about the center of mass and thus produce zero torques. So we can write the 
angular form of Newton’s second law (𝜏net = I𝛼) about an axis through the body’s 
center of mass as
 Rfs = Icom𝛼. (11.2.6)

This equation contains two unknowns, fs and 𝛼.
Because the body is rolling smoothly, we can use Eq. 11.2.4 (acom = 𝛼R) to  relate 

the unknowns acom, x and 𝛼. But we must be cautious because here acom, x is negative 
(in the negative direction of the x axis) and 𝛼 is positive (counterclockwise). Thus 
we substitute −acom, x/R for 𝛼 in Eq. 11.2.6. Then, solving for fs, we obtain

    f   s   = −  I  com     
 a  com, x   _____ 

 R   2 
  .   (11.2.7)

Substituting the right side of Eq. 11.2.7 for fs in Eq. 11.2.5, we then find

    a  com, x   = −   
g sin  θ ____________  

1 +  I  com   /M R   2 
  .   (11.2.8)

We can use this equation to find the linear acceleration acom, x of any body rolling 
along an incline of angle θ with the horizontal.

Note that the pull by the gravitational force causes the body to come down 
the ramp, but it is the frictional force that causes the body to rotate and thus roll. 
If you eliminate the friction (by, say, making the ramp slick with ice or grease) or 
arrange for Mg sin θ to exceed fs, max, then you eliminate the smooth rolling and 
the body slides down the ramp.

Checkpoint 11.2.1
Disks A and B are identical and roll across a floor with equal speeds. Then disk 
A rolls up an incline, reaching a maximum height h, and disk B moves up an incline 
that is identical except that it is frictionless. Is the maximum height reached by disk B 
greater than, less than, or equal to h?
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11.3 THE YO- YO
Learning Objectives 
After reading this module, you should be able to . . .

11.3.1 Draw a free- body diagram of a yo- yo moving up 
or down its string.

11.3.2 Identify that a yo- yo is effectively an object that 
rolls smoothly up or down a ramp with an incline 
angle of 90°.

11.3.3 For a yo- yo moving up or down its string, apply 
the relationship between the yo- yo’s acceleration 
and its rotational inertia.

11.3.4 Determine the tension in a yo- yo’s string as the 
yo- yo moves up or down its string.

Key Idea 
● A yo- yo, which travels vertically up or down a string, can be treated as a  
wheel rolling along an inclined plane at angle θ = 90°.

Sample Problem 11.2.1 Ball rolling down a ramp

A uniform ball, of mass M = 6.00 kg and radius R, rolls 
smoothly from rest down a ramp at angle θ = 30.0° 
(Fig. 11.2.2).

(a) The ball descends a vertical height h = 1.20 m to reach 
the bottom of the ramp. What is its speed at the bottom?

KEY IDEAS

The mechanical energy E of the ball– Earth system is con-
served as the ball rolls down the ramp. The reason is that 
the only force doing work on the ball is the gravitational 
force, a conservative force. The normal force on the ball 
from the ramp does zero work because it is perpendicular 
to the ball’s path. The frictional force on the ball from 
the ramp does not transfer any energy to thermal energy 
because the ball does not slide (it rolls smoothly).

Thus, we conserve mechanical energy (Ef = Ei):

 Kf + Uf = Ki + Ui, (11.2.9)

where subscripts f and i refer to the final values (at the 
 bottom) and initial values (at rest), respectively. The grav-
itational potential energy is initially Ui = Mgh (where M 
is the ball’s mass) and finally Uf = 0. The kinetic energy is 
initially Ki = 0. For the final kinetic energy Kf, we need an 
additional idea: Because the ball rolls, the kinetic energy 
involves both translation and rotation, so we include them 
both by  using the right side of Eq. 11.2.3.

Calculations: Substituting into Eq. 11.2.9 gives us

    (  1 _ 2    I  com    ω   2  +   1 _ 2  M v com  2  )  + 0 = 0 + Mgh,   (11.2.10)

where Icom is the ball’s rotational inertia about an axis 
through its center of mass, vcom is the requested speed at 
the bottom, and 𝜔 is the angular speed there.

Because the ball rolls smoothly, we can use Eq. 11.1.2 
to substitute vcom/R for 𝜔 to reduce the unknowns in 

Eq. 11.2.10. Doing so, substituting     2 _ 5  M R   2   for Icom (from 
Table 10.5.1f  ), and then solving for vcom give us

   v  com   =  √ 
_______

  (  10 __ 7  ) gh   =  √ 
____________________

   (  10 __ 7  )  (9.8 m /  s  2 )   (  1.20 m )       

 = 4.10 m/s. (Answer)

Note that the answer does not depend on M or R.

(b) What are the magnitude and direction of the frictional 
force on the ball as it rolls down the ramp?

KEY IDEA

Because the ball rolls smoothly, Eq. 11.2.7 gives the fric-
tional force on the ball. 

Calculations: Before we can use Eq. 11.2.7, we need the 
ball’s acceleration acom, x from Eq. 11.2.8:

   a  com, x   = −   
g sin  θ ____________  

1 +  I  com    /M R   2 
   = −   

g sin  θ ______________  
1 +   2 _ 5  M R   2  /M R   2 

    

  = −   
 (9.8   m / s  2 )  sin  30.0°

  _________________ 
1 +   2 _ 5  

   = − 3.50   m /s  2 . 

Note that we needed neither mass M nor radius R to find 
acom, x. Thus, any size ball with any uniform mass would 
have this smoothly rolling acceleration down a 30.0° ramp.

We can now solve Eq. 11.2.7 as

   f   s   = −  I   com     
 a   com, x   _____ 

 R   2 
   = −   2 _ 5  M R   2    

 a   com, x   _____ 
 R   2 

   = −   2 _ 5  M a   com, x    

     = −   2 _ 5    (  6.00 kg )    (− 3.50   m / s  2 )  = 8.40 N.   (Answer)

Note that we needed mass M but not radius R. Thus, 
the frictional force on any 6.00 kg ball rolling smoothly 
down a 30.0° ramp would be 8.40 N regardless of the 
ball’s radius but would be larger for a larger mass.

additional examples, video, and practice available at WileyPLUS
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The Yo- Yo
A yo- yo is a physics lab that you can fit in your pocket. If a yo- yo rolls down its 
string for a distance h, it loses potential energy in amount mgh but gains kinetic 
energy in both translational   (   1 _ 2   M v com  2  )   and rotational   (   1 _ 2    I  com    ω   2 )   forms. As it 
climbs back up, it loses kinetic energy and regains potential energy.

In a modern yo- yo, the string is not tied to the axle but is looped around it. 
When the yo- yo “hits” the bottom of its string, an upward force on the axle from 
the string stops the descent. The yo- yo then spins, axle inside loop, with only 
 rotational kinetic energy. The yo- yo keeps spinning (“sleeping”) until you “wake 
it” by jerking on the string, causing the string to catch on the axle and the yo- yo 
to climb back up. The rotational kinetic energy of the yo- yo at the bottom of its 
string (and thus the sleeping time) can be considerably increased by throwing the 
yo- yo downward so that it starts down the string with initial speeds vcom and 𝜔 
instead of rolling down from rest. FCP

To find an expression for the linear acceleration acom of a yo- yo rolling down 
a string, we could use Newton’s second law (in linear and angular forms) just as 
we did for the body rolling down a ramp in Fig. 11.2.2. The analysis is the same 
except for the following:

1. Instead of rolling down a ramp at angle θ with the horizontal, the yo- yo rolls 
down a string at angle θ = 90° with the horizontal.

2. Instead of rolling on its outer surface at radius R, the yo- yo rolls on an axle of 
radius R0 (Fig. 11.3.1a).

3. Instead of being slowed by frictional force     f 
→

    s   , the yo- yo is slowed by the force   
T 
→

    on it from the string (Fig. 11.3.1b).

The analysis would again lead us to Eq. 11.2.8. Therefore, let us just change the 
notation in Eq. 11.2.8 and set θ = 90° to write the linear acceleration as

    a   com   = −   
g
 ____________  

1 +  I   com   /M R 0  2 
  ,   (11.3.1)

where Icom is the yo- yo’s rotational inertia about its center and M is its mass.  
A yo- yo has the same downward acceleration when it is climbing back up. 

Figure 11.3.1 (a) A yo- yo, shown in 
cross section. The string, of assumed 
negligible  thickness, is wound around 
an axle of radius R0. (b) A free- body 
diagram for the falling yo- yo. Only 
the axle is shown.

Fg

(a) (b)

R

R0

R0

T

Checkpoint 11.3.1
If we increase the rotational inertia of a yo- yo without changing its axle radius, does 
the yo- yo’s acceleration increase, decrease, or stay the same?

11.4 TORQUE REVISITED
Learning Objectives 
After reading this module, you should be able to . . .

11.4.1 Identify that torque is a vector quantity.
11.4.2 Identify that the point about which a torque is  

calculated must always be specified.
11.4.3 Calculate the torque due to a force on a par-

ticle by taking the cross product of the particle’s 

position vector and the force vector, in either unit- 
vector notation or magnitude- angle notation.

11.4.4 Use the right- hand rule for cross products to 
find the direction of a torque vector.

Key Ideas 
● In three dimensions, torque    τ →    is a  vector quantity 
defined relative to a fixed point (usually an origin); it is

   τ →   =   r →   ×   F 
→

  , 
where    F 

→
    is a force applied to a particle and    r →    is a posi-

tion vector locating the particle relative to the fixed point. 

● The magnitude of    τ →    is given by

 τ = rF sin  ϕ = r  F  ⊥   =  r  ⊥   F, 

where 𝜙 is the angle between    F 
→

    and    τ →   , F⊥ is the com-
ponent of    F 

→
    perpendicular to    r →   , and r⊥ is the moment 

arm of    F 
→

   .

● The direction of    τ →    is given by the right- hand rule for 
cross products.
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Torque Revisited
In Chapter 10 we defined torque 𝜏 for a rigid body that can rotate around a fixed 
axis. We now expand the definition of torque to apply it to an individual particle 
that moves along any path relative to a fixed point (rather than a fixed axis). The 
path need no longer be a circle, and we must write the torque as a vector    τ →    that may 
have any direction. We can calculate the magnitude of the torque with a formula 
and determine its direction with the right- hand rule for cross products.

Figure 11.4.1a shows such a particle at point A in an xy plane. A single force    F 
→

    
in that plane acts on the particle, and the particle’s position relative to the origin 
O is given by position vector    r →   . The torque    τ →    acting on the particle relative to the 
fixed point O is a vector quantity defined as

     τ →   =   r →   ×   F 
→

      (torque defined). (11.4.1)

We can evaluate the vector (or cross) product in this definition of    τ →    by using 
the rules in Module 3.3. To find the direction of    τ →   , we slide the vector    F 

→
    (without 

changing its direction) until its tail is at the origin O, so that the two vectors in the 
vector product are tail to tail as in Fig. 11.4.1b. We then use the right- hand rule 
in Fig. 3.3.2a, sweeping the fingers of the right hand from    r →    (the first vector in 
the product) into    F 

→
    (the second vector). The outstretched right thumb then gives the 

direction of    τ →   . In Fig. 11.4.1b, it is in the positive direction of the z axis.
To determine the magnitude of    τ →   , we apply the general result of Eq. 3.3.8 

(c = ab sin 𝜙), finding
 𝜏 = rF sin 𝜙, (11.4.2)

where 𝜙 is the smaller angle between the directions of    r →    and    F 
→

    when the vectors 
are tail to tail. From Fig. 11.4.1b, we see that Eq. 11.4.2 can be rewritten as

   τ = r  F  ⊥  ,   (11.4.3)

where   F  ⊥     (  = F sin  ϕ )     is the component of    F 
→

    perpendicular to    r →   . From Fig. 11.4.1c, 
we see that Eq. 11.4.2 can also be rewritten as

   τ =  r  ⊥   F,   (11.4.4)

where   r  ⊥     (  = r sin  ϕ )     is the moment arm of    F 
→

    (the perpendicular distance  between 
O and the line of action of    F 

→
   ).

Figure 11.4.1 Defining torque. (a) A force    F 
→

   , lying in an xy plane, acts on a particle at 
point A. (b) This force produces a torque    τ →    (=   r →   ×   F 

→
  )   on the particle with respect to the 

origin O. By the right- hand rule for vector (cross) products, the torque vector points in the 
positive direction of z. Its magnitude is given by rF⊥ in (b) and by r⊥F in (c).

A

z

x

y

F

  (= r × F )
F (redrawn, with

tail at origin)

(b)

O

F

r

A

z

x

y

r

Line of action of F

(c)

O

F

r

A

z

x

y

(a)

O

F

r

Cross r  into F.
Torque   is in the 
positive z direction.

ϕ

ϕ ϕ

ϕ
ϕ

τ τ τ

Checkpoint 11.4.1
The position vector    r →    of a par ticle points along the positive direction of a z axis. If 
the torque on the particle is (a) zero, (b) in the negative direction of x, and (c) in the  
negative direction of y, in what direction is the force causing the torque?
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between the force vectors and the position vector are to 
see.) In Fig. 11.4.2d, the angle between the directions of    r →    
and     F 

→
    3    is 90° and the symbol ⊗ means     F 

→
    1    is directed into 

the page. (For out of the page, we would use ⊙.)
Now, applying Eq. 11.4.2, we find 

𝜏1 = rF1 sin 𝜙1 = (3.0 m)(2.0 N)(sin 150°) = 3.0 N · m,

𝜏2 = rF2 sin 𝜙2 = (3.0 m)(2.0 N)(sin 120°) = 5.2 N · m,

and 𝜏3 = rF3 sin 𝜙3 = (3.0 m)(2.0 N)(sin 90°)

 = 6.0 N · m. (Answer)

Next, we use the right- hand rule, placing the fingers  
of the right hand so as to rotate    r →    into    F 

→
    through the smaller 

of the two angles between their directions. The thumb 
points in the  direction of the torque. Thus     τ →    1    is directed 
into the page in Fig. 11.4.2b;     τ →    2    is directed out of the page 
in Fig. 11.4.2c; and     τ →    3    is directed as shown in Fig. 11.4.2d. 
All three torque vectors are shown in Fig. 11.4.2e.

Sample Problem 11.4.1 Torque on a particle due to a force

In Fig. 11.4.2a, three forces, each of magnitude 2.0 N, act 
on a particle. The particle is in the xz plane at point A 
given by  position vector    r →   , where r = 3.0 m and θ = 30°. 
What is the torque, about the origin O, due to each force?

KEY IDEA

Because the three force vectors do not lie in a plane, we 
must use cross products, with magnitudes given by Eq. 
11.4.2 (𝜏 = rF sin 𝜙) and directions given by the right- hand 
rule.

Calculations: Because we want the torques with respect 
to the origin O, the vector    r →    required for each cross 
 product is  the given position vector. To determine the 
angle 𝜙 between    r →    and each force, we shift the force vec-
tors of Fig. 11.4.2a, each in turn, so that their tails are at 
the origin. Figures 11.4.2b, c, and d, which are direct views 
of the xz plane, show the shifted force vectors     F 

→
    1   ,     F 

→
    2   , 

and     F 
→

    3   , respectively. (Note how much easier the angles 

Figure 11.4.2 (a) A particle at point A is acted on by three forces, each parallel to a coordinate axis. 
The angle 𝜙 (used in finding torque) is shown (b) for     F 

→
    1    and (c) for     F 

→
    2   . (d) Torque     τ →    3    is perpen-

dicular to both    r →    and     F 
→

    3    (force     F 
→

    3    is directed into the plane of the figure). (e) The torques.
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additional examples, video, and practice available at WileyPLUS
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Angular Momentum
Recall that the concept of linear momentum    p →    and the principle of conserva-
tion of linear momentum are extremely powerful tools. They allow us to predict 
the outcome of, say, a collision of two cars without knowing the details of the 
collision. Here we begin a discussion of the angular counterpart of    p →   , winding up 
in Module 11.8 with the angular counterpart of the conservation principle, which 
can lead to beautiful (almost magical) feats in ballet, fancy diving, ice skating, and 
many other activities.

Figure 11.5.1 shows a particle of mass m with linear momentum    p →    (= m  v →  )   as it  
passes through point A in an xy plane. The angular momentum    ℓ 

→
   of this  particle 

with respect to the origin O is a vector quantity defined as

    ℓ 
→

   =   r →   ×   p →   = m(  → r   ×   → v  )    (angular momentum defined), (11.5.1)

where    r →    is the position vector of the particle with respect to O. As the particle 
moves relative to O in the direction of its momentum    p →    (= m  v →  )  , position vector    r →    
rotates around O. Note carefully that to have angular momentum about O, the  
particle does not itself have to rotate around O. Comparison of Eqs. 11.4.1 and  
11.5.1 shows that angular momentum bears the same relation to linear momen-
tum that torque does to force. The SI unit of angular momentum is the kilogram- 
meter- squared per second (kg · m2/s), equivalent to the joule- second (J · s).

Direction. To find the direction of the angular momentum vector    ℓ 
→

   in 
Fig. 11.5.1, we slide the vector    p →    until its tail is at the origin O. Then we use the 
right- hand rule for vector products, sweeping the fingers from    r →    into    p →   . The out-
stretched thumb then shows that the direction of    ℓ 

→
   is in the positive direction of the 

z axis in Fig. 11.5.1. This positive direction is consistent with the counterclockwise 
rotation of position vector    r →    about the z axis, as the particle moves. (A negative 
 direction of    ℓ 

→
   would be consistent with a clockwise rotation of    r →    about the z axis.)

Magnitude. To find the magnitude of    ℓ 
→

  , we use the general result of  
Eq. 3.3.8 to write
   ℓ = rmv sin  ϕ,   (11.5.2)

where 𝜙 is the smaller angle between    r →    and    p →    when these two vectors are tail 

Figure 11.5.1 Defining angular momen-
tum. A particle passing through point 
A has linear momentum    p →    (= m  v →  )   
with the vector    p →    lying in an xy plane. 
The particle has angular momentum  
   ℓ 
→

    (=   r →   ×   p →  )   with respect to the origin 
O. By the right- hand rule, the angular 
momentum vector points in the  
positive direction of z. (a) The magni-
tude of    ℓ 

→
    is given by  ℓ = r  p  ⊥   = rm  v  ⊥   .  

(b) The magnitude of    ℓ 
→

    is also given  
by  ℓ =  r  ⊥   p =  r  ⊥   mv .
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11.5 ANGULAR MOMENTUM
Learning Objectives 
After reading this module, you should be able to . . .

11.5.1 Identify that angular momentum is a vector 
quantity.

11.5.2 Identify that the fixed point about which an 
angular momentum is calculated must always be 
specified.

11.5.3 Calculate the angular momentum of a par-
ticle by taking the cross product of the particle’s 
position vector and its momentum vector, in either 
unit- vector notation or magnitude- angle notation.

11.5.4 Use the right- hand rule for cross products to 
find the direction of an angular momentum vector.

Key Ideas 
● The angular momentum    ℓ 

→
   of a particle with linear 

momentum    p →   , mass m, and  linear velocity    v →    is a vec-
tor quantity defined relative to a fixed point (usually an 
origin) as

   ℓ 
→

   =   r →   ×   p →   = m (  r →   ×   v →  ) . 

● The magnitude of    ℓ 
→

   is given by

  ℓ = rmv sin  ϕ  
  = r p  ⊥   = rm v  ⊥    
  =    r  ⊥   p =  r  ⊥   mv, 

where 𝜙 is the angle between    r →    and    p →   , p⊥ and v⊥ are 
the components of    p →    and    v →    perpendicular to    r →   , and r⊥ 
is the perpendicular distance between the fixed point 
and the extension of    p →   .

● The direction of    ℓ 
→

   is given by the right- hand rule: 
Position your right hand so that the fingers are in the 
direction of    r →   . Then rotate them around the palm to be 
in the direction of    p →   . Your outstretched thumb gives the 
direction of    ℓ 

→
  . 
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to tail. From Fig. 11.5.1a, we see that Eq. 11.5.2 can be rewritten as

   ℓ = r  p  ⊥   = rm  v  ⊥  ,   (11.5.3)

where p⊥ is the component of    p →    perpendicular to    r →    and v⊥ is the component 
of    v →    perpendicular to    r →   . From Fig. 11.5.1b, we see that Eq. 11.5.2 can also be 
rewritten as
   ℓ = r⊥ p =  r  ⊥   mv,   (11.5.4)

where r⊥ is the perpendicular distance between O and the extension of    p →   .
Important. Note two features here: (1) angular momentum has meaning 

only with respect to a specified origin and (2) its direction is always perpendicu-
lar to the plane formed by the position and linear momentum vectors    r →    and    p →   .

Checkpoint 11.5.1
In part a of the figure, particles 1 and 2 move around point O in circles 
with radii 2 m and 4 m. In part b, particles 3 and 4 travel along straight 
lines at perpendicular distances of 4 m and 2 m from point O. Particle 
5 moves directly away from O. All five particles have the same mass 
and the same constant speed. (a) Rank the particles according to the 
magnitudes of their angular momentum about point O, greatest first. 
(b) Which particles have negative angular momentum about point O? (a) (b)

O

2

1 3

5

4

O

position vector     r →    1    around O as particle 1 moves. Thus, the 
angular momentum vector for particle 1 is

  ℓ  1   = + 10 kg ⋅  m  2  / s. 

Similarly, the magnitude of     ℓ 
→

   2    is
   ℓ  2   =  r  ⊥2    p   2   =   (  4.0 m )     (  2.0 kg ⋅ m/s )     

  = 8.0 kg ⋅  m  2  / s, 

and the vector product     r →    2   ×    p →    2    is into the page, which is 
the negative direction, consistent with the clockwise rota-
tion of     r →    2    around O as particle 2 moves. Thus, the angular 
momentum vector for particle 2 is

  ℓ  2   = − 8.0 kg ⋅  m  2  / s. 

The net angular momentum for the two- particle system is

  L =  ℓ  1   +  ℓ  2   = + 10 kg ⋅  m  2  / s +  (− 8.0 kg ⋅  m  2  /s)   

  = + 2.0 kg ⋅  m  2  /s.   (Answer)

The plus sign means that the system’s net angular momen-
tum about point O is out of the page.

Sample Problem 11.5.1 Angular momentum of a two- particle system

Figure 11.5.2 shows an overhead view of two particles 
moving at constant momentum along horizontal paths. 
Particle 1, with momentum magnitude p1 = 5.0 kg · m/s, 
has position vector     r →    1    and will pass 2.0 m from point O.  
Particle 2, with momentum magnitude p2 = 2.0 kg · m/s, 
has position vector     r →    2    and will pass 4.0 m from point O.  
What are the magnitude and direction of the net angular 
momentum    L 

→
    about point O of the two- particle system?

KEY IDEA

To find    L 
→

   , we can first find the individual angular 
momenta     ℓ 

→
    1    and     ℓ 

→
   2    and then add them. To evaluate their 

magnitudes, we can use any one  of Eqs. 11.5.1 through 
11.5.4. However, Eq. 11.5.4 is  easiest, because we are 
given the perpendicular distances r⊥1 (= 2.0 m) and r⊥2  
(= 4.0 m) and the momentum magnitudes p1 and p2. 

Calculations: For particle 1, Eq. 11.5.4 yields

  ℓ  1   =  r  ⊥1    p  1   =   (  2.0 m )     (  5.0 kg ⋅ m/s )     

  = 10 kg ⋅  m  2 / s. 

To find the direction of vector     ℓ 
→

    1   , we use Eq. 11.5.1 and 
the right- hand rule for vector products. For     r →    1   ×    p →    1   , the 
vector product is out of the page, perpendicular to the 
plane of Fig. 11.5.2. This is the positive direction, consis-
tent with the counterclockwise rotation of the particle’s 

Figure 11.5.2 Two particles  
pass near point O.

r⊥1r⊥2

r2

r1

O

p2

p1

additional examples, video, and practice available at WileyPLUS
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Newton’s Second Law in Angular Form
Newton’s second law written in the form

     F 
→

    net   =   
d   p →  

 ___ 
dt

      (single particle) (11.6.1)

expresses the close relation between force and linear momentum for a single 
particle. We have seen enough of the parallelism between linear and angular 
quantities to be pretty sure that there is also a close relation between torque and 
angular momentum. Guided by Eq. 11.6.1, we can even guess that it must be

     τ →    net   =   d   ℓ 
→

   ___ 
dt

      (single particle). (11.6.2)

Equation 11.6.2 is indeed an angular form of Newton’s second law for a single particle:

Equation 11.6.2 has no meaning unless the torques    τ →    and the angular momen-
tum    ℓ 

→
    are defined with respect to the same point, usually the origin of the coor-

dinate system being used.

Proof of Equation 11.6.2
We start with Eq. 11.5.1, the definition of the angular momentum of a particle:

   ℓ 
→

   = m (  r →   ×   v →  ) , 

where    r →    is the position vector of the particle and    v →    is the velocity of the particle. 
Differentiating* each side with respect to time t yields

 
    d   ℓ 

→
   ___ 

dt
   = m  (    r →   ×   d   v →   ___ 

dt
   +   d   r →   ___ 

dt
   ×   v →   )   .   (11.6.3)

However,  d   v →   / dt  is the acceleration    a →    of the particle, and  d   r →   / dt  is its velocity    v →   . 
Thus, we can rewrite Eq. 11.6.3 as

   d   ℓ 
→

   ___ 
dt

   = m  (    r →   ×   a →   +   v →   ×   v →   )   . 

*In differentiating a vector product, be sure not to change the order of the two quantities (here    r →     
and    v →   ) that form that product. (See Eq. 3.3.6.)

11.6 NEWTON’S SECOND LAW IN ANGULAR FORM
Learning Objective 
After reading this module, you should be able to . . .

11.6.1 Apply Newton’s second law in angular form to 
relate the torque acting on a particle to the resulting 

rate of change of the particle’s angular momentum, 
all relative to a specified point.

Key Idea 
● Newton’s second law for a particle can be written in 
angular form as

    τ →    net   =   d   ℓ 
→

   ___ 
dt

  , 

where     τ →    net    is the net torque acting on the particle and  
   ℓ 
→

   is the angular momentum of the particle.

 The (vector) sum of all the torques acting on a particle is equal to the time rate 
of change of the angular momentum of that particle.
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Now    v →   ×   v →   = 0  (the vector product of any vector with itself is zero because the 
angle between the two vectors is necessarily zero). Thus, the last term of this  
expression is eliminated and we then have

   d   ℓ 
→

   ___ 
dt

   = m (  r →   ×   a →  )  =   r →   × m  a →  . 

We now use Newton’s second law   (   F 
→

    net   = m  a →  )   to replace  m  a →    with its equal, the 
vector sum of the forces that act on the particle, obtaining

 
    d   ℓ 

→
   ___ 

dt
   =   r →   ×    F 

→
    net   =   ∑   (  r →   ×   F 

→
  )  .   (11.6.4)

Here the symbol Σ indicates that we must sum the vector products    r →   ×   F 
→

    for all the 
forces. However, from Eq. 11.4.1, we know that each one of those vector products is 
the torque associated with one of the forces. Therefore, Eq. 11.6.4 tells us that

    τ →    net   =   d   ℓ 
→

   ___ 
dt

  . 

This is Eq. 11.6.2, the relation that we set out to prove.

Checkpoint 11.6.1
The figure shows the position vector    r →    of a par-
ticle at a  certain instant, and four choices for the 
direction of a force that is to accelerate the par-
ticle. All four choices lie in the xy plane. (a) Rank 
the choices according to the magnitude of the 
time rate of change   (  d  ℓ 

→
  / dt )    they produce in the 

angular momentum of the particle about point O, 
greatest first. (b) Which choice results in a negative rate of change about O?

xF1 O

y
F2

F3

F4

r

the torque acting on a particle and the angular momen-
tum of the particle are calculated around the same point, 
then the torque is related to angular momentum by Eq. 
11.6.2   (  τ →   = d   ℓ 

→
   / dt)  .

Calculations: In order to use Eq. 11.5.1 to find the 
angular momentum about the origin, we first must find 
an expression for the particle’s velocity by taking a time 
derivative of its position vector. Following Eq. 4.2.3   (  v →   = 
d   r →   / dt)  , we write

    v →   =   d __ 
dt

   ( (−2.00  t   2  − t)  ̂ i  + 5.00 ̂ j )   

  =  (−4.00t − 1.00) ̂ i ,  

with    v →    in meters per second.
Next, let’s take the cross product of    r →    and    v →    using the 

template for cross products displayed in Eq. 3.3.8:

   a →   ×   b 
→

   =  ( a   y    b  z   −  b  y    a  z  )  ̂ i  +  ( a  z    b  x   −  b  z    a  x  )  ̂ j  +  ( a  x    b  y   −  b  x    a  y  )   ̂  k . 

Here the generic    a →    is    r →    and the generic    b 
→

    is    v →   . How-
ever, because we really don’t want to do more work than 

Sample Problem 11.6.1 Torque and the time derivative of angular momentum

Figure 11.6.1a shows a freeze- frame of a 0.500 kg par-
ticle moving along a straight line with a position vector 
given by

   r →   =  (−2.00  t   2  − t)  ̂ i  + 5.00 ̂ j , 
with    r →    in meters and t in seconds, starting at t = 0. The 
position vector points from the origin to the particle. In unit- 
vector notation, find expressions for the angular momen-
tum    ℓ 

→
    of the particle and the torque    τ →    acting on the 

particle, both with respect to (or about) the origin. Justify 
their algebraic signs in terms of the particle’s motion.

KEY IDEAS 

(1) The point about which an angular momentum of a par-
ticle is to be calculated must always be specified. Here it  
is the origin. (2) The angular momentum    ℓ 

→
    of a particle is  

given by Eq. 11.5.1   (  ℓ 
→

   =   r →   ×   p →   = m (  r →   ×   v →  ) )  . (3) The 
sign associated with a particle’s angular momentum is set 
by the sense of rotation of the particle’s position vector 
(around the rotation axis) as the particle moves: Clock-
wise is negative and counterclockwise is positive. (4) If 
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needed, let’s first just think about our substitutions into 
the generic cross product. Because    r →    lacks any z compo-
nent and because    v →    lacks any y or z component, the only 
nonzero term in the generic cross product is the very last 
one   (− b  x    a  y  )   ̂  k  . So, let’s cut to the (mathematical) chase by 
writing

   r →   ×   v →   = −   (  −4.00t − 1.00 )     (  5.00 )     ̂  k  =   (  20.0t + 5.00 )     ̂  k    m  2  / s. 

Note that, as always, the cross product produces a vector 
that is perpendicular to the original vectors.

To finish up Eq. 11.5.1, we multiply by the mass, 
finding

     ℓ 
→

   =  (0.500 kg) [  (  20.0t + 5.00 )     ̂  k    m  2  /s]    

  =   (  10.0t + 2.50 )     ̂  k  kg ⋅  m  2  /s.   (Answer)

The torque about the origin then immediately follows 
from Eq. 11.6.2

    τ →   =   d __ 
dt

    (  10.0t + 2.50 )     ̂  k  kg ⋅  m  2  /s    

  = 10.0  ̂  k  kg ⋅  m  2  /  s  2  = 10.0  ̂  k  N ⋅ m,  (Answer)

which is in the positive direction of the z axis.
Our result for    ℓ 

→
   tells us that the angular momentum 

is in the positive direction of the z axis. To make sense of 

that positive result in terms of the rotation of the position 
vector, let’s evaluate that vector for several times:

 t = 0,     r →    0   =   5.00 ̂ j  m ;

 t = 1.00 s,        r →    1   = − 3.00 ̂ i  +   5.00 ̂ j  m ;

 t = 2.00 s,        r →    2   = − 10.0 ̂ i  +   5.00 ̂ j  m .

By drawing these results as in Fig. 11.6.1b, we see that    r →    
rotates counterclockwise in order to keep up with the par-
ticle. That is the positive direction of rotation. Thus, even 
though the particle is moving in a straight line, it is still 
moving counterclockwise around the origin and thus has 
a positive angular momentum.

We can also make sense of the direction of    ℓ 
→

   by apply-
ing the right- hand rule for cross products (here    r →   ×   v →     
or, if you like,  m  r →   ×   v →   , which gives the same direction). 
For any moment during the particle’s motion, the fingers 
of the right hand are first extended in the direction of 
the first vector in the cross product   (  r →  )   as indicated in 
Fig. 11.6.1c. The orientation of the hand (on the page or 
viewing screen) is then adjusted so that the fingers can be 
comfortably rotated about the palm to be in the direction 
of the second vector in the cross product   (  v →  )   as indicated 
in Fig. 11.6.1d. The outstretched thumb then points in the 
direction of the result of the cross product. As indicated 
in Fig. 11.6.1e, the vector is in the positive direction of the 
z axis (which is directly out of the plane of the figure), 
consistent with our previous result. Figure 11.6.1e also 
indicates the direction of    τ →   , which is also in the positive 
direction of the z axis because the angular momentum is 
in that direction and is increasing in magnitude.

Figure 11.6.1 (a) A particle moving in a straight line, shown at 
time t = 0. (b) The position vector at t = 0, 1.00 s, and 2.00 s.  
(c) The first step in applying the right- hand rule for cross prod-
ucts. (d) The second step. (e) The angular momentum vector 
and the torque vector are along the z axis, which extends out of 
the plane of the figure.
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Both angular momentum
and torque point out of 
figure, in the positive z
direction.

additional examples, video, and practice available at WileyPLUS

c11RollingTorqueAndAngularMomentum.indd   324 06/05/21   7:47 PM



32511.7 angulaR momenTum oF a Rigid body

The Angular Momentum of a System of Particles
Now we turn our attention to the angular momentum of a system of particles with 
respect to an origin. The total angular momentum    L 

→
    of the system is the (vector) 

sum of the angular momenta    ℓ 
→

   of the individual particles (here with  label i):

 
   L 
→

   =    ℓ 
→

    1   +    ℓ 
→

    2   + . . . +    ℓ 
→

    n   =     ∑ 
i=1

  
n
       ℓ 

→
    i  . 
 

(11.7.1)

With time, the angular momenta of individual particles may change because 
of interactions between the particles or with the outside. We can find the result-
ing change in    L 

→
    by taking the time derivative of Eq. 11.7.1. Thus,

 
    d  L 

→
   ___ 

dt
   =   ∑ 

i=1
  

n
      

d    ℓ 
→

    i   ____ 
dt

  .   (11.7.2)

From Eq. 11.6.2, we see that  d   ℓ 
→

   i / dt  is equal to the net torque     τ →    net, i    on the ith 
 particle. We can rewrite Eq. 11.7.2 as

 
    d  L 

→
   ___ 

dt
   =   ∑ 

i=1
  

n
       τ →    net, i  .   (11.7.3)

That is, the rate of change of the system’s angular momentum    L 
→

    is equal to the 
vector sum of the torques on its individual particles. Those torques include inter-
nal torques (due to forces between the particles) and external torques (due to 
forces on the particles from bodies external to the system). However, the forces 
between the particles always come in third- law force pairs so their torques sum 
to zero. Thus, the only torques that can change the total angular momentum    L 

→
    of 

the system are the external torques acting on the system.
Net External Torque. Let     τ →    net    represent the net external torque, the vector  

sum of all external torques on all particles in the system. Then we can write 
Eq. 11.7.3 as

  
    τ →    net   =   d  L 

→
   ___ 

dt
      (system of particles), (11.7.4)

11.7 ANGULAR MOMENTUM OF A RIGID BODY
Learning Objectives 
After reading this module, you should be able to . . .

11.7.1 For a system of particles, apply Newton’s sec-
ond law in angular form to relate the net torque act-
ing on the system to the rate of the resulting change 
in the system’s angular momentum.

11.7.2 Apply the relationship between the angular 
momentum of a rigid body rotating around a fixed 

axis and the body’s rotational inertia and angular 
speed around that axis.

11.7.3 If two rigid bodies rotate about the same axis, 
calculate their total angular momentum.

Key Ideas 
● The angular momentum    L 

→
    of a system of particles is 

the vector sum of the angular momenta of the individual 
particles:

   L 
→

   =    ℓ 
→

    1   +    ℓ 
→

    2   + . . . +    ℓ 
→

    n   =   ∑ 
i=1

  
n
       ℓ 

→
    i  . 

● The time rate of change of this angular momentum 
is equal to the net external torque on the system (the 
vector sum of the torques due to interactions of the 

particles of the system with particles external to the 
system):

    τ →    net   =   d   L 
→

   ___ 
dt

      (system of particles).

● For a rigid body  rotating about a fixed axis, the com-
ponent of its angular  momentum parallel to the rotation 
axis is

L = I𝜔   (rigid body, fixed axis).
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Equation 11.7.4 is analogous to     F 
→

    net   = d  P 
→

   / dt  (Eq. 9.3.6) but requires extra 
caution: Torques and the system’s angular momentum must be measured relative 
to the same origin. If the center of mass of the system is not accelerating  relative 
to an inertial frame, that origin can be any point. However, if it is accelerating, 
then it must be the origin. For example, consider a wheel as the system of par-
ticles. If it is rotating about an axis that is fixed relative to the ground, then the 
origin for  applying Eq. 11.7.4 can be any point that is stationary relative to the 
ground. However, if it is rotating about an axis that is accelerating (such as when 
it rolls down a ramp), then the origin can be only at its center of mass.

The Angular Momentum of a Rigid Body  
Rotating About a Fixed Axis
We next evaluate the angular momentum of a system of particles that form a rigid 
body that rotates about a fixed axis. Figure 11.7.1a shows such a body. The fixed axis 
of rotation is a z axis, and the body rotates about it with constant  angular speed 𝜔. 
We wish to find the angular momentum of the body about that axis.

We can find the angular momentum by summing the z components of the 
angular momenta of the mass elements in the body. In  Fig. 11.7.1a, a typical 
mass element, of mass Δmi, moves around the z axis in a circular path. The posi-
tion of the mass element is located relative to the origin O by position vector     r →    i   .  
The  radius of the mass element’s circular path is r⊥i , the perpendicular distance 
 between the element and the z axis.

The magnitude of the angular momentum     ℓ 
→

   i    of this mass element, with 
 respect to O, is given by Eq. 11.5.2:

   ℓ  i   =   (    r  i   )    (    p  i   )    (  sin  90°  )    =   (    r  i   )     (  Δ  m  i    v  i   )   ,  

where pi and vi are the linear momentum and linear speed of the mass element, 
and 90° is the angle between     r →    i    and     p →    i   . The angular momentum vector     ℓ 

→
   i    for the 

mass element in Fig. 11.7.1a is shown in Fig. 11.7.1b; its direction must be perpen-
dicular to those of     r →    i    and     p →    i   .

The z Components. We are interested in the component of     ℓ 
→

   i    that is parallel 
to the rotation axis, here the z axis. That z component is

  ℓ  iz   =  ℓ  i   sin  θ =   (   r  i   sin  θ )     (  Δ  m  i    v  i   )    =  r  ⊥i   Δ  m  i    v  i  . 

The z component of the angular momentum for the rotating rigid body as a whole 
is found by adding up the contributions of all the mass elements that make up the 
body. Thus, because v = ωr⊥, we may write

 
  L  z   =   ∑ 

i=1
  

n
     ℓ  iz   =   ∑ 

i=1
  

n
   Δ  m  i    v  i    r⊥   i   =   ∑ 

i=1
  

n
   Δ  m  i    (  ω  r⊥   i   )    r⊥   i    

 

 
 =  ω (    ∑ 

i=1
  

n
   Δ  m  i    r ⊥i  2   )   .  (11.7.5)

We can remove 𝜔 from the summation here because it has the same value for all 
points of the rotating rigid body.

The quantity  Σ Δ  m  i    r ⊥i  2    in Eq. 11.7.5 is the rotational inertia I of the body 
about the fixed axis (see Eq. 10.4.3). Thus Eq. 11.7.5 reduces to

 L = I𝜔   (rigid body, fixed axis). (11.7.6)

Figure 11.7.1 (a) A rigid body rotates 
about a z axis with angular speed 𝜔.  
A mass element of mass Δmi within 
the body moves about the z axis in a 
circle with radius r⊥i. The mass ele-
ment has linear momentum     p →    i   , and 
it is located relative to the origin 
O by position vector     r →    i   . Here the 
mass element is shown when r⊥i is 
parallel to the x axis. (b) The  angular 
momentum     ℓ 

→
   i   , with respect to O, of 

the mass element in (a). The z com-
ponent   ℓ  iz    is also shown.

z
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Δmi

r i
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θ

θ

ℓ

 iℓ

which is Newton’s second law in angular form. It says:

 The net external torque     τ →    net    acting on a system of particles is equal to the time 
rate of change of the system’s total angular momentum    L 

→
   .

c11RollingTorqueAndAngularMomentum.indd   326 06/05/21   7:47 PM



32711.7 angulaR momenTum oF a Rigid body

We have dropped the subscript z, but you must remember that the angular 
 momentum defined by Eq. 11.7.6 is the angular momentum about the rotation axis. 
Also, I in that equation is the rotational inertia about that same axis.

Table 11.7.1, which supplements Table 10.8.1, extends our list of correspond-
ing linear and angular relations.

Table 11.7.1 More Corresponding Variables and Relations for Translational  
and Rotational Motiona

 Translational Rotational

Force    F 
→

    Torque    τ →    (=   r →   ×   F 
→

  )  

Linear momentum    p →    Angular momentum    ℓ 
→

    (=   r →   ×   p →  )  

Linear momentumb    P 
→

    (=  ∑      p →    i   )   Angular momentumb    L 
→

    (=  ∑     ℓ 
→

    i   )  

Linear momentumb    P 
→

   = M    v →    com    Angular momentumc L = I𝜔

Newton’s second lawb     F 
→

    net   =   d   P 
→

   ___ 
dt

    Newton’s second lawb     τ →    net   =   d   L 
→

   ___ 
dt

   

Conservation lawd    P 
→

   = a constant  Conservation lawd    L 
→

   = a constant 

aSee also Table 10.8.1.
bFor systems of particles, including rigid bodies.
cFor a rigid body about a fixed axis, with L being the component along that axis.
dFor a closed, isolated system.

Checkpoint 11.7.1
In the figure, a disk, 
a hoop, and a solid 
sphere are made to spin 
about fixed central axes 
(like a top) by means of 
strings wrapped around them, with the strings producing the same constant tangential 
force    F 

→
    on all three objects. The three objects have the same mass and radius, and 

they are initially stationary. Rank the objects according to (a) their angular momen-
tum about their central axes and (b) their angular speed, greatest first, when the 
strings have been pulled for a certain time t.

Disk Hoop Sphere

F F F

Sample Problem 11.7.1 Ferris wheel

George Washington Gale Ferris, Jr., a civil engineer-
ing graduate from Rensselaer Polytechnic Institute, 
built the original Ferris wheel (Fig. 11.7.2) for the 1893 
World’s Columbian Exposition in Chicago. The wheel, an 
astounding engineering construction of the time, carried 
36 wooden cars, each holding as many as 60 passengers, 
around a circle of radius R = 38 m. The mass of each car 
was about  1.1 ×  10  4   kg. The mass of the wheel’s structure 
was about  6.0 ×  10  5   kg, which was mostly in the circular grid 
from which the cars were suspended. The wheel made a 
complete rotation at an angular speed   ω  F    in about 2.0 min. 
(a) What was the magnitude L of the angular momentum of 
the wheel and its passengers while the wheel rotated at   ω  F   ?

KEY IDEA

We can treat the wheel, cars, and passengers as a rigid 
object rotating about a fixed axis, at the wheel’s axle. Then  
L = Iω  gives the magnitude of the angular momentum of 

Figure 11.7.2 The original Ferris wheel, built in 1893 near the 
University of Chicago, towered over the surrounding buildings.
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that object. We need to find   ω  F    and the rotational inertia 
I of the object.

Rotational inertia: To find I, let’s start with the loaded 
cars. Because we can treat them as particles, at distance R 
from the axis of rotation, we know from Section 10.5 that 
their rotational inertia is   I  pc   =  M  pc   R   2 ,  where Mpc is their 
total mass. Let’s assume that the 36 cars are each filled 
with 60 passengers, each of mass 70 kg. Then their total 
mass is

  M  pc   = 36 [1.1 ×  10  4  kg + 60(70 kg)]  = 5.47 ×  10  5  kg 

and their rotational inertia is

  I  pc   =  M  pc   R   2  = (5.47 ×  10  5   kg)(38 m)  2  = 7.90 ×  10  8  kg ⋅  m  2 . 

Next we consider the structure of the wheel. Let’s assume 
that the rotational inertia of the structure is due mainly  
to the circular grid suspending the cars. Further, let’s 
assume that the grid forms a hoop of radius R, with a 
mass Mhoop of  3.0 ×  10  5   kg (half the wheel’s mass). From 
Table 10.5.1a, the rotational inertia of the hoop is

   I  hoop   =  M  hoop   R   2  = (3.0 ×  10  5  kg)(38  m)  2 
 = 4.33 ×  10  8  kg ⋅  m  2 . 
The combined rotational inertia I of the cars, passengers, 
and hoop is then

 I =  I  pc   +  I  hoop   = 7.90 ×  10  8  kg ⋅  m  2  + 4.33 ×  10  8  kg ⋅  m  2 
   = 1.22 ×  10  9  kg ⋅  m  2 . 
Angular speed: To find the rotational speed   ω  F   , we use   
ω  avg   = Δθ / Δt.  Here the wheel goes through an angular 

displacement of  Δθ = 2π  rad in a time period Δt = 2.0 min. 
Thus, we have

  ω  F   =   2π rad  _________________  
(2.0 min)(60 s/min)

   = 0.0524 rad/s. 

Angular momentum: Now we can find the magnitude L 
of the angular momentum as

 L = I ω  F   = (1.22 ×  10  9  kg ⋅  m  2 )(0.0524 rad/s)

= 6.39 ×  10  7  kg ⋅  m  2 /s ≈ 6.4 ×  10  7  kg ⋅  m  2 /s. 

(b) If the fully loaded wheel is rotated from rest to   ω  F    in 
a time period Δt1 = 5.0 s, what is the magnitude   τ  avg    of the 
average net external torque acting on it?

KEY IDEA

The average net external torque is related to the change 
ΔL in the angular momentum of the loaded wheel by 
Newton’s second law in angular form     τ →   net   = d   L 

→
 / dt  (Eq. 

11.7.4).

Calculation: Because the wheel rotates about a fixed 
axis to reach angular speed   ω  F    in time period Δt1, we can 
rewrite Newton’s second law as τ = ΔL/Δt1. The change 
ΔL is from zero to our answer in part (a). Thus, we have

  τ  avg   =   ΔL ___ Δ t  1  
   =   6.39 ×  10  7  kg ⋅  m  2 /s − 0

  ____________________  
5.0 s

  

= 1.3 ×  10  7  N ⋅ m. 

11.8 CONSERVATION OF ANGULAR MOMENTUM
Learning Objective 
After reading this module, you should be able to . . .

11.8.1 When no external net torque acts on a system 
along a specified axis, apply the conservation of  
angular momentum to relate the initial angular  

momentum value along that axis to the value at a later 
instant.

Key Idea 
● The angular mo mentum    L 

→
    of a system remains con-

stant if the net external torque acting on the system  
is zero:

   L 
→

   = a constant    (isolated system)

or     L 
→

    i   =    L 
→

    f      (isolated system).

This is the law of conservation of angular momentum. 

Conservation of Angular Momentum
So far we have discussed two powerful conservation laws, the conservation of  
energy and the conservation of linear momentum. Now we meet a third law 
of this type, involving the conservation of angular momentum. We start from  

additional examples, video, and practice available at WileyPLUS
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Equations 11.8.1 and 11.8.2 are vector equations; as such, they are equiv-
alent to three component equations corresponding to the conservation of  angular  
momentum in three mutually perpendicular directions. Depending on the torques 
acting on a system, the angular momentum of the system might be conserved in 
only one or two directions but not in all directions:

Eq. 11.7.4   (   τ →    net   = d  L 
→

   / dt)  , which is Newton’s second law in angular form. If no 
net external torque acts on the system, this equation becomes  d  L 

→
   / dt = 0 , or

    L 
→

   = a constant    (isolated system). (11.8.1)

This result, called the law of conservation of angular momentum, can also be 
written as

    (   
net angular momentum

   
at some initial time   t  i  

   )   =  (   
net angular momentum

   at some later time   t  f  
   )     

or     L 
→

    i   =    L 
→

    f      (isolated system). (11.8.2)

Equations 11.8.1 and 11.8.2 tell us:

This is a powerful statement: In this situation we are concerned with only the initial 
and final states of the system; we do not need to consider any intermediate state.

We can apply this law to the isolated body in Fig. 11.7.1, which rotates around 
the z axis. Suppose that the initially rigid body somehow redistributes its mass 
relative to that rotation axis, changing its rotational inertia about that axis. Equa-
tions 11.8.1 and 11.8.2 state that the angular momentum of the body cannot 
change. Substituting Eq. 11.7.6 (for the angular momentum along the rotational 
axis) into Eq. 11.8.2, we write this conservation law as

 Ii 𝜔i = If𝜔f. (11.8.3)

Here the subscripts refer to the values of the rotational inertia I and angular 
speed 𝜔 before and after the redistribution of mass.

Like the other two conservation laws that we have discussed, Eqs. 11.8.1 and 
11.8.2 hold beyond the limitations of Newtonian mechanics. They hold for par-
ticles whose speeds approach that of light (where the theory of special relativity 
reigns), and they remain true in the world of subatomic particles (where  quantum 
physics reigns). No exceptions to the law of conservation of angular momentum 
have ever been found.

We now discuss four examples involving this law.

1. The spinning volunteer Figure 11.8.1 shows a student seated on a stool 
that can rotate freely about a vertical axis. The student, who has been set 
into  rotation at a modest initial angular speed 𝜔i, holds two dumbbells in his 
 outstretched hands. His angular momentum vector    L 

→
    lies along the vertical 

rotation axis, pointing upward.
The instructor now asks the student to pull in his arms; this action  reduces 

his rotational inertia from its initial value Ii to a smaller value If  because he 
moves mass closer to the rotation axis. His rate of rotation  increases markedly, 

Figure 11.8.1 (a) The student has a 
relatively large rotational inertia 
about the rotation axis and a rela-
tively small angular speed. (b) By 
decreasing his rotational inertia, the 
 student automatically increases his 
angular speed. The angular momen-
tum    L 

→
    of the   rotating system remains 

unchanged.

L

Ii

If

Rotation axis
(a)

(b)

i

f

L

ω

ω

 If the net external torque acting on a system is zero, the angular momentum    L 
→

   of 
the system remains constant, no matter what changes take place within the system.

 If the component of the net external torque on a system along a certain axis is 
zero, then the component of the angular momentum of the system along that 
axis cannot change, no matter what changes take place within the system.
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from 𝜔i to 𝜔f. The student can then slow down by extending his arms once more, 
moving the dumbbells outward.

No net external torque acts on the system consisting of the student, stool, 
and dumbbells. Thus, the angular momentum of that system about the rota-
tion axis must remain constant, no matter how the student maneuvers the 
dumbbells. In Fig. 11.8.1a, the student’s angular speed 𝜔i is relatively low and 
his rotational inertia Ii is relatively high. According to Eq. 11.8.3, his angular 
speed in Fig. 11.8.1b must be greater to compensate for the decreased If.

2. The springboard diver Figure 11.8.2 shows a diver doing a forward one- and-
a- half- somersault dive. As you should expect, her center of mass follows a para-
bolic path. She leaves the springboard with a definite angular momentum    L 

→
    

about an axis through her center of mass, represented by a vector pointing into 
the plane of Fig. 11.8.2, perpendicular to the page. When she is in the air, no net 
external torque acts on her about her center of mass, so her angular momentum 
about her center of mass cannot change. By pulling her arms and legs into the 
closed tuck position, she can considerably reduce her rotational inertia about 
the same axis and thus, according to Eq. 11.8.3, considerably  increase her angu-
lar speed. Pulling out of the tuck position (into the open layout position) at the 
end of the dive increases her rotational inertia and thus slows her rotation rate 
so she can enter the water with little splash. Even in a more complicated dive 
involving both twisting and somersaulting, the  angular momentum of the diver 
must be conserved, in both magnitude and direction, throughout the dive. FCP

3. Long jump When an athlete takes off from the ground in a running long jump, 
the forces on the launching foot give the athlete an angular momentum with 
a forward rotation around a horizontal axis. Such rotation would not allow the 
jumper to land properly: In the landing, the legs should be together and extended 
forward at an angle so that the heels mark the sand at the greatest distance. Once 
airborne, the angular momentum cannot change (it is conserved) because no 
external torque acts to change it. However, the jumper can shift most of the angu-
lar momentum to the arms by rotating them in windmill fashion (Fig. 11.8.3). 
Then the body remains upright and in the proper orientation for landing. FCP

Figure 11.8.3 Windmill motion of the 
arms during a long jump helps main-
tain body orientation for a proper 
landing.

(a) (b)

θ
Figure 11.8.4 (a) Initial phase of a 
tour jeté: large rotational inertia and 
small angular speed. (b) Later phase: 
smaller rotational inertia and larger 
angular speed.

Figure 11.8.2 The diver’s angular 
momentum    L 

→
    is constant throughout 

the dive, being  represented by the tail 
⊗ of an arrow that is perpendicular 
to the plane of the figure. Note also 
that her center of mass (see the dots) 
follows a parabolic path.

L

L

Her angular momentum
is fixed but she can still
control her spin rate.

4. Tour jeté In a tour jeté, a ballet performer leaps with a small twisting 
motion on the floor with one foot while holding the other leg perpendicular 
to the body (Fig. 11.8.4a). The angular speed is so small that it may not be 
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perceptible to the audience. As the performer ascends, the outstretched leg is 
brought down and the other leg is brought up, with both ending up at angle θ 
to the body (Fig. 11.8.4b). The motion is graceful, but it also serves to increase 
the  rotation because bringing in the initially outstretched leg decreases the 
performer’s rotational inertia. Since no external torque acts on the airborne 
 performer, the angular momentum cannot change. Thus, with a decrease in 
 rotational inertia, the angular speed must increase. When the jump is well 
 executed, the performer seems to suddenly begin to spin  and rotates 180°  
before the initial leg orientations are reversed in preparation for the landing. 
Once a leg is again outstretched, the rotation seems to vanish. FCP

Sample Problem 11.8.1 Conservation of angular momentum, rotating wheel demo

Figure 11.8.5a shows a student, again sitting on a stool 
that can rotate freely about a vertical axis. The student, 
initially at rest, is holding a bicycle wheel whose rim is 
loaded with lead and whose rotational inertia Iwh about its 
central axis is 1.2 kg · m2. (The rim contains lead in order 
to make the value of Iwh substantial.) 

The wheel is rotating at an angular speed 𝜔wh of 3.9 
rev/s; as seen from overhead, the rotation is counterclock-
wise. The axis of the wheel is vertical, and the angular 
 momentum     L 

→
    wh    of the wheel points vertically upward. 

The student now inverts the wheel (Fig. 11.8.5b) so 
that, as seen from overhead, it is rotating clockwise. Its 
angular momentum is now  −    L 

→
    wh   . The inversion results 

in the student, the stool, and the wheel’s center rotating 
together as a composite rigid body about the stool’s rota-
tion axis, with rotational inertia Ib = 6.8 kg · m2. (The fact 
that the wheel is also rotating about its center does not 
affect the mass distribution of this composite body; thus, 
Ib has the same value whether or not the wheel rotates.) 
With what angular speed 𝜔b and in what direction does the 
composite body rotate after the inversion of the wheel?

KEY IDEAS

1. The angular speed 𝜔b we seek is related to the 
final angular momentum     L 

→
    b    of the composite body  

about the stool’s rotation axis by Eq. 11.7.6 (L = I𝜔).

2. The initial angular speed 𝜔wh of the wheel is related to  
the angular momentum     L 

→
    wh    of the wheel’s rotation 

about its center by the same equation.
3. The vector addition of     L 

→
    b    and     L 

→
    wh    gives the total angu-

lar momentum     L 
→

    tot    of the system of the student, stool, 
and wheel.

4. As the wheel is inverted, no net external torque acts 
on that system to change     L 

→
    tot    about any vertical axis. 

(Torques due to forces between the student and the 
wheel as the student inverts the wheel are internal to 
the system.) So, the system’s total angular momentum 
is conserved about any vertical axis, including the rota-
tion axis through the stool.

Figure 11.8.5 (a) A student holds a bicycle wheel rotating around 
a vertical axis. (b) The student inverts the wheel, setting himself 
into rotation. (c) The net angular momentum of the system must 
remain the same in spite of the inversion.

Lb

wh

(a) (b)

Lwh
–Lwh

wh

LbLwh –Lwh

= +

(c)

Initial Final

b

The student now has
angular momentum,
and the net of these
two vectors equals
the initial vector.

ω
ω

ω

Checkpoint 11.8.1
A rhinoceros beetle rides the rim of a small disk that rotates like a merry- go- round. 
If the beetle crawls toward the center of the disk, do the following (each relative to 
the central axis) increase, decrease, or remain the same for the beetle– disk system: 
(a) rotational inertia, (b) angular momentum, and (c) angular speed?
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Calculations: The conservation of     L 
→

    tot    is represented 
with vectors in Fig. 11.8.5c. We can also write this con-
servation in terms of components along a vertical axis as

 Lb, f + Lwh, f = Lb, i + Lwh, i, (11.8.4)

where i and f refer to the initial state (before inversion of 
the wheel) and the final state (after inversion). Because 
 inversion of the wheel inverted the angular momentum  
vector of the wheel’s rotation, we substitute −Lwh, i 
for Lwh, f. Then, if we set Lb, i = 0 (because the student, 
the  stool, and the wheel’s center were initially at rest), 
Eq. 11.8.4 yields

Lb, f = 2Lwh, i.

Using Eq. 11.7.6, we next substitute Ib𝜔b for Lb, f and 
Iwh𝜔wh for Lwh, i and solve for 𝜔b, finding

 
  ω  b   =   

2 I  wh  
 ____  I  b      ω  wh    

  =   
  (  2 )    (1.2 kg ⋅  m  2 )   (  3.9 rev / s )   

   _______________________  
6.8 kg ⋅  m  2 

   = 1.4 rev / s.   (Answer)

This positive result tells us that the student rotates 
counter clockwise about the stool axis as seen from over-
head. If the student wishes to stop rotating, he has only to 
invert the wheel once more.

The rotational inertia of a disk rotating about its cen-
tral axis is given by Table 10.5.1c as    1 _ 2  M R   2  . Substituting 
6.00m for the mass M, our disk here has rotational inertia

    I  d   = 3.00m  R   2 .   (11.8.5)

(We don’t have values for m and R, but we shall continue 
with physics courage.)

From Eq. 11.8.2, we know that the rotational inertia 
of the cockroach (a particle) is equal to mr2. Substituting 
the cockroach’s initial radius (r = 0.800R) and final  radius  
(r = R), we find that its initial rotational inertia about the 
rotation axis is
    I  ci   = 0.64m R   2    (11.8.6)

and its final rotational inertia about the rotation axis is

    I  cf   = m R   2 .   (11.8.7)

So, the cockroach– disk system initially has the rota-
tional inertia
    I  i   =  I  d   +  I  ci   = 3.64m R   2 ,   (11.8.8)

and finally has the rotational inertia

    I  f   =  I  d   +  I  cf   = 4.00m R   2 .   (11.8.9)

Next, we use Eq. 11.7.6 (L = Iω) to write the fact that 
the system’s final angular momentum Lf is equal to the 
system’s initial angular momentum Li:

  I  f    ω  f   =  I  i    ω  i   

or  4.00m R   2   ω  f   = 3.64m R   2   (  1.50 rad / s )   . 

After canceling the unknowns m and R, we come to

   ω  f   = 1.37 rad / s.  (Answer)

Note that 𝜔 decreased because part of the mass moved 
outward, thus increasing that system’s rotational inertia.

Sample Problem 11.8.2 Conservation of angular momentum, cockroach on disk

In Fig. 11.8.6, a cockroach with mass m rides on a disk of 
mass 6.00m and radius R. The disk rotates like a merry- 
go- round around its central axis at angular speed ωi = 1.50 
rad/s. The cockroach is initially at radius r = 0.800R, but 
then it crawls out to the rim of the disk. Treat the cock-
roach as a particle. What then is the angular speed?

KEY IDEAS

(1) The cockroach’s crawl changes the mass distribution 
(and thus the rotational inertia) of the cockroach– disk 
system. (2) The angular momentum of the system does not 
change because there is no external torque to change it. 
(The forces and torques due to the cockroach’s crawl are 
internal to the system.) (3) The magnitude of the angular 
momentum of a rigid body or a particle is given by Eq. 
11.7.6 (L = Iω).

Calculations: We want to find the final angular speed. 
Our key is to equate the final angular momentum Lf to 
the initial angular momentum Li, because both involve 
angular speed. They also involve rotational inertia I. So, 
let’s start by finding the rotational inertia of the system of 
cockroach and disk before and after the crawl.

Figure 11.8.6 A cockroach rides at radius r on a disk rotating 
like a merry- go- round.

Rotation axis

R
r

iω

additional examples, video, and practice available at WileyPLUS
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Precession of a Gyroscope
A simple gyroscope consists of a wheel fixed to a shaft and free to spin about the 
axis of the shaft. If one end of the shaft of a nonspinning gyroscope is placed on 
a support as in Fig. 11.9.1a and the gyroscope is released, the gyroscope falls by 
rotating downward about the tip of the support. Since the fall involves rotation, it 
is governed by Newton’s second law in angular form, which is given by Eq. 11.7.4:

     τ →   =   d  L 
→

   ___ 
dt

  .   (11.9.1)

This equation tells us that the torque causing the downward rotation (the fall) 
changes the angular momentum    L 

→
    of the gyroscope from its initial value of zero. 

The torque    τ →    is due to the gravitational force  M   g →    acting at the gyroscope’s  center 
of mass, which we take to be at the center of the wheel. The moment arm relative 
to the support tip, located at O in Fig. 11.9.1a, is    r →   . The magnitude of    τ →    is

 𝜏 = Mgr sin 90° = Mgr (11.9.2)

(because the angle between  M   g →    and    r →    is 90°), and its direction is as shown in 
Fig. 11.9.1a.

A rapidly spinning gyroscope behaves differently. Assume it is released with 
the shaft angled slightly upward. It first rotates slightly downward but then, while 
it is still spinning about its shaft, it begins to rotate horizontally about a vertical 
axis through support point O in a motion called precession.

Why Not Just Fall Over? Why does the spinning gyroscope stay aloft instead 
of falling over like the nonspinning gyroscope? The clue is that when the spinning 
gyroscope is  released, the torque due to  M   g →    must change not an initial angular 
momentum of zero but rather some already existing nonzero angular momentum 
due to the spin.

To see how this nonzero initial angular momentum leads to precession, we first 
consider the angular momentum    L 

→
    of the gyroscope due to its spin. To  simplify the 

situation, we assume the spin rate is so rapid that the angular  momentum due to 
precession is negligible relative to    L 

→
   . We also assume the shaft is horizontal when 

precession begins, as in Fig. 11.9.1b. The magnitude of    L 
→

    is given by Eq. 11.7.6:

 L = I𝜔, (11.9.3)

where I is the rotational moment of the gyroscope about its shaft and 𝜔 is the 
angular speed at which the wheel spins about the shaft. The vector    L 

→
    points 

along the shaft, as in Fig. 11.9.1b. Since    L 
→

    is parallel to    r →   , torque    τ →    must be 
 perpendicular to    L 

→
   .

Figure 11.9.1 (a) A nonspinning gyro-
scope falls by rotating in an xz plane 
because of torque    τ →   . (b) A rapidly 
spinning gyroscope, with angular 
momentum    L 

→
    precesses around the 

z axis. Its precessional motion is in 
the xy plane. (c) The change  d  L 

→
   / dt  in 

 angular  momentum leads to a rota-
tion of    L 

→
    about O.

x

y

z

O
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O

L
= dL___

dt
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d L(t + dt)

Circular path
taken by head
of L vector
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11.9 PRECESSION OF A GYROSCOPE
Learning Objectives 
After reading this module, you should be able to . . .

11.9.1 Identify that the gravitational force acting on 
a  spinning gyroscope causes the spin angular 
momentum vector (and thus the gyroscope) to 
rotate about the vertical axis in a motion called 
precession.

11.9.2 Calculate the precession rate of a gyroscope.
11.9.3 Identify that a gyroscope’s precession rate is  

independent of the gyroscope’s mass.

Key Idea 
● A spinning gyroscope can precess about a vertical 
axis through its support at the rate

 Ω =   
Mgr

 ____ 
Iω  , 

where M is the gyroscope’s mass, r is the moment 
arm, I is the rotational inertia, and 𝜔 is the spin rate.
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According to Eq. 11.9.1, torque    τ →    causes an incremental change  d   L 
→

    in the  
angular momentum of the gyroscope in an incremental time interval dt ; that is,

   d  L 
→

   =   τ →   dt.   (11.9.4)

However, for a rapidly spinning gyroscope, the magnitude of    L 
→

    is fixed by 
Eq. 11.9.3. Thus the torque can change only the direction of    L 

→
   , not its magnitude.

From Eq. 11.9.4 we see that the direction of  d  L 
→

    is in the direction of    τ →   , per-
pendicular to    L 

→
   . The only way that    L 

→
    can be changed in the direction of    τ →    without 

the magnitude L being changed is for    L 
→

    to rotate around the z axis as shown in 
Fig. 11.9.1c.    L 

→
    maintains its magnitude, the head of the    L 

→
    vector follows a circular 

path, and    τ →    is always tangent to that path. Since    L 
→

    must always point along the 
shaft, the shaft must rotate about the z axis in the direction of    τ →   . Thus we have 
precession. Because the spinning gyroscope must obey Newton’s law in angular 
form in response to any change in its initial angular momentum, it must precess 
instead of merely toppling over.

Precession. We can find the precession rate Ω by first using Eqs. 11.9.4 and 
11.9.2 to get the magnitude of  d  L 

→
   :

 dL = 𝜏 dt = Mgr dt. (11.9.5)

As    L 
→

    changes by an incremental amount in an incremental time interval dt, 
the  shaft and    L 

→
    precess around the z axis through incremental angle d𝜙. (In 

Fig. 11.9.1c, angle d𝜙 is exaggerated for clarity.) With the aid of Eqs. 11.9.3 and 
11.9.5, we find that d𝜙 is given by

 dϕ =   dL ___ 
L

   =   
Mgr dt

 _______ 
Iω  . 

Dividing this expression by dt and setting the rate Ω = d𝜙/dt, we obtain

  Ω =   
Mgr

 ____ 
Iω      (precession rate). (11.9.6)

This result is valid under the assumption that the spin rate 𝜔 is rapid. Note that 
Ω decreases as 𝜔 is increased. Note also that there would be no precession if the 
gravitational force  M   g →    did not act on the gyroscope, but because I is a function 
of M, mass cancels from Eq. 11.9.6; thus Ω is independent of the mass.

Equation 11.9.6 also applies if the shaft of a spinning gyroscope is at an angle  
to the horizontal. It holds as well for a spinning top, which is essentially a spinning 
gyroscope at an angle to the horizontal. FCP

Checkpoint 11.9.1
Does the precession rate increase, decrease, or stay the same if we (a) increase 
the spin rate  ω,  (b) increase the mass without changing the moment arm r, and (c) 
decrease the value of g by moving the gyroscope from sea level to a mountaintop?

Rolling Bodies  For a wheel of radius R rolling smoothly,

 vcom = 𝜔R, (11.1.2)

where vcom is the linear speed of the wheel’s center of mass and 
𝜔 is the angular speed of the wheel about its center. The wheel 
may also be viewed as rotating instantaneously about the point 
P of the “road” that is in contact with the wheel. The angular 
speed of the wheel about this point is the same as the angu-
lar speed of the wheel about its center. The rolling wheel has 
kinetic energy

     K =   1 _ 2    I  com    ω   2  +   1 _ 2  M v com  2  ,   (11.2.3)

Review & Summary

where Icom is the rotational inertia of the wheel about its center 
of mass and M is the mass of the wheel. If the wheel is being 
accelerated but is still rolling smoothly, the acceleration of the 
center of mass     a →    com    is related to the angular acceleration 𝛼 about 
the center with
   acom = 𝛼R. (11.2.4)

If the wheel rolls smoothly down a ramp of angle θ, its accelera-
tion along an x axis extending up the ramp is

      a  com, x   = −   
g sin  θ ____________  

1 +  I  com   / M R   2 
  .  
 

(11.2.8)
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Torque as a Vector  In three dimensions, torque    τ →    is a  vector 
quantity defined relative to a fixed point (usually an origin);  
it is
     τ →   =   r →   ×   F 

→
  ,   (11.4.1)

where    F 
→

    is a force applied to a particle and    r →    is a position vector 
locating the particle relative to the fixed point. The magnitude 
of    τ →    is 
   τ = rF sin  ϕ = r  F  ⊥   = r⊥F,   (11.4.2, 11.4.3, 11.4.4)

where 𝜙 is the angle between    F 
→

    and    r →   , F⊥ is the component of    F 
→

    
perpendicular to    r →   , and r⊥ is the moment arm of    F 

→
   . The direc-

tion of    τ →    is given by the right- hand rule.

Angular Momentum of a Particle  The angular momen-
tum    ℓ 

→
   of a particle with linear momentum    p →   , mass m, and  linear 

velocity    v →    is a vector quantity defined relative to a fixed point 
(usually an origin) as

     ℓ 
→

   =   r →   ×   p →   = m (  r →   ×   v →  ) .   (11.5.1)

The magnitude of    ℓ 
→

   is given by

   ℓ = rmv sin  ϕ   (11.5.2)

   = r  p  ⊥   = rm v  ⊥     (11.5.3)

   =  r  ⊥   p =  r  ⊥   mv,   (11.5.4)

where 𝜙 is the angle between    r →    and    p →   , p⊥ and v⊥ are the compo-
nents of    p →    and    v →    perpendicular to    r →   , and r⊥ is the  perpendicular 
distance between the fixed point and the  extension of    p →   . The 
direction of    ℓ 

→
   is given by the right- hand rule for cross products.

Newton’s Second Law in Angular Form  Newton’s sec-
ond law for a particle can be written in angular form as

      τ →    net   =   d   ℓ 
→

   ___ 
dt

  ,   (11.6.2)

where     τ →    net    is the net torque acting on the particle and    ℓ 
→

   is the 
angular momentum of the particle.

Angular Momentum of a System of Particles  The 
angular momentum    L 

→
    of a system of particles is the vector sum 

of the angular momenta of the individual particles:

     L 
→

   =    ℓ 
→

    1   +    ℓ 
→

    2   + . . . +    ℓ 
→

    n   =   ∑ 
i=1

  
n
       ℓ 
→

    i  .   (11.7.1)

The time rate of change of this angular momentum is equal to 
the net external torque on the system (the vector sum of the 
torques due to interactions with particles external to the system):

     τ →    net   =   d   L 
→

   ____ 
dt

      (system of particles). (11.7.4)

Angular Momentum of a Rigid Body  For a rigid body  
rotating about a fixed axis, the component of its angular 
 momentum parallel to the rotation axis is

 L = I𝜔   (rigid body, fixed axis). (11.7.6)

Conservation of Angular Momentum  The angular 
mo mentum    L 

→
    of a system remains constant if the net external 

torque acting on the system is zero:

    L 
→

   = a constant    (isolated system) (11.8.1)

or     L 
→

    i   =    L 
→

    f      (isolated system). (11.8.2)

This is the law of conservation of angular momentum. 

Precession of a Gyroscope  A spinning gyroscope can  
precess about a vertical axis through its support at the rate

   Ω =   
Mgr

 _____ 
Iω  ,   (11.9.6)

where M is the gyroscope’s mass, r is the moment arm, I is the 
rotational inertia, and 𝜔 is the spin rate.

Questions

1  Figure 11.1 shows three par-
ticles of the same mass and the 
same constant speed moving as 
indicated by the velocity vec-
tors. Points a, b, c, and d form a 
square, with point e at the cen-
ter. Rank the points according to 
the magnitude of the net angular 
momentum of the three- particle 
system when measured about the 
points, greatest first.

2  Figure 11.2 shows two par-
ticles A and B at xyz coordinates  
(1 m, 1 m, 0) and (1 m, 0, 1 m). 
Acting on each particle are three 
numbered forces, all of the same 
magnitude and each directed par-
allel to an axis. (a) Which of the 
forces  produce a torque about the 
origin that is directed parallel to y? 

(b) Rank the forces according to the magnitudes of the torques 
they produce on the particles about the origin, greatest first.

3  What happens to the initially sta-
tionary yo- yo in Fig. 11.3 if you pull  
it via its string with (a) force     F 

→
    2    (the 

line of action passes through the point 
of contact on the table, as  indicated), 
(b) force     F 

→
    1    (the line of action passes 

above the point of contact), and 
(c) force     F 

→
    3    (the line of action passes 

to the right of the point of contact)?

4  The position vector    r →    of a par-
ticle relative to a certain point has a 
magnitude of 3 m, and the force    F 

→
    on the particle has a magni-

tude of 4 N. What is the angle between the directions of    r →    and    F 
→

    
if the magnitude of the associated torque equals (a) zero and  
(b) 12 N · m?

5  In Fig. 11.4, three forces of the same magnitude are  applied 
to a particle at the origin (    F 

→
    1    acts directly into the plane of the 

Figure 11.1 Question 1.

cd

e

a b

Figure 11.2 Question 2.

y

x

z

A

B 6

5

4
2

1

3

F3

F2

F1

Figure 11.3 Question 3.
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figure). Rank the forces accord-
ing to the magnitudes of the 
torques they create about (a) 
point P1, (b) point P2, and (c) 
point P3, greatest first.

6  The angular momenta ℓ(t) of 
a particle in four situations are 
(1) ℓ = 3t + 4; (2) ℓ = −6t2; (3)  
ℓ = 2; (4) ℓ = 4/t. In which situ-
ation is the net torque on the 
particle (a) zero, (b) positive and 
constant, (c) negative and increasing in mag nitude (t > 0), and  
(d) negative and decreasing in magnitude (t > 0)?

7  A rhinoceros beetle rides the rim of a horizontal disk 
 rotating counterclockwise like a merry- go- round. If the  beetle 
then walks along the rim in the direction of the rotation, will the 
magnitudes of the following quantities (each measured about 
the rotation axis) increase, decrease, or  remain the same (the 
disk is still rotating in the counterclockwise direction): (a) the 
angular momentum of the beetle– disk system, (b) the angular 
momentum and angular velocity of the beetle, and (c) the angular 
momentum and angular  velocity of the disk? (d) What are your 
answers if the beetle walks in the direction opposite the rotation?

8  Figure 11.5 shows an overhead 
view of a rectangular slab that can 
spin like a merry- go- round about 
its center at O. Also shown are 
seven paths along which wads of 
bubble gum can be thrown (all 
with the same speed and mass) to 
stick onto the stationary slab. (a) 
Rank the paths according to the angular speed that the slab (and 
gum) will have after the gum sticks, greatest first. (b) For which 
paths will the angular  momentum of the slab (and gum) about O 
be negative from the view of Fig. 11.5?

9  Figure 11.6 gives the angular 
momentum magnitude L  of a wheel 
versus time t. Rank the four lettered 
time intervals according to the magni-
tude of the torque acting on the wheel, 
greatest first.

10  Figure 11.7 shows a particle mov-
ing at constant velocity    v →    and five 
points with their xy coordinates. Rank the points according to the 
magnitude of the angular momentum of the particle measured 
about them, greatest first.

11  A cannonball and a marble roll smoothly from rest down 
an incline. Is the cannonball’s (a) time to the bottom and (b) 
translational kinetic energy at the bottom more than, less than, 
or the same as the marble’s?

12  A solid brass cylinder and a solid wood cylinder have the 
same radius and mass (the wood cylinder is longer). Released 
together from rest, they roll down an incline. (a) Which cylinder 
reaches the bottom first, or do they tie? (b) The wood cylinder is 
then shortened to match the length of the brass cylinder, and the 
brass cylinder is drilled out along its long (central) axis to match 
the mass of the wood cylinder. Which cylinder now wins the race, 
or do they tie?

Figure 11.4 Question 5.
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Figure 11.6 Question 9.
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Figure 11.7 Question 10.

Figure 11.5 Question 8.
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Module 11.1  Rolling as Translation and Rotation 
Combined
1 E  A car travels at 80 km/h on a level road in the posi-
tive direction of an x axis. Each tire has a diameter of 
66 cm. Relative to a woman riding in the car and in unit- 
vector notation, what are the velocity    v →    at the (a) cen-
ter, (b) top, and (c)  bottom of the tire and the magnitude a 
of the acceleration at the (d) center, (e) top, and (f) bottom 
of each tire? Relative to a hitchhiker sitting next to the road 
and in unit- vector notation, what are the velocity    v →    at the  
(g) center, (h) top, and (i) bottom of the tire and the magnitude 
a of the  acceleration at the ( j) center, (k) top, and (l) bottom 
of each tire?

2 E  An automobile traveling at 80.0 km/h has tires of 75.0 cm 
diameter. (a) What is the angular speed of the tires about their 
axles? (b) If the car is brought to a stop uniformly in 30.0 com-
plete turns of the tires (without skidding), what is the magnitude 

of the angular acceleration of the wheels? (c) How far does the 
car move during the braking?

Module 11.2  Forces and Kinetic Energy of Rolling
3 E   SSM  A 140 kg hoop rolls along a horizontal floor so that 
the hoop’s center of mass has a speed of 0.150 m/s. How much 
work must be done on the hoop to stop it? 

4 E  A uniform solid sphere rolls down an incline. (a) What must 
be the incline angle if the linear acceleration of the  center of the 
sphere is to have a magnitude of 0.10g? (b) If a frictionless block 
were to slide down the incline at that angle, would its accelera-
tion magnitude be more than, less than, or equal to 0.10g? Why?

5 E  A 1000 kg car has four 10 kg wheels. When the car is mov-
ing, what fraction of its total kinetic energy is due to  rotation of 
the wheels about their axles? Assume that the wheels are uni-
form disks of the same mass and size. Why do you not need to 
know the  radius of the wheels? 

Problems

          Tutoring problem available (at instructor’s discretion) in WileyPLUS

 Worked-out solution available in Student Solutions Manual

E  Easy M  Medium H  Hard

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

CALC  Requires calculus  

BIO  Biomedical application

GO

FCP

SSM
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6 M  Figure 11.8 gives the 
speed v versus time t for a 
0.500  kg object of radius 
6.00 cm that rolls smoothly 
down a  30°  ramp. The scale 
on the velocity axis is set by 
vs = 4.0 m/s. What is the rota-
tional inertia of the object?

7 M  In Fig. 11.9, a solid cyl-
inder of radius 10 cm and 
mass 12 kg starts from rest 
and rolls without slipping 
a distance L = 6.0 m down a roof 
that is inclined at angle θ = 30°. 
(a) What is the angular speed of 
the cylinder about its center  as 
it leaves the roof? (b) The roof’s 
edge is at height H = 5.0 m. How 
far horizontally from the roof’s 
edge does the cylinder hit the 
level ground? 

8 M  Figure 11.10 shows the 
potential energy U(x) of a 
solid ball  that can roll along 
an x axis. The scale on the 
U axis is set by Us = 100 J.  
The ball is uniform, rolls 
smoothly, and has a mass of 
0.400 kg. It is released at x = 
7.0 m headed in the negative 
direction of the x axis with 
a  mechanical energy of 75 J. 
(a) If the ball can reach x = 0 m,  
what is its speed there, and if 
it cannot, what is its turning point? Suppose, instead, it is headed 
in the positive direction of the x axis when it is released at x = 7.0 
m with 75 J. (b) If the ball can reach x = 13 m, what is its speed 
there, and if it cannot, what is its turning point?

9 M  GO  In Fig. 11.11, a solid ball 
rolls smoothly from rest (start-
ing at height H = 6.0 m) until it 
leaves the horizontal section at 
the end of the track, at height 
h = 2.0 m. How far hori zontally 
from point A does the ball hit the 
floor?  

10 M  A hollow sphere of radius 0.15 m, with rotational inertia  
I = 0.040 kg · m2 about a line through its center of mass, rolls 
without slipping up a surface inclined at 30° to the horizontal. 
At a certain initial position, the sphere’s total kinetic energy is 
20 J. (a) How much of this initial kinetic energy is rotational? 
(b) What is the speed of the center of mass of the sphere at the 
initial  position? When the sphere has moved 1.0 m up the incline 
from its initial position, what are (c) its total kinetic energy and 
(d) the speed of its center of mass?

11 M  In Fig. 11.12, a constant horizontal force     F 
→

    app    of magni-
tude 10 N is applied to a wheel of mass 10 kg and radius 0.30 m. 
The wheel rolls smoothly on the horizontal surface, and the 
acceleration of its center of mass has magnitude 0.60 m/s2. (a) 

In unit- vector notation, what is 
the frictional force on the wheel? 
(b) What is the rotational inertia 
of the wheel about the rotation 
axis through its center of mass?

12 M  GO  In Fig. 11.13, a solid 
brass ball of mass 0.280 g will 
roll smoothly along a loop- the- 
loop track when released from 
rest along the straight section. 
The circular loop has radius 
R  = 14.0 cm, and the ball has 
radius r ⪡ R. (a) What is h if 
the ball is on the verge of leav-
ing the  track when it reaches 
the top of the loop? If the ball 
is released at height h = 6.00R, 
what are the (b) magnitude and  
(c) direction of the horizontal force component acting on the 
ball at point Q?

13 H  GO  Nonuniform ball. In  
Fig. 11.14, a ball of mass M and 
radius R rolls smoothly from rest 
down a ramp and onto a circular 
loop of radius 0.48 m. The initial 
height of the ball is h = 0.36 m. 
At the loop bottom, the magnitude of the normal force on the 
ball is 2.00Mg. The ball consists of an outer spherical shell (of 
a certain uniform density) that is glued to a central sphere (of a 
different uniform density). The rotational inertia of the ball can 
be expressed in the general form I = βMR2, but β is not 0.4 as it 
is for a ball of uniform density. Determine β.

14 H  GO  In Fig. 11.15, a small, solid, uniform ball is to be shot 
from point P so that it rolls smoothly along a horizontal path, up 
along a ramp, and onto a plateau. Then it leaves the plateau hori-
zontally to land on a game board, at a horizontal distance d from 
the right edge of the plateau. The vertical heights are h1 = 5.00 cm 
and h2 = 1.60 cm. With what speed must the ball be shot at point P  
for it to land at d = 6.00 cm?

v 
(m

/s
)

vs

0 0.2 0.4
t (s)

0.6 0.8 1

Figure 11.8 Problem 6.

Figure 11.11 Problem 9.

H

h
A

Figure 11.10 Problem 8.

0 2 4 6 8 10 12 14

Us

U (J)
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Figure 11.13 Problem 12.

h R Q

Figure 11.14 Problem 13.

h

Figure 11.15 Problem 14.

Ball

P

h1
d

h2

Figure 11.12 Problem 11.

Fapp

x

L

H

θ

Figure 11.9 Problem 7.

15 H  GO  FCP  A bowler throws a 
bowling ball of radius R = 11 cm 
along a lane. The ball (Fig. 11.16) 
slides on the lane with initial 
speed vcom,0 = 8.5 m/s and initial 
angular speed 𝜔0 = 0. The coef-
ficient of kinetic friction between the ball and the lane is 0.21. 
The kinetic frictional force     f 

→
    k    acting on the ball causes a linear 

acceleration of the ball while producing a torque that causes an 
angular acceleration of the ball. When speed vcom has decreased 

x
fk vcom

Figure 11.16 Problem 15.
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is due to (a) force     F 
→

    1    with components F1x = 2.0 N, F1y = F1z = 0, 
and (b) force     F 

→
    2    with components F2x = 0, F2y = 2.0 N, F2z = 4.0 N?

22 M  A particle moves through an xyz coordinate system while  
a force acts on the particle. When the particle has the position  
vector    r →   =   (  2.00 m )    ̂ i  −   (  3.00 m )    ̂ j  +   (  2.00 m )     ̂  k  , the force is given  
by    F 

→
   =  F  x   ̂ i  +   (  7.00 N )    ̂ j  −   (  6.00 N )     ̂  k   and the corre sponding torque 

about the origin is    τ →   =   (  4.00 N ⋅ m )    ̂ i  +   (  2.00 N ⋅ m )    ̂ j  −   (  1.00 N ⋅ m )     ̂  k  .  
Determine Fx.

23 M  Force    F 
→

   =   (  2.0 N )    ̂ i  −   (  3.0 N )     ̂  k   acts on a pebble with posi-
tion vector    r →   =   (  0.50 m )    ̂ j  −   (  2.0 m )     ̂  k   relative to the origin. In unit- 
vector notation, what is the resulting torque on the pebble about 
(a) the origin and (b) the point (2.0 m, 0, −3.0 m)?

24 M  In unit- vector notation, what is the torque about the ori-
gin on a jar of jalapeño peppers located at coordinates (3.0 m, 
−2.0 m, 4.0 m) due to (a) force     F 

→
    1   =   (  3.0 N )    ̂ i  −   (  4.0 N )    ̂ j  +   (  5.0 N )     ̂  k ,   

(b) force     F 
→

    2   =   (  −3.0 N )    ̂ i  −   (  4.0 N )    ̂ j  −   (  5.0 N )     ̂  k  , and (c) the vector 
sum of     F 

→
    1    and     F 

→
    2   ? (d) Repeat part (c) for the torque about the 

point with coordinates (3.0 m, 2.0 m, 4.0 m).

25 M  SSM  Force    F 
→

   =   (  −8.0 N )    ̂ i  +   (  6.0 N )    ̂ j   acts on a particle with 
position vector    r →    = (3.0 m)  ̂ i    +  (4.0 m)  ̂ j  . What are (a) the torque 
on the particle about the origin, in unit- vector  notation, and 
(b) the angle between the directions of    r →    and    F 

→
   ?

Module 11.5  Angular Momentum
26 E  At the instant of Fig. 11.18, a 2.0 kg 
particle P has a  position vector    r →    of mag-
nitude 3.0 m and angle θ1 = 45° and 
a velocity vector    v →    of magnitude 4.0 m/s 
and angle θ2 = 30°. Force    F 

→
   , of magnitude 

2.0 N and angle θ3 = 30°, acts on P. All 
three vectors lie in the xy plane. About 
the origin, what are  the (a) magnitude 
and (b) direction of the angular momen-
tum of P and the (c) magnitude and (d) 
direction of the torque acting on P?

27 E  SSM  At one instant, force    F 
→

   = 4.0 ̂ j   N  acts on a 0.25 kg 
object that has position vector    r →   =  (2.0 ̂ i  − 2.0  ̂  k )  m  and veloc-
ity vector    v →   =  (−5.0 ̂ i  + 5.0  ̂  k )  m / s . About the origin and in unit- 
vector notation, what are (a) the object’s angular momentum 
and (b) the torque acting on the object? 

28 E  A 2.0 kg particle- like object moves in a plane with  ve locity 
components vx = 30 m/s and vy = 60 m/s as it passes through 
the point with (x, y) coordinates of (3.0, −4.0) m. Just then, in 
unit- vector notation, what is its angular  momentum relative to 
(a) the origin and (b) the point located at (−2.0, −2.0) m?

29 E  In the instant of Fig. 11.19, 
two particles move in an xy plane. 
Particle P1 has mass 6.5 kg and 
speed v1 = 2.2 m/s, and it is at dis-
tance d1 = 1.5 m from point O. Par-
ticle P2 has mass 3.1 kg and speed 
v2 = 3.6 m/s, and it is at distance  
d2 = 2.8 m from point O. What are 
the (a) magnitude and (b) direction 
of the net angular momentum of the two particles about O? 

30 M  At the instant the displacement of a 2.00 kg object   relative 
to the origin is    d 

→
   =   (  2.00 m )    ̂ i  +   (  4.00 m )    ̂ j  −   (  3.00 m )     ̂  k  , its velocity 

is    v →   =  −  (  6.00 m / s )    ̂ i  +   (  3.00 m / s )    ̂ j  +   (  3.00 m / s )     ̂  k   and it is subject to a 

enough and angular speed 𝜔 has  increased enough, the ball stops 
sliding and then rolls smoothly. (a) What then is vcom in terms of 
𝜔? During the sliding, what are the ball’s (b) linear acceleration 
and (c) angular acceleration? (d) How long does the ball slide? 
(e) How far does the ball slide? (f) What is the linear speed of 
the ball when smooth rolling begins? 
16 H  GO  Nonuniform cylindrical object. In Fig. 11.17, a cylin-
drical object of mass M and radius R rolls smoothly from 
rest down a ramp and onto a horizontal section. From there 
it rolls off the ramp and onto the floor, landing a horizon-
tal distance d = 0.506 m from the end of the ramp. The initial 
height of the object is H = 0.90 m; the end of the ramp is at 
height h = 0.10 m. The object consists of an outer cylindri-
cal shell (of a certain uniform density) that is glued to a cen-
tral cylinder (of a different uniform density). The rotational 
 inertia of the object can be expressed in the general form  
I = βMR2, but β is not 0.5 as it is for a cylinder of uniform  density. 
Determine β.

Module 11.3  The Yo- Yo
17 E   SSM   FCP  A yo- yo has a rotational inertia of 950 g · cm2 
and a mass of 120 g. Its axle radius is 3.2 mm, and its string is 
120 cm long. The yo- yo rolls from rest down to the end of the 
string. (a)  What is the magnitude of its linear acceleration? 
(b) How long does it take to reach the end of the string? As 
it reaches the end of the string, what are its (c) linear speed, 
(d)  translational kinetic energy, (e) rotational kinetic energy, 
and (f) angular speed? 

18 E  FCP  In 1980, over San Francisco Bay, a large yo- yo 
was  released from a crane. The 116 kg yo- yo consisted of two 
 uniform disks of radius 32 cm connected by an axle of radius 
3.2 cm. What was the magnitude of the acceleration of the yo-yo 
during (a) its fall and (b) its rise? (c) What was the tension in 
the cord on which it rolled? (d) Was that tension near the cord’s 
limit of 52 kN? Suppose you build a scaled- up version of the 
yo- yo (same shape and materials but larger). (e) Will the magni-
tude of your yo- yo’s acceleration as it falls be greater than, less 
than, or the same as that of the San Francisco yo- yo? (f) How 
about the tension in the cord? 

Module 11.4  Torque Revisited
19 E  In unit- vector notation, what is the net torque about the 
 origin on a flea located at coordinates (0, −4.0 m, 5.0 m) when 
forces     F 

→
    1   =   (  3.0 N )     ̂  k   and     F 

→
    2   =   (  −2.0 N )    ̂ j   act on the flea?

20 E  A plum is located at coordinates (−2.0 m, 0, 4.0 m). In 
unit- vector notation, what is the torque about the origin on the 
plum if that torque is due to a force    F 

→
    whose only component is  

(a) Fx = 6.0 N, (b) Fx = −6.0 N, (c) Fz = 6.0 N, and (d) Fz = −6.0 N?

21 E  In unit- vector notation, what is the torque about the origin 
on a particle located at coordinates (0, −4.0 m, 3.0 m) if that torque 
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rigid assembly rotates around 
point O at the angular speed 𝜔 =  
0.85 rad/s. About O, what are 
(a) the rotational inertia of the 
assembly, (b) the magnitude of 
the angular momentum of the 
middle particle, and (c) the mag-
nitude of the angular  momentum 
of the asssembly?

38 E  A sanding disk with rotational inertia 1.2 × 10−3 kg · m2 is  
attached to an electric drill whose motor delivers a torque of 
magnitude 16 N · m about the central axis of the disk. About that 
axis and with the torque applied for 33 ms, what is the magni-
tude of the (a) angular momentum and (b) angular velocity of 
the disk?

39 E  SSM  The angular momentum of a flywheel having a rota-
tional inertia of 0.140 kg ·m2 about its central axis decreases 
from 3.00 to 0.800 kg · m2/s in 1.50 s. (a) What is the mag nitude 
of the average torque acting on the flywheel about its central 
axis during this period? (b) Assuming a constant  angular accel-
eration, through what angle does the flywheel turn? (c) How 
much work is done on the wheel? (d) What is the average power 
of the flywheel? 

40 M  CALC  A disk with a rotational inertia of 7.00 kg ⋅ m2 rotates 
like a merry- go- round while undergoing a time- dependent torque 
given by τ = (5.00 + 2.00t) N ⋅ m. At time t = 1.00 s, its angular  
momentum is 5.00 kg · m2/s. What is its angular momentum at  
t = 3.00 s?

41 M  GO  Figure 11.23 shows 
a rigid structure consisting of 
a  circular hoop of radius R and 
mass m, and a square made of 
four thin bars, each of length R 
and mass m. The rigid structure 
rotates at a constant speed about 
a vertical axis, with a period of 
rotation of 2.5 s. Assuming R  = 
0.50 m and m = 2.0 kg, calculate (a) 
the structure’s rotational inertia about the axis of rotation and 
(b) its angular momentum about that axis.  

42 M  CALC  Figure 11.24 gives the torque 𝜏 that acts on an 
initially stationary disk that can rotate about its center like a 
merry- go- round. The scale on the 𝜏 axis is set by 𝜏s = 4.0 N · m. 
What is the angular momentum of the disk about the rotation 
axis at times (a) t = 7.0 s and (b) t = 20 s?

force    F 
→

   =   (  6.00 N )    ̂ i  −   (  8.00 N )    ̂ j  +   (  4.00 N )     ̂  k  . Find (a) the accelera-
tion of the object, (b) the  angular momentum of the object about 
the origin, (c) the torque about the origin acting on the object, and  
(d) the  angle between the velocity of the object and the force 
acting on the  object.

31 M  In Fig. 11.20, a 0.400 kg ball is 
shot directly upward at initial speed 
40.0 m/s. What is its angular momen-
tum about P, 2.00 m horizontally 
from the launch point, when the 
ball is (a) at maximum height and 
(b) halfway back to the ground? What is the torque on the ball 
about P due to the gravi tational force when the ball is (c)  at 
maximum height and (d) halfway back to the ground?

Module 11.6  Newton’s Second Law in Angular Form
32 E  CALC  A particle is acted on by two torques about the ori-
gin:     τ →    1    has a magnitude of 2.0 N · m and is directed in the positive 
direction of the x axis, and     τ →    2    has a magnitude of 4.0 N · m and is  
directed in the negative direction of the y axis. In unit- vector  
notation, find  d   ℓ 

→
  / dt , where    ℓ 

→
   is the angular momentum of the 

particle about the origin.

33 E  SSM  At time t = 0, a 3.0 kg particle with velocity    v →   =  
  (  5.0 m / s )    ̂ i  −   (  6.0 m / s )    ̂ j   is at x = 3.0 m, y = 8.0 m. It is pulled by a  
7.0 N force in the negative x direction. About the origin, what are 
(a) the particle’s angular momentum, (b)  the torque acting on 
the particle, and (c) the rate at which the  angular momentum is 
changing? 

34 E  CALC  A particle is to move in an xy plane, clockwise around 
the origin as seen from the positive side of the z axis. In unit- 
vector notation, what torque acts on the particle if the  magnitude 
of its angular momentum about the origin is (a) 4.0  kg ·m2/s,  
(b) 4.0t2 kg ·m2/s, (c)  4.0 √ 

_
 t    kg ⋅  m  2  / s , and (d) 4.0/t2 kg ·m2/s?

35 M  CALC  At time t, the vector    r →   = 4.0 t   2  ̂ i  −  (2.0t + 6.0 t   2 )  ̂ j   gives 
the  position of a 3.0 kg particle relative to the origin of an xy 
coordinate system (   r →    is in meters and t is in seconds). (a) Find 
an expression for the torque acting on the particle relative to the 
origin. (b) Is the magnitude of the particle’s angular  momentum 
rel ative to the origin increasing, decreasing, or unchanging?

Module 11.7  Angular Momentum of a Rigid Body 
36 E  Figure 11.21 shows three rotating, uniform disks that are 
coupled by belts. One belt runs around the rims of disks A and C.  
Another belt runs around a central hub on disk A and the rim of 
disk B. The belts move smoothly without  slippage on the rims and 
hub. Disk A has radius R; its hub has  radius 0.5000R; disk B has 
radius 0.2500R; and disk C has  radius 2.000R. Disks B and C have 
the same density (mass per unit volume) and thickness. What is the 
ratio of the magnitude of the angular momentum of disk C to that 
of disk B?
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37 E  GO  In Fig. 11.22, three particles of mass m = 23 g are fas-
tened to three rods of length d = 12 cm and negligible mass. The 
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what fraction of the rotational inertia of the disk does the cock-
roach have?

49 E  Two disks are mounted (like a merry- go- round) on low-  
friction bearings on the same axle and can be brought  together 
so that they couple and rotate as one unit. The first disk, with 
rotational inertia 3.30 kg · m2 about its central axis, is set spin-
ning counterclockwise at 450 rev/min. The second disk, with rota-
tional inertia 6.60 kg · m2 about its central axis, is set spinning 
counterclockwise at 900 rev/min. They then couple together.  
(a) What is their angular speed after coupling? If instead the 
second disk is set spinning clockwise at 900 rev/min, what are 
their (b) angular speed and (c) direction of rotation after they 
couple together?

50 E   CALC  The rotor of an electric motor has rotational inertia 
Im = 2.0 × 10−3 kg · m2 about its central axis. The motor is used to 
change the orientation of the space probe in which it is mounted. 
The motor axis is mounted along the central axis of the probe; 
the probe has rotational inertia Ip = 12 kg · m2 about this axis. 
Calculate the number of revolutions of the  rotor required to 
turn the probe through 30° about its central axis.

51 E  SSM  A wheel is rotating freely at angular speed 800   
rev/min on a shaft whose rotational inertia is negligible. A sec-
ond wheel, initially at rest and with twice the rotational inertia 
of the first, is suddenly coupled to the same shaft. (a) What is 
the angular speed of the resultant combination of the shaft and 
two wheels? (b) What fraction of the original rotational kinetic 
energy is lost?

52 M  GO  A cockroach of mass m lies on the rim of a uniform disk 
of mass 4.00m that can rotate freely about its center like a merry- 
go- round. Initially the cockroach and disk rotate  together with an 
angular velocity of 0.260 rad/s. Then the cockroach walks halfway 
to the center of the disk. (a) What then is the angular velocity of the  
cockroach– disk system? (b) What is the ratio K/K0 of the new 
kinetic energy of the system to its initial kinetic energy? (c) What 
accounts for the change in the kinetic energy?

53 M  GO  In Fig. 11.28 (an over-
head view), a uniform thin rod of 
length 0.500 m and mass 4.00 kg 
can rotate in a horizontal plane 
about a vertical axis through its 
center. The rod is at rest when a 
3.00 g bullet traveling in the rota-
tion plane is fired into one end of 
the rod. In the view from above, 
the bullet’s path makes angle θ = 
60.0° with the rod (Fig. 11.28). If the bullet lodges in the rod and 
the  angular velocity of the rod is 10 rad/s immediately after the 
collision, what is the bullet’s speed just before impact?

54 M  GO  Figure 11.29 shows an 
overhead view of a ring that can  
rotate about its center like a 
merry- go- round. Its outer radius 
R2 is 0.800 m, its inner radius R1 is 
R2/2.00, its mass M is 8.00 kg, and 
the mass of the crossbars at its cen-
ter is neg ligible. It initially rotates 
at an angular speed of 8.00 rad/s 
with a cat of mass m = M/4.00 on 

Module 11.8  Conservation of Angular Momentum
43 E  In Fig. 11.25, two skaters, 
each of mass 50 kg, approach each 
other along parallel paths sepa-
rated by 3.0 m. They have oppo-
site velocities of 1.4 m/s each. One 
skater carries one end of a long 
pole of negligible mass, and the 
other skater grabs the other end as 
she passes. The skaters then rotate around the center of the pole. 
Assume that the friction  between skates and ice is negligible. 
What are (a) the radius of the circle, (b) the angular speed of the 
skaters, and (c) the kinetic energy of the two- skater system? Next, 
the skaters pull along the pole until they are separated by 1.0 m. 
What then are (d) their angular speed and (e) the kinetic energy 
of the system? (f) What provided the energy for the increased 
kinetic energy?

44 E  A Texas cockroach of mass 0.17 kg runs counterclockwise 
around the rim of a lazy Susan (a circular disk mounted on a verti-
cal axle) that has radius 15 cm, rotational inertia 5.0 × 10−3 kg ·m2, 
and frictionless bearings. The cockroach’s speed (relative to the 
ground) is 2.0 m/s, and the lazy Susan turns clockwise with angular 
speed 𝜔0 = 2.8 rad/s. The cockroach finds a bread crumb on the 
rim and, of course, stops. (a) What is the angular speed of the lazy 
Susan after the cockroach stops? (b) Is mechanical energy con-
served as it stops?

45 E  SSM  A man stands on a platform that is rotating (with-
out friction) with an angular speed of 1.2 rev/s; his arms are 
 outstretched and he holds a brick in each hand. The rotational 
 inertia of the system consisting of the man, bricks, and platform 
about the central vertical axis of the platform is 6.0 kg ·m2. If by 
moving the bricks the man decreases the  rotational inertia of the 
system to 2.0 kg ·m2, what are (a) the  resulting angular speed of 
the platform and (b) the ratio of the new kinetic energy of the 
system to the original kinetic energy? (c) What source provided 
the added kinetic energy? 

46 E  The rotational inertia of a collapsing spinning star drops 
to    1 _ 3    its initial value. What is the ratio of the new rotational 
kinetic energy to the initial rotational kinetic energy?

47 E  SSM  A track is mounted 
on a large wheel that is free to 
turn with negligible friction about 
a vertical axis (Fig. 11.26). A  toy 
train of mass  m is placed on the 
track and, with the  system ini-
tially at rest, the train’s electrical power is turned on. The train 
reaches speed 0.15 m/s with respect to the track. What is the 
wheel’s angular speed if its mass is 1.1m and its radius is 0.43 m? 
(Treat it as a hoop, and neglect the mass of the spokes and hub.) 

48 E  A Texas cockroach walks 
from the center of a circular disk 
(that rotates like a merry- go- 
round without external torques) 
out to the edge at radius R. The 
angular speed of the cockroach– 
disk system for the walk is given 
in Fig. 11.27 (𝜔a = 5.0 rad/s and 
𝜔b = 6.0 rad/s). After reaching R, 
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alone about that axis at A is 0.060 kg · m2. Treat the block as 
a particle. (a) What then is the rotational inertia of the block– 
rod– bullet system about point A? (b) If the angular speed of the 
system about A just after impact is 4.5 rad/s, what is the bullet’s 
speed just before impact?

61 M  The uniform rod (length 
0.60 m, mass 1.0 kg) in Fig. 11.32 
rotates in the plane of the fig-
ure about an axis through one 
end, with a rotational inertia of 
0.12 kg · m2. As the rod swings 
through its lowest position, it col-
lides with a 0.20 kg putty wad that 
sticks to the end of the rod. If the 
rod’s angular speed just before col-
lision is 2.4 rad/s, what is the angu-
lar speed of the rod– putty system 
immediately after collision?

62 H  BIO  GO  FCP  During a jump to his partner, an aerialist is 
to make a quadruple somersault lasting a time t = 1.87 s. For the 
first and last quarter- revolution, he is in the extended orienta-
tion shown in Fig. 11.33, with rotational inertia I1 = 19.9 kg · m2 
around his center of mass (the dot). During the rest of the flight 
he is in a tight tuck, with rotational inertia I2 = 3.93 kg · m2. What 
must be his angular speed 𝜔2 around his center of mass during 
the tuck? 

63 H  GO  In Fig. 11.34, a 30 kg 
child stands on the edge of a sta-
tionary merry- go- round of radius 
2.0 m. The  rotational inertia of 
the merry- go- round about its 
 rotation axis is 150 kg ·m2. The 
child catches a ball of mass 1.0 kg 
thrown by a friend. Just before 
the ball is caught, it has a horizon-
tal velocity    v →    of magnitude 12 m/s, 
at angle 𝜙 = 37° with a line tangent 
to the outer edge of the merry- go- round, as shown. What is the 
angular speed of the merry- go- round just after the ball is caught?

64 H  BIO  FCP  A ballerina begins a tour jeté (Fig. 11.8.4a) 
with angular speed ωi and a rotational inertia consisting of two  

its outer edge, at radius R2. By how much does the cat increase the 
kinetic energy of the cat– ring system if the cat crawls to the inner 
edge, at  radius R1?  

55 M  A horizontal vinyl record of mass 0.10 kg and radius 0.10 
m rotates freely about a vertical axis through its center with 
an angular speed of 4.7 rad/s and a rotational inertia of 5.0 × 
10−4 kg · m2. Putty of mass 0.020 kg drops vertically onto the 
record from above and sticks to the edge of the record. What is 
the angular speed of the record immediately afterwards?

56 M  BIO  FCP  In a long jump, an athlete leaves the ground 
with an initial angular momentum that tends to rotate her body 
forward, threatening to ruin her landing. To counter this ten-
dency, she rotates her outstretched arms to “take up” the angu-
lar momentum (Fig. 11.8.3). In 0.700 s, one arm sweeps through 
0.500 rev and the other arm sweeps through 1.000 rev. Treat 
each arm as a thin rod of mass 4.0 kg and length 0.60 m, rotating 
around one end. In the athlete’s reference frame, what is the 
magnitude of the total angular momentum of the arms around 
the common rotation axis through the shoulders? 

57 M  A uniform disk of mass 10m and radius 3.0r can  rotate 
freely about its fixed center like a merry- go- round. A smaller 
uniform disk of mass m and radius r lies on top of the larger disk, 
concentric with it. Initially the two disks  rotate  together with 
an angular velocity of 20 rad/s. Then a slight disturbance causes 
the  smaller disk to slide outward across the larger disk, until 
the outer edge of the smaller disk catches on the outer edge  
of the larger disk. Afterward, the two disks again rotate together 
(without further sliding). (a) What then is their angular velocity 
about the center of the larger disk? (b) What is the ratio K /K0 
of the new kinetic  energy of the two- disk system to the system’s 
initial kinetic energy?

58 M  A horizontal platform in the shape of a circular disk 
rotates on a frictionless bearing about a vertical axle through the 
center of the disk. The platform has a mass of 150 kg, a  radius 
of 2.0 m, and a rotational inertia of 300 kg · m2 about the axis 
of rotation. A 60 kg student walks slowly from the rim of the 
platform toward the center. If the angular speed of the system is 
1.5 rad/s when the student starts at the rim, what is the angular 
speed when she is 0.50 m from the center?

59 M  Figure 11.30 is an overhead 
view of a thin uniform rod of length 
0.800 m and mass M rotating hori-
zontally at angular speed 20.0 rad/s 
about an axis through its center. 
A particle of mass M/3.00 initially 
attached to one end is ejected from the rod and travels along a 
path that is perpendicular to the rod at the instant of ejection. 
If the particle’s speed vp is 6.00 m/s  
greater than the speed of the rod end 
just after ejection, what is the value 
of vp?

60 M  In Fig. 11.31, a 1.0 g bullet is 
fired into a 0.50 kg block attached to 
the end of a 0.60 m nonuniform rod of 
mass 0.50  kg. The block– rod– bullet 
system then rotates in the plane of 
the figure, about a fixed axis at A.  
The rotational  inertia of the rod 
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Additional Problems
70  A uniform solid ball rolls smoothly along a floor, then up a 
ramp inclined at 15.0°. It momentarily stops when it has rolled 
1.50 m along the ramp. What was its initial speed?

71 SSM  In Fig. 11.38, a con-
stant horizontal force     F 

→
   app    of 

magnitude 12 N is applied to a 
uniform solid cylinder by fishing 
line wrapped around the cylinder. 
The mass of the cylinder is 10 kg, 
its radius is 0.10 m, and the cyl-
inder rolls smoothly on the hori-
zontal surface. (a) What is the magnitude of the acceleration of 
the center of mass of the cylinder? (b) What is the magnitude 
of the angular acceleration of the cylinder about the center of 
mass? (c) In unit-vector notation, what is the frictional force act-
ing on the cylinder? 

72  A thin-walled pipe rolls along the floor. What is the ratio 
of its translational kinetic energy to its rotational kinetic  energy 
about the central axis parallel to its length?

73 SSM  A 3.0 kg toy car moves along an x axis with a velocity 
given by    v →   = − 2.0  t   3  ̂ i  m / s , with t in seconds. For t > 0, what are 
(a) the angular momentum    L 

→
    of the car and (b) the torque  

   τ →    on the car, both calculated about the origin? What are (c)    L 
→

    
and (d)    τ →    about the point (2.0 m, 5.0 m, 0)? What are (e)    L 

→
    and 

(f)    τ →    about the point (2.0 m, −5.0 m, 0)? 

74  A wheel rotates clockwise about its central axis with an 
angular momentum of 600 kg · m2/s. At time t = 0, a torque 
of magnitude 50 N · m is applied to the wheel to reverse the 
 rotation. At what time t is the angular speed zero?

75 SSM  In a playground, there is a small merry-go-round 
of  radius 1.20 m and mass 180 kg. Its radius of gyration (see 
Problem 79 of Chapter 10) is 91.0 cm. A child of mass 44.0 kg 
runs at a speed of 3.00 m/s along a path that is tangent to the 
rim of the initially stationary merry-go-round and then jumps 
on. Neglect friction between the bearings and the shaft of 
the merry-go-round. Calculate (a) the rotational inertia of the 
merry-go-round about its axis of rotation, (b) the mag nitude of 
the angular momentum of the running child about the axis of 
rotation of the merry-go-round, and (c) the angular speed of the 
merry-go-round and child after the child has jumped onto the 
merry-go-round. 

76  A uniform block of granite in the shape of a book has face 
dimensions of 20 cm and 15 cm and a thickness of 1.2 cm. The 
density (mass per unit volume) of granite is 2.64  g/cm3. The 
block rotates around an axis that is per pendicular to its face and 
halfway between its center and a corner. Its angular momentum 
about that axis is 0.104 kg · m2/s. What is its ro tational kinetic 
energy about that axis?

77 SSM  Two particles, each of mass 2.90 × 10−4 kg and speed 
5.46 m/s, travel in opposite directions along parallel lines 
 separated by 4.20 cm. (a) What is the magnitude L of the  angular 
momentum of the two-particle system around a point midway 
between the two lines? (b) Is the value different for a differ-
ent location of the point? If the direction of either particle is 
reversed, what are the answers for (c) part (a) and (d) part (b)? 

78  A wheel of radius 0.250 m, moving initially at 43.0  m/s, 
rolls to a stop in 225 m. Calculate the magnitudes of its  

parts: Ileg = 1.44 kg ⋅ m2 for her leg extended outward at angle  
θ = 90.0° to her body and Itrunk = 0.660 kg ⋅ m2 for the rest of her 
body (primarily her trunk). Near her maximum height she holds 
both legs at angle θ = 30.0° to her body and has angular speed 
ωf (Fig. 11.8.4b). Assuming that Itrunk has not changed, what is 
the ratio ωf /ωi? 

65 H  SSM  Two 2.00 kg balls are 
attached to the ends of a thin rod 
of length 50.0 cm and negligible 
mass. The rod is free to rotate in 
a vertical plane without friction 
about a horizontal axis through 
its center. With the rod initially 
horizontal (Fig. 11.35), a 50.0 g wad of wet putty drops onto one 
of the balls, hitting it with a speed of 3.00 m/s and then stick-
ing to it. (a) What is the angular speed of the system just after 
the putty wad hits? (b) What is the ratio of the kinetic energy 
of the system after the collision to that of the putty wad just 
 before? (c) Through what angle will the system rotate before it 
 momentarily stops? 

66 H  GO  In Fig. 11.36, a small 
50 g block slides down a friction-
less sur face through height h = 
20 cm and then sticks to a uni-
form rod of mass 100 g and length 
40 cm. The rod  pivots about point 
O through angle θ before momen-
tarily stopping. Find θ.

67 H  GO  Figure 11.37 is an 
overhead view of a thin uniform 
rod  of length 0.600 m and mass 
M rotating horizontally at 80.0 rad/s counterclockwise about 
an axis through its center. A particle of mass M/3.00 and trav-
eling horizontally at speed 40.0 m/s hits the rod and sticks. 
The particle’s path is perpendicular to the rod at the instant 
of the hit, at a distance d from the rod’s center. (a) At what 
value of d are rod and particle stationary after the hit? (b) In 
which direction do rod and particle rotate if d is greater than 
this value?

Module 11.9  Precession of a Gyroscope
68 M  A top spins at 30 rev/s about an axis that makes an  angle 
of 30° with the vertical. The mass of the top is 0.50 kg, its rota-
tional inertia about its central axis is 5.0 × 10−4 kg · m2, and its 
center of mass is 4.0 cm from the pivot point. If the spin is clock-
wise from an overhead view, what are the (a) precession rate 
and (b) direction of the precession as viewed from overhead?

69 M  A certain gyroscope consists of a uniform disk with a 50 cm 
radius mounted at the center of an axle that is 11 cm long and 
of negligible mass. The axle is horizontal and  supported at one 
end. If  the spin rate is 1000 rev/min, what is the precession rate?
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angular momentum of (a) the cockroach– disk system, (b) the 
cockroach, and (c) the disk? 

82 CALC  Speed in a loop. In Fig. 11.39, a solid, uniform sphere 
is released from rest at height h = 3R and rolls smoothly down 
a straight track and into a circular loop of radius R = 14.0 cm. 
The release height is sufficiently high that the sphere reaches 
the top of the loop with some speed v. We repeat the demon-
stration by gradually increasing h. At what rate dv/dh does v 
increase when h reaches the value 4R? 

83  Rolling friction. When an object  
rolls over a surface, the contact area 
of both the object and the surface  
can continuously deform and 
recover. Energy is lost in that con-
tinuous motion and thus the kinetic 
energy of the object gradually 
decreases. A rolling friction is said to 
act on the object, with a magnitude 
fr given by   f  r   =  μ  r    F  N   ,  where   μ  r    is the coefficient of rolling friction 
and FN is the magnitude of the normal force. In Fig. 11.40, a pool 
ball rolls rightward over the felt of a pool table. The deformation 
of the ball is negligible but the deformation of the felt creates the 
rolling friction. The support forces along the contact area can 
then be represented by shifting the normal force     F 

→
   N    rightward 

by distance h from being directly under the center of mass. The 
torque due to that force about the center of mass works against 
the rotation. The ball has mass m = 97.0 g and radius r = 26.2 mm, 
and the shift distance is h = 0.330 mm. (a) What is the magnitude 
of the torque due to the normal force? How much energy is lost 
to the torque if the ball rolls through (b) one revolution and  
(c) distance L = 30.0 cm? (d) What is the value of   μ  r   ?

(a) linear acceleration and (b) angular acceleration. (c) Its 
rotational inertia is 0.155 kg · m2 about its central axis. Find the 
magnitude of the torque about the central axis due to friction 
on the wheel.

79 CALC  Change in angular speed. In Fig. 11.8.6, a cockroach 
with mass m rides on a uniform disk of mass M = 8.00m and 
radius R = 0.0800 m. The disk rotates like a merry- go- round 
around its central axis. Initially, the cockroach is at radius r = 0  
and the angular speed of the disk is   ω  i    = 1.50 rad/s. Treat the 
cockroach as a particle. The cockroach crawls out to the rim of 
the disk. When the cockroach passes r = 0.800R, at what rate  
dω / dr  does the angular speed change as it moves outward?

80  Rolling into a loop. In 
Fig. 11.39, three objects will be 
released from rest at height h = 
41.0 cm to roll smoothly down a 
straight track and into a circular 
loop of radius R = 14.0 cm. The 
objects are (a) a thin hoop, (b) 
a solid, uniform disk, and (c) a 
solid, uniform sphere, each with 
radius  r ≪ R . Determine if the 
object will reach the top of the loop (without falling off the 
track) and calculate its speed there.

81  Change in angular momentum. In Fig. 11.8.6, a Texas cock-
roach with mass m = 0.0500 kg (they are large) rides on a uni-
form disk of mass M = 10.0m and radius R = 0.100 m. The disk 
rotates like a merry- go- round around its central axis. Initially, 
the cockroach is at radius r = R and the angular speed of the 
disk is   ω  i    = 0.800 rad/s. Treat the cockroach as a particle. The 
cockroach crawls inward to r = 0.500R. What is the change in 

h R

Figure 11.39 Problems 80 
and 82.

Figure 11.40 Problem 83.

com

h

FN
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 Equilibrium and Elasticity
12.1 EQUILIBRIUM
Learning Objectives 
After reading this module, you should be able to . . .

12.1.1 Distinguish between equilibrium and static 
equilibrium.

12.1.2 Specify the four conditions for static equilibrium.
12.1.3 Explain center of gravity and how it relates to 

 center of mass.

12.1.4 For a given distribution of particles, calculate the 
coor dinates of the center of gravity and the center of 
mass.

Key Ideas 
● A rigid body at rest is said to be in static equilibrium. 
For such a body, the vector sum of the external forces 
acting on it is zero:

   F 
→

    net   = 0  (balance of forces).

If all the forces lie in the xy plane, this vector equation 
is equivalent to two component equations:

Fnet,x = 0 and Fnet,y = 0 (balance of forces).

● Static equilibrium also implies that the vector sum 
of the  external torques acting on the body about any 
point is zero, or

    τ →    net   = 0   (  balance of torques )  .  

If the forces lie in the xy plane, all torque vectors are 
parallel to the z axis, and the balance-of-torques equa-
tion is equivalent to the single com ponent equation

𝜏net,z = 0 (balance of torques).

● The gravitational force acts individually on each ele-
ment of a body. The net effect of all individual  actions 
may be found by imagining an equivalent total gravi-
tational force     F 

→
    g    acting at the center of gravity. If the 

gravitational acceleration    g →    is the same for all the ele-
ments of the body, the center of gravity is at the center 
of mass.

What Is Physics?
Human constructions are supposed to be stable in spite of the forces that act on them. 
A building, for example, should be stable in spite of the gravitational force and wind 
forces on it, and a bridge should be stable in spite of the gravitational force pulling it 
downward and the repeated jolting it receives from cars and trucks.

One focus of physics is on what allows an object to be stable in spite of any 
forces acting on it. In this chapter we examine the two main aspects of stability: 
the equilibrium of the forces and torques acting on rigid objects and the elasticity 
of nonrigid objects, a property that governs how such objects can deform. When 
this physics is done correctly, it is the subject of countless articles in physics and 
engineering journals; when it is done incorrectly, it is the subject of countless 
 articles in newspapers and legal journals.

Equilibrium
Consider these objects: (1) a book resting on a table, (2) a hockey puck sliding 
with constant velocity across a frictionless surface, (3) the rotating blades of a 
ceiling fan, and (4) the wheel of a bicycle that is traveling along a straight path at 
constant speed. For each of these four objects,

C H A P T E R  1 2
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34512.1 Equilibrium

1. The linear momentum    P 
→

    of its center of mass is constant.

2. Its angular momentum    L 
→

    about its center of mass, or about any other point, is 
also constant.

We say that such objects are in equilibrium. The two requirements for  equilibrium 
are then
     P 

→
   = a constant  and    L 

→
   = a constant.   (12.1.1)

Our concern in this chapter is with situations in which the constants in 
Eq. 12.1.1 are zero; that is, we are concerned largely with objects that are not 
moving in any way—either in translation or in rotation—in the reference frame 
from which we observe them. Such objects are in static equilibrium. Of the four 
objects mentioned near the beginning of this module, only one—the book resting 
on the table—is in static equilibrium.

The balancing rock of Fig. 12.1.1 is another example of an object that, for 
the present at least, is in static equilibrium. It shares this property with countless 
other structures, such as cathedrals, houses, filing cabinets, and taco stands, that 
remain stationary over time.

As we discussed in Module 8.3, if a body returns to a state of static equilib-
rium after having been displaced from that state by a force, the body is said to 
be in stable static equilibrium. A marble placed at the bottom of a hemispherical 
bowl is an example. However, if a small force can displace the body and end the 
equilibrium, the body is in unstable static equilibrium.

A Domino. For example, suppose we balance a domino with the domino’s 
center of mass vertically above the supporting edge, as in Fig. 12.1.2a. The 
torque about the supporting edge due to the gravitational force     F 

→
    g    on the domino 

is zero because the line of action of     F 
→

    g    is through that edge. Thus, the domino 
is in equilibrium. Of course, even a slight force on it due to some chance dis-
turbance ends the equi librium. As the line of action of     F 

→
    g    moves to one side 

of the supporting edge (as in Fig. 12.1.2b), the torque due to     F 
→

    g    increases the 
rotation of the domino. Therefore, the domino in Fig. 12.1.2a is in unstable 
static equilibrium.

The domino in Fig. 12.1.2c is not quite as unstable. To topple this domino, 
a  force would have to rotate it through and then beyond the balance position 
of Fig. 12.1.2a, in which the center of mass is above a supporting edge. A slight 
force will not topple this domino, but a vigorous flick of the finger against the 
domino certainly will. (If we arrange a chain of such upright dominos, a finger 
flick against the first can cause the whole chain to fall.) FCP

A Block. The child’s square block in Fig. 12.1.2d is even more stable because 
its center of mass would have to be moved even farther to get it to pass above a 
supporting edge. A flick of the finger may not topple the block. (This is why you 
never see a chain of toppling square blocks.) The worker in Fig. 12.1.3 is like both 

Figure 12.1.1 A balancing rock. 
Although its perch seems precarious, 
the rock is in static equilibrium.

Kanwarjit Singh Boparai/Shutterstock

Figure 12.1.2 (a) A domino bal-
anced on one edge, with its center of 
mass vertically above that edge. The 
gravitational force     F 

→
    g    on the domino 

is directed through the supporting 
edge. (b) If the domino is rotated 
even slightly from the balanced orien-
tation, then     F 

→
    g    causes a torque that 

increases the rotation. (c) A domino 
upright on a narrow side is  somewhat 
more stable than the domino in (a). 
(d) A square block is even more 
stable.

Bcom

Supporting
edge

(a) (b) (c) (d)

Fg Fg
Fg

Fg

To tip the block, the center of mass must
pass over the supporting edge.
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346 CHAPTEr 12 Equilibrium AND ElASTiCiTY

the domino and the square block: Parallel to the beam, his stance is wide and he 
is stable;  perpendicular to the beam, his stance is narrow and he is unstable (and 
at the mercy of a chance gust of wind).

The analysis of static equilibrium is very important in engineering practice. The 
design engineer must isolate and identify all the external forces and torques that 
may act on a structure and, by good design and wise choice of materials,  ensure 
that the structure will remain stable under these loads. Such analysis is necessary to 
ensure, for example, that bridges do not collapse under their traffic and wind loads 
and that the landing gear of aircraft will function after the shock of rough landings.

The Requirements of Equilibrium
The translational motion of a body is governed by Newton’s second law in its 
 linear momentum form, given by Eq. 9.3.6 as

 
     F 
→

    net   =   d  P 
→

   ___ 
dt

    . (12.1.2)

If the body is in translational equilibrium—that is, if    P 
→

    is a constant—then  
 d  P 

→
   / dt = 0  and we must have

     F 
→

    net   = 0     (  balance of forces )    . (12.1.3)

The rotational motion of a body is governed by Newton’s second law in its 
 angular momentum form, given by Eq. 11.7.4 as

 
     τ →    net   =   d  L 

→
   ___ 

dt
  .   (12.1.4)

If the body is in rotational equilibrium—that is, if    L 
→

    is a constant—then  d  L 
→

   / dt = 0  
and we must have

     τ →    net   = 0     (  balance of torques )   .  (12.1.5)

Thus, the two requirements for a body to be in equilibrium are as follows:

Figure 12.1.3 A construction worker 
balanced on a steel beam is in static 
equilibrium but is more stable parallel 
to the beam than perpendicular to it.

Robert Brenner/PhotoEdit

These requirements obviously hold for static equilibrium. They also hold for the 
more general equilibrium in which    P 

→
    and    L 

→
    are constant but not zero.

Equations 12.1.3 and 12.1.5, as vector equations, are each equivalent to three 
 independent component equations, one for each direction of the coordinate axes:

 Balance of  Balance of  
 forces torques

  Fnet,x = 0 𝜏net,x = 0
  Fnet,y = 0 𝜏net,y = 0 (12.1.6)
  Fnet,z = 0 𝜏net,z = 0

The Main Equations. We shall simplify matters by considering only situations 
in which the forces that act on the body lie in the xy plane. This means that the only 
torques that can act on the body must tend to cause rotation around an axis parallel to 
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1. The vector sum of all the external forces that act on the body must be zero.

2.  The vector sum of all external torques that act on the body, measured about 
any possible point, must also be zero.
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34712.1 Equilibrium

the z axis. With this assumption, we eliminate one force equation and two torque equa-
tions from Eqs. 12.1.6, leaving

 Fnet,x = 0 (balance of forces), (12.1.7)

 Fnet,y = 0 (balance of forces), (12.1.8)

 𝜏net,z = 0 (balance of torques). (12.1.9)

Here, 𝜏net,z is the net torque that the external forces produce either about the 
z axis or about any axis parallel to it.

A hockey puck sliding at constant velocity over ice satisfies Eqs. 12.1.7, 
12.1.8, and 12.1.9 and is thus in equilibrium but not in static equilibrium. For static 
equilibrium, the linear momentum    P 

→
    of the puck must be not only constant but 

also zero; the puck must be at rest on the ice. Thus, there is another requirement 
for static equilibrium:

The Center of Gravity
The gravitational force on an extended body is the vector sum of the gravitational 
forces acting on the individual elements (the atoms) of the body. Instead of con-
sidering all those individual elements, we can say that

Here the word “effectively” means that if the gravitational forces on the individual 
elements were somehow turned off and the gravitational force     F 

→
    g    at the center of 

gravity were turned on, the net force and the net torque (about any point) acting on 
the body would not change.

Until now, we have assumed that the gravitational force     F 
→

    g    acts at the center 
of mass (com) of the body. This is equivalent to assuming that the center of grav-
ity is at the center of mass. Recall that, for a body of mass M, the force     F 

→
    g    is equal 

to  M  g →   , where    g →    is the acceleration that the force would produce if the body were 

Checkpoint 12.1.1
The figure gives six overhead views of a uniform rod on which two or more forces act 
perpendicularly to the rod. If the magnitudes of the forces are adjusted properly (but kept 
nonzero), in which situations can the rod be in static equilibrium?

(a) (b) (c)

(d ) (e) ( f )

3. The linear momentum    P 
→

    of the body must be zero.

 The gravitational force     F 
→

    g    on a body effectively acts at a single point, called the 
 center of gravity (cog) of the body.
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348 CHAPTEr 12 Equilibrium AND ElASTiCiTY

This is approximately true for everyday objects because    g →    varies only a little 
along Earth’s surface and decreases in magnitude only slightly with altitude. 
Thus, for objects like a mouse or a moose, we have been justified in assuming 
that the gravitational force acts at the center of mass. After the following proof, 
we shall resume that assumption.

Proof
First, we consider the individual elements of the body. Figure 12.1.4a shows 
an  extended body, of mass M, and one of its elements, of mass mi. A gravita-
tional force     F 

→
    gi    acts on each such element and is equal to    m  i    g →    i   . The subscript 

on     g →    i    means     g →    i    is the gravitational acceleration at the location of the element i (it 
can be different for other elements).

For the body in Fig. 12.1.4a, each force     F 
→

    gi    acting on an element produces 
a torque 𝜏i on the element about the  origin O, with a moment arm xi. Using 
Eq. 10.6.3 (𝜏 = r⊥F ) as a guide, we can write each torque 𝜏i as

 𝜏i = xiFgi. (12.1.10)

The net torque on all the elements of the body is then

    τ  net   =  ∑    τ  i     =  ∑    x  i     F  gi  .   (12.1.11)

Next, we consider the body as a whole. Figure 12.1.4b shows the gravitational 
force     F 

→
    g    acting at the body’s center of gravity. This force produces a torque 𝜏 on 

the body about O, with moment arm xcog. Again using Eq. 10.6.3, we can write 
this torque as

 𝜏 = xcogFg. (12.1.12)

The gravitational force     F 
→

    g    on the body is equal to the sum of the gravitational 
forces     F 

→
    gi    on all its elements, so we can substitute  Σ Fgi for Fg in Eq. 12.1.12 to 

write

 𝜏 = xcog   ∑   Fgi  . (12.1.13)

Now recall that the torque due to force     F 
→

    g    acting at the center of gravity is equal to 
the net torque due to all the forces     F 

→
    gi     acting on all the elements of the body. (That 

is how we defined the center of gravity.) Thus, 𝜏 in Eq. 12.1.13 is equal to 𝜏net in  
Eq. 12.1.11. Putting those two equations together, we can write

xcog   ∑   Fgi   =   ∑   xiFgi  

Substituting migi for Fgi gives us

 xcog   ∑   migi   =   ∑   ximigi  . (12.1.14)

Now here is a key idea: If the accelerations gi at all the locations of the elements 
are the same, we can cancel gi from this equation to write

 xcog   ∑   mi   =   ∑   ximi  . (12.1.15)

The sum  Σ mi of the masses of all the elements is the mass M of the body. There-
fore, we can rewrite Eq. 12.1.15 as

    x  cog   =   1 ___ 
M

   ∑   ximi .   (12.1.16)

O
x

y

xcog

cog

(b)

Line of
actionMoment

arm

Fg

O
x

y

mi

xi

(a)

Line of
action

Fgi

Moment
arm

Figure 12.1.4 (a) An element of mass 
mi in an extended body. The gravi-
tational force     F 

→
    gi    on the element has 

moment arm xi about the origin O 
of the coordinate system. (b) The 
 gravitational force     F 

→
    g    on a body is 

said to act at the center of  gravity 
(cog) of the body. Here     F 

→
    g    has 

moment arm xcog about origin O.

to fall freely. In the proof that follows, we show that

 If    g →    is the same for all elements of a body, then the body’s center of gravity 
(cog) is coincident with the body’s center of mass (com).
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Some Examples of Static Equilibrium
Here we examine several sample problems involving static equilibrium. In 
each, we select a system of one or more objects to which we apply the equa-
tions of equilibrium (Eqs. 12.1.7, 12.1.8, and 12.1.9). The forces involved in 
the equilibrium are all in the xy plane, which means that the torques involved 
are parallel to the z axis. Thus, in applying Eq. 12.1.9, the balance of torques, 
we select an axis parallel to the z axis about which to calculate the torques. 
Although Eq. 12.1.9 is satisfied for any such choice of axis, you will see that 
certain choices simplify the application of Eq. 12.1.9 by eliminating one or 
more unknown force terms.

12.2 SOME EXAMPLES OF STATIC EQUILIBRIUM
Learning Objectives 
After reading this module, you should be able to . . . 

12.2.1 Apply the force and torque conditions for static 
 equilibrium.

12.2.2 Identify that a wise choice about the placement 

of the origin (about which to calculate torques) can 
simplify the calculations by eliminating one or more 
unknown forces from the torque equation.

Key Ideas 
● A rigid body at rest is said to be in static equilibrium. 
For such a body, the vector sum of the external forces 
acting on it is zero:

   F 
→

    net   = 0   (  balance of forces )   . 

If all the forces lie in the xy plane, this vector equation 
is equivalent to two component equations:

Fnet,x = 0  and  Fnet,y = 0 (balance of forces).

● Static equilibrium also implies that the vector sum 
of the  external torques acting on the body about any 
point is zero, or

    τ →    net   = 0   (  balance of torques )   . 

If the forces lie in the xy plane, all torque vectors are 
parallel to the z axis, and the balance-of-torques equa-
tion is equivalent to the single com ponent equation

𝜏net,z = 0 (balance of torques).

The right side of this equation gives the coordinate xcom of the body’s center of 
mass (Eq. 9.1.4). We now have what we sought to prove. If the acceleration of 
gravity is the same at all locations of the elements in a body, then the coordinates 
of the body’s com and cog are identical:

 xcog = xcom. (12.1.17)

Checkpoint 12.2.1
The figure gives an overhead view of a uniform rod in static equilibrium. (a) Can  
you find the  magnitudes of unknown forces     F 

→
    1    and     F 

→
    2    by balancing the forces? (b) If 

you wish to find the magnitude of force     F 
→

    2    by  using a balance of torques equa-
tion, where should you place a rotation axis to eliminate     F 

→
    1    from the equation? (c) The 

magnitude of     F 
→

    2    turns out to be 65 N. What then is the magnitude of     F 
→

    1   ?

20 N dd2d4d

10 N 30 N

F2

F1
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350 CHAPTEr 12 Equilibrium AND ElASTiCiTY

which gives us 

Fr  =   1 _ 4   Mg +    1 _ 2   mg 

=    1 _ 4   (2.7 kg)(9.8 m/s2) +    1 _ 2   (1.8 kg)(9.8 m/s2)

=15.44 N ≈ 15 N. (Answer)

Now, solving Eq. 12.2.1 for Fl and substituting this result, 
we find

Fl = (M + m)g − Fr

= (2.7 kg + 1.8 kg)(9.8 m/s2) − 15.44 N

= 28.66 N ≈ 29 N. (Answer)

Notice the strategy in the solution: When we wrote 
an equation for the balance of force components, we got 
stuck with two unknowns. If we had written an equation 
for the  balance of torques around some arbitrary axis, we 
would have again gotten stuck with those two unknowns. 
However,  because we chose the axis to pass through the 
point of application of one of the unknown forces, here     F 

→
    l   ,  

we did not get stuck. Our choice neatly eliminated that 
force from the torque equation, allowing us to solve for 
the other unknown force magnitude Fr. Then we returned 
to the equation for the balance of force components to 
find the remaining unknown force magnitude.

In Fig. 12.2.1a, a uniform beam, of length L and mass 
m = 1.8 kg, is at rest on two scales. A uniform block, with 
mass M = 2.7 kg, is at rest on the beam, with its center a dis-
tance L/4 from the beam’s left end. What do the scales read?

KEY IDEAS

The first steps in the solution of any problem about 
static equilibrium are these: Clearly define the system 
to be analyzed and then draw a free-body diagram of it, 
indicating all the forces on the system. Here, let us choose 
the system as the beam and block taken together. Then the 
forces on the system are shown in the free-body diagram 
of Fig. 12.2.1b. (Choosing the system takes experience, and 
often there can be more than one good choice.) Because 
the system is in static  equilibrium, we can apply the balance 
of forces equations (Eqs. 12.1.7 and 12.1.8) and the balance 
of torques equation (Eq. 12.1.9) to it.

Calculations: The normal forces on the beam from the 
scales are     F 

→
    l    on the left and     F 

→
    r    on the right. The scale read-

ings that we want are equal to the magnitudes of those 
forces. The gravitational force     F 

→
    g,beam    on the beam acts at 

the beam’s center of mass and is equal to  m  g →   . Similarly, the 
gravitational force     F 

→
    g,block    on the block acts at the block’s 

center of mass and is equal to  m  g →   . However, to simplify 
Fig. 12.2.1b, the block is represented by a dot within the 
boundary of the beam and  vector     F 

→
    g,block    is drawn with 

its tail on that dot. (This shift of the  vector     F 
→

    g,block    along  
its line of action does not alter the torque  due to     F 

→
    g,block    

about any axis perpendicular to the figure.)
The forces have no x components, so Eq. 12.1.7 

(Fnet,x = 0) provides no information. For the y compo-
nents, Eq. 12.1.8 (Fnet,y = 0) gives us

 Fl + Fr − Mg − mg = 0. (12.2.1)

This equation contains two unknowns, the forces Fl 
and F r, so we also need to use Eq. 12.1.9, the balance-
of-torques equation. We can apply it to any rotation axis 
perpendicular to the plane of Fig. 12.2.1. Let us choose a 
rotation axis through the left end of the beam. We shall 
also use our general rule for assigning signs to torques: 
If a torque would cause an initially stationary body to 
rotate clockwise about the rotation axis, the torque is 
negative. If the rotation would be counterclockwise, the 
torque is positive. Finally, we shall write the torques in 
the form r⊥F, where the moment arm r⊥ is 0 for     F 

→
    l   , L/4 for  

M  g →   , L/2 for  m  g →   , and L for     F 
→

    r   .
We now can write the balancing equation (𝜏net,z = 0) as

(0)(Fl) – (L/4)(Mg) – (L/2)(mg) + (L)(Fr) = 0,

Figure 12.2.1 (a) A beam of mass m supports a block of mass M.  
(b) A free-body diagram, showing the forces that act on the 
system beam + block.

y

x

(b)

Block Beam

L
4

L
2

(a)

Block
Beam

Scale Scale

m
M

L
L
4

System

Fl

Fr

Fg,beam = mg

Fg,block = Mg

The vertical forces balance
but that is not enough.

We must also balance
torques, with a wise
choice of rotation axis.

Sample Problem 12.2.1 Balancing a horizontal beam

Additional examples, video, and practice available at WileyPLUS
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 magnitude F of the net force. Because we know Tc, we 
apply the force balancing equations to the beam. 

Calculations: For the horizontal balance, we can rewrite 
Fnet,x = 0 as
 Fh − Tc = 0, (12.2.3)

and so Fh = Tc = 6093 N.

For the vertical balance, we write Fnet,y = 0 as

Fv − mg − Tr = 0.

Substituting Mg for Tr and solving for Fv, we find that

Fv = (m + M)g = (85 kg + 430 kg)(9.8 m/s2)

 = 5047 N.

From the Pythagorean theorem, we now have

 F =  √ 
_

  F h  2   +  F v  2   

 =  √ 
____________________

   (6093 N)  2  +   (  5047 N )    2    ≈ 7900 N.    (  Answer )   

Note that F is substantially greater than either the com-
bined weights of the safe and the beam, 5000 N, or the 
tension in the horizontal wire, 6100 N.

Sample Problem 12.2.2 Balancing a leaning boom

Figure 12.2.2a shows a safe (mass M = 430 kg) hanging 
by a rope (negligible mass) from a boom (a = 1.9 m and 
b = 2.5 m) that consists of a uniform hinged beam (m = 
85 kg) and horizontal  cable (negligible mass).

(a) What is the tension Tc in the cable? In other words, 
what is the magnitude of the force    T 

→
    c    on the beam from 

the cable?

KEY IDEAS

The system here is the beam alone, and the forces on it 
are shown in the free-body diagram of Fig. 12.2.2b. The  
force from the cable is    T 

→
    c   . The gravitational force on the  

beam acts at the beam’s center of mass (at the beam’s 
center) and is represented by its equivalent  m  g →   . The 
vertical component of the force on the beam from the 
hinge is     F 

→
    v   , and the horizontal component of the force 

from the hinge is     F 
→

    h   . The force from the rope supporting 
the safe is    T 

→
    r   . Because beam, rope, and safe are 

stationary, the magnitude of    T 
→

    r    is equal to the weight 
of the safe: Tr = Mg. We place the origin O of an xy 
coordinate system at the hinge. Because the system is in 
static equi li b rium, the balancing equations apply to it. 

Calculations: Let us start with Eq. 12.1.9 (𝜏net,z = 0). Note that  
we are asked for the magnitude of force   T 

→
    c    and not 

of forces     F 
→

    h    and     F 
→

    v    acting at the hinge, at point O.  
To eliminate    F 

→
    h    and     F 

→
    v    from the torque calculation,  

we should calculate torques about an axis that is 
 perpen dicular to the figure at point O. Then     F 

→
    h    and     F 

→
    v    will 

have moment arms of zero. The lines of  action for    T 
→

    c   ,    T 
→

    r   ,  
and  m  g →    are dashed in Fig. 12.2.2b. The corre  sponding 
moment arms are a, b, and b/2.

Writing torques in the form of r⊥F and using our rule 
about signs for torques, the balancing equation 𝜏net,z  = 0 
 becomes

    (a)  (   T  c   )    −   (  b )    (T  r  ) −   (     1 _ 2   b )     (  mg )    = 0.    (12.2.2)

Substituting Mg for Tr and solving for Tc, we find that

 Tc =   
gb(M +   1 _ 2  m)

 __ a   

=    
(9.8 m/s2)(2.5 m)(430 kg + 85/2 kg)

   _____________________  
1.9 m

   

= 6093 N ≈ 6100 N. (Answer)

(b) Find the magnitude F of the net force on the beam 
from the hinge.

KEY IDEA

Now we want the horizontal component Fh and vertical 
component Fv so that we can combine them to get the 

Figure 12.2.2 (a) A heavy safe is hung from a boom consisting 
of a horizontal steel cable and a uniform beam. (b) A free-
body diagram for the beam.

b

a
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Hinge

Beam comm

(a)

y

x

Beam

mg

(b) O

M
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Fv

Fh

Here is the
wise choice of
rotation axis.

θ

θ
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352 CHAPTEr 12 Equilibrium AND ElASTiCiTY

a torque due to  M   g →    about any axis perpendicular to the 
figure. Thus, the shift does not affect the torque balancing 
equation that we shall be using.)

The only force on the ladder from the wall is the hori-
zontal force     F 

→
    w    (there cannot be a frictional force along 

a  frictionless wall, so there is no vertical force on the lad-
der from the wall). The force     F 

→
    p    on the ladder from the 

 pavement has two components: a horizontal component     F 
→

    px     
that is a static frictional force and a vertical  comp onent  
    F 
→

    py    that is a normal force.
To apply the balancing equations, let’s start with the 

torque balancing of Eq. 12.1.9 (𝜏net,z = 0). To choose an 
axis about which to calculate the torques, note that we 
have unknown forces (    F 

→
    w    and     F 

→
    p   ) at the two ends of the 

ladder. To eliminate, say,     F 
→

    p    from the calculation, we 
place the axis at point O, perpendicular to the figure (Fig. 
12.2.3b). We also place the origin of an xy coordinate sys-
tem at O. We can find torques about O with any of Eqs. 
10.6.1 through 10.6.3, but Eq. 10.6.3 (𝜏 = r⊥F) is easiest to 
use here. Making a wise choice about the placement of the 
origin can make our torque calculation much easier.

To find the moment arm r⊥ of the horizontal force     F 
→

    w    
from the wall, we draw a line of  action through that vec-
tor (it is the horizontal dashed line shown in Fig. 12.2.3c). 
Then r⊥ is the perpendicular distance  between O and the 
line of action. In Fig. 12.2.3c, r⊥ extends along the y axis 
and is equal to the height h. We  similarly draw lines of 

Sample Problem 12.2.3 Balancing a leaning ladder

In Fig. 12.2.3a, a ladder of length L = 12 m and mass 
m = 45 kg leans against a slick wall (that is, there is no 
friction between the ladder and the wall). The ladder’s 
upper end is at height h = 9.3 m above the pavement on 
which the lower end is supported (the pavement is not 
frictionless). The ladder’s  center of mass is L/3 from the 
lower end, along the length of the ladder. A firefighter 
of mass M = 72 kg climbs the ladder until her center of 
mass is L/2 from the lower end. What then are the mag-
nitudes of the forces on the ladder from the wall and the 
pavement?

KEY IDEAS

First, we choose our system as being the firefighter 
and ladder, together, and then we draw the free-body 
diagram of Fig. 12.2.3b to show the forces acting on the 
system. Because the system is in static equilibrium, the 
balancing equations for both forces and torques (Eqs. 
12.1.7 through 12.1.9) can be applied to it. 

Calculations: In Fig. 12.2.3b, the firefighter is repre-
sented with a dot within the boundary of the ladder. The 
gravitational force on her is represented with its equiva-
lent expression  M  g →   , and that vector has been shifted along 
its line of action (the line extending through the force vec-
tor), so that its tail is on the dot. (The shift does not alter  

System

Fire-
�ghter

com

Ladder
com

Frictionless

h

L

(a)

Fire-
�ghter

Ladder

a/2
(b)

y

x

mg

Mg

O

a/3a

Fpx

Fpy

Fw Here are all
the forces.

Figure 12.2.3 (a) A firefighter climbs halfway up a ladder that is leaning against a friction-
less wall. The pavement beneath the ladder is not frictionless. (b) A free-body diagram, 
 showing the forces that act on the firefighter + ladder system. The origin O of a coordinate 
system is placed at the point of application of the unknown force     F 

→
    p    (whose vector compo-

nents     F 
→

    px    and     F 
→

    py    are shown). (Figure 12.2.3 continues on following page.)

A
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Figure 12.2.3 (Continued from previous 
page) (c) Calculating the torques. (d) 
Balancing the forces. In WileyPLUS, this 
figure is available as an animation with 
voiceover.

action for the gravitational force vectors  M  g →    and  m  g →    and 
see that their moment arms extend along the x axis. For 
the distance a shown in Fig. 12.2.3a, the moment arms are 
a/2 (the firefighter is halfway up the ladder) and a/3 (the 
 ladder’s center of mass is one-third of the way up the lad-
der), respectively. The moment arms for     F 

→
    px    and     F 

→
    py    are 

zero because the forces act at the origin.
Now, with torques written in the form r⊥F, the bal-

ancing equation 𝜏net,z = 0 becomes

−(h)(Fw) + (a/2)(Mg)  + (a/3)(mg)   
+ (0)(Fpx) + (0)(Fpy) = 0. (12.2.4)

(A positive torque corresponds to counterclockwise rotation 
and a negative torque corresponds to clockwise rotation.)

Using the Pythagorean theorem for the right triangle 
made by the ladder in Fig. 12.2.3a, we find that

 a =  √ 
_

  L   2  −  h   2    = 7.58 m. 

Then Eq. 12.2.4 gives us

Fw =    
ga(M/2 + m/3)

  __ 
h

    

=    
(9.8 m/s2 )(7.58 m)(72/2 kg + 45/3 kg)

    ______________________  
9.3 m

   

 = 407 N ≈ 410 N. (Answer)

Now we need to use the force balancing equations 
and Fig. 12.2.3d. The equation Fnet,x = 0 gives us

Fw − Fpx = 0,

so Fpx = Fw = 410 N. (Answer)

The equation Fnet,y = 0 gives us

Fpy − Mg − mg = 0,

so Fpy = (M + m)g = (72 kg + 45 kg)(9.8 m/s2)

 = 1146.6 N ≈ 1100 N. (Answer)

y
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Fpy
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Choosing the 
rotation axis
here eliminates 
the torques
due to these 
forces.

This moment 
arm is
perpendicular 
to the
line of action.

These horizontal
forces balance.

These 
vertical
forces 
balance.

Here 
too.

Here 
too.
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We seek the magnitude FN of those two forces, which is also 
the magnitude of her push against either wall.

The balancing equation for vertical forces Fnet,y = 0 
gives us

f1 + f2 – mg = 0.

We want the climber to be on the verge of sliding at both 
her feet and her shoulders. That means we want the static 
frictional forces there to be at their maximum values 
fs,max. From Module 6.1, those maximum values are

f1 = μ1FN and f2 = μ2FN.

Substituting these expressions into the vertical-force bal-
ancing equation leads to 

FN =    mg
 __ μ1 + μ2

    =    
(55 kg)(9.8 m/s2)

  __  
1.1 + 0.70

    = 299 N ≈ 300 N.

Thus, her minimum horizontal push must be about 300 N.

(b) For that push, what must be the vertical distance h 
between her feet and her shoulders if she is to be stable?

Calculations: Here we want to balance the torques on 
the climber. We can write the torques in the form r⊥F, 
where r⊥ 

is the moment arm of force F. We can choose 
any rotation axis to do that, but a wise choice can sim-
plify our work. Let’s choose the axis through her shoul-
ders. Then the moment arms of the forces acting there 
(the normal force and the frictional force) are simply 
zero. Frictional force    f1 

→
   , the normal force     F 

→
    N    at her feet, 

and the gravitational force   Fg 
→

    have moment arms w, h, 
and d.

Recalling our rule about the signs of torques and the 
corresponding directions, we can now write the torque 
balancing equation  τ net = 0

 
around the rotation axis as

–(w)( f1) + (h)(FN) + (d)(mg) + (0)( f2) + (0)( FN) = 0.

Solving for h, setting f1 = μ1FN, and substituting our result 
of FN = 299 N and other known values, we find that

h =    f1w – mgd
 __ 

FN
    =    μ1FNw – mgd

  _____________________ 
FN

    = μ1w –    
mgd

 __ 
FN

    

= (1.1)(1.0 m) –    
(55 kg)(9.8 m/s2)(0.20 m)

   ______________________  
299 N

    

= 0.739 m ≈ 0.74 m

If h is more than or less than 0.74 m, she must exert a force 
greater than 299 N on the walls to be stable. Here, then, 
is the advantage of knowing physics before you climb a 
chimney. When you need to rest, you will avoid the (dire) 
error of novice climbers who place their feet too high or too 
low. Instead, you will know that there is a “best” distance 
between shoulders and feet, requiring the least push and giv-
ing you a good chance to rest.

Sample Problem 12.2.4 Chimney climb

In Fig. 12.2.4, a rock climber with mass m = 55 kg rests 
during a chimney climb, pressing only with her shoulders 
and feet against the walls of a fissure of width w = 1.0 m. 
Her center of mass is a horizontal distance d = 0.20 m 
from the wall against which her shoulders are pressed. A 
static friction force     f 

→
    1    acts on her feet with coefficient of 

static friction µ1 = 1.1. A static friction force    f2 
→

    acts on her 
shoulders with coefficient of static friction µ2 = 0.70. To 
rest, the climber wants to minimize her horizontal push 
on the walls. The minimum occurs when her feet and 
shoulders are both on the verge of sliding. (a) What is 
that minimum horizontal push on the walls? 

h

y

w

d

x

FN

Fg mg=

FN

f1

f2

Figure 12.2.4 The forces on a climber resting in a rock chimney. 
The push of the climber on the chimney walls results in the 
normal    F 

→
   N   and the static frictional forces    f1 

→
    and    f2 

→
   .

KEY IDEAS

First, we choose our system as being the climber. Because 
she is in static equilibrium, we can apply a force balancing 
equation for the horizontal forces and also one for the verti-
cal forces. In addition, the torques around any rotation axis 
balance. 

Calculations: Figure 12.2.4 shows the forces that act on her. 
The only horizontal forces are the normal forces     F 

→
    N    on her 

from the walls, at her feet and shoulders. The static friction 
forces on her are    f1 

→
    and    f2 

→
   , directed upward. The gravita-

tional force     F 
→

    g    with magnitude mg acts at her center of mass. 
The equation Fnet,x = 0

 
tells us that the two normal forces on 

her must be equal in magnitude and opposite in direction. 

Additional examples, video, and practice available at WileyPLUS
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Indeterminate Structures
For the problems of this chapter, we have only three independent equations at 
our disposal, usually two balance-of-forces equations and one balance-of-torques 
equation about a given rotation axis. Thus, if a problem has more than three 
 unknowns, we cannot solve it.

Consider an unsymmetrically loaded car. What are the forces—all dif ferent—on 
the four tires? Again, we cannot find them because we have only three  independent 
equations. Similarly, we can solve an equilibrium problem for a table with three 
legs but not for one with four legs. Problems like these, in which there are more 
unknowns than equations, are called indeterminate.

Yet solutions to indeterminate problems exist in the real world. If you rest 
the tires of the car on four platform scales, each scale will register a definite read-
ing, the sum of the readings being the weight of the car. What is eluding us in our 
efforts to find the individual forces by solving equations?

The problem is that we have assumed—without making a great point of it—
that the bodies to which we apply the equations of static equilibrium are per-
fectly rigid. By this we mean that they do not deform when forces are applied to 
them. Strictly, there are no such bodies. The tires of the car, for example, deform 
easily under load until the car settles into a position of static equilibrium.

We have all had experience with a wobbly restaurant table, which we usu-
ally level by putting folded paper under one of the legs. If a big enough elephant 
sat on such a table, however, you may be sure that if the table did not collapse, 

12.3 ELASTICITY
Learning Objectives  
After reading this module, you should be able to . . . 

12.3.1 Explain what an indeterminate situation is.
12.3.2 For tension and compression, apply the equa-

tion that relates stress to strain and Young’s 
modulus.

12.3.3 Distinguish between yield strength and ultimate 
strength.

12.3.4 For shearing, apply the equation that relates 
stress to strain and the shear modulus.

12.3.5 For hydraulic stress, apply the equation that 
relates fluid pressure to strain and the bulk modulus.

Key Ideas 
● Three elastic moduli are used to describe the elastic 
behavior (deformations) of objects as they respond to 
forces that act on them. The strain (fractional change in 
length) is linearly related to the applied stress (force per 
unit area) by the proper modulus, according to the gen-
eral stress–strain relation

stress = modulus × strain.

● When an object is under tension or compression, the 
stress–strain relation is written as

  F _ 
A

   = E   ∆L _ 
L

  ,

where ∆L/L is the tensile or compressive strain of 
the object, F is the magnitude of the applied force    F 

→
    

causing the strain, A is the cross-sectional area over 
which    F 

→
    is applied (perpendicular to A), and E is the 

Young’s modulus for the object. The stress is F/A.

● When an object is under a shearing stress, the 
stress–strain relation is written as

  F _ 
A

   = G   ∆x _ 
L

  ,

where ∆x/L is the shearing strain of the object, ∆x is 
the  displacement of one end of the object in the direc-
tion of the applied force    F 

→
   , and G is the shear modulus 

of the object. The stress is F/A.

● When an object undergoes hydraulic compression 
due to a stress exerted by a surrounding fluid, the 
stress–strain relation is written as

p = B   ∆V _ 
V

  ,

where p is the pressure (hydraulic stress) on the object 
due to the fluid, ∆V/V (the strain) is the absolute value 
of the fractional change in the object’s volume due to 
that pressure, and B is the bulk modulus of the object.
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it would deform just like the tires of a car. Its legs would all touch the floor, 
the forces acting upward on the table legs would all assume definite (and differ-
ent) values as in Fig. 12.3.1, and the table would no longer wobble. Of course, we 
(and the elephant) would be thrown out onto the street but, in principle, how do 
we find the individual values of those forces acting on the legs in this or similar 
situations where there is deformation?

To solve such indeterminate equilibrium problems, we must supplement 
equilibrium equations with some knowledge of elasticity, the branch of physics 
and engineering that describes how real bodies deform when forces are applied 
to them. 

com

FgF1

F2

F3

F4

Figure 12.3.1 The table is an inde-
terminate structure. The four forces 
on the table legs differ from one 
another in magnitude and cannot be 
found from the laws of static equilib-
rium alone.

Elasticity
When a large number of atoms come together to form a metallic solid, such as 
an iron nail, they settle into equilibrium positions in a three-dimensional lattice, a 
repetitive arrangement in which each atom is a well-defined equilibrium distance 
from its nearest neighbors. The atoms are held together by interatomic forces 
that are modeled as tiny springs in Fig. 12.3.2. The lattice is remarkably rigid, 
which is another way of saying that the “interatomic springs” are extremely stiff. 
It is for this reason that we perceive many ordinary objects, such as metal ladders, 
tables, and spoons, as perfectly rigid. Of course, some ordinary objects, such as gar-
den hoses or rubber gloves, do not strike us as rigid at all. The atoms that make up 
these objects do not form a rigid lattice like that of Fig. 12.3.2 but are aligned in long, 
flexible molecular chains, each chain being only loosely bound to its neighbors.

All real “rigid” bodies are to some extent elastic, which means that we can 
change their dimensions slightly by pulling, pushing, twisting, or compressing 
them. To get a feeling for the orders of magnitude involved, consider a vertical 
steel rod 1 m long and 1 cm in diameter attached to a factory ceiling. If you hang 
a subcompact car from the free end of such a rod, the rod will stretch but only by 
about 0.5 mm, or 0.05%. Furthermore, the rod will return to its original length 
when the car is removed.

If you hang two cars from the rod, the rod will be permanently stretched and 
will not recover its original length when you remove the load. If you hang three 
cars from the rod, the rod will break. Just before rupture, the elongation of the 

Figure 12.3.2 The atoms of a metallic 
solid are distributed on a repetitive 
three- dimensional lattice. The springs 
represent interatomic forces.

Checkpoint 12.3.1
A horizontal uniform bar of weight 10 N is to hang from a ceiling by two wires that
exert upward forces     F 

→
   1    and     F 

→
   2    on the bar. The figure shows four arrangements for 

the wires. Which arrangements, if any, are indeterminate (so that we cannot solve for 
numerical values of     F 

→
   1    and     F 

→
   2   )?

10 N 10 N

10 N 10 N

d d

d
d/2

(a) (b)

(c) (d)

F1 F1

F1 F2

F2 F2

F2F1
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rod will be less than 0.2%. Although deformations of this size seem small, they 
are important in engineering practice. (Whether a wing under load will stay on an 
airplane is obviously important.)

Three Ways. Figure 12.3.3 shows three ways in which a solid might change 
its dimensions when forces act on it. In Fig. 12.3.3a, a cylinder is stretched. In 
Fig. 12.3.3b, a cylinder is deformed by a force perpendicular to its long axis, much  
as we might  deform a pack of cards or a book. In Fig. 12.3.3c, a solid object 
placed in a fluid under high pressure is compressed uniformly on all sides. What 
the three deformation types have in common is that a stress, or deforming force 
per unit area, produces a strain, or unit deformation. In Fig. 12.3.3, tensile stress 
(associated with stretching) is illustrated in (a), shearing stress in (b), and hydrau-
lic stress in (c).

The stresses and the strains take different forms in the three situations of 
Fig. 12.3.3, but—over the range of engineering usefulness—stress and strain are 
proportional to each other. The constant of proportionality is called a modulus 
of elasticity, so that

 stress = modulus × strain. (12.3.1)

In a standard test of tensile properties, the tensile stress on a test cylinder 
(like that in Fig. 12.3.4) is slowly increased from zero to the point at which the 
cylinder fractures, and the strain is carefully measured and plotted. The result 
is a graph of stress versus strain like that in Fig. 12.3.5. For a substantial range 
of  applied stresses, the stress–strain relation is linear, and the specimen recov-
ers its original dimensions when the stress is removed; it is here that Eq. 12.3.1 
applies. If the stress is increased beyond the yield strength Sy of the specimen, the 
specimen becomes permanently deformed. If the stress continues to increase, the 
specimen eventually ruptures, at a stress called the ultimate strength Su.

Tension and Compression
For simple tension or compression, the stress on the object is defined as F/A, 
where F is the magnitude of the force applied perpendicularly to an area A 
on the object. The strain, or unit deformation, is then the dimensionless quan-
tity ∆L/L, the fractional (or sometimes percentage) change in a length of the 
specimen. If the specimen is a long rod and the stress does not exceed the yield 
strength, then not only the entire rod but also every section of it experiences the 
same strain when a given stress is applied. Because the strain is dimensionless, 
the modulus in Eq. 12.3.1 has the same dimensions as the stress—namely, force 
per unit area.

Figure 12.3.3 (a) A cylinder subject to tensile stress stretches by an amount ∆L. (b) A 
 cylinder subject to shearing stress deforms by an amount ∆x, somewhat like a pack of 
 playing cards would. (c) A solid sphere subject to uniform hydraulic stress from a fluid 
shrinks in volume by an amount ∆V. All the deformations shown are greatly exaggerated.

L
Figure 12.3.4 A test specimen used 
to determine a stress–strain curve 
such as that of Fig. 12.3.5. The change 
∆L that occurs in a  certain length L 
is measured in a tensile stress–strain 
test.

Figure 12.3.5 A stress–strain curve 
for a steel test specimen such as that 
of Fig. 12.3.4. The specimen deforms 
permanently when the stress is equal 
to the yield strength of the specimen’s 
material. It ruptures when the stress 
is equal to the ultimate strength of the 
 material.
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Figure 12.3.6 A strain gage of over-
all dimensions 9.8 mm by 4.6 mm. 
The gage is fastened with adhesive 
to the object whose strain is to be 
measured; it experiences the same 
strain as the object. The electrical 
resistance of the gage varies with 
the strain, permitting strains up to 
3% to be measured.

Courtesy Micro Measurements, a Division
of Vishay Precision Group, Raleigh, NC

Table 12.3.1 Some Elastic Properties of Selected Materials of Engineering Interest

Material
Density 𝜌 

(kg/m3)

Young’s 
Modulus E 
(109 N/m2)

Ultimate  
Strength Su  

(106 N/m2)

Yield  
Strength Sy 

(106 N/m2)

Steela 7860 200 400 250
Aluminum 2710 70 110 95
Glass 2190 65 50b —
Concretec 2320 30 40b —
Woodd 525 13 50b —
Bone 1900 9b 170b —
Polystyrene 1050 3 48 —

aStructural steel (ASTM-A36). bIn compression.
cHigh strength dDouglas fir.

The modulus for tensile and compressive stresses is called the Young’s  modulus 
and is represented in engineering practice by the symbol E. Equation 12.3.1 becomes

   F _ 
A

   = E   ∆L _ 
L

  . (12.3.2)

The strain ∆L/L in a specimen can often be measured conveniently with a strain 
gage (Fig. 12.3.6), which can be attached directly to operating machinery with an 
adhesive. Its electrical properties are dependent on the strain it undergoes.

Although the Young’s modulus for an object may be almost the same for ten-
sion and compression, the object’s ultimate strength may well be different for the two 
types of stress. Concrete, for example, is very strong in compression but is so weak in 
tension that it is almost never used in that manner. Table 12.3.1 shows the Young’s 
modulus and other elastic properties for some materials of engineering interest.

Shearing
In the case of shearing, the stress is also a force per unit area, but the force vec-
tor lies in the plane of the area rather than perpendicular to it. The strain is the 
 dimensionless ratio ∆x/L, with the quantities defined as shown in Fig. 12.3.3b. 
The corresponding modulus, which is given the symbol G in engineering practice, 
is called the shear modulus. For shearing, Eq. 12.3.1 is written as

 
  F _ 
A

   = G   ∆x _ 
L

  . (12.3.3)

Shearing occurs in rotating shafts under load and in bone fractures due to bending.

Hydraulic Stress
In Fig. 12.3.3c, the stress is the fluid pressure p on the object, and, as you will see 
in Chapter 14, pressure is a force per unit area. The strain is ∆V/V, where V is the 
original volume of the specimen and ∆V is the absolute value of the change in 
volume. The corresponding modulus, with symbol B, is called the bulk modulus 
of the material. The object is said to be under hydraulic compression, and the pres-
sure can be called the hydraulic stress. For this situation, we write Eq. 12.3.1 as

 
 p = B   ∆V _ 

V
  . (12.3.4)

The bulk modulus is 2.2 × 109 N/m2 for water and 1.6 × 1011 N/m2 for steel. 
The pressure at the bottom of the Pacific Ocean, at its average depth of about 
4000 m, is 4.0 × 107 N/m2. The fractional compression ∆V/V of a volume of water 
due to this pressure is 1.8%; that for a steel object is only about 0.025%. In gen-
eral, solids—with their rigid atomic lattices—are less compressible than liquids, in 
which the atoms or molecules are less tightly coupled to their neighbors.

Courtesy Micro Measurements, a Division of 
Vishay Precision Group, Raleigh, NC
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stress =    F __ 
A

    =    F __ 
πR2    =    6.2 × 104 N  __  

(π)(9.5 × 10–3 m)2   

 = 2.2 × 108 N/m2. (Answer)

The yield strength for structural steel is 2.5 × 108 N/m2, so 
this rod is dangerously close to its yield strength.

We find the value of Young’s modulus for steel in 
Table 12.3.1. Then from Eq. 12.3.2 we find the elongation:

∆L =    
(F/A)L

 __ 
E

    =    
(2.2 × 108 N/m2)(0.81 m)

   _____________________  
2.0 × 1011 N/m2   

 = 8.9 × 10–4 m = 0.89 mm. (Answer)

For the strain, we have

    ∆L __ 
L

    =    8.9 × 10–4 m _____________________ 
0.81 m   

 = 1.1 × 10–3 = 0.11%. (Answer)

Sample Problem 12.3.1 Stress and strain of elongated rod

One end of a steel rod of radius R = 9.5 mm and 
length L = 81 cm is held in a vise. A force of magnitude 
F = 62 kN is then applied perpendicularly to the end 
face (uniformly across the area) at the other end, pulling 
directly away from the vise. What are the stress on the 
rod and the elongation ∆L and strain of the rod?

KEY IDEAS

(1) Because the force is perpendicular to the end face 
and uniform, the stress is the ratio of the magnitude 
F of the force to the area A. The ratio is the left side 
of Eq. 12.3.2. (2) The elongation ∆L is related to the 
stress and Young’s modulus E by Eq. 12.3.2 (F/A =  
E ∆L/L). (3) Strain is the ratio of the elongation to the 
initial length L.

Calculations: To find the stress, we write

    
F4L __ 
AE

    =    
F3L __ 
AE

    + d.  (12.3.6)

We cannot solve this equation because it has two 
unknowns, F4 and F3.

To get a second equation containing F4 and F3, we can 
use a vertical y axis and then write the balance of vertical 
forces (Fnet,y = 0) as

 3F3 + F4 − Mg = 0, (12.3.7)

where Mg is equal to the magnitude of the gravitational 
force on the system. (Three legs have force     F 

→
    3    on them.) To  

solve the simultaneous equations 12.3.6 and 12.3.7 for, 
say, F3, we first use Eq. 12.3.7 to find that F4 = Mg − 3F3. 
Substituting that into Eq. 12.3.6 then yields, after some 
algebra,

  F3  =    
Mg

 _____________________ 
4
    –    dAE _____________________ 

4L
   

 =    
(290 kg)(9.8 m/s2)

  _____________________ 
4
   

  –   
(5.0 × 10–4 m)(10–4 m2)(1.3 × 1010 N/m2)

    _____________________   
(4)(1.00 m)

   

 =  548 N ≈ 5.5 ×  102 N.  (Answer)

From Eq. 12.3.7 we then find

F4 = Mg − 3F3 = (290 kg)(9.8 m/s2) − 3(548 N) 

 ≈ 1.2 kN. (Answer)

You can show that the three short legs are each  compressed 
by 0.42 mm and the single long leg by 0.92 mm.

Sample Problem 12.3.2 Balancing a wobbly table

A table has three legs that are 1.00 m in length and a 
fourth leg that is longer by d = 0.50 mm, so that the table 
wobbles slightly. A steel cylinder with mass M = 290 kg is 
placed on the table (which has a mass much less than M) 
so that all four legs are compressed but unbuckled and the 
table is level but no longer wobbles. The legs are wooden 
cylinders with cross-sectional area A = 1.0 cm2; Young’s 
modulus is E = 1.3 × 1010 N/m2. What are the magnitudes 
of the forces on the legs from the floor?

KEY IDEAS

We take the table plus steel cylinder as our  system. The 
situation is like that in Fig. 12.3.1, except now we have a 
steel cylinder on the table. If the tabletop remains level, 
the legs must be compressed in the  following ways: Each 
of the short legs must be compressed by the same amount 
(call it ∆L3) and thus by the same force of magnitude 
F3. The single long leg must be compressed by a larger 
amount ∆L4 and thus by a force with a larger magnitude 
F4. In other words, for a level tabletop, we must have

 ∆L4 = ∆L3 + d. (12.3.5)

From Eq. 12.3.2, we can relate a change in length to the 
force causing the change with ∆L = FL/AE, where L is the 
original length of a leg. We can use this relation to replace ∆L4 
and ∆L3 in Eq. 12.3.5. However, note that we can approxi-
mate the original length L as being the same for all four legs. 

Calculations: Making those replacements and that approx-
imation gives us

12.3 ElASTiCiTY

Additional examples, video, and practice available at WileyPLUS
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Static Equilibrium  A rigid body at rest is said to be in static 
equilibrium. For such a body, the vector sum of the external 
forces acting on it is zero:

     F 
→

    net   = 0  (balance of forces) .  (12.1.3)

If all the forces lie in the xy plane, this vector equation is equiva-
lent to two component equations:

 Fnet,x = 0  and  Fnet,y = 0 (balance of forces). (12.1.7, 12.1.8)

Static equilibrium also implies that the vector sum of the 
 external torques acting on the body about any point is zero, or

     τ →   net    = 0 (balance of torques). (12.1.5)

If the forces lie in the xy plane, all torque vectors are parallel to 
the z axis, and Eq. 12.1.5 is equivalent to the single com ponent 
equation

 𝜏net,z = 0 (balance of torques). (12.1.9)

Center of Gravity  The gravitational force acts individu-
ally on each element of a body. The net effect of all individual 
 actions may be found by imagining an equivalent total gravi-
tational force    F 

→
    g    acting at the center of gravity. If the gravi-

tational acceleration    g →    is the same for all the elements of the 
body, the center of gravity is at the center of mass.

Elastic Moduli  Three elastic moduli are used to describe 
the elastic behavior (deformations) of objects as they respond to 
forces that act on them. The strain (fractional change in length) 
is linearly related to the applied stress (force per unit area) by 
the proper modulus, according to the general relation

 stress = modulus × strain. (12.3.1)

Review & Summary

Tension and Compression  When an object is under ten-
sion or compression, Eq. 12.3.1 is written as

   F _ 
A

   = E   ∆L _ 
L

  ,  (12.3.2)

where ∆L/L is the tensile or compressive strain of the object, F 
is the magnitude of the applied force    F 

→
    causing the strain, A is 

the cross-sectional area over which    F 
→

    is applied (perpendicular 
to A, as in Fig. 12.3.3a), and E is the Young’s modulus for the 
object. The stress is F/A.

Shearing  When an object is under a shearing stress, Eq. 
12.3.1 is written as

   F _ 
A

   = G   ∆x _ 
L

  , (12.3.3)

where ∆x/L is the shearing strain of the object, ∆x is the 
 displacement of one end of the object in the direction of the 
applied force    F 

→
    (as in Fig. 12.3.3b), and G is the shear modulus 

of the object. The stress is F/A.

Hydraulic Stress  When an object undergoes hydraulic 
compression due to a stress exerted by a surrounding fluid, Eq. 
12.3.1 is written as

 p = B   ∆V _ 
V

  , (12.3.4)

where p is the pressure (hydraulic stress) on the object due to 
the fluid, ∆V/V (the strain) is the absolute value of the fractional 
change in the object’s volume due to that pressure, and B is the 
bulk modulus of the object.

Questions

1  Figure 12.1 shows three situations in which the same 
 horizontal rod is supported by a hinge on a wall at one end and 
a cord at its other end. Without written calculation, rank the 
situations according to the magnitudes of (a) the force on the 
rod from the cord, (b) the vertical force on the rod from the hinge, 
and (c) the horizontal force on the rod from the hinge, greatest 
first.

compared to that of the safe. (a) Rank the  positions according 
to the force on post A due to the safe, greatest compression first, 
greatest tension last, and indicate where, if anywhere, the force 
is zero. (b) Rank them according to the force on post B.

3  Figure 12.3 shows four overhead views of rotating uniform 
disks that are sliding across a frictionless floor. Three forces, of 
magnitude F, 2F, or 3F, act on each disk, either at the rim, at the 
center, or halfway between rim and center. The force vectors 
rotate along with the disks, and, in the  “snapshots” of Fig. 12.3, 
point left or right. Which disks are in equilibrium?

50° 50°

(1) (2) (3)

Figure 12.1 Question 1.

2  In Fig. 12.2, a rigid beam is 
attached to two posts that are fas-
tened to a floor. A small but heavy 
safe is placed at the six positions 
indicated, in turn. Assume that 
the mass of the beam is negligible 

1 2 3 4 5 6

A B

Figure 12.2 Question 2.

(a) (b) (c) (d)

F

3F
2F

2F

F

F F

F

2F

2F

F

F

Figure 12.3 Question 3.

4  A ladder leans against a frictionless wall but is prevented 
from falling because of friction between it and the ground. 
Suppose you shift the base of the ladder toward the wall. Deter-
mine whether the following become larger, smaller, or stay the 
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same (in magnitude): (a) the normal force on the  ladder from 
the ground, (b) the force on the ladder from the wall, (c) the 
static frictional force on the ladder from the ground, and (d) the 
maximum value fs,max of the static frictional force.

5  Figure 12.4 shows a mobile of toy penguins hanging from 
a ceiling. Each crossbar is horizontal, has negligible mass, and 
extends three times as far to the right of the wire supporting 
it as to the left. Penguin 1 has mass m1 = 48 kg. What are the 
masses of (a) penguin 2, (b) penguin 3, and (c) penguin 4?

pulley pulls on the pulley with a net 
force that is twice the tension in the 
cord.) (b) What is the tension in the 
short cord labeled with T?

9  In Fig. 12.8, a vertical rod 
is hinged at its lower end and 
attached to a cable at its upper 
end. A horizontal force    F 

→
    a    is to 

be applied to the rod as shown. If the point at which the force is 
applied is moved up the rod, does the tension in the cable increase, 
decrease, or remain the same?

10  Figure 12.9 shows a hori-
zontal block that is suspended 
by two wires, A and B, which 
are identical except for their 
original lengths. The center of 
mass of the block is closer to 
wire B than to wire A. (a) Mea-
suring torques about the block’s center of mass, state whether 
the magnitude of the torque due to wire A is greater than, less 
than, or equal to the magnitude of the torque due to wire B. (b) 
Which wire exerts more force on the block? (c) If the wires are 
now equal in length, which one was originally shorter (before the 
block was suspended)?

11  The table gives the initial lengths of three rods and the 
changes in their lengths when forces are applied to their ends 
to put them under strain. Rank the rods according to their 
strain, greatest first.

 Initial Length Change in Length

Rod A 2L0 ∆L0

Rod B 4L0 2∆L0

Rod C 10L0 4∆L0

12  A physical therapist gone wild has constructed the (sta-
tionary) assembly of massless pulleys and cords seen in Fig. 
12.10. One long cord wraps around all the pulleys, and shorter 
cords suspend pulleys from the ceiling or weights from the pul-
leys. Except for one, the weights (in newtons) are indicated. 
(a) What is that last weight? (Hint: When a cord loops halfway 
around a pulley as here, it pulls on the pulley with a net force 
that is twice the tension in the cord.) (b) What is the tension in 
the short cord labeled T?

6  Figure 12.5 shows an overhead 
view of a uniform stick on which 
four forces act. Suppose we choose 
a rotation axis through point O, 
calculate the torques about that 
axis due to the forces, and find 
that these torques balance. Will 
the torques balance if, instead, the rotation axis is chosen to be at 
(a) point A (on the stick), (b) point B (on line with the stick), or 
(c) point C (off to one side of the stick)? (d) Suppose,  instead, that 
we find that the torques about point O do not balance. Is there 
another point about which the torques will balance?

7  In Fig. 12.6, a stationary 5 kg rod AC is 
held against a wall by a rope and friction 
between rod and wall. The uniform rod is 1 m  
long, and angle θ = 30°. (a) If you are to  
find the magnitude of the force   T 

→
    on the 

rod from the rope with a single equation, at 
what labeled point should a rotation axis be 
placed? With that choice of axis and counter-
clockwise torques positive, what is the sign of 
(b) the torque τw due to the rod’s weight and 
(c) the torque τr due to the pull on the rod by 
the rope? (d) Is the magnitude of τr greater than, less than, or equal 
to the magnitude of τw?

8  Three piñatas hang from the 
(stationary) assembly of massless 
pulleys and cords seen in Fig. 12.7. 
One long cord runs from the ceil-
ing at the right to the lower pulley 
at the left, looping halfway around 
all the pulleys. Several shorter 
cords suspend pulleys from the 
ceiling or piñatas from the pulleys. 
The weights (in newtons) of two 
piñatas are given. (a) What is the 
weight of the third piñata? (Hint: 
A cord that loops halfway around a 

O A

C

B

Figure 12.5 Question 6.

B CA

D

θ

Figure 12.6 
 Question 7.

Fa

Figure 12.8 Question 9.

com

A B

Figure 12.9 Question 10.
1 2

3 4

Figure 12.4 Question 5.

T

10

17

Figure 12.7 Question 8.

T

5 34

6
20

15
23

Figure 12.10 Question 12.
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7 E  A 75 kg window cleaner uses a 10 kg ladder that is 5.0 m long. 
He places one end on the ground 2.5 m from a wall, rests the upper 
end against a cracked window, and climbs the  ladder. He is 3.0 m up 
along the ladder when the window breaks. Neglect friction between 
the ladder and window and assume that the base of the ladder does 
not slip. When the window is on the verge of breaking, what are 
(a)  the mag nitude of the force on the window from the ladder, 
(b) the magnitude of the force on the ladder from the ground, and 
(c) the angle (relative to the horizontal) of that force on the ladder?

8 E  A physics Brady Bunch, whose weights in newtons are 
 indicated in Fig. 12.13, is balanced on a seesaw. What is the 
number of the person who causes the largest torque about 
the rotation axis at fulcrum f directed (a) out of the page and 
(b) into the page?

Module 12.1  Equilibrium
1 E  Because g varies so little over the extent 
of most structures, any structure’s center of 
gravity effectively coincides with its center of 
mass. Here is a fictitious example where g var-
ies more significantly. Figure 12.11 shows an 
array of six particles, each with mass m, fixed 
to the edge of a rigid structure of negligible 
mass. The distance between adjacent particles 
along the edge is 2.00 m. The following table 
gives the value of g (m/s2) at each particle’s 
location. Using the coordinate system shown, 
find (a) the x coordinate xcom and (b) the y coordinate ycom of 
the center of mass of the six-particle system. Then find (c) the 
x coordinate xcog and (d) the y coordinate ycog of the center of 
gravity of the six- particle system.

Particle g Particle g

  1 8.00 4 7.40
  2 7.80 5 7.60
  3 7.60 6 7.80

Module 12.2  Some Examples of Static Equilibrium
2 E  An automobile with a mass of 1360 kg has 3.05 m  between 
the front and rear axles. Its center of gravity is  located 1.78 m 
behind the front axle. With the automobile on level ground, 
determine the magnitude of the force from the ground on (a) 
each front wheel (assuming equal forces on the front wheels) 
and (b) each rear wheel (assuming equal forces on the rear 
wheels).

3 E  SSM  In Fig. 12.12, a uniform sphere 
of mass m = 0.85 kg and radius r = 4.2 cm 
is held in place by a massless rope attached 
to a frictionless wall a distance L = 8.0 cm 
above the center of the sphere. Find (a) the 
tension in the rope and (b) the force on the 
sphere from the wall. 

4 E  An archer’s bow is drawn at its midpoint 
until the tension in the string is equal to the 
force exerted by the archer. What is the 
angle between the two halves of the string?

5 E  A rope of negligible mass is stretched 
horizontally  between two supports that are 
3.44 m apart. When an object of weight 3160 N is hung at the 
center of the rope, the rope is observed to sag by 35.0 cm. What 
is the tension in the rope? 

6 E  A scaffold of mass 60 kg and length 5.0 m is supported in 
a horizontal position by a vertical cable at each end. A window 
washer of mass 80 kg stands at a point 1.5 m from one end. What 
is the tension in (a) the nearer cable and (b) the farther cable?

3 4

2 5

1 6

y

x

Figure 12.11  
Problem 1.

L

r

Figure 12.12  
Problem 3.

4 3 2 1 0 1 2 3 4 meters

220 330 440 560 560 440 330 220 newtons

1 2 3 4 5 6 7 8

f

Figure 12.13 Problem 8.

9 E  SSM  A meter stick balances horizontally on a knife-edge 
at  the 50.0 cm mark. With two 5.00 g coins stacked over the 
12.0 cm mark, the stick is found to balance at the 45.5 cm mark. 
What is the mass of the meter stick? 

10 E  GO  The system in Fig. 12.14 
is in equilibrium, with the string 
in the center exactly horizontal. 
Block A weighs 40 N, block B 
weighs 50 N, and angle 𝜙 is 35°. 
Find (a) tension T1, (b) tension 
T2, (c) tension T3, and (d) angle θ.

11 E  SSM  Figure 12.15 shows 
a diver of weight 580 N standing 
at the end of a diving board with 
a length of L = 4.5 m and negli-
gible mass. The board is fixed to 
two pedestals (supports) that are 
separated by distance d = 1.5 m. 
Of the forces acting on the board, 
what are the (a) magnitude and 
(b) direction (up or down) of the 
force from the left pedestal and 
the (c) magnitude and (d) direc-
tion (up or down) of the force 
from the right pedestal? (e) Which pedestal (left or right) is 
being stretched, and (f) which pedestal is being compressed? 

T2

T3T1

A B

θϕ

Figure 12.14 Problem 10.

d

L

Figure 12.15 Problem 11.

Problems

          Tutoring problem available (at instructor’s discretion) in WileyPLUS

 Worked-out solution available in Student Solutions Manual

E  Easy M  Medium H  Hard

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

CALC  Requires calculus

BIO  Biomedical application

GO

FCP

SSM
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12 E  In Fig. 12.16, trying to get his car out of mud, a man ties one 
end of a rope around the front bumper and the other end tightly 
around a utility pole 18 m away. He then pushes sideways on the 
rope at its midpoint with a force of 550 N, displacing the center of 
the rope 0.30 m, but the car barely moves. What is the magnitude of 
the force on the car from the rope? (The rope stretches somewhat.)

17 E  In Fig. 12.20, a uniform beam 
of weight 500 N and length 3.0 m is 
suspended horizontally. On the left 
it is hinged to a wall; on the right it 
is supported by a cable bolted to the 
wall at distance D above the beam. 
The least tension that will snap the 
cable is 1200 N. (a) What value of 
D corresponds to that tension? (b) 
To prevent the cable from snap-
ping, should D be increased or 
decreased from that value?

18 E  GO  In Fig. 12.21, hori-
zontal scaffold 2, with uniform 
mass m2 = 30.0 kg and length 
L2 = 2.00 m, hangs from horizon-
tal scaffold 1, with uniform mass 
m1 = 50.0 kg. A 20.0 kg box of 
nails lies on scaffold 2, centered 
at distance d = 0.500 m from the 
left end. What is the tension T in 
the cable indicated? 

19 E  To crack a certain nut in 
a nutcracker, forces with mag-
nitudes of at least 40 N must 
act on its shell from both sides. 
For the nutcracker of Fig. 12.22, 
with distances L = 12 cm and 
d = 2.6 cm, what are the force 
components F⊥ (perpendicular 
to the handles) corresponding to that 40 N?

20 E  BIO  A bowler holds a bowling ball (M = 7.2 kg) in the 
palm of  his hand (Fig. 12.23). His upper arm is vertical; his 
lower arm (1.8 kg) is horizontal. What is the magnitude of (a) 
the force of the biceps muscle on the lower arm and (b) the 
force between the bony structures at the elbow contact point?

F

Figure 12.16 Problem 12.

13 E  BIO  Figure 12.17 
shows the anatomical struc-
tures in the lower leg and 
foot that are involved in 
standing on tiptoe, with the 
heel raised slightly off the 
floor so that the foot effec-
tively contacts the floor 
only at point P. Assume 
distance a = 5.0  cm, dis-
tance b = 15 cm, and the 
person’s weight W = 900 N. 
Of the forces acting on the foot, what are the (a) magnitude and (b) 
direction (up or down) of the force at point A from the calf muscle 
and the (c) magnitude and (d) direction (up or down) of the force 
at point B from the lower leg bones?

14 E  In Fig. 12.18, a horizontal 
scaffold, of length 2.00 m and 
uniform mass 50.0 kg, is sus-
pended from a building by two 
 cables. The scaffold has dozens 
of paint cans stacked on it at various points. The total mass of 
the paint cans is 75.0 kg. The tension in the cable at the right 
is 722 N. How far horizontally from that cable is the center of 
mass of the system of paint cans?

15 E  Forces   F1 
→

   ,   F2 
→

   , and   F3 
→

    act on the structure of Fig. 12.19, 
shown in an overhead view. We wish to put the structure in 
equilibrium by applying a fourth force, at a point such as P. 
The fourth force has vector components   Fh 

→
    and   Fv 

→
   . We are given 

that a = 2.0 m, b = 3.0 m, c = 1.0 m, F1 = 20 N, F2 = 10  N, and 
F3 = 5.0 N. Find (a) Fh, (b) Fv, and (c) d. 

Figure 12.18 Problem 14.

a b
P

A
B

Lower leg bones

Calf muscle

Figure 12.17 Problem 13.

y

x
O

d

b a

a

P
c

F1 F2

F3

Fh

Fv

Figure 12.19 Problem 15.

16 E  A uniform cubical crate is 0.750 m on each side and weighs 
500 N. It rests on a floor with one edge against a very small, fixed 
obstruction. At what least height above the floor must a horizon-
tal force of magnitude 350 N be applied to the crate to tip it?

Cable

Beam

D

Figure 12.20 Problem 17.

T = ?1

2

d d d
L2

Figure 12.21 Problem 18.

L

d

F⊥

F⊥

Figure 12.22 Problem 19.

Biceps

Lower arm 
(forearm plus
hand) center

of mass

Elbow
contact
point

M

33 cm
15 cm 

4.0 cm 

Figure 12.23 Problem 20.

21 M
 The system in Fig. 12.24 is 

in equilibrium. A concrete block 
of mass 225 kg hangs from the 
end of the uniform strut of mass 
45.0 kg. A cable runs from the 
ground, over the top of the strut, 
and down to the block, holding 
the block in place. For angles 
𝜙 = 30.0° and θ = 45.0°, find (a) the tension T in the cable and 
the (b) horizontal and (c) vertical components of the force on 
the strut from the hinge. 

T

Hinge

Strut

θϕ

Figure 12.24 Problem 21.
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the feet–ground  contact point. If he 
is on the verge of sliding, what is the 
coefficient of static friction between 
feet and ground? 

27 M
 
BIO  GO  In Fig. 12.30, a 15 kg 

block is held in place via a pulley 
system. The person’s upper arm 
is vertical; the forearm is at angle 
θ = 30° with the horizontal. Fore-
arm and hand together have a mass 
of 2.0 kg, with a center of mass at dis-
tance d1 = 15 cm from the contact point of the forearm bone and 
the  upper-arm bone (humerus). The triceps muscle pulls verti-
cally upward on the forearm at distance d2 = 2.5 cm behind that 
contact point. Distance d3 is 35 cm. What are the (a) mag nitude 
and (b) direction (up or down) of the force on the  forearm from 
the triceps muscle and the (c) magnitude and (d) direction (up or 
down) of the force on the forearm from the humerus?

h

r

F

Figure 12.28 Problem 25.

Block

com

Humerus

d3d1

d2

Triceps

θ

Figure 12.30  
Problem 27.

28 M
 

GO  In Fig. 12.31, suppose 
the length L of the uniform bar 
is  3.00 m and its weight is 200 N. 
Also, let the block’s weight 
W = 300 N and the angle θ = 30.0°. 
The wire can withstand a  maxi-
mum tension of 500 N. (a) What is 
the maximum possible distance x 
before the wire breaks? With the 
block placed at this maximum x, 
what are the (b) horizontal and (c) 
vertical components of the force 
on the bar from the hinge at A? 

29 M
 A door has a height of 

2.1 m along a y axis that extends 
vertically upward and a width 
of 0.91 m along an x axis that 
extends outward from the hinged 
edge of the door. A hinge 0.30 m 
from the top and a hinge 0.30 m 
from the bottom each support half 
the door’s mass, which is 27 kg. In 
unit-vector  notation, what are the 
forces on the door at (a) the top 
hinge and (b) the bottom hinge?

30 M
 

GO  In Fig. 12.32, a 50.0 kg 
uniform square sign, of edge 
length L = 2.00 m, is hung from a 

22 M
 
BIO  GO  FCP  In Fig. 12.25, 

a 55 kg rock climber is in a lie-
back climb along a fissure, with 
hands pulling on one side of the 
fissure and feet pressed against 
the opposite side. The fissure has 
width w = 0.20 m, and the center 
of mass of the climber is a horizon-
tal distance d = 0.40 m from the 
fissure. The coefficient of static 
friction between hands and rock 
is 𝜇1 = 0.40, and between boots 
and rock it is 𝜇2 = 1.2. (a) What is the least horizontal pull by the 
hands and push by the feet that will keep the climber stable? (b) 
For the horizontal pull of (a), what must be the vertical distance 
h between hands and feet? If the climber encounters wet rock, so 
that 𝜇1 and 𝜇2 are reduced, what happens to (c) the answer to (a) 
and (d) the  answer to (b)? 

23 M
 
GO  In Fig. 12.26, one end of 

a uniform beam of weight 222 N 
is hinged to a wall; the other end 
is supported by a wire that makes 
angles θ = 30.0° with both wall 
and beam. Find (a)  the tension 
in the wire and the (b) horizontal 
and (c) vertical components of the 
force of the hinge on the beam.

24 M
 

BIO  GO  FCP  In Fig. 12.27, 
a climber with a weight of 533.8 N 
is held by a belay rope connected 
to her climbing harness and belay 
device; the force of the rope on her 
has a line of action through her cen-
ter of mass. The indicated angles 
are θ = 40.0° and 𝜙 = 30.0°. If her 
feet are on the verge of sliding on 
the vertical wall, what is the coeffi-
cient of static friction between her 
climbing shoes and the wall? 

25 M
 

SSM  In Fig. 12.28, what 
magnitude of (constant) force    F 

→
   

applied horizontally at the axle 
of the wheel is necessary to raise 
the wheel over a step obstacle of 
height h = 3.00 cm? The wheel’s 
radius is r = 6.00 cm, and its mass 
is m = 0.800 kg. 

26 M
 
GO  FCP  In Fig. 12.29, a climber leans out against a vertical 

ice wall that has negligible friction. Distance a is 0.914 m and dis-
tance L is 2.10 m. His center of mass is distance d = 0.940 m from 

h

w

com
d

Figure 12.25 Problem 22.

Figure 12.26 Problem 23.
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ϕ

Figure 12.27 Problem 24.
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Figure 12.29 Problem 26.
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Figure 12.31  
Problems 28 and 34.
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Figure 12.32  Problem 30.
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horizontal rod of length dh  = 3.00 m and negligible mass. A 
cable is attached to the end of the rod and to a point on the 
wall at distance dv = 4.00 m above the point where the rod is 
hinged to the wall. (a) What is the tension in the cable? What 
are the (b) magnitude and (c)  direction (left or right) of the 
horizontal component of the force on the rod from the wall, and 
the (d) magnitude and (e) direction (up or down) of the vertical 
component of this force?

31 M
 

GO  In Fig. 12.33, a 
nonuniform bar is suspended 
at rest in a horizontal posi-
tion by two massless cords. 
One cord makes the angle 
θ = 36.9° with the vertical; 
the other makes the angle 
𝜙 = 53.1° with the vertical. 
If the length L of the bar is 
6.10 m, compute the distance 
x from the left end of the bar to its center of mass.

32 M
 In Fig. 12.34, the driver of a car on a horizontal road 

makes an emergency stop by applying the brakes so that all four 
wheels lock and skid along the road. The coefficient of  kinetic 
friction between tires and road is 0.40. The separation between 
the front and rear axles is L = 4.2 m, and the center of mass of 
the car is located at distance d = 1.8 m behind the front axle and 
distance h = 0.75 m above the road. The car weighs 11 kN. Find 
the magnitude of (a) the braking acceleration of the car, (b) the 
normal force on each rear wheel, (c) the normal force on each 
front wheel, (d) the braking force on each rear wheel, and (e) 
the braking force on each front wheel. (Hint: Although the car is 
not in translational equilibrium, it is in rotational equilibrium.)

to the beam at distance y from the lower end. The beam 
remains vertical because of a cable attached at the  upper end, 
at angle θ with the horizontal. Figure 12.35b gives the tension 
T in the cable as a function of the position of the  applied force 
given as a fraction y/L of the beam length. The scale of the T axis 
is set by Ts = 600 N. Figure 12.35c gives the magnitude Fh of the 
horizontal force on the beam from the hinge, also as a function 
of y/L. Evaluate (a) angle θ and (b) the magnitude of    F 

→
  a .

34 M
 In Fig. 12.31, a thin horizontal bar AB of negligible weight 

and length L is hinged to a vertical wall at A and  supported at 
B by a thin wire BC that makes an angle θ with the horizontal. 
A block of weight W can be moved anywhere along the bar; its 
position is defined by the distance x from the wall to its center 
of mass. As a function of x, find (a) the tension in the wire, and 
the (b) horizontal and (c) vertical com ponents of the force on 
the bar from the hinge at A.

35 M
 

SSM  A cubical box is filled with sand and weighs 890 N. 
We wish to “roll” the box by pushing horizontally on one of the 
upper edges. (a) What minimum force is required? (b) What 
minimum coefficient of static friction between box and floor is 
required? (c) If there is a more efficient way to roll the box, 
find the smallest possible force that would have to be applied 
directly to the box to roll it. (Hint: At the onset of tipping, where 
is the normal force located?) 

36 M
 

BIO  FCP  Figure 12.36 shows a 70 
kg climber hanging by only the crimp 
hold of one hand on the edge of a shallow 
horizontal ledge in a rock wall. (The fin-
gers are pressed down to gain purchase.) 
Her feet touch the rock wall at distance 
H = 2.0 m directly below her crimped 
fingers but do not provide any support. 
Her center of mass is distance a = 0.20 m 
from the wall. Assume that the force from 
the ledge supporting her fingers is equally 
shared by the four fingers. What are the 
values of the (a) horizontal component Fh 
and (b) vertical component Fv of the force 
on each  fingertip? 

37 M
 
GO  In Fig. 12.37, a uniform plank, with 

a length L of 6.10 m and a weight of 445 N, 
rests on the ground and against a frictionless 
roller at the top of a wall of height h = 3.05 m. 
The plank remains in  equilibrium for any 
value of θ ≥ 70° but slips if θ < 70°. Find 
the coefficient of static friction between the 
plank and the ground.

Figure 12.33 Problem 31.

L

x com

θ ϕ
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d

L
Figure 12.34  
Problem 32.

33 M
 Figure 12.35a shows a vertical uniform beam of length L 

that is hinged at its lower end. A horizontal force   Fa 
→

    is  applied 

T
 (

N
)
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Figure 12.35 Problem 33.
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Figure 12.36  
Problem 36.
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h

Figure 12.37 Problem 37.

38 M
 In Fig. 12.38, uniform beams A and B are attached to a wall 

with hinges and loosely bolted together (there is no torque of one 
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on the other). Beam A has length 
LA = 2.40 m and mass 54.0 kg; beam 
B has mass 68.0 kg. The two hinge 
points are separated by distance 
d = 1.80 m. In unit-vector notation, 
what is the force on (a) beam A due 
to its hinge, (b) beam A due to the 
bolt, (c) beam B due to its hinge, 
and (d) beam B due to the bolt?

39 H  For the stepladder shown 
in Fig. 12.39, sides AC and CE are 
each 2.44 m long and hinged at 
C. Bar BD is a tie-rod 0.762 m 
long, halfway up. A man weigh-
ing 854 N climbs 1.80 m along the 
ladder. Assuming that the floor is 
 frictionless and neglecting the mass 
of the ladder, find (a) the tension in 
the tie-rod and the magnitudes of 
the forces on the ladder from the 
floor at (b) A and (c) E. (Hint: Iso-
late parts of the ladder in applying 
the equilibrium conditions.)

40 H  Figure 12.40a shows a hori-
zontal uniform beam of mass mb 
and length L that is supported on 
the left by a hinge attached to a 
wall and on the right by a cable at 
angle θ with the horizontal. A package of mass mp is positioned 
on the beam at a distance x from the left end. The total mass is 
mb + mp = 61.22 kg.  Figure 12.40b gives the tension T in the cable 
as a function of the package’s position given as a fraction x/L of 
the beam length. The scale of the T axis is set by Ta = 500 N and 
Tb = 700 N. Evaluate (a) angle θ, (b) mass mb, and (c) mass mp.

pavement be 0.53. How far (in percent) up the ladder must the 
firefighter go to put the ladder on the verge of sliding?

Module 12.3  Elasticity
43 E  SSM  A horizontal aluminum rod 4.8 cm in diameter proj-
ects 5.3 cm from a wall. A 1200 kg object is suspended from the 
end of the rod. The shear modulus of aluminum is 3.0 × 1010   
N/m2. Neglecting the rod’s mass, find (a) the shear stress on the 
rod and (b) the vertical deflection of the end of the rod. 

44 E  Figure 12.41 shows the 
stress–strain curve for a material. 
The scale of the stress axis is set 
by s = 300, in units of 106 N/m2. 
What are (a) the Young’s modu-
lus and (b) the approximate yield 
strength for this material?

45 M
 In Fig. 12.42, a lead brick 

rests horizontally on cylinders A 
and B. The areas of the top faces 
of the cylinders are related by 
AA = 2AB; the Young’s moduli 
of the cylinders are  related by 
EA = 2EB. The cylinders had 
identical lengths  before the brick 
was placed on them. What frac-
tion of the brick’s mass is sup-
ported (a) by cylinder A and (b) 
by cylinder B? The horizontal 
distances between the center of 
mass of the brick and the center-
lines of the cylinders are dA for cylinder A and dB for cylinder B. 
(c) What is the ratio dA/dB? 

46 M
 

BIO  CALC  FCP  Figure 12.43 shows an approximate 
plot of stress versus strain for a spider-web thread, out to the 
point of breaking at a strain of 2.00. The vertical axis scale 
is set by values a = 0.12 GN/m2, b = 0.30 GN/m2, and c = 0.80  
GN/m2. Assume that the thread has an initial length of 0.80 cm,  
an initial cross-sectional area of 8.0 × 10−12 m2, and (during 
stretching) a constant volume. The strain on the thread is 
the ratio of the change in the thread’s length to that initial 
length, and the stress on the thread is the ratio of the  collision 
force to that initial cross-sectional area. Assume that the work 
done on the thread by the collision force is given by the area 
under the curve on the graph. Assume also that when the 
single thread snares a flying insect, the insect’s kinetic energy 
is transferred to the stretching of the thread. (a) How much 
kinetic energy would put the thread on the verge of breaking? 
What is the kinetic energy of (b) a fruit fly of mass 6.00 mg and 
speed 1.70 m/s and (c) a bumble bee of mass 0.388 g and speed  
0.420 m/s? Would (d) the fruit fly and (e) the bumble bee 
break the thread? 
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Figure 12.43 Problem 46.

41 H  A crate, in the form of a cube with edge lengths of 1.2 m, 
contains a piece of machinery; the center of mass of the crate 
and its contents is located 0.30 m above the crate’s  geometrical 
center. The crate rests on a ramp that makes an angle θ with the 
horizontal. As θ is increased from zero, an  angle will be reached 
at which the crate will either tip over or start to slide down the 
ramp. If the coefficient of static friction 𝜇s between ramp and 
crate is 0.60, (a) does the crate tip or slide and (b) at what angle 
θ does this occur? If 𝜇s = 0.70, (c) does the crate tip or slide and 
(d) at what angle θ does this occur? (Hint: At the onset of tip-
ping, where is the normal force located?)

42 H  In Fig. 12.2.3 and the associated sample problem, let 
the coefficient of static friction 𝜇s between the ladder and the 

LA

y

A

B

x

Bolt
d
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47 M
 A tunnel of length L = 150 m, height H = 7.2 m, and width 

5.8 m (with a flat roof) is to be constructed at distance d = 60 m 
beneath the ground. (See Fig. 12.44.) The tunnel roof is to be sup-
ported entirely by square steel columns, each with a cross-sectional 
area of 960 cm2. The mass of 1.0 cm3 of the ground material is 2.8 g. 
(a) What is the total weight of the ground material the columns 
must support? (b) How many columns are needed to keep the com-
pressive stress on each column at one-half its ultimate strength?

rB = 4.0 cm from the axle. Initially the stoppers touch the walls 
without being compressed. Then force    F 

→
    of magnitude 220 N is 

applied perpendicular to the rod at a distance R = 5.0 cm from 
the axle. Find the magnitude of the force compressing (a) stop-
per A and (b) stopper B.

H

d

L

Figure 12.44 Problem 47.

48 M
 CALC  Figure 12.45 shows 

the stress versus strain plot 
for an aluminum wire that is 
stretched by a machine pulling 
in  opposite directions at the two 
ends of the wire. The scale of 
the stress axis is set by s = 7.0, in 
units of 107 N/m2. The wire has 
an initial length of 0.800 m and 
an initial cross-sectional area of 
2.00 × 10−6 m2. How much work does the force from the machine 
do on the wire to produce a strain of 1.00 × 10−3?

49 M  GO  In Fig. 12.46, a 103 kg uni-
form log hangs by two steel wires, 
A and B, both of radius 1.20 mm. 
Initially, wire A was 2.50 m long 
and 2.00 mm shorter than wire B. 
The log is now horizontal. What 
are the magnitudes of the forces on 
it from (a) wire A and (b) wire B?  
(c) What is the ratio dA/dB?

50 H  BIO  FCP  GO  Figure 12.47 
represents an insect caught at the 
midpoint of a spider-web thread. 
The thread breaks under a stress 
of 8.20 × 108 N/m2 and a strain 
of 2.00. Initially, it was horizon-
tal and had a length of 2.00 cm 
and a cross-sectional area of 8.00 × 10−12 m2. As the thread was 
stretched under the weight of the insect, its volume remained 
constant. If the weight of the insect puts the thread on the verge 
of breaking, what is the insect’s mass? (A spider’s web is built 
to break if a potentially harmful insect, such as a bumble bee, 
becomes snared in the web.) 

51 H  GO  Figure 12.48 is an overhead view of a rigid rod that 
turns about a vertical axle until the identical rubber stoppers A 
and B are forced against rigid walls at distances rA = 7.0 cm and 
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Figure 12.47 Problem 50.

Additional Problems
52  After a fall, a 95 kg rock climber finds himself dangling 
from the end of a rope that had been 15 m long and 9.6 mm in 
diameter but has stretched by 2.8 cm. For the rope, calculate (a) 
the strain, (b) the stress, and (c) the Young’s modulus.

53 SSM  In Fig. 12.49, a rectangu-
lar slab of slate rests on a bedrock 
surface inclined at angle θ = 26°. 
The slab has length L = 43 m, 
thickness T = 2.5 m, and width 
W = 12 m, and 1.0 cm3 of it has a 
mass of 3.2 g. The coefficient of 
static friction between slab and 
bedrock is 0.39. (a) Calculate the 
com ponent of the gravitational force on the slab parallel to 
the bedrock surface. (b) Calculate the magnitude of the static 
 frictional force on the slab. By comparing (a) and (b), you can 
see that the slab is in danger of sliding. This is prevented only 
by chance protrusions of bedrock. (c) To stabilize the slab, bolts 
are to be driven perpendicular to the bedrock surface (two bolts 
are shown). If each bolt has a cross-sectional area of 6.4 cm2 
and will snap under a shearing stress of 3.6 × 108 N/m2, what is 
the minimum number of bolts needed? Assume that the bolts 
do not affect the normal force. 

54  A uniform ladder whose length is 5.0 m and whose weight 
is 400 N leans against a frictionless vertical wall. The coefficient 
of static friction between the level ground and the foot of the 
ladder is 0.46. What is the greatest distance the foot of the lad-
der can be placed from the base of the wall without the ladder 
immediately slipping?

55 SSM  In Fig. 12.50, block A 
(mass 10 kg) is in equilibrium, 
but it would slip if block B (mass 
5.0 kg) were any heavier. For 
angle θ = 30°, what is the coef-
ficient of static friction between 
block A and the surface below it? 

56  Figure 12.51a shows a uni-
form ramp between two build-
ings that allows for motion 
between the buildings due to 
strong winds. At its left end, it is 
hinged to the building wall; at its 
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right end, it has a roller that can roll along the building wall. 
There is no vertical force on the roller from the building, only 
a horizontal force with magnitude Fh. The horizontal distance 
between the buildings is D = 4.00 m. The rise of the ramp is 
h = 0.490 m. A man walks across the ramp from the left. Figure 
12.51b gives Fh as a function of the horizontal distance x of the 
man from the building at the left. The scale of the Fh axis is set 
by a = 20 kN and b = 25 kN. What are the masses of (a) the ramp 
and (b) the man?

60  In Fig. 12.55, a package of mass 
m hangs from a short cord that is 
tied to the wall via cord 1 and to the 
ceiling via cord 2. Cord 1 is at angle 
𝜙 = 40° with the horizontal; cord 2 
is at angle θ. (a) For what value of θ 
is the tension in cord 2 minimized? 
(b) In terms of mg, what is the mini-
mum tension in cord 2?

61  The force   F 
→

    in Fig. 12.56 
keeps the 6.40 kg block and the pulleys in 
equilibrium. The pulleys have negligible 
mass and friction. Calculate the tension T 
in the upper cable. (Hint: When a cable 
wraps halfway around a pulley as here, 
the magnitude of its net force on the pul-
ley is twice the tension in the cable.)

62  A mine elevator is supported by 
a single steel cable 2.5  cm in diameter. 
The total mass of the elevator cage and 
 occupants is 670 kg. By how much does 
the cable stretch when the elevator hangs 
by (a) 12 m of cable and (b) 362 m of 
 cable? (Neglect the mass of the cable.)

63 FCP  Four bricks of length L, identi-
cal and uniform, are stacked on top of 
one another (Fig. 12.57) in such a 
way that part of each extends 
beyond the one beneath. 
Find, in terms of L, the 
maximum values of 
(a) a1, (b) a2, (c) 
a3, (d) a4, and 
(e) h, such 
that the stack 
is in equilib-
rium, on the verge of falling. 

64  In Fig. 12.58, two identical, uni-
form, and frictionless spheres, each 
of mass m, rest in a rigid rectangular 
container. A line  connecting their 
centers is at 45° to the horizontal. 
Find  the  magnitudes of the forces 
on the spheres from (a) the  bottom 
of the container, (b) the left side of 
the container, (c)  the right side of 
the container, and (d) each other. 
(Hint:  The force of one sphere on 
the other is directed along the center–center line.)

65  In Fig. 12.59, a uniform beam 
with a weight of 60 N and a length 
of 3.2 m is hinged at its lower end, 
and a horizontal force    F 

→
    of magni-

tude 50 N acts at its upper end. The 
beam is held vertical by a cable 
that makes angle θ = 25° with the 
ground and is attached to the beam 
at height h = 2.0 m. What are (a) 
the tension in the cable and (b) the 
force on the beam from the hinge 
in unit-vector notation?
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Figure 12.51 Problem 56.

57 GO  In Fig. 12.52, a 10 kg sphere 
is supported on a frictionless plane 
inclined at angle θ = 45° from the 
horizontal. Angle 𝜙 is 25°. Cal-
culate the tension in the cable.

58  In Fig. 12.53a, a uniform 
40.0 kg beam is centered over two 
rollers. Vertical lines across the 
beam mark off equal lengths. Two 
of the lines are centered over the 
rollers; a 10.0 kg package of tama-
les is centered over roller B. What 
are the magnitudes of the forces 
on the beam from (a) roller A and 
(b)  roller B? The beam is then 
rolled to the left until the right-
hand end is centered over roller 
B (Fig. 12.53b). What now are the 
magnitudes of the forces on the 
beam from (c) roller A  and (d) 
roller B? Next, the beam is rolled 
to the right. Assume that it has a 
length of 0.800 m. (e) What hori-
zontal distance between the pack-
age and roller B puts the beam on 
the verge of losing contact with 
roller A?

59 SSM  In Fig. 12.54, an 817 kg 
construction bucket is suspended 
by a cable A that is attached at O 
to two other cables B and C, mak-
ing angles θ1 = 51.0° and θ2 = 66.0° 
with the horizontal. Find the ten-
sions in (a) cable A, (b) cable B, 
and (c) cable C. (Hint: To avoid 
solving two equations in two 
unknowns,  position the axes as 
shown in the figure.) 
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66  A uniform beam is 5.0 m 
long and has a mass of 53 kg. In 
Fig. 12.60, the beam is supported 
in a horizontal position by a hinge 
and a cable, with angle θ = 60°. In 
unit-vector notation, what is the 
force on the beam from the hinge?

67  A solid copper cube has an edge length of 85.5 cm. How much 
stress must be applied to the cube to reduce the edge length to 
85.0 cm? The bulk modulus of copper is 1.4 × 1011 N/m2.

68 BIO  A construction worker 
attem pts to lift a uniform beam off 
the floor and raise it to a vertical 
position. The beam is 2.50 m long 
and weighs 500 N. At a certain 
instant the worker holds the beam 
momentarily at rest with one end 
at distance d  = 1.50 m above the 
floor, as shown in Fig. 12.61, by 
exerting a force    P 

→
    on the beam, 

perpendicular to the beam. (a) 
What is the magnitude P? (b) 
What is the magnitude of the (net) force of the floor on the 
beam? (c) What is the minimum value the coefficient of static 
friction between beam and floor can have in order for the beam 
not to slip at this instant?

69 SSM  In Fig. 12.62, a uniform rod of mass 
m is hinged to a building at its lower end, while 
its upper end is held in place by a rope attached 
to the wall. If angle θ1 = 60°, what value must 
angle θ2 have so that the tension in the rope is 
equal to mg/2? 

70  A 73 kg man stands on a level bridge of 
length L. He is at distance L/4 from one end. 
The bridge is uniform and weighs 2.7 kN. What 
are the magnitudes of the vertical forces on the 
bridge from its supports at (a) the end farther from him and (b) 
the nearer end?

71 SSM  A uniform cube of side length 8.0 cm rests on a hori-
zontal floor. The coefficient of static friction between cube and 
floor is 𝜇. A horizontal pull    P 

→
    is applied perpendicular to one of 

the vertical faces of the cube, at a distance 7.0 cm above the floor 
on the vertical midline of the cube face. The magnitude of    P 

→
    is 

gradually increased. During that increase, for what values of 𝜇 
will the cube even tually (a) begin to slide and (b) begin to tip? 
(Hint: At the  onset of tipping, where is the normal force located?) 

72  The system in Fig. 12.63 is in equilibrium. The angles are 
θ1 = 60° and θ2 = 20°, and the ball has mass M = 2.0 kg. What is 
the tension in (a) string ab and (b) string bc?

73 SSM  A uniform ladder is 
10 m long and weighs 200 N. 
In Fig. 12.64, the ladder leans 
against a vertical, frictionless 
wall at height h = 8.0 m above 
the ground. A horizontal force    F 

→
    

is applied to the ladder at dis-
tance d = 2.0 m from its base 
 (measured along the ladder). 
(a) If force magnitude F = 50 N, 
what is the force of the ground on 
the ladder, in unit-vector nota-
tion? (b) If F = 150 N, what is the 
force of the ground on the ladder, also in unit-vector notation? 
(c) Suppose the coefficient of static friction between the ladder 
and the ground is 0.38; for what minimum value of the force 
magnitude F will the base of the ladder just barely start to move 
toward the wall? 

74  A pan balance is made up of a rigid, massless rod with 
a hanging pan attached at each end. The rod is supported at and 
free to rotate about a point not at its center. It is balanced by 
unequal masses placed in the two pans. When an unknown mass 
m is placed in the left pan, it is balanced by a mass m1 placed in 
the right pan; when the mass m is placed in the right pan, it is 
balanced by a mass m2 in the left pan. Show that m = 

75  The rigid square frame in 
Fig.  12.65 consists of the four side 
bars AB, BC, CD, and DA plus two 
diagonal bars AC and BD, which 
pass each other freely at E. By 
means of the turnbuckle G, bar AB 
is put under tension, as if its ends 
were  subject to horizontal, outward 
forces   T 

→
    of  magnitude 535 N. (a) 

Which of the other bars are in ten-
sion? What are the  magnitudes of (b)  the forces causing the 
tension in those bars and (c) the forces causing compression 
in the other bars? (Hint: Symmetry considerations can lead to 
considerable  simplification in this problem.)

76 BIO  Bandage pressure. Chronic venous leg ulcers are com-
monly treated with compression bandages. The pressure P of 
the bandage is given by the Laplace equation in which the sur-
face tension T of the curved wall of a container depends on the 
wall’s radius of curvature R and the pressure P that the inward 
pull of the surface tension produces inside the wall. Here we 
write that equation as

P =    T __ 
R

   ,

where T is the surface tension of the bandage (force per unit 
length across the bandage) and R is the radius of curvature of 
the leg. The pressure value is important to maintain proper 
return of blood from the ankle without excessive pressure that 
can result in tissue damage. For T = 16 N/m and the radius of 
curvature of the leg at mid-calf level, what is the pressure of a  
bandage in the physician commonly used pressure unit of mmHg 
(millimeters of mercury)?

77  Leaning tower. The leaning Tower of Pisa (Fig. 12.66) is 
55 m high and 7.0 m in diameter. The top of the tower is dis-
placed 4.5 m from the vertical. Treat the tower as a uniform, 
circular cylinder. (a) What additional displacement, measured 

  √ 
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at the top, would bring the tower to 
the verge of toppling? (b) What angle 
would the tower then make with the 
vertical?

78  Moving heavy logs. Here is a way 
to move a heavy log through a tropical 
forest. Find a young tree in the gen-
eral direction of travel; find a vine that 
hangs from the top of the tree down 
to the ground level; pull the vine over  
to the log and wrap it around a limb on 
the log; pull hard enough on the vine to 
bend the tree over; and then tie off the vine on the limb. Repeat this 
procedure with several trees. Eventually the net force of the vines 
on the log moves the log forward. Although tedious, this technique 
allowed workers to move heavy logs long before modern machin-
ery (such as helicopters) was available. Figure 12.67 shows the 
essentials of the technique. There a single vine is shown attached 
to a branch at one end of a uniform log of mass M. The coefficient 
of static friction between the log and the ground is 0.80. If the log is 
on the verge of sliding, with the left end raised slightly by the vine, 
what are (a) the angle θ and (b) the magnitude T of the force on the 
log from the vine?

Log

Vine

θ

Figure 12.67 Problem 78.

79  Ice block. In an ice plant, 200 kg blocks of ice slide down a 
frictionless ramp that makes an angle of θ = 10.0° with the hori-
zontal. To keep the blocks of ice from moving too quickly, they 
are restrained by an attached cable that is parallel to the ramp. If 
the blocks are temporarily held at rest on the ramp by the cable, 
what is the tension T in the cable?

80  Diving board. In Fig. 12.68, a uniform diving board with mass 
m = 40 kg is 3.5 m long and is attached to two supports. When a 
diver stands on the end of the board, the support on the other end 
exerts a downward force of 1200 N on the board. At what distance 
from the left side of the board should the diver stand to reduce that 
force to zero? (Hint: First find the diver’s mass.)

2.5 m
1.0 m

Figure 12.68 Problem 80.

81  Brick wall height. Many houses and short buildings have 
brick walls, but tall buildings never have load-bearing brick 
walls. One reason might be that the load of a tall wall on the 
bottom bricks exceeds the yield strength Sy of brick. Consider a 
column of bricks with height H. Take the density of brick to be 
ρ = 1.8 × 103 kg/m3 and neglect the mortar between the bricks. 
What value of H puts the bottom brick at the yield strength of 
Sy = 3.3 × 107 N/m2? 

82 BIO  Standing on tiptoes. In Fig. 12.69, a person with weight 
mg = 700 N stands on “tiptoes” (actually, the ball of the fore-
foot) with the weight evenly distributed on each foot and with 
the plane of each foot at angle θ = 20° with the floor. The sup-
port is an upward force at distance df = 0.18 m from the ankle 
about which the foot can rotate. At distance db = 0.070 m from 
the ankle, the Achilles tendon (connecting the heel to the calf 
muscle) pulls on the heel with force   T 

→
    at an angle of ϕ = 5.0° 

from a perpendicular to the plane of the foot. What is the 
 magnitude of   T 

→
   ?

Ankle Heel

Toes

df

db

T

�

�

Figure 12.69 Problem 82.

83  Lifting cable danger. A crane is to lift a steel beam at a 
construction site (Fig. 12.70). The beam has length L = 12.0 m, 
a square cross section with edge length w = 0.540 m, and density  
ρ = 7900 kg/m3. The main cable from the crane is attached to 
two short steel cables of length h = 7.00 m and radius r = 1.40 cm  
symmetrically attached to the beam at distance d from the mid-
point. There are three attachment points at d1 = 1.60 m, d2 = 
4.24 m, and d3 = 5.90 m. What is the tension Tshort in each short 
cable for (a) d1, (b) d2, and (c) d3? What is the stress σ in each 
short cable for (d) d1, (e) d2, and (f) d3? Safety protocol requires 
that the stress in those cables not exceed 80% of the yield stress 
of 415 × 106 N/m2. (g) Which of the attachment points pass that 
requirement?

Main cable

Beamhh

L

d d

Figure 12.70 Problem 83.

84 BIO  Snowshoes. You cannot walk over deep snow in regu-
lar shoes without sinking deeply into the snow. Instead, you 
walk with snowshoes (Fig. 12.71). For a person with the body 
weight of 170 lb on a single foot (while walking), what is the 
stress under a shoe in psi (pounds per square inch) for (a) a 
standard shoe measuring 11 in. by 4.0 in. and (b) a snowshoe 
measuring 26 in. by 9.5 in.? Assume a rectangular area for each 
shoe. (c) By what percentage does the snowshoe reduce the 
stress?

Figure 12.66  
Problem 77.
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Figure 12.72 Problem 85.

(c)Figure 12.71 Problem 84.

85 BIO  FCP  Figure 12.72a shows details of a finger in the 
crimp hold of the climber in Fig. 12.36. A tendon that runs from 
muscles in the forearm is attached to the far bone in the finger. 
Along the way, the tendon runs through several guiding sheaths 
called pulleys. The A2 pulley is attached to the first finger bone; 
the A4 pulley is attached to the second finger bone. To pull the 
finger toward the palm, the forearm muscles pull the tendon 
through the pulleys, much like strings on a marionette can be 

pulled to move parts of the marionette. Figure 12.72b is a sim-
plified diagram of the second finger bone, which has length d. 
The tendon’s pull     F 

→
    t    on the bone acts at the point where the 

tendon enters the A4 pulley, at distance d/3 along the bone. If 
the force components on each of the four crimped fingers in 
Fig. 12.36 are Fh = 13.4 N and Fv = 162.4 N, what is the magni-
tude of     F 

→
    t   ? The result is probably tolerable, but if the climber 

hangs by only one or two fingers, the A2 and A4 pulleys can be 
ruptured, a common ailment among rock climbers.
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What Is Physics?
One of the long-standing goals of physics is to understand the gravitational 
force—the force that holds you to Earth, holds the Moon in orbit around Earth, 
and holds Earth in orbit around the Sun. It also reaches out through the whole 
of our Milky Way Galaxy, holding together the billions and billions of stars in 
the Galaxy and the countless molecules and dust particles between stars. We are 
 located somewhat near the edge of this disk-shaped collection of stars and other 
matter, 2.6 × 104 light-years (2.5 × 1020 m) from the galactic center, around which 
we slowly revolve.

The gravitational force also reaches across intergalactic space, holding 
 together the Local Group of galaxies, which includes, in addition to the Milky 
Way, the Andromeda Galaxy (Fig. 13.1.1) at a distance of 2.3 × 106 light-years 
away from Earth, plus several closer dwarf galaxies, such as the Large Magellanic 
Cloud. The Local Group is part of the Local Supercluster of galaxies that is being 
drawn by the gravitational force toward an exceptionally massive region of space 
called the Great Attractor. This region appears to be about 3.0 × 108 light-years 
from Earth, on the opposite side of the Milky Way. And the gravitational force is 
even more far-reaching because it attempts to hold together the entire universe, 
which is expanding.

This force is also responsible for some of the most mysterious structures in 
the universe: black holes. When a star considerably larger than our Sun burns out, 
the gravitational force between all its particles can cause the star to collapse in 

Gravitation

13.1 NEWTON’S LAW OF GRAVITATION
Learning Objectives 
After reading this module, you should be able to . . .

13.1.1 Apply Newton’s law of gravitation to relate the 
gravitational force between two particles to their 
masses and their separation.

13.1.2 Identify that a uniform spherical shell of matter 
attracts a particle that is outside the shell as if all 

the shell’s mass were concentrated as a particle at 
its center.

13.1.3 Draw a free-body diagram to indicate the gravi-
tational force on a particle due to another particle or 
a uniform, spherical distribution of matter.

Key Ideas 
● Any particle in the universe  attracts any other particle 
with a gravitational force whose magnitude is

  F = G   
m1m2 _____ 

r2
   (Newton’s law of gravitation),

where m1 and m2 are the masses of the particles, r is 
their  separation, and G (= 6.67 × 10−11 N · m2/kg2) is the 
gravitational constant.

● The gravitational force between extended bodies 
is found by adding (integrating) the individual forces 
on individual particles within the bodies. However, if 
either of the bodies is a uniform spherical shell or a 
spherically symmetric solid, the net gravitational force 
it exerts on an external object may be computed as 
if all the mass of the shell or body were located at 
its center.

C H A P T E R  1 3
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37313.1 NewtoN’s Law of GravitatioN

on itself and thereby to form a black hole. The gravitational force 
at the surface of such a collapsed star is so strong that neither par-
ticles nor light can escape from the surface (thus the term “black 
hole”). Any star coming too near a black hole can be ripped apart 
by the strong gravitational force and pulled into the hole. Enough 
captures like this yields a supermassive black hole. Such mysteri-
ous monsters appear to be common in the universe. Indeed, such 
a monster lurks at the center of our Milky Way Galaxy—the black 
hole there, called Sagittarius A*, has a mass of about 3.7 × 106 solar 
masses. The gravitational force near this black hole is so strong that 
it causes orbiting stars to whip around the black hole, completing an 
orbit in as little as 15.2 y.

Although the gravitational force is still not fully understood, 
the starting point in our understanding of it lies in the law of gravita-
tion of Isaac Newton.

Newton’s Law of Gravitation
Before we get to the equations, let’s just think for a moment about 
something that we take for granted. We are held to the ground just 
about right, not so strongly that we have to crawl to get to school 
(though an occasional exam may leave you crawling home) and not 
so lightly that we bump our heads on the ceiling when we take a step. 
It is also just about right so that we are held to the ground but not 
to each other (that would be awkward in any classroom) or to the 
objects around us (the phrase “catching a bus” would then take on a 
new meaning). The attraction obviously depends on how much “stuff” 
there is in ourselves and other objects: Earth has lots of “stuff” and 
produces a big attraction but another person has less “stuff” and pro-
duces a smaller (even negligible) attraction. Moreover, this “stuff” always attracts 
other “stuff,” never repelling it (or a hard sneeze could put us into orbit).

In the past people obviously knew that they were being pulled downward 
(especially if they tripped and fell over), but they figured that the downward force 
was unique to Earth and unrelated to the apparent movement of astronomical 
bodies across the sky. But in 1665, the 23-year-old Isaac Newton recognized that 
this force is responsible for holding the Moon in its orbit. Indeed he showed that 
every body in the universe attracts every other body. This tendency of bodies to 
move toward one another is called gravitation, and the “stuff” that is involved is 
the mass of each body. If the myth were true that a falling apple inspired  Newton’s 
law of gravitation, then the attraction is between the mass of the apple and the 
mass of Earth. It is appreciable because the mass of Earth is so large, but even 
then it is only about 0.8 N. The attraction between two people standing near each 
other on a bus is (thankfully) much less (less than 1 𝜇N) and imperceptible.

The gravitational attraction between extended objects such as two people 
can be difficult to calculate. Here we shall focus on Newton’s force law between 
two particles (which have no size). Let the masses be m1 and m2 and r be their 
separation. Then the magnitude of the gravitational force acting on each due to 
the presence of the other is given by

  F = G   
m1m2 _____ 

r2
     (Newton’s law of gravitation). (13.1.1)

G is the gravitational constant:

 G = 6.67 × 10−11 N · m2/kg2

 = 6.67 × 10−11 m3/kg · s2. (13.1.2)

Figure 13.1.1 The Andromeda Galaxy. Located 
2.3 × 106 light-years from us, and faintly  visible to 
the naked eye, it is very similar to our home galaxy, 
the Milky Way.

Courtesy NASA
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374 CHaPter 13 GravitatioN

Figure 13.1.3 The apple pulls up on 
Earth just as hard as Earth pulls 
down on the apple.

F = 0.80 N

F = 0.80 N

In Fig. 13.1.2a,    F 
→

    is the gravitational force acting on particle 1 (mass m1) due to 
particle 2 (mass m2). The force is directed toward particle 2 and is said to be an 
 attractive force because particle 1 is attracted toward particle 2. The magnitude 
of  the force is given by Eq. 13.1.1. We can describe    F 

→
    as being in the positive 

direction of an r axis extending  radially from particle 1 through particle 2 (Fig. 
13.1.2b). We can also describe    F 

→
    by using a radial unit vector   r ̂    (a dimensionless 

vector of magnitude 1) that is  directed away from particle 1 along the r axis (Fig. 
13.1.2c). From Eq. 13.1.1, the force on particle 1 is then

     F 
→

   = G   
 m  1    m  2   ______ 

 r   2 
    r ̂  .   (13.1.3)

The gravitational force on particle 2 due to particle 1 has the same magni-
tude as the force on particle 1 but the opposite direction. These two forces form 
a third-law force pair, and we can speak of the gravitational force between the 
two particles as having a magnitude given by Eq. 13.1.1. This force between two 
particles is not altered by other objects, even if they are located between the par-
ticles. Put another way, no object can shield either particle from the gravitational 
force due to the other particle.

The strength of the gravitational force—that is, how strongly two particles 
with given masses at a given separation attract each other—depends on the value 
of the gravitational constant G. If G—by some miracle—were suddenly multi-
plied by a factor of 10, you would be crushed to the floor by Earth’s  attraction. If 
G were divided by this factor, Earth’s attraction would be so weak that you could 
jump over a building.

Nonparticles. Although Newton’s law of gravitation applies strictly to par-
ticles, we can also apply it to real objects as long as the sizes of the objects are 
small relative to the distance between them. The Moon and Earth are far enough 
apart so that, to a good approximation, we can treat them both as particles—but 
what about an  apple and Earth? From the point of view of the apple, the broad 
and level Earth, stretching out to the horizon beneath the apple, certainly does 
not look like a particle.

Newton solved the apple–Earth problem with the shell theorem:

(b)

F
1

2 r

Draw the vector with
its tail on particle 1 
to show the pulling.

(c)

A unit vector points 
along the radial axis.

r1

2 r

ˆ

rF
1

2

(a)

This is the pull on
particle 1 due to
particle 2.

Figure 13.1.2 (a) The gravitational 
force    F 

→
    on particle 1 due to par-

ticle 2 is an attractive force because 
 particle 1 is attracted to particle 2. 
(b) Force    F 

→
    is directed along a radial 

 coordinate axis r extending from par-
ticle 1 through particle 2. (c)    F 

→
    is in 

the direction of a unit vector   r ̂    along 
the r axis.

 A uniform spherical shell of matter attracts a particle that is outside the shell as 
if all the shell’s mass were concentrated at its center.

Earth can be thought of as a nest of such shells, one within another and each shell 
attracting a particle outside Earth’s surface as if the mass of that shell were at the 
center of the shell. Thus, from the apple’s point of view, Earth does behave like a par-
ticle, one that is located at the center of Earth and has a mass equal to that of Earth.

Third-Law Force Pair. Suppose that, as in Fig. 13.1.3, Earth pulls down on 
an apple with a force of magnitude 0.80 N. The apple must then pull up on Earth 
with a force of magnitude 0.80 N, which we take to act at the center of Earth. In 
the language of Chapter 5, these forces form a force pair in Newton’s third law. 
Although they are matched in magnitude, they produce different accelerations 
when the apple is  released. The acceleration of the apple is about 9.8 m/s2, the 
familiar acceleration of a falling body near Earth’s surface. The acceleration of 
Earth, however,  measured in a reference frame attached to the center of mass of 
the apple–Earth system, is only about 1 × 10−25 m/s2.

Checkpoint 13.1.1
A particle is to be placed, in turn, outside four objects, each of mass m: (1) a large 
uniform solid sphere, (2) a large uniform spherical shell, (3) a small uniform solid 
sphere, and (4) a small uniform shell. In each situation, the distance  between the  
particle and the center of the object is d. Rank the objects according to the  magnitude  
of the gravitational force they exert on the particle, greatest first.
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Gravitation and the Principle of Superposition
Given a group of particles, we find the net (or resultant) gravitational force on 
any one of them from the others by using the principle of superposition. This is a 
general principle that says a net effect is the sum of the individual effects. Here, 
the principle means that we first compute the individual gravitational forces that 
act on our selected particle due to each of the other particles. We then find the 
net force by adding these forces vectorially, just as we have done when adding 
forces in earlier chapters.

Let’s look at two important points in that last (probably quickly read) sen-
tence. (1) Forces are vectors and can be in different directions, and thus we must 
add them as vectors, taking into account their directions. (If two people pull on 
you in the opposite direction, their net force on you is clearly different than if 
they pull in the same direction.) (2) We add the individual forces. Think how 
impossible the world would be if the net force depended on some multiplying fac-
tor that varied from force to force depending on the situation, or if the presence 
of one force somehow amplified the magnitude of another force. No, thankfully, 
the world requires only simple vector addition of the forces.

For n interacting particles, we can write the principle of superposition for the 
gravitational forces on particle 1 as

      F 
→

    1,net   =    F 
→

    12   +    F 
→

    13   +    F 
→

    14   +    F 
→

    15   + . . . +    F 
→

    1n  .   (13.2.1)

Here     F 
→

    1,net    is the net force on particle 1 due to the other particles and, for exam-
ple,     F 

→
    13    is the force on particle 1 from particle 3. We can express this equation 

more compactly as a vector sum:

      F 
→

    1,net   =    ∑ 
i=2

  
n
     F 
→

    1i     . (13.2.2)

Real Objects. What about the gravitational force on a particle from a real 
(extended)  object? This force is found by dividing the object into parts small 
enough to treat as particles and then using Eq. 13.2.2 to find the vector sum of 
the forces on the particle from all the parts. In the limiting case, we can divide 

13.2 GRAVITATION AND THE PRINCIPLE OF SUPERPOSITION
Learning Objectives 
After reading this module, you should be able to . . .

13.2.1 If more than one gravitational force acts on a 
particle, draw a free-body diagram showing those 
forces, with the tails of the force vectors anchored 
on the particle.

13.2.2 If more than one gravitational force acts on a 
particle, find the net force by adding the individual 
forces as  vectors.

Key Ideas 
● Gravitational forces obey the principle of superposi-
tion; that is, if n particles interact, the net force     F 

→
    1,net    

on a  particle labeled particle 1 is the sum of the 
forces on it from all the other particles taken one at 
a time:

     F 
→

    1,net   =   ∑ 
i=2

  
n
     F 
→

    1i  ,   

in which the sum is a vector sum of the forces     F 
→

    1i    on 
 particle 1 from particles 2, 3, . . . , n. 

● The gravitational force     F 
→

    1    on a  particle from an 
extended body is found by first dividing the body into 
units of differential mass dm, each of which produces a 
differential force  d   F 

→
    on the particle, and then integrat-

ing over all those units to find the sum of those forces:

     F 
→

    1   =   
 
      d   F 

→
   .  
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Force     F 
→

    12    is directed in the  positive direction of the y 
axis (Fig. 13.2.1b) and has only the y component F12. Simi-
larly     F 

→
    13    is directed in the negative direction of the x axis 

and has only the x component −F13 (Fig. 13.2.1c). (Note 
something important: We draw the force diagrams with  
the tail of a force vector anchored on the particle experienc-
ing the force. Drawing them in other ways invites errors,  
especially on exams.)

To find the net force     F 
→

    1,net    on particle 1, we must add 
the two forces as vectors (Figs. 13.2.1d and e). We can do so 
on a vector-capable calculator. However, here we note that 
−F13 and F12 are actually the x and y components of     F 

→
    1,net   . 

Therefore, we can use Eq. 3.1.6 to find first the magnitude 
and then the direction of     F 

→
    1,net   . The magnitude is

  

 F  1,net  

  

=
  

 √ 
_______________

   ( F  12  )  2  +  (− F  13  )  2   

  

 

        =   √ 
__________________________________

   (4.00 ×  10  −6  N)2 + (−1.00 ×  10  −6  N)2          

 

  

=

  

4.1 ×  10  −6  N.

  

   

  

  
Relative to the positive direction of the x axis, Eq. 3.1.6 
gives the direction of     F 

→
    1,net    as

 θ =  tan  −1    
 F  12   _____ −  F  13  

   =  tan  −1    4.00 ×  10  −6   N  ______________  
− 1.00 ×  10  −6   N

   = − 76°. 

Is this a reasonable direction (Fig. 13.2.1f  )? No, because 
the direction of     F 

→
    1,net    must be between the directions 

of     F 
→

    12    and     F 
→

    13   . Recall from Chapter 3 that a calculator 
displays only one of the two possible answers to a tan−1 
function. We find the other answer by adding 180°:

 −76° + 180° = 104°, (Answer)

which is a reasonable direction for     F 
→

    1,net    (Fig. 13.2.1g).

  (  Answer )   

Figure 13.2.1a shows an arrangement of three particles, 
particle 1 of mass m1 = 6.0 kg and particles 2 and 3 of mass 
m2 = m3 = 4.0 kg, and distance a = 2.0 cm. What is the net 
gravitational force     F 

→
    1,net    on particle 1 due to the other  

particles?

KEY IDEAS

(1) Because we have particles, the magnitude of the gravita-
tional force on particle 1 due to either of the other particles 
is given by Eq. 13.1.1 (F = Gm1m2/r

2). (2) The direction of 
 either gravitational force on particle 1 is toward the particle 
responsible for it. (3) Because the forces are not along a sin-
gle axis, we cannot simply add or subtract their magnitudes 
or their components to get the net force. Instead, we must 
add them as vectors.

Calculations: From Eq. 13.1.1, the magnitude of the force  
    F 
→

    12    on particle 1 from particle 2 is

    F  12   =   
G m  1   m  2   _________ 

 a   2 
    

 =   
 (6.67 ×  10  −11  m  3  / kg ⋅  s  2 )  (6.0 kg)  (4.0 kg) 

    ___________________________________   
 (0.020 m)  2 

   

= 4.00 ×  10  −6  N. 

Similarly, the magnitude of force     F 
→

    13    on particle 1 from 
particle 3 is

    F  13   =   
G m  1   m  3   _________ 

 (2a)  2 
    

 =   
 (6.67 ×  10  −11  m  3  / kg ⋅  s  2 )  (6.0 kg)  (4.0 kg) 

    ___________________________________   
 (0.040 m)  2 

   

= 1.00 ×  10  −6  N. 

Sample Problem 13.2.1 Net gravitational force, 2D, three particles

the extended object into differential parts each of mass dm and each producing a 
differential force  d   F 

→
    on the particle. In this limit, the sum of Eq. 13.2.2 becomes 

an integral and we have

      
→

 F    1   =   
 
        d  

→
 F  ,   (13.2.3)

in which the integral is taken over the entire extended object and we drop the 
subscript “net.” If the extended object is a uniform sphere or a spherical shell, 
we can avoid the integration of Eq. 13.2.3 by assuming that the object’s mass is 
 concentrated at the object’s center and using Eq. 13.1.1.

additional examples, video, and practice available at WileyPLUS
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13.3 GRAVITATION NEAR EARTH’S SURFACE
Learning Objectives 
After reading this module, you should be able to . . .

13.3.1 Distinguish between the free-fall acceleration and 
the gravitational acceleration.

13.3.2 Calculate the gravitational acceleration near but 
outside a uniform, spherical astronomical body.

13.3.3 Distinguish between measured weight and the 
magnitude of the gravitational force.

Checkpoint 13.2.1
The figure shows four arrangements of three par-
ticles of equal masses. (a) Rank the arrangements 
according to the magnitude of the net gravitational 
force on the particle labeled m, greatest first. (b) In 
arrangement 2, is the direction of the net force closer 
to the line of length d or to the line of length D?

d

D

m

(1)

m
d

D

(2) (3) (4)

d D
m

m D

d

(a)

m3

m2

2a

a

m1 m1
x

y

(b)

x x

y

F12

m1

(c)

x

y

F13

m1

(d)

x

y

F1,net

F13

F12

m1

(e)

x

y

F1,net

F13

F12

( f )

x

y y

(g)

x

–76°

104°

This is the force
(pull) on particle 1
due to particle 2.

We want the forces
(pulls) on particle 1,
not the forces on
the other particles.

This is one way to
show the net force
on particle 1. Note
the head-to-tail
arrangement.

This is another way,
also a head-to-tail
arrangement.

A calculator’s inverse
tangent can give this
for the angle.

But this is the
correct angle.

This is the force
(pull) on particle 1
due to particle 3.

Figure 13.2.1 (a) An arrangement of three particles. The force on particle 1 due to (b) par-
ticle 2 and (c) particle 3. (d)–(g) Ways to combine the forces to get the net force magnitude and 
 orientation. In WileyPLUS, this figure is available as an animation with voiceover.

A
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Figure 13.3.1 The density of Earth as 
a function of distance from the cen-
ter. The limits of the solid inner core, 
the largely liquid outer core, and the 
solid mantle are shown, but the crust 
of Earth is too thin to show clearly 
on this plot.
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Table 13.3.1 Variation of ag with 
Altitude

Altitude 
(km)

ag 

(m/s2)
Altitude 
Example

0 9.83
Mean Earth  
  surface

8.8 9.80 Mt. Everest

36.6 9.71
Highest crewed 
  balloon

400 8.70
Space shuttle  
  orbit

35 700 0.225
Communications  
  satellite

Key Ideas 
● The gravitational acceleration ag of a particle (of 
mass m) is due solely to the gravitational force acting 
on it. When the particle is at distance r from the center 
of a uniform, spherical body of mass M, the magnitude 
F of the gravitational force on the particle is given by 
Eq. 13.1.1. Thus, by Newton’s second law,

F = mag,

which gives

  a  g   =   GM ____ 
 r   2 

  . 

● Because Earth’s mass is not distributed uniformly, 
because the planet is not perfectly spherical, and 
because it rotates, the actual free-fall acceleration    g →    
of a particle near Earth differs slightly from the gravita-
tional acceleration     a →    g   , and the particle’s weight (equal 
to mg) differs from the magnitude of the gravitational 
force on it.

Gravitation Near Earth’s Surface
Let us assume that Earth is a uniform sphere of mass M. The magnitude of the 
gravitational force from Earth on a particle of mass m, located outside Earth a 
distance r from Earth’s center, is then given by Eq. 13.1.1 as

   F = G    Mm ____ 
 r   2 

  .   (13.3.1)

If the particle is released, it will fall toward the center of Earth, as a result of the 
gravitational force    F 

→
   , with an acceleration we shall call the gravitational accelera-

tion     a →    g   . Newton’s second law tells us that magnitudes F and ag are related by

 F = mag. (13.3.2)

Now, substituting F from Eq. 13.3.1 into Eq. 13.3.2 and solving for ag, we find

    a  g   =   GM ____ 
 r   2 

   .  (13.3.3)

Table 13.3.1 shows values of ag computed for various altitudes above Earth’s 
 surface. Notice that ag is significant even at 400 km.

Since Module 5.1, we have assumed that Earth is an inertial frame by neglect-
ing its rotation. This simplification has allowed us to assume that the free-fall 
 acceleration g of a particle is the same as the particle’s gravitational acceleration 
(which we now call ag). Furthermore, we assumed that g has the constant value 
9.8 m/s2 any place on Earth’s surface. However, any g value measured at a given 
location will differ from the ag value calculated with Eq. 13.3.3 for that location 
for three reasons: (1) Earth’s mass is not distributed uniformly, (2) Earth is not 
a perfect sphere, and (3) Earth rotates. Moreover, because g differs from ag, the 
same three reasons mean that the measured weight mg of a particle differs from 
the magnitude of the gravitational force on the particle as given by Eq. 13.3.1. Let 
us now examine those reasons.

1. Earth’s mass is not uniformly distributed. The density (mass per unit volume) 
of Earth varies radially as shown in Fig. 13.3.1, and the density of the crust 
(outer section) varies from region to region over Earth’s surface. Thus, g var-
ies from region to region over the surface.

2. Earth is not a sphere. Earth is approximately an ellipsoid, flattened at the 
poles and bulging at the equator. Its equatorial radius (from its center point 
out to the equator) is greater than its polar radius (from its center point out 
to either north or south pole) by 21 km. Thus, a point at the poles is closer to 
the dense core of Earth than is a point on the equator. This is one reason the 
free-fall acceleration g  increases if you were to measure it while moving at 
sea level from the equator toward the north or south pole. As you move, you 
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are actually getting closer to the center of Earth and thus, by Newton’s law of 
gravitation, g increases.

3. Earth is rotating. The rotation axis runs through the north and south poles of 
Earth. An object located on Earth’s surface anywhere except at those poles 
must rotate in a circle about the rotation axis and thus must have a centripetal 
acceleration directed toward the center of the circle. This centripetal accelera-
tion requires a centripetal net force that is also directed toward that center.

To see how Earth’s rotation causes g to differ from ag, let us analyze a simple 
situation in which a crate of mass m is on a scale at the equator. Figure 13.3.2a 
shows this situation as viewed from a point in space above the north pole.

Figure 13.3.2b, a free-body diagram for the crate, shows the two forces on 
the crate, both acting along a radial r axis that extends from Earth’s center. The 
normal force     F 

→
    N    on the crate from the scale is directed outward, in the positive 

direction of the r axis. The gravitational force, represented with its equivalent  
m   a →    g   , is directed inward. Because it travels in a circle about the center of Earth 
as Earth turns, the crate has a centripetal acceleration    a →    directed toward Earth’s 
center. From Eq. 10.3.7 (ar = 𝜔2r), we know this acceleration is equal to 𝜔2R, 
where 𝜔 is Earth’s angular speed and R is the circle’s radius (approximately 
Earth’s radius). Thus, we can write Newton’s second law for forces along the 
r axis (Fnet,r = mar) as

 FN − mag = m(−𝜔2R). (13.3.4)

The magnitude FN of the normal force is equal to the weight mg read on the scale. 
With mg substituted for FN, Eq. 13.3.4 gives us

 mg = mag − m(𝜔2R), (13.3.5)

which says

   (   
measured

  weight   )    =   (    
magnitude of

   gravitational force  )    −   (    
mass times

   centripetal acceleration  )   . 

Thus, the measured weight is less than the magnitude of the gravitational force 
on the crate because of Earth’s rotation.

Figure 13.3.2 (a) A crate sitting on a scale at Earth’s equator, as seen by an observer 
 positioned on Earth’s rotation axis at some point above the north pole. (b) A free-body 
 diagram for the crate, with a radial r axis extending from Earth’s center. The gravita-
tional force on the crate is represented with its equivalent  m   a →    g   . The normal force on  
the crate from the scale is     F 

→
    N   . Because of Earth’s rotation, the crate has a centripetal 

acceleration    a →    that is directed toward Earth’s center.

North
pole

R

Scale

Crate

(a)

Two forces act
on this crate.

mag

r

(b)

Crate

a

FN

The normal force
is upward.

The gravitational
force is downward.

The net 
force is
toward
the center.
So, the 
crate’s
acceleration
is too.

13.3 GravitatioN Near eartH’s surfaCe
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Acceleration Difference. To find a corresponding expression for g and ag, we 
cancel m from Eq. 13.3.5 to write

 g = ag − 𝜔2R, (13.3.6)

which says

   (    free-fall  
acceleration

  )    =   (   gravitational   
acceleration

   )    −   (    centripetal  
acceleration

  )   . 

Thus, the measured free-fall acceleration is less than the gravitational accelera-
tion because of Earth’s rotation.

Equator. The difference between accelerations g and ag is equal to 𝜔2R and 
is greatest on the equator (for one reason, the radius of the circle traveled by the 
crate is greatest there). To find the difference, we can use Eq. 10.1.5 (𝜔 = ∆θ/∆t) 
and Earth’s radius R = 6.37 × 106 m. For one rotation of Earth, θ is 2𝜋 rad and 
the time period ∆t is about 24 h. Using these values (and converting hours to 
seconds), we find that g is less than ag by only about 0.034 m/s2 (small compared 
to 9.8 m/s2). Therefore, neglecting the difference in accelerations g and ag is often 
justified. Similarly, neglecting the difference between weight and the magnitude 
of the gravitational force is also often justified.

Checkpoint 13.3.1
For an ideal rotating planet with a uniform mass distribution, is the value of g at mid-
latitudes greater than, less than, or the same as the value at the equator?

where dag is the differential change in the gravitational 
acceleration due to the differential change dr in r. For the 
 astronaut, dr = h and r = 6.77 × 106 m. Substituting data 
into Eq. 13.3.8, we find

   da   g   = − 2    
 (6.67 ×  10  −11  m  3  / kg ⋅  s  2 )  (5.98 ×  10  24  kg) 

    ___________________________________   
 (6.77 ×  10  6  m)  

3
 
      (  1.70 m )   

= − 4.37 ×  10  −6  m / s  2 , 

where the ME value is taken from Appendix C. This 
result means that the gravitational acceleration of the 
astronaut’s feet toward Earth is slightly greater than the 
gravitational  acceleration of her head toward Earth. This 
difference in  acceleration (often called a tidal effect) tends 
to stretch her body, but the difference is so small that she 
would never even sense the stretching, much less suffer 
pain from it.

(b) If the astronaut is now “feet down” at the same 
orbital  radius r = 6.77 × 106 m about a black hole of mass 
Mh = 1.99 × 1031 kg (10 times our Sun’s mass), what is the 
difference between the gravitational acceleration at her 
feet and at her head? The black hole has a mathematical 
surface (event horizon) of radius Rh = 2.95 × 104 m. Noth-
ing, not even light, can escape from that surface or any-
where inside it. Note that the astronaut is well outside the 
surface (at r = 229Rh).

(Answer)

(a) An astronaut whose height h is 1.70 m floats “feet 
down” in an orbiting space shuttle at distance r = 6.77 × 
106 m away from the center of Earth. What is the differ-
ence between the gravitational acceleration at her feet 
and at her head?

KEY IDEAS

We can approximate Earth as a uniform sphere of mass  
ME. Then, from Eq. 13.3.3, the gravitational acceleration 
at any distance r from the center of Earth is

    a  g   =   
G  M  E  

 ______ 
 r   2 

  .   (13.3.7)

We might simply apply this equation twice, first with 
r = 6.77 × 106 m for the location of the feet and then with 
r = 6.77 × 106 m + 1.70 m for the location of the head. 
However, a calculator may give us the same value for ag 
twice, and thus a difference of zero, because h is so much 
smaller than r. Here’s a more promising approach: Because 
we have a differential change dr in r between the astro-
naut’s feet and head, we should differentiate Eq. 13.3.7  
with respect to r. 

Calculations: The differentiation gives us

   d a  g   = − 2   
G M  E  

 ______ 
 r   3 

   dr,   (13.3.8)

Sample Problem 13.3.1 Difference in acceleration at head and feet

c13Gravitation.indd   380 05/05/21   7:24 PM



38113.4 GravitatioN iNside eartH

Calculations: We again have a differential change dr in  
r between the astronaut’s feet and head, so we can again 
use Eq. 13.3.8. However, now we substitute Mh = 1.99 × 
1031 kg for ME. We find

   da   g   = − 2    
 (6.67 ×  10  −11  m  3  / kg ⋅  s  2 )  (1.99 ×  10  31  kg) 

    ___________________________________   
 (6.77 ×  10  6  m)  

3
 
      (  1.70 m )   

= − 14.5 m / s  2 . (Answer)

This means that the gravitational acceleration of the 
astronaut’s feet toward the black hole is noticeably larger 
than that of her head. The resulting tendency to stretch 
her body would be bearable but quite painful. If she 
drifted closer to the black hole, the stretching tendency 
would increase drastically.

13.4 GRAVITATION INSIDE EARTH
Learning Objectives 
After reading this module, you should be able to . . .

13.4.1 Identify that a uniform shell of matter exerts 
no net gravitational force on a particle located 
inside it.

13.4.2 Calculate the gravitational force that is exerted 
on a particle at a given radius inside a nonrotating 
uniform sphere of matter.

Key Ideas 
● A uniform shell of matter exerts no net gravitational 
force on a particle located inside it.

● The gravitational force    F 
→

    on a particle inside a uniform 
solid sphere, at a distance r from the center, is due only 
to mass Mins in an “inside sphere” with that radius r:

  M  ins   =   4 _ 3   π r   3 ρ =   M ___ 
 R   3 

    r   3 , 

where ρ is the solid sphere’s density, R is its radius, 
and M is its mass. We can assign this inside mass to 
be that of a particle at the center of the solid sphere 
and then apply Newton’s law of gravitation for par-
ticles. We find that the magnitude of the force acting 
on mass m is

 F =   GmM ______ 
 R   3 

   r. 

Gravitation Inside Earth
Newton’s shell theorem can also be applied to a situation in which a particle is 
 located inside a uniform shell, to show the following:

 A uniform shell of matter exerts no net gravitational force on a particle located 
 inside it.

Caution: This statement does not mean that the gravitational forces on the 
particle from the various elements of the shell magically disappear. Rather, it 
means that the sum of the force vectors on the particle from all the elements 
is zero.

If Earth’s mass were uniformly distributed, the gravitational force acting 
on  a  particle would be a maximum at Earth’s surface and would decrease as 
the  particle moved outward, away from the planet. If the particle were to move 
 inward, perhaps down a deep mine shaft, the gravitational force would change 
for  two  reasons. (1) It would tend to increase because the particle would be 
 moving closer to the center of Earth. (2) It would tend to decrease because the 

additional examples, video, and practice available at WileyPLUS
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thickening shell of material lying outside the particle’s radial position would not 
exert any net force on the particle.

To find an expression for the gravitational force inside a uniform Earth, let’s 
use the plot in Pole to Pole, an early science fiction story by George Griffith. 
Three explorers attempt to travel by capsule through a naturally formed (and, 
of course, fictional) tunnel directly from the south pole to the north pole.  Figure 
13.4.1 shows the capsule (mass m) when it has fallen to a distance r from Earth’s 
center. At that moment, the net gravitational force on the capsule is due to 
the mass Mins inside the sphere with radius r (the mass enclosed by the dashed 
outline), not the mass in the outer spherical shell (outside the dashed outline). 
 Moreover, we can assume that the inside mass Mins is concentrated as a particle 
at Earth’s center. Thus, we can write Eq. 13.1.1, for the magnitude of the gravita-
tional force on the capsule, as

    F =   
Gm M  ins   ________ 

 r   2 
  .   (13.4.1)

Because we assume a uniform density ρ, we can write this inside mass in 
terms of Earth’s total mass M and its radius R:

  

density

  

=

  

  inside mass  _____________  
inside volume

   =   total mass ____________  
total volume

  ,

    
ρ

  
=

  
  
 M  ins   ____ 
 4 _ 3  π r   3 

   =   M _____ 
 4 _ 3  π R   3 

  .
   

Solving for Mins we find

    M  ins   =   4 _ 3  π  r   3  ρ =   M ___ 
 R   3 

    r   3 .   (13.4.2)

Substituting the second expression for Mins into Eq. 13.4.1 gives us the magnitude 
of the gravitational force on the capsule as a function of the capsule’s distance r 
from Earth’s center:

   F =   GmM ______ 
 R   3 

  r.   (13.4.3)

According to Griffith’s story, as the capsule approaches Earth’s center, the grav-
itational force on the explorers becomes alarmingly large and, exactly at the cen-
ter, it suddenly but only momentarily disappears. From Eq. 13.4.3 we see that, 
in fact, the force magnitude decreases linearly as the capsule approaches the 
center, until it is zero at the center. At least Griffith got the zero-at-the-center 
detail correct.

Equation 13.4.3 can also be written in terms of the force vector    F 
→

    and the 
capsule’s position vector    r →    along a radial axis extending from Earth’s center. Let-
ting K represent the collection of constants in Eq. 13.4.3, we can rewrite the force 
in vector form as

     F 
→

   = − K   r →  ,   (13.4.4)

in which we have inserted a minus sign to indicate that    F 
→

    and    r →    have opposite 
directions. Equation 13.4.4 has the form of Hooke’s law (Eq. 7.4.1,    F 

→
   = − k  d 

→
   ). 

Thus, under the idealized conditions of the story, the capsule would oscillate like 
a block on a spring, with the center of the oscillation at Earth’s center. After the 
capsule had fallen from the south pole to Earth’s center, it would travel from 
the center to the north pole (as Griffith said) and then back again, repeating the 
cycle forever.

For the real Earth, which certainly has a nonuniform distribution of mass (Fig. 
13.3.1), the force on the capsule would initially increase as the capsule descends. The 
force would then reach a maximum at a certain depth, and only then would it begin 
to decrease as the capsule further descends.

m

r

Mins

Figure 13.4.1 A capsule of mass m 
falls from rest through a tunnel that 
connects Earth’s south and north 
poles. When the capsule is at distance 
r from Earth’s center, the portion 
of Earth’s mass that is contained in a 
sphere of that radius is Mins.
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Gravitational Potential Energy
In Module 8.1, we discussed the gravitational potential energy of a particle–Earth 
system. We were careful to keep the particle near Earth’s surface, so that we 
could regard the gravitational force as constant. We then chose some reference 
configuration of the system as having a gravitational potential energy of zero. 
Often, in this configuration the particle was on Earth’s surface. For particles not 
on Earth’s surface, the gravitational potential energy decreased when the separa-
tion between the particle and Earth decreased.

Here, we broaden our view and consider the gravitational potential energy U 
of two particles, of masses m and M, separated by a distance r. We again choose a 
reference configuration with U equal to zero. However, to simplify the equations, 

13.5 GRAVITATIONAL POTENTIAL ENERGY
Learning Objectives 
After reading this module, you should be able to . . .

13.5.1 Calculate the gravitational potential energy of a 
system of particles (or uniform spheres that can be 
treated as  particles).

13.5.2 Identify that if a particle moves from an initial 
point to a final point while experiencing a gravita-
tional force, the work done by that force (and thus 
the change in gravitational potential energy) is inde-
pendent of which path is taken.

13.5.3 Using the gravitational force on a particle near 
an astronomical body (or some second body that is 
fixed in place), calculate the work done by the force 
when the body moves.

13.5.4 Apply the conservation of mechanical energy 
(including gravitational potential energy) to a particle 
moving relative to an astronomical body (or some 
second body that is fixed in place).

13.5.5 Explain the energy requirements for a particle to 
escape from an astronomical body (usually assumed 
to be a uniform sphere).

13.5.6 Calculate the escape speed of a particle in leav-
ing an astronomical body.

Key Ideas 
● The gravitational potential energy U(r) of a system 
of two particles, with masses M and m and separated 
by a distance r, is the negative of the work that would 
be done by the gravitational force of either particle 
acting on the other if the separation between the 
 particles were changed from infinite (very large) to r. 
This  energy is

U = −    GMm ______ r     (gravitational potential energy).

● If a system contains more than two particles, its 
total gravitational potential energy U is the sum of 
the terms representing the potential energies of 

all the pairs. As an example, for three particles, of 
masses m1, m2, and m3,

  U = −   (    
G  m  1   m  2   ________  r  12  

   +   
G  m  1   m  3   ________  r  13  

   +   
G  m  2    m  3   ________  r  23  

   )   .  

● An object will escape the gravitational pull of an 
astronomical body of mass M and radius R (that is, 
it will reach an infinite distance) if the object’s speed 
near the body’s surface is at least equal to the escape 
speed, given by

  v =  √ 
_____

   2GM _____ 
R

    .  

Checkpoint 13.4.1
(a) For an idealized planet (without significant rotation), does the gravitational 
acceleration increase, decrease, or remain the same if we move down a vertical 
tunnel? (b) At a point at radius r inside the planet, which determines the gravitational 
acceleration: the mass in the spherical shell with inner radius r or the mass in the 
sphere of radius r?
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the separation distance r in the reference configuration is now large enough 
to be approximated as infinite. As before, the gravitational potential energy 
decreases when the separation decreases. Since U = 0 for r = ∞, the poten-
tial energy is negative for any finite separation and becomes progressively 
more negative as the particles move closer together.

With these facts in mind and as we shall justify next, we take the gravita-
tional potential energy of the two-particle system to be

   U = −   GMm ______ r      (gravitational potential energy) .   (13.5.1)

Note that U(r) approaches zero as r approaches infinity and that for any 
finite value of r, the value of U(r) is negative.
Language. The potential energy given by Eq. 13.5.1 is a property of the sys-

tem of two particles rather than of either particle alone. There is no way to divide 
this energy and say that so much belongs to one particle and so much to the other. 
However, if M ⪢ m, as is true for Earth (mass M) and a baseball (mass m), we 
often speak of “the potential energy of the baseball.” We can get away with this 
because, when a baseball moves in the vicinity of Earth, changes in the potential 
energy of the baseball–Earth system appear almost entirely as changes in the 
kinetic  energy of the baseball, since changes in the kinetic energy of Earth are too 
small to be  measured. Similarly, in Module 13.7 we shall speak of “the potential 
energy of an artificial satellite” orbiting Earth, because the satellite’s mass is so 
much smaller than Earth’s mass. When we speak of the potential energy of bod-
ies of comparable mass, however, we have to be careful to treat them as a system.

Multiple Particles. If our system contains more than two particles, we con-
sider each pair of  particles in turn, calculate the gravitational potential energy of 
that pair with Eq. 13.5.1 as if the other particles were not there, and then algebra-
ically sum the results. Applying Eq. 13.5.1 to each of the three pairs of Fig. 13.5.1, 
for example, gives the potential energy of the system as

   U = −   (    
G m  1   m  2   ________  r  12  

   +   
G m  1   m  3   ________  r  13  

   +   
G m  2   m  3   ________  r  23  

   )   .   (13.5.2)

Proof of Equation 13.5.1
Let us shoot a baseball directly away from Earth along the path in Fig. 13.5.2. We 
want to find an expression for the gravitational potential energy U of the ball at 
point P along its path, at radial distance R from Earth’s center. To do so, we first 
find the work W done on the ball by the gravitational force as the ball travels 
from point P to a great (infinite) distance from Earth. Because the gravitational 
force    F 

→
   (r)   is a variable force (its magnitude depends on r), we must use the tech-

niques of Module 7.5 to find the work. In vector notation, we can write

   W =   
R

  
∞
     F 
→

    (  r )     ⋅ d  r →  .   (13.5.3)

The integral contains the scalar (or dot) product of the force    F 
→

    (  r )     and the 
 differential displacement vector  d   r →    along the ball’s path. We can expand that 
product as

     F 
→

  (r) ⋅ d   r →   = F(r) dr cos ϕ,   (13.5.4)

where 𝜙 is the angle between the directions of    F 
→

    (  r )     and  d   r →   . When we substitute 
180° for 𝜙 and Eq. 13.1.1 for F(r), Eq. 13.5.4 becomes

   F 
→

  (r) ⋅ d   r →   = −   GMm ______ 
 r   2 

   dr, 

Figure 13.5.1 A system consisting of three 
particles. The gravitational potential energy 
of the system is the sum of the gravitational 
potential energies of all three pairs of 
particles.

m2m1

m3

r12

r13 r23

This pair has
potential energy.

Here too.

Here too.

Figure 13.5.2 A baseball is shot 
directly away from Earth, through 
point P at radial distance R from 
Earth’s center. The gravitational 
force    F 

→
    on the ball and a differential 

 displacement vector d   r →    are shown, 
both directed along a radial r axis.

M

P

r

dr

R

F

Work is done
as the baseball
moves upward.
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where M is Earth’s mass and m is the mass of the ball.
Substituting this into Eq. 13.5.3 and integrating give us

  W =  − GMm   
R

  
∞
    1 __ 
 r   2 

    dr =   [    GMm ______ r   ]    R  
∞
 

= 0 −   GMm ______ 
R

   = −   GMm ______ 
R

  ,  (13.5.5)

where W is the work required to move the ball from point P (at distance R) to 
 infinity. Equation 8.1.1 (∆U = −W) tells us that we can also write that work in 
terms of potential energies as

U∞ − U = −W.

Because the potential energy U∞ at infinity is zero, U is the potential energy  
at P, and W is given by Eq. 13.5.5, this equation becomes

 U = W = −   GMm ______ 
R

  . 

Switching R to r gives us Eq. 13.5.1, which we set out to prove.

Path Independence
In Fig. 13.5.3, we move a baseball from point A to point G along a path consist-
ing of three radial lengths and three circular arcs (centered on Earth). We are 
interested in the total work W done by Earth’s gravitational force    F 

→
    on the ball 

as it moves from A to G. The work done along each circular arc is zero, because 
the  direction of    F 

→
    is perpendicular to the arc at every point. Thus, W is the sum of 

only the works done by    F 
→

    along the three radial lengths.
Now, suppose we mentally shrink the arcs to zero. We would then be moving 

the ball directly from A to G along a single radial length. Does that change W? 
No. Because no work was done along the arcs, eliminating them does not change 
the work. The path taken from A to G now is clearly different, but the work done 
by    F 

→
    is the same.

We discussed such a result in a general way in Module 8.1. Here is the 
point: The gravitational force is a conservative force. Thus, the work done by 
the gra v itational force on a particle moving from an initial point i to a final 
point f is  independent of the path taken between the points. From Eq. 8.1.1, 
the change ∆U in the gravitational potential energy from point i to point f is 
given by

 ∆U = Uf − Ui = −W. (13.5.6)

Since the work W done by a conservative force is independent of the actual path 
taken, the change ∆U in gravitational potential energy is also independent of the 
path taken.

Potential Energy and Force
In the proof of Eq. 13.5.1, we derived the potential energy function U(r) from the 
force function    F 

→
    (  r )    . We should be able to go the other way—that is, to start from 

the potential energy function and derive the force function. Guided by Eq. 8.3.2 
(F(x) = −dU(x)/dx), we can write

   
F

  
=

  
−   dU ___ 

dr
   = −   d ___ 

dr
     (  −   GMm ______ r   )   

  
 
    

 
  
 =

  
−   GMm ______ 

 r   2 
  .

    
(13.5.7)

This is Newton’s law of gravitation (Eq. 13.1.1). The minus sign indicates that the 
force on mass m points radially inward, toward mass M.

Figure 13.5.3 Near Earth, a baseball is 
moved from point A to point G along 
a path  consisting of radial lengths and 
circular arcs.

F

E

G

D

A

CB

Earth

Actual path
from A to G
is irrelevant.

13.5 GravitatioNaL PoteNtiaL eNerGy
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Escape Speed
If you fire a projectile upward, usually it will slow, stop momentarily, and return 
to Earth. There is, however, a certain minimum initial speed that will cause it to 
move upward forever, theoretically coming to rest only at infinity. This minimum 
initial speed is called the (Earth) escape speed.

Consider a projectile of mass m, leaving the surface of a planet (or some 
other astronomical body or system) with escape speed v. The projectile has a 
 kinetic energy K given by   1 _ 2 m v   2   and a potential energy U given by Eq. 13.5.1:

 U = −   GMm ______ 
R

  , 

in which M is the mass of the planet and R is its radius.
When the projectile reaches infinity, it stops and thus has no kinetic energy. 

It also has no potential energy because an infinite separation between two bodies 
is our zero-potential-energy configuration. Its total energy at infinity is therefore 
zero. From the principle of conservation of energy, its total energy at the planet’s 
surface must also have been zero, and so

 K + U =   1 _ 2  m v   2  +   (  −  GMm ______ 
R

   )    = 0. 

This yields   v =  √ 
______

   2GM _____ 
R

  .     (13.5.8)

Note that v does not depend on the direction in which a projectile is fired 
from a planet. However, attaining that speed is easier if the projectile is fired in 
the  direction the launch site is moving as the planet rotates about its axis. For 
 example, rockets are launched eastward at Cape Canaveral to take advantage of 
the Cape’s eastward speed of 1500 km/h due to Earth’s rotation.

Equation 13.5.8 can be applied to find the escape speed of a projectile from 
any astronomical body, provided we substitute the mass of the body for M and 
the radius of the body for R. Table 13.5.1 shows some escape speeds.

Table 13.5.1 Some Escape Speeds

Body Mass (kg) Radius (m) Escape Speed (km/s)

Ceresa 1.17 × 1021 3.8 × 105 0.64
Earth’s moona 7.36 × 1022 1.74 × 106 2.38
Earth 5.98 × 1024 6.37 × 106 11.2
Jupiter 1.90 × 1027 7.15 × 107 59.5
Sun 1.99 × 1030 6.96 × 108 618
Sirius Bb 2 × 1030 1 × 107 5200
Neutron starc 2 × 1030 1 × 104 2 × 105

aThe most massive of the asteroids.
bA white dwarf (a star in a final stage of evolution) that is a companion of the bright star Sirius.
cThe collapsed core of a star that remains after that star has exploded in a supernova.

Checkpoint 13.5.1
You move a ball of mass m away from a sphere of mass M. (a) Does the gravitational 
potential energy of the system of ball and sphere increase or decrease? (b) Is posi-
tive work or negative work done by the gravitational force between the ball and 
the sphere?
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Sample Problem 13.5.1 Asteroid falling from space, mechanical energy

An asteroid, headed directly toward Earth, has a speed 
of 12 km/s relative to the planet when the asteroid is 10 
Earth radii from Earth’s center. Neglecting the effects of 
Earth’s  atmosphere on the asteroid, find the asteroid’s 
speed vf when it reaches Earth’s surface.

KEY IDEAS

Because we are to neglect the effects of the atmosphere on 
the asteroid, the mechanical energy of the asteroid–Earth 
system is conserved during the fall. Thus, the final mechanical 
energy (when the asteroid reaches Earth’s surface) is equal 
to the initial mechanical  energy. With kinetic energy K and 
gravitational potential  energy U, we can write this as

 Kf + Uf = Ki + Ui. (13.5.9)

Also, if we assume the system is  isolated, the system’s 
linear momentum must be conserved during the fall. There-
fore, the momentum change of the  asteroid and that of Earth 
must be equal in magnitude and  opposite in sign. However, 
because Earth’s mass is so much greater than the asteroid’s 
mass, the change in Earth’s speed is  negligible  relative to 
the change in the asteroid’s speed. So, the change in Earth’s 
kinetic energy is also negligible. Thus, we can  assume that the 
kinetic energies in Eq. 13.5.9 are those of the asteroid alone.

Calculations: Let m represent the asteroid’s mass and M 
represent Earth’s mass (5.98 × 1024 kg). The asteroid is 

initially at  distance 10RE and finally at distance RE, where 
RE is Earth’s radius (6.37 × 106 m). Substituting Eq. 13.5.1 
for U and   1 _ 2 m v   2   for K, we rewrite Eq. 13.5.9 as

   1 _ 2  m v  f  2  −   GMm ______ 
 R  E  

   =   1 _ 2  m v  i  2  −   GMm ______ 
10 R  E  

  . 

Rearranging and substituting known values, we find

  

 v  f  2 

  

=

  

 v  i  2  +   2GM _____ 
 R  E  

     (  1 −   1 ___ 
10

   )    

   
 
  
 =

  
 (12 ×  10  3  m / s)  

2
 
   

 
  

 
  

+   
2 (6.67 ×  10  −11    m  3  / kg ⋅  s  2 )  (5.98 ×  10  24  kg) 

    ____________________________________   
6.37 ×  10  6  m 

   0.9
      

 

  

=

  

2.567 ×  10  8   m  2  /  s  2 ,

   

and    v  f   = 1.60 ×  10  4  m / s = 16 km / s.     (  Answer )     

At this speed, the asteroid would not have to be partic-
ularly large to do considerable damage at impact. If it were 
only 5 m across, the impact could release about as much 
energy as the nuclear explosion at Hiroshima. Alarmingly, 
about 500  million asteroids of this size are near Earth’s 
orbit, and in 1994 one of  them apparently penetrated 
Earth’s atmosphere and  exploded 20 km above the South 
Pacific (setting off  nuclear-explosion warnings on six mili-
tary satellites). 

13.6 PLANETS AND SATELLITES: KEPLER’S LAWS
Learning Objectives 
After reading this module, you should be able to . . .

13.6.1 Identify Kepler’s three laws.
13.6.2 Identify which of Kepler’s laws is equivalent to 

the law of conservation of angular momentum.
13.6.3 On a sketch of an elliptical orbit, identify the 

semimajor axis, the eccentricity, the perihelion, the 
aphelion, and the focal points.

13.6.4 For an elliptical orbit, apply the relationships 
between the semimajor axis, the eccentricity, the 
perihelion, and the aphelion.

13.6.5 For an orbiting natural or artificial satellite, apply 
Kepler’s relationship between the orbital period and 
radius and the mass of the astronomical body being 
orbited.

Key Ideas 
● The motion of satellites, both natural and artificial, is 
governed by Kepler’s laws:

1.  The law of orbits. All planets move in elliptical orbits 
with the Sun at one focus.

2.  The law of areas. A line joining any planet to the Sun 
sweeps out equal areas in equal time intervals. (This 
statement is equivalent to conservation of angular 
 momentum.)

3.  The law of periods. The square of the period T of any 
planet is proportional to the cube of the semimajor 
axis a of its orbit. For circular orbits with radius r,

   T   2  =   (    4  π   2  ____ 
GM

   )    r   3   
 
(law of periods),

 
  

where M is the mass of the attracting body—the Sun 
in the case of the Solar System. For elliptical plan-
etary orbits, the semi major axis a is substituted for r.

additional examples, video, and practice available at WileyPLUS
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Planets and Satellites: Kepler’s Laws
The motions of the planets, as they seemingly wander against the background 
of the stars, have been a puzzle since the dawn of history. The “loop-the-loop” 
 motion of Mars, shown in Fig. 13.6.1, was particularly baffling. Johannes Kepler 
(1571–1630), after a lifetime of study, worked out the empirical laws that govern 
these motions. Tycho Brahe (1546–1601), the last of the great astronomers to 
make observations without the help of a telescope, compiled the extensive data 
from which Kepler was able to derive the three laws of planetary motion that now 
bear Kepler’s name. Later, Newton (1642–1727) showed that his law of gravita-
tion leads to Kepler’s laws.

In this section we discuss each of Kepler’s three laws. Although here we  apply 
the laws to planets orbiting the Sun, they hold equally well for satellites,  either 
natural or artificial, orbiting Earth or any other massive central body.

1. THE LAW OF ORBITS: All planets move in elliptical orbits, with the Sun at 
one focus.

 2. THE LAW OF AREAS: A line that connects a planet to the Sun sweeps out 
equal areas in the plane of the planet’s orbit in equal time intervals; that is, the 
rate dA/dt at which it sweeps out area A is constant.

Figure 13.6.2 shows a planet of mass m moving in such an orbit around the Sun, 
whose mass is M. We assume that M ⪢ m so that the center of mass of the planet–
Sun system is approximately at the center of the Sun.

The orbit in Fig. 13.6.2 is described by giving its semimajor axis a and its 
 eccentricity e, the latter defined so that ea is the distance from the center of the 
ellipse to either focus F or F′. An eccentricity of zero corresponds to a circle, in 
which the two foci merge to a single central point. The eccentricities of the plan-
etary orbits are not large; so if the orbits are drawn to scale, they look circular. 
The eccentricity of the ellipse of Fig. 13.6.2, which has been exaggerated for clar-
ity, is 0.74. The eccentricity of Earth’s orbit is only 0.0167.

Qualitatively, this second law tells us that the planet will move most slowly when 
it is farthest from the Sun and most rapidly when it is nearest to the Sun. As it 
turns out, Kepler’s second law is totally equivalent to the law of conservation of 
angular momentum. Let us prove it.

The area of the shaded wedge in Fig. 13.6.3a closely approximates the area 
swept out in time ∆t by a line connecting the Sun and the planet, which are 
 separated by distance r. The area ∆A of the wedge is approximately the area of 

Figure 13.6.3 (a) In time ∆t, the line r connecting the planet to the Sun moves through an 
angle ∆θ, sweeping out an area ∆A (shaded). (b) The linear momentum    p →    of the planet 
and the components of    p →   .

M

Δ ΔA
r

r Δ

M

r

p⊥

pr

(a) (b)

SunSun

p

The planet sweeps out
this area.

These are the 
two momentum
components.θ

θ

θ θ

Figure 13.6.1 The path seen from 
Earth for the planet Mars as it 
moved against a background of the 
constellation Capricorn during 1971. 
The planet’s position on four days  
is marked. Both Mars and Earth are  
moving in orbits around the Sun 
so that we see the  position of Mars 
 relative to us; this relative motion 
sometimes results in an apparent 
loop in the path of Mars.

July 26
September 4

June 6October 14

Figure 13.6.2 A planet of mass m 
moving in an elliptical orbit around 
the Sun. The Sun, of mass M, is at 
one focus F of the ellipse. The other 
focus is Fʹ, which is located in empty 
space. The semimajor axis a of the 
ellipse, the perihelion (nearest the 
Sun) distance Rp, and the aphelion 
(farthest from the Sun) distance Ra 
are also shown.

RaRp

M

m

a

ea ea
F F'

r

The Sun is at
one of the two
focal points.

θ
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a triangle with base r∆θ and height r. Since the area of a triangle is one-half of the 
base times the height,  ∆A ≈  1 _ 2   r   2 ∆θ . This expression for ∆A  becomes more exact 
as ∆t (hence ∆θ) approaches zero. The instantaneous rate at which area is being 
swept out is then

     dA ___ 
dt

   =   1 _ 2   r   2    dθ ___ 
dt

   =   1 _ 2    r   2 ω,   (13.6.1)

in which 𝜔 is the angular speed of the line connecting Sun and planet, as the line 
rotates around the Sun.

Figure 13.6.3b shows the linear momentum    p →    of the planet, along with the 
 radial and perpendicular components of    p →   . From Eq. 11.5.3 (L = rp⊥), the mag-
nitude of the angular momentum    L 

→
    of the planet about the Sun is given by the 

product of r and p⊥, the component of    p →    perpendicular to r. Here, for a planet of 
mass m,

   
L

  
=

  
r p  ⊥   =  (r)  (m v  ⊥  )  =  (r)  (mωr) 

  
 
    

 
  
=

  
m r   2 ω,

    
(13.6.2)

where we have replaced   ν  ⊥    with its equivalent 𝜔r (Eq. 10.3.2). Eliminating r2𝜔 
 between Eqs. 13.6.1 and 13.6.2 leads to

     dA ___ 
dt

   =   L ___ 
2m

  .   (13.6.3)

If dA/dt is constant, as Kepler said it is, then Eq. 13.6.3 means that L must also be  
constant—angular momentum is conserved. Kepler’s second law is indeed equiv-
alent to the law of conservation of angular momentum.

 3. THE LAW OF PERIODS: The square of the period of any planet is propor-
tional to the cube of the semimajor axis of its orbit.

To see this, consider the circular orbit of Fig. 13.6.4, with radius r (the radius of 
a  circle is equivalent to the semimajor axis of an ellipse). Applying Newton’s 
 second law (F = ma) to the orbiting planet in Fig. 13.6.4 yields

    GMm ______ 
 r   2 

   = (m) ( ω  2 r) .  (13.6.4)

Here we have substituted from Eq. 13.1.1 for the force magnitude F and used 
Eq. 10.3.7 to substitute 𝜔2r for the centripetal acceleration. If we now use Eq. 10.3.4 
to replace 𝜔 with 2𝜋/T, where T is the period of the motion, we obtain Kepler’s 
third law:

   T    2  =   (     4  π   2  ____ 
GM

   )    r   3      (law of periods). (13.6.5)

The quantity in parentheses is a constant that depends only on the mass M of the 
central body about which the planet orbits.

Equation 13.6.5 holds also for elliptical orbits, provided we replace r 
with a, the semimajor axis of the ellipse. This law predicts that the ratio T2/a3 
has essentially the same value for every planetary orbit around a given massive 
body. Table 13.6.1 shows how well it holds for the orbits of the planets of the 
Solar System.

Checkpoint 13.6.1
Satellite 1 is in a certain circular orbit around a planet, while satellite 2 is in a larger 
circular orbit. Which satellite has (a) the longer period and (b) the greater speed?

Table 13.6.1 Kepler’s Law of  
Periods for the Solar System

Planet

Semimajor 
Axis  

a (1010 m)
Period 
T (y)

T2/a3  
(10−34  
y2/m3)

Mercury 5.79 0.241 2.99
Venus 10.8 0.615 3.00
Earth 15.0 1.00 2.96
Mars 22.8 1.88 2.98
Jupiter 77.8 11.9 3.01
Saturn 143 29.5 2.98
Uranus 287 84.0 2.98
Neptune 450 165 2.99
Pluto 590 248 2.99

Figure 13.6.4 A planet of mass m 
moving around the Sun in a circular 
orbit of radius r.

M

r

m

θ

13.6 PLaNets aNd sateLLites: KePLer’s Laws
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Sample Problem 13.6.1 Detecting a supermassive black hole

Figure 13.6.5 shows the observed orbit of the star S2 as the 
star moves around a mysterious and unobserved object 
called Sagittarius A* (pronounced “A star”), which is at 
the center of our Milky Way Galaxy. In 2020, Reinhard 
Genzel and Andrea Ghez won the Nobel Prize in phys-
ics for these observations. S2 orbits Sagittarius A* with 
a period of T = 15.2 y and with a semimajor axis of a = 
5.50 light-days (=  1.4256 ×  10  14   m). What is the mass M of 
Sagittarius A*?

KEY IDEA

The period T and the semimajor axis a of the orbit are 
related to the mass M of Sagittarius A* according to 
Kepler’s law of periods.

Calculations: From Eq. 13.6.5, with a replacing the 
radius r of a circular orbit, we have

  T    2  =  (  4 π   2  ____ 
GM

  )  a   3 . 

Solving for M and substituting the given data lead us to

 M =   4 π   2  a   3  ______ 
G T    2 

  

=   
4 π   2 (1.4256 ×  10  14   m)  3 

   __________________________________________     
(6.67 ×  10−  11  N ⋅  m  2  /kg  2 )[(15.2 y)(3.16 ×  10  7   s/y)]  2 

  

= 7.43 ×  10  36  kg. 

To figure out what Sagittarius A* might be, let’s divide 
this mass by the mass of our Sun (MSun = 1.99 × 1030 kg) 
to find that

M = (3.7 × 106)MSun.

Sagittarius A* has a mass of 3.7 million Suns! However, it 
has not (yet) been imaged. Thus, it is an extremely com-
pact object. Such a huge mass in such a small object leads 
to the reasonable conclusion that this object is a super-
massive black hole. In fact, evidence is mounting that a 
supermassive black hole lurks at the center of most galax-
ies. Movies of the stars orbiting Sagittarius A* are avail-
able on the Web; search for “black hole galactic center.”

Figure 13.6.5 The orbit of star S2 about Sagittarius A* (Sgr A*). 
The elliptical orbit appears skewed because we do not see it 
form directly above the orbital plane. Uncertainties in the loca-
tion of S2 are indicated by the crossbars. 
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13.7 SATELLITES: ORBITS AND ENERGY
Learning Objectives 
After reading this module, you should be able to . . .

13.7.1 For a satellite in a circular orbit around an astro-
nomical body, calculate the gravitational potential 
energy, the kinetic energy, and the total energy.

13.7.2 For a satellite in an elliptical orbit, calculate the 
total energy.

Key Ideas 
● When a planet or satellite with mass m moves in a 
circular orbit with radius r, its potential energy U and 
kinetic energy K are given by

  U = −   GMm ______ r    and  K =   GMm ______ 
2r

  .  

The mechanical energy E = K + U is then

 E = −   GMm ______ 
2r

  . 

For an elliptical orbit of semimajor axis a,

 E = −   GMm _______ 
2a

  . 

additional examples, video, and practice available at WileyPLUS
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Satellites: Orbits and Energy
As a satellite orbits Earth in an elliptical path, both its speed, which fixes its  kinetic 
energy K, and its distance from the center of Earth, which fixes its gravitational 
potential energy U, fluctuate with fixed periods. However, the mechanical energy E 
of the satellite remains constant. (Since the satellite’s mass is so much smaller than 
Earth’s mass, we assign U and E for the Earth–satellite system to the satellite alone.)

The potential energy of the system is given by Eq. 13.5.1:

 U = −   GMm ______ r   

(with U = 0 for infinite separation). Here r is the radius of the satellite’s orbit, 
 assumed for the time being to be circular, and M and m are the masses of Earth 
and the satellite, respectively.

To find the kinetic energy of a satellite in a circular orbit, we write Newton’s 
second law (F = ma) as

     GMm ______ 
 r   2 

   = m    v   2  __ r  ,   (13.7.1)

where v2/r is the centripetal acceleration of the satellite. Then, from Eq. 13.7.1, 
the kinetic energy is

   K =   1 _ 2  m v   2  =   GMm ______ 
2r

  ,   (13.7.2)

which shows us that for a satellite in a circular orbit,

   K = −   U __ 
2
      (circular orbit) .   (13.7.3)

The total mechanical energy of the orbiting satellite is

 E = K + U =   GMm ______ 
2r

   −   GMm ______ r   

or   E = −   GMm ______ 
2r

      (circular orbit).    (13.7.4)

This tells us that for a satellite in a circular orbit, the total energy E is the negative 
of the kinetic energy K:

 E = −K  (circular orbit). (13.7.5)

For a satellite in an elliptical orbit of semimajor axis a, we can substitute a for r in 
Eq. 13.7.4 to find the mechanical energy:

   E = −   GMm ______ 
2a

          (  elliptical orbit )  .    (13.7.6)

Equation 13.7.6 tells us that the total energy of an orbiting satellite depends 
only on the semimajor axis of its orbit and not on its eccentricity e. For example, 
four orbits with the same semimajor axis are shown in Fig. 13.7.1; the same sat-
ellite would have the same total mechanical energy E in all four orbits. Figure 
13.7.2 shows the variation of K, U, and E with r for a satellite moving in a circular 
orbit about a massive central body. Note that as r is increased, the kinetic energy 
(and thus also the orbital speed) decreases.

Figure 13.7.2 The variation of kinetic 
energy K, potential energy U, and total 
energy E with radius r for a satellite in 
a circular orbit. For any value of r, the 
values of U and E are negative, the value 
of K is positive, and E = −K. As r → ∞, 
all three energy curves  approach a value 
of zero.

Energy

r0

K(r)

E(r)

U(r)

This is a plot of a
satellite’s energies
versus orbit radius.

The kinetic energy
is positive.

The potential energy
and total energy
are negative.

Figure 13.7.1 Four orbits with 
different eccentricities e about an 
object of mass M. All four orbits 
have the same semimajor axis a and 
thus correspond to the same total 
mechanical energy E.

e = 0
0.5 

0.8 

0.9 M

Checkpoint 13.7.1
In the figure here, a space shuttle is initially in a 
circular orbit of radius r about Earth. At point P, 
the pilot briefly fires a forward-pointing thruster 
to decre ase the shuttle’s kinetic energy K and 
mechanical energy E. (a) Which of the dashed ellip-
tical orbits shown in the figure will the shuttle then 
take? (b) Is the orbital period T of the shuttle (the 
time to return to P) then greater than, less than, or 
the same as in the circular orbit? FCP

r

P

1
2

13.7 sateLLites: orBits aNd eNerGy
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Sample Problem 13.7.1 Mechanical energy of orbiting bowling ball

Sample Problem 13.7.2 Transforming a circular orbit into an elliptical orbit

A playful astronaut releases a bowling ball, of mass  
m = 7.20 kg, into circular orbit about Earth at an altitude 
h of 350 km.

(a) What is the mechanical energy E of the ball in its orbit?

KEY IDEA

We can get E from the orbital energy, given by Eq. 13.7.4 
(E = −GMm/2r), if we first find the orbital radius r. (It is 
not simply the given altitude.)

Calculations: The orbital radius must be

r = R + h = 6370 km + 350 km = 6.72 × 106 m,

in which R is the radius of Earth. Then, from Eq. 13.7.4 
with Earth mass M = 5.98 × 1024 kg, the mechanical 
energy is

   
E

  

=

  

−   GMm ______ 
2r

  

  

 

         =  −   
 (6.67 ×  10  −11  N ⋅  m  2   / kg  2 )  (5.98 ×  10  24  kg)  (7.20 kg) 

     ___________________________________________   
 (2)  (6.72 ×  10  6  m) 

           

 

  

=

  

− 2.14 ×  10  8  J = − 214 MJ.

    

(b) What is the mechanical energy E0 of the ball on the 
launchpad at the Kennedy Space Center (before launch)? 
From there to the orbit, what is the change ∆E in the ball’s 
mechanical energy?

   (   Answer  )    

A spaceship of mass m = 4.50 × 103 kg is in a circular 
Earth orbit of radius r = 8.00 × 106 m and period T0 = 
118.6 min = 7.119 × 103 s when a thruster is fired in the 
forward direction to decrease the speed to 96.0% of the 
original speed. What is the period T of the resulting ellip-
tical orbit (Fig. 13.7.3)?

KEY IDEAS

(1) An elliptical orbit period is related to the semimajor 
axis a by Kepler’s third law, written as Eq. 13.6.5 (T 2 = 
4𝜋2r3/GM) but with a replacing r. (2) The semimajor axis 
a is related to the total mechanical energy E of the ship 
by Eq. 13.7.6 (E = −GMm/2a), in which Earth’s mass 
is M = 5.98 × 10 24 kg. (3) The potential energy of the 
ship at radius r from Earth’s center is given by Eq. 13.5.1  
(U = −GMm/r).

Calculations: Looking over the Key Ideas, we see that we 
need to calculate the total energy E to find the semimajor 

KEY IDEA

On the launchpad, the ball is not in orbit and thus Eq. 
13.7.4 does not apply. Instead, we must find E0 = K0 + U0, 
where K0 is the ball’s kinetic  energy and U0 is the 
gravitational potential energy of the ball–Earth system.

Calculations: To find U0, we use Eq. 13.5.1 to write

   
U0

  

=

  

−   GMm ______ 
R

  

  

 

         =  −   
 (6.67 ×  10  −11  N ⋅  m  2   / kg  2 )  (5.98 ×  10  24  kg)  (7.20 kg) 

     ___________________________________________   
    6.37 ×  10  6  m 

           

 

  

 =

  

− 4.51 ×  10  8  J = − 451 MJ.

  

 

  

The kinetic energy K0 of the ball is due to the ball’s 
motion with Earth’s rotation. You can show that K0 is less 
than 1  MJ, which is negligible relative to U0. Thus, the 
mechanical energy of the ball on the launchpad is

 E0 = K0 + U0 ≈ 0 − 451 MJ = −451 MJ. (Answer)

The increase in the mechanical energy of the ball 
from launchpad to orbit is

 ∆E = E − E0 = (−214 MJ) − (−451 MJ)

 = 237 MJ. (Answer)

This is worth a few dollars at your utility company. Obvi-
ously the high cost of placing objects into orbit is not due 
to their  required mechanical energy.

axis a, so that we can then determine the period of the 
elliptical orbit. Let’s start with the kinetic energy, calcu-
lating it just after the thruster is fired. The speed v just 
then is 96% of the initial speed v0, which was equal to the 
ratio of the circumference of the initial circular orbit to 

Figure 13.7.3 At point P a thruster 
is fired, changing a ship’s orbit 
from circular to elliptical.

rM

P
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the initial period of the orbit. Thus, just after the thruster 
is fired, the kinetic energy is

  

K

  

=

  

  1 _ 2   m v   2  =   1 _ 2   m (0.96 v  0  )  2  =   1 _ 2  m (0.96)  2    (    2πr ___ 
 T  0  

   )    
2

 

     
 
  
 =

  
  1 _ 2   (4.50 ×  10  3  kg)  (0.96)  2    (    

2π  (8.00 ×  10  6  m) 
  ________________  

7.119 ×  10  3  s
   )    

2

 
     

 

  

  =

  

1.0338 ×  10  11  J.

   

Just after the thruster is fired, the ship is still at orbital 
radius r, and thus its gravitational potential energy is

 U = −   GMm ______ r   

= −   
(6.67 × 10−11 N ⋅ m2/kg2)(5.98 × 1024 kg)(4.50 × 103 kg)

     _________________________________________   
 8.00 × 106 m

   

= − 2.2436 × 1011 J. 

We can now find the semimajor axis by rearranging Eq. 
13.7.6, substituting a for r, and then substituting in our 
energy results:

OK, one more step to go. We substitute a for r in Eq. 13.6.5 
and then solve for the period T, substituting our result  
for a:

  

T

  

=

  

  (    4  π   2   a   3  ______ 
GM

   )    
1/2

 

  

 

      
 
  
=

  
  
(

    
4  π   2   (7.418 ×  10  6  m)  

3
 
   ____________________________________    

 (6.67 ×  10  −11  N ⋅  m  2  /  kg  2 )  (5.98 ×  10  24  kg) 
   
)

    

1/2

 
  
 
      

 

  

=

  

6.356 ×  10  3  s = 106  min . (Answer)

  

 

  

This is the period of the elliptical orbit that the ship takes 
after the thruster is fired. It is less than the period T0 for 
the circular orbit for two reasons. (1) The orbital path 
length is now less. (2) The elliptical path takes the ship 
closer to Earth everywhere except at the point of fir-
ing (Fig. 13.7.3). The resulting decrease in gravitational 
potential energy increases the kinetic energy and thus also 
the speed of the ship.

13.8 EINSTEIN AND GRAVITATION
Learning Objectives 
After reading this module, you should be able to . . .

13.8.1 Explain Einstein’s principle of equivalence. 13.8.2 Identify Einstein’s model for gravitation as being 
due to the curvature of spacetime.

Key Idea 
● Einstein pointed out that gravitation and acceleration 
are equivalent. This principle of equivalence led him to 
a theory of gravitation (the general theory of relativity) 

that explains gravitational effects in terms of a curva-
ture of space.

Einstein and Gravitation
Principle of Equivalence
Albert Einstein once said: “I was . . . in the patent office at Bern when all of a 
 sudden a thought occurred to me: ‘If a person falls freely, he will not feel his 
own weight.’ I was startled. This simple thought made a deep impression on me. 
It impelled me toward a theory of gravitation.”

 a = −    GMm ______ 
2E

   = −    GMm _________ 
2(K + U)

  

= −   
 (6.67 × 10−11 N ⋅ m2/kg2)(5.98 × 1024 kg)(4.50 × 103 kg)

     _________________________________________________    
2(1.0338 × 1011 J − 2.2436 × 1011 J)

  

= 7.418 × 106 m. 

additional examples, video, and practice available at WileyPLUS
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Thus Einstein tells us how he began to form his general theory of  relativity. 
The fundamental postulate of this theory about gravitation (the gravitating of 
 objects toward each other) is called the principle of equivalence, which says 
that gravitation and acceleration are equivalent. If a physicist were locked up in 
a small box as in Fig. 13.8.1, he would not be able to tell whether the box was at 
rest on Earth (and subject only to Earth’s gravitational force), as in Fig. 13.8.1a, 
or   accelerating through interstellar space at 9.8 m/s2 (and subject only to the 
force producing that acceleration), as in Fig. 13.8.1b. In both situations he would 
feel the same and would read the same value for his weight on a scale. Moreover, 
if he watched an object fall past him, the object would have the same acceleration 
relative to him in both situations.

Curvature of Space
We have thus far explained gravitation as due to a force between masses. Einstein 
showed that, instead, gravitation is due to a curvature of space that is caused by 
the masses. (As is discussed later in this book, space and time are entangled, 
so the curvature of which Einstein spoke is really a curvature of spacetime, the 
 combined four dimensions of our universe.)

Picturing how space (such as vacuum) can have curvature is difficult. An 
analogy might help: Suppose that from orbit we watch a race in which two boats 
begin on Earth’s equator with a separation of 20 km and head due south (Fig. 
13.8.2a). To the sailors, the boats travel along flat, parallel paths. However, with 
time the boats draw together until, nearer the south pole, they touch. The sailors 
in the boats can interpret this drawing together in terms of a force acting on the 

(b)(a)

aa

Figure 13.8.1 (a) A physicist in a 
box resting on Earth sees a can-
taloupe falling with  acceleration 
a = 9.8 m/s2. (b) If he and the box 
accelerate in deep space at 9.8 m/s2,  
the cantaloupe has the same accel-
eration relative to him. It is not 
possible, by doing  experiments 
within the box, for the physicist 
to tell which situation he is in. For 
example, the platform scale on 
which he stands reads the same 
weight in both situations.

Figure 13.8.2 (a) Two objects moving along lines of longitude toward the south pole 
 converge because of the curvature of Earth’s surface. (b) Two objects falling freely near 
Earth move along lines that converge toward the center of Earth because of the curva-
ture of space near Earth. (c) Far from Earth (and other masses), space is flat and paral-
lel paths remain parallel. Close to Earth, the parallel paths begin to converge because 
space is curved by Earth’s mass.

Earth

Converging
paths

Flat space
far from
Earth

Parallel paths

Curved space
near Earth

S

N

Equator

(a) (b) (c)S

C
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boats. Looking on from space, however, we can see that the boats draw together 
simply because of the curvature of Earth’s surface. We can see this because we 
are viewing the race from “outside” that surface.

Figure 13.8.2b shows a similar race: Two horizontally separated apples are 
dropped from the same height above Earth. Although the apples may appear to 
travel along parallel paths, they actually move toward each other because they 
both fall toward Earth’s center. We can interpret the motion of the apples in 
terms of the gravitational force on the apples from Earth. We can also interpret 
the motion in terms of a curvature of the space near Earth, a curvature due to 
the presence of Earth’s mass. This time we cannot see the curvature because 
we  cannot get “outside” the curved space, as we got “outside” the curved Earth 
in the boat example. However, we can depict the curvature with a drawing like 
Fig.  13.8.2c; there the apples would move along a surface that curves toward 
Earth  because of Earth’s mass.

When light passes near Earth, the path of the light bends slightly because 
of the curvature of space there, an effect called gravitational lensing. When light 
passes a more massive structure, like a galaxy or a black hole having large mass, 
its path can be bent more. If such a massive structure is between us and a quasar 
(an extremely bright, extremely distant source of light), the light from the qua-
sar can bend around the massive structure and toward us (Fig. 13.8.3a). Then, 
because the light seems to be coming to us from a number of slightly different 
directions in the sky, we see the same quasar in all those different directions. In 
some situations, the quasars we see blend together to form a giant luminous arc, 
which is called an Einstein ring (Fig. 13.8.3b).

Black Holes
Active stars are large because of an outward pressure due to the nuclear reac-
tions within their cores. When those reactions cease, the gravitational force on 
the material of a star can shrink the star. If the star’s mass exceeds three times 
the mass of the Sun, the star can collapse to form a stellar black hole. The physics 
associated with that formation and with the characteristics of a black hole is com-
plicated and requires general relativity. Here we consider only a classical black 
hole that is static (not rotating).

In that simple model, the black hole has a closed spherical surface called 
the event horizon. Once the surface of the original star collapses past the event 
horizon, we cannot observe any activity inside the black hole. Not even light can 
escape from the interior. The nature of an event horizon is currently debated: It 
might be a theoretical surface instead of a physical surface or it might be a real 

Paths of light
from quasar

Apparent
quasar directions

Galaxy or
large black hole

Final paths

Earth detector
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Figure 13.8.3 (a) Light from a distant 
quasar follows curved paths around a 
galaxy or a large black hole because 
the mass of the galaxy or black hole 
has curved the adjacent space. If 
the light is detected, it appears to 
have originated along the backward 
extensions of the final paths (dashed 
lines). (b) The Einstein ring known 
as MG1131+0456 on the computer 
screen of a telescope. The source 
of the light (actually, radio waves, 
which are a form of invisible light) is 
far behind the large, unseen galaxy 
that produces the ring; a portion of 
the source appears as the two bright 
spots seen along the ring.
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surface with a flurry of quantum mechanical processes. In the classical picture, 
the gravitational collapse of the star is so complete that the star is reduced to 
a point (a singularity) at the star’s center with an infinite density. However, we 
have no way to test that conclusion (and besides, infinites do not occur in nature).

For the event horizon, we can assign a radius RS, said to be the Schwarzschild 
radius, named after Karl Schwarzschild who provided the first exact solution for 
a black hole in Einstein’s general relativity. In our simple, classical model, the 
radius is

   R  S   =   2GM _____ 
 c   2 

  ,  (13.8.1)

where M is that mass of the star and c is the speed of light in a vacuum  (3.0 ×  10  8  
m/s).  A stellar black hole can also form during a supernova of a very large star, 
in which much of the star is exploded outward but the core is compressed inward 
past the event horizon.

Most (perhaps all) galaxies have a supermassive black hole at the center. 
These monsters have masses that are huge compared to the mass of even a large 
star. Figure 13.8.4, the first image of a black hole ever taken, shows the supermas-
sive black hole at the center of the galaxy M87 in the constellation Virgo. The 
black hole has a mass equal to  6.5 ×  10  6   times the mass of our Sun. In the image 
the black hole is rotating clockwise and is surrounded by orbiting hot plasma that 
radiates light. The formation of the supermassive black holes is not understood, 
but they first appeared so early after the big-bang beginning of the universe that 
explaining their formation by chance collision of stellar black holes is daunting. 
We just don’t know how these monsters came to be.

Figure 13.8.4 The first image of a black hole shows the supermassive black hole in the 
galaxy Messier 87, at a distance of  53 ×  10  6   ly.

The Law of Gravitation  Any particle in the universe 
 attracts any other particle with a gravitational force whose mag-
nitude is

  F = G   
 m  1   m  2   ______ 

 r   2 
    (Newton’s law of gravitation), (13.1.1)

where m1 and m2 are the masses of the particles, r is their separa-
tion, and G (= 6.67 × 10−11 N ⋅ m2/kg2) is the gravitational constant.

Gravitational Behavior of Uniform Spherical Shells   
The gravitational force between extended bodies is found by 
adding (integrating) the individual forces on individual particles 

Review & Summary

within the bodies. However, if either of the bodies is a uniform 
spherical shell or a spherically symmetric solid, the net gravita-
tional force it exerts on an external object may be computed as if 
all the mass of the shell or body were located at its center.

Superposition  Gravitational forces obey the principle of 
superposition; that is, if n particles interact, the net force     F 

→
    1,net    

on a particle labeled particle 1 is the sum of the forces on it from 
all the other particles taken one at a time:

     F 
→

    1,net   =   ∑ 
i=2

  
n
     F 
→

    1i  ,   (13.2.2)
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in which the sum is a vector sum of the forces     F 
→

    1i    on particle 
1  from particles 2, 3, . . . , n. The gravitational force     F 

→
    1    on a 

 particle from an extended body is found by dividing the body 
into units of  differential mass dm, each of which produces a dif-
ferential force  d   F 

→
    on the particle, and then integrating to find 

the sum of those forces:

     F 
→

    1   =   
 
      d   F 

→
   .  (13.2.3)

Gravitational Acceleration  The gravitational accelera-
tion ag of a particle (of mass m) is due solely to the gravitational 
force acting on it. When the particle is at distance r from the 
center of a uniform, spherical body of mass M, the magnitude F 
of the gravitational force on the particle is given by Eq. 13.1.1. 
Thus, by Newton’s second law,

 F = mag, (13.3.2)
which gives

   a  g   =   GM ____ 
 r   2 

  .  (13.3.3)

Free-Fall Acceleration and Weight  Because Earth’s 
mass is not distributed uniformly, because the planet is not 
perfectly spherical, and because it rotates, the actual free-fall 
acceleration    g →    of a particle near Earth differs slightly from the 
gravitational acceleration     a →    g   , and the particle’s weight (equal to 
mg) differs from the magnitude of the gravitational force on it as 
calculated by  Newton’s law of gravitation (Eq. 13.1.1).

Gravitation Within a Spherical Shell  A uniform shell 
of matter exerts no net gravitational force on a particle located 
inside it. This means that if a particle is located inside a  uniform 
solid sphere at distance r from its center, the gravitational force 
exerted on the particle is due only to the mass that lies inside a 
sphere of radius r (the inside sphere). The force magnitude is 
given by

   F =   GmM ________ 
 R   3 

   r,   (13.4.3)

where M is the sphere’s mass and R is its radius.

Gravitational Potential Energy  The gravitational potential 
energy U(r) of a system of two particles, with masses M and m and 
separated by a distance r, is the negative of the work that would 
be done by the gravitational force of either particle acting on the 
other if the separation between the  particles were changed from 
infinite (very large) to r. This  energy is

   U = −   GMm ________ r      (  gravitational potential energy )   .   (13.5.1)

Potential Energy of a System  If a system contains more 
than two particles, its total gravitational potential energy U 

is the sum of the terms representing the potential energies of all 
the pairs. As an example, for three particles, of masses m1, m2, 
and m3,

   U = −   (    
G m  1   m  2   _________  r  12  

   +   
G m  1   m  3   _________  r  13  

   +   
G m  2   m  3   _________  r  23  

   )   .   (13.5.2)

Escape Speed  An object will escape the gravitational pull 
of an astronomical body of mass M and radius R (that is, it will 
reach an infinite distance) if the object’s speed near the body’s 
surface is at least equal to the escape speed, given by

   v =  √ 
_____

   2GM _____ 
R

    .   (13.5.8)

Kepler’s Laws  The motion of satellites, both natural and 
artificial, is governed by these laws:

1.  The law of orbits. All planets move in elliptical orbits with 
the Sun at one focus.

2.  The law of areas. A line joining any planet to the Sun sweeps 
out equal areas in equal time intervals. (This statement is 
equivalent to conservation of angular momentum.)

3.  The law of periods. The square of the period T of any planet 
is proportional to the cube of the semimajor axis a of its orbit. 
For circular orbits with radius r,

    T   2  =   (    4 π   2  ____ 
GM

   )    r   3     (  law of periods )  ,    (13.6.5)

where M is the mass of the attracting body—the Sun in the 
case of the Solar System. For elliptical planetary orbits, the 
semi major axis a is substituted for r.

Energy in Planetary Motion  When a planet or satellite 
with mass m moves in a circular orbit with radius r, its potential 
energy U and kinetic energy K are given by

   U = −   GMm ______ r    and  K =   GMm ______ 
2r

  .   (13.5.1, 13.7.2)

The mechanical energy E = K + U is then

   E = −   GMm ________ 
2r

   .  
 
   (13.7.4)

For an elliptical orbit of semimajor axis a,

   E = −   GMm ________ 
2a

  .   (13.7.6)

Einstein’s View of Gravitation  Einstein pointed out that 
gravitation and acceleration are equivalent. This principle of 
equivalence led him to a theory of gravitation (the general theory 
of relativity) that explains gravitational effects in terms of a curva-
ture of space.

1  In Fig. 13.1, a central particle of 
mass M is surrounded by a square 
array of other particles, separated 
by either distance d or distance d/2 
along the perimeter of the square. 
What are the magnitude and direc-
tion of the net gravitational force 
on the central particle due to the 
other particles?

2  Figure 13.2 shows three arrange-
ments of the same identical par-
ticles, with three of them placed 
on a circle of radius 0.20 m and the 
fourth one placed at the center of 
the circle. (a)  Rank the arrange-
ments according to the magnitude 
of the net gravitational force on the central particle due to the 
other three particles, greatest first. (b) Rank them according to 

Questions

M

M

M
2M

7M

3M

5M

4M

4M

5M

7M

2M
Figure 13.1 Question 1.

(a) (b) (c)

Figure 13.2 Question 2.
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the gravitational potential energy of the four-particle system, least 
negative first.

3  In Fig. 13.3, a central particle 
is surrounded by two circular rings 
of particles, at radii r and R, with 
R > r. All the particles have mass 
m. What are the magnitude and 
direction of the net gravitational 
force on the central particle due to 
the particles in the rings?

4  In Fig. 13.4, two particles, of 
masses m and 2m, are fixed in 
place on an axis. (a) Where on the 
axis can a third particle of mass 3m 
be placed (other than at infinity) 
so that the net gravitational force 
on it from the first two particles is 
zero: to the left of the first two particles, to their right, between 
them but closer to the more massive particle, or between them 
but closer to the less massive particle? (b) Does the answer 
change if the third particle has, instead, a mass of 16m? (c) Is 
there a point off the axis (other than infinity) at which the net 
force on the third particle would be zero?

5  Figure 13.5 shows three situations involving a point  particle 
P with mass m and a spherical shell with a uniformly distributed 
mass M. The radii of the shells are given. Rank the situations 
according to the magnitude of the gravitational force on particle 
P due to the shell, greatest first.

Figure 13.5 Question 5.

R
2R R/2

PP

P

(a) (b) (c)

d

6  In Fig. 13.6, three particles 
are fixed in place. The mass of B 
is greater than the mass of C. Can 
a fourth particle (particle D) be 
placed somewhere so that the net 
gravitational force on particle A 
from particles B, C, and D is zero? 
If so, in which quadrant should it 
be placed and which axis should it 
be near?

7  Rank the four systems of equal-mass particles shown in 
Checkpoint 13.2.1 according to the absolute value of the gravi-
tational potential energy of the system, greatest first.

8  Figure 13.7 gives the gravitational acceleration ag for four 
planets as a function of the radial distance r from the center 
of the planet, starting at the surface of the planet (at radius R1, 
R2, R3, or R4). Plots 1 and 2 coincide for r ≥ R2; plots 3 and 4 
coincide for r ≥ R4. Rank the four planets according to (a) mass 
and (b) mass per unit volume, greatest first.

9  Figure 13.8  shows three particles  
initially fixed in place, with B and C 
identical and positioned symmetri-
cally about the y axis, at distance 
d from A. (a) In what direction is 
the net gravitational force     F 

→
    net    on 

A? (b) If we move C directly away 
from the origin, does     F 

→
    net    change in 

direction? If so, how and what is 
the limit of the change?

10  Figure 13.9 shows six paths 
by which a rocket orbiting a moon 
might move from point a to point 
b. Rank the paths  according to (a) 
the corresponding change in the 
gravitational potential energy of 
the rocket–moon system and (b) 
the net work done on the rocket 
by the gravitational force from the 
moon, greatest first.

11  Figure 13.10 shows three uniform spherical planets that are 
identical in size and mass. The periods of rotation T for the plan-
ets are given, and six lettered points are indicated—three points 
are on the equators of the planets and three points are on the 
north poles. Rank the points according to the value of the free-
fall acceleration g at them, greatest first.

Figure 13.3 Question 3.

Figure 13.4 Question 4.
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Figure 13.6 Question 6.
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Figure 13.10 Question 11.
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Figure 13.11 Question 12.
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Figure 13.7 Question 8.

Figure 13.8 Question 9.
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Figure 13.9 Question 10.

12  In Fig. 13.11, a particle of mass m (which is not shown) is to 
be moved from an infinite distance to one of the three possible 
locations a, b, and c. Two other particles, of masses m and 2m, 
are already fixed in place on the axis, as shown. Rank the three 
possible locations according to the work done by the net gravi-
tational force on the moving particle due to the fixed particles, 
greatest first.
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extends directly toward the Sun in order to monitor solar flares. 
How far from Earth’s center is the point on the line where the 
Sun’s gravitational pull on the probe balances Earth’s pull? 

10 M  GO  Two dimensions. In Fig. 
13.15, three point particles are fixed 
in place in an xy plane. Particle A has 
mass mA, particle B has mass 2.00mA, 
and particle C has mass 3.00mA. A 
fourth particle D, with mass 4.00mA, is 
to be placed near the other three par-
ticles. In terms of distance d, at what 
(a) x coordinate and (b) y coordinate 
should particle D be placed so that the 
net gravitational force on particle A from particles B, C, and D 
is zero? 

11 M  As seen in Fig. 13.16, two 
spheres of mass m and a third sphere 
of mass M form an equilateral trian-
gle, and a fourth sphere of mass m4 
is at the center of the triangle. The 
net gravitational force on that central 
sphere from the three other spheres 
is zero. (a) What is M in terms of 
m? (b) If we double the value of m4, 
what then is the magnitude of the 
net gravitational force on the central 
sphere?

12 M  GO  In Fig. 13.17a, particle A is fixed in place at x = 
−0.20 m on the x axis and particle B, with a mass of 1.0 kg, is 
fixed in place at the origin. Particle C (not shown) can be moved 
along the x axis, between particle B and x = ∞. Figure 13.17b 
shows the x component Fnet,x of the net gravitational force on 
particle B due to particles A and C, as a function of position x of 
particle C. The plot actually extends to the right, approaching an 
asymptote of −4.17 × 10−10 N as x → ∞. What are the masses of 
(a) particle A and (b) particle C?

Module 13.1  Newton’s Law of Gravitation
1 E  A mass M is split into two parts, m and M − m, which are 
then separated by a certain distance. What ratio m/M maximizes 
the magnitude of the gravitational force between the parts? 

2 E  FCP  Moon effect. Some people believe that the Moon con-
trols their activities. If the Moon moves from being directly on 
the opposite side of Earth from you to being directly overhead, 
by what percent does (a) the Moon’s gravitational pull on you 
 increase and (b) your weight (as measured on a scale) decrease? 
Assume that the Earth–Moon (center-to-center) distance is 3.82 
× 108 m and Earth’s radius is 6.37 × 106 m. 

3 E  SSM  What must the separation be between a 5.2 kg parti-
cle and a 2.4 kg particle for their gravitational attraction to have 
a magnitude of 2.3 × 10−12 N? 

4 E  The Sun and Earth each exert a gravitational force on the 
Moon. What is the ratio FSun/FEarth of these two forces? (The 
average Sun–Moon distance is equal to the Sun–Earth  distance.)

5 E  Miniature black holes. Left over from the big-bang begin-
ning of the universe, tiny black holes might still wander through 
the universe. If one with a mass of 1 × 1011 kg (and a radius of 
only 1 × 10−16 m) reached Earth, at what distance from your 
head would its gravitational pull on you match that of Earth’s?

Module 13.2  Gravitation and the Principle of 
Superposition
6 E  GO  In Fig. 13.12, a square of edge 
length 20.0 cm is formed by four spheres 
of masses m1 = 5.00 g, m2 = 3.00 g, m3 =  
1.00 g, and m4 = 5.00 g. In unit-vector 
notation, what is the net  gravitational 
force from them on a central sphere with 
mass m5 = 2.50 g? 

7 E  One dimension. In Fig. 13.13, two 
point particles are fixed on an x axis 
separated by distance d. Particle A has 
mass mA and particle B has mass 3.00mA. 
A third particle C, of mass 75.0mA, is to 
be placed on the x axis and near particles 
A and B. In terms of distance d, at what 
x coordinate should C be placed so that 
the net gravitational force on particle A 
from particles B and C is zero? 

8 E  In Fig. 13.14, three 5.00 kg 
spheres are located at distances d1 
= 0.300 m and d2 = 0.400 m. What 
are the (a) magnitude and (b) 
direction (relative to the positive 
direction of the x axis) of the net 
gravitational force on sphere B due 
to spheres A and C?

9 E  SSM  We want to position 
a space probe along a line that 

Problems

          Tutoring problem available (at instructor’s discretion) in WileyPLUS

 Worked-out solution available in Student Solutions Manual

E  Easy M  Medium H  Hard

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

CALC  Requires calculus

BIO  Biomedical application

GO

FCP
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Figure 13.12  
Problem 6.
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Figure 13.13   
Problem 7.

Figure 13.14 Problem 8.
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Figure 13.16   
Problem 11.
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Figure 13.17 Problem 12.
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Figure 13.15 Problem 10.

13 M  Figure 13.18 shows a spherical hollow inside a lead sphere 
of radius R = 4.00 cm; the surface of the hollow passes through 
the center of the sphere and “touches” the right side of the 
sphere. The mass of the sphere before hollowing was M = 2.95 kg. 
With what gravitational force does the  hollowed-out lead sphere 
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attract a small sphere of mass 
m = 0.431 kg that lies at a dis-
tance d = 9.00 cm from the center 
of the lead sphere, on the straight 
line connecting the centers of the 
spheres and of the hollow?

14 M  GO  Three point particles 
are fixed in position in an xy 
plane. Two of them, particle A of 
mass 6.00 g and particle B of mass 
12.0 g, are shown in  Fig.  13.19, 
with a separation of dAB = 0.500 m 
at angle θ = 30°. Particle C, with 
mass 8.00 g, is not shown. The 
net gravitational force acting on 
particle A due to particles B and 
C is 2.77 × 10−14 N at an angle of 
−163.8° from the positive direction of the x axis. What are (a) the 
x  coordinate and (b) the y coordinate of particle C?

15 H  GO  Three dimensions. Three point particles are fixed 
in place in an xyz coordinate system. Particle A, at the ori-
gin, has mass mA. Particle B, at xyz coordinates (2.00d, 1.00d, 
2.00d), has mass 2.00mA, and particle C, at coordinates (−1.00d, 
2.00d, −3.00d), has mass 3.00mA. A fourth particle D, with mass 
4.00mA, is to be placed near the other particles. In terms of dis-
tance d, at what (a) x, (b) y, and (c) z coordinate should D be 
placed so that the net gravitational force on A from B, C, and 
D is zero?

16 H  CALC  GO  In Fig. 
13.20, a particle of mass  
m1 = 0.67 kg is a distance d 
= 23 cm from one end of a 
uniform rod with length L = 
3.0 m and mass M = 5.0 kg. 
What is the magnitude of the gravitational force    F 

→
    on the par-

ticle from the rod?

Module 13.3  Gravitation Near Earth’s Surface
17 E  (a) What will an object weigh on the Moon’s surface if 
it weighs 100 N on Earth’s surface? (b) How many Earth radii 
must this same object be from the center of Earth if it is to weigh 
the same as it does on the Moon?

18 E  FCP  Mountain pull. A large mountain can slightly affect 
the direction of “down” as determined by a plumb line. Assume 
that we can model a mountain as a sphere of radius R = 2.00 km  
and density (mass per unit volume) 2.6 × 103 kg/m3. Assume 
also that we hang a 0.50 m plumb line at a distance of 3R from 
the sphere’s center and such that the sphere pulls horizontally 
on the lower end. How far would the lower end move toward 
the sphere? 

19 E  SSM  At what altitude above Earth’s surface would the 
 gravitational acceleration be 4.9 m/s2? 

20 E  Mile-high building. In 1956, Frank Lloyd Wright proposed 
the construction of a mile-high building in Chicago. Suppose the 
building had been constructed. Ignoring Earth’s rotation, find 
the change in your weight if you were to ride an elevator from the 
street level, where you weigh 600 N, to the top of the building.

21 M  Certain neutron stars (extremely dense stars) are  believed 
to be rotating at about 1 rev/s. If such a star has a  radius of 

20 km, what must be its minimum mass so that  material on its 
surface remains in place during the rapid  rotation? 

22 M  The radius Rh and mass Mh of a black hole are related by 
Rh = 2GMh/c2, where c is the speed of light. Assume that the grav-
itational acceleration ag of an object at a distance ro = 1.001Rh 
from the center of a black hole is given by Eq. 13.3.3 (it is, for 
large black holes). (a) In terms of Mh, find ag at ro. (b) Does ag 
at ro increase or decrease as Mh increases? (c) What is ag at ro 
for a very large black hole whose mass is 1.55 × 1012 times the 
solar mass of 1.99 × 1030 kg? (d) If an astronaut of height 1.70 m 
is at ro with her feet down, what is the difference in gravitational 
acceleration between her head and feet? (e) Is the tendency to 
stretch the astronaut severe?

23 M  One model for a certain planet has a core of radius R and 
mass M surrounded by an outer shell of inner radius R, outer 
radius 2R, and mass 4M. If M = 4.1 × 1024 kg and R = 6.0 × 106 m,  
what is the gravitational acceleration of a particle at points (a) R 
and (b) 3R from the center of the planet?

Module 13.4  Gravitation Inside Earth
24 E  Two concentric spherical 
shells with uniformly distributed 
masses M1 and M2 are situated as 
shown in Fig. 13.21. Find the mag-
nitude of the net gravitational force 
on a particle of mass m, due to the 
shells, when the particle is located 
at  radial distance (a) a, (b) b,  
and (c) c.

25 M  A solid sphere has a uni-
formly distributed mass of 1.0 × 104 
kg and a radius of 1.0 m. What is the magnitude of the gravita-
tional force due to the sphere on a particle of mass m when the 
particle is located at a distance of (a) 1.5 m and (b) 0.50 m from 
the center of the sphere? (c) Write a general expression for the 
magnitude of the gravitational force on the particle at a distance 
r ≤ 1.0 m from the center of the sphere.

26 M  A uniform solid sphere of radius R produces a gravita-
tional acceleration of ag on its surface. At what distance from 
the sphere’s center are there points (a) inside and (b) outside 
the sphere where the gravitational acceleration is ag/3?

27 M  Figure 13.22 shows, not to scale, a cross section through 
the interior of Earth. Rather than being uniform throughout, 
Earth is divided into three zones: an outer crust, a mantle, and 

M2
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a

Figure 13.21 Problem 24.
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an inner core. The dimensions of these zones and the masses 
contained within them are shown on the figure. Earth has a  total 
mass of 5.98 × 1024 kg and a radius of 6370 km. Ignore rotation 
and assume that Earth is spherical. (a) Calculate ag at the sur-
face. (b) Suppose that a bore hole (the Mohole) is  driven to the 
crust–mantle interface at a depth of 25.0 km; what would be the 
value of ag at the bottom of the hole? (c) Suppose that Earth 
were a uniform sphere with the same total mass and size. What 
would be the value of ag at a depth of 25.0 km? (Precise mea-
surements of ag are sensitive probes of the interior structure 
of Earth, although results can be clouded by local variations in 
mass distribution.)

28 M  GO  Assume a planet is a uniform sphere of radius R 
that (somehow) has a narrow radial tunnel through its center 
(Fig. 13.4.1). Also assume we can position an apple anywhere 
along the tunnel or outside the sphere. Let FR be the magni-
tude of the gravitational force on the apple when it is located at 
the planet’s surface. How far from the surface is there a point 
where the magnitude is   1 _ 2   F  R    if we move the apple (a) away from 
the planet and (b) into the tunnel?

Module 13.5  Gravitational Potential Energy
29 E  Figure 13.23 gives the 
potential energy function 
U(r) of a projectile, plotted 
outward from the surface of a 
planet of  radius Rs. What least 
kinetic energy is required of 
a projectile launched at the 
surface if the projectile is to 
“escape” the planet?

30 E  In Problem 1, what ratio 
m/M gives the least gravita-
tional potential energy for the 
system?

31 E  SSM  The mean diameters of Mars and Earth are 6.9 × 
103 km and 1.3 × 104 km, respectively. The mass of Mars is  
0.11 times Earth’s mass. (a) What is the ratio of the mean  density 
(mass per unit volume) of Mars to that of Earth? (b) What is the 
value of the gravitational acceleration on Mars? (c) What is the 
escape speed on Mars? 

32 E  (a) What is the gravitational potential energy of the 
two-particle system in Problem 3? If you triple the separation 
between the particles, how much work is done (b) by the gravi-
tational force between the particles and (c) by you?

33 E  What multiple of the energy needed to escape from Earth 
gives the energy needed to escape from (a) the Moon and (b) 
Jupiter?

34 E  Figure 13.23 gives the potential energy function U(r) of 
a  projectile, plotted outward from the surface of a planet of 
 radius Rs. If the projectile is launched radially 
outward from the surface with a mechanical 
energy of −2.0 × 109 J, what are (a) its kinetic 
energy at radius r = 1.25Rs and (b) its turning 
point (see Module 8.3) in terms of Rs?

35 M  GO  Figure 13.24 shows four particles, 
each of mass 20.0 g, that form a square with 
an edge length of d = 0.600 m. If d is reduced 

Figure 13.23 Problems 29 and 34.
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) 38 M  In deep space, sphere A of mass 20 kg is located at the ori-
gin of an x axis and sphere B of mass 10 kg is located on the axis 
at x = 0.80 m. Sphere B is released from rest while sphere A is 
held at the origin. (a) What is the gravitational  potential energy 
of the two-sphere system just as B is  released? (b) What is the 
kinetic energy of B when it has moved 0.20 m toward A?

39 M  SSM  (a) What is the escape speed on a spherical asteroid 
whose radius is 500 km and whose gravitational acceleration at 
the surface is 3.0 m/s2? (b) How far from the surface will a par-
ticle go if it leaves the asteroid’s surface with a radial speed of 
1000 m/s? (c) With what speed will an object hit the asteroid if it 
is dropped from 1000 km above the surface? 

40 M  A projectile is shot directly away from Earth’s surface. 
Neglect the rotation of Earth. What multiple of Earth’s radius 
RE gives the radial distance a projectile reaches if (a) its initial 
speed is 0.500 of the escape speed from Earth and (b) its  initial 
kinetic energy is 0.500 of the kinetic energy required to escape 
Earth? (c) What is the least initial mechanical energy required 
at launch if the projectile is to escape Earth?

41 M  SSM  Two neutron stars are separated by a distance 
of 1.0 × 1010 m. They each have a mass of 1.0 × 1030 kg and a 
radius of 1.0 × 105 m. They are initially at rest with respect to 
each other. As measured from that rest frame, how fast are they 
moving when (a) their separation has decreased to one-half its 
initial value and (b) they are about to collide? 

42 M  GO  Figure 13.26a shows a particle A that can be moved 
along  a y axis from an infinite distance to the origin. That 
 origin lies at the midpoint between particles B and C, which 
have identical masses, and the y axis is a perpendicular bisector 
between them. Distance D is 0.3057 m. Figure 13.26b shows the 
potential energy U of the three-particle system as a function of 
the position of particle A along the y axis. The curve actually  
extends rightward and approaches an asymptote of −2.7 × 10−11 J  

to 0.200 m, what is the change in the gravitational  potential 
energy of the four-particle system?

36 M  GO  Zero, a hypothetical planet, has a mass of 5.0 × 1023 kg, 
a radius of 3.0 × 106 m, and no atmosphere. A 10 kg space probe 
is to be launched vertically from its surface. (a) If the probe is 
launched with an initial energy of 5.0 × 107 J, what will be its 
kinetic energy when it is 4.0 × 106 m from the center of Zero? 
(b) If the probe is to achieve a maximum distance of 8.0 × 106 m 
from the center of Zero, with what initial kinetic energy must it 
be launched from the surface of Zero?

37 M  GO  The three spheres in Fig. 13.25, with masses mA = 80 g, 
mB = 10 g, and mC = 20 g, have their centers on a com mon line, 
with L = 12 cm and d = 4.0 cm. You move sphere B along the 
line until its center-to-center separation from C is d = 4.0 cm. 
How much work is done on sphere B (a) by you and (b) by the 
net gravitational force on B due to spheres A and C?

d

d

Figure 13.24   
Problem 35.

L

d d

A
B C

Figure 13.25 Problem 37.
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Module 13.6  Planets and Satellites: Kepler’s Laws
43 E  (a) What linear speed must an Earth satellite have to be in 
a circular orbit at an altitude of 160 km above Earth’s  surface? 
(b) What is the period of revolution?

44 E  A satellite is put in a circular orbit about Earth with a 
radius equal to one-half the radius of the Moon’s orbit. What is 
its period of revolution in lunar months? (A lunar month is the 
period of revolution of the Moon.)

45 E  The Martian satellite Phobos travels in an approx imately 
circular orbit of radius 9.4 × 106 m with a period of 7 h 39 min. 
Calculate the mass of Mars from this information.

46 E  The first known collision between space debris and a func-
tioning satellite occurred in 1996: At an altitude of 700 km, a 
year-old French spy satellite was hit by a piece of an Ariane 
rocket. A stabilizing boom on the satellite was demolished, 
and the satellite was sent spinning out of control. Just before 
the collision and in kilometers per hour, what was the speed of 
the rocket piece relative to the satellite if both were in circular 
orbits and the collision was (a) head-on and (b) along perpen-
dicular paths?

47 E  SSM  The Sun, which is 2.2 × 1020 m from the center of 
the Milky Way Galaxy, revolves around that center once every 
2.5 × 108 years. Assuming each star in the Galaxy has a mass equal 
to the Sun’s mass of 2.0 × 1030 kg, the stars are distributed uni-
formly in a sphere about the galactic center, and the Sun is at the 
edge of that sphere, estimate the number of stars in the Galaxy. 

48 E  The mean distance of Mars from the Sun is 1.52 times that 
of Earth from the Sun. From Kepler’s law of periods, calculate 
the number of years required for Mars to make one revolution 
around the Sun; compare your answer with the value given in 
Appendix C.

49 E  A comet that was seen in April 574 by Chinese  astronomers 
on a day known by them as the Woo Woo day was spotted again 
in May 1994. Assume the time between  observations is the 
period of the Woo Woo day comet and its eccentricity is 0.9932. 
What are (a)  the semimajor axis of the comet’s orbit and (b) 
its greatest distance from the Sun in terms of the mean orbital 
radius RP of Pluto?

50 E  FCP  An orbiting satellite stays over a certain spot on the 
equator of (rotating) Earth. What is the altitude of the orbit 
(called a geosynchronous orbit)? 

51 E  SSM  A satellite, moving in an elliptical orbit, is 360 km 
above Earth’s surface at its farthest point and 180 km above at 
its closest point. Calculate (a) the semimajor axis and (b) the 
 eccentricity of the orbit.

52 E  The Sun’s center is at one focus of Earth’s orbit. How far 
from this focus is the other focus, (a) in meters and (b) in terms 
of the solar radius, 6.96 × 108 m? The eccentricity is 0.0167, and 
the semimajor axis is 1.50 × 1011 m.

53 M  A 20 kg satellite has a circular orbit with a period of 2.4 h 
and a radius of 8.0 × 106 m around a planet of unknown mass. If 
the magnitude of the gravitational acceleration on the surface of 
the planet is 8.0 m/s2, what is the radius of the planet?

54 M  GO  Hunting a black 
hole. Observations of the 
light from a certain star indi-
cate that it is part of a binary 
(two-star) system. This vis-
ible star has orbital speed 
v = 270 km/s, orbital period 
T = 1.70 days, and approxi-
mate mass m1 = 6Ms, 
where Ms is the Sun’s mass, 
1.99 × 1030 kg. Assume that 
the visible star and its com-
panion star, which is dark 
and unseen, are both in circular orbits (Fig. 13.27). What integer 
multiple of Ms gives the approximate mass m2 of the dark star?

55 M  In 1610, Galileo used his telescope to discover four moons 
around Jupiter, with these mean orbital radii a and periods T:

Figure 13.27 Problem 54.
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Figure 13.26 Problem 42.
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Name a (108 m) T (days)

Io 4.22 1.77
Europa 6.71 3.55
Ganymede 10.7 7.16
Callisto 18.8 16.7

(a) Plot log a (y axis) against log T (x axis) and show that you get 
a straight line. (b) Measure the slope of the line and compare it 
with the value that you expect from Kepler’s third law. (c) Find 
the mass of Jupiter from the intercept of this line with the y axis.

56 M  In 1993 the spacecraft Galileo sent an image (Fig. 13.28) 
of asteroid 243 Ida and a tiny orbiting moon (now  known as 
 Dactyl), the first confirmed example of an  asteroid–moon 

Figure 13.28 Problem 56. A tiny moon (at right) orbits 
asteroid 243 Ida.

Courtesy NASA
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as y → ∞. What are the masses of (a) particles B and C and (b) 
particle A?
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system. In the image, the moon, which is 1.5 km wide, is 100 km 
from the center of the asteroid, which is 55 km long. Assume 
the moon’s orbit is circular with a period of 27 h. (a) What is 
the mass of the asteroid? (b) The volume of the asteroid, mea-
sured from the Galileo images, is 14 100 km3. What is the den-
sity (mass per unit volume) of the asteroid?

57 M  In a certain binary-star system, each star has the same 
mass as our Sun, and they revolve about their center of mass. 
The distance between them is the same as the distance  between 
Earth and the Sun. What is their period of revolution in years? 

58 H  GO  The presence of an unseen planet orbiting a distant 
star can sometimes be inferred from the motion of the star as 
we see it. As the star and planet orbit the center of mass of the 
star–planet system, the star moves toward and away from us 
with what is called the line of sight velocity, a motion that can be 
detected. Figure 13.29 shows a graph of the line of sight  velocity 
versus time for the star 14 Herculis. The star’s mass is believed 
to be 0.90 of the mass of our Sun. Assume that only one planet 
orbits the star and that our view is along the plane of the orbit. 
Then approximate (a)  the planet’s mass in terms of Jupiter’s 
mass mJ and (b) the planet’s orbital radius in terms of Earth’s 
orbital radius rE.

59 H  Three identical stars of mass M form an equilateral trian-
gle that rotates around the triangle’s center as the stars move in 
a common circle about that center. The triangle has edge length 
L. What is the speed of the stars?

Module 13.7  Satellites: Orbits and Energy
60 E  In Fig. 13.30, two satellites, A 
and B, both of mass m = 125 kg, move 
in the same circular orbit of radius 
r = 7.87 × 106 m around Earth but in 
opposite senses of rotation and there-
fore on a collision course. (a) Find 
the total mechanical energy EA + EB 
of the two satellites + Earth system 
before the collision. (b) If the colli-
sion is completely inelastic so that the  
wreckage remains as one piece of tangled material (mass = 
2m), find the total mechanical energy immediately  after the 
collision. (c) Just after the collision, is the wreck age  falling 
 directly toward Earth’s center or orbiting around Earth?

61 E  (a) At what height above Earth’s surface is the energy 
required to lift a satellite to that height equal to the kinetic 
 energy required for the satellite to be in orbit at that height? 
(b) For greater heights, which is greater, the energy for lifting or 
the kinetic energy for orbiting?

A

r

Earth
B

Figure 13.30   
Problem 60.

62 E  Two Earth satellites, A and B, each of mass m, are to 
be launched into circular orbits about Earth’s center. Satellite 
A is to orbit at an altitude of 6370 km. Satellite B is to orbit 
at an  altitude of 19 110 km. The radius of Earth RE is 6370 km. 
(a)  What is the ratio of the potential energy of satellite B 
to that of satellite A, in orbit? (b) What is the ratio of the 
kinetic  energy of satellite B to that of satellite A, in orbit? 
(c) Which satellite has the greater total energy if each has a 
mass of 14.6 kg? (d) By how much?

63 E  SSM  An asteroid, whose mass is 2.0 × 10−4 times the mass 
of Earth, revolves in a circular orbit around the Sun at a distance 
that is twice Earth’s distance from the Sun. (a) Calculate the 
period of revolution of the asteroid in years. (b) What is the 
ratio of the kinetic energy of the asteroid to the kinetic energy 
of Earth? 

64 E  A satellite orbits a planet of unknown mass in a circle of 
radius 2.0 × 107 m. The magnitude of the gravitational force on 
the satellite from the planet is F = 80 N. (a) What is the  kinetic 
energy of the satellite in this orbit? (b) What would F be if the 
orbit radius were increased to 3.0 × 107 m?

65 M  A satellite is in a circular Earth orbit of radius r. The area 
A enclosed by the orbit depends on r2 because A = 𝜋r2. Deter-
mine how the following properties of the satellite  depend on r : 
(a) period, (b) kinetic energy, (c) angular  momentum, and (d) 
speed.

66 M  One way to attack a satellite in Earth orbit is to launch 
a swarm of pellets in the same orbit as the satellite but in 
the  opposite direction. Suppose a satellite in a circular orbit 
500 km above Earth’s surface collides with a pellet having mass 
4.0 g. (a) What is the kinetic energy of the pellet in the reference 
frame of the satellite just before the collision? (b) What is the 
ratio of this kinetic energy to the kinetic  energy of a 4.0 g bullet 
from a modern army rifle with a  muzzle speed of 950 m/s?

67 H  What are (a) the speed and (b) the period of a 220 kg sat-
ellite in an approximately circular orbit 640 km above the sur-
face of Earth? Suppose the satellite loses mechanical  energy at 
the average rate of 1.4 × 105 J per orbital revolution. Adopting 
the reasonable approximation that the satellite’s orbit becomes 
a “circle of slowly diminishing radius,”  determine the satellite’s  
(c) altitude, (d)  speed, and (e) period at the end of its 1500th 
revolution. (f) What is the magnitude of the average retarding 
force on the satellite? Is angular  momentum around Earth’s 
center conserved for (g) the satellite and (h) the satellite–Earth 
system (assuming that system is isolated)?

68 H  GO  Two small spaceships, each with mass m = 2000 kg, are 
in the circular Earth orbit of Fig. 13.31, at an altitude h of 400 km. 
Igor, the commander of one of the ships, arrives at any fixed point 
in the orbit 90 s ahead of Picard, 
the commander of the other ship. 
What are the (a) period T0 and 
(b)  speed v0 of the ships? At 
point P in Fig. 13.31, Picard fires 
an instantaneous burst in the 
forward direction, reducing his 
ship’s speed by 1.00%. After this 
burst, he follows the elliptical 
orbit shown dashed in the figure. 
What are the (c) kinetic energy 
and (d) potential energy of his 

70

0

–70L
in

e 
of

 s
ig

h
t v

el
oc

it
y 

(m
/s

)

1500 days
Time

Figure 13.29 Problem 58.

R

rM

P

Figure 13.31 Problem 68.

c13Gravitation.indd   403 05/05/21   7:24 PM



404 CHaPter 13 GravitatioN

ship immediately after the burst? In Picard’s new elliptical orbit, 
what are (e) the total energy E, (f) the semimajor axis a, and (g) 
the orbital period T? (h) How much earlier than Igor will Picard 
return to P? 

Module 13.8  Einstein and Gravitation
69 E  In Fig. 13.8.1b, the scale on which the 60 kg physicist 
stands reads 220 N. How long will the cantaloupe take to reach 
the floor if the physicist drops it (from rest relative to himself) at 
a height of 2.1 m above the floor?

Additional Problems
70 CALC  GO  Suppose that you wish to study a black hole at a 
radial distance of 50Rh. However, you do not want the dif-
ference in gravitational acceleration between your feet and 
your head to exceed 10 m/s2 when you are feet down (or head 
down) toward the black hole. (a) As a multiple of our Sun’s 
mass MS, approximately what is the limit to the mass of the 
black hole you can tolerate at the given radial distance? (You 
need to estimate your height.) (b) Is the limit an upper limit 
(you can tolerate smaller masses) or a lower limit (you can tol-
erate larger masses)?
71  Several planets (Jupiter, Saturn, 
Uranus) are encircled by rings, per-
haps composed of material that failed 
to form a satellite. In addition, many 
galaxies contain ring-like structures. 
Consider a homogeneous thin ring 
of mass M and outer radius R (Fig. 
13.32). (a) What gravitational attrac-
tion does it exert on a particle of mass 
m located on the ring’s central axis a 
distance x from the ring center? (b) 
Suppose the particle falls from rest as a result of the attraction 
of the ring of matter. What is the speed with which it passes 
through the center of the ring?

72  A typical neutron star may have a mass equal to that of 
the Sun but a radius of only 10 km. (a) What is the grav itational 
acceleration at the surface of such a star? (b) How fast would an 
object be moving if it fell from rest through a distance of 1.0 m 
on such a star? (Assume the star does not rotate.)

73  Figure 13.33 is a graph of the kinetic energy K of an  asteroid 
versus its distance r from Earth’s center, as the asteroid falls 
directly in toward that center. (a) What is the  (approximate) 
mass of the asteroid? (b) What is its speed at r = 1.945 × 107 m?

M

m
R x

Figure 13.32   
Problem 71.

74 FCP  The mysterious visitor that appears in the enchanting 
story The Little Prince was said to come from a planet that “was 
scarcely any larger than a house!” Assume that the mass per unit 
volume of the planet is about that of Earth and that the planet 
does not appreciably spin. Approximate (a) the free-fall accel-
eration on the planet’s surface and (b)  the  escape speed from 
the planet. 

75  The masses and coordinates of three spheres are as fol-
lows: 20 kg, x = 0.50 m, y = 1.0 m; 40 kg, x = −1.0 m, y = −1.0 m; 
60 kg, x = 0 m, y = −0.50 m. What is the magnitude of the gravi-
tational force on a 20 kg sphere located at the origin due to these 
three spheres?

76 SSM  A very early, simple satellite consisted of an inflated 
spherical aluminum balloon 30 m in diameter and of mass 20 kg. 
Suppose a meteor having a mass of 7.0 kg passes within 3.0 m 
of the surface of the satellite. What is the magnitude of the 
gravitational force on the meteor from the satellite at the closest 
approach? 

77 GO  Four uniform spheres, with masses mA = 40 kg, 
mB = 35  kg, mC = 200 kg, and mD = 50 kg, have (x, y) coordi-
nates of (0, 50 cm), (0, 0), (−80 cm, 0), and (40 cm, 0), respec-
tively. In unit-vector notation, what is the net gravitational force 
on sphere B due to the other spheres?

78  (a) In Problem 77, remove sphere A and calculate the grav-
itational potential energy of the remaining three-particle sys-
tem. (b) If A is then put back in place, is the potential  energy of 
the four-particle system more or less than that of the system in 
(a)? (c) In (a), is the work done by you to remove A positive or 
negative? (d) In (b), is the work done by you to  replace A posi-
tive or negative?

79 SSM  A certain triple-star system 
consists of two stars, each of mass m, 
revolving in the same circular orbit 
of radius r around a central star of 
mass M (Fig. 13.34). The two orbit-
ing stars are always at opposite ends 
of a diameter of the orbit. Derive an 
expression for the period of revolu-
tion of the stars. 

80  The fastest possible rate of rota-
tion of a planet is that for which the 
gravitational force on material at the equator just barely  provides 
the centripetal force needed for the rotation. (Why?) (a) Show 
that the corresponding shortest period of rotation is

 T =  √ 
______

   3π ______ 
Gρ    , 

where 𝜌 is the uniform density (mass per unit volume) of the 
spherical planet. (b) Calculate the rotation period assuming 
a density of 3.0 g/cm3, typical of many planets, satellites, and 
 asteroids. No astronomical object has ever been found to be 
spinning with a period shorter than that determined by this 
analysis.

81 SSM  In a double-star system, two stars of mass 3.0 × 1030 kg 
each rotate about the system’s center of mass at radius 1.0 × 1011 m. 
(a) What is their common angular speed? (b) If a  meteoroid 
passes through the system’s center of mass perpendicular 
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Figure 13.34   
Problem 79.
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to their orbital plane, what minimum speed must it have at 
the center of mass if it is to escape to “infinity” from the  
two-star system?

82  A satellite is in elliptical orbit with a period of 8.00 × 104 s 
about a planet of mass 7.00 × 1024 kg. At aphelion, at  radius 
4.5 × 107 m, the satellite’s angular speed is 7.158 × 10−5 rad/s. 
What is its angular speed at perihelion?

83 SSM  In a shuttle craft of mass m = 3000 kg, Captain Jane-
way orbits a planet of mass M = 9.50 × 1025 kg, in a circular orbit 
of radius r = 4.20 × 107 m. What are (a) the period of the  orbit 
and (b) the speed of the shuttle craft? Janeway briefly fires a 
forward-pointing thruster, reducing her speed by 2.00%. Just 
then, what are (c) the speed, (d) the kinetic  energy, (e) the gravi-
tational potential energy, and (f) the  mechanical energy of the 
shuttle craft? (g) What is the semimajor axis of the elliptical orbit 
now taken by the craft? (h) What is the difference between the 
period of the original  circular orbit and that of the new elliptical 
orbit? (i) Which  orbit has the smaller period? 

84  Consider a pulsar, a collapsed star of extremely high den-
sity, with a mass M equal to that of the Sun (1.98 × 1030 kg), a 
radius R of only 12 km, and a rotational period T of 0.041 s. By 
what percentage does the free-fall acceleration g differ from the 
gravitational acceleration ag at the equator of this spherical star?

85  A projectile is fired vertically from Earth’s surface with an 
initial speed of 10 km/s. Neglecting air drag, how far above the 
surface of Earth will it go?

86  An object lying on Earth’s equator is accelerated (a) toward 
the center of Earth because Earth rotates, (b)  toward the Sun 
because Earth revolves around the Sun in an almost circular 
orbit, and (c) toward the center of our galaxy because the Sun 
moves around the galactic center. For  the  latter, the period is 
2.5 × 108 y and the radius is 2.2 × 1020 m. Calculate these three 
accelerations as multiples of g = 9.8 m/s2.

87  (a) If the legendary apple of Newton could be released 
from rest at a height of 2 m from the surface of a neutron star 
with a mass 1.5 times that of our Sun and a radius of 20 km, what 
would be the apple’s speed when it reached the surface of the star? 
(b) If the apple could rest on the surface of the star, what would be 
the approximate difference between the gravitational acceleration 
at the top and at the bottom of the apple? (Choose a reasonable 
size for an apple; the answer  indicates that an apple would never 
survive near a neutron star.)

88  With what speed would mail pass through the center of 
Earth if falling in a tunnel through the center?

89  Earth−Moon potential energy. The masses of Earth and the 
Moon are  5.98 ×  10  24   kg and  7.35 ×  10  22   kg, and their mean sepa-
ration is  3.82 ×  10  8   m. What is the gravitational potential energy 
of the Moon–Earth system?

90  Fractional change in g. For a uniform, spherical, nonro-
tating planet with radius  RS = 5.1 ×  10  3   km, let gs and gh be 
the values of g at the surface and at elevation h, respectively. 
When a particle is lifted from the surface to h = 1.5 km, find 
the fractional decrease in the value of the free-fall acceleration  
g:  (gh − gs)/gs. 

91  Black hole radius, large to small. What is the Schwarzschild 
radius of (a) the supermassive black hole with  4.0 ×  10  10   solar 
masses in the Abell 85 galaxy cluster, (b) the imaged M87 black 
hole with  6.4 ×  10  9   solar masses, (c) an intermediate mass black 
hole with  1.0 ×  10  4   solar masses, (d) the Sun, with mass  1.99 ×  
10  30  kg,  and (e) a micro black hole with a mass of  2.0 ×  10  −8   kg?  
(The answer to (a) is about the radius of the Solar System. Inter-
mediate mass black holes are rare. Micro black holes were con-
jectured by Stephen Hawking and might have been produced in 
the big bang.)

92  Gravitational force on the Solar System. As the Solar Sys-
tem circles the galactic center at a mean radius of  2.5 ×  10  5   ly and 
with a period of  2.3 ×  10  8   y, what is the net gravitational force on 
it from the rest of the Milky Way Galaxy?

93  The Sun becomes a black hole. If suddenly the Sun were to 
gravitationally collapse to form a black hole, what then would be (a) 
the gravitational force on Earth due to the Sun and (b) the orbital 
period in years? (The Sun is too small to ever form a black hole.)

94  Spheres blown apart. Figure 13.35 shows two identical 
spheres, each with mass m = 2.00 kg and radius R = 0.0200 
m, that initially touch somewhere in deep space. Suppose the 
spheres are blown apart such that they initially separate at the 
relative speed  1.05 ×  10  −4   m/s. They then slow due to the gravi-
tational force between them.

Center-of-mass frame: Assume that we are in an inertial ref-
erence frame that is stationary with respect to the center of mass 
of the two-sphere system. Use the principle of conservation of 
mechanical energy (Kf +Uf = Ki + Ui) to find the following when 
the center-to-center separation is 10R: (a) the kinetic energy of 
each sphere and (b) the speed of sphere B relative to A.

Sphere frame: Next, assume that we are in a reference frame 
attached to sphere A (we ride on the body). Now we see sphere 
B move away from us. From this reference frame, again use  
Kf  + Uf = Ki + Ui to find the following when the center-to-center 
separation is 10R: (c) the kinetic energy of sphere B and (d) the 
speed of sphere B relative to sphere A. (e) Why are the answers 
to (b) and (d) different? Which answer is correct?

95  Square array. Four 1.5 kg particles are placed at the corners 
of a square with 2.0 cm sides that are aligned with x and y axes. 
What is the magnitude of the gravitational force on any one of 
the particles?

96  Compactness. The compactness of an astronomical body is 
the ratio of its Schwarzschild radius RS to its actual radius R. 
What is the compactness of (a) Earth, (b) the Sun, (c) a neu-
tron star with density  ρ = 4.0 ×  10  17   kg/m3 and radius R = 20.0 
km, and (d) a black hole (take R to be the Schwarzschild radius, 
its only measurable radius)? A black hole is the most compact 
object in the universe.

Figure 13.35 Problem 94.
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 Fluids

14.1 FLUIDS, DENSITY, AND PRESSURE
Learning Objectives  
After reading this module, you should be able to . . .

14.1.1 Distinguish fluids from solids.
14.1.2 When mass is uniformly distributed, relate 

 density to mass and volume.

14.1.3 Apply the relationship between hydrostatic pres-
sure, force, and the surface area over which that 
force acts.

Key Ideas  

What Is Physics?
The physics of fluids is the basis of hydraulic engineering, a branch of engineering 
that is applied in a great many fields. A nuclear engineer might study the fluid 
flow in the hydraulic system of an aging nuclear reactor, while a medical engineer 
might study the blood flow in the arteries of an aging patient. An environmental 
engineer might be concerned about the drainage from waste sites or the efficient 
irrigation of farmlands. A naval engineer might be concerned with the dangers 
faced by a deep-sea diver or with the possibility of a crew escaping from a downed 
submarine. An aeronautical engineer might design the hydraulic systems control-
ling the wing flaps that allow a jet airplane to land. Hydraulic  engineering is also 
applied in many Broadway and Las Vegas shows, where huge sets are quickly put 
up and brought down by hydraulic systems.

Before we can study any such application of the physics of fluids, we must 
first answer the question “What is a fluid?”

What Is a Fluid?
A fluid, in contrast to a solid, is a substance that can flow. Fluids conform to 
the boundaries of any container in which we put them. They do so because a 
fluid cannot sustain a force that is tangential to its surface. (In the more formal 
 language of Module 12.3, a fluid is a substance that flows because it cannot 

● The density 𝜌 of any material is defined as the  material’s 
mass per unit volume:

ρ =    Δm ____ ΔV
   .

Usually, where a material sample is much larger than 
atomic dimensions, we can write this as

ρ =    m __ 
V

   .

● A fluid is a substance that can flow; it conforms to 
the boundaries of its container because it cannot with-
stand shearing stress. It can, however, exert a force 

perpendicular to its surface. That force is described in 
terms of pressure p:

p =   ΔF _ ΔA
  ,

in which ∆F is the force acting on a surface element of 
area ∆A. If the force is uniform over a flat area, this can 
be written as

p =   F _ 
A

  .

● The force resulting from fluid pressure at a par-
ticular point in a fluid has the same magnitude in all 
directions. 

C H A P T E R  1 4
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withstand a shearing stress. It can, however, exert a force in the direction per-
pendicular to its surface.) Some materials, such as pitch, take a long time to con-
form to the boundaries of a container, but they do so eventually; thus, we classify 
even those materials as fluids.

You may wonder why we lump liquids and gases together and call them  fluids. 
After all (you may say), liquid water is as different from steam as it is from ice. 
Actually, it is not. Ice, like other crystalline solids, has its constituent atoms orga-
nized in a fairly rigid three-dimensional array called a crystalline  lattice. In neither 
steam nor liquid water, however, is there any such orderly long-range arrangement.

Density and Pressure
When we discuss rigid bodies, we are concerned with particular lumps of matter, 
such as wooden blocks, baseballs, or metal rods. Physical quantities that we find 
useful, and in whose terms we express Newton’s laws, are mass and force. We 
might speak, for example, of a 3.6 kg block acted on by a 25 N force.

With fluids, we are more interested in the extended substance and in proper-
ties that can vary from point to point in that substance. It is more useful to speak 
of density and pressure than of mass and force.

Density
To find the density 𝜌 of a fluid at any point, we isolate a small volume element 
∆V around that point and measure the mass ∆m of the fluid contained within 
that element. The density is then

  ρ  =     Δ     m _ ∆V
   .  (14.1.1)

In theory, the density at any point in a fluid is the limit of this ratio as the volume 
element ∆V at that point is made smaller and smaller. In practice, we  assume that 
a fluid sample is large relative to atomic dimensions and thus is “smooth” (with 
uniform density), rather than “lumpy” with atoms. This assumption allows us to 
write the density in terms of the mass m and volume V of the sample:

   ρ =       m _ 
V

     (uniform density). (14.1.2)

Density is a scalar property; its SI unit is the kilogram per cubic meter. 
Table 14.1.1 shows the densities of some substances and the average densities 
of some objects. Note that the density of a gas (see Air in the table) varies con-
siderably with pressure, but the density of a liquid (see Water) does not; that is, 
gases are readily compressible but liquids are not.

Pressure
Let a small pressure-sensing device be suspended inside a fluid-filled vessel, 
as in Fig. 14.1.1a. The sensor (Fig. 14.1.1b) consists of a piston of surface area 
∆A  riding in a close-fitting cylinder and resting against a spring. A readout 
arrangement allows us to record the amount by which the (calibrated) spring is 
 compressed by the surrounding fluid, thus indicating the magnitude ∆F of the 
force that acts normal to the piston. We define the pressure on the piston as

  p  =     Δ   F _ Δ A
   . (14.1.3)

In theory, the pressure at any point in the fluid is the limit of this ratio as the  surface 
area ∆A of the piston, centered on that point, is made smaller and smaller. How-
ever, if the force is uniform over a flat area A (it is evenly distributed over every 

Table 14.1.1 Some Densities

Material or Object Density (kg/m3)

Interstellar space 10−20

Best laboratory vacuum 10−17

Air: 20°C and 1 atm pressure 1.21
 20°C and 50 atm 60.5
Styrofoam  1 × 102

Ice  0.917 × 103

Water: 20°C and 1 atm 0.998 × 103

 20°C and 50 atm 1.000 × 103

Seawater: 20°C and 1 atm  1.024 × 103

Whole blood  1.060 × 103

Iron  7.9 × 103

Mercury (the metal,  
 not the planet) 13.6 × 103

Earth: average  5.5 × 103

 core  9.5 × 103

 crust  2.8 × 103

Sun: average  1.4 × 103

 core  1.6 × 105

White dwarf star (core) 1010

Uranium nucleus  3 × 1017

Neutron star (core) 1018

Figure 14.1.1 (a) A fluid-filled vessel 
con taining a small pressure sensor, 
shown in (b). The pressure is mea-
sured by the relative position of the 
movable piston in the sensor.

(a)

(b)

Pressure
sensor

Vacuum

Δ  

ΔA

F
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point of the area), we can write Eq. 14.1.3 as

   p =       F _ 
A

     (pressure of uniform force on flat area), (14.1.4)

where F is the magnitude of the normal force on area A. 
We find by experiment that at a given point in a fluid at rest, the pressure p 

defined by Eq. 14.1.4 has the same value no matter how the pressure sensor is 
 oriented. Pressure is a scalar, having no directional properties. It is true that 
the  force acting on the piston of our pressure sensor is a vector quantity, but 
Eq. 14.1.4 involves only the magnitude of that force, a scalar quantity.

The SI unit of pressure is the newton per square meter, which is given a spe-
cial name, the pascal (Pa). In metric countries, tire pressure gauges are calibrated 
in kilopascals. The pascal is related to some other common (non-SI)  pressure 
units as follows:

1 atm = 1.01 × 105 Pa = 760 torr = 14.7 lb/in.2.

The atmosphere (atm) is, as the name suggests, the approximate average  pres sure 
of the atmosphere at sea level. The torr (named for Evangelista Torricelli, who 
invented the mercury barometer in 1674) was formerly called the millimeter of 
mercury (mm Hg). The pound per square inch is often abbreviated psi. Table 
14.1.2 shows some pressures.

Table 14.1.2 Some Pressures

 Pressure (Pa)

Center of the Sun 2 × 1016

Center of Earth 4 × 1011

Highest sustained  
laboratory pressure 1.5 × 1010

Deepest ocean trench  
(bottom) 1.1 × 108

Spike heels on a dance floor 106

Automobile tirea  2 × 105

Atmosphere at sea level 1.0 × 105

Normal blood systolic  
pressurea,b  1.6 × 104

Best laboratory vacuum 10−12

aPressure in excess of atmospheric 
pressure.
bEquivalent to 120 torr on the physician’s 
 pressure gauge.

Checkpoint 14.1.1
Here are three situations in which a force is 
uniformly applied to a flat surface. The force 
magnitudes and surface areas are given. 
Rank the situations according to the pres-
sure on the surface, greatest first.

Situation Force (N) Area (m2)

(1) 19 2.0

(2) 200 50

(3) 600 200

Sample Problem 14.1.1 Atmospheric pressure and force

A living room has floor dimensions of 3.5 m and 4.2 m 
and a height of 2.4 m.

(a) What does the air in the room weigh when the air 
pressure is 1.0 atm?

KEY IDEAS

(1) The air’s weight is equal to mg, where m is its mass. 
(2) Mass m is related to the air density 𝜌 and the air 
volume V by Eq. 14.1.2 (𝜌 = m/V).

Calculation: Putting the two ideas together and taking 
the density of air at 1.0 atm from Table 14.1.1, we find

 mg = (𝜌V)g

 = (1.21 kg/m3)(3.5 m × 4.2 m × 2.4 m)(9.8 m/s2)

 = 418 N ≈ 420 N. (Answer)

This is the weight of about 110 cans of Pepsi.

(b) What is the magnitude of the atmosphere’s downward 
force on the top of your head, which we take to have an 
area of 0.040 m2?

KEY IDEA

When the fluid pressure p on a surface of area A is uniform, 
the fluid force on the surface can be obtained from Eq. 
14.1.4 ( p = F/A).

Calculation: Although air pressure varies daily, we can 
approximate that p = 1.0 atm. Then Eq. 14.1.4 gives

 F = pA = (1.0 atm)  (  1.01 × 105 N/m2
  __ 

1.0 atm
  )  (0.040 m2)

 = 4.0 × 103 N. (Answer)

This large force is equal to the weight of the air column 
from the top of your head to the top of the atmosphere.

additional examples, video, and practice available at WileyPLUS
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14.2 FLUIDS AT REST
Learning Objectives  
After reading this module, you should be able to . . .

14.2.1 Apply the relationship between the hydrostatic 
pressure, fluid density, and the height above or below 
a reference level.

14.2.2 Distinguish between total pressure (absolute 
 pressure) and gauge pressure.

● Pressure in a fluid at rest varies with vertical  position y. 
For y measured positive upward,

p2 = p1 + 𝜌g(y1 − y2).

If h is the depth of a fluid sample below some refer-
ence level at which the pressure is p0, this equation 
becomes

p = p0 + 𝜌gh,

where p is the pressure in the sample.

● The pressure in a fluid is the same for all points at 
the same level.

● Gauge pressure is the difference between the actual 
pressure (or absolute pressure) at a point and the 
atmospheric pressure.

Key Ideas  

Fluids at Rest
Figure 14.2.1a shows a tank of water—or other liquid—open to the atmosphere. 
As every diver knows, the pressure increases with depth below the air–water 
 interface. The diver’s depth gauge, in fact, is a pressure sensor much like that of 
Fig. 14.1.1b. As every mountaineer knows, the pressure decreases with altitude 
as one ascends into the atmosphere. The pressures encountered by the diver and 
the mountaineer are usually called hydrostatic pressures, because they are due to 
fluids that are static (at rest). Here we want to find an expression for hydrostatic 
pressure as a function of depth or altitude.

Let us look first at the increase in pressure with depth below the water’s  surface. 
We set up a vertical y axis in the tank, with its origin at the air–water  interface and 
the positive direction upward. We next consider a water sample contained in an 
imaginary right circular cylinder of horizontal base (or face) area A, such that y1 
and y2 (both of which are negative numbers) are the depths below the surface of 
the upper and lower cylinder faces, respectively.

Figure 14.2.1e is a free-body diagram for the water in the cylinder. The water 
is in static equilibrium; that is, it is stationary and the forces on it balance. Three 
forces act on it vertically: Force    F  1   

→
    acts at the top surface of the cylinder and is 

due to the water above the cylinder (Fig. 14.2.1b). Force    F  2   
→

    acts at the bottom sur-
face of the cylinder and is due to the water just below the cylinder (Fig. 14.2.1c). 
The gravitational force on the water is m   g →   , where m is the mass of the water in 
the cylinder (Fig. 14.2.1d). The balance of these forces is written as

 F2 = F1 + mg. (14.2.1)

To involve pressures, we use Eq. 14.1.4 to write

 F1 = p1A  and  F2 = p2A. (14.2.2)

The mass m of the water in the cylinder is, from Eq. 14.1.2, m = 𝜌V, where the 
cylinder’s volume V is the product of its face area A and its height y1 − y2. Thus, 
m is equal to 𝜌A(y1 − y2). Substituting this and Eq. 14.2.2 into Eq. 14.2.1, we find

p2A = p1A + 𝜌Ag(y1 − y2)

 or p2 = p1 + 𝜌g(y1 − y2). (14.2.3)
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y1

y2

y = 0

y 

mg

y1

y2 Level 2, p2

y = 0

y 

F2

y1

y2

Level 1, p1

y = 0

y 

F1

Sample

y1

y2

Air

Water

y = 0

y 

(a)

Three forces act on this sample of water.

This upward force is due to the water 
pressure pushing on the bottom surface. Gravity pulls downward on the sample.

Sample

mg

(e) F1

F2

The three forces
balance.

This downward force is due to the water
pressure pushing on the top surface.

(d)(c)

(b)

Figure 14.2.1 (a) A tank of water in which a sample of water is contained in an imaginary 
cylinder of horizontal base area A. (b)–(d) Force    F  1   

→
    acts at the top surface of the cylinder; 

force    F  2   
→

    acts at the bottom surface of the cylinder; the  gravitational force on the water 
in the cylinder is represented by  m  g →   . (e) A free-body diagram of the water sample. In 
 WileyPLUS, this figure is available as an animation with voiceover.

This equation can be used to find pressure both in a liquid (as a function of 
depth) and in the atmosphere (as a function of altitude or height). For the  former, 
suppose we seek the pressure p at a depth h below the liquid surface. Then we 
choose level 1 to be the surface, level 2 to be a distance h below it (as in Fig. 14.2.2), 
and p0 to represent the atmospheric pressure on the surface. We then substitute

y1 = 0,  p1 = p0  and  y2 = −h,  p2 = p

into Eq. 14.2.3, which becomes

 p = p0 + 𝜌gh   (pressure at depth h). (14.2.4)

Note that the pressure at a given depth in the liquid depends on that depth but 
not on any horizontal dimension.

The pressure at a point in a fluid in static equilibrium depends on the depth of 
that point but not on any horizontal dimension of the fluid or its container.

Thus, Eq. 14.2.4 holds no matter what the shape of the container. If the  bottom 
surface of the container is at depth h, then Eq. 14.2.4 gives the pressure p there.

A
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41114.2 Fluids at rest

In Eq. 14.2.4, p is said to be the total pressure, or absolute pressure, at level 2. 
To see why, note in Fig. 14.2.2 that the pressure p at level 2 consists of two con-
tributions: (1) p0, the pressure due to the atmosphere, which bears down on the 
 liquid, and (2) 𝜌gh, the pressure due to the liquid above level 2, which bears 
down on level 2. In general, the difference between an absolute pressure and an 
 atmospheric pressure is called the gauge pressure (because we use a gauge to 
measure this pressure difference). For Fig. 14.2.2, the gauge pressure is 𝜌gh.

Equation 14.2.3 also holds above the liquid surface: It gives the atmospheric pres-
sure at a given distance above level 1 in terms of the atmospheric pressure p1 at level 1 
(assuming that the atmospheric density is uniform over that  distance). For example, to 
find the atmospheric pressure at a distance d above level 1 in Fig. 14.2.2, we substitute

y1 = 0,  p1 = p0  and  y2 = d,  p2 = p.

Then with 𝜌 = 𝜌air, we obtain
p = p0 − 𝜌airgd.

Checkpoint 14.2.1
The figure shows four containers of olive oil. Rank them according to the pressure at 
depth h, greatest first.

h

(a) (b) (c) (d)

Equating these two expressions and solving for the 
unknown density yield

 ρx = ρw    l __ 
l + d

    = (998 kg/m3)    135 mm  __  
135 mm + 12.3 mm

   

 = 915 kg/m3. (Answer)

Note that the answer does not depend on the atmo spheric 
pressure p0 or the free-fall acceleration g.

Sample Problem 14.2.1 Balancing of pressure in a U-tube

The U-tube in Fig. 14.2.3 contains two liquids in static equi-
librium: Water of density 𝜌w (= 998 kg/m3) is in the right 
arm, and oil of unknown density 𝜌x is in the left. Measure-
ment gives l = 135 mm and d = 12.3 mm. What is the den-
sity of the oil?

KEY IDEAS

(1) The pressure pint at the level of the oil–water interface 
in the left arm depends on the density 𝜌x and height of the 
oil above the interface. (2) The water in the right arm at 
the same level must be at the same pressure pint. The reason 
is that,  because the water is in static equilibrium, pressures 
at points in the water at the same level must be the same.

Calculations: In the right arm, the interface is a distance 
l below the free surface of the water, and we have, from 
Eq. 14.2.4,

pint = p0 + 𝜌wgl   (right arm).

In the left arm, the interface is a distance l + d below the free 
surface of the oil, and we have, again from Eq. 14.2.4,

pint = p0 + 𝜌xg(l + d)   (left arm).

Figure 14.2.3 The oil in the left arm stands higher than the  water.

Interface

Water

Oil

l

d

This much oil
balances... ... this much

water.

Figure 14.2.2 The pressure p increases 
with depth h below the liquid surface 
according to Eq. 14.2.4.

p

h

Level 1

Level 2

Air

Liquid

y = 0

y 

p0

additional examples, video, and practice available at WileyPLUS
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Measuring Pressure
The Mercury Barometer
Figure 14.3.1a shows a very basic mercury barometer, a device 
used to measure the pressure of the atmosphere. The long glass 
tube is filled with mercury and  inverted with its open end in a 
dish of mercury, as the figure shows. The space above the mer-
cury column contains only mercury vapor, whose pressure is so 
small at ordinary temperatures that it can be neglected.

We can use Eq. 14.2.3 to find the atmospheric pressure p0 in 
terms of the height h of the mercury column. We choose level 1  
of Fig. 14.2.1 to be that of the air–mercury interface and level 
2 to be that of the top of the mercury column, as labeled in  
Fig. 14.3.1a. We then substitute

y1 = 0,  p1 = p0  and  y2 = h,  p2 = 0

into Eq. 14.2.3, finding that
 p0 = 𝜌gh, (14.3.1)
where 𝜌 is the density of the mercury.

For a given pressure, the height h of the mercury column does not depend 
on the cross-sectional area of the vertical tube. The fanciful mercury barometer 
of Fig. 14.3.1b gives the same reading as that of Fig. 14.3.1a; all that counts is the 
vertical distance h between the mercury levels.

Equation 14.3.1 shows that, for a given pressure, the height of the column of 
mercury depends on the value of g at the location of the barometer and on the 
density of mercury, which varies with temperature. The height of the column 
(in millimeters) is numerically equal to the pressure (in torr) only if the barom-
eter is at a place where g has its accepted standard value of 9.80665 m/s2 and 
the  temperature of the mercury is 0°C. If these conditions do not prevail (and 
they rarely do), small corrections must be made before the height of the mercury 
 column can be transformed into a pressure.

The Open-Tube Manometer
An open-tube manometer (Fig. 14.3.2) measures the gauge pressure pg of a gas. It 
consists of a U-tube containing a liquid, with one end of the tube connected to the 
vessel whose gauge pressure we wish to measure and the other end open to the 
atmosphere. We can use Eq. 14.2.3 to find the gauge pressure in terms of the height 
h shown in Fig. 14.3.2. Let us choose levels 1 and 2 as shown in Fig. 14.3.2. With 

y1 = 0,  p1 = p0  and  y2 = −h,  p2 = p

substituted into Eq. 14.2.3, we find that

 pg = p − p0 = 𝜌gh, (14.3.2)

where 𝜌 is the liquid’s density. The gauge pressure pg is directly proportional to h.

14.3 MEASURING PRESSURE
Learning Objectives  
After reading this module, you should be able to . . .

14.3.1 Describe how a barometer can measure atmo-
spheric pressure.

14.3.2 Describe how an open-tube manometer can 
measure the gauge pressure of a gas.

Key Ideas  
● A mercury barometer can be used to measure atmo-
spheric pressure.

● An open-tube manometer can be used to measure 
the gauge pressure of a confined gas.

Level 1

p0

y

Level 2

h

p ≈ 0

h

p0

p ≈ 0

(a) (b)

Figure 14.3.1 (a) A mercury barome-
ter. (b) Another mercury barometer. 
The distance h is the same in both 
cases.

Figure 14.3.2 An open-tube manom-
eter, connected to measure the gauge 
pressure of the gas in the tank on the 
left. The right arm of the U-tube is 
open to the atmosphere.

Tank

Manometer

Level 2

Level 1

p0

h

pg
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The gauge pressure can be positive or negative, depending on whether p > p0 
or p < p0. In inflated tires or the human circulatory system, the (absolute) pressure 
is greater than atmospheric pressure, so the gauge pressure is a positive quantity, 
sometimes called the overpressure. If you suck on a straw to pull fluid up the straw, 
the (absolute) pressure in your lungs is actually less than atmo spheric pressure. The 
gauge pressure in your lungs is then a negative quantity.

Checkpoint 14.3.1
Here are three figures showing 
the arms of a manometer con-
nected to a gas tank, as in this 
module. Rank the figures as to 
the gauge pressure in the gas, 
greatest first.

Open

Tank

(1) (2) (3)

14.4 PASCAL’S PRINCIPLE
Learning Objectives  
After reading this module, you should be able to . . .

14.4.1 Identify Pascal’s principle.
14.4.2 For a hydraulic lift, apply the relationship 

between the input area and displacement and the 
output area and displacement.

Key Idea  
● Pascal’s principle states that a change in the pres-
sure applied to an enclosed fluid is transmitted 

undiminished to every portion of the fluid and to the 
walls of the containing vessel.

Pascal’s Principle
When you squeeze one end of a tube to get toothpaste out the other end, you are 
watching Pascal’s principle in action. This principle is also the basis for the Heimlich 
maneuver, in which a sharp pressure increase properly applied to the abdomen is 
transmitted to the throat, forcefully ejecting food lodged there. The principle was 
first stated clearly in 1652 by Blaise Pascal (for whom the unit of pressure is named):

Demonstrating Pascal’s Principle
Consider the case in which the incompressible fluid is a liquid contained in a tall 
cylinder, as in Fig. 14.4.1. The cylinder is fitted with a piston on which a container 
of lead shot rests. The atmosphere, container, and shot exert pressure pext on the 
piston and thus on the liquid. The pressure p at any point P in the liquid is then

 p = pext + 𝜌gh. (14.4.1)

Let us add a little more lead shot to the container to increase pext by an amount 
∆pext. The quantities 𝜌, g, and h in Eq. 14.4.1 are unchanged, so the pressure 
change at P is
 ∆p = ∆pext. (14.4.2)

Figure 14.4.1 Lead shot (small balls 
of lead) loaded onto the piston cre-
ate a pressure pext at the top of the 
enclosed (incompressible) liquid. If 
pext is increased, by adding more lead 
shot, the pressure increases by the 
same amount at all points within the 
liquid.

Lead shot

Piston

P
p

h

pext

Liquid

A change in the pressure applied to an enclosed incompressible fluid is transmit-
ted undiminished to every portion of the fluid and to the walls of its container.
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This pressure change is independent of h, so it must hold for all points within 
the liquid, as Pascal’s principle states.

Pascal’s Principle and the Hydraulic Lever
Figure 14.4.2 shows how Pascal’s principle can be made the basis of a hydrau-
lic lever. In operation, let an external force of magnitude Fi be directed 
downward on the left-hand (or input) piston, whose surface area is Ai.  
An incompressible liquid in the device then produces an upward force of 
magnitude Fo on the right-hand (or output) piston, whose surface area is Ao.  
To keep the system in equilibrium, there must be a downward force of mag-
nitude Fo on the output  piston from an external load (not shown). The force    
F  i   
→

    applied on the left and the downward force    F  o   
→

    from the load on the right 
produce a change ∆p in the pressure of the liquid that is given by

  ∆p =   
    Fi _ 
Ai

   =   
    Fo _ 
Ao

    ,

so   Fo = Fi   
    Ao _ 
Ai

    . (14.4.3)

Equation 14.4.3 shows that the output force Fo on the load must be greater than 
the input force Fi if Ao > Ai, as is the case in Fig. 14.4.2.

If we move the input piston downward a distance di, the output piston moves 
upward a distance do, such that the same volume V of the incompressible liquid is 
displaced at both pistons. Then

V = Aidi = Aodo,

which we can write as

   do = di    
    Ai _ 
Ao

     . (14.4.4)

This shows that, if Ao > Ai (as in Fig. 14.4.2), the output piston moves a smaller 
distance than the input piston moves.

From Eqs. 14.4.3 and 14.4.4 we can write the output work as

    W =  F  o    d  o   =   (   Fi   
    Ao _ 
Ai

    )    (   di   
    Ai _ 
Ao

    )   =  F  i    d   i  ,    (14.4.5)

which shows that the work W done on the input piston by the applied force is 
equal to the work W done by the output piston in lifting the load placed on it.

The advantage of a hydraulic lever is this:

di

Input

Ai
do

Oil

Ao

Output

Fi

Fo
A small input 
force produces ...

... a large output
force.

Figure 14.4.2 A hydraulic arrangement 
that can be used to magnify a force    F  i   

→
   .  

The work done is, however, not mag-
nified and is the same for both the 
input and output forces.

Checkpoint 14.4.1
In a hydraulic lever, which piston has (a) the greater displacement, (b) the greater 
force magnitude, and (c) the greater displaced volume? The possible answers are: the 
piston with the larger face area, the piston with the smaller face area, and the pistons 
have the same value.

With a hydraulic lever, a given force applied over a given distance can be trans-
formed to a greater force applied over a smaller distance.

The product of force and distance remains unchanged so that the same work 
is done. However, there is often tremendous advantage in being able to exert 
the larger force. Most of us, for example, cannot lift an automobile directly but 
can with a hydraulic jack, even though we have to pump the handle farther than 
the automobile rises and in a series of small strokes.
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14.5 ARCHIMEDES’ PRINCIPLE
Learning Objectives  
After reading this module, you should be able to . . .

14.5.1 Describe Archimedes’ principle.
14.5.2 Apply the relationship between the buoyant 

force on a body and the mass of the fluid displaced 
by the body.

14.5.3 For a floating body, relate the buoyant force to 
the gravitational force.

14.5.4 For a floating body, relate the gravitational force 
to the mass of the fluid displaced by the body.

14.5.5 Distinguish between apparent weight and actual 
weight.

14.5.6 Calculate the apparent weight of a body that is 
fully or partially submerged.

Key Ideas  
● Archimedes’ principle states that when a body is 
fully or partially submerged in a fluid, the fluid pushes 
upward with a buoyant force with magnitude

Fb = mfg,

where mf is the mass of the fluid that has been pushed 
out of the way by the body.

● When a body floats in a fluid, the magnitude Fb of the 
 (upward) buoyant force on the body is equal to the magni-
tude Fg of the (downward) gravitational force on the body. 

● The apparent weight of a body on which a buoyant 
force acts is related to its actual weight by

weightapp = weight − Fb.

The upward buoyant
force on this sack of
water equals the
weight of the water.

Figure 14.5.1 A thin-walled plastic 
sack of water is in static equilibrium 
in the pool. The gravitational force 
on the sack must be balanced by 
a net upward force on it from the 
surrounding water.

Archimedes’ Principle
Figure 14.5.1 shows a student in a swimming pool, manipulating a very thin plas-
tic sack (of negligible mass) that is filled with water. She finds that the sack and 
its contained water are in static equilibrium, tending neither to rise nor to sink. 
The downward gravitational force    F  g   

→
    on the contained water must be balanced 

by a net upward force from the water surrounding the sack.
This net upward force is a buoyant force    F  b   

→
   . It exists because the pressure 

in the surrounding water increases with depth below the surface. Thus, the pres-
sure near the bottom of the sack is greater than the pressure near the top, which 
means the forces on the sack due to this pressure are greater in magnitude near 
the bottom of the sack than near the top. Some of the forces are represented in 
Fig. 14.5.2a, where the space occupied by the sack has been left empty. Note that 
the force vectors drawn near the bottom of that space (with upward components) 
have longer lengths than those drawn near the top of the sack (with downward 
components). If we vectorially add all the forces on the sack from the water, 
the horizontal components cancel and the vertical components add to yield the 
upward buoyant force    F  b   

→
    on the sack. (Force    F  b   

→
    is shown to the right of the pool 

in Fig. 14.5.2a.)
Because the sack of water is in static equilibrium, the magnitude of    F  b   

→
    is equal 

to the magnitude mfg of the gravitational force    F  g   
→

    on the sack of water: Fb = mfg.  
(Subscript f refers to fluid, here the water.) In words, the magnitude of the buoyant 
force is equal to the weight of the water in the sack.

In Fig. 14.5.2b, we have replaced the sack of water with a stone that exactly 
fills the hole in Fig. 14.5.2a. The stone is said to displace the water, meaning that 
the stone occupies space that would otherwise be occupied by water. We have 
changed nothing about the shape of the hole, so the forces at the hole’s surface 
must be the same as when the water-filled sack was in place. Thus, the same 
 upward buoyant force that acted on the water-filled sack now acts on the stone; 
that is, the magnitude Fb of the buoyant force is equal to mfg, the weight of the 
water displaced by the stone.
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(a) (b)

Fb The buoyant force 
is due to the 
pressure of the
surrounding water.

Stone
Fb

Fg

The net force is 
downward, so the
stone accelerates
downward.

(c)

Wood
Fb

Fg

The net force 
is upward, so the
wood accelerates
upward.

Figure 14.5.2 (a) The water surrounding the hole in the water 
produces a net upward buoyant force on whatever fills the 
hole. (b) For a stone of the same volume as the hole, the 
gravitational force exceeds the buoyant force in magnitude. 
(c) For a lump of wood of the same volume, the gravitational 
force is less than the buoyant force in magnitude.

Unlike the water-filled sack, the stone is not in static equilibrium. The down-
ward gravitational force    F  g   

→
    on the stone is greater in magnitude than the upward 

buoyant force (Fig. 14.5.2b). The stone thus accelerates downward, sinking.
Let us next exactly fill the hole in Fig. 14.5.2a with a block of lightweight 

wood, as in Fig. 14.5.2c. Again, nothing has changed about the forces at the hole’s 
surface, so the magnitude Fb of the buoyant force is still equal to mfg, the weight 
of the displaced water. Like the stone, the block is not in static equilibrium. How-
ever, this time the gravitational force    F  g   

→
    is lesser in magnitude than the buoyant 

force (as shown to the right of the pool), and so the block accelerates upward, 
rising to the top surface of the water.

Our results with the sack, stone, and block apply to all fluids and are summarized 
in Archimedes’ principle:

The buoyant force on a body in a fluid has the magnitude

 Fb = mfg   (buoyant force), (14.5.1)

where mf is the mass of the fluid that is displaced by the body.

Floating
When we release a block of lightweight wood just above the water in a pool, the block 
moves into the water because the gravitational force on it pulls it downward. As the 
block displaces more and more water, the magnitude Fb of the  upward buoyant force 
acting on it increases. Eventually, Fb is large enough to equal the magnitude Fg of the 

 When a body is fully or partially submerged in a fluid, a buoyant force    F  b   
→

    from the 
surrounding fluid acts on the body. The force is directed upward and has a magni-
tude equal to the weight mfg of the fluid that has been displaced by the body.
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downward gravitational force on the block, and the block comes to rest. The block is 
then in static equilibrium and is said to be floating in the water. In general,

We can write this statement as

 Fg = mfg   (floating). (14.5.3)

In other words, a floating body displaces its own weight of fluid.

Apparent Weight in a Fluid
If we place a stone on a scale that is calibrated to measure weight, then the  reading 
on the scale is the stone’s weight. However, if we do this underwater, the upward 
buoyant force on the stone from the water decreases the reading. That reading is 
then an apparent weight. In general, an apparent weight is  related to the actual 
weight of a body and the buoyant force on the body by

  =  (  
actual

 )   −  (  
magnitude of

 )  , 

which we can write as

 weightapp = weight − Fb   (apparent weight). (14.5.4)

If, in some test of strength, you had to lift a heavy stone, you could do it more 
easily with the stone underwater. Then your applied force would need to exceed 
only the stone’s apparent weight, not its larger actual weight. 

The magnitude of the buoyant force on a floating body is equal to the body’s 
weight. Equation 14.5.4 thus tells us that a floating body has an apparent weight 
of zero—the body would produce a reading of zero on a scale. For example, when 
astronauts prepare to perform a complex task in space, they practice the task float-
ing underwater, where their suits are adjusted to give them an apparent weight 
of zero. 

   (  
apparent

 )   
 weight  weight  buoyant force 

Checkpoint 14.5.1
A penguin floats first in a fluid of density 𝜌0, then in a fluid of density 0.95𝜌0, and then 
in a fluid of density 1.1𝜌0. (a) Rank the densities according to the magnitude of the 
buoyant force on the penguin, greatest first. (b) Rank the densities according to the 
amount of fluid displaced by the penguin, greatest first.

We can write this statement as

 Fb = Fg   (floating). (14.5.2)

From Eq. 14.5.1, we know that Fb = mfg. Thus,

When a body floats in a fluid, the magnitude Fb of the buoyant force on the 
body is equal to the magnitude Fg of the gravitational force on the body.

When a body floats in a fluid, the magnitude Fg of the gravitational force on the 
body is equal to the weight mfg of the fluid that has been displaced by the body.
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Sample Problem 14.5.1 Let’s go surfing

In Fig. 14.5.3a, a surfer rides on the front side of a wave, 
at a point where a tangent to the wave has a slope of 
θ  =  30.0°. The combined mass of surfer and surfboard 
is m = 83.0 kg, and the board has submerged volume of 
V = 2.50 × 10–2 m3. The surfer maintains his position on 
the wave as the wave moves at constant speed toward the 
shore. What are the magnitude and direction (relative to 
the positive direction of the x axis in Fig. 14.5.3b) of the 
drag force on the surfboard from the water?

KEY IDEAS

(1) The buoyancy force on the surfer has a magnitude 
Fb equal to the weight of the seawater displaced by the 
submerged volume of the surfboard. The direction of the 
force is perpendicular to the surface at the surfer’s loca-
tion. (2) By Newton’s second law, because the surfer 
moves at constant speed toward the shore, the (vector) 
sum of the buoyancy    F  b   

→
   , the gravitational force    F  g   

→
   , and the 

drag force    F  d   
→

    must be 0.

Calculations: The forces and their components are 
shown in the free-body diagram of Fig. 14.5.3b. The gravi-
tational force    F  g   

→
    is downward and (as we saw in Chapter 

5) has a component of mg sin θ down the slope and a com-
ponent mg cos θ perpendicular to the slope. A drag force    
F  d   
→

    from the water acts on the surfboard because water is 
continuously forced up into the wave as the wave con-
tinues to move toward the shore. This push on the surf-
board is upward and to the rear, at angle 𝜙 to the x axis. 
The buoyancy force    F  b   

→
    is perpendicular to the water sur-

face; its magnitude depends on the mass mf of the water 
displaced by the surfboard: Fb = mf g. From Eq. 14.1.2  
( ρ = m/V), we can write the mass in terms of the seawater 
density ρw and the submerged volume V of the surfboard: 
mf = ρwV. From Table 14.1.1, ρw is 1.024  ×  103

 kg/m3.  
Thus, the magnitude of the buoyant force is

Fb = mf g = ρwVg

= (1.024 × 103 kg/m3)(2.50 × 10–2 m3)(9.8 m/s2)

= 2.509 × 102 N.

So, Newton’s second law for the y axis,

Fdy + Fb – mg cos θ = m(0),

becomes

Fdy + 2.509 × 102 N – (83 kg)(9.8 m/s2) cos 30.0° = 0, 

yielding

Fdy = 453.5 N.

Similarly, Newton’s second law   
→

 F   = m   a →    for the x axis,

Fdx – mg sin θ = m(0),

yields

Fdx = 406.7 N.

Combining the two components of the drag force tells us 
that the force has magnitude

Fd =   √ 
___________

  ( 406.7 N)  2  + (453.5 N)2   

 = 609 N (Answer)

and angle

 ϕ = tan–1  (  453.5 N __ 
406.7 N

  )   = 48.1°. (Answer)

Wipeout avoided: If the surfer tilts the board slightly 
forward, the magnitude of the drag force decreases and 
angle ϕ changes. The result is that the net force is no 
longer zero and the surfer moves down the face of the 
wave. The descent is somewhat self-adjusting because, 
as the surfer descends, the tilt angle θ of the wave sur-
face decreases and thus so does the component of the 
gravitational force mg sin θ pulling the surfer down the 
slope. So, the surfer can adjust the board to re-establish 
equilibrium, now lower on the wave. Similarly, by tilt-
ing the board slightly backward, the surfer increases the 
drag and moves up the face of the wave. If the surfer 
is still on the lower part of the wave, then both θ and  
mg sin θ increase and again the surfer can control the 
forces and re-establish equilibrium.

Figure 14.5.3 (a) Surfer. (b) Free-body diagram showing the 
forces on the surfer−surfboard system. 

(a)

mg cos θ

y

mg sin θ

Fb

Fd

Fdx

Fdyx

ϕ

θ
(b)

additional examples, video, and practice available at WileyPLUS
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Sample Problem 14.5.2 Floating, buoyancy, and density

In Fig. 14.5.4, a block of density ρ = 800 kg/m3 floats face 
down in a fluid of density ρf = 1200 kg/m3. The block has 
height H = 6.0 cm. 

(a) By what depth h is the block submerged?

KEY IDEAS

(1) Floating requires that the upward buoyant force on 
the block match the downward gravitational force on the 
block. (2) The buoyant force is equal to the weight mf g of 
the fluid displaced by the submerged portion of the block.

Calculations: From Eq. 14.5.1, we know that the buoyant 
force has the magnitude Fb = mf g, where mf is the mass of 
the fluid displaced by the block’s submerged volume Vf . 
From Eq. 14.1.2 (ρ = m/V), we know that the mass of the 
displaced fluid is mf = ρfVf . We don’t know Vf but if we 
symbolize the block’s face length as L and its width as 
W, then from Fig. 14.5.4 we see that the submerged vol-
ume must be Vf = LWh. If we now combine our three 
expressions, we find that the upward buoyant force has 
magnitude

    F  b   =  m  f   g =  ρ  f    V  f   g = ρ  f   LWhg.   (14.5.5)

Similarly, we can write the magnitude Fg of the gravi-
tational force on the block, first in terms of the block’s 
mass m, then in terms of the block’s density 𝜌 and (full) 
volume V, and then in terms of the block’s dimensions L, 
W, and H (the full height):

    F  g   = mg = ρVg = ρLWHg.   (14.5.6)

The floating block is stationary. Thus, writing Newton’s 
second law for components along a vertical y axis with the 
positive direction upward (Fnet, y = may), we have

   F  b   −  F  g   = m  (  0 )   , 

or from Eqs. 14.5.5 and 14.5.6,

  ρ  f   LWhg − ρLWHg = 0, 
which gives us

 h =    
ρ

 __ ρf
   H =    

800 kg/m3
 __________ 

1200 kg/m3
    (6.0 cm)

 = 4.0 cm. (Answer)

(b) If the block is held fully submerged and then released, 
what is the magnitude of its acceleration?

Calculations: The gravitational force on the block is the 
same but now, with the block fully submerged, the vol-
ume of the displaced water is V = LWH. (The full height 
of the block is used.) This means that the value of   F  b    is 
now larger, and the block will no longer be stationary but 
will accelerate upward. Now Newton’s second law yields

  F  b   −  F  g   = ma, 

or   ρ  f   LWHg − ρLWHg = ρLWHa, 

where we inserted ρLWH for the mass m of the block. 
 Solv ing for a leads to

 a =   (  
ρf __ ρ   – 1) g  =   (  

1200 kg/m3

 __ 
800 kg/m3

   – 1)  (9.8 m/s2)

 = 4.9 m/s2. (Answer)

hH

Floating means
that the buoyant
force matches the
gravitational force.

Figure 14.5.4 Block of height H 
floats in a fluid, to a depth of h.

14.6 THE EQUATION OF CONTINUITY
Learning Objectives  
After reading this module, you should be able to . . .

14.6.1 Describe steady flow, incompressible flow, non-
viscous flow, and irrotational flow.

14.6.2 Explain the term streamline.
14.6.3 Apply the equation of continuity to relate the 

cross-sectional area and flow speed at one point in a 
tube to those quantities at a different point.

14.6.4 Identify and calculate volume flow rate.
14.6.5 Identify and calculate mass flow rate.

additional examples, video, and practice available at WileyPLUS
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Key Ideas  
● An ideal fluid is incompressible and lacks viscosity, 
and its flow is steady and irrotational. 

● A streamline is the path followed by an individual fluid 
particle.

● A tube of flow is a bundle of streamlines. 

● The flow within any tube of flow obeys the equation 
of continuity:

RV = Av = a constant,

in which RV is the volume flow rate, A is the cross- 
sectional area of the tube of flow at any point, and v is 
the speed of the fluid at that point. 

● The mass flow rate Rm is

Rm = 𝜌RV = 𝜌Av = a constant.

Ideal Fluids in Motion
The motion of real fluids is very complicated and not yet fully understood. 
Instead, we shall discuss the motion of an ideal fluid, which is simpler to han-
dle mathematically and yet provides useful results. Here are four assumptions 
that we make about our ideal fluid; they all are concerned with flow:

1. Steady flow  In steady (or laminar) flow, the velocity of the moving fluid at 
any fixed point does not change with time. The gentle flow of water near the 
center of a quiet stream is steady; the flow in a chain of rapids is not. Figure 
14.6.1 shows a transition from steady flow to nonsteady (or nonlaminar or 
turbulent) flow for a rising stream of smoke. The speed of the smoke par-
ticles increases as they rise and, at a  certain critical speed, the flow changes 
from steady to nonsteady.

2. Incompressible flow  We assume, as for fluids at rest, that our ideal fluid 
is incompressible; that is, its density has a constant, uniform value.

Will McIntyre/Science SourceFigure 14.6.1 At a certain point, the 
rising flow of smoke and heated gas 
changes from steady to turbulent.
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3. Nonviscous flow  Roughly speaking, the viscosity of a fluid is a measure of how 
resistive the fluid is to flow. For example, thick honey is more resistive to flow 
than water, and so honey is said to be more viscous than water. Viscosity is the 
fluid analog of friction between solids; both are mechanisms by which the kinetic 
energy of moving objects can be transferred to thermal energy. In the absence 
of friction, a block could glide at constant speed along a horizontal surface. In 
the same way, an object moving through a nonviscous fluid would experience no 
viscous drag force—that is, no resistive force due to  viscosity; it could move at 
constant speed through the fluid. The British scientist Lord Rayleigh noted that in 
an ideal fluid a ship’s propeller would not work, but, on the other hand, in an ideal 
fluid a ship (once set into motion) would not need a propeller!

4. Irrotational flow  Although it need not concern us further, we also assume 
that the flow is irrotational. To test for this property, let a tiny grain of dust 
move with the fluid. Although this test body may (or may not) move in a circu-
lar path, in irrotational flow the test body will not rotate about an axis through 
its own center of mass. For a loose analogy, the motion of a Ferris wheel is 
rotational; that of its passengers is irrotational.

We can make the flow of a fluid visible by adding a tracer. This might 
be a dye injected into many points across a liquid stream (Fig. 14.6.2) or smoke 
particles added to a gas flow (Fig. 14.6.1). Each bit of a tracer follows a stream-
line, which is the path that a tiny element of the fluid would take as the fluid 
flows. Recall from Chapter 4 that the velocity of a particle is always tangent 
to the path taken by the particle. Here the particle is the fluid element, and 
its velocity    → v    is always tangent to a streamline (Fig. 14.6.3). For this reason, 
two streamlines can never intersect; if they did, then an element arriving at 
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their  intersection would have two different velocities simultaneously—an 
impossibility.

The Equation of Continuity
You may have noticed that you can increase the speed of the water emerging from 
a garden hose by partially closing the hose opening with your thumb. Apparently 
the speed v of the water depends on the cross-sectional area A through which the 
water flows.

Here we wish to derive an expression that relates v and A for the steady flow 
of an ideal fluid through a tube with varying cross section, like that in Fig. 14.6.4. 
The flow there is toward the right, and the tube segment shown (part of a longer 
tube) has length L. The fluid has speeds v1 at the left end of the  segment and v2 
at the right end. The tube has cross-sectional areas A1 at the left end and A2 at 
the right end. Suppose that in a time interval ∆t a volume ∆V of fluid enters the 
tube segment at its left end (that volume is colored purple in Fig. 14.6.4). Then, 
because the fluid is incompressible, an identical volume ∆V must emerge from 
the right end of the segment (it is colored green in Fig. 14.6.4).

We can use this common volume ∆V to relate the speeds and areas. To 
do so, we first consider Fig. 14.6.5, which shows a side view of a tube of uni-
form cross-sectional area A. In Fig. 14.6.5a, a fluid element e is about to pass 

Courtesy D. H. Peregrine, University of Bristol

Figure 14.6.2 The steady 
flow of a fluid around a 
 cylinder, as revealed by a 
dye tracer that was injected 
into the fluid upstream of 
the cylinder.

Streamline

Fluid
element

v

Figure 14.6.3 A fluid element traces 
out a streamline as it moves. The 
velocity vector of the element is tan-
gent to the streamline at every point.

Figure 14.6.4 Fluid flows from left to right 
at a steady rate through a tube segment of 
length L. The fluid’s speed is v1 at the left 
side and v2 at the right side. The tube’s 
 cross-sectional area is A1 at the left side 
and A2 at the right side. From time t in 
(a) to time t + ∆t in (b), the amount of fluid 
shown in purple enters at the left side and 
the equal amount of fluid shown in green 
emerges at the right side.
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(a) Time t
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(b) Time t + Δt
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Figure 14.6.5 Fluid flows at a con-
stant speed v through a tube.  
(a) At time t, fluid element e is 
about to pass the dashed line. 
(b) At time t + ∆t, element e is a 
distance ∆x = v ∆t from the dashed 
line.

ve

ve

(a) Time t

(b) Time t + Δt

Δx

through the dashed line drawn across the tube width. The element’s speed is 
v, so during a time interval ∆t, the element moves along the tube a distance 
∆x = v ∆t. The volume ∆V of fluid that has passed through the dashed line in 
that time interval ∆t is

 ∆V = A ∆x = Av ∆t. (14.6.1)

Applying Eq. 14.6.1 to both the left and right ends of the tube segment in Fig. 
14.6.4, we have

∆V = A1v1 ∆t = A2v2 ∆t,

or A1v1 = A2v2   (equation of continuity). (14.6.2)

This relation between speed and cross-sectional area is called the equation of 
continuity for the flow of an ideal fluid. It tells us that the flow speed increases 
when we decrease the cross-sectional area through which the fluid flows. 

Equation 14.6.2 applies not only to an actual tube but also to any so-
called tube of flow, or imaginary tube whose boundary consists of streamlines. 

Such a tube acts like a real tube because no fluid element can cross a 
streamline; thus, all the fluid within a tube of flow must remain within its 
boundary.  Figure 14.6.6 shows a tube of flow in which the cross-sectional 
area increases from area A1 to area A2 along the flow direction. From Eq. 
14.6.2 we know that, with the increase in area, the speed must decrease, 
as is indicated by the greater spacing between streamlines at the right in 
Fig. 14.6.6. Similarly, you can see that in Fig. 14.6.2 the speed of the flow 
is greatest just above and just below the cylinder.

We can rewrite Eq. 14.6.2 as

 RV = Av = a constant   (volume flow rate, equation of continuity), (14.6.3)

in which RV is the volume flow rate of the fluid (volume past a given point per 
unit time). Its SI unit is the cubic meter per second (m3/s). If the density 𝜌 of the 
fluid is uniform, we can multiply Eq. 14.6.3 by that density to get the mass flow 
rate Rm (mass per unit time):

 Rm = 𝜌RV = 𝜌Av = a constant   (mass flow rate). (14.6.4)

The SI unit of mass flow rate is the kilogram per second (kg/s). Equation 14.6.4 
says that the mass that flows into the tube segment of Fig. 14.6.4 each second 
must be equal to the mass that flows out of that segment each second.

A1

A2

The volume 
�ow per
second here 
must match ...

... the volume �ow
per second here.

Figure 14.6.6 A tube of flow is 
defined by the streamlines that form 
the boundary of the tube. The vol-
ume flow rate must be the same for 
all cross sections of the tube of flow.

Checkpoint 14.6.1
The figure shows a pipe and gives the volume flow rate (in cm3/s) and the direction of 
flow for all but one section. What are the volume flow rate and the direction of flow 
for that section?

4 8

2 5
6

4
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Figure 14.6.7 As water falls from a tap, its speed increases. 
Because the volume flow rate must be the same at all horizon-
tal cross sections of the stream, the stream must “neck down” 
(narrow).

h

A0

A

The volume �ow per
second here must
match ...

... the volume �ow
per second here.

KEY IDEA

The volume flow rate through the higher cross section 
must be the same as that through the lower cross section. 

Calculations: From Eq. 14.6.3, we have

 A0v0 = Av, (14.6.5)

where v0 and v are the water speeds at the levels corre-
sponding to A0 and A. From Eq. 2.4.6 we can also write, 
because the water is falling freely with acceleration g,

    v   2  =  v 0  2  + 2gh.   (14.6.6)

Eliminating v between Eqs. 14.6.5 and 14.6.6 and solving 
for v0, we obtain

v0 =   √ 

_

   
2ghA2

 _ 
 A 0  2  – A2

      

=   √ 

_____________________________

     
(2)(9.8 m/s2)(0.045 m)(0.35 cm2)2

   _____________________________   
(1.2 cm2)2 – (0.35 cm2)2

      

= 0.286 m/s = 28.6 cm/s.

From Eq. 14.6.3, the volume flow rate RV is then

RV = A0v0 = (1.2 cm2)(28.6 cm/s)

 = 34 cm3/s. (Answer)

Sample Problem 14.6.1 A water stream narrows as it falls

Figure 14.6.7 shows how the stream of water emerging from 
a faucet “necks down” as it falls. This change in the hori-
zontal cross-sectional area is characteristic of any laminar 
(non-turbulent) falling stream because the gravitational 
force increases the speed of the stream. Here the indicated 
cross-sectional areas are A0 = 1.2 cm2 and A = 0.35 cm2. The 
two levels are separated by a vertical distance h = 45 mm. 
What is the volume flow rate from the tap? 

14.7 BERNOULLI’S EQUATION
Learning Objectives  
After reading this module, you should be able to . . .

14.7.1 Calculate the kinetic energy density in terms of a 
fluid’s density and flow speed.

14.7.2 Identify the fluid pressure as being a type of 
energy density.

14.7.3 Calculate the gravitational potential energy 
density.

14.7.4 Apply Bernoulli’s equation to relate the total 
energy density at one point on a streamline to the 
value at another point.

14.7.5 Identify that Bernoulli’s equation is a statement 
of the conservation of energy.

Key Idea 
● Applying the principle of conservation of mechanical energy to the flow 
of an ideal fluid leads to Bernoulli’s equation:

p +    1 _ 2   𝜌v2 + 𝜌gy = a constant

along any tube of flow.

additional examples, video, and practice available at WileyPLUS
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Figure 14.7.1 Fluid flows at a 
steady rate through a length L of 
a tube, from the input end at the 
left to the output end at the right. 
From time t in (a) to time t + ∆t 
in (b), the amount of fluid shown 
in purple enters the input end and 
the equal amount shown in green 
emerges from the output end.

p1

L

Input

v1

y1

(a)

(b)

y

v2

p2

y2

y

x

t

t + Δt

x

Output

*For irrotational flow (which we assume), the constant in Eq. 14.7.2 has the same value for all 
points within the tube of flow; the points do not have to lie along the same streamline. Similarly, 
the points 1 and 2 in Eq. 14.7.1 can lie anywhere within the tube of flow.

Bernoulli’s Equation
Figure 14.7.1 represents a tube through which an ideal fluid is flowing at a steady 
rate. In a time interval ∆t, suppose that a volume of fluid ∆V, colored purple in 
Fig. 14.7.1a, enters the tube at the left (or input) end and an identical volume, 
 colored green in Fig. 14.7.1b, emerges at the right (or output) end. The emerging 
volume must be the same as the entering volume because the fluid is incompress-
ible, with an assumed constant density 𝜌.

Let y1, v1, and p1 be the elevation, speed, and pressure of the fluid entering at 
the left, and y2, v2, and p2 be the corresponding quantities for the fluid emerging 
at the right. By applying the principle of conservation of energy to the fluid, we 
shall show that these quantities are related by

   p  
1
   +   1 _ 2    ρv  1  

2  +  ρgy  1   =  p  2   +   1 _ 2    ρv  2  
2  +  ρgy  2  .  (14.7.1)

In general, the term    1 _ 2  ρv 2 is called the fluid’s kinetic energy density (kinetic energy 
per unit volume). We can also write Eq. 14.7.1 as

  p +   1 _ 2   ρ v   2  + ρgy = a constant  (Bernoulli’s equation). (14.7.2)

Equations 14.7.1 and 14.7.2 are equivalent forms of Bernoulli’s equation, 
 after Daniel Bernoulli, who studied fluid flow in the 1700s.* Like the equation 
of  continuity (Eq. 14.6.3), Bernoulli’s equation is not a new principle but simply 
the  reformulation of a familiar principle in a form more suitable to fluid mechan-
ics.  As a check, let us apply Bernoulli’s equation to fluids at rest, by putting 
v1 = v2 = 0 in Eq. 14.7.1. The result is Eq. 14.2.3:

p2 = p1 + 𝜌g(y1 − y2).

A major prediction of Bernoulli’s equation emerges if we take y to be a  constant 
(y = 0, say) so that the fluid does not change elevation as it flows. Equation 14.7.1 
then becomes

   p  
1
   +   1 _ 2    ρv  1  

2   =   p  
2
   +   1 _ 2    ρv 2  

2  , (14.7.3)

which tells us that:

Put another way, where the streamlines are relatively close together (where the 
velocity is relatively great), the pressure is relatively low, and conversely.

The link between a change in speed and a change in pressure makes sense 
if you consider a fluid element that travels through a tube of various widths. 
Recall that the element’s speed in the narrower regions is fast and its speed in 
the wider regions is slow. By Newton’s second law, forces (or pressures) must 
cause the changes in speed (the accelerations). When the element nears a narrow 
region, the higher pressure behind it accelerates it so that it then has a greater 
speed in the narrow region. When it nears a wide region, the higher pressure 
ahead of it  decelerates it so that it then has a lesser speed in the wide region.

Bernoulli’s equation is strictly valid only to the extent that the fluid is ideal. If 
viscous forces are present, thermal energy will be involved, which here we neglect.

If the speed of a fluid element increases as the element travels along a horizon-
tal streamline, the pressure of the fluid must decrease, and conversely.
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Proof of Bernoulli’s Equation
Let us take as our system the entire volume of the (ideal) fluid shown in Fig. 
14.7.1. We shall apply the principle of conservation of energy to this system as it 
moves from its initial state (Fig. 14.7.1a) to its final state (Fig. 14.7.1b). The fluid 
lying between the two vertical planes separated by a distance L in Fig. 14.7.1 does 
not change its properties during this process; we need be concerned only with 
changes that take place at the input and output ends.

First, we apply energy conservation in the form of the work–kinetic energy 
theorem,

 W = ∆K, (14.7.4)

which tells us that the change in the kinetic energy of our system must equal 
the net work done on the system. The change in kinetic energy results from the 
change in speed between the ends of the tube and is

∆K =    1 _ 2    ∆m v 2  2   –    1 _ 2    ∆m v 1  2  

 =    1 _ 2    ρ ∆V(v 2  2   –   v 1  2  ),  (14.7.5)

in which ∆m (= 𝜌 ∆V) is the mass of the fluid that enters at the input end and 
leaves at the output end during a small time interval ∆t.

The work done on the system arises from two sources. The work Wg done by 
the gravitational force (∆m   g →   ) on the fluid of mass ∆m during the vertical lift of 
the mass from the input level to the output level is

Wg = −∆m g(y2 − y1)

 = −𝜌g ∆V(y2 − y1). (14.7.6)

This work is negative because the upward displacement and the downward gravi-
tational force have opposite directions.

Work must also be done on the system (at the input end) to push the  entering 
fluid into the tube and by the system (at the output end) to push forward the fluid 
that is located ahead of the emerging fluid. In general, the work done by a force 
of magnitude F, acting on a fluid sample contained in a tube of area A to move 
the fluid through a distance ∆x, is

F ∆x = ( pA)(∆x) = p(A ∆x) = p ∆V.

The work done on the system is then p1 ∆V, and the work done by the system 
is −p2 ∆V. Their sum Wp is

Wp = −p2 ∆V + p1 ∆V

 = −( p2 − p1) ∆V. (14.7.7)

The work–kinetic energy theorem of Eq. 14.7.4 now becomes

W = Wg + Wp = ∆K.

Substituting from Eqs. 14.7.5, 14.7.6, and 14.7.7 yields

−ρg ΔV(y2 − y1) − ΔV( p2 − p1) =    1 _ 2    ρ∆V(v 2  2   –   v 1  2  ).

This, after a slight rearrangement, matches Eq. 14.7.1, which we set out to prove.

Checkpoint 14.7.1
Water flows smoothly through the pipe shown in the figure, descending in the 
 process. Rank the four numbered sections of pipe according to (a) the volume  
flow rate RV through them, (b) the flow speed v through them, and (c) the water 
pressure p within them, greatest first.

1

Flow

2

3
4
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Ethanol of density 𝜌 = 791 kg/m3 flows smoothly through a 
horizontal pipe that tapers (as in Fig. 14.6.4) in cross- sectional 
area from A1 = 1.20 × 10−3 m2 to A2 = A1/2. The pressure 
difference between the wide and narrow sections of pipe is 
4120 Pa. What is the volume flow rate RV of the ethanol?

KEY IDEAS

(1) Because the fluid flowing through the wide section of 
pipe must entirely pass through the narrow section, the 
volume flow rate RV must be the same in the two sections. 
Thus, from Eq. 14.6.3,

 RV = v1A1 = v2A2. (14.7.8)

However, with two unknown speeds, we cannot evaluate 
this equation for RV. (2) Because the flow is smooth, we 
can apply Bernoulli’s equation. From Eq. 14.7.1, we can 
write

    p  1   +   1 _ 2   ρ  v 1  
2  + ρgy =  p  2   +   1 _ 2    ρv 2  

2  + ρgy,   (14.7.9)

where subscripts 1 and 2 refer to the wide and narrow 
 sections of pipe, respectively, and y is their common ele-
vation. This equation hardly seems to help because it does 
not contain the desired RV and it contains the unknown 
speeds v1 and v2.

Calculations: There is a neat way to make Eq. 14.7.9 work 
for us: First, we can use Eq. 14.7.8 and the fact that A2 = A1/2 
to write

    v  1   =       RV _ 
A1

       and    v  2   =   RV _ 
A2

   =       2RV _ 
A1

   . (14.7.10)

Then we can substitute these expressions into Eq. 14.7.9 to 
eliminate the unknown speeds and introduce the desired 
 volume flow rate. Doing this and solving for RV yield

   RV =  A  1      √ 

_

   
2( p1 – p2) _ 

3ρ  .    (14.7.11)

We still have a decision to make: We know that the 
pressure difference between the two sections is 4120 Pa, 
but does that mean that p1 − p2 is 4120 Pa or −4120 Pa? 
We could guess the former is true, or otherwise the square 
root in Eq. 14.7.11 would give us an imaginary number. 
However, let’s try some reasoning. From Eq. 14.7.8 we 
see that speed v2 in the narrow section (small A2) must 
be greater than speed v1 in the wider section (larger A1). 
Recall that if the speed of a fluid increases as the fluid 
travels along a horizontal path (as here), the pressure of 
the fluid must  decrease. Thus, p1 is greater than p2, and 
p1 − p2 = 4120 Pa. Inserting this and known data into Eq. 
14.7.11 gives

 RV = 1.20 × 10–3 m2  √ 

___________

    
(2)(4120 Pa)

  ___________  
(3)(791 kg/m3)

     

  = 2.24 × 10−3 m3/s. (Answer)

Sample Problem 14.7.1 Bernoulli principle of fluid through a narrowing pipe

Review & Summary

Density  The density 𝜌 of any material is defined as the 
 material’s mass per unit volume:

 ρ =   Δm _ ΔV
  .  (14.1.1)

Usually, where a material sample is much larger than atomic 
dimensions, we can write Eq. 14.1.1 as

 ρ =   m _ 
V

  . (14.1.2)

Fluid Pressure  A fluid is a substance that can flow; it 
conforms to the boundaries of its container because it can-
not withstand shearing stress. It can, however, exert a force 
perpendi  cular to its surface. That force is described in terms of 
 pressure p:

 p =   ΔF _ ΔA
  , (14.1.3)

in which ∆F is the force acting on a surface element of area ∆A. 
If the force is uniform over a flat area, Eq. 14.1.3 can be written as

 p =   F _ 
A

  . (14.1.4)

The force resulting from fluid pressure at a particular point in a 
fluid has the same magnitude in all directions. Gauge  pres sure is 
the difference between the actual pressure (or  absolute pressure) 
at a point and the atmospheric pressure.

Pressure Variation with Height and Depth  Pressure in a 
fluid at rest varies with vertical position y. For y measured positive 
upward,

 p2 = p1 + 𝜌g(y1 − y2). (14.2.3)

The pressure in a fluid is the same for all points at the same level. 
If h is the depth of a fluid sample below some reference level at 
which the pressure is p0, then the pressure in the sample is

 p = p0 + 𝜌gh. (14.2.4)

Pascal’s Principle  A change in the pressure applied to an 
enclosed fluid is transmitted undiminished to every portion of 
the fluid and to the walls of the containing vessel.

Archimedes’ Principle  When a body is fully or partially 
submerged in a fluid, a buoyant force     

→
 F    b    from the surrounding 
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streamline is the path followed by an individual fluid particle. A 
tube of flow is a bundle of streamlines. The flow within any tube 
of flow obeys the equation of continuity:

 RV = Av = a constant, (14.6.3)

in which RV is the volume flow rate, A is the cross-sectional area 
of the tube of flow at any point, and v is the speed of the fluid at 
that point. The mass flow rate Rm is

 Rm = 𝜌RV = 𝜌Av = a constant. (14.6.4)

Bernoulli’s Equation  Applying the principle of conserva-
tion of mechanical energy to the flow of an ideal fluid leads to 
 Bernoulli’s equation along any tube of flow:

 p +    1 _ 2   𝜌v2 + 𝜌gy = a constant. (14.7.2)

fluid acts on the body. The force is directed upward and has a 
magnitude given by

 Fb = mfg, (14.5.1)

where mf is the mass of the fluid that has been displaced by the 
body (that is, the fluid that has been pushed out of the way by 
the body).

When a body floats in a fluid, the magnitude Fb of the 
 (upward) buoyant force on the body is equal to the magnitude Fg 
of the (downward) gravitational force on the body. The appar-
ent weight of a body on which a buoyant force acts is related to 
its actual weight by

 weightapp = weight − Fb. (14.5.4)

Flow of Ideal Fluids  An ideal fluid is incompressible 
and lacks viscosity, and its flow is steady and irrotational. A 

Figure 14.4 Question 6.
(a) (b) (c)

2.00R 2.00RR

(1)

3.00R R2.00R

(2)

2.00R 3.00RR

(3)

R R3.00R

(4)

Figure 14.5 Question 7.

1  We fully submerge an irregular 3 kg lump of material in a 
certain fluid. The fluid that would have been in the space now 
occupied by the lump has a mass of 2 kg. (a) When we release 
the lump, does it move upward, move downward, or remain in 
place? (b) If we next fully submerge the lump in a less dense 
fluid and again release it, what does it do?

2  Figure 14.1 shows four situations in which a red liquid and a 
gray liquid are in a U-tube. In one situation the liquids cannot be in 
static equilibrium. (a) Which situation is that? (b) For the other 
three situations, assume static equilibrium. For each of them,  
is the density of the red liquid greater than, less than, or equal to 
the density of the gray liquid?

Questions

(1) (2) (3) (4)

Figure 14.1 Question 2.

located at distances L, 2L, or 3L below the top of the tank. Rank 
them according to the force on them due to the water, greatest 
first. 

5 FCP  The teapot effect. Water 
poured slowly from a teapot 
spout can double back under the 
spout for a considerable distance 
(held there by atmospheric pres-
sure) before detaching and fall-
ing. In Fig. 14.3, the four points 
are at the top or bottom of the 
water layers, inside or outside. 
Rank those four points according to the gauge pressure in the 
water there, most positive first.

6  Figure 14.4 shows three identical open-top containers filled to 
the brim with water; toy ducks float in two of them. Rank the con-
tainers and contents according to their weight, greatest first.

3 FCP  A boat with an anchor on board floats in a swimming 
pool that is somewhat wider than the boat. Does the pool 
 water level move up, move down, or remain the same if the 
anchor is (a) dropped into the 
water or (b) thrown onto the 
surrounding ground? (c) Does 
the water level in the pool move 
upward, move downward, or 
remain the same if,  instead, a 
cork is dropped from the boat 
into the water, where it floats? 

4  Figure 14.2 shows a tank 
filled with water. Five horizontal 
floors and ceilings are indicated; 
all have the same area and are Figure 14.2 Question 4.

a

b

e

d
c

Water
�ow

d c

b
a

Spout

Figure 14.3 Question 5.

7  Figure 14.5 shows four arrangements of pipes through 
which water flows smoothly toward the right. The radii of the 
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pipe sections are indicated. In which arrangements is the net 
work done on a unit volume of water moving from the leftmost 
section to the rightmost section 
(a) zero, (b) positive, and (c) 
negative?

8  A rectangular block is pushed 
face-down into three liquids, in 
turn. The apparent weight Wapp 
of the block versus depth h in 
the three liquids is plotted in Fig. 
14.6. Rank the liquids according 
to their weight per unit volume, 
greatest first.

9  Water flows smoothly in 
a  horizontal pipe. Figure 14.7 
shows the kinetic energy K of a 
water element as it moves along 

Figure 14.6 Question 8.

Wapp

h

a

b

c
pg

h

a
b

c

Figure 14.8 Question 10.

Module 14.1  Fluids, Density, and Pressure
1 E  BIO  A fish maintains its depth in fresh water by adjusting 
the air content of porous bone or air sacs to make its average 
density the same as that of the water. Suppose that with its air 
sacs collapsed, a fish has a density of 1.08 g/cm3. To what frac-
tion of its expanded body volume must the fish inflate the air 
sacs to reduce its density to that of water? 

2 E  A partially evacuated airtight container has a tight- fitting lid 
of surface area 77 m2 and negligible mass. If the force required 
to remove the lid is 480 N and the atmospheric pressure is 
1.0 × 105 Pa, what is the internal air pressure?

3 E  BIO  SSM  Find the pressure increase in the fluid in a syringe 
when a nurse applies a force of 42 N to the syringe’s circular pis-
ton, which has a radius of 1.1 cm. 

4 E  Three liquids that will not mix are poured into a cylindri-
cal container. The volumes and densities of the liquids are 
0.50 L, 2.6 g/cm3; 0.25 L, 1.0 g/cm3; and 0.40 L, 0.80 g/cm3. What 
is the force on the bottom of the container due to these liquids? 
One liter = 1 L = 1000 cm3. (Ignore the contribution due to the 
atmosphere.)

5 E  SSM  An office window has dimensions 3.4 m by 2.1 m. 
As a result of the passage of a storm, the outside air pressure 
drops to 0.96 atm, but inside the pressure is held at 1.0 atm. 
What net force pushes out on the window? 

6 E  You inflate the front tires on your car to 28 psi. Later, you 
measure your blood pressure, obtaining a reading of 120/80, the 
readings being in mm Hg. In metric countries (which is to say, 
most of the world), these pressures are customarily reported in 
kilopascals (kPa). In kilopascals, what are (a) your tire pressure 
and (b) your blood pressure?

7  M  CALC  In 1654 Otto von 
Guericke, inventor of the air 
pump, gave a demonstration 
before the noblemen of the Holy 
Roman Empire in which two 
teams of eight horses could not 
pull apart two evacuated brass 
hemispheres. (a)  Assuming the 
hemispheres have (strong) thin walls, so that R in Fig. 14.9 may 
be considered both the inside and outside radius, show that the 
force    F 

→
    required to pull apart the hemispheres has magnitude 

F = 𝜋R2 ∆p, where ∆p is the difference  between the pressures 
outside and inside the sphere. (b)  Taking R as 30 cm, the inside 
pressure as 0.10 atm, and the outside pressure as 1.00 atm, find 
the force magnitude the teams of horses would have had to 
exert to pull apart the hemispheres. (c) Explain why one team 
of horses could have proved the point just as well if the hemi-
spheres were  attached to a sturdy wall.

Module 14.2  Fluids at Rest
8 E  BIO  FCP  The bends during flight. Anyone who scuba 
dives is advised not to fly within the next 24 h because the air 
mixture for diving can introduce nitrogen to the bloodstream. 
Without allowing the nitrogen to come out of solution slowly, 
any sudden air-pressure reduction (such as during airplane 
ascent) can result in the nitrogen forming bubbles in the blood, 
creating the bends, which can be painful and even fatal. Mili-
tary special operation forces are especially at risk. What is the 
change in pressure on such a special-op soldier who must scuba 
dive at a depth of 20 m in seawater one day and parachute at 
an altitude of 7.6 km the next day? Assume that the average air 
density within the altitude range is 0.87 kg/m3. 

Problems

an x axis that runs along the pipe. Rank the three lettered sec-
tions of the pipe according to the pipe  radius, greatest first.

10  We have three containers with different liquids. The gauge 
pressure pg versus depth h is plotted in Fig.  14.8 for the liquids. 
In each container, we will fully submerge a rigid plastic bead. 
Rank the plots according to the magnitude of the buoyant force 
on the bead, greatest first.

K

xA B C

Figure 14.7 Question 9.

          Tutoring problem available (at instructor’s discretion) in WileyPLUS

 Worked-out solution available in Student Solutions Manual

E  Easy M  Medium H  Hard

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

SSM CALC  Requires calculus

BIO  Biomedical application

GO

FCP

R

FF

Figure 14.9 Problem 7.
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tube is (a) 20 cm (standard situation) and (b) 4.0 m (probably 
lethal situation)? In the latter, the pressure difference causes 
blood vessels on the walls of the lungs to rupture, releasing 
blood into the lungs. As depicted in Fig. 14.11, an elephant can 
safely snorkel through its trunk while swimming with its lungs 
4.0 m below the water surface because the membrane around 
its lungs contains connective tissue that holds and protects the 
blood vessels, preventing rupturing. 

17 E  BIO  SSM  FCP  Crew members attempt to escape from a 
damaged submarine 100 m below the surface. What force must 
be applied to a pop-out hatch, which is 1.2 m by 0.60 m, to push it 
out at that depth? Assume that the density of the ocean water is 
1024 kg/m3 and the internal air pressure is at 1.00 atm. 

18 E  In Fig. 14.12, an open tube of 
length L = 1.8 m and cross-sectional 
area A = 4.6 cm2 is fixed to the top of a 
cylindrical barrel of diameter D = 1.2 m 
and height H = 1.8 m. The barrel and 
tube are filled with water (to the top 
of the tube). Calculate the ratio of the 
hydrostatic force on the  bottom of  
the barrel to the gravitational force on 
the water contained in the barrel. Why 
is that ratio not equal to 1.0? (You need 
not consider the atmospheric pressure.)

19 M
 

GO  A large aquarium of height 
5.00 m is filled with fresh water to a 
depth of 2.00 m. One wall of the aquar-
ium consists of thick plastic 8.00 m 
wide. By how much does the total force 
on that wall increase if the aquarium is 
next filled to a depth of 4.00 m? 

20 M
 The L-shaped fish tank shown 

in Fig. 14.13 is filled with water and is 
open at the top. If d = 5.0 m, what is the 
(total) force exerted by the water (a) on 
face A and (b) on face B?

21 M
 

SSM  Two identical cylindrical 
vessels with their bases at the same 
level each contain a liquid of density 
1.30 × 103 kg/m3. The area of each base 
is 4.00 cm2, but in one vessel the liquid 
height is 0.854 m and in the other it is 
1.560 m. Find the work done by the 
gravitational force in equalizing the levels when the two vessels 
are connected. 

22 M
 

BIO  FCP  g-LOC in dogfights. When a pilot takes a 
tight turn at high speed in a modern fighter airplane, the 
blood pressure at the brain level decreases, blood no longer 
perfuses the brain, and the blood in the brain drains. If the 
heart maintains the (hydrostatic) gauge pressure in the aorta 
at 120 torr (or mm Hg) when the pilot undergoes a horizontal 
centripetal acceleration of 4g, what is the blood pressure (in 
torr) at the brain, 30 cm radially inward from the heart? The 
perfusion in the brain is small enough that the vision switches 
to black and white and narrows to “tunnel vision” and the 
pilot can undergo g-LOC (“g-induced loss of consciousness”). 
Blood density is 1.06 × 103 kg/m3. 

9 E  BIO  FCP  Blood pressure in Argentinosaurus. (a) If this 
long-necked, gigantic sauropod had a head height of 21 m and 
a heart height of 9.0 m, what (hydrostatic) gauge pressure in its 
blood was required at the heart such that the blood pressure 
at the brain was 80 torr (just enough to perfuse the brain with 
blood)? Assume the blood had a density of 1.06 × 103 kg/m3.  
(b) What was the blood pressure (in torr or mm Hg) at the feet? 

10 E  The plastic tube in Fig. 14.10 has a 
cross-sectional area of 5.00 cm2. The tube 
is filled with water until the short arm (of 
length d = 0.800 m) is full. Then the short 
arm is sealed and more water is gradually 
poured into the long arm. If the seal will 
pop off when the force on it exceeds 9.80 N, 
what  total height of water in the long arm 
will put the seal on the verge of popping?

11 E  BIO  FCP  Giraffe bending to drink. In a giraffe with its head 
2.0 m above its heart, and its heart 2.0 m above its feet, the (hydro-
static) gauge pressure in the blood at its heart is 250 torr. Assume 
that the giraffe stands upright and the blood density is 1.06 × 103 
kg/m3. In torr (or mm Hg), find the (gauge) blood pressure (a) at 
the brain (the pressure is enough to perfuse the brain with blood, 
to keep the giraffe from fainting) and (b) at the feet (the pressure 
must be countered by tight-fitting skin acting like a pressure stock-
ing). (c) If the giraffe were to lower its head to drink from a pond 
without splaying its legs and moving slowly, what would be the 
increase in the blood pressure in the brain? (Such action would 
probably be lethal.) 

12 E  BIO  FCP  The maximum depth dmax that a diver can snor-
kel is set by the density of the water and the fact that human lungs 
can function against a maximum pressure difference (between  
 inside and outside the chest cavity) of 0.050 atm. What is the 
 difference in dmax for fresh water and the water of the Dead 
Sea  (the saltiest natural water in the world, with a density of 
1.5 × 103 kg/m3)? 

13 E  At a depth of 10.9 km, the Challenger Deep in the Mar-
ianas Trench of the Pacific Ocean is the deepest site in any 
ocean. Yet, in 1960, Donald Walsh and Jacques Piccard reached 
the Challenger Deep in the bathyscaph Trieste. Assuming that 
seawater has a uniform density of 1024 kg/m3, approximate the 
hydrostatic pressure (in atmospheres) that the Trieste had to 
withstand. (Even a slight defect in the Trieste structure would 
have been disastrous.)

14 E  BIO  Calculate the hydrostatic difference in blood pressure 
between the brain and the foot in a person of height 1.83 m. The 
density of blood is 1.06 × 103 kg/m3.

15 E  What gauge pressure must a machine produce in order to suck 
mud of density 1800 kg/m3 up a tube by a height of 1.5 m?

16 E  BIO  FCP  Snorkeling by 
humans and elephants. When a 
person snorkels, the lungs are 
connected directly to the atmo-
sphere through the snorkel tube 
and thus are at atmospheric 
pressure. In atmo spheres, what 
is the difference ∆p between 
this internal air pressure and the 
water pressure against the body if the length of the snorkel 

d

Figure 14.10 
Problem 10.

Figure 14.11 Problem 16.
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 DRINKING 

Figure 14.12   
Problem 18.

d

d

d
d
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Figure 14.13  
Problem 20.
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the piston  diameters are 3.80 cm and 53.0 cm, what force magni-
tude on the small piston will balance a 20.0 kN force on the large 
 piston?

29 M
 In Fig. 14.17, a spring of 

spring constant 3.00 × 104 N/m is 
between a rigid beam and the out-
put piston of a hydraulic lever. An 
empty container with negligible 
mass sits on the input piston. The 
input piston has area Ai, and the 
 output piston has area 18.0Ai. Ini-
tially the spring is at its rest length. How many kilograms of sand 
must be (slowly) poured into the container to compress the spring 
by 5.00 cm?

Module 14.5  Archimedes’ Principle
30 E  A 5.00 kg object is released from rest while fully submerged 
in a liquid. The liquid displaced by the submerged  object has a 
mass of 3.00 kg. How far and in what direction does the object 
move in 0.200 s, assuming that it moves freely and that the drag 
force on it from the liquid is negligible?

31 E  SSM  A block of wood floats in fresh water with two-thirds 
of its volume V submerged and in oil with 0.90V submerged. Find 
the density of (a) the wood and (b) the oil.

32 E  In Fig. 14.18, a cube of edge 
length L = 0.600 m and mass 
450 kg is suspended by a rope in 
an open tank of liquid of density 
1030 kg/m3. Find (a) the mag-
nitude of the total downward 
force on the top of the cube from 
the liquid and the atmosphere, 
assuming atmo spheric pressure is 
1.00 atm, (b) the magnitude of the 
total upward force on the bottom 
of the cube, and (c) the tension in the rope. (d) Calculate the 
magnitude of the buoyant force on the cube using Archimedes’ 
principle. What relation exists among all these quantities?

33 E  SSM  An iron anchor of density 7870 kg/m3 appears 200 N 
lighter in water than in air. (a) What is the volume of the  anchor? 
(b) How much does it weigh in air? 

34 E  A boat floating in fresh water displaces water weighing 
35.6 kN. (a) What is the weight of the water this boat  displaces 
when floating in salt water of density 
1.10 × 103 kg/m3? (b) What is the dif-
ference between the volume of fresh 
water displaced and the volume of salt 
water displaced?

35 E  Three children, each of 
weight 356 N, make a log raft by 
lashing together logs of diam-
eter 0.30 m and length 1.80 m. 
How many logs will be needed to 
keep them afloat in fresh water? 
Take the density of the logs to be 
800 kg/m3.

36 M  GO  In Fig. 14.19a, a rect-
angular block is gradually pushed 
face-down into a liquid. The block 

23 M
 

GO  In analyzing certain 
geological features, it is often 
appropriate to assume that the 
pressure at some horizontal level 
of compensation, deep inside 
Earth, is the same over a large 
region and is equal to the pres-
sure due to the gravitational 
force on the overlying material. 
Thus, the pressure on the  level 
of compensation is given by 
the fluid pressure formula. This 
model requires, for one thing, 
that mountains have roots of 
continental rock extending into the denser mantle (Fig. 14.14). 
Consider a mountain of height H = 6.0 km on a continent of 
thickness T = 32 km. The continental rock has a  density  of 
2.9 g /cm3, and beneath this rock the mantle has a density 
of 3.3 g /cm3. Calculate the depth D of the root. (Hint: Set the 
pressure at points a and b equal; the depth y of the level of 
compensation will cancel out.)

24 H  CALC  GO  In Fig. 14.15, 
water stands at depth D = 35.0 m 
behind the vertical upstream face 
of a dam of width W = 314 m. 
Find (a) the net horizontal force 
on the dam from the gauge pres-
sure of the water and (b) the net 
torque due to that force about a 
horizontal line through O parallel 
to the (long) width of the dam. This torque tends to rotate the dam 
around that line, which would cause the dam to fail. (c) Find the 
moment arm of the torque. 

Module 14.3  Measuring Pressure
25 E  In one observation, the column in a mercury barometer (as 
is shown in Fig. 14.3.1a) has a measured height h of 740.35 mm. 
The temperature is −5.0°C, at which temperature the density of 
mercury 𝜌 is 1.3608 × 104 kg/m3. The free-fall acceleration g at 
the site of the barometer is 9.7835 m/s2. What is the atmospheric 
pressure at that site in pascals and in torr (which is the common 
unit for barometer readings)?

26 E  To suck lemonade of density 1000 kg/m3 up a straw to a 
maximum height of 4.0 cm, what minimum gauge pressure (in 
atmospheres) must you produce in your lungs?

27 M
 CALC  SSM  What would be the height of the atmosphere 

if the air density (a) were uniform and (b) decreased linearly to 
zero with height? Assume that at sea level the air pressure is  
1.0 atm and the air density is 1.3 kg/m3. 

Module 14.4  Pascal’s Principle
28 

E
 A piston of cross-sectional 

area a is used in a hydraulic press 
to exert a small force of magni-
tude f on the enclosed liquid. A 
connecting pipe leads to a larger 
piston of cross- sectional area A 
(Fig. 14.16). (a) What force mag-
nitude F will the larger piston 
sustain without moving? (b) If Figure 14.16 Problem 28.

a
A

F
f
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Figure 14.17 Problem 29.
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Figure 14.18 Problem 32.
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Figure 14.14 Problem 23.

O

D

W
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has height d; on the bottom and top the face area is A = 5.67 cm2. 
Figure 14.19b gives the apparent weight Wapp of the block as a func-
tion of the depth h of its lower face. The scale on the vertical axis is 
set by Ws = 0.20 N. What is the density of the  liquid?

37 M
 A hollow spherical iron shell floats almost completely sub-

merged in water. The outer diameter is 60.0 cm, and the density 
of iron is 7.87 g/cm3. Find the inner diameter. 

38 M  GO  A small solid ball is 
released from rest while fully sub-
merged in a liquid and then its 
kinetic energy is measured when 
it has moved 4.0 cm in the liquid. 
Figure 14.20 gives the results after 
many liquids are used: The kinetic 
energy K is plotted versus the liq-
uid density 𝜌liq, and Ks = 1.60 J sets 
the scale on the vertical axis. What are (a) the density and (b) the 
volume of the ball? 

39 M  SSM   A hollow sphere of inner radius 8.0 cm and outer 
radius 9.0 cm floats half-submerged in a liquid of density 800   
kg/m3. (a) What is the mass of the sphere? (b) Calculate the 
density of the material of which the sphere is made. 

40 M
 

BIO  FCP  Lurking alliga-
tors. An alligator waits for prey 
by floating with only the top of 
its head exposed, so that the prey 
cannot easily see it. One way it 
can adjust the extent of sinking 
is by controlling the size of its lungs. Another way may be by 
swallowing stones (gastrolithes) that then reside in the stomach. 
Figure 14.21 shows a highly simplified model (a “rhombohedron 
gater”) of mass 130 kg that roams with its head partially exposed. 
The top head surface has area 0.20 m2. If the alligator were to 
swallow stones with a total mass of 1.0% of its body mass (a typi-
cal amount), how far would it sink?

41 M
 What fraction of the volume of an iceberg (density 

917 kg/m3) would be visible if the iceberg floats (a) in the ocean 
(salt water,  density 1024 kg/m3) and (b) in a river (fresh water, 
 density 1000 kg/m3)? (When salt water freezes to form ice, the 
salt is excluded. So, an iceberg could provide fresh water to a 
community.) 

42 M  CALC  A flotation device is in the shape of a right cylinder, 
with a height of 0.500 m and a face area of 4.00 m2 on top and bot-
tom, and its density is 0.400 times that of fresh water. It is initially 
held fully submerged in fresh water, with its top face at the water 
surface. Then it is allowed to ascend gradually until it begins to 
float. How much work does the buoyant force do on the device 
during the ascent?

43 M
 

BIO  When researchers find a reasonably complete fos-
sil of a dinosaur, they can determine the mass and weight of the 
living dinosaur with a scale model 
sculpted from plastic and based on 
the dimensions of the fossil bones. 
The scale of the model is 1/20; that 
is, lengths are 1/20 actual length, 
areas are (1/20)2 actual areas, and 
volumes are (1/20)3 actual volumes. 
First, the model is suspended from 
one arm of a balance and weights 

K
 (

J)

Ks

10 2

liq (g/cm3)
3

�

Figure 14.20 Problem 38.

Figure 14.21 Problem 40.

are added to the other arm until equilibrium is reached. Then the 
model is fully submerged in water and enough weights are removed 
from the second arm to reestablish equilibrium (Fig. 14.22). For a 
model of a particular T. rex fossil, 637.76 g had to be removed to 
reestablish equilibrium. What was the volume of (a) the model and 
(b) the actual T. rex? (c) If the density of T. rex was approximately 
the  density of water, what was its mass?

44 M
 A wood block (mass 3.67 kg, density 600 kg/m3) is fitted 

with lead (density 1.14 × 104 kg/m3) so that it floats in water with 
0.900 of its volume submerged. Find the lead mass if the lead is 
fitted to the block’s (a) top and (b) bottom.

45 M
 

GO  An iron casting containing a number of cavities 
weighs 6000 N in air and 4000 N in water. What is the total cav-
ity volume in the casting? The density of solid iron is 7.87 g/cm3.

46 M
 
GO  Suppose that you release a small ball from rest at a depth 

of 0.600 m below the surface in a pool of water. If the density of the 
ball is 0.300 that of water and if the drag force on the ball from the 
water is negligible, how high above the water surface will the ball 
shoot as it emerges from the  water? (Neglect any transfer of energy 
to the splashing and waves produced by the emerging ball.)

47 M
 The volume of air space in the passenger compartment 

of an 1800 kg car is 5.00 m3. The volume of the motor and front 
wheels is 0.750 m3, and the volume of the rear wheels, gas tank, 
and trunk is 0.800 m3; water cannot enter these two regions. The 
car rolls into a lake. (a) At first, no water enters the passenger 
compartment. How much of the car, in cubic meters, is below 
the water surface with the car floating (Fig. 14.23)? (b) As water 
slowly enters, the car sinks. How many cubic meters of water 
are in the car as it disappears  below the water surface? (The car, 
with a heavy load in the trunk, remains horizontal.)

Figure 14.23 Problem 47.

Figure 14.22 Problem 43.

48 H  GO  Figure 14.24 shows an iron ball 
suspended by thread of negligible mass from 
an upright cylinder that floats  partially sub-
merged in water. The cylinder has a height 
of 6.00 cm, a face area of 12.0 cm2 on the 
top and bottom, and a density of 0.30 g/cm3, 
and 2.00 cm of its height is above the water 
surface. What is the radius of the iron ball? 

Module 14.6  The Equation of Continuity
49 E  FCP  Canal effect. Figure 14.25 shows an anchored barge that 
extends across a canal by distance 
d = 30 m and into the water by 
distance b = 12 m. The canal has 
a width D = 55 m, a water depth  
H = 14 m, and a uniform water-
flow speed vi = 1.5 m/s. Assume that 
the flow around the barge is uni-
form. As the water passes the bow, 
the water level undergoes a dra-
matic dip known as the canal effect. 
If the dip has depth h = 0.80 m,  

Figure 14.24  
Problem 48.
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Figure 14.25 Problem 49.
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what is the water speed alongside the boat through the vertical cross 
sections at (a) point a and (b) point b? The erosion due to the speed 
increase is a common concern to hydraulic engineers.

50 E  Figure 14.26 shows 
two sections of an old 
pipe system that runs 
through a hill, with dis-
tances dA = dB = 30 m and 
D = 110 m. On each side 
of the hill, the pipe radius is 
2.00 cm. However, the radius of the pipe inside the hill is no longer 
known. To determine it, hydraulic engineers first  establish that 
water flows through the left and right sections at 2.50 m/s. Then 
they release a dye in the water at point A and find that it takes 
88.8 s to reach point B. What is the  average radius of the pipe 
within the hill?

51 E   SSM  A garden hose with an internal diameter of 1.9 cm is 
connected to a (stationary) lawn sprinkler that consists merely 
of a container with 24 holes, each 0.13 cm in diameter. If the 
water in the hose has a speed of 0.91 m/s, at what speed does it 
leave the sprinkler holes? 

52 E  Two streams merge to form a river. One stream has a 
width of 8.2 m, depth of 3.4 m, and current speed of 2.3 m/s. The 
other stream is 6.8 m wide and 3.2 m deep, and flows at 2.6 m/s. 
If the river has width 10.5 m and speed 2.9 m/s, what is its depth?

53 M   SSM  Water is pumped steadily out of a flooded base-
ment at 5.0 m/s through a hose of radius 1.0 cm, passing through 
a window 3.0 m above the  wa terline. What is the pump’s power? 

54 M
 
GO  The water flowing through a 1.9 cm (inside diameter) 

pipe flows out through three 1.3 cm pipes. (a) If the flow rates in 
the three smaller pipes are 26, 19, and 11 L/min, what is the flow 
rate in the 1.9 cm pipe? (b) What is the ratio of the speed in the 
1.9 cm pipe to that in the pipe carrying 26 L/min?

Module 14.7  Bernoulli’s Equation

55 E  How much work is done by pressure in forcing 1.4 m3 of 
water through a pipe having an internal diameter of 13 mm if the 
difference in pressure at the two ends of the pipe is 1.0 atm?

56 E  Suppose that two tanks, 1 and 2, each with a large opening at 
the top, contain different liquids. A small hole is made in the side of 
each tank at the same depth h below the liquid surface, but the hole 
in tank 1 has half the cross-sectional area of the hole in tank 2. (a) 
What is the ratio 𝜌1/𝜌2 of the densities of the liquids if the mass flow 
rate is the same for the two holes? (b) What is the ratio RV1/RV2 of 
the volume flow rates from the two tanks? (c) At one instant, the 
liquid in tank 1 is 12.0 cm above the hole. If the tanks are to have 
equal volume flow rates, what height above the hole must the liquid 
in tank 2 be just then?

57 E  SSM  A cylindrical tank with a large diameter is filled 
with water to a depth D = 0.30 m. A hole of cross-sectional area 
A = 6.5 cm2 in the bottom of the tank allows water to drain out. 
(a)  What is the drainage rate in 
 cubic meters per second? (b) At 
what distance below the  bottom 
of the tank is the cross-sectional 
area of the stream equal to 
 one-half the area of the hole? 

58 E  The intake in Fig. 14.27 has 
cross-sectional area of 0.74  m2 

and water flow at 0.40 m/s. At the outlet, distance D = 180 m 
below the intake, the cross-sectional area is smaller than at the 
intake and the water flows out at 9.5 m/s into equipment. What 
is the pressure difference between inlet and outlet?

59 E  SSM  Water is moving with a speed of 5.0 m/s through a 
pipe with a cross-sectional area of 4.0 cm2. The water gradu-
ally  de scends 10 m as the pipe cross-sectional area increases to 
8.0 cm2. (a) What is the speed at the lower level? (b) If the pres-
sure at the upper level is 1.5 × 105 Pa, what is the pressure at the 
lower level? 

60 E  Models of torpedoes are sometimes tested in a horizon-
tal pipe of flowing water, much as a wind tunnel is used to test 
model airplanes. Consider a circular pipe of internal  diameter 
25.0 cm and a torpedo model aligned along the long axis of 
the pipe. The model has a 5.00 cm diameter and is to be tested 
with water flowing past it at 2.50 m/s. (a) With what speed must  
the water flow in the part of the pipe that is  uncon stricted by the  
model? (b) What will the pressure  difference be between  
the constricted and unconstricted parts of the pipe?

61 E  A water pipe having a 2.5 cm inside diameter carries water 
into the basement of a house at a speed of 0.90 m/s and a pres-
sure of 170 kPa. If the pipe tapers to 1.2 cm and rises to the sec-
ond floor 7.6 m above the input point, what are the (a) speed 
and (b) water pressure at the second floor? 

62 M
 A pitot tube (Fig. 14.28) is used to determine the  airspeed 

of an airplane. It consists of an outer tube with a number of 
small holes B (four are shown) that allow air into the tube; that 
tube is connected to one arm of a U-tube. The other arm of the 
U-tube is connected to hole A at the front end of the device, 
which points in the direction the plane is headed. At A the air 
becomes stagnant so that vA = 0. At B, however, the speed of 
the air presumably equals the airspeed v of the plane. (a) Use 
Bernoulli’s equation to show that

v =   √ 

__

   
2ρgh

 __ ρair
       ,

where 𝜌 is the density of the liquid in the U-tube and h is the dif-
ference in the liquid levels in that tube. (b) Suppose that the tube 
contains alcohol and the level difference h is 26.0 cm. What is the 
plane’s speed relative to the air? The density of the air is 1.03 kg/m3  
and that of alcohol is 810 kg/m3.

Figure 14.27 Problem 58.

Reservoir

Generator
building

Outlet

Intake
D

air

Hole A

Liquid

v

B

h

B

Air

�

�

Figure 14.28 Problems 62 and 63.
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Figure 14.26 Problem 50.

63 M
 A pitot tube (see Problem 62) on a high-altitude aircraft 

measures a differential pressure of 180 Pa. What is the aircraft’s 
airspeed if the density of the air is 0.031 kg/m3?
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64 M
 

GO  In Fig. 14.29, water 
flows through a horizontal pipe 
and then out into the atmosphere 
at a speed v1 = 15 m/s. The diam-
eters of the left and right sections 
of the pipe are 5.0 cm and 3.0 cm. 
(a) What volume of water flows into the atmo sphere during a  
10 min period? In the left section of the pipe, what are (b) the 
speed v2 and (c) the gauge pressure? 

65 M
 

SSM  A venturi meter is used to measure the flow speed 
of a fluid in a pipe. The meter is connected between two sec-
tions of the pipe (Fig. 14.30); the cross-sectional area A of the 
 entrance and exit of the meter matches the pipe’s cross- sectional 
area. Between the entrance and exit, the fluid flows from the 
pipe with speed V and then through a narrow “throat” of cross-
sectional area a with speed v. A manometer connects the wider 
portion of the meter to the narrower  portion. The change in the 
fluid’s speed is accompanied by a change ∆p in the fluid’s pres-
sure, which causes a height difference h of the liquid in the two 
arms of the manometer. (Here ∆p means pressure in the throat 
minus pressure in the pipe.) (a) By applying Bernoulli’s equation 
and the equation of continuity to points 1 and 2 in Fig. 14.30, 
show that

V =   √ 

__

   
2a2∆p

 __ 
ρ(a2 – A2)

  ,   

where 𝜌 is the density of the fluid. (b) Suppose that the fluid is 
fresh water, that the cross-sectional areas are 64 cm2 in the pipe 
and 32 cm2 in the throat, and that the pressure is 55 kPa in the 
pipe and 41 kPa in the throat. What is the rate of water flow in 
cubic meters per second? 

through the dam at depth 
d = 6.0 m. A plug secures the 
pipe opening. (a) Find the mag-
nitude of the frictional force 
between plug and pipe wall. (b) 
The plug is removed. What water 
volume exits the pipe in 3.0 h? 

68 M
 

GO  Fresh water flows 
horizontally from pipe section 
1 of cross-sectional area A1 into 
pipe section 2 of cross-sectional 
area A2. Figure 14.32 gives a plot 
of the pressure difference p2 − p1 
versus the inverse area squared 
     that would be  expected for 
a volume flow rate of a certain 
value if the water flow were lami-
nar under all circumstances. The 
scale on the vertical axis is set by 
∆ps = 300 kN/m2. For the conditions of the figure, what are the 
values of (a) A2 and (b) the volume flow rate?

69 M
 A liquid of density 900 kg/m3 flows through a horizontal 

pipe that has a cross-sectional area of 1.90 × 10−2 m2 in region A 
and a cross-sectional area of 9.50 × 10−2 m2 in  region B. The 
pressure difference between the two regions is 7.20 × 103 Pa. 
What are (a) the volume flow rate and (b) the mass flow rate?

70 M
 
GO  In Fig. 14.33, water flows 

steadily from the left pipe sec-
tion (radius r1 = 2.00R), through 
the middle section  (radius R), and 
into the right section (radius r3 = 
3.00R). The speed of the water in 
the middle section is 0.500 m/s. What is the net work done on 
0.400 m3 of the water as it moves from the left section to the right 
section? 

71 M  CALC  Figure 14.34 shows a 
stream of water flowing through 
a hole at depth h = 10 cm in a 
tank holding water to height 
H = 40 cm. (a) At what distance 
x does the stream strike the 
floor? (b) At what depth should 
a second hole be made to give 
the same value of x? (c) At what 
depth should a hole be made to 
maximize x?

72 H  GO  A very sim-
plified schematic of the 
rain drainage system for 
a home is shown in Fig. 
14.35. Rain falling on 
the slanted roof runs off 
into gutters around the 
roof edge; it then drains 
through downspouts (only 
one is shown) into a main 
drainage pipe M below the 
basement, which carries 
the water to an even larger 
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Figure 14.33 Problem 70.
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66 M
 

FCP  Consider the venturi tube of Problem 65 and Fig. 
 14.30 without the manometer. Let A equal 5a. Suppose the pres-
sure p1 at A is 2.0 atm. Compute the values of (a) the speed V at 
A and (b) the speed v at a that make the pressure p2 at a equal 
to zero. (c) Compute the corresponding volume flow rate if the 
diameter at A is 5.0 cm. The phenomenon that occurs at a when 
p2 falls to nearly zero is known as cavitation. The water vaporizes 
into small bubbles. 

67 M
 In Fig. 14.31, the fresh water behind a reservoir dam has 

depth D = 15 m. A horizontal pipe 4.0 cm in diameter passes 

Floor
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M

Figure 14.35 Problem 72.
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pipe below the street. In Fig. 14.35, a floor drain in the basement is 
also connected to drainage pipe M. Suppose the following apply:

(1) the downspouts have height h1 = 11 m, (2) the floor drain 
has height h2 = 1.2 m, (3) pipe M has radius 3.0 cm, (4)  the 
house has side width w = 30 m and front length L = 60 m, (5) all  
the water striking the roof goes through pipe M, (6) the initial 
speed of the water in a downspout is negligible, and (7) the wind 
speed is negligible (the rain falls vertically).

At what rainfall rate, in centimeters per hour, will water from 
pipe M reach the height of the floor drain and threaten to flood 
the basement?

Additional Problems
73 BIO  About one-third of the body of a person floating in 
the Dead Sea will be above the waterline. Assuming that the 
human body density is 0.98 g/cm3, find the density of the  water 
in the Dead Sea. (Why is it so much greater than 1.0 g/cm3?)

74  A simple open U-tube contains mercury. When 11.2 cm 
of water is poured into the right arm of the tube, how high 
above its initial level does the mercury rise in the left arm?

75 FCP  If a bubble in sparkling water accelerates upward at the 
rate of 0.225 m/s2 and has a radius of 0.500 mm, what is its mass? 
Assume that the drag force on the bubble is negligible. 

76 BIO  FCP  Suppose that your body has a uniform density of 
0.95 times that of water. (a) If you float in a swimming pool, 
what fraction of your body’s volume is above the water surface?

Quicksand is a fluid produced when water is forced up into 
sand, moving the sand grains away from one another so they 
are no longer locked together by friction. Pools of quicksand 
can form when water drains underground from hills into valleys 
where there are sand pockets. (b) If you float in a deep pool 
of quicksand that has a density 1.6 times that of water, what 
fraction of your body’s volume is above the quicksand surface?  
(c) Are you unable to breathe? 

77  A glass ball of radius 2.00 cm sits at the bottom of a con-
tainer of milk that has a density of 1.03 g/cm3. The normal force 
on the ball from the container’s lower surface has magnitude 
9.48 × 10−2 N. What is the mass of the ball?

78 BIO  FCP  Caught in an avalanche, a skier is fully submerged  
in flowing snow of density 96 kg/m3. Assume that the aver age 
density of the skier, clothing, and skiing equipment is 1020  
kg/m3. What percentage of the gravitational force on the skier is 
offset by the buoyant force from the snow? 

79  Reviewing plans for a pool. You have been asked to review 
plans for a swimming pool in a new hotel. The water is to be 
supplied to the hotel by a horizontal main pipe of radius R1 = 
6.00 cm, with water under pressure of 2.00 atm. A vertical pipe 
of radius R2 = 1.00 cm is to carry the water to a height of 9.40 m, 
where the water is to pour out freely into a square pool of edge 
length 10.0 m and (proposed) water depth of 2.00 m. (a) How 
much time will be required to fill the pool? (b) If more than a 
few days is considered unacceptable and less than a few hours 
is considered dangerous, is the filling time acceptable and safe?

80 BIO  Dinosaur wading. The dinosaur Diplodocus was enor-
mous, with a long neck and tail and a mass that was great 
enough to test its leg strength (Fig. 14.36). According to con-
jecture, the dinosaur waded in water, perhaps up to its head, 
so that buoyancy could offset its weight and lighten the load 
on its legs. To check the conjecture, take the density of the 
dinosaur to be 0.90 that of water, and assume that its mass was 

the published estimate of 1.85 × 104 kg. (a) What then would 
be its actual weight? Find its apparent weight when it had the 
following fractions of its volume submerged: (b) 0.50, (c) 0.80, 
and (d) 0.90. When almost fully submerged, with only its head 
above water, its lungs would have been about 8.0 m below the 
water surface. (e) At that depth, what would be the difference 
between the (external) water pressure and the pressure of the 
air in the lungs? For the dinosaur to breathe in, its lung muscles 
would have had to expand its lungs against this pressure differ-
ence. It probably could not do so against a pressure difference 
of more than 8 kPa. (f) Did the dinosaur wade as conjectured?

Figure 14.36 Problem 80.

81  Iceberg. The “tip of the iceberg” in popular speech has 
come to mean a small visible fraction of something that is 
mostly hidden. (a) For real icebergs, what is this fraction? The 
density of ice is ρi = 917 kg/m3 and the density of the seawater is 
ρw = 1024 kg/m3. In September 2019, a huge iceberg calved off 
the Amery Ice Shelf in East Antarctica. Named D28, it had a 
top surface area of 1636 km2 (larger than Greater London) and 
a thickness of 200 m. (b) What is the weight of the ice in D28?

82  Race car down force. Modern race cars come with a variety 
of airfoils to help hold them on the track, especially in flat turns 
where the cars tend to slide out of the turn. Another technique 
involves channeling air through an opening in the front of the car, 
down under the car’s body, and then out behind the car. The air 
effectively flows through a pipe that is narrow in one section (the 
space below the car). Suppose the front opening has area Af = 
0.75 m2 and the space between the track and the bottom of the 
car has an area of Ab = 0.15 m2. If the car is moving at speed v = 
240 km/h and the pressure above the car is 1.0 atm, approximately 
what is the pressure difference (in atmospheres) between the top 
and bottom of the car, pushing down on the car?

83  Inverted glass. Partially fill 
a tall drinking glass with water to 
a depth h. Cut a square of sturdy 
paper so that it is somewhat wider 
than the opening to the glass. Place 
the paper over the opening (Fig. 
14.37a). Spread the fingers of one 
hand over the paper, pressing them 
against the glass’s rim as widely apart as possible. Grab the glass 
with your other hand, inverting the glass with your hand still 
pressing the paper against the rim. Chances are good that you can 
then remove your hand from the paper without the water pour-
ing from the glass (Fig. 14.37b). The paper bulges downward but 
stays against the rim. If h = 11.0 cm, what is the gauge pressure in 
the air that is now trapped in the glass above the water?

84 BIO  FCP  When you cough, you expel air at high speed through 
the trachea and upper bronchi so that the air will remove  excess 
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Figure 14.37 Problem 83.
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mucus lining the pathway. You produce the high speed by this pro-
cedure: You breathe in a large amount of air, trap it by closing the 
glottis (the narrow opening in the larynx),  increase the air pressure 
by contracting the lungs, partially collapse the trachea and upper 
bronchi to narrow the pathway, and then expel the air through the 
pathway by suddenly reopening the glottis. Assume that during the 
expulsion the volume flow rate is 7.0 × 10−3 m3/s. What multiple of 
343 m/s (the speed of sound vs) is the airspeed through the trachea 
if the trachea diameter (a) remains its normal value of 14 mm and 
(b) contracts to 5.2 mm? 

85 BIO  Scuba diving danger. A novice scuba diver practicing 
in a swimming pool takes enough air from his tank to fully 
expand his lungs before abandoning the tank and swimming to 
the surface. He ignores instructions and fails to exhale during 
his ascent. When he reaches the surface, the pressure difference 
between the external pressure on him and the air in his lungs is 
70 torr. From what depth did he start? What potentially lethal 
danger does he face?

86 BIO  Snorkeling danger. An enterprising diver (Fig. 14.38) 
reasons that if a typical 20-cm-long snorkel tube works, a 
6.0-m-long tube should also. If he foolishly uses such a tube, 
what is the pressure difference ∆p between the external pres-
sure on him and the air pressure in his lungs? Assume that he is 
in fresh (not salty) water.

(c) What draft dʹ is then required to float the ship? (d) What is the 
magnitude of the ship squat?

89  Hydraulic jump. In a sink with a flat bottom, turn on a fau-
cet so that a smoothly flowing (laminar) stream strikes the bot-
tom. The water spreads from the impact point in a shallow layer 
but then, at a certain radius rJ 

from the impact point, it suddenly 
increases in depth. This depth change, called a hydraulic jump, 
forms a prominent circle around the impact point (Fig. 14.40). 
Inside the circle, the speed v1 of the spreading water is constant 
and is equal to its speed in the falling stream just before impact.

In a certain experiment, the radius of the falling stream is 1.3 
mm just before impact, the volume flow rate RV is 7.9 cm3/s, the 
jump radius rJ is 2.0 cm, and the depth just after the jump is 2.0 
mm. (a) What is speed v1? (b) For r < rJ, express the water depth 
d as a function of the radial distance r from the impact point. 
(c) Does the depth of the water increase or decrease with r?  
(d) What is the depth just before the water undergoes the hydrau-
lic jump? (e) What is the speed v2 of the water just after the jump? 

90  Boston molasses disaster. On January 15, 1919, a vat of molas-
ses in Boston’s North End burst. A wave of molasses with height 
10 m sped through the streets at 16 m/s (about 35 mi/h), killing 21 
people and resulting in great property damage (Fig. 14.41). The 
vat was 15 m high, 27 m in diameter, and held 2.3 × 106 U.S. gal of 
molasses. In the vat’s hasty construction, its soundness had been 
tested only with water 0.150 m deep. What was the pressure on its 
wall at the base (a) during the test and (b) when filled with molas-
ses with density 1.42 × 103 kg/m3?

Figure 14.38 Problem 86.

L

y = 0
p0

87 BIO  Blood flow. The cross-sectional area A0 of the aorta (the 
major blood vessel emerging from the heart) of a normal person 
is 3 cm2

 and the speed v0 of the blood is 30 cm/s. A typical capil-
lary (diameter ≈ 6 µm) has a cross-sectional area A of 3 × 10–7 

cm2 and a flow speed v of 0.05 cm/s. How many capillaries does 
such a person have?

88  Ship squat. When a ship 
travels through a shallow water-
way, it can sink somewhat in 
what is known as ship squat 
because, as it advances, it forces 
water to flow underneath the 
hull, which reduces the water 
pressure there. In 1992, ship 
squat grounded the ocean 
liner Queen Elizabeth 2 near Martha’s Vineyard in ocean waters 
off Massachusetts. The ship’s draft in open water was 9.8 m but 
it grounded on a shoal at depth 10.5 m. Calculations about ship 
squat are very complicated and vary from one ship to another and 
from one waterway to another. Let’s consider a simplistic situation 
with a rectangular ship (Fig. 14.39). In open water, it has a draft 
(depth) of d = 9.80 m. (a) What is the gauge pressure p of the water 
just below the hull? (b) While moving through a shallow channel, 
water beneath the hull flows from bow to stern at 4.00 m/s. By how 
much is the pressure just below the hull reduced due to that flow? 

Figure 14.39 Problem 88.
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Figure 14.40 Problem 89.

Figure 14.41 Problem 90. 
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15.1 SIMPLE HARMONIC MOTION
Learning Objectives 
After reading this module, you should be able to . . .

15.1.1 Distinguish simple harmonic motion from other 
types of periodic motion.

15.1.2 For a simple harmonic oscillator, apply the rela-
tionship between position x and time t to calculate 
either if given a value for the other.

15.1.3 Relate period T, frequency f, and angular fre-
quency ω.

15.1.4 Identify (displacement) amplitude xm, phase 
constant (or phase angle) ϕ, and phase ωt + ϕ.

15.1.5 Sketch a graph of the oscillator’s position x ver-
sus time t, identifying amplitude xm and period T.

15.1.6 From a graph of position versus time, velocity 
versus time, or acceleration versus time, determine 
the amplitude of the plot and the value of the phase 
constant ϕ.

15.1.7 On a graph of position x versus time t, describe 
the effects of changing period T, frequency f, ampli-
tude xm, or phase constant ϕ.

15.1.8 Identify the phase constant ϕ that corresponds 
to the starting time (t = 0) being set when a particle 
in SHM is at an extreme point or passing through 
the  center point.

15.1.9 Given an oscillator’s position x(t) as a function 
of time, find its velocity v(t) as a function of time, 
identify the velocity amplitude vm in the result, and 
calculate the velocity at any given time.

15.1.10 Sketch a graph of an oscillator’s velocity v  
versus time t, identifying the velocity amplitude vm.

15.1.11 Apply the relationship between velocity ampli-
tude vm, angular frequency ω, and (displacement) 
amplitude xm.

15.1.12 Given an oscillator’s velocity v(t) as a function of 
time, calculate its acceleration a(t) as a function of time, 
identify the acceleration amplitude am in the result, and 
calculate the acceleration at any given time.

15.1.13 Sketch a graph of an oscillator’s acceleration a 
versus time t, identifying the acceleration amplitude am.

15.1.14 Identify that for a simple harmonic oscillator 
the acceleration a at any instant is always given by 
the product of a negative constant and the displace-
ment x just then.

15.1.15 For any given instant in an oscillation, apply 
the relationship between acceleration a, angular 
frequency ω, and displacement x.

15.1.16 Given data about the position x and velocity v  
at one instant, determine the phase ωt + ϕ and 
phase constant ϕ.

15.1.17 For a spring– block oscillator, apply the rela-
tionships between spring constant k and mass m 
and either period T or angular frequency ω.

15.1.18 Apply Hooke’s law to relate the force F on a 
simple harmonic oscillator at any instant to the dis-
placement x of the oscillator at that instant.

Key Ideas 
● The frequency f of periodic, or oscillatory,  motion is 
the number of oscillations per second. In the SI sys-
tem, it is measured in hertz: 1 Hz = 1 s−1.
● The period T is the time required for one complete 
oscillation, or cycle. It is related to the frequency by 
T = 1/f.
● In simple harmonic motion (SHM), the displace-
ment x(t) of a particle from its equilibrium position is 
described by the equation

x = xm cos(ωt + ϕ) (displacement),

in which xm is the amplitude of the displacement, ωt + ϕ 
is the phase of the motion, and ϕ is the phase  constant. 

The  angular frequency ω is related to the period and 
frequency of the motion by ω = 2π/T = 2πf.
● Differentiating x(t) leads to equations for the particle’s 
SHM velocity and acceleration as functions of time:

v = −ωxm sin(ωt + ϕ) (velocity)

and a = −ω2xm cos(ωt + ϕ) (acceleration).

In the velocity function, the positive quantity ωxm is 
the velocity amplitude vm. In the acceleration function, 
the positive quantity ω2xm is the acceleration ampli-
tude am.

Oscillations
C H A P T E R  1 5
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43715.1 Simple Harmonic motion

What Is Physics?
Our world is filled with oscillations in which objects move back and forth repeat-
edly. Many oscillations are merely amusing or annoying, but many others are 
 dangerous or financially important. Here are a few examples: When a bat hits 
a baseball, the bat may oscillate enough to sting the batter’s hands or even to 
break apart. When wind blows past a power line, the line may oscillate (“gal-
lop” in electrical engineering terms) so severely that it rips apart, shutting off the 
power  supply to a community. When an airplane is in flight, the turbulence of 
the air flowing past the wings makes them oscillate, eventually leading to metal 
fatigue and even failure. When a train travels around a curve, its wheels oscillate 
horizontally (“hunt” in mechanical engineering terms) as they are forced to turn 
in new directions (you can hear the oscillations).

When an earthquake occurs near a city, buildings may be set oscillating 
so  severely that they are shaken apart. When an arrow is shot from a bow, the 
 feathers at the end of the arrow manage to snake around the bow staff without 
hitting it because the arrow oscillates. When a coin drops into a metal collection 
plate, the coin oscillates with such a familiar ring that the coin’s denomination 
can be determined from the sound. When a rodeo cowboy rides a bull, the cow-
boy oscillates wildly as the bull jumps and turns (at least the cowboy hopes to be 
oscillating).   FCP

The study and control of oscillations are two of the primary goals of both 
physics and engineering. In this chapter we discuss a basic type of oscillation 
called simple harmonic motion.

Heads Up. This material is quite challenging to most students. One reason is 
that there is a truckload of definitions and symbols to sort out, but the main reason 
is that we need to relate an object’s oscillations (something that we can see or even 
experience) to the equations and graphs for the oscillations. Relating the real, vis-
ible motion to the abstraction of an equation or graph requires a lot of hard work.

Simple Harmonic Motion
Figure 15.1.1 shows a particle that is oscillating about the origin of an x axis, 
repeatedly going left and right by identical amounts. The frequency f of the 
oscillation is the number of times per second that it completes a full oscillation  
(a cycle) and has the unit of hertz (abbreviated Hz), where

 1 hertz = 1 Hz = 1 oscillation per second = 1 s−1. (15.1.1)

The time for one full cycle is the period T of the oscillation, which is

 
  T =   1 __ 

f
  .   (15.1.2)

Any motion that repeats at regular intervals is called periodic motion or har-
monic motion. However, here we are interested in a particular type of periodic 
motion called simple harmonic motion (SHM). Such motion is a sinusoidal func-
tion of time t. That is, it can be written as a sine or a cosine of time t. Here we 
 arbitrarily choose the cosine function and write the displacement (or position) of 
the particle in Fig. 15.1.1 as

+xm–xm

x
0

Figure 15.1.1 A particle repeatedly 
oscillates left and right along an x 
axis, between extreme points xm 
and −xm.

● A particle with mass m that moves under the influ-
ence of a Hooke’s law restoring force given by F = −kx 
is a linear simple harmonic oscillator with

  ω =  √ 
___

   k __ m     (angular frequency)

and  T = 2π √ 
___

   m __ 
k

     (period).
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A particle oscillates left
and right in simple
harmonic motion.

Rotating the f igure reveals
that the motion forms a
cosine function.

This is a graph of the motion,
with the period T indicated.

The speed is zero at
extreme points.

The speed is greatest
at x = 0.

The speed 
is zero at the 
extreme points.

The speed is greatest
at the midpoint.

Figure 15.1.2 (a) A sequence of “freeze- frames” (taken at equal time intervals) showing the 
 position of a particle as it oscillates back and forth about the origin of an x axis, between the 
limits +xm and −xm. (b) The vector arrows are scaled to indicate the speed of the particle.  
The speed is maximum when the particle is at the origin and zero when it is at ± xm. If the time t 
is chosen to be zero when the particle is at +xm, then the particle returns to +xm at t = T, where 
T is the period of the motion. The motion is then repeated. (c) Rotating the figure reveals the 
motion forms a cosine function of time, as shown in (d). (e) The speed (the slope) changes.

 x(t) = xm cos(ωt + ϕ) (displacement), (15.1.3)

in which xm, ω, and ϕ are quantities that we shall define.
Freeze- Frames. Let’s take some freeze- frames of the motion and then arrange 

them one after another down the page (Fig. 15.1.2a). Our first freeze- frame is at 

A
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43915.1 Simple Harmonic motion

t = 0 when the particle is at its rightmost position on the x axis. We label that 
coordinate as xm (the subscript means maximum); it is the symbol in front of the 
cosine function in Eq. 15.1.3. In the next freeze- frame, the particle is a bit to the  
left of xm. It continues to move in the negative direction of x until it reaches  
the leftmost position, at coordinate −xm. Thereafter, as time takes us down the 
page through more freeze- frames, the particle moves back to xm and thereafter 
repeatedly oscillates between xm and −xm. In Eq. 15.1.3, the cosine function itself 
oscillates between +1 and −l. The value of xm determines how far the particle 
moves in its oscillations and is called the amplitude of the oscillations (as labeled 
in the handy guide of Fig. 15.1.3).

Figure 15.1.2b indicates the velocity of the particle with respect to time, in the 
series of freeze- frames. We’ll get to a function for the velocity soon, but for now 
just notice that the particle comes to a momentary stop at the extreme points and 
has its greatest speed (longest velocity vector) as it passes through the center point.

Mentally rotate Fig. 15.1.2a counterclockwise by 90°, so that the freeze- 
frames then progress rightward with time. We set time t = 0 when the particle is 
at xm. The particle is back at xm at time t = T (the period of the oscillation), when 
it starts the next cycle of oscillation. If we filled in lots of the intermediate freeze-  
frames and drew a line through the particle positions, we would have the cosine 
curve shown in Fig. 15.1.2d. What we already noted about the speed is displayed 
in Fig. 15.1.2e. What we have in the whole of Fig. 15.1.2 is a transformation of 
what we can see (the reality of an oscillating particle) into the abstraction of 
a graph. (In WileyPLUS the transformation of Fig. 15.1.2 is available as an anima-
tion with voiceover.) Equation 15.1.3 is a concise way to capture the motion in the 
abstraction of an equation.

More Quantities. The handy guide of Fig. 15.1.3 defines more quantities 
about the motion. The argument of the cosine function is called the phase of 
the motion. As it varies with time, the value of the cosine function varies. The 
constant ϕ is called the phase angle or phase constant. It is in the argument only 
because we want to use Eq. 15.1.3 to describe the motion regardless of where the 
particle is in its oscillation when we happen to set the clock time to 0. In Fig. 15.1.2, 
we set t = 0 when the particle is at xm. For that choice, Eq. 15.1.3 works just fine 
if we also set ϕ = 0. However, if we set t = 0 when the particle happens to be at 
some other location, we need a different value of ϕ. A few values are indicated in 
Fig. 15.1.4. For example, suppose the particle is at its leftmost position when we 
happen to start the clock at t = 0. Then Eq. 15.1.3 describes the motion if ϕ = π 
rad. To check, substitute t = 0 and ϕ = π rad into Eq. 15.1.3. See, it gives x = −xm 
just then. Now check the other examples in Fig. 15.1.4.

The quantity ω in Eq. 15.1.3 is the angular frequency of the motion. To relate 
it to the frequency f and the period T, let’s first note that the position x(t) of the 
particle must (by definition) return to its initial value at the end of a period. That 
is, if x(t) is the position at some chosen time t, then the particle must return to 
that same position at time t + T. Let’s use Eq. 15.1.3 to express this condition, but 
let’s also just set ϕ = 0 to get it out of the way. Returning to the same position can 
then be written as
 xm cos ωt = xm cos ω(t + T). (15.1.4)

The cosine function first repeats itself when its argument (the phase, remember) 
has increased by 2π rad. So, Eq. 15.1.4 tells us that

ω(t + T) = ωt + 2π
or ωT = 2π.

Thus, from Eq. 15.1.2 the angular frequency is

   ω =   2π ___ 
T

   = 2πf.   (15.1.5)

The SI unit of angular frequency is the radian per second.

Figure 15.1.3 A handy guide to the 
quantities in Eq. 15.1.3 for simple 
harmonic motion.

Displacement
at time t

Amplitude

Angular
frequency

Time

Phase
constant
or phase
angle

Phase

x(t) = xm cos(ωt + ϕ)

0

+xm–xm 0

 rad

rad3
2

1
2

radπ

π

π

Figure 15.1.4 Values of ϕ correspond-
ing to the position of the particle at 
time t = 0.
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440 cHapter 15 oScillationS

We’ve had a lot of quantities here, quantities that we could experimentally 
change to see the effects on the particle’s SHM. Figure 15.1.5 gives some examples. 
The curves in Fig. 15.1.5a show the effect of changing the amplitude. Both curves 
have the same period. (See how the “peaks” line up?) And both are for ϕ = 0. (See 
how the maxima of the curves both occur at t = 0?) In Fig. 15.1.5b, the two curves 
have the same amplitude xm but one has twice the period as the other (and thus half 
the frequency as the other). Figure 15.1.5c is probably more difficult to understand. 
The curves have the same amplitude and same period but one is shifted relative 
to the other because of the different ϕ values. See how the one with ϕ = 0 is just 
a regular cosine curve? The one with the negative ϕ is shifted rightward from it. 
That is a general result: Negative ϕ values shift the regular cosine curve rightward 
and positive ϕ values shift it leftward. (Try this on a graphing calculator.)
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 = – _
4

This negative value
shifts the cosine
curve rightward.

This zero gives a
regular cosine curve.

ϕ

ϕ π

Figure 15.1.5 In all three cases, the blue curve is obtained 
from Eq. 15.1.3 with ϕ = 0. (a) The red curve differs from 
the blue curve only in that the red- curve amplitude x′m 
is greater (the red- curve extremes of displacement are 
higher and lower). (b) The red curve differs from the 
blue curve only in that the red- curve period is T′ = T/2 (the 
red curve is compressed horizontally). (c) The red curve 
differs from the blue curve only in that for the  red curve 
ϕ = −π/4 rad rather than zero (the negative value of  
ϕ shifts the red curve to the right).

The Velocity of SHM
We briefly discussed velocity as shown in Fig. 15.1.2b, finding that it varies in mag-
nitude and direction as the particle moves between the extreme points (where the 
speed is momentarily zero) and through the central point (where the speed is 
maximum). To find the velocity v(t) as a function of time, let’s take a time deriva-
tive of the position function x(t) in Eq. 15.1.3:

 v(t) =   dx  (  t )    _____ 
dt

   =   d __ 
dt

      [    x  m    cos   (  ωt + ϕ )    ]    

or v(t) = −ωxm sin(ωt + ϕ) (velocity). (15.1.6)

The velocity depends on time because the sine function varies with time, 
between the values of +1 and −1. The quantities in front of the sine function 

Checkpoint 15.1.1
A particle undergoing simple harmonic oscillation of period T (like that in Fig. 15.1.2) 
is at −xm at time t = 0. Is it at −xm, at +xm, at 0, between −xm and 0, or between 0 
and +xm when (a) t = 2.00T, (b) t = 3.50T, and (c) t = 5.25T?
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44115.1 Simple Harmonic motion

determine the extent of the variation in the velocity, between +ωxm 
and −ωxm. We say that ωxm is the velocity amplitude vm of the veloc-
ity variation. When the particle is moving rightward through x = 0, its 
velocity is positive and the magnitude is at this greatest value. When 
it is moving leftward through x = 0, its velocity is negative and the 
magnitude is again at this greatest value. This variation with time (a 
negative sine function) is displayed in the graph of Fig. 15.1.6b for a 
phase constant of ϕ = 0, which corresponds to the cosine function for 
the displacement versus time shown in Fig. 15.1.6a. 

Recall that we use a cosine function for x(t) regardless of the par-
ticle’s position at t = 0. We simply choose an appropriate value of ϕ so 
that Eq. 15.1.3 gives us the correct position at t = 0. That decision about 
the cosine function leads us to a negative sine function for the velocity 
in Eq. 15.1.6, and the value of ϕ now gives the correct velocity at t = 0.

The Acceleration of SHM
Let’s go one more step by differentiating the velocity function of Eq. 
15.1.6 with respect to time to get the acceleration function of the par-
ticle in simple harmonic motion:

 a  (  t )    =   dv  (  t )    _____ 
dt

   =   d __ 
dt

      [  −ω  x  m    sin   (  ωt + ϕ )    ]    

or a(t) = −ω2xm cos(ωt + ϕ) (acceleration). (15.1.7)

We are back to a cosine function but with a minus sign out front. We know the 
drill by now. The acceleration varies because the cosine function varies with time, 
between +1 and −1. The variation in the magnitude of the acceleration is set 
by the acceleration amplitude am, which is the product ω2xm that multiplies the 
cosine function.

Figure 15.1.6c displays Eq. 15.1.7 for a phase constant ϕ = 0, consistent with 
Figs. 15.1.6a and 15.1.6b. Note that the acceleration magnitude is zero when the 
cosine is zero, which is when the particle is at x = 0. And the acceleration mag-
nitude is maximum when the cosine magnitude is maximum, which is when the 
particle is at an extreme point, where it has been slowed to a stop so that its motion 
can be reversed. Indeed, comparing Eqs. 15.1.3 and 15.1.7 we see an extremely neat 
relationship:

 a(t) = −ω2x(t). (15.1.8)

This is the hallmark of SHM: (1) The particle’s acceleration is always opposite  
its displacement (hence the minus sign) and (2) the two quantities are always 
 related by a constant (ω2). If you ever see such a relationship in an oscillating 
situation (such as with, say, the current in an electrical circuit, or the rise and fall 
of water in a tidal bay), you can immediately say that the motion is SHM and 
immediately identify the angular frequency ω of the motion. In a nutshell:

Figure 15.1.6 (a) The displacement 
x(t) of a particle oscillating in SHM 
with phase angle ϕ equal to zero. 
The period T marks one complete 
oscillation. (b) The velocity v(t) of 
the particle. (c) The acceleration a(t) 
of the particle.

x
+xm

–xm

0

D
is

pl
ac

em
en

t

t

T
(a)

v
+ωxm

–ωxm

0

V
el

oc
it

y

t

(b)
a

+ω2xm

–ω2xm

0

A
cc

el
er

at
io

n

t

(c)

Extreme
values
here 
mean ...

zero 
values
here 
and ...

extreme
values
here.

 In SHM, the acceleration a is proportional to the displacement x but opposite in 
sign, and the two quantities are related by the square of the angular frequency ω.

Checkpoint 15.1.2
Which of the following relationships between a particle’s acceleration a and its 
 position x indicates simple harmonic oscillation: (a) a = 3x2, (b) a = 5x, (c) a = −4x, 
(d) a = −2/x? For the SHM, what is the angular frequency (assume the unit of rad/s)?
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Figure 15.1.7 A linear simple 
harmonic oscillator. The surface 
is frictionless. Like the particle of 
Fig. 15.1.2, the block moves in simple 
harmonic motion once it has been 
either pulled or pushed away from 
the x = 0 position and released. 
Its displacement is then given by 
Eq. 15.1.3.

k

x

–xm x = 0 +xm

m

The Force Law for Simple Harmonic Motion
Now that we have an expression for the acceleration in terms of the displacement 
in Eq. 15.1.8, we can apply Newton’s second law to describe the force responsible 
for SHM:
 F = ma = m(−ω2x) = −(mω2)x. (15.1.9)

The minus sign means that the direction of the force on the particle is opposite the 
direction of the displacement of the particle. That is, in SHM the force is a restor-
ing force in the sense that it fights against the displacement, attempting to restore 
the particle to the center point at x = 0. We’ve seen the general form of Eq. 15.1.9 
back in Chapter 8 when we discussed a block on a spring as in Fig. 15.1.7. There 
we wrote Hooke’s law,
 F = −kx, (15.1.10)

for the force acting on the block. Comparing Eqs. 15.1.9 and 15.1.10, we can now 
relate the spring constant k (a measure of the stiffness of the spring) to the mass 
of the block and the resulting angular frequency of the SHM:

 k = mω2. (15.1.11)

Equation 15.1.10 is another way to write the hallmark equation for SHM.

The block– spring system of Fig. 15.1.7 is called a linear simple harmonic oscilla-
tor (linear oscillator, for short), where linear indicates that F is proportional to x 
to the first power (and not to some other power).

If you ever see a situation in which the force in an oscillation is always pro-
portional to the displacement but in the opposite direction, you can immediately 
say that the oscillation is SHM. You can also immediately identify the associated 
spring constant k. If you know the oscillating mass, you can then determine the 
angular frequency of the motion by rewriting Eq. 15.1.11 as

   ω =  √ 
___

   k __ m      (angular frequency). (15.1.12)

(This is usually more important than the value of k.) Further, you can determine 
the period of the motion by combining Eqs. 15.1.5 and 15.1.12 to write

  
T = 2π  √ 

___
   m __ 

k
      (period). (15.1.13)

Let’s make a bit of physical sense of Eqs. 15.1.12 and 15.1.13. Can you see 
that a stiff spring (large k) tends to produce a large ω (rapid oscillations) and thus 
a small period T? Can you also see that a large mass m tends to result in a small 
ω (sluggish oscillations) and thus a large period T?

Every oscillating system, be it a diving board or a violin string, has some 
 element of “springiness” and some element of “inertia” or mass. In Fig. 15.1.7, 
these elements are  separated: The springiness is entirely in the spring, which we 
assume to be massless, and the inertia is entirely in the block, which we assume to 
be rigid. In a violin string, however, the two elements are both within the string.

 Simple harmonic motion is the motion of a particle when the force acting on it is 
proportional to the particle’s displacement but in the opposite direction.

Checkpoint 15.1.3
Which of the following relationships between the force F on a particle and the par-
ticle’s position x gives SHM: (a) F = −5x, (b) F = −400x2, (c) F = 10x, (d) F = 3x2?
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44315.1 Simple Harmonic motion

from the spring is F = kx, where x is the vertical displace-
ment of the right end.

Substituting these expressions for I and F into our 
expression of LF = Iα gives us

 − Lkx =   m  L   2  α ______ 
3
  . 

We now have a mixture of linear displacement x (verti-
cally) and rotational acceleration α (about the hinge). We 
can replace α with the (linear) acceleration a along the x 
axis by substituting a = αr (Eq. 10.3.6) for the tangential 
acceleration. Here the radius of rotation r is L, so α = 
a/L. With that substitution, we have

 − Lkx =   m  L   2  a ______ 
3L

  , 

which yields

 a = −   3k ___ m   x. 

This equation is of the same form as  a = −  ω   2 x.  Therefore, 
the board does indeed undergo SHM, and comparison of 
the two equations tells us that

  ω   2  =   3k ___ m  , 

which gives  ω =  √ 
_

 3k / m   .  Using  ω = 2π / T,  we then have

  T = 2π  √ 
___

   m ___ 
3k

     = 2π  √ 

___________

    
12 kg
 ___________  

3(1300 N/m)
    

 = 0 . 35 s. 

Perhaps surprisingly, the period is independent of the 
board’s length L.

In Fig. 15.1.8, a penguin (obviously skilled in aquatic 
sports) dives from a uniform board that is hinged at the 
left and attached to a spring at the right. The board has 
length L = 2.0 m and mass m = 12 kg; the spring con-
stant k is 1300 N/m. When the penguin dives, it leaves 
the board and spring oscillating with a small amplitude. 
Assume that the board is stiff enough not to bend, and 
find the period T of the oscillations.

KEY IDEA

Because a spring is involved, we can guess that the oscilla-
tions are in SHM, but we don’t know that for a fact. If the 
board is in SHM, then the acceleration and displacement 
of the oscillating end of the board must be related by an 
expression in the form of Eq. 15.1.8  (a = −  ω   2  x).  We can 
then find the period T.

Calculations: Because the board rotates about the hinge 
as one end oscillates, we are concerned with a torque    τ →   
on the board about the hinge. That torque is due to the 
force    F 

→
    on the board from the spring. Because    F 

→
    varies 

with time,    τ →    must also. However, at any given instant we 
can relate the magnitudes of    τ →    and    F 

→
    with Eq. 10.6.2  (τ = 

rF sin ϕ).  Here we have

 τ = LF sin 90° , 

where L is the moment arm of force    F 
→

    and 90° is the angle 
between the moment arm and the force’s line of action. 
Combining this equation with Eq. 11.7.1  (τ = Iα)  gives us

 LF = Iα, 

where I is the board’s rotational inertia about the hinge, 
and α is its angular acceleration about that point. We may 
treat the board as a thin rod pivoted about one end. Then 
from Table 10.5.1e and the parallel-axis theorem of Eq. 
10.5.2, the rotational inertia is

 I =  I  com   + m  h   2  =   1 __ 12   m L   2  + m  (   1 _ 2   L)  
2
  =   1 _ 3   m L   2  . 

Next, let’s mentally erect a vertical x axis through the 
oscillating right end of the board, with the positive direc-
tion upward. Then the force on the right end of the board 

Sample Problem 15.1.1 Penguin on a springboard

Figure 15.1.8 The dive by the penguin from the board causes 
the board and spring to oscillate.

L

KEY IDEA

With the block in SHM, Eqs. 15.1.3, 15.1.6, and 15.1.7 give 
its displacement, velocity, and  acceleration, respectively, 
and each contains ω. 

At t = 0, the displacement x(0) of the block in a linear 
oscillator like that of Fig. 15.1.7 is −8.50 cm. (Read x(0) 
as “x at time zero.”) The block’s velocity v(0) then is 
−0.920 m/s, and its  acceleration a(0) is +47.0 m/s2.

(a) What is the angular frequency ω of this system?

Sample Problem 15.1.2 Finding SHM phase constant from displacement and velocity

additional examples, video, and practice available at WileyPLUS
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Calculations: Let’s substitute t = 0 into each to see 
whether we can solve any one of them for ω. We find

 x(0) = xm cos ϕ, (15.1.14)

 v(0) = −ωxm sin ϕ, (15.1.15)

and    a(0) = −ω2xm cos ϕ. (15.1.16)

In Eq. 15.1.14, ω has disappeared. In Eqs. 15.1.15 and 
15.1.16, we know values for the left sides, but we do not 
know xm and ϕ. However, if we divide Eq. 15.1.16 by Eq. 
15.1.14, we neatly eli m inate both xm and ϕ and can then 
solve for ω as

  ω =  √ 

______

 −   
a  (  0 )   

 ____ 
x  (  0 )   

     =  √ 

___________

  −  47.0   m/s  2  __________ − 0.0850 m
      

 = 23.5 rad/s. (Answer)

(b) What are the phase constant ϕ and amplitude xm?

Calculations: We know ω and want ϕ and xm. If we 
divide Eq. 15.1.15 by Eq. 15.1.14, we eliminate one of those 
unknowns and reduce the other to a single trig function:

   
v  (  0 )   

 ____ 
x  (  0 )   

   =   
− ω x  m    sin  ϕ

 ___________  x  m    cos  ϕ   = − ω tan  ϕ. 

Solving for tan ϕ, we find

  tan  ϕ = −   
v  (  0 )   

 ______ ωx  (  0 )   
   = −   − 0.920 m/s  ______________________  

 (  23.5 rad/s )    (  −0.0850 m )   
    

 = −0.461.

This equation has two solutions:

ϕ = −25°  and  ϕ = 180° + (−25°) = 155°.

Normally only the first solution here is displayed by a cal-
culator, but it may not be the physically possible solution. 
To choose the proper solution, we test them both by using 
them to compute values for the amplitude xm. From Eq. 
15.1.14, we find that if ϕ = −25°, then

  x  m   =   
x  (  0 )   

 _____ cos  ϕ   =   − 0.0850 m __________ 
cos   (  −25° )   

   = − 0.094 m. 

We find similarly that if ϕ = 155°, then xm = 0.094 m. 
Because the amplitude of SHM must be a positive con-
stant, the correct phase constant and amplitude here are

ϕ = 155°  and  xm = 0.094 m = 9.4 cm.  (Answer)

Energy in Simple Harmonic Motion
Let’s now examine the linear oscillator of Chapter 8, where we saw that the energy 
transfers back and forth between kinetic energy and potential energy, while the sum 
of the two—the  mechanical energy E of the oscillator— remains constant. The poten-
tial energy of a linear oscillator like that of Fig. 15.1.7 is associated entirely with 

15.2 ENERGY IN SIMPLE HARMONIC MOTION
Learning Objectives 
After reading this module, you should be able to . . .

15.2.1 For a spring– block oscillator, calculate the 
kinetic energy and elastic potential energy at any 
given time.

15.2.2 Apply the conservation of energy to relate the 
total energy of a spring– block oscillator at one 
instant to the total energy at another instant. 

15.2.3 Sketch a graph of the kinetic energy, potential 
energy, and total energy of a spring– block oscillator, 
first as a function of time and then as a function of 
the oscillator’s position.

15.2.4 For a spring– block oscillator, determine the 
block’s position when the total energy is entirely 
kinetic energy and when it is entirely potential energy.

Key Idea 
● A particle in simple harmonic motion has, at any 
time, kinetic energy  K =   1 _ 2    mv   2   and potential energy  
 U =   1 _ 2    kx   2  . If no friction is present, the mechanical 

energy E  =  K  +  U  remains constant even though K 
and U change.

additional examples, video, and practice available at WileyPLUS
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44515.2 enerGY in Simple Harmonic motion

the spring. Its value depends on how much the spring is stretched or 
compressed— that is, on x(t). We can use Eqs. 8.1.11 and 15.1.3 to find

   U  (  t )    =   1 _ 2  k x   2  =   1 _ 2  k x m  2     cos  2   (  ωt + ϕ )   .   (15.2.1)

Caution: A function written in the form cos2 A (as here) means (cos A)2  
and is not the same as one written cos A2, which means cos(A2).

The kinetic energy of the system of Fig. 15.1.7 is associated entirely 
with the block. Its value depends on how fast the block is moving— 
that is, on v(t). We can use Eq. 15.1.6 to find

   K  (  t )    =   1 _ 2  m v   2  =   1 _ 2  m ω   2  x m  2    sin  2   (  ωt + ϕ )   .   (15.2.2)

If we use Eq. 15.1.12 to substitute k /m for ω2, we can write Eq. 15.2.2 as

   K  (  t )    =   1 _ 2  m v   2  =   1 _ 2  k x m  2     sin  2   (  ωt + ϕ )   .   (15.2.3)

The mechanical energy follows from Eqs. 15.2.1 and 15.2.3 and is

 E = U + K

  =   1 _ 2  k x m   2    cos  2   (  ωt + ϕ )    +   1 _ 2  k x m  2     sin  2   (  ωt + ϕ )     

  =   1 _ 2  k x m  2    [   cos  2   (  ωt + ϕ )    +  sin  2   (  ωt + ϕ )    ]    .

For any angle α,
cos2 α + sin2 α = 1.

Thus, the quantity in the square brackets above is unity and we have

   E = U + K =   1 _ 2   k  x m  2  .   (15.2.4)

The mechanical energy of a linear oscillator is indeed constant and indepen-
dent of time. The potential energy and kinetic energy of a linear oscillator are 
shown as functions of time t in Fig. 15.2.1a and as functions of displacement x 
in Fig. 15.2.1b. In any oscillating system, an element of springiness is needed 
to store the potential energy and an element of inertia is needed to store the 
kinetic energy.

Checkpoint 15.2.1
In Fig. 15.1.7, the block has a kinetic energy of 3 J and the spring has an elastic potential 
energy of 2 J when the block is at x = +2.0 cm. (a) What is the kinetic energy when 
the block is at x = 0? What is the elastic potential energy when the block is at (b) 
x = −2.0 cm and (c) x = −xm?

(a) What is the total mechanical energy E of the spring–
block system?

KEY IDEA

The mechanical energy E (the sum of the kinetic energy   
K =   1 _ 2    mv   2   of the block and the potential energy  U =   1 _ 2    kx   2   of 
the spring) is constant throughout the motion of the oscillator. 
Thus, we can evaluate E at any point during the motion.

Calculations: Because we are given amplitude xm of the 
oscillations, let’s evaluate E when the block is at position 

Sample Problem 15.2.1 SHM potential energy, kinetic energy, mass dampers

Many tall buildings have mass dampers, which are anti- 
sway devices to prevent them from oscillating in a wind. 
The device might be a block oscillating at the end of a 
spring and on a lubricated track. If the building sways, 
say, eastward, the block also moves eastward but delayed 
enough so that when it finally moves, the building is then 
moving back westward. Thus, the motion of the oscillator 
is out of step with the motion of the building.

Suppose the block has mass m = 2.72 × 105 kg and is 
designed to oscillate at frequency f = 10.0 Hz and with 
amplitude xm = 20.0 cm. FCP

E
n

er
gy

E

0 T/2 T
t

K(t)

U(t)

U(t) + K(t)

(a)

x

E
n

er
gy

K(x)

U(x)

U(x) + K(x)

–xm +xm0

E

(b)

As time changes, the
energy shifts between
the two types, but the
total is constant.

As position changes, the
energy shifts between
the two types, but the
total is constant.

Figure 15.2.1 (a) Potential energy 
U(t), kinetic energy K(t), and 
mechanical energy E as functions 
of time t for a linear harmonic 
oscillator. Note that all energies are 
positive and that the potential energy 
and the kinetic energy peak twice 
during every period. (b) Potential 
energy U(x), kinetic energy K(x), 
and mechanical energy E as func-
tions of position x for a linear har-
monic oscillator with amplitude xm.  
For x = 0 the energy is all  kinetic, 
and for x = ±xm it is all potential.
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x = xm, where it has velocity v = 0. However, to evaluate U  
at that point, we first need to find the spring constant k.  
From Eq. 15.1.12   (ω =  √ 

_
 k / m  )   and Eq. 15.1.5 (ω = 2πf ), 

we find

  k = m ω   2  = m (2πf )  2   

  =  (2.72 ×  10  5   kg) (2π  )  2  (10.0 Hz  )  2      

  = 1.073 ×  10  9   N/m. 
We can now evaluate E as

 
 E = K + U =   1 _ 2   m v   2  +   1 _ 2   k x   2     

   = 0 +   1 _ 2   (1.073 ×  10  9   N/m)  (0.20 m )  2      
   = 2.147 ×  10  7   J ≈ 2.1 ×  10  7   J.   (Answer)

(b) What is the block’s speed as it passes through the 
equilibrium point?

Calculations: We want the speed at x = 0, where the 
potential energy is  U =   1 _ 2   k x   2  = 0  and the mechanical 
energy is entirely kinetic energy. So, we can write

 E = K + U =   1 _ 2   m v   2  +   1 _ 2   k x   2  ,

 2.147 ×  10  7   J =   1 _ 2   (2.72 ×  10  5   kg)  v   2  + 0, 

or  v = 12.6 m/s. (Answer)

Because E is entirely kinetic energy, this is the maximum 
speed vm.

15.3 AN ANGULAR SIMPLE HARMONIC OSCILLATOR
Learning Objectives 
After reading this module, you should be able to . . .

15.3.1 Describe the motion of an angular simple har-
monic  oscillator.

15.3.2 For an angular simple harmonic oscillator, apply 
the relationship between the torque τ and the angu-
lar displacement θ (from equilibrium).

15.3.3 For an angular simple harmonic oscillator, 
apply the relationship between the period T (or 

frequency f ), the rotational inertia I, and the torsion 
constant κ.

15.3.4 For an angular simple harmonic oscillator at any 
instant, apply the relationship between the angular 
acceleration α, the angular frequency ω, and the 
angular displacement θ.

Key Idea 
● A torsion pendulum consists of an object suspended 
on a wire. When the wire is twisted and then released, 
the object oscillates in angular simple harmonic motion 
with a period given by

 T = 2π  √ 
__

   I __ κ    , 

where I is the rotational inertia of the object about the 
axis of rotation and κ is the torsion constant of the wire.

An Angular Simple Harmonic Oscillator
Figure 15.3.1 shows an angular version of a simple harmonic oscillator; the ele-
ment of springiness or elasticity is associated with the twisting of a suspension wire 
rather than the extension and compression of a spring as we previously had. The 
device is called a torsion pendulum, with torsion referring to the twisting.

If we rotate the disk in Fig. 15.3.1 by some angular displacement θ from its 
rest position (where the reference line is at θ = 0) and release it, it will oscillate 
about that position in angular simple harmonic motion. Rotating the disk through 
an angle θ in either direction introduces a restoring torque given by

  τ = −κ θ. (15.3.1)

additional examples, video, and practice available at WileyPLUS
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Here κ (Greek kappa) is a constant, called the torsion constant, that depends on 
the length, diameter, and material of the suspension wire.

Comparison of Eq. 15.3.1 with Eq. 15.1.10 leads us to suspect that Eq. 15.3.1 
is the angular form of Hooke’s law, and that we can transform Eq. 15.1.13, which 
gives the period of linear SHM, into an equation for the period of angular SHM: 
We replace the spring constant k in Eq. 15.1.13 with its equivalent, the constant 
κ of Eq. 15.3.1, and we replace the mass m in Eq. 15.1.13 with its equivalent, the 
 rotational inertia I of the oscillating disk. These replacements lead to

   T = 2π  √ 
__

   I __ κ      (torsion pendulum). (15.3.2)

Checkpoint 15.3.1
(a) We have three choices of disk for the angular harmonic oscillator, made of the 
same material and having the same thickness, but having different radii: R0, 1.2R0, 
and 1.5R0. Rank the disks according to their periods of oscillation on the wire, great-
est period first. (b) We will next use only one of the disks but will try three different 
wires, with torsion constants κ0, 1.1κ0, and 1.3κ0. Rank the wires according to the 
periods of oscillation of the disk, greatest period first. (c) Next, we will use one of the 
disks and one of the wires, but now we will release the disk from three different angu-
lar displacements: θm = 1º, θm = 2º, and θm = 3º. Rank these initial angular displace-
ments according to the periods of oscillation of the disk, greatest period first.

  T  a   = 2π  √ 

__

   
 I  a   __ κ     and  T  b   = 2π  √ 

__

   
 I  b  

 __ κ    . 

The constant κ, which is a property of the wire, is the same 
for both figures; only the periods and the rotational iner-
tias differ.

Let us square each of these equations, divide the sec-
ond by the first, and solve the resulting equation for Ib. 
The result is

   I  b   =  I  a     
 T  b  2  

 ___ 
 T  a  2 

   =  (1.73 ×  10  −4   kg ⋅  m  2 )    
(4.76 s )  2 

 ________ 
(2.53 s )  2  

    = 6.12 × 10−4 kg · m2. (Answer)

Sample Problem 15.3.1 Angular simple harmonic oscillator, rotational inertia, period

Figure 15.3.2a shows a thin rod whose length L is 12.4 cm 
and whose mass m is 135 g, suspended at its midpoint from 
a long wire. Its period Ta of angular SHM is measured to be 
2.53 s. An irregularly shaped object, which we call object 
X, is then hung from the same wire, as in Fig. 15.3.2b, and 
its period Tb is found to be 4.76 s. What is the rotational 
inertia of object X about its suspension axis?

KEY IDEA

The rotational inertia of either the rod or object X is 
related to the measured period by Eq. 15.3.2.

Calculations: In Table 10.5.1e, the rotational inertia of 
a thin rod  about a perpendicular axis through its mid-
point is given as    1 __ 12    mL   2  . Thus, we have, for the rod in 
Fig. 15.3.2a,

    I  a   =   1 __ 12   m  L   2  =  (   1 __ 12  )   (  0.135 kg )    (0.124 m)2   

 = 1.73 × 10−4 kg · m2.

Now let us write Eq. 15.3.2 twice, once for the rod and 
once for object X:

Figure 15.3.2 Two torsion 
pendulums, consisting of (a) 
a wire and a rod and (b) the 
same wire and an irregularly 
shaped object.

Suspension
wire

Rod

L

Object X(a) (b)

Figure 15.3.1 A torsion pendulum 
is an angular version of a linear 
simple harmonic oscillator. The disk 
oscillates in a horizontal plane; the 
reference line oscillates with angular 
 amplitude θm. The twist in the sus-
pension wire stores potential energy 
as a spring does and provides the 
restoring torque.

–θm

+θm

0

Suspension wire

Fixed end

Reference line

15.3 an anGUlar Simple Harmonic oScillator

additional examples, video, and practice available at WileyPLUS
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Pendulums
We turn now to a class of simple harmonic oscillators in which the springiness is 
associated with the gravitational force rather than with the elastic properties of 
a twisted wire or a compressed or stretched spring.

The Simple Pendulum
If an apple swings on a long thread, does it have simple harmonic motion? If so, 
what is the period T ? To answer, we consider a simple pendulum, which consists 
of a particle of mass m (called the bob of the pendulum) suspended from one end 
of an  unstretchable, massless string of length L that is fixed at the other end, as in 
Fig. 15.4.1a. The bob is free to swing back and forth in the plane of the page, to 
the left and right of a vertical line through the pendulum’s pivot point.

The Restoring Torque. The forces acting on the bob are the force   T 
→

    from 
the string and the gravitational force     F 

→
    g   , as shown in Fig. 15.4.1b, where the 

string makes an angle θ with the vertical. We resolve     F 
→

    g    into a radial component  
Fg cos θ and a component Fg sin θ that is tangent to the path taken by the bob. 

15.4 PENDULUMS, CIRCULAR MOTION
Learning Objectives 
After reading this module, you should be able to . . .

15.4.1 Describe the motion of an oscillating simple 
pendulum.

15.4.2 Draw a free- body diagram of a pendulum bob 
with the pendulum at angle θ to the vertical.

15.4.3 For small- angle oscillations of a simple pen-
dulum, relate the period T (or frequency f ) to the 
pendulum’s length L.

15.4.4 Distinguish between a simple pendulum and a 
physical pendulum.

15.4.5 For small- angle oscillations of a physical  
pendulum, relate the period T (or frequency f ) to 
the distance h between the pivot and the center  
of mass.

15.4.6 For an angular oscillating system, determine 
the  angular frequency ω from either an equation 
relating torque τ and  angular displacement θ or an 

equation relating angular acceleration α and angular 
displacement θ.

15.4.7 Distinguish between a pendulum’s angular fre-
quency ω (having to do with the rate at which cycles 
are completed) and its dθ/dt (the rate at which its 
angle with the vertical changes).

15.4.8 Given data about the angular position θ and rate 
of change dθ/dt at one instant, determine the phase 
constant ϕ and amplitude θm.

15.4.9 Describe how the free- fall acceleration can be 
measured with a simple pendulum.

15.4.10 For a given physical pendulum, determine the 
location of the center of oscillation and identify the 
meaning of that phrase in terms of a simple pendulum.

15.4.11 Describe how simple harmonic motion is 
related to uniform circular motion.

Key Ideas 
● A simple pendulum consists of a rod of negligible 
mass that pivots about its upper end, with a particle 
(the bob) attached at its lower end. If the rod swings 
through only small angles, its motion is approximately 
simple harmonic motion with a period given by

 T = 2π  √ 
_____

   I ____ 
mgL

       (simple pendulum),

where I is the particle’s rotational inertia about the 
pivot, m is the particle’s mass, and L is the rod’s 
length.

● A physical pendulum has a more complicated 
distribution of mass. For small angles of swinging, 
its motion is simple harmonic motion with a period 
given by

 T = 2π  √ 

_____

   I ____ 
mgh

       (physical pendulum),

where I is the pendulum’s rotational inertia about the 
pivot, m is the pendulum’s mass, and h is the distance 
between the pivot and the pendulum’s center of mass.

● Simple harmonic motion corresponds to the projection 
of uniform circular motion onto a diameter of the circle.
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44915.4 penDUlUmS, circUlar motion

This tangential component produces a restoring torque about the pendulum’s 
pivot point because the component  always acts opposite the displacement of the 
bob so as to bring the bob back  toward its central location. That location is called 
the equilibrium position (θ = 0) because the pendulum would be at rest there 
were it not swinging.

From Eq. 10.6.3 (τ = r⊥F ), we can write this restoring torque as

  τ = −L(Fg sin θ), (15.4.1)

where the minus sign indicates that the torque acts to reduce θ and L is the 
 moment arm of the force component Fg sin θ about the pivot point. Substituting 
Eq. 15.4.1 into Eq. 10.7.3 (τ = Iα) and then substituting mg as the magnitude of 
Fg, we obtain

 −L(mg sin θ) = Iα, (15.4.2)

where I is the pendulum’s rotational inertia about the pivot point and α is its 
 angular acceleration about that point.

We can simplify Eq. 15.4.2 if we assume the angle θ is small, for then we 
can approximate sin θ with θ (expressed in radian measure). (As an example, if 
θ = 5.00° = 0.0873 rad, then sin θ = 0.0872, a difference of only about 0.1%.) With 
that approximation and some rearranging, we then have

   α = −   
mgL

 ____ 
I
    θ.   (15.4.3)

This equation is the angular equivalent of Eq. 15.1.8, the hallmark of SHM. It 
tells us that the angular acceleration α of the pendulum is proportional to the 
angular displacement θ but opposite in sign. Thus, as the pendulum bob moves 
to the right, as in Fig. 15.4.1a, its acceleration to the left increases until the bob 
stops and begins moving to the left. Then, when it is to the left of the equilibrium 
position, its acceleration to the right tends to return it to the right, and so on, as 
it swings back and forth in SHM. More precisely, the motion of a simple pendu-
lum swinging through only small angles is approximately SHM. We can state this 
restriction to small angles another way: The angular amplitude θm of the motion 
(the maximum angle of swing) must be small.

Angular Frequency. Here is a neat trick. Because Eq. 15.4.3 has the same 
form as Eq. 15.1.8 for SHM, we can immediately identify the pendulum’s angular 
frequency as being the square root of the constants in front of the displacement:

 ω =  √ 

_____

   
mgL

 ____ 
I
    . 

In the homework problems you might see oscillating systems that do not seem to 
resemble pendulums. However, if you can relate the acceleration (linear or angu-
lar) to the displacement (linear or angular), you can then immediately identify 
the angular frequency as we have just done here.

Period. Next, if we substitute this expression for ω into Eq. 15.1.5 (ω = 2π/T), 
we see that the period of the pendulum may be written as

 
  T = 2π   √ 

_____

   I ____ 
mgL

    .   (15.4.4)

All the mass of a simple pendulum is concentrated in the mass m of the particle- 
like bob, which is at radius L from the pivot point. Thus, we can use Eq. 10.4.3 
(I = mr2) to write I = mL2 for the rotational inertia of the pendulum. Substituting 
this into Eq. 15.4.4 and simplifying then yield

  
 T = 2π   √ 

__

   L __ g       (simple pendulum, small amplitude). (15.4.5)

We assume small- angle swinging in this chapter.

Figure 15.4.1 (a) A simple pendulum. 
(b) The forces acting on the bob 
are the gravitational force     F 

→
    g    and 

the force   T 
→

    from the string. The 
tangential component Fg sin θ of 
the  gravi tational force is a restoring 
force that tends to bring the pendu-
lum back to its central  position.

L

Fg sin θ

Fg cos θ
m

s = L θ

L

m

(a)

Pivot
point

T

Fg

θ

θ

(b)

This 
component
merely
pulls on 
the string.

This 
component
brings the 
bob back 
to center.
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The Physical Pendulum
A real pendulum, usually called a physical pendulum, can have a complicated 
 distribution of mass. Does it also undergo SHM? If so, what is its period?

Figure 15.4.2 shows an arbitrary physical pendulum displaced to one side by 
angle θ. The gravitational force     F 

→
    g    acts at its center of mass C, at a distance h 

from the pivot point O. Comparison of Figs. 15.4.2 and 15.4.1b reveals only 
one  important difference between an arbitrary physical pendulum and a  simple 
 pendulum. For a physical pendulum the restoring component Fg sin θ of the gravi-
tational force has a moment arm of distance h about the pivot point, rather than  
of string length L. In all other respects, an analysis of the physical pendulum 
would duplicate our analysis of the simple pendulum up through Eq. 15.4.4. 
Again (for small θm), we would find that the motion is approximately SHM.

If we replace L with h in Eq. 15.4.4, we can write the period as

   
T = 2π   √ 

_____

   I ____ 
mgh

       (physical pendulum, small amplitude). (15.4.6)

As with the simple pendulum, I is the rotational inertia of the pendulum about O.  
However, now I is not simply mL2 (it depends on the shape of the physical pen-
dulum), but it is still proportional to m.

A physical pendulum will not swing if it pivots at its center of mass. Formally, 
this corresponds to putting h = 0 in Eq. 15.4.6. That equation then predicts T → ∞,  
which implies that such a pendulum will never complete one swing.

Corresponding to any physical pendulum that oscillates about a given pivot 
point O with period T is a simple pendulum of length L0 with the same period T.  
We can find L0 with Eq. 15.4.5. The point along the physical pendulum at dis-
tance L0 from point O is called the center of oscillation of the physical pendulum 
for the given suspension point.

Measuring g
We can use a physical pendulum to measure the free- fall acceleration g at a par-
ticular location on Earth’s surface. (Countless thousands of such measurements 
have been made during geophysical prospecting.)

To analyze a simple case, take the pendulum to be a uniform rod of length 
L, suspended from one end. For such a pendulum, h in Eq. 15.4.6, the distance 
 between the pivot point and the center of mass, is    1 _ 2   L . Table 10.5.1e tells us that the 
rotational inertia of this pendulum about a perpendicular axis through its center 
of mass is    1 __ 12    mL   2  . From the parallel- axis theorem of Eq. 10.5.2 (I = Icom + Mh2), 
we then find that the rotational inertia about a perpendicular axis through one 
end of the rod is

   I =  I  com   + m h   2  =   1 __ 12  m L   2  + m (  1 _ 2  L)  
2
  =   1 _ 3  m L   2 .   (15.4.7)

If we put  h =   1 _ 2   L  and  I =   1 _ 3    mL   2   in Eq. 15.4.6 and solve for g, we find

 
  g =   8  π   2 L _____ 

3 T    2 
  .   (15.4.8)

Thus, by measuring L and the period T, we can find the value of g at the pen-
dulum’s location. (If precise measurements are to be made, a number of refine-
ments are needed, such as swinging the pendulum in an evacuated chamber.)

Checkpoint 15.4.1
Three physical pendulums, of masses m0, 2m0, and 3m0, have the same shape and size 
and are suspended at the same point. Rank the masses according to the periods of the 
pendulums, greatest first.

Figure 15.4.2 A physical pendulum. 
The restoring torque is hFg sin θ. 
When θ = 0, center of mass C hangs 
directly below pivot point O.

h

Fg sin θ
Fg cos θ

O

C

Fg

This
component
brings the 
pendulum 
back to
center.

θ

θ
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 Simple Harmonic Motion and Uniform Circular Motion
In 1610, Galileo, using his newly constructed telescope, discovered the four prin-
cipal moons of Jupiter. Over weeks of observation, each moon seemed to him 
to be moving back and forth relative to the planet in what today we would call 
 simple harmonic motion; the disk of the planet was the midpoint of the motion. 
The record of Galileo’s observations, written in his own hand, is actually still 
available. A. P. French of MIT used Galileo’s data to work out the position of 
the moon Callisto relative to Jupiter (actually, the angular distance from Jupi-
ter as seen from Earth) and found that the data approximates the curve shown 
in Fig. 15.4.4. The curve strongly suggests Eq. 15.1.3, the displacement function 
for simple harmonic motion. A period of about 16.8 days can be measured from 
the plot, but it is a period of what exactly? After all, a moon cannot possibly be 
oscillating back and forth like a block on the end of a spring, and so why would  
Eq. 15.1.3 have anything to do with it?

Actually, Callisto moves with essentially constant speed in an essentially 
 circular orbit around Jupiter. Its true motion— far from being simple harmonic— 
 is  uniform circular motion along that orbit. What Galileo saw— and what you 

the physical pendulum (the stick) of Fig. 15.4.3a. Setting 
Eqs. 15.4.5 and 15.4.10 equal yields

  T = 2π  √ 

___

   
 L  0   ___ g     = 2π  √ 

___

   2L ___ 
3g

    .   (15.4.11)

You can see by inspection that

    L  0   =   2 _ 3   L   (15.4.12)

  =  (  2 _ 3  )   (  100 cm )    = 66.7 cm.  (Answer)

In Fig. 15.4.3a, point P marks this distance from suspen-
sion point O. Thus, point P is the stick’s center of oscil-
lation for the given suspension point. Point P would be 
different for a different suspension choice.

Sample Problem 15.4.1 Physical pendulum, period and length

In Fig. 15.4.3a, a meter stick swings about a pivot point 
at one end, at distance h from the stick’s center of mass.

(a) What is the period of oscillation T?

KEY IDEA

The stick is not a simple pendulum because its mass is 
not concentrated in a bob at the end opposite the pivot 
point— so the stick is a physical pendulum.

Calculations: The period for a physical pendulum is given 
by Eq. 15.4.6, for which we need the rotational inertia I of 
the stick about the pivot point. We can treat the stick as a 
uniform rod of length L and mass m. Then Eq. 15.4.7 tells 
us that  I =   1 _ 3    mL   2  , and the distance h in Eq. 15.4.6 is    1 _ 2   L .  
Substituting these quantities into Eq. 15.4.6, we find

   T = 2π  √ 
_____

   I ____ 
mgh

     = 2π √ 

_________

   
  1 _ 3   m L   2 

 _________ 
mg (   1 _ 2   L) 

       (15.4.9)

   = 2π  √ 
___

   2L ___ 
3g

       (15.4.10)

  = 2π  √ 

______________

    
 (  2 )    (  1.00 m )   

  _____________  
(3) (9.8   m / s  2 ) 

     = 1.64 s.  (Answer)

Note the result is independent of the pendulum’s mass m.

(b) What is the distance L0 between the pivot point O of 
the stick and the center of oscillation of the stick?

Calculations: We want the length L0 of the simple pen-
dulum (drawn in Fig. 15.4.3b) that has the same period as 

Figure 15.4.3 (a) A meter stick suspended from one end as 
a physical pendulum. (b) A simple pendulum whose length L0 
is chosen so that the periods of the two pendulums are equal. 
Point P on the pendulum of (a) marks the center of oscillation.

P

C

h

L0

(a) (b)

O

15.4 penDUlUmS, circUlar motion

additional examples, video, and practice available at WileyPLUS
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can see with a good  pair of binoculars and a little patience— is the projection 
of this uniform circular motion on a line in the plane of the motion. We are led 
by  Galileo’s  remarkable observations to the conclusion that simple harmonic 
motion is  uniform circular motion viewed edge- on. In more formal language:

O

y

x

P'

Pv(t)

v

This relates the
velocities of
P and P'.

O

y

x

P'

Pa(t)

a

This relates the
accelerations of
P and P'.

O

y

x

x m

P'

Px(t)

P' is a particle
moving in a circle.

P is a projection
moving in SHM.

(b) (c)(a)

ωt + ϕ ωt + ϕ ωt + ϕ

ωt + ϕ
ωxm

ω2xm

Figure 15.4.5 (a) A reference particle P′ moving with uniform circular motion in a reference 
circle of radius xm. Its projection P on the x axis executes simple harmonic motion. (b) The 
projection of the velocity    v →    of the reference particle is the velocity of SHM. (c) The projec-
tion of the radial acceleration    a →    of the reference particle is the acceleration of SHM.

Figure 15.4.5a gives an example. It shows a reference particle P′ moving in 
uniform circular motion with (constant) angular speed ω in a reference circle. The 
radius xm of the circle is the magnitude of the particle’s position vector. At any 
time t, the angular position of the particle is ωt + ϕ, where ϕ is its angular position 
at t = 0.

Position. The projection of particle P′ onto the x axis is a point P, which we 
take to be a second particle. The projection of the position vector of particle P′ 
onto the x axis gives the location x(t) of P. (Can you see the x component in the 
triangle in Fig. 15.4.5a?) Thus, we find

 x(t) = xm cos(ωt + ϕ), (15.4.13)

which is precisely Eq. 15.1.3. Our conclusion is correct. If reference particle 
P′ moves in uniform circular motion, its projection particle P moves in simple 
 harmonic motion along a diameter of the circle.

Figure 15.4.4 The angle between Jupiter and its moon Callisto as seen from Earth. 
Galileo’s 1610 measurements approximate this curve, which suggests simple harmonic 
motion. At Jupiter’s mean distance from Earth, 10 minutes of arc  corresponds to about 
2 × 106 km. (Based on A. P. French, Newtonian Mechanics, W. W. Norton & Company, 
New York, 1971, p. 288.)
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 Simple harmonic motion is the projection of uniform circular motion on a diam-
eter of the circle in which the circular motion occurs.
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Damped Simple Harmonic Motion
A pendulum will swing only briefly underwater, because the water exerts on the 
pendulum a drag force that quickly eliminates the motion. A pendulum swinging 
in air does better, but still the motion dies out eventually, because the air exerts 
a drag force on the pendulum (and friction acts at its support point), transferring 
energy from the pendulum’s motion.

When the motion of an oscillator is reduced by an external force, the oscil-
lator and its motion are said to be damped. An idealized example of a damped 
oscillator is shown in Fig. 15.5.1, where a block with mass m oscillates vertically 
on a spring with spring constant k. From the block, a rod extends to a vane (both 

Velocity. Figure 15.4.5b shows the velocity    v →    of the reference particle. From 
Eq. 10.3.2 (v = ωr), the magnitude of the velocity vector is ωxm; its projection on 
the x axis is

 v(t) = −ωxm sin(ωt + ϕ), (15.4.14)

which is exactly Eq. 15.1.6. The minus sign appears because the velocity compo-
nent of P in Fig. 15.4.5b is directed to the left, in the negative direction of x. (The 
minus sign is consistent with the derivative of Eq. 15.4.13 with respect to time.)

Acceleration. Figure 15.4.5c shows the radial acceleration    a →    of the reference 
particle. From Eq. 10.3.7 (ar = ω2r), the magnitude of the radial acceleration vec-
tor is ω2xm; its projection on the x axis is

 a(t) = −ω2xm cos(ωt + ϕ), (15.4.15)

which is exactly Eq. 15.1.7. Thus, whether we look at the displacement, the veloc-
ity, or the acceleration, the projection of uniform circular motion is indeed simple 
harmonic motion.

15.5 DAMPED SIMPLE HARMONIC MOTION
Learning Objectives 
After reading this module, you should be able to . . .

15.5.1 Describe the motion of a damped simple har-
monic oscillator and sketch a graph of the oscillator’s 
position as a function of time.

15.5.2 For any particular time, calculate the position of 
a damped simple harmonic oscillator.

15.5.3 Determine the amplitude of a damped simple 
harmonic oscillator at any given time.

15.5.4 Calculate the angular frequency of a damped 
simple harmonic oscillator in terms of the spring 
constant, the damping constant, and the mass, and 
approximate the angular frequency when the  
damping constant is small.

15.5.5 Apply the equation giving the (approximate) total 
energy of a damped simple harmonic oscillator as 
a function of time.

Key Ideas 
● The mechanical energy E in a real oscillating system 
decreases during the oscillations  because external 
forces, such as a drag force, inhibit the oscillations and 
transfer mechanical energy to thermal energy. The real 
oscillator and its motion are then said to be damped.

● If the damping force is given by     F 
→

    d   = − b  v →   , where    v →    
is the  velocity of the oscillator and b is a damping 
constant, then the displacement of the oscillator is 
given by

x(t) = xm e−bt/2m cos(ω′t + ϕ),

where ω′, the angular frequency of the damped oscilla-
tor, is given by

 ω′ =  √ 

_________

   k __ m   −    b   2  ____ 
4  m   2 

  .   

● If the damping constant is small   (b ⪡  √ 
_

 km  )  , then 
ω′ ≈ ω, where ω is the angular frequency of the 
undamped  oscillator. For small b, the mechanical 
energy E of the oscillator is given by

 E  (  t )    ≈   1 _ 2   k x m  2    e   −bt/m . 

15.5 DampeD Simple Harmonic motion
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 assumed massless) that is submerged in a liquid. As the vane moves up and down, 
the liquid exerts an inhibiting drag force on it and thus on the entire oscillating 
system. With time, the mechanical energy of the block–spring system decreases, 
as energy is transferred to thermal energy of the liquid and vane.

Let us assume the liquid exerts a damping force     F 
→

    d    that is proportional to the 
velocity    v →    of the vane and block (an assumption that is accurate if the vane moves 
slowly). Then, for force and velocity components along the x axis in Fig. 15.5.1, 
we have

 Fd = −bv, (15.5.1)

where b is a damping constant that depends on the characteristics of both the 
vane and the liquid and has the SI unit of kilogram per second. The minus sign 
indicates that     F 

→
    d    opposes the motion.

Damped Oscillations. The force on the block from the spring is Fs = −kx. 
Let us assume that the gravitational force on the block is negligible relative to Fd 
and Fs. Then we can write Newton’s second law for components along the x axis 
(Fnet,x = max) as

 −bv − kx = ma. (15.5.2)

Substituting dx/dt for v and d2x/dt2 for a and rearranging give us the differential 
equation

   m    d   2 x ____ 
d t   2 

   + b   dx ___ 
dt

   + kx = 0.   (15.5.3)

The solution of this equation is

 x(t) = xm e−bt/2m cos(ω′t + ϕ), (15.5.4)

where xm is the amplitude and ω′ is the angular frequency of the damped oscilla-
tor. This angular frequency is given by

 
  ω′ =  √ 

_________

   k __ m   −    b   2  ____ 
4  m   2 

    .   (15.5.5)

If b = 0 (there is no damping), then Eq. 15.5.5 reduces to Eq. 15.1.12   (ω =  √ 
_

 k / m  )    
for the angular frequency of an undamped oscillator, and Eq. 15.5.4 reduces to 
Eq. 15.1.3 for the displacement of an undamped oscillator. If the damping con-
stant is small but not zero (so that b ⪡   √ 

_
 km   ), then ω′ ≈ ω.

Damped Energy. We can regard Eq. 15.5.4 as a cosine function whose ampli-
tude, which is xm e−bt/2m, gradually decreases with time, as Fig. 15.5.2 suggests. 
For an undamped oscillator, the mechanical energy is constant and is given by 
Eq. 15.2.4   (E =   1 _ 2    kx m  2  )  . If the oscillator is damped, the mechanical energy is not 

Figure 15.5.1 An idealized damped 
simple harmonic oscillator. A vane 
immersed in a liquid exerts a damp-
ing force on the block as the block 
oscillates parallel to the x axis.

Springiness, k

Rigid support

Mass m

Damping, b

Vane

x

Figure 15.5.2 The displacement function x(t) for the damped oscillator of Fig. 15.5.1. The 
amplitude, which is xm e−bt/2m, decreases  exponentially with time.
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+xm

–xm
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constant but  decreases with time. If the damping is small, we can find E(t) by 
replacing xm in Eq. 15.2.4 with xm e−bt/2m, the amplitude of the damped oscilla-
tions. By doing so, we find that

   E  (  t )    ≈   1 _ 2  k  x m  2    e   −bt/m ,   (15.5.6)

which tells us that, like the amplitude, the mechanical energy decreases exponen-
tially with time.

Checkpoint 15.5.1
Here are three sets of values for the spring constant, damping constant, and 
mass for the damped oscillator of Fig. 15.5.1. Rank the sets according to the time 
required for the mechanical energy to decrease to one- fourth of its initial value, 
greatest first.

Set 1 2k0 b0 m0

Set 2 k0 6b0 4m0

Set 3 3k0 3b0 m0

Sample Problem 15.5.1 Damped harmonic oscillator, time to decay, energy

For the damped oscillator of Fig. 15.5.1, m = 250 g, 
k = 85 N/m, and b = 70 g/s.

(a) What is the period of the motion?

KEY IDEA

Because b ⪡   √ 
_
 km    = 4.6 kg/s, the period is approximately 

that of the undamped  oscillator.

Calculation: From Eq. 15.1.13, we then have

   T = 2π  √ 
___

   m __ 
k

     = 2π  √ 

_______

   
0.25 kg

 _______ 
85 N / m

     = 0.34 s.  (Answer)

(b) How long does it take for the amplitude of the damped 
oscillations to drop to half its initial value?

KEY IDEA

The oscillation amplitude at time t is displayed in Eq. 15.5.4  
as xm e−bt/2m. 

Calculations: The amplitude has the value xm at t = 0. 
Thus, we must find the value of t for which

  x  m    e   −bt/2m  =   1 _ 2    x  m  . 

Canceling xm and taking the natural logarithm of the 
equation that remains, we have ln    1 _ 2    on the right side and

ln(e−bt/2m) = −bt/2m

on the left side. Thus,

  t =   
− 2m ln   1 _ 2   _________ 

b
   =   

−   (  2 )     (  0.25 kg )     (  ln    1 _ 2   )   
  __________________  

0.070 kg/s
    

 = 5.0 s. (Answer)

Because T = 0.34 s, this is about 15 periods of oscillation.

(c) How long does it take for the mechanical energy to 
drop to one- half its initial value?

KEY IDEA

From Eq. 15.5.6, the  mechanical energy of the oscillations at 
time t is    1 _ 2  k x m  2    e   −bt/m  .

Calculations: The mechanical energy has the value    1 _ 2  k x m   2    
at t = 0. Thus, we must find the value of t for which

   1 _ 2   k x m  2    e   −bt/m  =   1 _ 2    (    1 _ 2   k x m  2   )   . 

If we divide both sides of this equation by    1 _ 2   k x m  2    and solve 
for t as we did above, we find

 
 t =   

− m ln    1 _ 2   ________ 
b

   =   
−   (  0.25 kg )     (  ln    1 _ 2   )   

  ________________  
0.070 kg / s   = 2.5 s.  (Answer)

This is exactly half the time we calculated in (b), or about 
7.5 periods of oscillation. Figure 15.5.2 was drawn to illus-
trate this sample problem.

15.5 DampeD Simple Harmonic motion

additional examples, video, and practice available at WileyPLUS
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Forced Oscillations and Resonance
A person swinging in a swing without anyone pushing it is an example of free 
 oscillation. However, if someone pushes the swing periodically, the swing has 
forced, or driven, oscillations. Two angular frequencies are associated with a sys-
tem undergoing driven oscillations: (1) the natural angular frequency ω of the sys-
tem, which is the angular frequency at which it would oscillate if it were  suddenly 
disturbed and then left to oscillate freely, and (2) the angular frequency ωd of the 
external driving force causing the driven oscillations. FCP

We can use Fig. 15.5.1 to represent an idealized forced simple harmonic oscil-
lator if we allow the structure marked “rigid support” to move up and down at 
a variable angular frequency ωd. Such a forced oscillator oscillates at the angular 
frequency ωd of the driving force, and its displacement x(t) is given by

 x(t) = xm cos(ωdt + ϕ), (15.6.1)

where xm is the amplitude of the oscillations.
How large the displacement amplitude xm is depends on a complicated 

 function of ωd and ω. The velocity amplitude vm of the oscillations is easier to 
 describe: It is greatest when

 ωd = ω (resonance), (15.6.2)

a condition called resonance. Equation 15.6.2 is also approximately the condition 
at which the displacement amplitude xm of the oscillations is greatest. Thus, if 
you push a swing at its natural angular frequency, the displacement and velocity 
 amplitudes will increase to large values, a fact that children learn quickly by trial 
and error. If you push at other angular frequencies, either higher or lower, the 
displacement and velocity amplitudes will be smaller.

Figure 15.6.1 shows how the displacement amplitude of an oscillator 
depends on the angular frequency ωd of the driving force, for three values of 
the damping coefficient b. Note that for all three the amplitude is approxi-
mately greatest when ωd/ω = 1 (the resonance condition of Eq. 15.6.2). The 

Figure 15.6.1 The displacement 
amplitude xm of a forced oscillator 
varies as the angular  frequency ωd 
of the driving force is varied. The 
curves here correspond to three val-
ues of the damping constant b.
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15.6 FORCED OSCILLATIONS AND RESONANCE
Learning Objectives 
After reading this module, you should be able to . . .

15.6.1 Distinguish between natural angular frequency ω 
and driving angular frequency ωd.

15.6.2 For a forced oscillator, sketch a graph of the 
oscillation amplitude versus the ratio ωd/ω of driv-
ing angular frequency to natural angular frequency, 
identify the approximate location of resonance, 

and indicate the effect of increasing the damping 
constant.

15.6.3 For a given natural angular frequency ω, identify 
the approximate driving angular frequency ωd that 
gives resonance.

Key Ideas 
● If an external driving force with angular frequency 
ωd acts on an oscillating system with natural angular 
frequency ω, the system oscillates with angular  
frequency ωd. 

● The velocity amplitude vm of the system is  
greatest when

ωd = ω,

a condition called resonance. The amplitude xm of the 
system is (approximately) greatest under the same 
condition.
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Figure 15.6.2 In 1985, buildings of 
intermediate height collapsed in 
Mexico City as a result of an earth-
quake far from the city. Taller and 
shorter buildings remained standing.

John T. Barr/Getty Images, Inc.

curves of Fig. 15.6.1 show that less damping gives a taller and narrower 
 resonance peak.

Examples. All mechanical structures have one or more natural angular fre-
quencies, and if a structure is subjected to a strong external driving force that 
matches one of these angular frequencies, the resulting oscillations of the struc-
ture may rupture it. Thus, for example, aircraft designers must make sure that 
none of the natural angular frequencies at which a wing can oscillate matches the 
angular frequency of the engines in flight. A wing that flaps violently at certain 
engine speeds would obviously be dangerous.

Resonance appears to be one reason buildings in Mexico City collapsed in 
September 1985 when a major earthquake (8.1 on the Richter scale) occurred 
on the western coast of Mexico. The seismic waves from the earthquake should 
have been too weak to cause extensive damage when they reached Mexico 
City about 400 km away. However, Mexico City is largely built on an ancient 
lake bed, where the soil is still soft with water. Although the amplitude of the 
seismic waves was small in the firmer ground en route to Mexico City, their 
amplitude substantially increased in the loose soil of the city. Acceleration 
amplitudes of the waves were as much as 0.20g, and the angular frequency was 
(surprisingly) con centrated around 3 rad/s. Not only was the ground severely 
oscillated, but many intermediate- height buildings had resonant angular fre-
quencies of about 3 rad/s. Most of those buildings collapsed during the shaking 
(Fig. 15.6.2), while shorter buildings (with higher resonant angular frequen-
cies) and taller buildings (with lower resonant angular frequencies) remained 
standing.

During a 1989 earthquake in the San Francisco– Oakland area, a simi-
lar resonant oscillation collapsed part of a freeway, dropping an upper deck 
onto a lower deck. That section of the freeway had been constructed on a 
loosely structured mudfill. FCP

Checkpoint 15.6.1
Figure 15.8 in the Questions shows an oscillation transfer device that consists of two 
spring– block systems hanging from a flexible rod. When the spring of system 1 is 
stretched and then released, it oscillates at a frequency of 120 Hz, which drives oscil-
lations of the rod and also system 2. The natural frequency of system 2 is 140 Hz.  
(a) In order for system 2 to be driven in resonance with system 1, should we increase 
or decrease spring constant k2 of system 2? (b) Instead of changing the spring con-
stant to get resonance, should we increase or decrease m2?

Frequency  The frequency f of periodic, or oscillatory,  motion  
is the number of oscillations per second. In the SI system, it is 
measured in hertz:

 1 hertz = 1 Hz = 1 oscillation per second = 1 s−1.  (15.1.1)

Period  The period T is the time required for one complete 
oscillation, or cycle. It is related to the frequency by

 
  T =   1 __ 

f
  .   (15.1.2)

Simple Harmonic Motion  In simple harmonic motion 
(SHM), the displacement x(t) of a particle from its equilibrium 
position is  described by the equation

 x = xm cos(ωt + ϕ) (displacement), (15.1.3)

Review & Summary

in which xm is the amplitude of the displacement, ωt + ϕ is the 
phase of the motion, and ϕ is the phase  constant. The angu-
lar frequency ω is related to the period and frequency of the 
motion by

  
ω =   2π ___ 

T
   = 2πf  (angular frequency). (15.1.5)

Differentiating Eq. 15.1.3 leads to equations for the particle’s 
SHM velocity and acceleration as functions of time:

 v = −ωxm sin(ωt + ϕ) (velocity) (15.1.6)

and a = −ω2xm cos(ωt + ϕ) (acceleration). (15.1.7)

In Eq. 15.1.6, the positive quantity ωxm is the velocity amplitude 
vm of the motion. In Eq. 15.1.7, the positive quantity ω2xm is the 
acceleration amplitude am of the motion.
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 circular motion (position, velocity, and acceleration) project to 
the corresponding values for simple harmonic motion.

Damped Harmonic Motion  The mechanical energy E 
in a  real oscillating system decreases during the oscillations 
 because external forces, such as a drag force, inhibit the oscil-
lations and transfer mechanical energy to thermal energy. The 
real oscillator and its motion are then said to be damped. If the 
damping force is given by     F 

→
    d   = − b  v →   , where    v →    is the  velocity of 

the oscillator and b is a damping constant, then the displacement 
of the oscillator is given by

 x(t) = xm e−bt/2m cos(ω′t + ϕ), (15.5.4)

where ω′, the angular frequency of the damped oscillator, is 
given by

 
  ω′=  √ 

_________

   k __ m   −    b   2  ____ 
4  m   2 

    .   (15.5.5)

If the damping constant is small (b ⪡   √ 
_

 km   ), then ω′ ≈ ω, where 
ω is the angular frequency of the undamped  oscillator. For small 
b, the mechanical energy E of the oscillator is given by

   E  (  t )    ≈   1 _ 2  k  x m  2    e   −bt/m .   (15.5.6)

Forced Oscillations and Resonance  If an external 
driving force with angular frequency ωd acts on an oscillating 
system with natural angular frequency ω, the system oscillates 
with angular frequency ωd. The velocity amplitude vm of the sys-
tem is greatest when
 ωd = ω, (15.6.2)

a condition called resonance. The amplitude xm of the system is 
(approximately) greatest under the same condition.

The Linear Oscillator  A particle with mass m that moves 
under the influence of a Hooke’s law restoring force given by 
F = −kx exhibits simple harmonic motion with

  
ω =  √ 

___

   k __ m      (angular frequency) (15.1.12)

and  T = 2π  √ 
___

   m __ 
k

      (period). (15.1.13)

Such a system is called a linear simple harmonic oscillator.

Energy  A particle in simple harmonic motion has, at any 
time, kinetic energy  K =   1 _ 2    mv   2   and potential energy  U =   1 _ 2    kx   2  . If 
no friction is present, the mechanical energy E = K + U remains 
constant even though K and U change.

Pendulums  Examples of devices that undergo simple 
 harmonic motion are the torsion pendulum of Fig. 15.3.1, the 
simple pendulum of Fig. 15.4.1, and the physical pendulum of 
Fig. 15.4.2. Their periods of oscillation for small oscillations are, 
respectively,

  T = 2π √ 
___

 I / κ    (torsion pendulum), (15.3.2)

  T = 2π  √ 
____

 L / g    (simple pendulum), (15.4.5)

  T = 2π √ 
______

 I/mgh    (physical pendulum). (15.4.6)

Simple Harmonic Motion and Uniform Circular Motion    
Simple harmonic motion is the projection of uniform circu-
lar  motion onto the diameter of the circle in which the circu-
lar motion occurs. Figure 15.4.5 shows that all parameters of 

1  Which of the following describe ϕ for the SHM of Fig. 15.1a:

 (a) −π < ϕ < −π/2,

 (b) π < ϕ < 3π/2,

 (c) −3π/2 < ϕ < −π?

2  The velocity v(t) of a particle undergoing SHM is graphed 
in Fig. 15.1b. Is the particle momentarily stationary, headed 
toward −xm, or headed toward +xm at (a) point A on the graph 
and (b) point B? Is the particle at −xm, at +xm, at 0,  between −xm 
and 0, or between 0 and +xm when its velocity is represented by 
(c) point A and (d) point B? Is the speed of the particle increas-
ing or decreasing at (e) point A and (f) point B?

−xm, at +xm, at 0, between −xm 
and 0, or between 0 and +xm?

4  Which of the following rela-
tionships between the accelera-
tion a and the displacement x  
of a particle involve SHM: (a)   
a  = 0.5x, (b) a = 400x2, (c) a =  
−20x, (d) a = −3x2?

5  You are to complete Fig.  
15.3a so that it is a plot of veloc-
ity v versus time t for the spring– 
block oscillator that is shown 
in Fig. 15.3b for t = 0. (a) In 
Fig. 15.3a, at which lettered 
point or in what region between 
the points should the (vertical) 
v axis intersect the t axis? (For 
example, should it intersect at 
point A, or maybe in the region 
between points A and B?) (b) If 
the block’s velocity is given by 
v = −vm sin(ωt + ϕ), what is the 
value of ϕ? Make it positive, and 
if you cannot specify the value (such as + π/2 rad), then give a 
range of  values (such as between 0 and π/2 rad).

6  You are to complete Fig. 15.4a so that it is a plot of accel-
eration a versus time t for the spring–block oscillator that is 

Questions

Figure 15.2 Question 3.

2
1 3

4

5

6

7

8 t

a

Figure 15.3 Question 5.

t
EDCBA

(a) (b)

x

t = 0

xm–xm 0

t
EDCBA

(a) (b)

x

t = 0

xm–xm 0

x

t

v

t

A

B

(a) (b)

Figure 15.1 Questions 1 and 2.

3  The acceleration a(t) of a particle undergoing SHM is 
graphed in Fig. 15.2. (a) Which of the labeled points corresponds 
to the particle at −xm? (b) At point 4, is the velocity of the par-
ticle positive, negative, or zero? (c) At point 5, is the particle at  
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point O. Rank the pendulums according to their period of oscil-
lation, greatest first.

10  You are to build the oscillation transfer device shown in 
Fig. 15.8. It consists of two spring–block systems hanging from a 
flexible rod. When the spring of system 1 is stretched and then 
released, the resulting SHM of system 1 at frequency f1 oscillates 
the rod. The rod then exerts a driving force on  system 2, at the 
same frequency f1. You can choose from four springs with spring 
constants k of 1600, 1500, 1400, and 1200 N/m, and four blocks 
with masses m of 800, 500, 400, and 200 kg. Mentally determine 
which spring should go with which block in each of the two sys-
tems to maximize the amplitude of oscillations in system 2.

11  In Fig. 15.9, a spring–block 
system is put into SHM in two 
experiments. In the first, the 
block is pulled from the equilib-
rium position through a displace-
ment d1 and then released. In 
the second, it is pulled from the 
equilibrium position through a greater displacement d2 and then 
released. Are the (a) amplitude, (b) period, (c) frequency, (d) 
maximum kinetic energy, and (e) maximum potential energy in 
the second  experiment greater than, less than, or the same as 
those in the first experiment?

12  Figure 15.10 gives, for three situations, the displacements 
x(t) of a pair of simple harmonic oscillators (A and B) that 
are  identical except for phase. For each pair, what phase shift 
(in radians and in degrees) is needed to shift the curve for A to 
coincide with the curve for B? Of the many possible answers, 
choose the shift with the smallest absolute magnitude.

shown in Fig. 15.4b for t = 0. (a) 
In Fig.  15.4a, at which  lettered 
point or in what region between 
the points should the (vertical) 
a axis intersect the t axis? (For 
example, should it  intersect at 
point A, or maybe in the region 
between points A and B?) (b) If 
the block’s acceleration is given 
by a = −am cos(ωt + ϕ), what is 
the value of ϕ? Make it positive, 
and if you cannot specify the 
value (such as + π/2 rad), then 
give a range of values (such as between 0 and π/2).

7  Figure 15.5 
shows the x(t) 
curves for three 
e x p e r i m e n t s 
involving a par-
ticular spring–box 
system oscillating 
in SHM. Rank the 
curves according 
to (a) the system’s 
angular frequency, 
(b) the spring’s 
potential energy at time t = 0, (c) 
the box’s kinetic energy at t = 0, 
(d) the box’s speed at t = 0, and 
(e) the box’s maximum kinetic 
energy, greatest first.

8  Figure 15.6 shows plots of the 
kinetic energy K versus  position 
x for three harmonic oscillators 
that have the same mass. Rank 
the plots according to (a) the cor-
responding spring constant and 
(b) the corresponding period of 
the oscillator, greatest first.

9  Figure 15.7 shows three physi-
cal pendulums consisting of iden-
tical uniform spheres of the same 
mass that are rigidly connected 
by identical rods of negligible 
mass. Each pendulum is vertical 
and can pivot about suspension 

Figure 15.5 Question 7.
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Figure 15.7 Question 9.

Figure 15.9 Question 11.
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The distance between those points is 36 cm. Calculate the (a) 
period, (b) frequency, and (c) amplitude of the motion.

Module 15.1  Simple Harmonic Motion
1 E  An object undergoing simple harmonic motion takes 0.25 s 
to travel from one point of zero velocity to the next such point. 

Problems

          Tutoring problem available (at instructor’s discretion) in WileyPLUS

 Worked-out solution available in Student Solutions Manual

E  Easy M  Medium H  Hard

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

CALC  Requires calculus

BIO  Biomedical application

GO

FCP

SSM
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2 E  A 0.12 kg body undergoes simple harmonic motion of 
amplitude 8.5 cm and period 0.20 s. (a) What is the magnitude 
of the maximum force acting on it? (b) If the oscillations are 
produced by a spring, what is the spring constant?

3 E  What is the maximum acceleration of a platform that 
 oscillates at amplitude 2.20 cm and frequency 6.60 Hz?

4 E  An automobile can be considered to be mounted on four 
 identical springs as far as vertical oscillations are concerned. The 
springs of a certain car are adjusted so that the oscil lations have 
a frequency of 3.00 Hz. (a) What is the spring  constant of each 
spring if the mass of the car is 1450 kg and the mass is evenly 
distributed over the springs? (b) What will be the oscillation fre-
quency if five passengers, averaging 73.0 kg each, ride in the car 
with an even distribution of mass?

5 E  SSM  In an electric shaver, the blade moves back and 
forth over a distance of 2.0 mm in simple harmonic motion, 
with frequency 120 Hz. Find (a) the amplitude, (b) the maxi-
mum blade speed, and (c) the magnitude of the maximum blade 
 acceleration. 

6 E  A particle with a mass of 1.00 × 10−20 kg is oscillating with 
simple harmonic motion with a period of 1.00 × 10−5 s and a 
maximum speed of 1.00 × 103 m/s. Calculate (a) the  angular fre-
quency and (b) the maximum displacement of the particle.

7 E  SSM  A loudspeaker produces a musical sound by means of 
the oscillation of a diaphragm whose amplitude is limited to 1.00 
μm. (a) At what frequency is the magnitude a of the  diaphragm’s 
acceleration equal to g? (b) For greater  frequencies, is a greater 
than or less than g? 

8 E  CALC  What is the phase 
constant for the harmonic oscil-
lator with the position function 
x(t) given in Fig. 15.11 if the posi-
tion function has the form x = 
xm cos(ωt + ϕ)? The vertical axis 
scale is set by xs = 6.0 cm.

9 E  CALC  The position function 
x = (6.0 m) cos[(3π rad/s)t + π/3 
rad] gives the simple harmonic 
motion of a body. At t = 2.0 s, what are  the (a) displacement, 
(b) velocity, (c) acceleration, and (d) phase of the motion? Also, 
what are the (e) frequency and (f) period of the motion?

10 E  An oscillating block–spring system takes 0.75 s to begin 
repeating its motion. Find (a) the period, (b) the frequency in 
hertz, and (c) the angular frequency in radians per second.

11 E  CALC  In Fig. 15.12, two 
identical springs of spring con-
stant 7580 N/m are attached to 
a block of mass 0.245 kg. What 
is the frequency of oscillation on 
the frictionless floor?

12 E  What is the phase con-
stant for the harmonic oscillator 
with the velocity function v(t) 
given in Fig. 15.13 if the posi-
tion function x(t) has the form 
x = xm cos(ωt + ϕ)? The vertical 
axis scale is set by vs = 4.0 cm/s.

13 E  SSM  An oscillator consists of a block of mass 0.500 kg 
connected to a spring. When set into oscillation with amplitude 
35.0 cm, the oscillator repeats its motion every 0.500 s. Find the 
(a) period, (b) frequency, (c) angular frequency, (d) spring con-
stant, (e) maximum speed, and (f) magnitude of the maximum 
force on the block from the spring. 

14 M  A simple harmonic oscillator consists of a block of mass 
2.00 kg attached to a spring of spring constant 100 N/m. When 
t = 1.00 s, the position and velocity of the block are x = 0.129 m 
and v = 3.415 m/s. (a) What is the  amplitude of the  oscilla-  
tions? What were the (b) position and (c) velocity of the block 
at t = 0 s?

15 M  CALC  SSM  Two particles oscillate in simple harmonic 
motion along a common straight- line segment of length A. Each 
particle has a period of 1.5 s, but they differ in phase by π/6 rad. 
(a) How far apart are they (in terms of A) 0.50 s after the lagging 
particle leaves one end of the path? (b) Are they then moving in 
the same direction, toward each other, or away from each other? 

16 M  Two particles execute simple harmonic motion of the 
same amplitude and frequency along close parallel lines. 
They pass each other moving in opposite directions each time 
their displacement is half their amplitude. What is their phase 
 difference?

17 M  An oscillator consists of a block attached to a spring 
(k = 400 N/m). At some time t, the position (measured from the 
system’s equilibrium location), velocity, and acceleration of the 
block are x = 0.100 m, v = −13.6 m/s, and a = −123 m/s2. Calcul ate 
(a) the frequency of oscillation, (b) the mass of the block, and (c) 
the amplitude of the motion. 

18 M  GO  At a certain harbor, the tides cause the ocean surface 
to rise and fall a distance d (from highest level to lowest level) 
in simple harmonic motion, with a period of 12.5 h. How long 
does it take for the water to fall a distance 0.250d from its high-
est level?

19 M  A block rides on a piston (a squat cylindrical piece) that is 
moving vertically with simple harmonic motion. (a) If the SHM 
has period 1.0 s, at what ampli-
tude of motion will the block 
and piston separate? (b) If 
the piston has an amplitude of 
5.0 cm, what is the  maximum 
 frequency for which the block 
and piston will be in contact 
continuously?

20 M  GO  Figure 15.14a is a 
partial graph of the position 
function x(t) for a simple har-
monic oscillator with an angu-
lar  frequency of 1.20 rad/s; 
Fig. 15.14b is a partial graph 
of the corresponding velocity 
function v(t). The vertical axis 
scales are set by xs = 5.0 cm 
and vs = 5.0 cm/s. What is the 
phase constant of the SHM 
if the position function x(t) 
is in the general form x = xm 
cos(ωt + ϕ)?

xs

t

x (cm)

–xs

Figure 15.11 Problem 8.

m

Figure 15.12 Problems 11 
and 21.
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Figure 15.13 Problem 12. Figure 15.14 Problem 20.
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21 M  In Fig. 15.12, two springs are attached to a block that can 
oscillate over a frictionless floor. If the left spring is  removed, the 
block oscillates at a frequency of 30 Hz. If,  instead, the spring on 
the right is removed, the block oscillates at a frequency of 45 Hz. 
At what frequency does the block  oscillate with both springs 
attached?

22 M  GO  Figure 15.15 
shows block 1 of mass 
0.200 kg sliding to the 
right over a frictionless 
elevated surface at a speed 
of 8.00  m/s. The block 
undergoes an elastic colli-
sion with stationary block 
2, which is attached to a spring of spring constant 1208.5 N/m. 
(Assume that the spring does not affect the collision.) After the 
collision, block 2 oscillates in SHM with a  period of 0.140 s, and 
block 1 slides off the opposite end of the elevated surface, land-
ing a distance d from the base of that surface after falling height 
h = 4.90 m. What is the value of d?

23 M  SSM  A block is on a horizontal surface (a shake table) 
that is moving back and forth horizontally with simple harmonic 
 motion of frequency 2.0 Hz. The coefficient of static friction 
between block and surface is 0.50. How great can the amplitude 
of the SHM be if the block is not to slip along the  surface? 

24 H  In Fig. 15.16, two springs 
are joined and connected to a 
block of mass 0.245 kg that is 
set oscillating over a friction-
less floor. The springs each have 
spring constant k = 6430  N/m. 
What is the frequency of the 
oscillations?

25 H  GO  In Fig. 15.17, a block 
weighing 14.0 N, which can slide 
without friction on an incline at 
angle θ = 40.0°, is connected to 
the top of the incline by a massless 
spring of unstretched length 0.450 m 
and spring constant 120 N/m. (a) 
How far from the top of the incline 
is the block’s equilibrium point? (b) 
If the block is pulled slightly down 
the incline and released, what is the period of the resulting 
oscillations? 

26 H  GO  In Fig. 15.18, two blocks 
(m = 1.8 kg and M = 10 kg) 
and a spring (k = 200 N/m)  
are arranged on a horizontal, 
 frictionless surface. The coef-
ficient of static friction between 
the two blocks is 0.40. What amplitude of simple harmonic 
motion of the spring–blocks system puts the smaller block on 
the verge of slipping over the larger block? 

Module 15.2  Energy in Simple Harmonic Motion
27 E  SSM  When the displacement in SHM is one- half the 
amplitude xm, what fraction of the total energy is (a) kinetic 
energy and (b) potential energy? (c) At what displacement, in 

terms of the amplitude, is the energy of the system half kinetic 
 energy and half potential energy? 

28 E  Figure 15.19 gives the 
one- dimensional potential 
energy well for a 2.0 kg parti-
cle (the function U(x) has the 
form bx2 and the vertical axis 
scale is set by Us = 2.0 J). (a) 
If the particle passes through 
the equilibrium position with 
a velocity of 85 cm/s, will it be 
turned back before it reaches 
x = 15 cm? (b) If yes, at what 
position, and if no, what is 
the speed of the particle at x = 15 cm?

29 E  CALC  SSM  Find the mechanical energy of a block–spring 
system with a spring constant of 1.3 N/cm and an amplitude of 
2.4 cm. 

30 E  An oscillating block–spring system has a mechanical  energy 
of 1.00 J, an amplitude of 10.0 cm, and a maximum speed of 
1.20 m/s. Find (a) the spring constant, (b) the mass of the block, 
and (c) the frequency of oscillation.

31 E  A 5.00 kg object on a horizontal frictionless surface is 
attached to a spring with k = 1000 N/m. The object is displaced 
from equilibrium 50.0 cm horizontally and given an  initial veloc-
ity of 10.0 m/s back toward the equilibrium position. What are 
(a) the motion’s frequency, (b) the initial potential energy of  
the block–spring system, (c) the initial kinetic energy, and (d) the  
motion’s amplitude? 

32 E  Figure 15.20 shows the 
kinetic energy K of a simple 
 harmonic oscillator versus its 
position x. The vertical axis 
scale is set by Ks = 4.0 J. What 
is the spring constant?

33 M  GO  A block of mass 
M = 5.4 kg, at rest on a 
horizontal  frictionless table, 
is attached to a rigid sup-
port by a spring of constant 
k = 6000 N/m. A bullet of 
mass m = 9.5 g and velocity    v →    
of magnitude 630 m/s strikes 
and is embedded in the block 
(Fig. 15.21). Assuming the 
compression of the spring is 
negligible until the bullet is 
embedded, determine (a) the 
speed of the block immediately  after the collision and (b) the 
amplitude of the resulting simple harmonic motion. 

34 M  GO  In Fig. 15.22, block 2 
of mass 2.0 kg oscillates on the 
end of a spring in SHM with a 
period of 20 ms. The block’s 
position is given by x = (1.0 cm) 
cos(ωt + π/2). Block 1 of mass 
4.0 kg slides toward block 2 with a velocity of magnitude 6.0 m/s, 
directed along the spring’s length. The two blocks  undergo a 
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completely inelastic collision at time t = 5.0 ms. (The duration 
of the collision is much less than the period of motion.) What is 
the amplitude of the SHM after the  collision? 

35 M  A 10 g particle undergoes SHM with an amplitude of 
2.0 mm, a maximum acceleration of magnitude 8.0 × 103 m/s2, 
and an  unknown phase constant ϕ. What are (a) the period of 
the motion, (b) the maximum speed of the particle, and (c) the 
total mechanical energy of the oscillator? What is the mag nitude 
of the force on the particle when the particle is at (d) its maxi-
mum displacement and (e) half its maximum dis placement?

36 M  If the phase angle for a block–spring system in SHM is 
π/6 rad and the block’s position is given by x = xm cos(ωt + ϕ), 
what is the ratio of the kinetic energy to the potential  energy at 
time t = 0?

37 H  GO  A massless spring hangs from the ceiling with a small 
object attached to its lower end. The object is initially held at 
rest in a position yi such that the spring is at its rest length. The 
object is then released from yi and oscillates up and down, with 
its lowest position being 10 cm below yi. (a) What is the fre-
quency of the oscillation? (b) What is the speed of the  object 
when it is 8.0 cm below the initial position? (c) An  object of 
mass 300 g is attached to the first object, after which the system 
oscillates with half the original frequency. What is the mass of 
the first object? (d) How far below yi is the new equilibrium 
(rest) position with both objects attached to the spring?

Module 15.3  An Angular Simple Harmonic Oscillator
38 E  A 95 kg solid sphere with a 15 cm radius is suspended by 
a vertical wire. A torque of 0.20 N · m is required to rotate the 
sphere through an angle of 0.85 rad and then maintain that ori-
entation. What is the period of the oscillations that result when 
the sphere is then released?

39 M  CALC  SSM  The balance wheel of an old- fashioned watch 
oscillates with angular amplitude π rad and period 0.500 s. Find 
(a) the maximum  angular speed of the wheel, (b) the angular 
speed at displacement π/2 rad, and (c) the magnitude of the 
angular acceleration at displacement π/4 rad.

Module 15.4  Pendulums, Circular Motion
40 E  A physical pendulum consists of a meter stick that is pivoted 
at a small hole drilled through the stick a distance d from the 
50 cm mark. The period of oscillation is 2.5 s. Find d. 

41 E  SSM  In Fig. 15.23, the pen-
dulum consists of a uniform disk 
with radius r = 10.0 cm and mass 
500 g attached to a uniform rod 
with length L = 500 mm and mass 
270 g. (a) Calculate the rotational 
inertia of the pendulum about 
the pivot point. (b)  What is the 
distance between the pivot point 
and the  center of mass of the pen-
dulum? (c) Calculate the period 
of  oscillation. 

42 E  Suppose that a simple pen-
dulum consists of a small 60.0 g bob at the end of a cord of neg-
ligible mass. If the angle θ between the cord and the vertical is 
given by

θ = (0.0800 rad) cos[(4.43 rad/s)t + ϕ],

what are (a) the pendulum’s length and (b) its maximum  kinetic 
energy?

43 E  (a) If the physical pendulum of Fig. 15.4.3 and the associ-
ated sample problem is inverted and suspended at point P, what 
is its period of oscil lation? (b) Is the period now greater than, 
less than, or equal to its previous value?

44 E  A physical pendulum consists of two 
meter- long sticks joined together as shown 
in Fig. 15.24. What is the pendulum’s period 
of oscillation about a pin inserted through 
point A at the center of the horizontal stick?

45 E  FCP  A performer seated on a trapeze 
is swinging back and forth with a period 
of 8.85 s. If she stands up, thus raising the 
center of mass of the trapeze + performer 
system by 35.0 cm, what will be the new period of the system? 
Treat trapeze + performer as a simple pendulum. 

46 E  A physical pen dulum has a center of oscillation at dis-
tance 2L/3 from its point of suspension. Show that the distance 
between the point of suspension and the center of oscillation for 
a physical  pendulum of any form is I/mh, where I and h have the 
meanings in Eq. 15.4.6 and m is the mass of the pendulum.

47 E  In Fig. 15.25, a physical pendu-
lum consists of a uniform solid disk (of 
radius R = 2.35 cm) supported in a ver-
tical plane by a pivot located a distance 
d = 1.75 cm from the  center of the disk. 
The disk is displaced by a small angle 
and released. What is the period of the 
resulting simple harmonic motion?

48 M  GO  A rectangular block, with 
face lengths a = 35 cm and b = 45 cm, 
is to be suspended on a thin 
horizontal rod running through 
a narrow hole in the block. The 
block is then to be set swinging 
about the rod like a pendulum, 
through small angles so that it is 
in SHM. Figure 15.26 shows one 
possible position of the hole, at 
distance r from the block’s cen-
ter, along a line connecting the 
center with a corner. (a) Plot the 
period versus distance r along 
that line such that the minimum 
in the curve is apparent. (b) For what value of r does that mini-
mum occur? There is a line of points around the block’s center 
for which the period of swinging has the same minimum value. 
(c) What shape does that line make?

49 M  GO  The angle of the pendulum of Fig. 15.4.1b is given 
by θ =  θm cos[(4.44 rad/s)t + ϕ]. If at t = 0, θ = 0.040 rad and  
dθ/dt = −0.200 rad/s, what are (a) the phase constant ϕ and (b) 
the maximum angle θm? (Hint: Don’t confuse the rate dθ/dt at 
which θ changes with the ω of the SHM.)

50 M  A thin uniform rod (mass = 0.50 kg) swings about an 
axis that passes through one end of the rod and is perpen-
dicular to the plane of the swing. The rod swings with a 
period of 1.5 s and an angular amplitude of 10°. (a) What is 
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the length of the rod? (b) What 
is the maximum kinetic energy 
of the rod as it swings?

51 M  CALC  GO  In Fig. 15.27, a 
stick of length L = 1.85 m oscil-
lates as a physical pendulum. (a) 
What value of distance x between 
the stick’s center of mass and 
its pivot point O gives the least 
 period? (b) What is that least 
period?

52 M  GO  The 3.00 kg cube in 
Fig. 15.28 has edge lengths d = 6.00 cm and 
is mounted on an axle through its center. A 
spring (k = 1200 N/m) connects the cube’s 
upper corner to a rigid wall. Initially the spring 
is at its rest length. If the cube is  rotated 3° 
and released, what is the period of the result-
ing SHM? 

53 M  SSM  In the overhead view of Fig. 15.29, 
a long uniform rod of mass 0.600 kg is free to 
 rotate in a horizontal plane about 
a vertical axis through its cen-
ter. A spring with force constant 
k  = 1850 N/m is connected hori-
zontally between one end of the 
rod and a fixed wall. When the 
rod is in equilibrium, it is parallel 
to the wall. What is the period of 
the small oscillations that result when the rod is rotated slightly 
and released? 

54 M  GO  In Fig. 15.30a, a metal plate is mounted on an axle 
through its center of mass. A spring with k = 2000 N/m connects 
a wall with a point on the rim a distance r = 2.5 cm from the 
center of mass. Initially the spring is at its rest length. If the plate 
is rotated by 7° and released, it rotates about the axle in SHM, 
with its angular position given by Fig. 15.30b. The horizontal 
axis scale is set by ts = 20 ms. What is the rotational inertia of the 
plate about its center of mass? 

55 H  GO  A pendulum is formed by pivoting a long thin rod 
about a point on the rod. In a series of experiments, the period is 
measured as a function of the distance x between the pivot point 
and the rod’s center. (a) If the rod’s length is L = 2.20 m and 
its mass is m = 22.1 g, what is the minimum period? (b) If x is 
chosen to minimize the period and then L is increased, does the 
period increase, decrease, or remain the same? (c) If, instead, 

m is increased without L increas-
ing, does the period increase, 
decrease, or remain the same?

56 H  GO  In Fig. 15.31, a 2.50 kg 
disk of diameter D = 42.0 cm 
is supported by a rod of length 
L = 76.0 cm and negligible mass 
that is pivoted at its end. (a) 
With the massless torsion spring 
unconnected, what is the period 
of oscillation? (b) With the tor-
sion spring connected, the rod is 
vertical at equilibrium. What is 
the torsion constant of the spring 
if the period of  oscillation has 
been decreased by 0.500 s?

Module 15.5  Damped Simple Harmonic Motion
57 E  The amplitude of a lightly damped oscillator decreases 
by 3.0% during each cycle. What percentage of the mechanical 
energy of the oscillator is lost in each cycle?

58 E  For the damped oscillator system shown in Fig. 15.5.1, with 
m = 250 g, k = 85 N/m, and b = 70 g/s, what is the ratio of the 
oscillation amplitude at the end of 20 cycles to the initial oscil-
lation  amplitude? 

59 E  SSM  For the damped oscillator system shown in Fig.  
15.5.1, the block has a mass of 1.50 kg and the spring constant 
is 8.00 N/m. The damping force is given by  −b(dx/dt), where 
b = 230 g/s. The block is pulled down 12.0 cm and released. (a) 
Calculate the time required for the  amplitude of the resulting 
oscillations to fall to one- third of its initial value. (b) How many 
oscillations are made by the block in this time? 

60 M  The suspension system of a 2000 kg automobile “sags” 
10 cm when the chassis is placed on it. Also, the oscillation 
 amplitude decreases by 50% each cycle. Estimate the values of 
(a) the spring constant k and (b) the damping constant b for the 
spring and shock absorber system of one wheel, assuming each 
wheel supports 500 kg.

Module 15.6  Forced Oscillations and Resonance
61 E  For Eq. 15.6.1, suppose the amplitude xm is given by

  x  m   =   
 F  m  
  _______________________   

 [ m   2   ( ω d  
2
   −  ω   2 )  

2
  +  b   2   ω d  

2
  ]  

1/2
 
  , 

where Fm is the (constant) amplitude of the external oscil lating 
force exerted on the spring by the rigid support in Fig. 15.5.1. At 
resonance, what are the (a) amplitude and (b) velocity ampli-
tude of the oscillating object?

62 E  Hanging from a horizontal beam are nine simple pendulums 
of the following lengths: (a) 0.10, (b) 0.30, (c) 0.40, (d) 0.80, (e) 1.2, 
(f) 2.8, (g) 3.5, (h) 5.0, and (i) 6.2 m. Suppose the beam undergoes 
horizontal oscillations with angular frequencies in the range from 
2.00 rad/s to 4.00 rad/s. Which of the pendulums will be (strongly) 
set in motion?

63 M  A 1000 kg car carrying four 82 kg people travels over a 
“washboard” dirt road with corrugations 4.0 m apart. The car 
bounces with maximum amplitude when its speed is 16 km/h. 
When the car stops, and the people get out, by how much does 
the car body rise on its suspension?
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Additional Problems
64 FCP  Although California is known for earthquakes, it has 
large regions dotted with precariously balanced rocks that 
would be easily toppled by even a mild earthquake. Appar-
ently no major earthquakes have occurred in those regions. If 
an earthquake were to put such a rock into sinusoidal oscillation 
(parallel to the ground) with a frequency of 2.2 Hz, an oscilla-
tion amplitude of 1.0 cm would cause the rock to topple. What 
would be the magnitude of the maximum acceleration of the 
oscillation, in terms of g?

65  A loudspeaker diaphragm is oscillating in simple harmonic 
motion with a frequency of 440 Hz and a maximum  displacement 
of 0.75 mm. What are the (a) angular frequency, (b) maximum 
speed, and (c) magnitude of the maximum  acceleration?

66  A uniform spring with k = 8600 N/m is cut into pieces 1 and 
2 of unstretched lengths L1 = 7.0 cm and L2 = 10 cm. What are 
(a) k1 and (b) k2? A block attached to the original spring as in 
Fig. 15.1.7 oscillates at 200 Hz. What is the oscil lation frequency 
of the block attached to (c) piece 1 and (d) piece 2?

67 GO  In Fig. 15.32, three 10 000  
kg ore cars are held at rest on a 
mine railway using a cable that 
is parallel to the rails, which are 
inclined at angle θ = 30°. The 
cable stretches 15 cm just before 
the coupling between the two 
lower cars breaks,  detaching  
the lowest car. Assuming that the 
cable obeys Hooke’s law, find the 
(a) frequency and (b) amplitude 
of the resulting oscillations of the 
remaining two cars.

68  A 2.00 kg block hangs from a spring. A 300 g body hung 
below the block stretches the spring 2.00 cm farther. (a) What 
is the spring constant? (b) If the 300 g body is removed and the 
block is set into oscillation, find the period of the motion.

69 SSM  In the engine of a locomotive, a cylindrical piece 
known as a piston oscillates in SHM in a cylinder head (cylin-
drical chamber) with an angular frequency of 180 rev/min. Its 
stroke (twice the amplitude) is 0.76 m. What is its maximum 
speed?

70 GO  A wheel is free to rotate 
about its fixed axle. A spring is 
attached to one of its spokes a 
distance r from the axle, as shown 
in Fig. 15.33. (a) Assuming that 
the wheel is a hoop of mass m and 
radius R, what is the angular fre-
quency ω of small oscillations of 
this system in terms of m, R, r, and 
the spring constant k? What is ω if (b) r = R and (c) r = 0?

71  A 50.0 g stone is attached to the bottom of a vertical 
spring and set vibrating. If the maximum speed of the stone is 
15.0 cm/s and the period is 0.500 s, find the (a) spring constant 
of the spring, (b) amplitude of the motion, and (c) frequency of 
oscillation.

72  A uniform circular disk whose radius R is 12.6 cm is 
 suspended as a physical pendulum from a point on its rim. 

(a) What is its period? (b) At what radial distance r < R is there 
a pivot point that gives the same period?

73 SSM  A vertical spring stretches 9.6 cm when a 1.3 kg block is 
hung from its end. (a) Calculate the spring constant. This block 
is then displaced an additional 5.0 cm downward and  released 
from rest. Find the (b) period, (c) frequency, (d)  amplitude, and 
(e) maximum speed of the resulting SHM. 

74  A massless spring with spring constant 19 N/m hangs 
 vertically. A body of mass 0.20 kg is attached to its free end and 
then released. Assume that the spring was unstretched  before 
the body was released. Find (a) how far below the  initial posi-
tion the body descends, and the (b) frequency and (c) amplitude 
of the resulting SHM.

75  A 4.00 kg block is suspended from a spring with 
k = 500 N/m. A 50.0 g bullet is fired into the block from directly 
below with a speed of 150 m/s and becomes embedded in the 
block. (a) Find the amplitude of the resulting SHM. (b) What 
percentage of the original kinetic energy of the bullet is trans-
ferred to mechanical energy of the  oscillator?

76  A 55.0 g block oscillates in SHM on the end of a spring with 
k = 1500 N/m according to x = xm cos(ωt + ϕ). How long does 
the block take to move from position +0.800xm to (a) position 
+0.600xm and (b) position −0.800xm?

77  Figure 15.34 gives the position of a 20 g block oscillating in 
SHM on the end of a spring. The horizontal axis scale is set by 
ts = 40.0 ms. What are (a) the maximum  kinetic energy of the 
block and (b) the number of times per second that maximum 
is reached? (Hint: Measuring a slope will probably not be very 
accurate. Find another approach.)

78  Figure 15.34 gives the position x(t) of a block oscillating 
in SHM on the end of a spring (ts = 40.0 ms). What are (a) the 
speed and (b) the magnitude of the radial acceleration of a par-
ticle in the corresponding uniform circular motion?

79  Figure 15.35 shows the 
kinetic energy K of a simple 
pendulum versus its angle θ 
from the vertical. The verti-
cal axis scale is set by Ks = 
10.0 mJ. The pendulum bob 
has mass 0.200 kg. What is the 
length of the pendulum?

80  A block is in SHM on the 
end of a spring, with position 
given by x = xm cos(ωt + ϕ). If 
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ϕ = π/5 rad, then at t = 0 what percentage of the total mechanical 
energy is potential energy?

81  A simple harmonic 
oscillator consists of a 0.50 kg 
block attached to a spring. 
The block slides back and 
forth along a straight line on a 
frictionless surface with equi-
librium point x  = 0. At t = 0 
the block is at x = 0 and mov-
ing in the positive x direction. 
A graph of the magnitude of 
the net force    F 

→
    on the block as a function of its position is shown 

in Fig. 15.36. The vertical scale is set by Fs = 75.0 N. What are (a) 
the amplitude and (b) the period of the motion, (c) the magni-
tude of the maximum acceleration, and (d) the maximum kinetic 
energy?

82  A simple pendulum of length 20 cm and mass 5.0 g is 
 suspended in a race car traveling with constant speed 70 m/s 
around a circle of radius 50 m. If the pendulum undergoes small 
oscillations in a radial direction about its equilibrium position, 
what is the frequency of oscillation?

83  The scale of a spring balance that reads from 0 to 15.0 kg is 
12.0 cm long. A package suspended from the balance is found to 
oscillate vertically with a frequency of 2.00 Hz. (a) What is the 
spring constant? (b) How much does the package weigh?

84  A 0.10 kg block oscillates back and forth along a straight 
line on a frictionless horizontal surface. Its displacement from 
the origin is given by

x = (10 cm) cos[(10 rad/s)t + π/2 rad].

(a) What is the oscillation frequency? (b) What is the maximum 
speed acquired by the block? (c) At what value of x does this 
occur? (d) What is the magnitude of the maximum acceleration 
of the block? (e) At what value of x does this occur? (f) What 
force, applied to the block by the spring, results in the given 
oscillation?

85  The end point of a spring oscillates with a period of 2.0 s 
when a block with mass m is attached to it. When this mass is 
increased by 2.0 kg, the period is found to be 3.0 s. Find m.

86  The tip of one prong of a tuning fork undergoes SHM of 
frequency 1000 Hz and amplitude 0.40 mm. For this tip, what is 
the magnitude of the (a) maximum acceleration, (b) maximum 
velocity, (c) acceleration at tip displacement 0.20 mm, and (d) 
velocity at tip displacement 0.20 mm?

87  A flat uniform circular disk has a mass of 3.00 kg and a 
radius of 70.0 cm. It is suspended in a horizontal plane by a ver-
tical wire attached to its center. If the disk is rotated 2.50 rad 
about the wire, a torque of 0.0600 N · m is required to maintain 
that orientation. Calculate (a) the rotational inertia of the disk 
about the wire, (b) the torsion constant, and (c) the angular fre-
quency of this torsion pendulum when it is set  oscillating.

88  A block weighing 20 N oscillates at one end of a vertical 
spring for which k = 100 N/m; the other end of the spring is 
attached to a ceiling. At a certain instant the spring is stret ched 
0.30 m beyond its relaxed length (the length when no  object is 
attached) and the block has zero velocity. (a) What is  the net 

force on the block at this instant? What are the (b)  amplitude 
and (c) period of the resulting simple harmonic motion? (d) 
What is the maximum kinetic energy of the block as it oscillates?

89  A 3.0 kg particle is in simple harmonic motion in one 
 dimension and moves according to the equation

x = (5.0 m) cos[(π/3 rad/s)t − π/4 rad],

with t in seconds. (a) At what value of x is the potential energy 
of the particle equal to half the total energy? (b) How long does 
the particle take to move to this position x from the equilibrium 
position?

90  A particle executes linear SHM with frequency 0.25 Hz 
about the point x = 0. At t = 0, it has displacement x = 0.37 cm 
and zero velocity. For the motion, determine the (a)  period, 
(b) angular  frequency, (c) amplitude, (d) displacement x(t),  
(e) velocity v(t), (f) maximum speed, (g) magnitude of the maxi-
mum acceleration, (h) displacement at t = 3.0 s, and (i) speed at 
t = 3.0 s.

91 SSM  What is the frequency of a simple pendulum 2.0 m 
long (a) in a room, (b) in an elevator accelerating upward at a 
rate of 2.0 m/s2, and (c) in free fall? 

92  A grandfather clock has a 
pendulum that consists of a  thin 
brass disk of radius r = 15.00 cm 
and mass 1.000 kg that is attached 
to a long thin rod of negligible 
mass. The pendulum swings freely 
about an axis perpendicular to the 
rod and through the end of the 
rod opposite the disk, as shown in  
Fig. 15.37. If the pendulum is 
to have a period of 2.000 s for 
small oscillations at a place where 
g = 9.800 m/s2, what must be the 
rod length L to the nearest tenth 
of a millimeter?

93  A 4.00 kg block hangs from a spring, extending it 16.0 cm 
from its unstretched position. (a) What is the spring constant? 
(b) The block is removed, and a 0.500 kg body is hung from the 
same spring. If the spring is then stretched and released, what is 
its period of oscillation?

94  What is the phase con-
stant for SMH with a(t) given in 
Fig. 15.38 if the  position func-
tion x(t) has the form x = xm 
cos(ωt + ϕ) and as = 4.0 m/s2?

95  An engineer has an odd- 
shaped 10 kg object and needs to 
find its rotational inertia about an 
axis through its center of mass. 
The object is supported on a wire 
stretched along the  desired axis. 
The wire has a torsion constant κ = 0.50 N · m. If this torsion 
pendulum oscillates through 20 cycles in 50 s, what is the rota-
tional inertia of the object?

96 FCP  A spider can tell when its web has captured, say, a fly 
because the fly’s thrashing causes the web threads to oscillate. 
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A spider can even determine the size of the fly by the frequency 
of the oscillations. Assume that a fly oscillates on the capture 
thread on which it is caught like a block on a spring. What is the 
ratio of oscillation frequency for a fly with mass m to a fly with 
mass 2.5m? 

97  A torsion pendu-
lum consists of a metal 
disk with a wire running 
through its center and 
soldered in place. The 
wire is mounted vertically 
on clamps and pulled 
taut. Figure 15.39a gives 
the magnitude τ of the 
torque needed to  rotate 
the disk about its center 
(and thus twist the wire) 
versus the rotation angle 
θ. The vertical axis scale 
is set by τs = 4.0 × 10−3 
N · m. The disk is rotated 
to θ = 0.200 rad and then 
released. Figure 15.39b shows the  resulting  oscillation in terms 
of angular position θ versus time t. The horizontal axis scale is 
set by ts = 0.40 s. (a) What is the rotational inertia of the disk  
about its center? (b) What is the maximum angular speed  
dθ/dt of the disk? (Caution: Do not confuse the  (constant) angu-
lar  frequency of the SHM with the (varying) angular speed of the 
rotating disk, even though they usually have the same symbol ω. 
Hint: The potential energy U of a  torsion pendulum is equal to  
   1 _ 2   κθ2, analogous to U =    1 _ 2   kx2 for a spring.)

98  When a 20 N can is hung from the bottom of a vertical spring, 
it causes the spring to stretch 20 cm. (a) What is the spring constant? 
(b) This spring is now placed horizontally on a frictionless table. 
One end of it is held fixed, and the other end is attached to a 5.0 N 
can. The can is then moved (stretching the spring) and released 
from rest. What is the period of the resulting oscillation?

99  For a simple pendulum, find the angular amplitude θm at 
which the restoring torque required for simple harmonic  motion 
deviates from the actual restoring torque by 1.0%. (See “Trigo-
nometric Expansions” in Appendix E.)

100 CALC  In Fig. 15.40, a solid 
cylinder attached to a horizontal 
spring (k = 3.00 N/m) rolls with-
out slipping along a horizontal 
surface. If the system is released 
from rest when the spring is 
stretched by 0.250 m, find (a) the 
translational kinetic energy and (b) the rotational kinetic energy 
of the cylinder as it passes through the equilibrium position.  
(c) Show that under these conditions the cylinder’s center of 
mass executes simple harmonic motion with period

 T = 2π  √ 
____

   3M ___ 
2k

    , 

where M is the cylinder mass. (Hint: Find the time derivative of 
the total mechanical energy.)

101 SSM  A 1.2 kg block sliding on a horizontal frictionless 
surface is attached to a horizontal spring with k = 480 N/m. Let 

x be the displacement of the block from the position at which 
the spring is unstretched. At t = 0 the block passes through 
x = 0 with a speed of 5.2 m/s in the positive x direction. What 
are the (a) frequency and (b) amplitude of the block’s motion? 
(c) Write an expression for x as a function of time. 

102  A simple harmonic oscillator consists of an 0.80 kg block 
attached to a spring (k = 200 N/m). The block slides on a hori-
zontal frictionless surface about the equilibrium point x = 0 with 
a total mechanical energy of 4.0 J. (a) What is the  amplitude of 
the oscillation? (b) How many oscillations does the block com-
plete in 10 s? (c) What is the maximum kinetic energy attained 
by the block? (d) What is the speed of the block at x = 0.15 m?

103  A block sliding on a horizontal frictionless surface 
is  attached to a horizontal spring with a spring constant of 
600 N/m. The block executes SHM about its equilibrium posi-
tion with a period of 0.40 s and an amplitude of 0.20 m. As the 
block slides through its equilibrium position, a 0.50 kg putty 
wad is dropped vertically onto the block. If the putty wad sticks 
to the block, determine (a) the new period of the  motion and 
(b) the new amplitude of the motion.

104  A damped harmonic oscillator consists of a block (m =  
2.00 kg), a spring (k = 10.0 N/m), and a damping force (F = −bv).  
Initially, it oscillates with an amplitude of 25.0 cm;  because of 
the damping, the amplitude falls to three- fourths of this initial 
value at the completion of four oscillations. (a)  What is the 
value of b? (b) How much energy has been “lost” during these 
four oscillations?

105  Physics in oscil-
lation. In Fig. 15.41, 
a book is suspended 
at one corner so that 
it can swing like a 
pendulum parallel to 
its plane. The edge 
lengths along the book 
face are a = 25 cm 
and b = 20 cm. If the 
angle through which 
the book swings is only 
a few degrees, what 
is the period of the 
motion?

106  SHM shooting 
gallery. Figure 15.42 
shows your view of 
an arcade shooting 
gallery in which a 
small wooden duck 
oscillates along a 
track left and right in 
SHM with period T = 4.00 s and amplitude xm = 1.20 m. Two air 
rifles are fixed in place at the front of the gallery at distance d 
= 3.00 m from the duck’s line of motion. Rifle A is aligned with  
x = 0 at the center of the motion and rifle B is aligned with +xm 
at the right side of the motion. Both rifles shoot pellets at speed 
v = 9.00 m/s. You will win the grand prize (a giant stuffed duck, 
of course) if you can hit the duck with pellets from both rifles. 
At what value of +x (on the right side) should the duck be when 
you fire (a) rifle A and (b) rifle B?
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107  Cell phone oscillations. Your cell phone vibrates to tell 
you of an incoming text or call. If the oscillation frequency is the 
common value of f = 160 Hz and the amplitude is xm = 0.500 mm, 
what is the maximum am of the acceleration magnitude of the 
oscillations? Assume that the cell phone is free to oscillate, not 
tightly confined to, say, your pocket. 

108  Oscillating bar. In Fig. 15.43, a uniform bar with mass m 
lies symmetrically across two rapidly rotating, fixed rollers, A 
and B, with distance L = 2.0 cm between the bar’s center of mass 
and each roller. The rollers, whose directions of rotations are 
shown in the figure, slip against the bar with coefficient of 
kinetic friction µk = 0.40. If the bar is displaced horizontally by 
distance x and then released, it oscillates left and right in simple 
harmonic motion. What are (a) the angular frequency  ω  and  
(b) the period T?

109  Oscillating marmoset. 
In Fig. 15.44, a marmoset of 
mass m2 clutches a massless 
cord wrapped around a disk, of 
radius R = 20 cm and mass M =  
8m2, that pivots about a hori-
zontal axis through the center 
of mass at O. Mass m1 (= 4m2) 
is attached to the disk at a dis-
tance r = R/2 from O. (a) When 
the disk + marmoset + m1 sys-
tem is in equilibrium, what is 
angle ϕ between the vertical 
and a line from O to m1? (b) In 
terms of m2 and R, what is the 
rotational inertia I of the system 
about O? (c) The disk is rotated 
counterclockwise from equi-
librium through a small angle θ 
and released. What is the angu-
lar frequency  ω  of the resulting 
simple harmonic motion?

110  Competition diving board. A competition diving board 
sits on a fulcrum about one- third of the way out from the fixed 
end of the board (Fig. 15.45a). In a running dive, a diver takes 
three quick steps along the board, out past the fulcrum so as to 
rotate the board’s free end downward. As the board rebounds 
back through the horizontal, the diver leaps upward and toward 

A B

LL

Figure 15.43 Problem 108.

the board’s free end 
(Fig. 15.45b). A skilled 
diver trains to land on 
the free end just as the 
board has completed 
2.5 oscillation cycles 
during the leap. With 
such timing, the diver 
lands as the free end 
is moving downward 
with the greatest speed 
(Fig. 15.45c). The land-
ing then drives the free 
end down substan-
tially, and the rebound 
catapults the diver 
high into the air.

Figure 15.45d shows 
a simple but realistic 
model of a competi-
tion board. The board 
section beyond the 
fulcrum is treated as 
a stiff rod of length L 
that can rotate about a 
hinge at the fulcrum, compressing a spring under the board’s 
free end. If the rod’s mass is m = 20.0 kg and the diver’s leap has 
the flight time tfl = 0.620 s, what spring constant k is required of 
the spring for a proper landing?

111 BIO  Buzz pollination. When a bee collects pollen from a 
flower during its pollination of flowers (Fig. 15.46), it embraces 
an anther and repeatedly oscillates its thorax in simple harmonic 
motion, which shakes the pollen out of the flower’s anther. If the 
oscillation frequency is 370 Hz (higher than that produced by 
the wings when in flight) and the acceleration amplitude (mea-
sured by a laser device) is 64 m/s2, what are (a) the displacement 
amplitude and (b) the velocity amplitude?

Figure 15.45 Problem 110.
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Figure 15.44 Problem 109.

Figure 15.46 Problem 111.
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16.1 TRANSVERSE WAVES
Learning Objectives 
After reading this module, you should be able to . . .

16.1.1 Identify the three main types of waves.
16.1.2 Distinguish between transverse waves and 

 longitudinal waves.
16.1.3 Given a displacement function for a trans-

verse wave,  determine amplitude ym, angular wave 
number k, angular frequency ω, phase constant ϕ,  
and direction of travel, and calculate the phase  
kx ± ωt + ϕ and the displacement at any given time 
and position.

16.1.4 Given a displacement function for a trans-
verse wave,  calculate the time between two given 
displacements.

16.1.5 Sketch a graph of a transverse wave as a 
 function of  position, identifying amplitude ym, 
 wavelength λ, where the slope is greatest, where  
it is zero, and where the string  elements have 
 positive velocity, negative velocity, and zero  
velocity.

16.1.6 Given a graph of displacement versus time for  
a  transverse wave, determine amplitude ym and 
period T.

16.1.7 Describe the effect on a transverse wave of 
changing phase constant ϕ.

16.1.8 Apply the relation between the wave speed v, 
the  distance traveled by the wave, and the time 
required for that travel.

16.1.9 Apply the relationships between wave speed v, 
 angular frequency ω, angular wave number k, 
 wavelength λ, period T, and frequency f.

16.1.10 Describe the motion of a string element as a 
transverse wave moves through its location, and iden-
tify when its transverse speed is zero and when it is 
maximum.

16.1.11 Calculate the transverse velocity u(t) of a string 
element as a transverse wave moves through its 
location.

16.1.12 Calculate the transverse acceleration a(t) 
of a string  element as a transverse wave moves 
through its location.

16.1.13 Given a graph of displacement, transverse 
velocity, or transverse acceleration, determine the 
phase constant ϕ.

Key Ideas  
● Mechanical waves can exist only in material media 
and are governed by Newton’s laws. Transverse 
mechanical waves, like those on a stretched string, are 
waves in which the  particles of the medium oscillate 
perpendicular to the wave’s direction of travel. Waves 
in which the particles of the medium oscillate parallel to 
the wave’s direction of travel are longitudinal waves.

● A sinusoidal wave moving in the positive direction of 
an x axis has the mathematical form

y(x, t) = ym sin(kx − ωt),

where ym is the amplitude (magnitude of the maxi-
mum displacement) of the wave, k is the angular wave 
number, ω is the angular frequency, and kx − ωt is the 
phase. The wavelength λ is related to k by

 k =   2π _ λ   .

● The period T and frequency f of the wave are related 
to ω by

     ω _ 
2π   = f =   1 _ 

T
  . 

● The wave speed v (the speed of the wave along the 
string) is related to these other parameters by

 v =   ω _ 
k

   =   λ _ 
T

   = λf. 

● Any function of the form
y(x, t) = h(kx ± ωt)

can represent a traveling wave with a wave speed 
as given above and a wave shape given by the 
mathematical form of h. The plus sign denotes a 
wave  traveling in the negative  direction of the x axis, 
and the minus sign a wave traveling in the positive 
direction.

C H A P T E R  1 6
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46916.1 Transverse Waves

What Is Physics?
One of the primary subjects of physics is waves. To see how important waves 
are in the modern world, just consider the music industry. Every piece of music 
you hear, from some retro-punk band playing in a campus dive to the most elo-
quent concerto playing on the Web, depends on performers producing waves 
and your detecting those waves. In between production and detection, the infor-
mation  carried by the waves might need to be transmitted (as in a live perfor-
mance on the Web) or recorded and then reproduced (as with CDs, DVDs, or 
the other  devices currently being developed in engineering labs worldwide). The  
financial importance of controlling music waves is staggering, and the rewards to 
engineers who develop new control techniques can be rich.

This chapter focuses on waves traveling along a stretched string, such as 
on a guitar. The next chapter focuses on sound waves, such as those produced 
by a guitar string being played. Before we do all this, though, our first job is to 
 classify the countless waves of the everyday world into basic types.

Types of Waves
Waves are of three main types:

1. Mechanical waves. These waves are most familiar because we encounter them 
almost constantly; common examples include water waves, sound waves, and 
seismic waves. All these waves have two central features: They are governed 
by Newton’s laws, and they can exist only within a material medium, such as 
water, air, and rock.

2. Electromagnetic waves. These waves are less familiar, but you use them 
 constantly; common examples include visible and ultraviolet light, radio and 
television waves, microwaves, x rays, and radar waves. These waves require no 
material medium to exist. Light waves from stars, for example, travel through 
the vacuum of space to reach us. All electromagnetic waves travel through a 
vacuum at the same speed c = 299 792 458 m/s.

3. Matter waves. Although these waves are commonly used in modern technol-
ogy, they are probably very unfamiliar to you. These waves are associated 
with  electrons, protons, and other fundamental particles, and even atoms 
and molecules. Because we commonly think of these particles as constituting 
 matter, such waves are called matter waves.

4. Gravitational waves. In 1916, Albert Einstein predicted that when any mass 
accelerates, it sends out gravitational waves that are oscillations of space itself 
(more precisely, spacetime). In normal circumstances, the oscillations are so 
small as to be undetectable. The first direct detection of the waves came in 
2015 when a detector based on the design of Rainer Weiss of MIT recorded 
the waves due to the merger of two distant black holes. The oscillations were 
much less than the radius of a proton.

Much of what we discuss in this chapter applies to waves of all kinds. How-
ever, for specific examples we shall refer to mechanical waves.

Transverse and Longitudinal Waves
A wave sent along a stretched, taut string is the simplest mechanical wave. If you give 
one end of a stretched string a single up-and-down jerk, a wave in the form of a single 
pulse travels along the string. This pulse and its motion can occur  because the string is 
under tension. When you pull your end of the string upward, it begins to pull upward 
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on the adjacent section of the string via tension between the two sections. As the 
adjacent section moves upward, it  begins to pull the next section upward, and so on. 
Meanwhile, you have pulled down on your end of the string. As each section moves 
upward in turn, it begins to be pulled back  downward by neighboring sections that 
are already on the way down. The net  result is that a distortion in the string’s shape  
(a pulse, as in Fig. 16.1.1a) moves along the string at some velocity    v →   .

If you move your hand up and down in continuous simple harmonic motion, 
a continuous wave travels along the string at velocity    v →   . Because the motion of 
your hand is a sinusoidal function of time, the wave has a sinusoidal shape at any 
given instant, as in Fig. 16.1.1b; that is, the wave has the shape of a sine curve or 
a cosine curve.

We consider here only an “ideal” string, in which no friction-like forces within 
the string cause the wave to die out as it travels along the string. In  addition, we 
assume that the string is so long that we need not consider a wave  rebounding 
from the far end.

One way to study the waves of Fig. 16.1.1 is to monitor the wave forms (shapes 
of the waves) as they move to the right. Alternatively, we could monitor the  motion 
of an element of the string as the element oscillates up and down while a wave passes 
through it. We would find that the displacement of every such  oscillating string ele-
ment is perpendicular to the direction of travel of the wave, as  indicated in Fig. 16.1.1b. 
This motion is said to be transverse, and the wave is said to be a transverse wave.

Longitudinal Waves. Figure 16.1.2 shows how a sound wave can be 
 produced by a piston in a long, air-filled pipe. If you suddenly move the piston 
rightward and then leftward, you can send a pulse of sound along the pipe. The 
rightward motion of the piston moves the elements of air next to it rightward, 
changing the air pressure there. The increased air pressure then pushes rightward 
on the  elements of air  somewhat farther along the pipe. Moving the piston left-
ward  reduces the air pressure next to it. As a result, first the elements nearest the 
 piston and then  farther  elements move leftward. Thus, the motion of the air and 
the change in air pressure travel rightward along the pipe as a pulse.

If you push and pull on the piston in simple harmonic motion, as is being done 
in Fig. 16.1.2, a sinusoidal wave travels along the pipe. Because the motion of the 
elements of air is parallel to the direction of the wave’s travel, the motion is said 
to be longitudinal, and the wave is said to be a longitudinal wave. In this chapter 
we focus on transverse waves, and string waves in particular; in  Chapter 17 we 
focus on longitudinal waves, and sound waves in particular.

Both a transverse wave and a longitudinal wave are said to be traveling waves 
because they both travel from one point to another, as from one end of the string 
to the other end in Fig. 16.1.1 and from one end of the pipe to the other end in 
Fig. 16.1.2. Note that it is the wave that moves from end to end, not the material 
(string or air) through which the wave moves.

Wavelength and Frequency
To completely describe a wave on a string (and the motion of any element along 
its length), we need a function that gives the shape of the wave. This means that 
we need a relation in the form 
 y = h(x, t),  (16.1.1)
in which y is the transverse displacement of any string element as a function h of 
the time t and the position x of the element along the string. In general, a sinusoi-
dal shape like the wave in Fig. 16.1.1b can be described with h being either a sine 
or cosine function; both give the same general shape for the wave. In this chapter 
we use the sine function.

Sinusoidal Function. Imagine a sinusoidal wave like that of Fig. 16.1.1b  traveling 
in the positive  direction of an x axis. As the wave sweeps through  succeeding ele-
ments (that is, very short sections) of the string, the elements  oscillate parallel to the 
y axis. At time t, the displacement y of the element located at position x is given by

Airv

Figure 16.1.2 A sound wave is set 
up in an air-filled pipe by moving a 
piston back and forth. Because the 
oscillations of an element of the air 
(represented by the dot) are parallel 
to the direction in which the wave 
travels, the wave is a longitudinal 
wave.

y

x

y

x

(a)

(b)

Sinusoidal
wave

Pulse
v

v

Figure 16.1.1 (a) A single pulse is sent 
along a stretched string. A typical 
string element (marked with a dot) 
moves up once and then down as the 
pulse passes. The element’s  motion is 
perpendicular to the wave’s direction 
of travel, so the pulse is a transverse 
wave. (b) A sinusoidal wave is sent 
along the string. A typical string ele-
ment moves up and down continu-
ously as the wave passes. This too is a 
transverse wave.
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47116.1 Transverse Waves

 y(x, t) = ym sin(kx − ωt). (16.1.2)

Because this equation is written in terms of position x, it can be used to find the 
displacements of all the elements of the string as a function of time. Thus, it can 
tell us the shape of the wave at any given time. 

The names of the quantities in Eq. 16.1.2 are displayed in Fig. 16.1.3 and 
 defined next. Before we discuss them, however, let us examine Fig. 16.1.4, which 
shows five “snapshots” of a sinusoidal wave traveling in the positive direction of 
an x axis. The movement of the wave is indicated by the rightward progress of the 
short  arrow pointing to a high point of the wave. From snapshot to  snapshot, the 
short arrow moves to the right with the wave shape, but the string moves only par-
allel to the y axis. To see that, let us follow the motion of the  red-dyed string ele-
ment at x = 0. In the first snapshot (Fig. 16.1.4a), this element is at displacement 
y = 0. In the next snapshot, it is at its extreme downward  displacement because a 
valley (or extreme low point) of the wave is passing through it. It then moves back 
up through y = 0. In the fourth snapshot, it is at its extreme upward displacement 
because a peak (or extreme high point) of the wave is passing through it. In the 
fifth snapshot, it is again at y = 0, having  completed one full oscillation.

Amplitude and Phase
The amplitude ym of a wave, such as that in Fig. 16.1.4, is the magnitude of the 
 maximum displacement of the elements from their equilibrium positions as the 
wave passes through them. (The subscript m stands for maximum.) Because ym 
is a magnitude, it is always a positive quantity, even if it is measured downward 
 instead of upward as drawn in Fig. 16.1.4a.

The phase of the wave is the argument kx − ωt of the sine in Eq. 16.1.2. As 
the wave sweeps through a string element at a particular position x, the phase 
changes linearly with time t. This means that the sine also changes, oscillating 
 between +1 and −1. Its extreme positive value (+1) corresponds to a peak of 
the wave moving through the element; at that instant the value of y at position 
x is ym. Its extreme negative value (−1) corresponds to a valley of the wave mov-
ing through the element; at that instant the value of y at position x is −ym. Thus, 
the sine function and the time-dependent phase of a wave correspond to the oscil-
lation of a string element, and the amplitude of the wave determines the extremes 
of the element’s displacement.

Caution: When evaluating the phase, rounding off the numbers before you 
evaluate the sine function can throw off the calculation considerably.

Wavelength and Angular Wave Number
The wavelength λ of a wave is the distance (parallel to the direction of the wave’s 
travel) between repetitions of the shape of the wave (or wave shape). A typical 
wavelength is marked in Fig. 16.1.4a, which is a snapshot of the wave at time t = 0. 
At that time, Eq. 16.1.2 gives, for the description of the wave shape,

 y(x, 0) = ym sin kx. (16.1.3)

By definition, the displacement y is the same at both ends of this  wavelength—
that is, at x = x1 and x = x1 + λ. Thus, by Eq. 16.1.3,

ym sin kx1 = ym sin k(x1 + λ)

 = ym sin (kx1 + kλ). (16.1.4)

A sine function begins to repeat itself when its angle (or argument) is increased 
by 2π rad, so in Eq. 16.1.4 we must have kλ = 2π, or

      k =   2π _ λ        (  angular wave number )  .      (16.1.5)

x

y

λ

ym x1

(a)

x

y

(b)

x

y

(c)

x

y

(d )

x

y

(e)

Watch this spot in this
series of snapshots.

Figure 16.1.4 Five “snapshots” of a string 
wave traveling in the positive direction 
of an x axis. The amplitude ym is indi-
cated. A  typical wavelength λ, measured 
from an  arbitrary position x1, is also 
indicated.

Displacement

Amplitude

Angular
wave number

Position

Time

Angular
frequency

Phase

Oscillating
term

y(x,t) = ym sin (kx – ωt)

Figure 16.1.3 The names of the quan-
tities in Eq. 16.1.2, for a transverse 
sinusoidal wave.
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We call k the angular wave number of the wave; its SI unit is the radian per meter, 
or the inverse meter. (Note that the symbol k here does not represent a spring 
constant as previously.)

Notice that the wave in Fig. 16.1.4 moves to the right by   1 _ 4   λ from one snapshot 
to the next. Thus, by the fifth snapshot, it has moved to the right by 1λ.

Period, Angular Frequency, and Frequency
Figure 16.1.5 shows a graph of the displacement y of Eq. 16.1.2 versus time t at 
a  certain position along the string, taken to be x = 0. If you were to monitor the 
string, you would see that the single element of the string at that position moves 
up and down in simple harmonic motion given by Eq. 16.1.2 with x = 0:

 y(0, t) = ym sin(−ωt)

 = −ym sin ωt    (x = 0). (16.1.6)

Here we have made use of the fact that sin(−α) = −sin α, where α is any angle. 
Figure 16.1.5 is a graph of this equation, with displacement plotted versus time; 
it does not show the shape of the wave. (Figure 16.1.4 shows the shape and is a 
 picture of reality; Fig. 16.1.5 is a graph and thus an abstraction.)

We define the period of oscillation T of a wave to be the time any string 
 element takes to move through one full oscillation. A typical period is marked on 
the graph of Fig. 16.1.5. Applying Eq. 16.1.6 to both ends of this time interval and 
equating the results yield

−ym sin ωt1 = −ym sin ω(t1 + T)

 = −ym sin(ωt1 + ωT). (16.1.7)

This can be true only if ωT = 2π, or if

  ω =   2π _ 
T

      (angular frequency). (16.1.8)

We call ω the angular frequency of the wave; its SI unit is the radian per second.
Look back at the five snapshots of a traveling wave in Fig. 16.1.4. The time 

 between snapshots is   1 _ 4   T. Thus, by the fifth snapshot, every string element has 
made one full oscillation.

The frequency f of a wave is defined as 1/T and is related to the angular 
 frequency ω by

   f =   1 _ 
T

   =   ω _ 
2π        (  frequency )   .   (16.1.9)

Like the frequency of simple harmonic motion in Chapter 15, this frequency f is a 
number of oscillations per unit time—here, the number made by a string element 
as the wave moves through it. As in Chapter 15, f is usually measured in hertz or 
its multiples, such as kilohertz.

t

y

t1
ym

T

This is a graph,
not a snapshot.

Figure 16.1.5 A graph of the dis-
placement of the string element at 
x = 0 as a function of time, as the 
sinusoidal wave of Fig. 16.1.4 passes 
through the element. The amplitude 
ym is indicated. A typical period T, 
 measured from an arbitrary time t1, 
is also  indicated.

Checkpoint 16.1.1
The figure is a composite of three snapshots, each 
of a wave  traveling along a particular string. The 
phases for the waves are given by (a) 2x − 4t,  
(b) 4x − 8t, and (c) 8x − 16t. Which phase 
 corresponds to which wave in the figure?

1 2 3

x

y
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Phase Constant
When a sinusoidal traveling wave is given by the wave function of Eq. 16.1.2, 
the wave near x = 0 looks like Fig. 16.1.6a when t = 0. Note that at x = 0, the 
displacement is y = 0 and the slope is at its maximum positive value. We can 
generalize Eq. 16.1.2 by inserting a phase constant ϕ in the wave function:

 y = ym sin(kx − ωt + ϕ). (16.1.10)

The value of ϕ can be chosen so that the function gives some other displacement  
and slope at x = 0 when t = 0. For example, a choice of ϕ = +π/5 rad gives the dis-
placement and slope shown in Fig. 16.1.6b when t = 0. The wave is still  sinusoidal 
with the same values of ym, k, and ω, but it is now shifted from what you see in Fig. 
16.1.6a (where ϕ = 0). Note also the direction of the shift. A positive value of ϕ shifts 
the curve in the negative direction of the x axis; a negative value shifts the curve in 
the  positive direction.

The Speed of a Traveling Wave
Figure 16.1.7 shows two snapshots of the wave of Eq. 16.1.2, taken a small time 
 interval Δt apart. The wave is traveling in the positive direction of x (to the right 
in Fig.  16.1.7), the entire wave pattern moving a distance Δx in that direction 
 during the interval Δt. The ratio Δx/Δt (or, in the differential limit, dx/dt) is the 
wave speed v. How can we find its value?

As the wave in Fig. 16.1.7 moves, each point of the moving wave form, such 
as point A marked on a peak, retains its displacement y. (Points on the string do 
not retain their displacement, but points on the wave form do.) If point A retains 
its displacement as it moves, the phase in Eq. 16.1.2 (the argument of the sine 
function) giving it that displacement must remain a constant:

 kx − ωt = a constant. (16.1.11)

Note that although this argument is constant, both x and t are changing. In fact, 
as t increases, x must also, to keep the argument constant. This confirms that the 
wave pattern is moving in the positive direction of x.

To find the wave speed v, we take the derivative of Eq. 16.1.11, getting

  k   dx _ 
dt

   − ω = 0  

or     dx _ 
dt

   = v =   ω _ 
k

  .   (16.1.12)

Using Eq. 16.1.5 (k = 2π/λ) and Eq. 16.1.8 (ω = 2π/T), we can rewrite the 
wave speed as

  v =   ω _ 
k

   =   λ _ 
T

   = λf    (wave speed). (16.1.13)

The equation v = λ/T tells us that the wave speed is one wavelength per period; 
the wave moves a distance of one wavelength in one period of oscillation.

Equation 16.1.2 describes a wave moving in the positive direction of x. We 
can find the equation of a wave traveling in the opposite direction by replacing t 
in Eq. 16.1.2 with −t. This corresponds to the condition

 kx + ωt = a constant, (16.1.14)

which (compare Eq. 16.1.11) requires that x decrease with time. Thus, a wave 
traveling in the negative direction of x is described by the equation

 y(x, t) = ym sin(kx + ωt). (16.1.15)

Figure 16.1.6 A sinusoidal traveling 
wave at t = 0 with a phase constant ϕ 
of (a) 0 and (b) π/5 rad.

x

x

y

y

(a)

(b)

The effect of the
phase constant ϕ
is to shift the wave.

Figure 16.1.7 Two snapshots of the 
wave of Fig. 16.1.4, at time t = 0 and 
then at time t = Δt. As the wave 
moves to the right at velocity    v →   , the 
entire curve shifts a distance Δx dur-
ing Δt. Point A “rides” with the wave 
form, but the string elements move 
only up and down.

x

y x

A

Wave at t = 0
Wave at t =   t

v

Δ

Δ

c16WavesI.indd   473 05/05/21   7:58 PM



474 CHaPTer 16 Waves—I

If you analyze the wave of Eq. 16.1.15 as we have just done for the wave of 
Eq. 16.1.2, you will find for its velocity

     dx _ 
dt

   = −   ω _ 
k

  .   (16.1.16)

The minus sign (compare Eq. 16.1.12) verifies that the wave is indeed moving in 
the negative direction of x and justifies our switching the sign of the time variable.

Consider now a wave of arbitrary shape, given by

 y(x, t) = h(kx ± ωt), (16.1.17)

where h represents any function, the sine function being one possibility. Our 
 previous analysis shows that all waves in which the variables x and t enter 
into  the combination kx ± ωt are traveling waves. Furthermore, all traveling 
waves must be of the form of Eq. 16.1.17. Thus,  y  (  x, t )    =  √ 

_______
 ax + bt    represents a 

possible (though perhaps physically a little bizarre) traveling wave. The function 
y(x, t) = sin(ax2 − bt), on the other hand, does not represent a traveling wave.

Checkpoint 16.1.2
Here are the equations of three waves (see Sample Problem 16.1.2):
(1) y(x, t) = 2 sin(4x − 2t), (2) y(x, t) = sin(3x − 4t), (3) y(x, t) = 2 sin(3x − 3t). 
Rank the waves according to their (a) wave speed and (b) maximum speed perpen-
dicular to the wave’s direction of travel (the transverse speed), greatest first.

Sample Problem 16.1.1 Determining the quantities in an equation for a transverse wave

A transverse wave traveling along an x axis has the form 
given by

 y = ym sin(kx ± ωt + ϕ). (16.1.18)

Figure 16.1.8a gives the displacements of string elements 
as a function of x, all at time t = 0. Figure 16.1.8b gives the 
 displacements of the element at x = 0 as a function of t.  
Find the values of the quantities shown in Eq. 16.1.18, 
including the correct choice of sign.

KEY IDEAS

(1) Figure 16.1.8a is effectively a snapshot of reality 
(something that we can see), showing us motion spread 
out over the x axis. From it we can determine the wave-
length λ of the wave along that axis, and then we can 
find the angular wave number k (= 2π/λ) in Eq. 16.1.18.  
(2) Figure 16.1.8b is an abstraction, showing us motion 
spread out over time. From it we can determine the period 

Figure 16.1.8 (a) A snapshot of the displacement y versus position x along a string, at 
time t = 0. (b) A graph of displacement y versus time t for the string element at x = 0.

(a)
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T of the string element in its SHM and thus also of the 
wave itself. From T we can then find angular frequency ω 
(= 2π/T) in Eq. 16.1.18. (3) The phase constant ϕ is set by 
the displacement of the string at x = 0 and t = 0.

Amplitude: From either Fig. 16.1.8a or 16.1.8b we see 
that the maximum displacement is 3.0 mm. Thus, the 
wave’s amplitude xm = 3.0 mm.

Wavelength: In Fig. 16.1.8a, the wavelength λ is the dis-
tance along the x axis between repetitions in the pattern. 
The easiest way to measure λ is to find the distance from one 
crossing point to the next crossing point where the string has 
the same slope. Visually we can roughly measure that dis-
tance with the scale on the axis. Instead, we can lay the edge 
of a paper sheet on the graph, mark those crossing points, 
slide the sheet to align the left-hand mark with the origin, 
and then read off the location of the right-hand mark. Either 
way we find λ = 10 mm. From Eq. 16.1.5, we then have

 k =   2π _ λ   =   2π _ 
0.010 m

   = 200π rad / m. 

Period: The period T is the time interval that a string ele-
ment’s SHM takes to begin repeating itself. In Fig. 16.1.8b, 
T is the distance along the t axis from one crossing point to 
the next crossing point where the plot has the same slope. 
Measuring the distance visually or with the aid of a sheet 
of paper, we find T = 20 ms. From Eq. 16.1.8, we then have

 ω =   2π _ 
T

   =   2π _ 
0.020 s

   = 100π rad / s. 

Direction of travel: To find the direction, we apply a 
bit of reasoning to the figures. In the snapshot at t = 0  
given in Fig.  16.1.8a, note that if the wave is moving 
rightward, then just after the snapshot, the depth of the 
wave at x = 0 should increase (mentally slide the curve 
slightly rightward). If,  instead, the wave is moving left-
ward, then just after the snapshot, the depth at x = 0 
should decrease. Now let’s check the graph in Fig. 16.1.8b. 
It tells us that just after t = 0, the depth increases. Thus, 
the wave is moving rightward, in the positive direction of 
x, and we choose the minus sign in Eq. 16.1.18.

Phase constant: The value of ϕ is set by the conditions 
at x = 0 at the instant t = 0. From either figure we see 
that at that location and time, y = −2.0 mm. Substituting 
these three values and also ym = 3.0 mm into Eq. 16.1.18 
gives us

−2.0 mm = (3.0 mm) sin(0 + 0 + ϕ)

or ϕ = sin−1  (–   2 _ 3  )   = −0.73 rad.

Note that this is consistent with the rule that on a plot of y 
versus x, a negative phase constant shifts the normal sine 
function rightward, which is what we see in Fig. 16.1.8a.

Equation: Now we can fill out Eq. 16.1.18:

 y = (3.0 mm) sin(200πx − l00πt − 0.73 rad), (Answer)

with x in meters and t in seconds.

Sample Problem 16.1.2 Transverse velocity and transverse acceleration of a string element

A wave traveling along a string is described by

y(x, t) = (0.00327 m) sin(72.1x − 2.72t),

in which the numerical constants are in SI units (72.1 
rad/m and 2.72 rad/s).

(a) What is the transverse velocity u of the string ele-
ment at x = 22.5 cm at time t = 18.9 s? (This velocity, 
which is associated with the transverse oscillation of a 
string  element, is parallel to the y axis. Don’t confuse 
it with v, the constant velocity at which the wave form 
moves along the x axis.)

KEY IDEAS

The transverse velocity u is the rate at which the displace-
ment y of the element is changing. In general, that dis-
placement is given by

 y(x, t) = ym sin(kx − ωt). (16.1.19)

For an element at a certain location x, we find the rate of 
change of y by taking the derivative of Eq. 16.1.19 with 

respect to t while treating x as a constant. A derivative 
taken while one (or more) of the variables is treated as a 
constant is called a partial derivative and is represented 
by a symbol such as ∂/∂t rather than d/dt.

Calculations: Here we have

   u =   
∂ y

 _ ∂ x   = −  ωy  m   cos   (  kx − ωt )   .   (16.1.20)

Next, substituting numerical values but suppressing the 
units, which are SI, we write

u = (−2.72)(0.00327) cos[(72.1)(0.225) − (2.72)(18.9)]

 = 0.00720 m/s = 7.20 mm/s. (Answer)

Thus, at t = 18.9 s our string element is moving in the 
 positive direction of y with a speed of 7.20 mm/s. (Cau-
tion: In evaluating the cosine function, we keep all the sig-
nificant figures in the argument or the calculation can be  
off considerably. For example, round off the numbers to 
two significant  figures and then see what you get for u.)

(b) What is the transverse acceleration ay of our string 
 element at t = 18.9 s?
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16.2 WAVE SPEED ON A STRETCHED STRING
Learning Objectives 
After reading this module, you should be able to . . .

16.2.1 Calculate the linear density μ of a uniform string 
in terms of the total mass and total length.

16.2.2 Apply the relationship between wave speed v, 
 tension τ, and linear density μ.

Key Ideas 
● The speed of a wave on a stretched string is set by 
 properties of the string, not properties of the wave 
such as frequency or amplitude.

● The speed of a wave on a string with tension τ and 
linear density μ is

 v =  √ 
__

    τ _ μ     .

Wave Speed on a Stretched String
The speed of a wave is related to the wave’s wavelength and frequency by Eq. 
16.1.13, but it is set by the properties of the medium. If a wave is to travel through 
a medium such as water, air, steel, or a stretched string, it must cause the particles 
of that medium to oscillate as it passes, which requires both mass (for kinetic 
energy) and elasticity (for potential energy). Thus, the mass and elasticity deter-
mine how fast the wave can travel. Here, we find that dependency in two ways.

Dimensional Analysis
In dimensional analysis we carefully examine the dimensions of all the physical 
quantities that enter into a given situation to determine the quantities they pro-
duce. In this case, we examine mass and elasticity to find a speed v, which has the 
dimension of length divided by time, or LT −1.

For the mass, we use the mass of a string element, which is the mass m of the 
string divided by the length l of the string. We call this ratio the  linear density μ 
of the string. Thus, μ = m/l, its dimension being mass divided by length, ML−1.

You cannot send a wave along a string unless the string is under tension, 
which means that it has been stretched and pulled taut by forces at its two 

KEY IDEA

The transverse acceleration ay is the rate at which the ele-
ment’s transverse velocity is changing.

Calculations: From Eq. 16.1.20, again treating x as a con-
stant but allowing t to vary, we find

    a  y   =   ∂ u _ ∂ t
   =   − ω   2  y  m   sin    (  kx − ωt )  .    (16.1.21)

Substituting numerical values but suppressing the units, 
which are SI, we have

ay = −(2.72)2(0.00327) sin[(72.1)(0.225) − (2.72)(18.9)]

 = −0.0142 m/s2 = −14.2 mm/s2. (Answer)

From part (a) we learn that at t = 18.9 s our string element 
is moving in the positive direction of y, and here we learn 
that it is slowing because its acceleration is in the opposite 
 direction of u.

additional examples, video, and practice available at WileyPLUS
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ends. The tension τ in the string is equal to the common magnitude of those 
two forces. As a wave travels along the string, it displaces elements of the 
string by causing additional stretching, with adjacent sections of string pull-
ing on each other  because of the tension. Thus, we can associate the tension 
in the string with the stretching (elasticity) of the string. The tension and the 
stretching forces it produces have the dimension of a force—namely, MLT −2 
(from F = ma).

We need to combine μ (dimension ML−1) and τ (dimension MLT −2) to get v 
(dimension LT −1). A little juggling of various  combinations suggests

  v = C  √ 
__

   τ _ μ    ,  (16.2.1)

in which C is a dimensionless constant that cannot be determined with dimen-
sional analysis. In our second approach to determining wave speed, you will see 
that Eq. 16.2.1 is indeed correct and that C = 1.

Derivation from Newton’s Second Law
Instead of the sinusoidal wave of Fig. 16.1.1b, let us consider a single symmet-
rical pulse such as that of Fig. 16.2.1, moving from left to right along a string 
with speed v. For convenience, we choose a reference frame in which the pulse 
 remains  stationary; that is, we run along with the pulse, keeping it constantly 
in view. In this frame, the string appears to move past us, from right to left in 
Fig. 16.2.1, with speed v.

Consider a small string element of length Δl within the pulse, an element 
that forms an arc of a circle of radius R and subtending an angle 2θ at the center 
of that circle. A force    → τ    with a magnitude equal to the tension in the string pulls 
 tangentially on this element at each end. The horizontal components of these 
forces cancel, but the vertical components add to form a radial restoring force    F 

→
   .  

In magnitude,

  F = 2  (  τ sin  θ )    ≈ τ  (  2θ )    = τ   Δl _ 
R

      (force), (16.2.2)

where we have approximated sin θ as θ for the small angles θ in Fig. 16.2.1. From 
that figure, we have also used 2θ = Δl/R. The mass of the element is given by

 Δm = μ Δl   (mass), (16.2.3)

where μ is the string’s linear density.
At the moment shown in Fig. 16.2.1, the string element Δl is moving in an arc of a 

circle. Thus, it has a centripetal acceleration toward the center of that circle, given by

  a =    v   2  _ 
R

       (acceleration). (16.2.4)

Equations 16.2.2, 16.2.3, and 16.2.4 contain the elements of Newton’s second 
law. Combining them in the form

 force = mass × acceleration

gives    τ Δl _ 
R

   =   (  μ Δl )      v   2  _ 
R

  . 
 

Solving this equation for the speed v yields

  v =  √ 
__

   τ _ μ        (speed), (16.2.5)

in exact agreement with Eq. 16.2.1 if the constant C in that equation is given the 
value unity. Equation 16.2.5 gives the speed of the pulse in Fig. 16.2.1 and the 
speed of any other wave on the same string under the same tension.

R

l

Ov

ττ
Δ

θθ

Figure 16.2.1 A symmetrical pulse, 
viewed from a reference frame in 
which the pulse is  stationary and the 
string appears to move right to left 
with speed v. We find speed v by 
 applying Newton’s second law to a 
string element of length Δl, located 
at the top of the pulse.
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Energy and Power of a Wave Traveling Along a String
When we set up a wave on a stretched string, we provide energy for the motion 
of the string. As the wave moves away from us, it transports that energy as both 
 kinetic energy and elastic potential energy. Let us consider each form in turn.

Kinetic Energy
A string element of mass dm, oscillating transversely in simple harmonic motion 
as the wave passes through it, has kinetic energy associated with its transverse 
 velocity    → u   . When the element is rushing through its y = 0 position (element b in 
Fig. 16.3.1), its transverse velocity—and thus its kinetic energy—is a maximum. 
When the element is at its extreme position y = ym (as is element a), its transverse 
velocity—and thus its kinetic energy—is zero.

Elastic Potential Energy
To send a sinusoidal wave along a previously straight string, the wave must neces-
sarily stretch the string. As a string element of length dx oscillates transversely, its 
length must increase and decrease in a periodic way if the string element is to fit 
the sinusoidal wave form. Elastic potential energy is associated with these length 
changes, just as for a spring.

When the string element is at its y = ym position (element a in Fig. 16.3.1), its 
length has its normal undisturbed value dx, so its elastic potential energy is zero. 

y

ym

0

dx

b

dx

a

x

v

λ

Figure 16.3.1 A snapshot of a travel-
ing wave on a string at time t = 0. 
String element a is at displacement 
y = ym, and string element b is at dis-
placement y = 0. The kinetic energy 
of the string element at each position 
depends on the transverse velocity 
of the element. The potential energy 
depends on the amount by which 
the string element is stretched as the 
wave passes through it.

Equation 16.2.5 tells us:

The frequency of the wave is fixed entirely by whatever generates the wave (for 
example, the person in Fig. 16.1.1b). The wavelength of the wave is then fixed by 
Eq. 16.1.13 in the form λ = v/f.

Checkpoint 16.2.1
You send a traveling wave along a particular string by oscillating one end. If you 
 increase the frequency of the oscillations, do (a) the speed of the wave and (b) the 
wavelength of the wave increase, decrease, or remain the same? If,  instead, you 
 increase the tension in the string, do (c) the speed of the wave and (d) the wavelength 
of the wave increase, decrease, or remain the same?

16.3 ENERGY AND POWER OF A WAVE TRAVELING ALONG A STRING
Learning Objective 
After reading this module, you should be able to . . .

16.3.1 Calculate the average rate at which energy is transported by a transverse wave.

Key Idea 
● The average power of, or average rate at which 
 energy is transmitted by, a sinusoidal wave on a 

stretched string is given by
  P  avg   =   1 _ 2    μvω   2  y  m  2  . 

The speed of a wave along a stretched ideal string depends only on the tension 
and linear density of the string and not on the frequency of the wave.
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However, when the element is rushing through its y = 0 position, it has maximum 
stretch and thus maximum elastic potential energy.

Energy Transport
The oscillating string element thus has both its maximum kinetic energy and its 
maximum elastic potential energy at y = 0. In the snapshot of Fig. 16.3.1, the 
 regions of the string at maximum displacement have no energy, and the regions 
at zero displacement have maximum energy. As the wave travels along the string, 
forces due to the tension in the string continuously do work to transfer energy 
from regions with energy to regions with no energy.

As in Fig. 16.1.1b, let’s set up a wave on a string stretched along a horizon-
tal x axis such that Eq. 16.1.2 applies. As we oscillate one end of the string, we 
continuously provide energy for the motion and stretching of the string—as the 
string sections oscillate perpendicularly to the x axis, they have kinetic  energy 
and elastic potential energy. As the wave moves into sections that were previ-
ously at rest, energy is transferred into those new sections. Thus, we say that the 
wave transports the energy along the string.

The Rate of Energy Transmission
The kinetic energy dK associated with a string element of mass dm is given by

 dK =    1 _ 2    dm u2, (16.3.1)

where u is the transverse speed of the oscillating string element. To find u, we 
 differentiate Eq. 16.1.2 with respect to time while holding x constant:

   u =   
∂ y

 _ ∂ t
   = −  ωy  m   cos   (  kx − ωt )  .    (16.3.2)

Using this relation and putting dm = μ dx, we rewrite Eq. 16.3.1 as

 dK =    1 _ 2   (μ dx)(−ωym)2 cos2(kx − ωt). (16.3.3)

Dividing Eq. 16.3.3 by dt gives the rate at which kinetic energy passes through 
a string element, and thus the rate at which kinetic energy is carried along by the 
wave. The dx/dt that then appears on the right of Eq. 16.3.3 is the wave speed v, so 

     dK _ 
dt

   =   1 _ 2    μvω   2  y  m  2    cos  2   (  kx − ωt )  .    (16.3.4)

The average rate at which kinetic energy is transported is

   (     dK _ 
dt

   )     
avg

   =    1 _ 2    μv ω  2  y  m  2     [    cos  2   (  kx − ωt )    ]    
avg

   

 =    1 _ 4    μvω2y2
m. (16.3.5)

Here we have taken the average over an integer number of wavelengths and have 
used the fact that the average value of the square of a cosine function over an 
integer number of periods is    1 _ 2   .

Elastic potential energy is also carried along with the wave, and at the same 
average rate given by Eq. 16.3.5. Although we shall not examine the proof, you 
should recall that, in an oscillating system such as a pendulum or a spring–block 
system, the average kinetic energy and the average potential  energy are equal.

The average power, which is the average rate at which energy of both kinds 
is transmitted by the wave, is then

    P  avg   = 2  (    dK _ 
dt

   )    
avg

      (16.3.6)

or, from Eq. 16.3.5,

 Pavg =    1 _ 2    μvω2y2
m   (average power). (16.3.7)
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16.4 THE WAVE EQUATION
Learning Objective  
After reading this module, you should be able to . . .

16.4.1 For the equation giving a string-element dis-
placement as a function of position x and time t, 
apply the relationship between the second derivative 

with respect to x and the second derivative with 
respect to t.

Key Idea  
● The general differential equation that governs the travel 
of waves of all types is

    ∂  2 y
 _ 

 ∂ x   2 
   =   1 _ 

 v   2 
       ∂  2 y

 _ 
 ∂ t   2 

  . 

Here the waves travel along an x axis and oscillate 
parallel to the y axis, and they move with speed v, 
in either the positive x direction or the negative x 
direction.

The factors μ and v in this equation depend on the material and tension of the string. 
The factors ω and ym depend on the process that generates the wave. The depen-
dence of the average power of a wave on the square of its amplitude and also on the 
square of its angular frequency is a general result, true for waves of all types.

Checkpoint 16.3.1
We send a sinusoidal wave along a string under tension, and the average transmitted 
power is P1. (a) If we double the tension, what is the average transmitted power P2 
in terms of P1? (b) Suppose, instead, that we replace the string with one having twice 
the density but maintain the same tension, angular frequency, and amplitude. What 
then is the average transmitted power P3 in terms of P1?

Sample Problem 16.3.1 Average power of a transverse wave

A string has linear density μ = 525 g/m and is under tension  
τ = 45 N. We send a sinusoidal wave with frequency f =  
120 Hz and amplitude ym = 8.5 mm along the string. At what 
average rate does the wave transport energy?

KEY IDEA

The average rate of  energy transport is the average power 
Pavg as given by Eq. 16.3.7. 

Calculations: To use Eq. 16.3.7, we first must calculate 
 angular frequency ω and wave speed v. From Eq. 16.1.9,

ω = 2πf = (2π)(120 Hz) = 754 rad/s.

From Eq. 16.2.5 we have

  v =  √ 
__

   τ _ μ     =  √ 
__________

   45 N _ 
0.525 kg / m

     = 9.26 m / s.  

Equation 16.3.7 then yields

 Pavg =    1 _ 2    μvω2y2
m 

 = (   1 _ 2   )(0.525 kg/m)(9.26 m/s)(754 rad/s)2(0.0085 m)2 

 ≈ 100 W. (Answer)

The Wave Equation
As a wave passes through any element on a stretched string, the element moves 
perpendicularly to the wave’s direction of travel (we are dealing with a transverse 
wave). By applying Newton’s second law to the element’s motion, we can derive 
a general differential equation, called the wave equation, that governs the travel 
of waves of any type.

additional examples, video, and practice available at WileyPLUS
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Figure 16.4.1a shows a snapshot of a string element of mass dm and length ℓ 
as a wave travels along a string of linear density μ that is stretched along a hori-
zontal x axis. Let us assume that the wave amplitude is small so that the element 
can be tilted only slightly from the x axis as the wave passes. The force    F 

→
   2 on the 

right end of the element has a magnitude equal to tension τ in the string and is 
 directed slightly upward. The force    F 

→
   1 on the left end of the element also has 

a magnitude equal to the tension τ but is directed slightly downward. Because of 
the slight curvature of the element, these two forces are not simply in opposite 
direction so that they cancel. Instead, they combine to produce a net force that 
causes the element to have an upward acceleration ay. Newton’s second law writ-
ten for y components (Fnet,y = may) gives us

 F2y − F1y = dm ay. (16.4.1)

Let’s analyze this equation in parts, first the mass dm, then the acceleration com-
ponent ay, then the individual force components F2y and F1y, and then finally the 
net force that is on the left side of Eq. 16.4.1.

Mass. The element’s mass dm can be written in terms of the string’s linear 
density μ and the element’s length ℓ as dm = μℓ. Because the element can have 
only a slight tilt, ℓ ≈ dx (Fig. 16.4.1a) and we have the approximation

 dm = μ dx. (16.4.2)

Acceleration. The acceleration ay in Eq. 16.4.1 is the second derivative of the 
displacement y with respect to time:

    a  y   =   
 d   2 y

 _ 
d t   2 

  .   (16.4.3)

Forces. Figure 16.4.1b shows that    F 
→

   2 is tangent to the string at the right end 
of the string element. Thus we can relate the components of the force to the string 
slope S2 at the right end as
     

 F  2y   _ 
 F  2x  

   =  S  2  .   (16.4.4)

We can also relate the components to the magnitude F2 (= τ) with

   F  2   =  √ 
________

  F  2x  
2   +  F  2y  

2      

or   τ =  √ 
_

  F  2x  
2   +  F  2y  

2    .   (16.4.5)

However, because we assume that the element is only slightly tilted, F2y ⪡ F2x and 
therefore we can rewrite Eq. 16.4.5 as

 τ = F2x. (16.4.6)

Substituting this into Eq. 16.4.4 and solving for F2y yield

 F2y = τS2. (16.4.7)

Similar analysis at the left end of the string element gives us

 F1y = τS1.  (16.4.8)

y

x
dx

F1

F2

ay

(a)

y

x

F2

F2x

F2y

(b)

Tangent line

�

Figure 16.4.1 (a) A string element as a sinusoidal transverse wave travels on a 
stretched string. Forces   F1 

→
    and   F2 

→
    act at the left and right ends, producing accelera-

tion    a →    having a vertical component ay. (b) The force at the  element’s right end is 
directed along a  tangent to the element’s right side.

16.4 THe Wave eQUaTIOn
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Net Force. We can now substitute Eqs. 16.4.2, 16.4.3, 16.4.7, and 16.4.8 into 
Eq. 16.4.1 to write

   τS  2   −  τS  1   =   (  μ dx )      
 d   2 y

 _ 
 dt   2 

  ,  

or     
 S  2   −  S  1   _ 

dx
   =   

μ
 _ 

τ
      d   2 y

 _ 
 dt   2 

  .   (16.4.9)

Because the string element is short, slopes S2 and S1 differ by only a differential 
amount dS, where S is the slope at any point:

   S =   
dy

 _ 
dx

  .   (16.4.10)

First replacing S2 − S1 in Eq. 16.4.9 with dS and then using Eq. 16.4.10 to substi-
tute dy/dx for S, we find

    dS _ 
dx

   =    
μ

 _ 
τ
       
d2y

 _ 
dt2

  ,   

    
d(dy/dx)

 _ 
dx

   =    
μ

 _ 
τ
       
d2y

 _ 
dt2

  ,   

and     
∂2y

 _ 
∂x2

   =    
μ

 _ 
τ
       
∂2y

 _ 
∂t2

      . (16.4.11)

In the last step, we switched to the notation of partial derivatives because on the 
left we differentiate only with respect to x and on the right we differentiate only 
with respect to t. Finally, substituting from Eq. 16.2.5  (v =  √ 

_
 τ / μ    ), we find

    
 ∂  2 y

 _ 
 ∂ x   2 

   =   1 _ 
 v   2 

      
 ∂  2 y

 _ 
 ∂ t   2 

      (wave equation). (16.4.12)

This is the general differential equation that governs the travel of waves of all 
types.

16.5 INTERFERENCE OF WAVES
Learning Objectives  
After reading this module, you should be able to . . .

16.5.1 Apply the principle of superposition to show that 
two overlapping waves add algebraically to give a 
resultant (or net) wave.

16.5.2 For two transverse waves with the same ampli-
tude and wavelength and that travel together, find 
the displacement equation for the resultant wave 
and calculate the  amplitude in terms of the individual 
wave amplitude and the phase difference.

16.5.3 Describe how the phase difference between 
two  transverse waves (with the same amplitude and 
 wavelength) can result in fully constructive interfer-
ence, fully destructive interference, and intermediate 
 interference.

16.5.4 With the phase difference between two interfer-
ing waves expressed in terms of wavelengths, quickly 
 determine the type of interference the waves have.

Checkpoint 16.4.1
Is a string element at its zero displacement or its extreme displacement when (a) its 
curvature ( ∂2y/∂x2)   is maximum and (b) its acceleration ( ∂2y/∂t2)  is maximum?
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The Principle of Superposition for Waves
It often happens that two or more waves pass simultaneously through the 
same region. When we listen to a concert, for example, sound waves from 
many instruments fall simultaneously on our eardrums. The electrons in the 
antennas of our radio and television receivers are set in motion by the net 
effect of many electromagnetic waves from many different broadcasting cen-
ters. The water of a lake or harbor may be churned up by waves in the wakes 
of many boats.

Suppose that two waves travel simultaneously along the same stretched 
string. Let y1(x, t) and y2(x, t) be the displacements that the string would  
expe rience if each wave traveled alone. The displacement of the string when 
the waves overlap is then the algebraic sum

 y′(x, t) = y1(x, t) + y2(x, t). (16.5.1)

This summation of displacements along the string means that

This is another example of the principle of superposition, which says that 
when several effects occur simultaneously, their net effect is the sum of the 
individual effects. (We should be thankful that only a simple sum is needed. If 
two effects somehow amplified each other, the resulting nonlinear world would 
be very difficult to manage and understand.)

Figure 16.5.1 shows a sequence of snapshots of two pulses traveling in  opposite 
directions on the same stretched string. When the pulses overlap, the  resultant 
pulse is their sum. Moreover,

Figure 16.5.1 A series of snapshots 
that shows two pulses traveling in 
opposite directions along a stretched 
string. The superposition principle 
applies as the  pulses move through 
each other.

Key Ideas  
● When two or more waves  traverse the same medium, 
the displacement of any particle of the medium is the 
sum of the displacements that the individual waves 
would give it, an  effect known as the principle of super-
position for waves.
● Two sinusoidal waves on the same string exhibit 
 interference, adding or canceling according to the 
principle of superposition. If the two are traveling in 
the same direction and have the same amplitude ym 

and  frequency (hence the same wavelength) but differ 
in phase by a phase constant ϕ, the result is a single 
wave with this same  frequency:

If ϕ = 0, the waves are exactly in phase and their 
interference is fully constructive; if ϕ = π rad, they 
are exactly out of phase and their interference is fully 
destructive.

 y′  (  x, t )    =   [    2y  m   cos   1 _ 2    ϕ ]    sin  (kx − ωt +   1 _ 2   ϕ).  

Interference of Waves
Suppose we send two sinusoidal waves of the same wavelength and amplitude in 
the same direction along a stretched string. The superposition principle applies. 
What resultant wave does it predict for the string?

The resultant wave depends on the extent to which the waves are in phase 
(in step) with respect to each other—that is, how much one wave form is shifted 
from the other wave form. If the waves are exactly in phase (so that the peaks 
and valleys of one are exactly aligned with those of the other), they combine to 

When two waves overlap,
we see the resultant wave,
not the individual waves.

 Overlapping waves algebraically add to produce a resultant wave (or net wave).

 Overlapping waves do not in any way alter the travel of each other.

16.5 InTerFerenCe OF Waves
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double the displacement of either wave acting alone. If they are exactly out of 
phase (the peaks of one are exactly aligned with the valleys of the other), they 
combine to cancel everywhere, and the string remains straight. We call this phe-
nomenon of combining waves interference, and the waves are said to  interfere. 
(These terms refer only to the wave displacements; the travel of the waves is 
 unaffected.)

Let one wave traveling along a stretched string be given by

 y1(x, t) = ym sin(kx − ωt) (16.5.2)

and another, shifted from the first, by

 y2(x, t) = ym sin(kx − ωt + ϕ). (16.5.3)

These waves have the same angular frequency ω (and thus the same frequency f ), 
the same angular wave number k (and thus the same wavelength λ), and the same 
amplitude ym. They both travel in the positive direction of the x axis, with the 
same speed, given by Eq. 16.2.5. They differ only by a constant angle ϕ, the phase 
constant. These waves are said to be out of phase by ϕ or to have a phase differ-
ence of ϕ, or one wave is said to be phase-shifted from the other by ϕ.

From the principle of superposition (Eq. 16.5.1), the resultant wave is the 
 algebraic sum of the two interfering waves and has displacement

 y′(x, t) = y1(x, t) + y2(x, t)

 = ym sin(kx − ωt) + ym sin(kx − ωt + ϕ). (16.5.4)

In Appendix E we see that we can write the sum of the sines of two angles α and β as

 sin α + sin β = 2 sin    1 _ 2   (α + β) cos    1 _ 2   (α − β). (16.5.5)

Applying this relation to Eq. 16.5.4 leads to

 y′(x, t) = [2ym cos    1 _ 2   ϕ] sin(kx − ωt +    1 _ 2   ϕ). (16.5.6)

As Fig. 16.5.2 shows, the resultant wave is also a sinusoidal wave traveling in the 
direction of increasing x. It is the only wave you would actually see on the string 
(you would not see the two interfering waves of Eqs. 16.5.2 and 16.5.3).

Displacement

Magnitude
gives

amplitude

y'(x,t) = [2ym cos      ] sin(kx –    t +      )

Oscillating
term

1__
2

1__
2 �ϕ ω

Figure 16.5.2 The resultant wave of  
Eq. 16.5.6, due to the interfer-
ence of two sinusoidal transverse 
waves, is also a  sinusoidal  transverse 
wave, with an  amplitude and an 
oscillating term.

The resultant wave differs from the interfering waves in two respects: (1) its phase 
constant is      ϕ, and (2) its amplitude y′m is the magnitude of the quantity in the 
brackets in Eq. 16.5.6:

 y′m = |2ym cos    1 _ 2   ϕ|   (amplitude). (16.5.7)

If ϕ = 0 rad (or 0°), the two interfering waves are exactly in phase and 
Eq. 16.5.6 reduces to

 y′(x, t) = 2ym sin(kx − ωt)   (ϕ = 0). (16.5.8)

The two waves are shown in Fig. 16.5.3a, and the resultant wave is plotted in Fig.  
16.5.3d. Note from both that plot and Eq. 16.5.8 that the amplitude of the resul-
tant wave is twice the amplitude of either interfering wave. That is the greatest 
amplitude the resultant wave can have,  because the cosine term in Eqs. 16.5.6 and 
16.5.7 has its greatest value (unity) when ϕ = 0. Interference that produces the 
greatest possible amplitude is called fully constructive interference.

   1 _ 2   

 If two sinusoidal waves of the same amplitude and wavelength travel in the same  
direction along a stretched string, they interfere to produce a resultant sinusoi-
dal wave traveling in that direction.
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x

y

y1(x, t)
and

y2(x, t)

(a)

x

y

y1(x, t) y2(x, t)

(b)

x

y

y1(x, t) y2(x, t)

(c)

2__
3

x

y

y'(x, t)

(d)

x

y

y'(x, t)

(e)

x

y

y'(x, t)

( f )

Being exactly in phase,
the waves produce a
large resultant wave.

Being exactly out of
phase, they produce
a �at string.

This is an intermediate
situation, with an
intermediate result.

ϕ = 0
ϕ = π rad ϕ =    π rad

Figure 16.5.3 Two identical sinusoidal 
waves, y1(x, t) and y2(x, t), travel 
along a string in the positive direc-
tion of an x axis. They interfere to 
give a resultant wave y′(x, t). The 
resultant wave is what is actually 
seen on the string. The phase differ-
ence ϕ between the two interfering 
waves is (a) 0 rad or 0°, (b) π rad 
or 180°, and (c)    2 _ 3   π   rad or 120°. The 
corresponding resultant waves are 
shown in (d), (e), and ( f ).

If ϕ = π rad (or 180°), the interfering waves are exactly out of phase as in Fig. 
16.5.3b. Then cos    1 _ 2   ϕ becomes cos π/2 = 0, and the amplitude of the resultant wave 
as given by Eq. 16.5.7 is zero. We then have, for all values of x and t,

 y′(x, t) = 0   (ϕ = π rad). (16.5.9)

The resultant wave is plotted in Fig. 16.5.3e. Although we sent two waves along 
the string, we see no motion of the string. This type of interference is called fully 
destructive interference.

Because a sinusoidal wave repeats its shape every 2π rad, a phase differ-
ence of ϕ = 2π rad (or 360°) corresponds to a shift of one wave relative to the 
other wave by a distance equivalent to one wavelength. Thus, phase differences 
can be  described in terms of wavelengths as well as angles. For example, in Fig. 
16.5.3b the waves may be said to be 0.50 wavelength out of phase. Table 16.5.1 

Table 16.5.1 Phase Difference and Resulting Interference Typesa

   
Amplitude

 
 Phase Difference, in  

of Resultant
 

Type of 
 Degrees Radians Wavelengths Wave Interference

0  0 0 2ym Fully constructive

 120     2 _ 3  π  0.33 ym Intermediate

 180  π 0.50 0 Fully destructive

 240     4 _ 3  π  0.67 ym Intermediate

 360  2π 1.00 2ym Fully constructive

865  15.1 2.40 0.60ym Intermediate

aThe phase difference is between two otherwise identical waves, with amplitude ym, moving in the 
same direction.
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shows some other examples of phase differences and the interference they pro-
duce. Note that when interference is neither fully constructive nor fully destruc-
tive, it is called  intermediate interference. The amplitude of the resultant wave 
is then interme diate between 0 and 2ym. For example, from Table 16.5.1, if the 
 interfering waves have a phase difference of 120° (ϕ =    2 _ 3    π rad = 0.33 wavelength), 
then the resultant wave has an amplitude of ym, the same as that of the interfering 
waves (see Fig. 16.5.3c and f ).

Two waves with the same wavelength are in phase if their phase difference is 
zero or any integer number of wavelengths. Thus, the integer part of any phase dif-
ference expressed in wavelengths may be discarded. For  example, a phase difference 
of 0.40 wavelength (an intermediate interference, close to fully destructive interfer-
ence) is equivalent in every way to one of 2.40 wavelengths, and so the simpler of 
the two numbers can be used in  computations. Thus, by looking at only the decimal 
number and comparing it to 0, 0.5, or 1.0 wavelength, you can quickly tell what type 
of interference two waves have.

Sample Problem 16.5.1 Interference of two waves, same direction, same amplitude

Two identical sinusoidal waves, moving in the same  
direction along a stretched string, interfere with each 
other. The amplitude ym of each wave is 9.8 mm, and the 
phase  difference ϕ between them is 100°.

(a) What is the amplitude y′m of the resultant wave due to 
the interference, and what is the type of this interference?

KEY IDEA

These are identical sinusoidal waves traveling in the same 
direction along a string, so they interfere to produce a 
 sinusoidal traveling wave. 

Calculations: Because they are identical, the waves have 
the same amplitude. Thus, the  amplitude y′m of the resul-
tant wave is given by Eq. 16.5.7:

y′m = |2ym cos    1 _ 2   ϕ| = |(2)(9.8 mm) cos(100°/2)|

 = 13 mm. (Answer)

We can tell that the interference is intermediate in two 
ways. The phase difference is between 0 and 180°, and, 
correspondingly, the amplitude y′m is between 0 and 2ym 
(= 19.6 mm).

(b) What phase difference, in radians and wavelengths, 
will give the resultant wave an amplitude of 4.9 mm?

Calculations: Now we are given y′m and seek ϕ. From 
Eq. 16.5.7,

y′m = |2ym cos    1 _ 2   ϕ|,

we now have

4.9 mm = (2)(9.8 mm) cos    1 _ 2   ϕ,

which gives us (with a calculator in the radian mode)

 ϕ = 2  cos  −1    4.9 mm ___________  
 (  2 )    (  9.8 mm )   

   

 = ±2.636 rad ≈ ±2.6 rad. (Answer)

There are two solutions because we can obtain the same 
resultant wave by letting the first wave lead (travel ahead 
of) or lag (travel behind) the second wave by 2.6 rad. In 
wavelengths, the phase difference is

   
 ϕ 
 ______________  

2π rad / wavelength
   =   ± 2.636 rad  ______________  

2π rad / wavelength
    

 = ±0.42 wavelength. (Answer)

Checkpoint 16.5.1
Here are four possible phase differences between two identical waves, expressed in 
wavelengths: 0.20, 0.45, 0.60, and 0.80. Rank them according to the amplitude of the  
resultant wave, greatest first.

additional examples, video, and practice available at WileyPLUS
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Phasors
Adding two waves as discussed in the preceding module is strictly limited to waves 
with identical amplitudes. If we have such waves, that technique is easy enough 
to use, but we need a more general technique that can be applied to any waves, 
whether or not they have the same amplitudes. One neat way is to use phasors 
to represent the waves. Although this may seem bizarre at first, it is essentially 
a graphical technique that uses the vector addition rules of Chapter 3 instead of 
messy trig additions.

A phasor is a vector that rotates around its tail, which is pivoted at the origin 
of a coordinate system. The magnitude of the vector is equal to the amplitude ym 
of the wave that it represents. The angular speed of the rotation is equal to the 
angular frequency ω of the wave. For example, the wave

 y1(x, t) = ym1 sin(kx − ωt) (16.6.1)

is represented by the phasor shown in Figs. 16.6.1a to d. The magnitude of the  
phasor is the amplitude ym1 of the wave. As the phasor rotates around the origin 
at angular speed ω, its projection y1 on the vertical axis varies sinusoidally, from 
a maximum of ym1 through zero to a minimum of −ym1 and then back to ym1. This 
variation corresponds to the sinusoidal variation in the displacement y1 of any 
point along the string as the wave passes through that point. (All this is shown as 
an animation with voiceover in WileyPLUS.)

When two waves travel along the same string in the same direction, we can 
represent them and their resultant wave in a phasor diagram. The phasors in 
Fig. 16.6.1e represent the wave of Eq. 16.6.1 and a second wave given by

 y2(x, t) = ym2 sin(kx − ωt + ϕ). (16.6.2)

This second wave is phase-shifted from the first wave by phase constant ϕ. 
Because the phasors rotate at the same angular speed ω, the angle between the 
two phasors is always ϕ. If ϕ is a positive quantity, then the phasor for wave 2 lags 
the phasor for wave 1 as they rotate, as drawn in Fig. 16.6.1e. If ϕ is a negative 
quantity, then the phasor for wave 2 leads the phasor for wave 1.

Because waves y1 and y2 have the same angular wave number k and angu-
lar frequency ω, we know from Eqs. 16.5.6 and 16.5.7 that their resultant wave 
is of the form

 y′(x, t) = y′m sin(kx − ωt + β), (16.6.3)

16.6 PHASORS
Learning Objectives  
After reading this module, you should be able to . . .

16.6.1 Using sketches, explain how a phasor can rep-
resent the oscillations of a string element as a wave 
travels through its location.

16.6.2 Sketch a phasor diagram for two overlapping 
waves traveling together on a string, indicating their 
amplitudes and phase difference on the sketch.

16.6.3 By using phasors, find the resultant wave of two 
transverse waves traveling together along a string, cal-
culating the amplitude and phase and writing out the 
displacement equation, and then displaying all three 
phasors in a phasor diagram that shows the ampli-
tudes, the leading or lagging, and the relative phases.

Key Idea  
● A wave y(x, t) can be represented with a phasor. This 
is a vector that has a magnitude equal to the amplitude 
ym of the wave and that rotates about an origin with an 
angular speed equal to the angular frequency ω of the 

wave. The  projection of the rotating phasor on a verti-
cal axis gives the displacement y of a point along the 
wave’s travel.
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Figure 16.6.1 (a)–(d) A phasor of magnitude ym1 rotating about an origin at angular 
speed ω  represents a sinusoidal wave. The phasor’s  projection y1 on the vertical axis rep-
resents the displacement of a point through which the wave passes. (e) A second phasor, 
also of  angular speed ω but of magnitude ym2 and rotating at a constant angle ϕ from the 
first  phasor, represents a second wave, with a phase  constant ϕ. ( f ) The resultant wave 
is  represented by the vector sum y′m of the two phasors.

y1

y

x
ym1

y1 ym1

y2
ym2

y1 ym1

y2
y'

ym2
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Zero projection, 
zero displacement

Maximum negative projection The next crest is about to
move through the dot.

This is a snapshot of the
two phasors for two waves.
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projections of
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projection of
the resultant
phasor.

Adding the two phasors as vectors
gives the resultant phasor of the
resultant wave.
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the wave moves through it.
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where y′m is the amplitude of the resultant wave and β is its phase constant. To 
find the values of y′m and β, we would have to sum the two combining waves, as 
we did to obtain Eq. 16.5.6. To do this on a phasor diagram, we vectorially add the 
two phasors at any instant during their rotation, as in Fig. 16.6.1f where phasor 
ym2 has been shifted to the head of phasor ym1. The magnitude of the vector sum 
equals the amplitude y′m in Eq. 16.6.3. The angle between the vector sum and the 
phasor for y1 equals the phase constant β in Eq. 16.6.3.

Note that, in contrast to the method of Module 16.5:

Sample Problem 16.6.1 Interference of two waves, same direction, phasors, any amplitudes

Two sinusoidal waves y1(x, t) and y2(x, t) have the same 
wavelength and travel together in the same direction 
along a string. Their amplitudes are ym1 = 4.0 mm and 
ym2 = 3.0 mm, and their phase constants are 0 and π/3 rad, 
respectively. What are the amplitude y′m and phase con-
stant β of the resultant wave? Write the resultant wave in 
the form of Eq. 16.6.3.

KEY IDEAS

(1) The two waves have a number of properties in 
common: Because they travel along the same string, 
they must have the same speed v, as set by the tension 
and linear density of the string according to Eq. 
16.2.5. With the same wavelength λ, they have the same 
angular wave number k (= 2π/λ). Also, because they 
have the same wave number k and speed v, they must 
have the same angular  frequency ω (= kv).

(2) The waves (call them waves 1 and 2) can be rep-
resented by phasors rotating at the same angular speed 
ω about an origin. Because the phase constant for wave 
2 is greater than that for wave 1 by π/3, phasor 2 must 
lag phasor 1 by π/3 rad in their clockwise rotation, as 
shown in Fig. 16.6.2a. The resultant wave due to the 
interference of waves 1 and 2 can then be represented 
by a phasor that is the vector sum of phasors 1 and 2.

Calculations: To simplify the vector summation, we 
drew phasors 1 and 2 in Fig. 16.6.2a at the instant when 
phasor 1 lies along the  horizontal axis. We then drew 
lagging phasor 2 at positive  angle π/3 rad. In Fig. 16.6.2b 
we shifted  phasor 2 so its tail is at the head of phasor 1.  
Then we can draw the phasor y′m of the resultant 
wave from the tail of phasor 1 to the head of phasor 2. 
The phase constant β is the angle phasor y′m makes with 
phasor 1.

To find values for y′m and β, we can sum phasors 1 
and 2 as vectors on a vector-capable calculator. How-
ever, here we shall sum them by components. (They are 

ym2

ym1

ym2

ym1

y'm
y'

(a) (b)

Add the phasors
as vectors.

π/3 π/3β

Figure 16.6.2 (a) Two phasors of magnitudes ym1 and ym2 and 
with phase difference π/3. (b) Vector addition of these phasors 
at any  instant during their rotation gives the magnitude y′m of 
the phasor for the resultant wave.

Checkpoint 16.6.1
Here are two waves on a string:

y1(x, t) = (3.00 mm) sin(kx – ωt)
y2(x, t) = (5.00 mm) sin(kx – ωt + 𝜙).

Here are four choices of the phase constant ϕ. 

A: ϕ = π/3, B: ϕ = π, C: ϕ = 2π/3, D: ϕ = π/2. 

Rank the choices according to the amplitude of the resultant wave, greatest ampli-
tude first.

 We can use phasors to combine waves even if their amplitudes are different.

16.6 PHasOrs
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called horizontal and vertical components, because the 
symbols x and y are already used for the waves them-
selves.) For the horizontal components we have

y′mh = ym1 cos 0 + ym2 cos π/3

= 4.0 mm + (3.0 mm) cos π/3 = 5.50 mm.

For the vertical components we have

 y′mv = ym1 sin 0 + ym2 sin π/3

 = 0 + (3.0 mm) sin π/3 = 2.60 mm.

Thus, the resultant wave has an amplitude of

  y m  ′   =  √ 
______________________

     (  5.50 mm )    2  +   (  2.60 mm )    2    

 = 6.1 mm (Answer)

and a phase constant of

  β =  tan  −1    2.60 mm _ 
5.50 mm 

   = 0.44 rad.  (Answer)

From Fig. 16.6.2b, phase constant β is a positive angle 
relative to phasor 1. Thus, the resultant wave lags wave 1 
in their travel by phase constant β = +0.44 rad. From Eq. 
16.6.3, we can write the resultant wave as

 y′(x, t) = (6.1 mm) sin(kx − ωt + 0.44 rad). (Answer)

16.7 STANDING WAVES AND RESONANCE
Learning Objectives  
After reading this module, you should be able to . . .

16.7.1 For two overlapping waves (same amplitude and 
 wavelength) that are traveling in opposite directions, 
sketch snapshots of the resultant wave, indicating 
nodes and antinodes.

16.7.2 For two overlapping waves (same amplitude and 
 wavelength) that are traveling in opposite directions, 
find the displacement equation for the resultant 
wave and  calculate the amplitude in terms of the 
individual wave  amplitude.

16.7.3 Describe the SHM of a string element at an anti-
node of a standing wave.

16.7.4 For a string element at an antinode of a stand-
ing wave, write equations for the displacement, 

transverse velocity, and transverse acceleration as 
functions of time.

16.7.5 Distinguish between “hard” and “soft” reflec-
tions of string waves at a boundary.

16.7.6 Describe resonance on a string tied taut 
between two supports, and sketch the first sev-
eral standing wave  patterns, indicating nodes and 
antinodes.

16.7.7 In terms of string length, determine the wave-
lengths required for the first several harmonics on a 
string under tension.

16.7.8 For any given harmonic, apply the relationship 
between frequency, wave speed, and string length.

Key Ideas  
● The interference of two identical sinusoidal waves 
moving in opposite directions produces standing 
waves. For a string with fixed ends, the standing wave 
is given by

y′(x, t) = [2ym sin kx] cos ωt.

Standing waves are characterized by fixed locations of 
zero displacement called nodes and fixed locations of 
maximum displacement called antinodes.

● Standing waves on a string can be set up by 
 reflection of traveling waves from the ends of the 
string. If an end is fixed, it must be the position of a 

node. This limits the frequencies at which standing 
waves will occur on a given string. Each  possible fre-
quency is a resonant frequency, and the  corresponding 
standing wave pattern is an oscillation mode. For 
a stretched string of length L with fixed ends, the 
 resonant frequencies are

 f =   v _ λ    = n   v _ 
2L

  ,  for n = 1, 2, 3, …. 

The oscillation mode corresponding to n = 1 is called 
the fundamental mode or the first harmonic; the mode 
 corresponding to n = 2 is the second harmonic; and so on.

additional examples, video, and practice available at WileyPLUS
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Standing Waves
In Module 16.5, we discussed two sinusoidal waves of the same wavelength and 
amplitude traveling in the same direction along a stretched string. What if they 
travel in opposite directions? We can again find the resultant wave by applying 
the superposition principle.

Figure 16.7.1 suggests the situation graphically. It shows the two combining 
waves, one traveling to the left in Fig. 16.7.1a, the other to the right in Fig. 16.7.1b. 
Figure 16.7.1c shows their sum, obtained by applying the superposition principle 
graphically. The outstanding feature of the resultant wave is that there are places 
along the string, called nodes, where the string never moves. Four such nodes are 
marked by dots in Fig. 16.7.1c. Halfway between adjacent nodes are antinodes, 
where the amplitude of the resultant wave is a maximum. Wave patterns such as 
that of Fig. 16.7.1c are called standing waves because the wave patterns do not 
move left or right; the locations of the maxima and minima do not change.

Figure 16.7.1 (a) Five snapshots of a wave traveling to the left, at the times t indicated 
 below part (c) (T is the period of oscillation). (b) Five snapshots of a wave identical to that in 
(a) but traveling to the right, at the same times t. (c) Corresponding snapshots for the 
superposition of the two waves on the same string. At t = 0,  T, and T, fully constructive 
 interference occurs because of the alignment of peaks with peaks and valleys with  valleys. 
At t =   T and   T, fully destructive interference occurs because of the alignment of peaks 
with valleys. Some points (the nodes, marked with dots) never oscillate; some points (the 
antinodes) oscillate the most.

   1 _ 2   

   1 _ 4      3 _ 4   

(a)

(b)

(c)

t  = 0 t  =    T t  = T1
2 t  =    T3

4t  =    T1
4

x x x x x

As the waves move through each other,
some points never move and some move
the most.

To analyze a standing wave, we represent the two waves with the equations

 y1(x, t) = ym sin(kx − ωt) (16.7.1)

and y2(x, t) = ym sin(kx + ωt). (16.7.2)

The principle of superposition gives, for the combined wave,

 y′(x, t) = y1(x, t) + y2(x, t) = ym sin(kx − ωt) + ym sin(kx + ωt).

 If two sinusoidal waves of the same amplitude and wavelength travel in opposite  
directions along a stretched string, their interference with each other produces a  
standing wave.

c16WavesI.indd   491 05/05/21   7:58 PM



492 CHaPTer 16 Waves—I

Displacement

Magnitude
gives

amplitude
at position x

y'(x,t) = [2ym  sin kx]cos ωt

Oscillating
term

Figure 16.7.2 The resultant wave of 
Eq. 16.7.3 is a standing wave and is 
due to the  interference of two sinu-
soidal waves of the same amplitude 
and wavelength that travel in oppo-
site directions.

Applying the trigonometric relation of Eq. 16.5.5 leads to Fig. 16.7.2 and

 y′(x, t) = [2ym sin kx] cos ωt. (16.7.3)

This equation does not describe a traveling wave because it is not of the form of 
Eq. 16.1.17. Instead, it describes a standing wave.

The quantity 2ym sin kx in the brackets of Eq. 16.7.3 can be viewed as the 
 amplitude of oscillation of the string element that is located at position x. How-
ever, since an amplitude is always positive and sin kx can be negative, we take the 
absolute value of the quantity 2ym sin kx to be the amplitude at x.

In a traveling sinusoidal wave, the amplitude of the wave is the same for all 
string elements. That is not true for a standing wave, in which the amplitude var-
ies with position. In the standing wave of Eq. 16.7.3, for example, the amplitude is 
zero for values of kx that give sin kx = 0. Those values are

 kx = nπ,    for n = 0, 1, 2, . . . . (16.7.4)

Substituting k = 2π/λ in this equation and rearranging, we get

  x = n   λ _ 
2
  ,     for n = 0, 1, 2, . . .    (nodes), (16.7.5)

as the positions of zero amplitude—the nodes—for the standing wave of Eq. 
16.7.3. Note that adjacent nodes are separated by λ/2, half a wavelength.

The amplitude of the standing wave of Eq. 16.7.3 has a maximum value of 
2ym, which occurs for values of kx that give | sin kx | = 1. Those values are

 kx =     1 _ 2   π,      3 _ 2   π,     5 _ 2   π, . . .

  =  (  n +    1 _ 2     )  π  ,    for n = 0, 1, 2, . . . . (16.7.6)

Substituting k = 2π/λ in Eq. 16.7.6 and rearranging, we get

  x =   (  n +   1 _ 
2
   )     λ _ 

2
  ,     for n = 0, 1, 2, . . .    (antinodes), (16.7.7)

as the positions of maximum amplitude—the antinodes—of the standing wave of 
Eq. 16.7.3. Antinodes are separated by λ/2 and are halfway  between nodes.

Reflections at a Boundary
We can set up a standing wave in a stretched string by allowing a traveling wave to be 
reflected from the far end of the string so that the wave travels back through itself. The 
incident (original) wave and the reflected wave can then be described by Eqs. 16.7.1 
and 16.7.2, respectively, and they can combine to form a pattern of standing waves.

In Fig. 16.7.3, we use a single pulse to show how such reflections take place. 
In Fig. 16.7.3a, the string is fixed at its left end. When the pulse arrives at that end, 
it exerts an upward force on the support (the wall). By Newton’s third law, the 
 support exerts an opposite force of equal magnitude on the string. This second force 
generates a pulse at the support, which travels back along the string in the direction 
opposite that of the incident pulse. In a “hard” reflection of this kind, there must be 
a node at the support because the string is fixed there. The reflected and incident 
pulses must have opposite signs, so as to cancel each other at that point.

In Fig. 16.7.3b, the left end of the string is fastened to a light ring that is free 
to slide without friction along a rod. When the incident pulse arrives, the ring 
moves up the rod. As the ring moves, it pulls on the string, stretching the string 
and  producing a reflected pulse with the same sign and amplitude as the incident 
pulse. Thus, in such a “soft” reflection, the incident and reflected pulses rein-
force  each other, creating an antinode at the end of the string; the maximum 
 displacement of the ring is twice the amplitude of either of these two pulses.

(a) (b)

There are two ways a
pulse can re�ect from
the end of a string.

Figure 16.7.3 (a) A pulse incident 
from the right is reflected at the left 
end of the string, which is tied to a 
wall. Note that the reflected pulse 
is inverted from the incident pulse. 
(b) Here the left end of the string 
is tied to a ring that can slide with-
out friction up and down the rod. 
Now the pulse is not inverted by the 
reflection.
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Standing Waves and Resonance
Consider a string, such as a guitar string, that is stretched between two clamps. 
Suppose we send a continuous sinusoidal wave of a certain frequency along the 
string, say, toward the right. When the wave reaches the right end, it reflects and 
begins to travel back to the left. That left-going wave then overlaps the wave 
that is still traveling to the right. When the left-going wave reaches the left end, 
it  reflects again and the newly reflected wave begins to travel to the right, over-
lapping the left-going and right-going waves. In short, we very soon have many 
overlapping traveling waves, which interfere with one another.

For certain frequencies, the interference produces a standing wave pattern 
(or oscillation mode) with nodes and large antinodes like those in Fig. 16.7.4.
Such a standing wave is said to be produced at resonance, and the string is said to 
resonate at these certain frequencies, called resonant frequencies. If the string is oscil-
lated at some frequency other than a resonant frequency, a standing wave is not set 
up. Then the interference of the right-going and left-going traveling waves results in 
only small, temporary (perhaps even imperceptible) oscillations of the string.

Let a string be stretched between two clamps separated by a fixed  distance L. 
To find expressions for the resonant frequencies of the string, we note that a node 
must exist at each of its ends, because each end is fixed and cannot oscillate. The 
simplest pattern that meets this key requirement is that in Fig. 16.7.5a, which 
shows the string at both its extreme displacements (one solid and one dashed, 
 together forming a single “loop”). There is only one  antinode, which is at the cen-
ter of the string. Note that half a wavelength spans the length L, which we take to 
be the string’s length. Thus, for this  pattern, λ/2 = L. This condition tells us that 
if the left-going and right-going traveling waves are to set up this pattern by their 
interference, they must have the wavelength λ = 2L.

A second simple pattern meeting the requirement of nodes at the fixed ends 
is shown in Fig. 16.7.5b. This pattern has three nodes and two antinodes and is 

Richard Megna/Fundamental Photographs
Figure 16.7.4 Stroboscopic photographs reveal (imperfect) standing wave patterns on a  
string being made to oscillate by an oscillator at the left end. The patterns occur at cer-
tain frequencies of oscillation.

Checkpoint 16.7.1
Two waves with the same amplitude and wavelength interfere in three different 
 situations to produce resultant waves with the following equations:

(1) y′(x, t) = 4 sin(5x − 4t) 

(2) y′(x, t) = 4 sin(5x) cos(4t) 

(3) y′(x, t) = 4 sin(5x + 4t)

In which situation are the two combining waves traveling (a) toward positive x,  
(b) toward negative x, and (c) in opposite directions?
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Figure 16.7.6 One of many possible 
standing wave patterns for a kettle-
drum head, made visible by dark 
powder sprinkled on the drumhead. 
As the head is set into oscillation at  
a single frequency by a mechanical 
oscillator at the upper left of the 
photograph, the powder collects 
at the nodes, which are circles and 
straight lines in this two-dimensional 
example.

Figure 16.7.5 A string, stretched 
between two clamps, is made to 
oscillate in standing wave patterns. 
(a) The simplest possible pattern 
consists of one loop, which refers to 
the  composite shape formed by the 
string in its extreme displacements 
(the solid and dashed lines). (b) The 
next simplest pattern has two loops. 
(c) The next has three loops.

Checkpoint 16.7.2
In the following series of resonant frequencies, one frequency (lower than 400 Hz) 
is missing: 150, 225, 300, 375 Hz. (a) What is the missing frequency? (b) What is the 
 frequency of the seventh harmonic?

L

L = 
2

(a)

First harmonic

L = 
2

(b)
2= 

Second harmonic

L = 
2

(c)
3

Third harmonic

λ

λ λ

λ

said to be a two-loop pattern. For the left-going and right-going waves to set it 
up, they must have a wavelength λ = L. A third pattern is shown in Fig. 16.7.5c. 
It has four nodes, three antinodes, and three loops, and the wavelength is  λ =  2 _ 3  L .  
We could continue this progression by drawing increasingly more complicated 
patterns. In each step of the progression, the pattern would have one more node 
and one more antinode than the preceding step, and an additional λ/2 would be 
fitted into the distance L.

Thus, a standing wave can be set up on a string of length L by a wave with a 
wavelength equal to one of the values

   λ =   2L _ n  ,  for n = 1, 2, 3, . . . .   (16.7.8)

The resonant frequencies that correspond to these wavelengths follow from 
Eq. 16.1.13:

   f =   v _ λ   = n   v _ 
2L

  ,  for n = 1, 2, 3, . . . .   (16.7.9)

Here v is the speed of traveling waves on the string.
Equation 16.7.9 tells us that the resonant frequencies are integer multiples of 

the lowest resonant frequency, f = v/2L, which corresponds to n = 1. The oscil-
lation mode with that lowest frequency is called the fundamental mode or the 
first harmonic. The second harmonic is the oscillation mode with n = 2, the third 
harmonic is that with n = 3, and so on. The frequencies associated with these 
modes are often labeled f1, f2, f3, and so on. The collection of all possible oscilla-
tion modes is called the harmonic series, and n is called the harmonic number of 
the nth harmonic.

For a given string under a given tension, each resonant frequency cor-
responds to a particular oscillation pattern. Thus, if the frequency is in the 
audible range, you can hear the shape of the string. Resonance can also occur 
in two dimensions (such as on the surface of the kettledrum in Fig. 16.7.6) and 
in three dimensions (such as in the wind-induced swaying and twisting of a tall 
building). FCP

Courtesy Thomas D. Rossing, Northern
Illinois University
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Sample Problem 16.7.1 Electric shaver standing wave

Figure 16.7.7 shows a string of linear mass density µ = 
3.73 × 10–4 kg/m and length L = 30.3 cm that is pulled 
taut between the hand on the right and an oscillating 
electric shaver held in the other hand. The tension has 
been adjusted until the standing wave appears. The 
shaver oscillates at frequency f = 62.0 Hz. (a) What is the 
period of the string’s oscillations at any point other than 
a node? What are (b) the wavelength and (c) the speed of 
the waves on the string? (d) What is the tension? You can 
also set up a standing wave with string attached to your 
cell phone. In vibration mode, it oscillates at about 160 Hz, 
depending on the model.

KEY IDEAS

(1) The transverse waves that produce a standing wave 
pattern must have a wavelength such that an integer num-
ber n of half-wavelengths fit into the string length L. (2) 

The frequency of those waves and of the oscillations of 
the string elements is given by Eq. 16.7.9 ( f = nv/2L).

Calculations: (a) The period T of the string oscillations 
matches that of the shaver, which we can find from the 
frequency:

  T =   1 __ 
f
    =    1 __ 

62.0 Hz
     = 1.612 × 10–2 s ≈ 16.1 ms. (Answer)

(b) From the figure we see that the string is oscillating 
in the third harmonic, with 1.5 wavelengths in the string 
length L. Thus

    3 _ 2   λ = L

  λ =    2 _ 3   L =    2 _ 3   (30.3 cm) = 20.2 cm. (Answer)

(c) We find the speed v of the waves on the string from 
the frequency of the third harmonic:

 f =   3v __ 
2L

   

v =    2 _ 3   Lf =    2 _ 3   (30.3 × 10–2 m)(62.0 Hz)

  = 12.52 m/s ≈ 12.5 m/s. (Answer)

(d) Next, we find the tension from the speed and the lin-
ear mass density:

v =   √ 
__

   τ __ μ     

τ = μv2 = (3.73 × 10–4 kg/m)(12.52 m/s)2

= 5.85 × 10–2 N. (Answer)
Figure 16.7.7 Standing wave produced by an oscillating elec-
tric shaver.

Review & Summary

Transverse and Longitudinal Waves  Mechanical waves 
can exist only in material media and are governed by Newton’s 
laws. Transverse mechanical waves, like those on a stretched 
string, are waves in which the particles of the medium oscillate 
perpendicular to the wave’s direction of travel. Waves in which 
the particles of the medium oscillate parallel to the wave’s direc-
tion of travel are longitudinal waves.

Sinusoidal Waves  A sinusoidal wave moving in the posi-
tive direction of an x axis has the mathematical form

 y(x, t) = ym sin(kx − ωt), (16.1.2)

where ym is the amplitude of the wave, k is the angular wave 
number, ω is the angular frequency, and kx − ωt is the phase. The 
wavelength λ is related to k by

   k =   2π _ λ  .        (16.1.5)

The period T and frequency f of the wave are related to ω by

     ω _ 
2π   = f =   1 _ 

T
  .    (16.1.9)

Finally, the wave speed v is related to these other parameters by

 
     v =   ω _ 

k
   =   λ _ 

T
   = λf.   

 
(16.1.13)

Equation of a Traveling Wave  Any function of the form

 y(x, t) = h(kx ± ωt) (16.1.17)

can represent a traveling wave with a wave speed given by 
Eq. 16.1.13 and a wave shape given by the mathematical form of h. 
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1  The following four waves are sent along strings with the 
same linear densities (x is in meters and t is in seconds). Rank 
the waves according to (a) their wave speed and (b) the tension 
in the strings along which they travel, greatest first:
(1) y1 = (3 mm) sin(x − 3t),    
(2) y2 = (6 mm) sin(2x − t),    

2  In Fig. 16.1, wave 1 consists of a rectangular peak of height 4 
units and width d, and a rectangular valley of depth 2 units and 
width d. The wave travels rightward along an x axis. Choices 2, 
3, and 4 are similar waves, with the same heights, depths, and 
widths, that will travel leftward along that axis and through 

(3) y3 = (1 mm) sin(4x − t),
(4) y4 = (2 mm) sin(x − 2t).

Phasors  A wave y(x, t) can be represented with a phasor. 
This is a vector that has a magnitude equal to the amplitude ym of 
the wave and that rotates about an origin with an angular speed 
equal to the angular frequency ω of the wave. The  projection of 
the rotating phasor on a vertical axis gives the displacement y of 
a point along the wave’s travel.

Standing Waves  The interference of two identical sinu-
soidal waves moving in opposite directions produces standing 
waves. For a string with fixed ends, the standing wave is given by

 y′(x, t) = [2ym sin kx] cos ωt. (16.7.3)

Standing waves are characterized by fixed locations of zero 
displacement called nodes and fixed locations of maximum dis-
placement called antinodes.

Resonance  Standing waves on a string can be set up by 
 reflection of traveling waves from the ends of the string. If an 
end is fixed, it must be the position of a node. This limits the 
frequencies at which standing waves will occur on a given string. 
Each possible frequency is a resonant frequency, and the cor-
responding standing wave pattern is an oscillation mode. For 
a stretched string of length L with fixed ends, the resonant fre-
quencies are

   f =   v _ λ   = n   v _ 
2L

  ,     for n = 1, 2, 3, . . . .            (16.7.9)

The oscillation mode corresponding to n = 1 is called the funda-
mental mode or the first harmonic; the mode corresponding to  
n = 2 is the second harmonic; and so on.

The plus sign denotes a wave traveling in the negative direction 
of the x axis, and the minus sign a wave traveling in the positive 
direction.

Wave Speed on Stretched String  The speed of a wave 
on a stretched string is set by properties of the string. The speed 
on a string with tension τ and linear density μ is

   v =  √ 
_

   τ _ μ    .    (16.2.5)

Power  The average power of, or average rate at which  energy 
is transmitted by, a sinusoidal wave on a stretched string is given by

    P  avg   =   1 _ 2   μvω   2  y  m  2  .    (16.3.7)

Superposition of Waves  When two or more waves tra-
verse the same medium, the displacement of any particle of the 
medium is the sum of the displacements that the individual waves 
would give it.

Interference of Waves  Two sinusoidal waves on the same 
string exhibit interference, adding or canceling according to the 
principle of superposition. If the two are traveling in the same 
direction and have the same amplitude ym and frequency (hence 
the same wavelength) but differ in phase by a phase constant ϕ,  
the result is a single wave with this same  frequency:

 y′(x, t) = [2ym cos    1 _ 2   ϕ] sin(kx − ωt +    1 _ 2   ϕ). (16.5.6)

If ϕ = 0, the waves are exactly in phase and their interference is 
fully constructive; if ϕ = π rad, they are exactly out of phase and 
their interference is fully destructive.

(3) (4)

(1) (2)

Figure 16.1 Question 2. Figure 16.2 Question 3.

y y

x t
he

fa d

b c

g

(a) (b)

Questions

wave 1. Right-going wave 1 and one of the left-going waves will 
interfere as they pass through each other. With which left-going 
wave will the interference give, for an instant, (a) the deepest 
valley, (b) a flat line, and (c) a flat peak 2d wide?

3  Figure 16.2a gives a snapshot of a wave traveling in the direc-
tion of positive x along a string under  tension. Four string elements 
are indicated by the lettered points. For each of those elements, 
determine whether, at the instant of the snapshot, the element 
is moving upward or downward or is  momentarily at rest. (Hint: 
Imagine the wave as it moves through the four string elements, as 
if you were watching a video of the wave as it traveled rightward.)

Figure 16.2b gives the displacement of a string element 
 located at, say, x = 0 as a function of time. At the lettered times, 
is the  element moving upward or downward or is it  momentarily 
at rest?
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4  Figure 16.3 shows three waves 
that are separately sent along a 
string that is stretched under a cer-
tain tension along an x axis. Rank 
the waves according to their (a) 
wavelengths, (b) speeds, and (c) 
angular frequencies, greatest first.

5  If you start with two sinusoidal 
waves of the same amplitude trav-
eling in phase on a string and then 
somehow  phase-shift one of them by 5.4 wavelengths, what type 
of  interfer ence will occur on the string?

6  The amplitudes and phase differences for four pairs of 
waves of equal wavelengths are (a) 2 mm, 6 mm, and π rad; 
(b) 3 mm, 5 mm, and π rad; (c) 7 mm, 9 mm, and π rad; (d) 2 mm, 
2 mm, and 0 rad. Each pair travels in the same  direction along 
the same string. Without written calculation, rank the four pairs 
according to the amplitude of their resultant wave, greatest first. 
(Hint: Construct phasor diagrams.)

7  A sinusoidal wave is sent along a cord under tension, trans-
porting energy at the average rate of Pavg,1. Two waves, identical 
to that first one, are then to be sent along the cord with a phase 
difference ϕ of either 0, 0.2 wavelength, or 0.5 wavelength. (a) 
With only mental calculation, rank those choices of ϕ according 
to the average rate at which the waves will transport energy, 
greatest first. (b) For the first choice of ϕ, what is the average 
rate in terms of Pavg,1?

8  (a) If a standing wave on a string is given by

y′(t) = (3 mm) sin(5x) cos(4t),

is there a node or an antinode of the oscillations of the string at  
x = 0? (b) If the standing wave is given by

y′(t) = (3 mm) sin(5x + π/2) cos(4t),

is there a node or an antinode at x = 0?

9  Strings A and B have identical lengths and linear densities, 
but string B is under greater tension than string A. Figure 16.4 
shows four situations, (a) through (d), in which standing wave 

Figure 16.3 Question 4.

y

x

3

2

1

Figure 16.4 Question 9.

(a)

(b)

(c)

(d)

String A String B

patterns  exist on the two strings. In which situations is there the 
possibility that strings A and B are oscillating at the same reso-
nant frequency?

10  If you set up the seventh harmonic on a string, (a) how many 
nodes are present, and (b) is there a node, antinode, or some 
intermediate state at the midpoint? If you next set up the sixth 
harmonic, (c) is its resonant wavelength longer or shorter than 
that for the seventh harmonic, and (d) is the resonant frequency 
higher or lower?

11  Figure 16.5 shows 
phasor diagrams for three 
situations in which two 
waves travel along the 
same string. All six waves 
have the same ampli-
tude. Rank the situations 
according to the amplitude of the net wave on the string, greatest 
first.

Figure 16.5 Question 11.

(a) (b) (c)

Problems

Module 16.1  Transverse Waves
1 E  If a wave y(x, t) = (6.0 mm) sin(kx + (600 rad/s)t + ϕ)  travels 
along a string, how much time does any given point on the string take 
to move between displacements y = +2.0 mm and y = −2.0 mm?

2 E  BIO  FCP  A human wave. 
During sporting events within 
large, densely packed stadiums, 
spectators will send a wave (or 
pulse) around the stadium (Fig. 
16.6). As the wave reaches a 
group of spectators, they stand 
with a cheer and then sit. At any 

instant, the width w of the wave is the distance from the leading 
edge (people are just about to stand) to the trailing edge (people 
have just sat down). Suppose a human wave travels a distance of 
853 seats around a stadium in 39 s, with spectators requiring about 
1.8 s to respond to the wave’s passage by standing and then sitting. 
What are (a) the wave speed v (in seats per second) and (b) width w  
(in number of seats)? 

3 E  A wave has an angular frequency of 110 rad/s and a wave-
length of 1.80 m. Calculate (a) the angular wave number and 
(b) the speed of the wave.

4 E  BIO  FCP  A sand scorpion can detect the motion of a nearby 
beetle (its prey) by the waves the motion sends along the sand 

          Tutoring problem available (at instructor’s discretion) in WileyPLUS

 Worked-out solution available in Student Solutions Manual

E  Easy M  Medium H  Hard

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

SSM CALC  Requires calculus

BIO  Biomedical application

GO

FCP

w

v

Figure 16.6 Problem 2.
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in the form y(x, t) = ym sin(kx ± ωt), so what are (a) ym, (b) k, 
(c) ω, and (d) the correct choice of sign in front of ω?

10 M
  The equation of a transverse wave traveling along a 

very long string is y = 6.0 sin(0.020πx + 4.0πt), where x and 
y are expressed in centimeters and t is in seconds. Determine 
(a) the amplitude, (b) the wavelength, (c) the frequency, (d) the 
speed, (e) the direction of propagation of the wave, and (f) the 
maximum transverse speed of a particle in the string. (g) What is 
the transverse displacement at x = 3.5 cm when t = 0.26 s?

11 M  CALC  GO  A sinusoidal 
transverse wave of wavelength 
20 cm travels along a string in the 
positive direction of an x axis. The 
 displacement y of the string par-
ticle at x = 0 is given in Fig. 16.11 
as a function of time t. The scale 
of the vertical axis is set by ys = 4.0 cm. The wave equation is to be 
in the form y(x, t) = ym sin(kx ± ωt + ϕ). (a) At t = 0, is a plot of y 
versus x in the shape of a positive sine function or a negative sine 
function? What are (b) ym, (c) k, (d) ω, (e) ϕ, (f) the sign in front of 
ω, and (g) the speed of the wave? (h) What is the transverse veloc-
ity of the particle at x = 0 when t = 5.0 s? 

12 M
 
CALC  GO  The function y(x, t) = (15.0 cm) cos(πx − 15πt), 

with x in meters and t in seconds, describes a wave on a taut 
string. What is the transverse speed for a point on the string at 
an  instant when that point has the displacement y = +12.0 cm?

13 M  A sinusoidal wave of frequency 500 Hz has a speed  
of 350  m/s. (a) How far apart are two points that differ in 
phase by π/3 rad? (b) What is the phase difference between two 
 displacements at a certain point at times 1.00 ms apart? 

Module 16.2  Wave Speed on a Stretched String
14 E  The equation of a transverse wave on a string is

y = (2.0 mm) sin[(20 m−1)x − (600 s−1)t].

The tension in the string is 15 N. (a) What is the wave speed?  
(b) Find the linear density of this string in grams per meter.

15 E  SSM  A stretched string has a mass per unit length of 
5.00 g/cm and a tension of 10.0 N. A sinusoidal wave on this 
string has an amplitude of 0.12 mm and a frequency of 100 Hz 
and is traveling in the negative direction of an x axis. If the 
wave equation is of the form y(x, t) = ym sin(kx ± ωt), what are  
(a) ym, (b) k, (c) ω, and (d) the correct choice of sign in front 
of ω? 

16 E  The speed of a transverse wave on a string is 170 m/s when 
the string tension is 120 N. To what value must the  tension be 
changed to raise the wave speed to 180 m/s?

17 E  The linear density of a string is 1.6 × 10−4 kg/m. A trans-
verse wave on the string is described by the equation

y = (0.021 m) sin[(2.0 m−1)x + (30 s−1)t].

What are (a) the wave speed and (b) the tension in the string?

18 E  The heaviest and lightest strings on a certain violin have 
linear densities of 3.0 and 0.29 g/m. What is the ratio of the 
 diameter of the heaviest string to that of the lightest string, 
 assuming that the strings are of the same material?

surface (Fig. 16.7). The waves are 
of two types: transverse waves 
traveling at vt = 50 m/s and lon-
gitudinal waves traveling at vl = 
150 m/s. If a sudden motion sends 
out such waves, a scorpion can tell 
the distance of the beetle from the 
difference Δt in the arrival times 
of the waves at its leg nearest the 
beetle. If Δt = 4.0 ms, what is the 
beetle’s distance? 

5 E  A sinusoidal wave travels 
along a string. The time for a 
particular point to move from 
maximum displacement to zero is 
0.170 s. What are the (a) period and 
(b) frequency? (c) The wavelength is 1.40 m; what is the wave 
speed?

6 M  CALC  GO  A sinusoidal 
wave travels along a string 
under tension. Figure 16.8 
gives the slopes along the 
string at time t = 0. The scale of 
the x axis is set by xs = 0.80 m.  
What is the amplitude of the 
wave? 

7 M  A transverse sinusoidal wave is moving along a string in the 
positive direction of an x axis with a speed of 80 m/s. At t = 0, the 
string particle at x = 0 has a transverse displacement of 4.0 cm 
from its equilibrium position and is not moving. The maximum 
transverse speed of the string particle at x = 0 is 16 m/s. (a) What 
is the frequency of the wave? (b) What is the wavelength of the 
wave? If y(x, t) = ym sin(kx ± ωt + ϕ) is the form of the wave 
equation, what are (c) ym, (d) k, (e) ω, (f) ϕ, and (g) the correct 
choice of sign in front of ω?

8 M  CALC  GO  Figure 16.9 shows 
the transverse velocity u versus 
time t of the point on a string at 
x = 0, as a wave passes through 
it. The scale on the vertical axis 
is set by us = 4.0 m/s. The wave 
has the generic form y(x, t) =  
ym sin(kx − ωt + ϕ). What then is 
ϕ? (Caution: A calculator does not 
always give the proper inverse trig 
function, so check your answer 
by substituting it and an assumed value of ω into y(x, t) and then 
 plotting the function.)

9 M  A sinusoidal wave 
moving along a string 
is shown twice in Fig. 
16.10, as crest A travels 
in the positive direction 
of an x axis by distance 
d = 6.0 cm in 4.0 ms. The 
tick marks along the axis 
are separated by 10 cm; 
height H = 6.00 mm. The 
equation for the wave is 
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is given by  v =  √ 
_

 gy   . (b) Show that the time a transverse wave 
takes to travel the length of the rope is given by  t = 2 √ 

_
 L / g   .

Module 16.3  Energy and Power of a Wave Traveling  
Along a String
26 E  A string along which waves can travel is 2.70 m long and 
has a mass of 260 g. The tension in the string is 36.0 N. What 
must be the frequency of traveling waves of amplitude 7.70 mm 
for the average power to be 85.0 W?

27 M  GO  A sinusoidal wave is sent along a string with a lin-
ear density of 2.0 g/m. As it travels, the kinetic energies of the 
mass elements along the string vary. Figure 16.14a gives the rate  
dK/dt at which kinetic energy passes through the string elements 
at a particular instant, plotted as a function of distance x along 
the string. Figure 16.14b is similar except that it gives the rate at 
which kinetic energy passes through a par ticular mass element 
(at a particular location), plotted as a function of time t. For both 
figures, the scale on the vertical (rate) axis is set by Rs = 10 W. 
What is the amplitude of the wave?

19 E  SSM  What is the speed of a transverse wave in a rope of  
length 2.00 m and mass 60.0 g under a tension of 500 N? 

20 E  The tension in a wire clamped at both ends is doubled 
without appreciably changing the wire’s length between the 
clamps. What is the ratio of the new to the old wave speed for 
transverse waves traveling along this wire?

21 M  A 100 g wire is held under a tension of 250 N with one end 
at x = 0 and the other at x = 10.0 m. At time t = 0, pulse 1 is sent 
along the wire from the end at x = 10.0 m. At time t = 30.0 ms, 
pulse 2 is sent along the wire from the end at x = 0. At what posi-
tion x do the pulses begin to meet? 

22 M  A sinusoidal wave is traveling on a string with speed  
40 cm/s. The displacement of the particles of the string at x = 10 cm  
varies with time according to y  =  (5.0 cm) sin[1.0 − (4.0 s−1)t]. 
The linear density of the string is 4.0 g/cm. What are (a) the fre-
quency and (b) the wavelength of the wave? If the wave equa-
tion is of the form y(x, t) = ym sin(kx ± ωt), what are (c) ym, (d) k, 
(e) ω, and (f) the correct choice of sign in front of ω? (g) What is 
the tension in the string?

23 M  SSM  A sinusoidal transverse 
wave is traveling along a string 
in the negative direction of an x 
axis. Figure 16.12 shows a plot of 
the displacement as a function of 
position at time t = 0; the scale 
of the y axis is set by ys = 4.0 cm. 
The string tension is 3.6 N, and 
its linear density is 25 g/m. Find 
the (a) amplitude, (b) wave-
length, (c)  wave speed, and (d) 
period of the wave. (e) Find the 
 maxi mum transverse speed of a 
particle in the string. If the wave is of the form y(x, t) = ym 
sin(kx ± ωt + ϕ), what are (f ) k, (g) ω, (h) ϕ, and (i) the cor-
rect choice of sign in front of ω?

24 H  In Fig. 16.13a, string 
1 has a linear density of 3.00 
g/m, and string 2 has a linear 
density of 5.00 g/m. They are 
 under tension due to the hang-
ing block of mass M = 500 g. 
Calculate the wave speed on 
(a) string 1 and (b) string 2. 
(Hint: When a string loops 
halfway around a pulley, it 
pulls on the pulley with a net 
force that is twice the tension 
in the string.) Next the block is 
divided into two blocks (with 
M1 + M2 = M) and the appa-
ratus is rearranged as shown 
in Fig.  16.13b. Find (c) M1 
and (d) M2 such that the wave 
speeds in the two strings are 
equal.

25 H  CALC  A uniform rope 
of mass m and length L hangs 
from a ceiling. (a) Show that the speed of a transverse wave on 
the rope is a function of y, the distance from the lower end, and 

M1 M2

M

String 1
String 2

Knot

(a)

(b)

String 1
String 2

Figure 16.13 Problem 24.

dK
/d

t (
W

)

Rs

0 0.1
x (m)

0.2

dK
/d

t (
W

)

Rs

0 1
t (ms)

(a) (b)

2

Figure 16.14 Problem 27.
Figure 16.12 Problem 23.

y (cm)

x (cm)

ys

0

–ys

20 40

Module 16.4  The Wave Equation
28 E  Use the wave equation to find the speed of a wave given by

y(x, t) = (3.00 mm) sin[(4.00 m−1)x − (7.00 s−1)t].

29 M  Use the wave equation to find the speed of a wave given by

y(x, t) = (2.00 mm)[(20 m−1)x − (4.0 s−1)t]0.5.

30 H  Use the wave equation to find the speed of a wave given 
in terms of the general function h(x, t):

y(x, t) = (4.00 mm) h[(30 m−1)x + (6.0 s−1)t].

Module 16.5  Interference of Waves
31 E  SSM  Two identical traveling waves, moving in the same 
direction, are out of phase by π/2 rad. What is the amplitude of 
the resultant wave in terms of the common amplitude ym of the 
two combining waves? 

32 E  What phase difference between two identical traveling 
waves, moving in the same direction along a stretched string, 
results in the combined wave having an amplitude 1.50 times that 
of the common amplitude of the two combining waves? Express 
your answer in (a) degrees, (b) radians, and (c) wavelengths.

33 M  GO  Two sinusoidal waves with the same amplitude 
of 9.00  mm and the same wavelength travel together along 
a string that is stretched along an x axis. Their resultant 
wave is shown twice in Fig. 16.15, as valley A travels in the 
negative  direction of the x axis by distance d = 56.0 cm in 
8.0 ms. The tick marks along the axis are separated by 10 cm, 
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Module 16.7  Standing Waves and Resonance
40 E  Two sinusoidal waves with identical wavelengths and 
 amplitudes travel in opposite directions along a string with a 
speed of 10 cm/s. If the time interval between instants when the 
string is flat is 0.50 s, what is the wavelength of the waves?

41 E  SSM  A string fixed at both ends is 8.40 m long and has a 
mass of 0.120 kg. It is subjected to a tension of 96.0 N and set 
oscillating. (a) What is the speed of the waves on the string? 
(b) What is the longest possible wavelength for a standing wave? 
(c) Give the frequency of that wave. 

42 E  A string under tension τi oscillates in the third harmonic at 
frequency f3, and the waves on the string have wavelength λ3. If 
the tension is increased to τf = 4τi and the string is again made to 
oscillate in the third harmonic, what then are (a) the frequency of 
oscillation in terms of f3 and (b) the wavelength of the waves in 
terms of λ3?

43 E  SSM  What are (a) the lowest frequency, (b) the second 
lowest frequency, and (c) the third lowest frequency for stand-
ing waves on a wire that is 10.0 m long, has a mass of 100 g, and 
is stretched under a tension of 250 N? 

44 E  A 125 cm length of string has mass 2.00 g and tension 
7.00 N. (a) What is the wave speed for this string? (b) What is 
the lowest resonant frequency of this string?

45 E  SSM  A string that is stretched between fixed supports 
separated by 75.0 cm has resonant frequencies of 420 and 
315 Hz, with no intermediate resonant frequencies. What are 
(a) the lowest resonant frequency and (b) the wave speed? 

46 E  String A is stretched between two clamps separated by 
distance L. String B, with the same linear density and under 
the same tension as string A, is stretched between two clamps 
separated by distance 4L. Consider the first eight harmonics of 
string B. For which of these eight harmonics of B (if any) does 
the frequency match the frequency of (a) A’s first harmonic,  
(b) A’s second harmonic, and (c) A’s third harmonic?

47 E  One of the harmonic frequencies for a particular string 
under tension is 325 Hz. The next higher harmonic frequency is 
390 Hz. What harmonic frequency is next higher after the har-
monic frequency 195 Hz?

48 E  FCP  If a transmission line in a cold climate collects ice, the 
increased diameter tends to cause vortex formation in a passing 
wind. The air pressure variations in the vortexes tend to cause the 
line to oscillate (gallop), especially if the frequency of the variations 
matches a resonant frequency of the line. In long lines, the resonant 
frequencies are so close that almost any wind speed can set up a 
resonant mode vigorous enough to pull down support towers or 
cause the line to short out with an adjacent line. If a transmission 
line has a length of 347 m, a linear density of 3.35 kg/m, and a ten-
sion of 65.2 MN, what are (a) the frequency of the fundamental 
mode and (b) the frequency difference between successive modes? 

49 E  A nylon guitar string has a 
linear density of 7.20 g/m and  is 
under a tension of 150 N. The fixed 
supports are distance D = 90.0 cm 
apart. The string is oscillating in 
the standing wave pattern shown 
in Fig. 16.16. Calculate the (a) speed, (b)  wavelength, and (c) 
frequency of the traveling waves whose superposition gives this 
standing wave. 

and height H is 8.0 mm. Let 
the equation for one wave 
be of the form y(x, t) = ym 
sin(kx ± ωt + ϕ1), where ϕ1 = 0 
and you must choose the cor-
rect sign in front of ω. For the 
equation for the other wave, 
what are (a)  ym, (b) k, (c) ω, 
(d) ϕ2, and (e) the sign in front 
of ω?

34 H
 
GO  A sinusoidal wave of angular frequency 1200 rad/s 

and amplitude 3.00 mm is sent along a cord with linear den-
sity 2.00 g/m and tension 1200 N. (a) What is the average rate 
at which energy is transported by the wave to the opposite end 
of the cord? (b) If, simultaneously, an identical wave travels along 
an adjacent, identical cord, what is the total average rate at which 
energy is transported to the opposite ends of the two cords by the 
waves? If, instead, those two waves are sent along the same cord 
simultaneously, what is the total average rate at which they trans-
port energy when their phase difference is (c) 0, (d) 0.4π rad, and 
(e) π rad?

Module 16.6  Phasors
35 E  SSM  Two sinusoidal waves of the same frequency travel 
in the same direction along a string. If ym1 = 3.0 cm, ym2 = 4.0 cm,  
ϕ1 = 0, and ϕ2 = π/2 rad, what is the amplitude of the  resultant 
wave? 

36 M  Four waves are to be sent along the same string, in the 
same direction:

 y1(x, t) = (4.00 mm) sin(2πx − 400πt)

 y2(x, t) = (4.00 mm) sin(2πx − 400πt + 0.7π)

 y3(x, t) = (4.00 mm) sin(2πx − 400πt + π)

 y4(x, t) = (4.00 mm) sin(2πx − 400πt + 1.7π).

What is the amplitude of the resultant wave?

37 M
 
GO  These two waves travel along the same string:

 y1(x, t) = (4.60 mm) sin(2πx − 400πt)

 y2(x, t) = (5.60 mm) sin(2πx − 400πt + 0.80π rad).

What are (a) the amplitude and (b) the phase angle (relative to 
wave 1) of the resultant wave? (c) If a third wave of amplitude 
5.00 mm is also to be sent along the string in the same  direction 
as the first two waves, what should be its phase angle in order to 
 maximize the amplitude of the new resultant wave?

38 M
 Two sinusoidal waves of the same frequency are to be sent 

in the same direction along a taut string. One wave has an ampli-
tude of 5.0 mm, the other 8.0 mm. (a) What phase  difference ϕ1 
between the two waves results in the smallest amplitude of the 
resultant wave? (b) What is that smallest  amplitude? (c) What 
phase difference ϕ2 results in the largest amplitude of the resul-
tant wave? (d) What is that largest amplitude? (e) What is the 
resultant amplitude if the phase angle is (ϕ1 − ϕ2)/2?

39 M  Two sinusoidal waves of the same period, with amplitudes 
of 5.0 and 7.0 mm, travel in the same direction along a stretched 
string; they produce a resultant wave with an amplitude of 
9.0 mm. The phase constant of the 5.0 mm wave is 0. What is the 
phase constant of the 7.0 mm wave?
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with x in meters and t in seconds. An antinode is located at 
point A. In the time interval that point takes to move from max-
imum upward displacement to maximum downward displace-
ment, how far does each wave move along the string?

56 M
 
CALC  A standing wave pattern on a string is described by

y(x, t) = 0.040 (sin 5πx)(cos 40πt),

where x and y are in meters and t is in seconds. For x ≥ 0, what 
is the location of the node with the (a) smallest, (b) second 
smallest, and (c) third smallest value of x? (d) What is the 
 period of the oscillatory motion of any (nonnode) point? What 
are the (e) speed and (f) amplitude of the two traveling waves 
that interfere to produce this wave? For t ≥ 0, what are the  
(g) first, (h) second, and (i) third time that all points on the 
string have zero transverse velocity?

57 M  A generator at one end of a very long string creates a 
wave given by

 y =   (  6.0 cm )    cos   π _ 
2
    [     (2.00 m  −1 ) x +  (  8.00 s  −1 ) t ]   , 

and a generator at the other end creates the wave

 y =   (  6.0 cm )    cos   π _ 
2
     [( 2.00 m  −1 ) x −  ( 8.00 s  −1 ) t] . 

Calculate the (a) frequency, (b) wavelength, and (c) speed of 
each wave. For x ≥ 0, what is the location of the node having 
the (d) smallest, (e) second smallest, and (f) third smallest value  
of x? For x ≥ 0, what is the location of the antinode having the 
(g) smallest, (h) second smallest, and (i) third smallest value of x?

58 M
 

GO  In Fig. 16.19, a string, tied to a sinusoidal oscillator 
at P and running over a support at Q, is stretched by a block of 
mass m. Separation L = 1.20 m, linear density μ = 1.6 g/m, and 
the oscillator frequency f = 120 Hz. The amplitude of the motion 
at P is small enough for that point to be considered a node.  
A node also exists at Q. (a) What mass m allows the oscillator 
to set up the fourth harmonic on the string? (b) What standing 
wave mode, if any, can be set up if m = 1.00 kg?

50 M  CALC  For a particular 
transverse standing wave on a 
long string, one of the antinodes 
is at x = 0 and an  adjacent node is 
at x = 0.10 m. The  displacement 
y(t) of the string particle at x = 0 
is shown in Fig. 16.17, where the 
scale of the y axis is set by ys = 
4.0 cm. When t = 0.50 s, what is 
the displacement of the string par-
ticle at (a) x = 0.20 m and (b) x = 0.30 m? What is the transverse 
velocity of the string particle at x = 0.20 m at (c) t = 0.50 s and  
(d) t = 1.0 s? (e) Sketch the standing wave at t = 0.50 s for the 
range x = 0 to x = 0.40 m.

51 M  SSM  Two waves are generated on a string of length 3.0 m 
to produce a three-loop standing wave with an amplitude of 1.0 cm. 
The wave speed is 100 m/s. Let the equation for one of the waves be 
of the form y(x, t) = ym sin(kx + ωt). In the equation for the other 
wave, what are (a) ym, (b) k, (c) ω, and (d) the sign in front of ω? 

52 M
 A rope, under a tension of 200 N and fixed at both ends, 

oscillates in a second-harmonic standing wave pattern. The dis-
placement of the rope is given by

y = (0.10 m)(sin πx/2) sin 12πt,

where x = 0 at one end of the rope, x is in meters, and t is in sec-
onds. What are (a) the length of the rope, (b) the speed of the 
waves on the rope, and (c) the mass of the rope? (d) If the rope 
oscillates in a third-harmonic standing wave pattern, what will 
be the period of oscillation?

53 M
 A string oscillates according to the equation

 y′ =   (  0.50 cm )    sin   [    (     π _ 
3
    cm  −1  )   x ]    cos   [    (  40π   s  −1  )   t ]   .  

What are the (a) amplitude and (b) speed of the two waves 
(identical except for direction of travel) whose superposition 
gives this oscillation? (c) What is the distance between nodes? 
(d) What is the transverse speed of a particle of the string at 
the position x = 1.5 cm when t =    9 _ 8    s?

54 M
 

GO  Two sinusoidal 
waves with the same ampli-
tude and wavelength travel 
through each other along 
a string that is stretched 
along an x axis. Their resul-
tant wave is shown twice in 
Fig. 16.18, as the anti node A  
travels from an extreme 
upward displacement to 
an extreme downward dis-
placement in 6.0 ms. The tick marks along the axis are separated by 
10 cm; height H is 1.80 cm. Let the equation for one of the two waves 
be of the form y(x, t) = ym sin(kx + ωt). In the equation for the other 
wave, what are (a) ym, (b) k, (c) ω, and (d) the sign in front of ω?

55 M
 

GO  The following two waves are sent in opposite direc-
tions on a horizontal string so as to create a standing wave in a 
vertical plane:
 y1(x, t) = (6.00 mm) sin(4.00πx − 400πt)

 y2(x, t) = (6.00 mm) sin(4.00πx + 400πt),
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59 H
 

GO  In Fig. 
16.20, an alumi-
num wire, of length 
L1 = 60.0 cm, cross-
sectional area 1.00 
× 10−2 cm2, and den-
sity 2.60 g/cm3, is 
joined to a steel wire, 
of density 7.80 g/cm3 
and the same cross- sectional area. The compound wire, loaded 
with a block of mass m = 10.0 kg, is arranged so that the dis-
tance L2 from the joint to the supporting pulley is 86.6 cm. 

m

L 1 L 2

Aluminum Steel

Figure 16.20 Problem 59.
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67  Two sinusoidal waves, identical except for phase, travel 
in the same direction along a string, producing the net wave 
y′(x, t) = (3.0 mm) sin(20x − 4.0t + 0.820 rad), with x in  meters 
and t in seconds. What are (a) the wavelength λ of the two waves,  
(b) the phase difference between them, and (c) their amplitude ym?

68  A single pulse, given by 
h(x − 5.0t), is shown in Fig. 
16.22 for t = 0. The scale of the 
vertical axis is set by hs = 2. 
Here x is in centimeters and t 
is in seconds. What are the (a) 
speed and (b) direction of travel 
of the pulse? (c) Plot h(x − 5t) 
as a function of x for t = 2 s. (d) Plot h(x − 5t) as a function 
of t for x = 10 cm.

69 SSM  Three sinusoidal waves of the same frequency 
travel along a string in the positive direction of an x axis. 
Their  amplitudes are y1, y1/2, and y1/3, and their phase con-
stants are 0, π/2, and π, respectively. What are the (a) ampli-
tude and (b) phase constant of the resultant wave? (c) Plot 
the wave form of the resultant wave at t = 0, and discuss its 
behavior as t increases. 

70 GO  Figure 16.23 shows 
 transverse acceleration ay ver-
sus t of the point on a string at 
x = 0, as a wave in the form of 
y(x, t) = ym sin(kx − ωt +  ϕ) 
passes through that point. 
The scale of the vertical axis 
is set by as = 400 m/s2. What 
is ϕ? (Caution: A calculator 
does not always give the proper 
inverse trig function, so check your answer by substituting it and 
an assumed value of ω into y(x, t) and then plotting the function.)

71  A transverse sinusoidal wave is generated at one end 
of a long, horizontal string by a bar that moves up and down 
through a distance of 1.00 cm. The motion is continuous and is 
repeated regularly 120 times per second. The string has linear 
density 120 g/m and is kept under a tension of 90.0 N. Find 
the maximum value of (a) the transverse speed u and (b) the 
transverse component of the tension τ.

(c) Show that the two maximum values calculated above 
 occur at the same phase values for the wave. What is the trans-
verse displacement y of the string at these phases? (d) What 
is  the maximum rate of energy transfer along the string? 
(e) What is the transverse displacement y when this maximum 
transfer occurs? (f ) What is the minimum rate of energy trans-
fer along the string? (g) What is the transverse displacement 
y when this minimum transfer occurs?

72  Two sinusoidal 120 Hz 
waves, of the same frequency 
and amplitude, are to be sent 
in the positive direction of an 
x axis that is directed along 
a cord under tension. The 
waves can be sent in phase, or 
they can be phase-shifted. Fig-
ure 16.24 shows the amplitude 

Transverse waves are set up on the wire by an external source 
of variable frequency; a node is located at the pulley. (a) Find 
the lowest frequency that generates a standing wave having the 
joint as one of the nodes. (b) How many nodes are  observed at 
this frequency?

60 H
 
GO  In Fig. 16.19, a string, tied to a sinusoidal oscillator 

at P and running over a support at Q, is stretched by a block of 
mass m. The separation L between P and Q is 1.20 m, and the 
frequency f of the oscillator is fixed at 120 Hz. The amplitude 
of the motion at P is small enough for that point to be consid-
ered a node. A node also exists at Q. A standing wave appears 
when the mass of the hanging block is 286.1 g or 447.0 g, but 
not for any intermediate mass. What is the linear density of 
the string?  

Additional Problems
61 GO  In an experiment on standing waves, a string 90 cm long 
is attached to the prong of an electrically driven tuning fork that 
oscillates perpendicular to the length of the string at a frequency 
of 60 Hz. The mass of the string is 0.044 kg. What tension must 
the string be under (weights are attached to the other end) if it 
is to oscillate in four loops?

62  A sinusoidal transverse wave traveling in the positive 
 direction of an x axis has an amplitude of 2.0 cm, a wavelength 
of 10 cm, and a frequency of 400 Hz. If the wave equation is of 
the form y(x, t) = ym sin(kx ± ωt), what are (a) ym, (b) k, (c) ω, 
and (d) the correct choice of sign in front of ω? What are (e) the 
maximum transverse speed of a point on the cord and (f) the 
speed of the wave?

63  A wave has a speed of 240 m/s and a wavelength of 3.2 m. 
What are the (a) frequency and (b) period of the wave?

64  The equation of a transverse wave traveling along a string is

y = 0.15 sin(0.79x − 13t),

in which x and y are in meters and t is in seconds. (a) What is the 
displacement y at x = 2.3 m, t = 0.16 s? A second wave is to be 
added to the first wave to produce standing waves on the string. 
If the second wave is of the form y(x, t) = ym sin(kx ± ωt), what 
are (b) ym, (c) k, (d) ω, and (e) the correct choice of sign in front 
of ω for this second wave? (f) What is the displacement of the 
resultant standing wave at x = 2.3 m, t = 0.16 s?

65  The equation of a transverse wave traveling along a string is

y = (2.0 mm) sin[(20 m−1)x − (600 s−1)t].

Find the (a) amplitude, (b) frequency, (c) velocity (including 
sign), and (d) wavelength of the wave. (e) Find the maximum 
transverse speed of a particle in the string.

66 CALC  Figure 16.21 shows 
the displacement y versus 
time t of the point on a string 
at x = 0, as a wave passes 
through that point. The scale 
of the y axis is set by ys = 6.0 
mm. The wave is given by 
y(x, t) = ym sin(kx − ωt + ϕ). 
What is ϕ? (Caution: A calcu-
lator does not always give the 
proper  inverse trig function, so check your answer by substitut-
ing it and an assumed value of ω into y(x, t) and then plotting 
the function.)

Figure 16.21 Problem 66.
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81  A sinusoidal transverse wave traveling in the negative 
 direction of an x axis has an amplitude of 1.00 cm, a frequency 
of 550 Hz, and a speed of 330 m/s. If the wave equation is of the 
form y(x, t) = ym sin(kx ± ωt), what are (a) ym, (b) ω, (c) k, and 
(d) the correct choice of sign in front of ω?

82  Two sinusoidal waves of the same wavelength travel in the 
same direction along a stretched string. For wave 1, ym = 3.0 mm 
and ϕ = 0; for wave 2, ym = 5.0 mm and ϕ = 70°. What are the  
(a) amplitude and (b) phase constant of the resultant wave?

83 SSM  A sinusoidal transverse wave of amplitude ym and 
wavelength λ travels on a stretched cord. (a) Find the ratio 
of the  maximum particle speed (the speed with which a sin-
gle particle in the cord moves transverse to the wave) to the 
wave speed. (b) Does this ratio depend on the material of which 
the cord is made? 

84  Oscillation of a 600 Hz tuning fork sets up standing waves 
in a string clamped at both ends. The wave speed for the string 
is 400 m/s. The standing wave has four loops and an  amplitude of 
2.0 mm. (a) What is the length of the string? (b) Write an equa-
tion for the displacement of the string as a function of position 
and time.

85  A 120 cm length of string is stretched between fixed  supports. 
What are the (a) longest, (b) second longest, and (c) third longest 
wavelength for waves traveling on the string if standing waves are 
to be set up? (d) Sketch those standing waves.

86  (a) Write an equation describing a sinusoidal transverse 
wave traveling on a cord in the positive direction of a y axis with 
an angular wave number of 60 cm−1, a period of 0.20 s, and an 
amplitude of 3.0 mm. Take the transverse direction to be the z 
direction. (b) What is the maximum transverse speed of a point 
on the cord?

87  A wave on a string is described by

y(x, t) = 15.0 sin(πx/8 − 4πt),

where x and y are in centimeters and t is in seconds. (a) What 
is the transverse speed for a point on the string at x = 6.00 cm 
when t = 0.250 s? (b) What is the maximum transverse speed 
of any point on the string? (c) What is the magnitude of the 
 transverse acceleration for a point on the string at x = 6.00 cm 
when t = 0.250 s? (d) What is the magnitude of the maximum 
transverse acceleration for any point on the string?

88 FCP  Body armor. When a high-speed projectile such as a bul-
let or bomb fragment strikes modern body armor, the fabric of 
the armor stops the projectile and prevents penetration by quickly 
spreading the projectile’s energy over a large area. This spreading 
is done by longitudinal and transverse pulses that move radially 
from the impact point, where the projectile pushes a cone-shaped 
dent into the fabric. The longitudinal pulse, racing along the fibers 
of the fabric at speed vl ahead of the denting, causes the fibers to 
thin and stretch, with  material flowing radially inward into the dent. 
One such radial fiber is shown in Fig. 16.25a. Part of the projectile’s 
energy goes into this motion and stretching. The transverse pulse, 
moving at a slower speed vt, is due to the denting. As the projec-
tile increases the dent’s depth, the dent increases in  radius, causing  
the material in the fibers to move in the same direction as the pro-
jectile (perpendicular to the transverse pulse’s direction of travel). 
The rest of the projectile’s energy goes into this motion. All the 
energy that does not eventually go into permanently deforming the 
fibers ends up as thermal energy.

y′ of the resulting wave versus the distance of the shift (how 
far one wave is shifted from the other wave). The scale of the 
vertical axis is set by y′s = 6.0 mm. If the equations for the two 
waves are of the form y(x, t) = ym sin(kx ± ωt), what are (a) ym, 
(b) k, (c) ω, and (d) the correct choice of sign in front of ω?

73  At time t = 0 and at position x = 0 m along a string, a travel-
ing sinusoidal wave with an angular frequency of 440 rad/s has 
 displacement y = +4.5 mm and transverse  velocity u = −0.75 m/s. 
If the wave has the general form y(x, t) = ym sin(kx − ωt + ϕ), 
what is phase constant ϕ?

74  Energy is transmitted at rate P1 by a wave of frequency f1 on 
a string under tension τ1. What is the new energy transmission 
rate P2 in terms of P1 (a) if the tension is increased to τ2 = 4τ1 and 
(b) if, instead, the frequency is decreased to f2 = f1/2?

75  (a) What is the fastest transverse wave that can be sent along  
a steel wire? For safety reasons, the maximum tensile stress to 
which steel wires should be subjected is 7.00 × 108 N/m2. The den-
sity of steel is 7800 kg/m3. (b) Does your answer depend on the 
diameter of the wire?

76  A standing wave results from the sum of two transverse 
traveling waves given by

 y1 = 0.050 cos(πx − 4πt)

and y2 = 0.050 cos(πx + 4πt),

where x, y1, and y2 are in meters and t is in seconds. (a) What 
is the smallest positive value of x that corresponds to a node? 
Beginning at t = 0, what is the value of the (b) first, (c) second, 
and (d) third time the particle at x = 0 has zero velocity?

77 SSM  The type of rubber band used inside some base-
balls and golf balls obeys Hooke’s law over a wide range of 
elongation of the band. A segment of this material has an 
unstretched length ℓ and a mass m. When a force F is applied, 
the band stretches an additional length Δℓ. (a) What is the 
speed (in terms of m, Δℓ, and the spring constant k) of trans-
verse waves on this stretched rubber band? (b) Using your 
answer to (a), show that the time required for a transverse 
pulse to travel the length of the rubber band is proportional 
to  1 /  √ 

_
 Δℓ   , if Δℓ ⪡ ℓ, and is constant if Δℓ ⪢ ℓ.

78  The speed of electromagnetic waves (which include  visible 
light, radio, and x rays) in vacuum is 3.0 × 108 m/s. (a) Wave-
lengths of visible light waves range from about 400 nm in the 
 violet to about 700 nm in the red. What is the range of frequen-
cies of these waves? (b) The range of frequencies for short-
wave radio (for example, FM radio and VHF television) is 1.5 
to 300 MHz. What is the corresponding wavelength range? 
(c) X-ray wavelengths range from about 5.0 nm to about 
1.0 × 10−2 nm. What is the frequency range for x rays?

79 SSM  A 1.50 m wire has a mass of 8.70 g and is under a ten-
sion of 120 N. The wire is held rigidly at both ends and set into 
 oscillation. (a) What is the speed of waves on the wire? What 
is the wavelength of the waves that produce (b) one-loop and  
(c) two-loop standing waves? What is the frequency of the waves 
that produce (d) one-loop and (e) two-loop standing waves? 

80  When played in a certain manner, the lowest resonant fre-
quency of a certain violin string is concert A (440 Hz). What is 
the frequency of the (a) second and (b) third  harmonic of the 
string?
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92  Two waves,

 y1 = (2.50 mm) sin[(25.1 rad/m)x − (440 rad/s)t]

and y2 = (1.50 mm) sin[(25.1 rad/m)x + (440 rad/s)t],

travel along a stretched string. (a) Plot the resultant wave as 
a function of t for x = 0, λ/8, λ/4, 3λ/8, and λ/2, where λ is the 
wavelength. The graphs should extend from t = 0 to a little 
over one period. (b) The resultant wave is the superposition of 
a standing wave and a traveling wave. In which direction does 
the traveling wave move? (c) How can you change the original 
waves so the resultant wave is the superposition of standing 
and traveling waves with the same amplitudes as before but 
with the traveling wave moving in the opposite direction? Next, 
use your graphs to find the place at which the oscillation ampli-
tude is (d) maximum and (e) minimum. (f) How is the maximum 
amplitude related to the amplitudes of the original two waves? 
(g) How is the minimum amplitude related to the amplitudes of 
the original two waves?

93 Rock-climbing rescue. A stranded rock climber has hooked 
himself onto the bottom of a rope lowered from a cliff edge by a 
rescuer. The rope consists of two sections connected by a knot: 
The lower section has length L1 

and linear density μ1 
and the 

upper section has length L2 = 2L1 and linear density μ2 = 4μ1. 
The climber happens to pluck the bottom end of the rope (as a 
“ready” signal) at the same time the rescuer plucks the top end. 
The mass of the rope sections is negligible compared to the mass 
of the climber. (a) What is the speed v1 of the pulse in section 
1 in terms of the speed v2 of the pulse in section 2? (b) In terms 
of L2, at what distance below the rescuer do the two pulses pass 
through each other?

94 CALC  Tightening a guitar string. A guitar string with a lin-
ear density of 3.0 g/m and a length of 0.80 m is oscillating in the 
first harmonic and second harmonic as the tension is gradually 
increased. When the tension τ passes through the value of 150 N,  
what is the rate df/dτ of the frequency change for (a) the first 
harmonic and (b) the second harmonic?

95 CALC  Velocity u graph. Figure 16.27 shows the transverse 
velocity u versus time t of the point on a string at x = 0, as a 
wave passes through it. The wave has the form y(x, t) = ym 
sin(kx – ωt + ϕ). What is ϕ? (Caution: A calculator does not 
always give the proper inverse trig function, so check your 
answer by substituting it and an assumed value of ω into y(x, t) 
and then plotting the function.)

Figure 16.25b is a graph of speed v versus time t for a  bullet 
of mass 10.2 g fired from a .38 Special revolver directly into body 
armor. The scales of the vertical and horizontal axes are set by 
vs = 300 m/s and ts = 40.0 μs. Take vl = 2000 m/s, and assume 
that the half-angle θ of the conical dent is 60°. At the end of 
the collision, what are the radii of (a) the thinned region and  
(b) the dent (assuming that the person wearing the armor 
remains stationary)? 

Radius reached
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Bullet

vl vt vt vl
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(b)
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0
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Figure 16.25 Problem 88.
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‒2
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Figure 16.27 Problem 95.

89  Two waves are described by

 y1 = 0.30 sin[π (5x − 200t)]

and y2 = 0.30 sin[π (5x − 200t) + π/3],

where y1, y2, and x are in meters and t is in seconds. When these two 
waves are combined, a traveling wave is produced. What are the 
(a) amplitude, (b) wave speed, and (c) wavelength of that traveling 
wave?

90  A certain transverse sinu-
soidal wave of wavelength 20 cm  
is moving in the positive direc-
tion of an x axis. The trans-
verse velocity of the particle at  
x = 0 as a function of time is 
shown in Fig. 16.26, where the 
scale of the vertical axis is set by us = 5.0 cm/s. What are the (a) 
wave speed, (b) amplitude, and (c) frequency? (d) Sketch the 
wave  between x = 0 and x = 20 cm at t = 2.0 s.

91 SSM  In a demonstration, a 1.2 kg horizontal rope is fixed in 
place at its two ends (x = 0 and x = 2.0 m) and made to oscillate 
up and down in the fundamental mode, at frequency 5.0 Hz.  
At t = 0, the point at x = 1.0 m has zero displacement and is 
moving upward in the positive direction of a y axis with a trans-
verse velocity of 5.0 m/s. What are (a) the amplitude of the 
motion of that point and (b) the tension in the rope? (c) Write 
the standing wave equation for the funda mental mode. 

Figure 16.26 Problem 90.
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96  Ratios. Four sinusoidal waves travel in the positive x 
 direction along the same string. Their frequencies are in the 
ratio 1:2:3:4, and their amplitudes are in the ratio 1 :    1 _ 2    :    

1 _ 3    :      
1 _ 4   ,

 respectively. When t = 0, at x = 0, the first and third waves are 
180° out of phase with the second and fourth. What wave func-
tions satisfy these conditions?
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What Is Physics?
The physics of sound waves is the basis of countless studies in the research  journals 
of many fields. Here are just a few examples. Some physiologists are  concerned 
with how speech is produced, how speech impairment might be  corrected, how 
hearing loss can be alleviated, and even how snoring is produced. Some acoustic 
engineers are concerned with improving the acoustics of cathedrals and concert 
halls, with reducing noise near freeways and road construc tion, and with repro-
ducing music by speaker systems. Some aviation engineers are concerned with the 
shock waves produced by supersonic aircraft and the aircraft noise produced in 
communities near an airport. Some medical researchers are concerned with how 
noises produced by the heart and lungs can signal a  medical problem in a patient. 
Some paleontologists are concerned with how a dinosaur’s fossil might reveal the 
dinosaur’s vocalizations. Some military  engineers are concerned with how the 
sounds of sniper fire might allow a soldier to pinpoint the sniper’s location, and, 
on the gentler side, some biologists are  concerned with how a cat purrs. FCP

To begin our discussion of the physics of sound, we must first answer the 
question “What are sound waves?”

Sound Waves
As we saw in Chapter 16, mechanical waves are waves that require a material 
medium to exist. There are two types of mechanical waves: Transverse waves 
 involve oscillations perpendicular to the direction in which the wave travels; 
 longitudinal waves involve oscillations parallel to the direction of wave travel.

Waves—II

17.1 SPEED OF SOUND
Learning Objectives 
After reading this module, you should be able to . . .

17.1.1 Distinguish between a longitudinal wave and a 
 transverse wave.

17.1.2 Explain wavefronts and rays.
17.1.3 Apply the relationship between the speed of 

sound through a material, the material’s bulk  
modulus, and the material’s density.

17.1.4 Apply the relationship between the speed of 
sound, the distance traveled by a sound wave, and 
the time required to travel that distance.

Key Idea 
● Sound waves are longitudinal mechanical waves that 
can travel through solids, liquids, or gases. The speed 
v of a sound wave in a medium having bulk modulus B 
and density ρ is

 v =  √ 

__

   B __ ρ     (speed of sound).

In air at 20°C, the speed of sound is 343 m/s.

C H A P T E R  1 7
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In this book, a sound wave is defined roughly as any longitudinal wave. 
Seismic prospecting teams use such waves to probe Earth’s crust for oil. Ships 
carry sound-ranging gear (sonar) to detect underwater obstacles. Submarines 
use sound waves to stalk other submarines, largely by listening for the charac-
teristic noises produced by the propulsion system. Figure 17.1.1 suggests how 
sound waves can be used to explore the soft tissues of an animal or human body. 
In this chapter we shall focus on sound waves that travel through the air and that 
are audible to people.

Figure 17.1.2 illustrates several ideas that we shall use in our discussions. 
Point S represents a tiny sound source, called a point source, that emits sound 
waves in all directions. The wavefronts and rays indicate the direction of travel 
and the spread of the sound waves. Wavefronts are surfaces over which the 
 oscillations due to the sound wave have the same value; such surfaces are rep-
resented by whole or partial circles in a two-dimensional drawing for a point 
source. Rays are directed lines perpendicular to the wavefronts that indicate the 
direction of travel of the wavefronts. The short double arrows superimposed on 
the rays of Fig. 17.1.2 indicate that the longitudinal oscillations of the air are 
 parallel to the rays.

Near a point source like that of Fig. 17.1.2, the wavefronts are spherical and 
spread out in three dimensions, and there the waves are said to be spherical. 
As the wavefronts move outward and their radii become larger, their curvature 
 decreases. Far from the source, we approximate the wavefronts as planes (or lines 
on two-dimensional drawings), and the waves are said to be planar.

The Speed of Sound
The speed of any mechanical wave, transverse or longitudinal, depends on both an 
inertial property of the medium (to store kinetic energy) and an elastic property 
of the medium (to store potential energy). Thus, we can generalize Eq. 16.2.5, 
which gives the speed of a transverse wave along a stretched string, by writing

   v =  √ 
__

   τ __ μ     =  √ 

_______________

    
elastic property

  _______________  
inertial property

    ,   (17.1.1)

where (for transverse waves) τ is the tension in the string and μ is the string’s  linear 
density. If the medium is air and the wave is longitudinal, we can guess that the 
inertial property, corresponding to μ, is the volume density ρ of air. What shall we 
put for the elastic property?

In a stretched string, potential energy is associated with the periodic stretching 
of the string elements as the wave passes through them. As a sound wave passes 
through air, potential energy is associated with periodic compressions and expan-
sions of small volume elements of the air. The property that determines the extent 
to which an element of a medium changes in volume when the pressure (force per 
unit area) on it changes is the bulk modulus B, defined (from Eq. 12.3.4) as

  B = −   
Δp

 _____ ΔV/V     (definition of bulk modulus). (17.1.2)

Here ΔV/V is the fractional change in volume produced by a change in pres-
sure Δp. As explained in Module 14.1, the SI unit for pressure is the newton per 
square meter, which is given a special name, the pascal (Pa). From Eq. 17.1.2 
we see that the unit for B is also the pascal. The signs of Δp and ΔV are always 
 opposite: When we increase the pressure on an element (Δp is positive), its vol-
ume decreases (ΔV is negative). We include a minus sign in Eq. 17.1.2 so that B is 
always a positive quantity. Now substituting B for τ and ρ for μ in Eq. 17.1.1 yields

  v =  √ 
__

   B __ ρ       (speed of sound) (17.1.3)

Mauro Fermariello/SPL/Science SourceFigure 17.1.1 A loggerhead turtle 
is being checked with ultrasound 
(which has a frequency above your 
hearing range); an image of its inte-
rior is being produced on a monitor 
off to the right. 
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Wavefronts

Figure 17.1.2 A sound wave travels 
from a point source S through a 
three-dimensional medium. The 
wavefronts form spheres centered on 
S; the rays are radial to S. The short, 
double-headed arrows indicate that 
elements of the medium oscillate 
parallel to the rays.
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as the speed of sound in a medium with bulk modulus B and density ρ. Table 
17.1.1 lists the speed of sound in various media.

The density of water is almost 1000 times greater than the density of air. If this 
were the only relevant factor, we would expect from Eq. 17.1.3 that the speed of 
sound in water would be considerably less than the speed of sound in air. However, 
Table 17.1.1 shows us that the reverse is true. We conclude (again from Eq. 17.1.3) 
that the bulk modulus of water must be more than 1000 times greater than that of 
air. This is indeed the case. Water is much more incompressible than air, which 
(see Eq. 17.1.2) is another way of saying that its bulk modulus is much greater.

Formal Derivation of Eq. 17.1.3
We now derive Eq. 17.1.3 by direct application of Newton’s laws. Let a single 
pulse in which air is compressed travel (from right to left) with speed v through 
the air in a long tube, like that in Fig. 16.1.2. Let us run along with the pulse at 
that speed, so that the pulse appears to stand still in our reference frame. Figure 
17.1.3a shows the situation as it is viewed from that frame. The pulse is standing 
still, and air is moving at speed v through it from left to right.

Let the pressure of the undisturbed air be p and the pressure inside the 
pulse be p + Δp, where Δp is positive due to the compression. Consider an ele-
ment of air of thickness Δx and face area A, moving toward the pulse at speed v.  
As this element enters the pulse, the leading face of the element encounters a 
 region of higher pressure, which slows the element to speed v + Δv, in which Δv 
is negative. This slowing is complete when the rear face of the element reaches 
the pulse, which requires time interval

   Δt =   Δx ___ v  .   (17.1.4)

Let us apply Newton’s second law to the element. During Δt, the average 
force on the element’s trailing face is pA toward the right, and the average force 
on the leading face is ( p + Δp)A toward the left (Fig. 17.1.3b). Therefore, the 
 average net force on the element during Δt is

 F = pA − ( p + Δp)A 

 = −Δp A  (net force). (17.1.5)

The minus sign indicates that the net force on the air element is directed to the 
left in Fig. 17.1.3b. The volume of the element is A Δx, so with the aid of Eq. 
17.1.4, we can write its mass as

 Δm = ρ ΔV = ρA Δx = ρAv Δt  (mass). (17.1.6)

The average acceleration of the element during Δt is

  a =   Δv ___ Δt     (acceleration). (17.1.7)

Table 17.1.1 The Speed of Sounda

Medium Speed (m/s)

Gases

Air (0°C) 331

Air (20°C) 343

Helium 965

Hydrogen 1284

Liquids

Water (0°C) 1402

Water (20°C) 1482

Seawaterb 1522

Solids

Aluminum 6420

Steel 5941

Granite 6000
aAt 0°C and 1 atm pressure, except where 
noted.
bAt 20°C and 3.5% salinity.

ΔΔx

(b)

pA (p +    p)APulse

Moving air (�uid element)

p, v

p +    p, v +    vΔ Δ

Δx

A

p, v

(a)

v

Figure 17.1.3 A compression pulse is sent from right to left down a long air-filled tube. 
The reference frame of the figure is chosen so that the pulse is at rest and the air moves 
from left to right. (a) An element of air of width Δx moves toward the pulse with speed v.  
(b) The leading face of the element enters the pulse. The forces acting on the leading 
and trailing faces (due to air pressure) are shown.
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Thus, from Newton’s second law (F = ma), we have, from Eqs. 17.1.5, 17.1.6, 
and 17.1.7,

   − Δp A =   (   ρAv Δt )       Δv ___ Δt  ,   (17.1.8)

which we can write as

   ρ v   2  = −   
Δp

 ____ Δv/v  .   (17.1.9)

The air that occupies a volume V (= Av Δt) outside the pulse is compressed by an 
amount ΔV (= A Δv Δt) as it enters the pulse. Thus,

     ΔV ___ 
V

   =   A Δv Δt _______ 
Av Δt

   =   Δv ___ v  .   (17.1.10)

Substituting Eq. 17.1.10 and then Eq. 17.1.2 into Eq. 17.1.9 leads to

   ρ v   2  = −   
Δp

 ____ Δv / v   = −   
Δp
 _____ ΔV / V   = B.   (17.1.11)

Solving for v yields Eq. 17.1.3 for the speed of the air toward the right in Fig. 
17.1.3, and thus for the actual speed of the pulse toward the left.

Checkpoint 17.1.1
The same change Δp in pressure is applied to two materials with the same initial 
volume: Material A has a greater bulk modulus than material B. Which material 
undergoes the greater change in volume?

17.2 TRAVELING SOUND WAVES
Learning Objectives 
After reading this module, you should be able to . . .

17.2.1 For any particular time and position, calculate 
the displacement s(x, t) of an element of air as a 
sound wave travels through its location.

17.2.2 Given a displacement function s(x, t) for a 
sound wave, calculate the time between two given 
displacements.

17.2.3 Apply the relationships between wave speed v, 
angular frequency ω, angular wave number k, wave-
length λ, period T, and frequency f.

17.2.4 Sketch a graph of the displacement s(x) of an 
element of air as a function of position, and identify 
the amplitude sm and wavelength λ.

17.2.5 For any particular time and position, calculate the 
pressure variation Δp (variation from atmospheric 

pressure) of an element of air as a sound wave  
travels through its location.

17.2.6 Sketch a graph of the pressure variation Δp(x) 
of an element as a function of position, and identify 
the amplitude Δpm and wavelength λ.

17.2.7 Apply the relationship between pressure-variation 
amplitude Δpm and displacement amplitude sm.

17.2.8 Given a graph of position s versus time for a 
sound wave, determine the amplitude sm and the 
period T.

17.2.9 Given a graph of pressure variation Δp versus 
time for a sound wave, determine the amplitude Δpm 
and the period T.

Key Ideas 
● A sound wave causes a longitudinal displacement s 
of a mass element in a medium as given by

s = sm cos(kx − ωt),

where sm is the displacement amplitude (maximum 
displacement) from equilibrium, k = 2π/λ, and ω = 2πf, 
λ and f  being the wavelength and frequency, respec-
tively, of the sound wave. 

● The sound wave also causes a pressure change Δp 
of the medium from the equilibrium pressure:

Δp = Δpm sin(kx − ωt),

where the pressure amplitude is

Δpm = (vρω)sm.
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50917.2 TRAvElIng sound WAvEs

Traveling Sound Waves
Here we examine the displacements and pressure variations associated with a 
 sinusoidal sound wave traveling through air. Figure 17.2.1a displays such a wave 
traveling rightward through a long air-filled tube. Recall from Chapter 16 that 
we can produce such a wave by sinusoidally moving a piston at the left end of 
the tube (as in Fig. 16.1.2). The piston’s rightward motion moves the element of 
air next to the piston face and compresses that air; the piston’s leftward motion 
allows the element of air to move back to the left and the pressure to decrease. 
As each element of air pushes on the next element in turn, the right–left motion 
of the air and the change in its pressure travel along the tube as a sound wave.

Consider the thin element of air of thickness Δx shown in Fig. 17.2.1b. As 
the wave travels through this portion of the tube, the element of air oscillates left 
and  right in simple harmonic motion about its equilibrium position. Thus, the 
 oscillations of each air element due to the traveling sound wave are like those of 
a string element due to a transverse wave, except that the air element oscillates 
longitudinally rather than transversely. Because string elements oscillate parallel 
to the y axis, we write their displacements in the form y(x, t). Similarly, because 
air elements oscillate parallel to the x axis, we could write their displacements in 
the confusing form x(x, t), but we shall use s(x, t) instead.

Displacement. To show that the displacements s(x, t) are sinusoidal func-
tions of x and t, we can use either a sine function or a cosine function. In this 
chapter we use a cosine function, writing

 s(x, t) = sm cos(kx − ωt). (17.2.1)

Figure 17.2.2a labels the various parts of this equation. In it, sm is the  displacement 
amplitude—that is, the maximum displacement of the air element to either side 
of its equilibrium position (see Fig. 17.2.1b). The angular wave  number k, angu-
lar frequency ω, frequency f, wavelength λ, speed v, and period T for a sound 
 (longitudinal) wave are defined and interrelated exactly as for a transverse 
wave,  except that λ is now the distance (again along the direction of travel) 
in which the pattern of compression and expansion due to the wave  begins to 
 repeat itself (see Fig. 17.2.1a). (We assume sm is much less than λ.)

Pressure. As the wave moves, the air pressure at any position x in Fig. 17.2.1a 
varies  sinusoidally, as we prove next. To describe this variation we write

 Δp(x, t) = Δpm sin(kx − ωt). (17.2.2)

Figure 17.2.2b labels the various parts of this equation. A negative value of Δp 
in Eq. 17.2.2 corresponds to an expansion of the air, and a positive value to a 

Compression

(a)

Δx

Expansion

Equilibrium
position

s

sm sm

(b)

x

Oscillating �uid element

v

The element oscillates
left and right as the wave
moves through it.

λFigure 17.2.1 (a) A sound wave, traveling 
through a long air-filled tube with speed 
v, consists of a moving, periodic pattern 
of expansions and compressions of the 
air. The wave is shown at an arbitrary 
instant. (b) A horizontally expanded 
view of a short piece of the tube. As the 
wave passes, an air element of thickness 
Δx oscillates left and right in  simple 
harmonic motion about its equilibrium 
position. At the instant shown in (b), 
the  element happens to be displaced a 
distance s to the right of its equilibrium 
position. Its maximum displacement, 
either right or left, is sm.

Displacement

Pressure variation
Pressure amplitude

Displacement
amplitude

Oscillating
term

(a)

(b)

s(x,t) = sm cos(kx – ωt)

Δp(x,t) = Δpm sin(kx – ωt)

Figure 17.2.2 (a) The displacement 
function and (b) the pressure- 
variation function of a traveling 
sound wave consist of an amplitude 
and an oscillating term.
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510 CHAPTER 17 WAvEs—II

compression. Here Δpm is the pressure amplitude, which is the maximum increase 
or decrease in pressure due to the wave; Δpm is normally very much less than the 
pressure p present when there is no wave. As we shall prove, the pressure ampli-
tude Δpm is related to the displacement amplitude sm in Eq. 17.2.1 by

 Δpm = (vρω)sm. (17.2.3)

Figure 17.2.3 shows plots of Eqs. 17.2.1 and 17.2.2 at t = 0; with time, the 
two  curves would move rightward along the horizontal axes. Note that the 
 displacement and pressure variation are π/2 rad (or 90°) out of phase. Thus, for 
example, the pressure variation Δp at any point along the wave is zero when the 
displacement there is a maximum.

Figure 17.2.3 (a) A plot of the dis-
placement function (Eq. 17.2.1)  
for t = 0. (b) A similar plot of the 
pressure-variation function (Eq. 
17.2.2). Both plots are for a 1000 Hz 
sound wave whose pressure ampli-
tude is at the threshold of pain.
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Derivation of Eqs. 17.2.2 and 17.2.3
Figure 17.2.1b shows an oscillating element of air of cross-sectional area A 
and thickness Δx, with its center displaced from its equilibrium position by 
distance  s. From Eq. 17.1.2 we can write, for the pressure variation in the 
dis placed element,

   Δp = − B    ΔV ___ 
V

  .   (17.2.4)

The quantity V in Eq. 17.2.4 is the volume of the element, given by

 V = A Δx. (17.2.5)

The quantity ΔV in Eq. 17.2.4 is the change in volume that occurs when the 
 element is displaced. This volume change comes about because the displace ments 
of the two faces of the element are not quite the same, differing by some amount 
Δs. Thus, we can write the change in volume as

 ΔV = A Δs. (17.2.6)

Substituting Eqs. 17.2.5 and 17.2.6 into Eq. 17.2.4 and passing to the differ-
ential limit yield

   Δp = −B    Δs ___ Δx   = −B    ∂ s ___ ∂ x  .   (17.2.7)

The symbols ∂ indicate that the derivative in Eq. 17.2.7 is a partial derivative, 
which tells us how s changes with x when the time t is fixed. From Eq. 17.2.1 we 
then have, treating t as a constant,

   ∂ s ___ ∂ x   =   ∂ ___ ∂ x      [    s  m   cos  (kx − ωt)  ]    = − k  s  m   sin  (kx − ωt) . 

Substituting this quantity for the partial derivative in Eq. 17.2.7 yields

Δp = Bksm sin(kx − ωt).

This tells us that the pressure varies as a sinusoidal function of time and that the 
amplitude of the variation is equal to the terms in front of the sine function. Set-
ting Δpm = Bksm, this yields Eq. 17.2.2, which we set out to prove.

Using Eq. 17.1.3, we can now write

Δpm = (Bk)sm = (v2ρk)sm.

Equation 17.2.3, which we also wanted to prove, follows at once if we substitute 
ω/v for k from Eq. 16.1.12.

Checkpoint 17.2.1
When the oscillating air element in Fig. 17.2.1b is moving  rightward through the point 
of zero displacement, is the pressure in the element at its equilibrium value, just 
beginning to increase, or just beginning to decrease?
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51117.3 InTERfEREnCE

  sm =   28 Pa  ________________________________    
(343 m / s)(1.21  kg / m3)(2π)(1000 Hz)

   

 = 1.1 × 10−5 m = 11 μm. (Answer)

That is only about one-seventh the thickness of a book 
page. Obviously, the displacement amplitude of even the 
loudest sound that the ear can tolerate is very small. Tem-
porary exposure to such loud sound produces temporary 
hearing loss, probably due to a decrease in blood supply 
to the inner ear. Prolonged exposure produces permanent 
damage.

The pressure amplitude Δpm for the faintest detect-
able sound at 1000 Hz is 2.8 × 10−5 Pa. Proceeding as 
above leads to sm = 1.1 × 10−11 m or 11 pm, which is about 
one-tenth the radius of a typical atom. The ear is indeed a 
sensitive detector of sound waves.

The maximum pressure amplitude Δpm that the human 
ear can tolerate in loud sounds is about 28 Pa (which 
is very much  less than the normal air pressure of about 
105 Pa). What is the displacement amplitude sm for such 
a sound in air of density ρ = 1.21 kg/m3, at a frequency of 
1000 Hz and a speed of 343 m/s?

KEY IDEA

The displacement amplitude sm of a sound wave is related 
to the pressure amplitude Δpm of the wave according to 
Eq. 17.2.3. 

Calculations: Solving that equation for sm yields

  s  m   =   
Δ  p  m  

 ____ vρω   =   
Δ  p  m  

 _______ 
vρ  (  2πf  )   

  . 

Substituting known data then gives us

Sample Problem 17.2.1 Pressure amplitude, displacement amplitude

Interference
Like transverse waves, sound waves can undergo interference. In fact, we can 
write equations for the interference as we did in Module 16.5 for transverse 

17.3 INTERFERENCE
Learning Objectives 
After reading this module, you should be able to . . .

17.3.1 If two waves with the same wavelength begin in 
phase but reach a common point by traveling along 
different paths, calculate their phase difference ϕ at 
that point by relating the path length difference ΔL 
to the wavelength λ.

17.3.2 Given the phase difference between two sound 
waves with the same amplitude, wavelength, and 

travel direction, determine the type of interference 
between the waves (fully destructive interference, 
fully constructive interference, or indeterminate 
interference).

17.3.3 Convert a phase difference between radians, 
degrees, and number of wavelengths.

Key Ideas 
● The interference of two sound waves with identi-
cal wavelengths passing through a common point 
 depends on their phase difference ϕ there. If the sound 
waves were emitted in phase and are traveling in 
approximately the same direction, ϕ is given by

 ϕ =   ΔL ___ λ   2π, 

where ΔL is their path length difference. 

● Fully constructive interference occurs when ϕ is an 
 integer multiple of 2π,

ϕ = m(2π),    for m = 0, 1, 2, . . . ,

and, equivalently, when ΔL is related to wavelength λ by

   ΔL ___ λ    = 0, 1, 2, . . . .

● Fully destructive interference occurs when ϕ is an odd 
mul tiple of π,

ϕ = (2m + 1)π,    for m = 0, 1, 2, . . . ,

and          ΔL ___ λ    = 0.5, 1.5, 2.5, . . . .

Additional examples, video, and practice available at WileyPLUS

c17WavesII.indd   511 05/05/21   8:08 PM



512 CHAPTER 17 WAvEs—II

Figure 17.3.1 (a) Two point sources 
S1 and S2 emit spherical sound waves 
in phase. The rays  indicate that the 
waves pass through a common point P.  
The waves (represented with trans-
verse waves) arrive at P (b) exactly in 
phase and (c) exactly out of phase.

waves. Suppose two sound waves with the same amplitude and wavelength 
are traveling in the positive direction of an x axis with a phase difference of 
ϕ. We can express the waves in the form of Eqs. 16.5.2 and 16.5.3 but, to be 
consistent with Eq. 17.2.1, we use cosine functions instead of sine functions:

  s  1    (  x, t )    =  s  m   cos   (  kx − ωt )    

and

  s  2    (  x, t )    =  s  m   cos   (  kx − ωt + ϕ )  .  

These waves overlap and interfere. From Eq. 16.5.6, we can write the resul-
tant wave as

 s′ =  [  2s  m   cos   1 __ 2   ϕ]  cos  (kx − ωt +   1 __ 2   ϕ).  

As we saw with transverse waves, the resultant wave is itself a traveling wave. 
Its amplitude is the magnitude

   s ′  m   =  |2 s  m   cos         1 _ 2   ϕ| .   (17.3.1)

As with transverse waves, the value of ϕ determines what type of interference 
the individual waves undergo.

One way to control ϕ is to send the waves along paths with differ-
ent lengths. Figure 17.3.1a shows how we can set up such a situation: Two 
point sources S1 and S2 emit sound waves that are in phase and of identical 
 wavelength λ. Thus, the sources themselves are said to be in phase; that is, as 
the waves emerge from the sources, their displacements are always identical. 
We are  interested in the waves that then travel through point P in Fig. 17.3.1a. 
We  assume that the distance to P is much greater than the distance between 
the sources so that we can approximate the waves as traveling in the same 
 direction at P.

If the waves traveled along paths with identical lengths to reach point P, 
they would be in phase there. As with transverse waves, this means that they 
would undergo fully constructive interference there. However, in Fig. 17.3.1a, 
path L2 traveled by the wave from S2 is longer than path L1 traveled by the 

wave from S1. The difference in path lengths means that the waves may not be in 
phase at point P. In other words, their phase difference ϕ at P depends on their 
path length difference ΔL = |L2 − L1|.

To relate phase difference ϕ to path length difference ΔL, we recall (from 
Module 16.1) that a phase difference of 2π rad corresponds to one wavelength. 
Thus, we can write the proportion

     
ϕ

 ___ 
2π   =   ΔL ___ λ  ,   (17.3.2)

from which

   ϕ =   ΔL ___ λ   2π.   (17.3.3)

Fully constructive interference occurs when ϕ is zero, 2π, or any integer multiple 
of 2π. We can write this condition as

 ϕ = m(2π), for m = 0, 1, 2, . . . (fully constructive interference). (17.3.4)

From Eq. 17.3.3, this occurs when the ratio ΔL/λ is

    ΔL ___ λ    = 0, 1, 2, . . .   (fully constructive interference). (17.3.5)

For example, if the path length difference ΔL = |L2 − L1| in Fig. 17.3.1a is equal 
to 2λ, then ΔL/λ = 2 and the waves undergo fully constructive interference at 

S1

L1

L2

S2

P

P

P

(a)

(b)

(c)

The interference at P
depends on the difference
in the path lengths to reach P.

If the difference is equal to,
say, 2.0λ, then the waves
arrive exactly in phase. This
is how transverse waves
would look.

If the difference is equal to,
say, 2.5λ, then the waves
arrive exactly out of phase.
This is how transverse 
waves would look.
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51317.3 InTERfEREnCE

Sample Problem 17.3.1 Interference points along a big circle

In Fig. 17.3.2a, two point sources S1 and S2, which are in 
phase and separated by distance D = 1.5λ, emit identical 
sound waves of wavelength λ.

(a) What is the path length difference of the waves from 
S1 and S2 at point P1, which lies on the perpendicular 
bisector of distance D, at a distance greater than D from 
the sources (Fig. 17.3.2b)? (That is, what is the difference 
in the distance from source S1 to point P1 and the distance 
from source S2 to P1?) What type of interference occurs 
at P1?

Reasoning: Because the waves travel identical distances 
to reach P1, their path length difference is

 ΔL = 0.  (Answer)

From Eq. 17.3.5, this means that the waves undergo fully 
constructive interference at P1 because they start in phase 
at the sources and reach P1 in phase.

(b) What are the path length difference and type of inter-
ference at point P2 in Fig. 17.3.2c?

Reasoning: The wave from S1 travels the extra distance 
D (= 1.5λ) to reach P2. Thus, the path length difference is

 ΔL = 1.5λ.  (Answer)

From Eq. 17.3.7, this means that the waves are exactly 
out of phase at P2 and undergo fully destructive inter-
ference there.

point P (Fig. 17.3.1b). The interference is fully constructive because the wave 
from S2 is phase-shifted relative to the wave from S1 by 2λ, putting the two 
waves exactly in phase at P.

Fully destructive interference occurs when ϕ is an odd multiple of π: 

ϕ = (2m + 1)π, for m = 0, 1, 2, . . . (fully destructive interference). (17.3.6)

From Eq. 17.3.3, this occurs when the ratio ΔL/λ is

    ΔL ___ λ    = 0.5, 1.5, 2.5, . . .   (fully destructive interference). (17.3.7)

For example, if the path length difference ΔL = |L2 − L1| in Fig. 17.3.1a is equal 
to 2.5λ, then ΔL/λ = 2.5 and the waves undergo fully destructive interference at 
point P (Fig. 17.3.1c). The interference is fully destructive because the wave from 
S2 is phase-shifted relative to the wave from S1 by 2.5 wavelengths, which puts the 
two waves exactly out of phase at P.

Of course, two waves could produce intermediate interference as, say, when 
ΔL/λ = 1.2. This would be closer to fully constructive interference (ΔL/λ = 1.0) 
than to fully destructive interference (ΔL/λ = 1.5).

Checkpoint 17.3.1
Here are three pairs of sound waves. The waves in each pair are sent along the same 
axis so that they undergo interference. Rank the pairs according to the amplitude of 
the resultant wave, greatest amplitude. 

Pair A:
  s  1   (x, t ) =  s  m   cos (kx − ωt) 

 
 s  2   (x, t ) =  s  m   cos (kx − ωt + 0.90π) 

Pair B:

 
 s  1   (x, t ) =  s  m   cos (kx − ωt) 

 
 s  2   (x, t ) =  s  m   cos (kx − ωt + 1.10π) 

Pair C:

 
 s  1   (x, t ) =  s  m   cos (kx − ωt) 

 
 s  2   (x, t ) =  s  m   cos (kx − ωt + 0.20π) 

c17WavesII.indd   513 05/05/21   8:08 PM



514 CHAPTER 17 WAvEs—II

(c) Figure 17.3.2d shows a circle with a radius much 
greater than D, centered on the midpoint between 
sources S1 and S2. What is the number of points N around 
this circle at which the interference is fully constructive? 
(That is, at how many points do the waves arrive exactly 
in phase?)

Reasoning: Starting at point a, let’s move clockwise 
along the circle to point d. As we move, path length 
difference ΔL increases and so the type of interfer-
ence changes. From (a), we know that is ΔL = 0λ at 
point a. From (b), we know that ΔL = 1.5λ at point d. 
Thus, there must be one point between a and d at which 

ΔL = λ (Fig. 17.3.2e). From Eq. 17.3.5, fully construc-
tive  interference occurs at that point. Also, there can 
be no other point along the way from point a to point d 
at which fully  constructive interference occurs, because 
there is no other  integer than 1 between 0 at point a and 
1.5 at point d.

We can now use symmetry to locate other points of 
fully constructive or destructive interference (Fig. 17.3.2f ). 
Symmetry about line cd gives us point b, at which ΔL = 0λ. 
Also, there are three more points at which ΔL = λ. In all 
(Fig. 17.3.2g) we have

 N = 6. (Answer)

The difference in these
path lengths equals 0.

D/2

D/2

S1
L1

L2
S2

P1

(b)

S1

S2

P2(c)

D

S1

S2

(a)

a 0λ

1.5λ

S2

S1

d

(d )

D

The difference in these
path lengths is D,
which equals 1.5λ.

Thus, the waves arrive exactly
in phase and undergo fully
constructive interference.

Thus, the waves arrive 
exactly out of phase 
and undergo fully
destructive interference.

Figure 17.3.2 (a) Two point sources S1 and S2, separated by distance D, emit spherical 
sound waves in phase. (b) The waves travel equal distances to reach point P1. (c) Point 
P2 is on the line extending through S1 and S2. (d) We move around a large circle.  
(e) Another point of fully constructive interference. ( f ) Using symmetry to determine 
other points. (g) The six points of fully constructive interference.

The difference 
in these path
lengths
equals 1.0λ.

S2

S1

(e)

0λ

0λ 0λ

b a 0λ

1.5λ

1.5λ

1.0λ

1.0λ

1.0λ

1.0λ 1.0λ

1.0λ

1.0λ 1.0λ

S2

S1

d

c

( f ) (g)

1.0λ

Thus, the waves arrive exactly in phase 
and undergo fully constructive interference.

We �nd six points 
of fully constructive 
interference.

Maximum phase
difference

Maximum phase
difference

Zero
phase
difference

Zero 
phase
difference

A

Additional examples, video, and practice available at WileyPLUS
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Intensity and Sound Level
If you have ever tried to sleep while someone played loud music nearby, you are 
well aware that there is more to sound than frequency, wavelength, and speed. 
There is also intensity. The intensity I of a sound wave at a surface is the average 
rate per unit area at which energy is transferred by the wave through or onto the 
surface. We can write this as

   I =   P __ 
A

  ,   (17.4.1)

where P is the time rate of energy transfer (the power) of the sound wave 
and A  is the area of the surface intercepting the sound. As we shall derive 
shortly, the intensity I is related to the displacement amplitude sm of the sound  
wave by

   I =   1 _ 2   ρv  ω   2  s m  2  .   (17.4.2)

Intensity can be measured on a detector. Loudness is a perception, something 
that you sense. The two can differ because your perception depends on factors 
such as the sensitivity of your hearing mechanism to various frequencies.

17.4 INTENSITY AND SOUND LEVEL
Learning Objectives 
After reading this module, you should be able to . . .

17.4.1 Calculate the sound intensity I at a surface as 
the ratio of the power P to the surface area A.

17.4.2 Apply the relationship between the sound 
intensity I and the displacement amplitude sm of the 
sound wave.

17.4.3 Identify an isotropic point source of sound.
17.4.4 For an isotropic point source, apply the relation-

ship involving the emitting power Ps, the distance 

r to a detector, and the sound intensity I at the 
detector.

17.4.5 Apply the relationship between the sound level 
β, the sound intensity I, and the standard reference 
intensity I0.

17.4.6 Evaluate a logarithm function (log) and an anti-
logarithm function (log−1).

17.4.7 Relate the change in a sound level to the 
change in sound intensity.

Key Ideas 
● The intensity I of a sound wave at a  surface is the 
average rate per unit area at which energy is trans-
ferred by the wave through or onto the surface:

 I =   P __ 
A

  , 

where P is the time rate of energy transfer (power) 
of the sound wave and A is the area of the surface 
intercepting the sound. The intensity I is related to the 
displacement  amplitude sm of the sound wave by

 I =   1 _ 2   ρv ω   2   s m  2  . 

● The intensity at a distance r from a point source that 
emits sound waves of power Ps equally in all directions 
(isotropically) is

 I =   
 P  s   ____ 

 4πr   2 
  . 

● The sound level β in decibels (dB) is defined as

 β =  (10 dB)  log   I __ 
 I  0  

  , 

where I0 (= 10−12 W/m2) is a reference intensity level 
to which all intensities are compared. For every factor-
of-10  increase in intensity, 10 dB is added to the sound 
level.
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Variation of Intensity with Distance
How intensity varies with distance from a real sound source is often complex. 
Some real sources (like loudspeakers) may transmit sound only in particu-
lar directions, and the environment usually produces echoes (reflected sound 
waves)  that overlap the direct sound waves. In some situations, however, we 
can  ignore echoes and assume that the sound source is a point source that 
emits  the sound isotropically—that is, with equal intensity in all directions. 
The wavefronts spreading from such an isotropic point source S at a particular 
 instant are shown in Fig. 17.4.1.

Let us assume that the mechanical energy of the sound waves is conserved 
as they spread from this source. Let us also center an imaginary sphere of radius 
r  on the source, as shown in Fig. 17.4.1. All the energy emitted by the source 
must pass through the surface of the sphere. Thus, the time rate at which energy 
is transferred through the surface by the sound waves must equal the time rate 
at which energy is emitted by the source (that is, the power Ps of the source). 
From Eq. 17.4.1, the intensity I at the sphere must then be

   I =   
 P  s   _____ 

4π r   2 
  ,   (17.4.3)

where 4πr2 is the area of the sphere. Equation 17.4.3 tells us that the intensity of 
sound from an isotropic point source decreases with the square of the distance r 
from the source.

The Decibel Scale
The displacement amplitude at the human ear ranges from about 10−5 m for 
the loudest tolerable sound to about 10−11 m for the faintest detectable sound, 
a ratio of 106. From Eq. 17.4.2 we see that the  intensity of a sound varies as 
the square of its amplitude, so the ratio of intensi ties at these two limits of the 
human auditory system is 1012. Humans can hear over an enormous range of 
intensities.

We deal with such an enormous range of values by using logarithms. Con-
sider the relation

y = log x,

in which x and y are variables. It is a property of this equation that if we multiply 
x by 10, then y increases by 1. To see this, we write

y′ = log(10x) = log 10 + log x = 1 + y.

Similarly, if we multiply x by 1012, y increases by only 12.

Checkpoint 17.4.1
The figure indicates three small patches 1, 2, and 3 that 
lie on the surfaces of two imaginary spheres; the spheres 
are centered on an isotropic point source S of sound. The 
rates at which energy is transmitted through the three 
patches by the sound waves are equal. Rank the patches 
according to (a) the intensity of the sound on them and 
(b) their area, greatest first.

S
3

1

2

Sound can cause the wall of a drink-
ing glass to oscillate. If the sound 
produces a standing wave of oscilla-
tions and if the intensity of the sound 
is large enough, the glass will shatter. 

© Ben Rose

S

r

Figure 17.4.1 A point source S emits 
sound waves uniformly in all direc-
tions. The waves pass through an 
imaginary sphere of radius r that is 
centered on S.
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51717.4 InTEnsITy And sound lEvEl

Thus, instead of speaking of the intensity I of a sound wave, it is much more 
convenient to speak of its sound level β, defined as

   β =  (10 dB)   log   I __  I  0  
  .   (17.4.4)

Here dB is the abbreviation for decibel, the unit of sound level, a name that 
was chosen to recognize the work of Alexander Graham Bell. I0 in Eq. 17.4.4 
is a  standard reference intensity (= 10−12 W/m2), chosen because it is near the 
lower limit of the human range of hearing. For I = I0, Eq. 17.4.4 gives β = 10 
log 1 = 0, so our standard reference level corresponds to zero decibels. Then β 
increases by 10 dB every time the sound intensity increases by an order of mag-
nitude (a factor of 10). Thus, β = 40 corresponds to an intensity that is 104 times 
the  standard reference level. Table 17.4.1 lists the sound levels for a variety of 
envi ronments.

Derivation of Eq. 17.4.2
Consider, in Fig. 17.2.1a, a thin slice of air of thickness dx, area A, and mass dm, 
 oscillating back and forth as the sound wave of Eq. 17.2.1 passes through it. The 
kinetic energy dK of the slice of air is

   dK =   1 _ 2   dm   v s  2 .   (17.4.5)

Here vs is not the speed of the wave but the speed of the oscillating element of air, 
obtained from Eq. 17.2.1 as

  v  s   =   ∂ s __ ∂ t   = − ω  s  m   sin   (  kx − ωt )   . 

Using this relation and putting dm = ρA dx allow us to rewrite Eq. 17.4.5 as

 dK =    1 _ 2    (ρA dx)(−ωsm)2 sin2(kx − ωt). (17.4.6)

Dividing Eq. 17.4.6 by dt gives the rate at which kinetic energy moves along 
with the wave. As we saw in Chapter 16 for transverse waves, dx/dt is the wave 
speed v, so we have

    dK ___ 
dt

   =   1 _ 2    ρAvω2s2
m sin2(kx − ωt). (17.4.7)

The average rate at which kinetic energy is transported is

    (    dK ___ 
dt

   )    
avg

   =   1 _ 2   ρAv  ω   2  s m  2     [   sin  2   (  kx − ωt )    ]    
avg

    

  =   1 _ 4   ρAv  ω   2  s m  2  .  (17.4.8)

To obtain this equation, we have used the fact that the average value of the square 
of a sine (or a cosine) function over one full oscillation is    1 _ 2   .

We assume that potential energy is carried along with the wave at this 
same average rate. The wave intensity I, which is the average rate per unit 
area at which energy of both kinds is transmitted by the wave, is then, from 
Eq. 17.4.8,

 I =   
2  (  dK / dt )    avg   __________ 

A
   =   1 _ 2   ρv ω   2  s m  2  , 

which is Eq. 17.4.2, the equation we set out to derive.

Table 17.4.1 Some Sound Levels (dB)

Hearing threshold 0
Rustle of leaves 10
Conversation 60
Rock concert 110
Pain threshold 120
Jet engine 130
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17.5 SOURCES OF MUSICAL SOUND
Learning Objectives 
After reading this module, you should be able to . . .

17.5.1 Using standing wave patterns for string waves, 
sketch the standing wave patterns for the first 
several acoustical harmonics of a pipe with only one 
open end and with two open ends.

17.5.2 For a standing wave of sound, relate the dis-
tance  between nodes and the wavelength.

17.5.3 Identify which type of pipe has even harmonics.
17.5.4 For any given harmonic and for a pipe with only 

one open end or with two open ends, apply the 
relationships between the pipe length L, the speed of 
sound v, the wavelength λ, the harmonic frequency f, 
and the harmonic number n.

Key Ideas 
● Standing sound wave patterns can be set up in pipes 
(that is, resonance can be set up) if sound of the proper 
wavelength is introduced in the pipe.

● A pipe open at both ends will resonate at frequencies

 f =   v __ λ   =   nv ___ 2L
  ,     n = 1, 2, 3, . . . ,

where v is the speed of sound in the air in the pipe.

● For a pipe closed at one end and open at the other, 
the resonant fre quencies are

 f =   v __ λ   =   nv ___ 4L
  ,     n = 1, 3, 5, . . . .

KEY IDEA

The displacement amplitude sm of a sound wave is related 
to the pressure amplitude ∆pm of the wave according to 
Eq. 17.2.3.

Calculations: Substituting data into that equation yields

  Δ  p  m   = vρω  s  m   = vρ(2πf )  s  m  

 = (343   m/s)(1.21 kg/m  3  )(2π)(1000 Hz)(70 ×  10  −6  m)

 = 182.53 Pa ≈ 183 Pa. 

The maximum pressure amplitude that the human ear can 
tolerate is about 28 Pa. So, standing directly in front of the 
speaker systems during the Zeppelin concert was impossi-
ble without wearing hearing protection, even if you were 
a fanatic Zeppelin fan. From Eq. 17.4.2 (with the units sup-
pressed), we find that the intensity was

  I =  1 _ 2  vρ (2πf )  2   s m  2  

 =  1 _ 2 (343)(1.21) (2π)  2   (1000)  2   (70.0 ×  10  −6 )  
2
 

 = 40.1  W/m  2 .   

(Answer)

(Answer)

During a 1969 outdoor concert by Led Zeppelin (Fig. 
17.4.2), the maximum displacement amplitude sm of the 
sound waves during the song “Heartbreaker” was 70.0 μm,  
which is the thickness of a common book page. What was 
the pressure amplitude and intensity? Use an air density 
of 1.21 kg/m3, a sound speed of 343 m/s, and a frequency 
of 1000 Hz.

Sample Problem 17.4.1 Led Zeppelin

Figure 17.4.2 Led Zeppelin
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Sources of Musical Sound
Musical sounds can be set up by oscillating strings (guitar, piano, violin), mem-
branes (kettledrum, snare drum), air columns (flute, oboe, pipe organ, and the 
 didgeridoo of Fig. 17.5.1), wooden blocks or steel bars (marimba, xylophone), 

Additional examples, video, and practice available at WileyPLUS
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(b)

L

A N A(a)

Antinodes (maximum oscillation)
occur at the open ends.

First harmonic

λ = 2L

Figure 17.5.2 (a) The simplest standing wave pattern of displacement for (longitudinal) 
sound waves in a pipe with both ends open has an antinode (A) across each end and a 
node (N) across the middle. (The longitudinal displacements represented by the double 
arrows are greatly exaggerated.) (b) The corresponding standing wave pattern for 
 (transverse) string waves.

and many other oscillating bodies. Most common instruments involve more than 
a single  oscillating part.  FCP

Recall from Chapter 16 that standing waves can be set up on a stretched string 
that is fixed at both ends. They arise because waves traveling along the string are 
reflected back onto the string at each end. If the wavelength of the waves is suit-
ably matched to the length of the string, the superposition of waves traveling in 
opposite directions produces a standing wave pattern (or oscillation mode). The 
wavelength required of the waves for such a match is one that  cor responds to a 
resonant frequency of the string. The advantage of setting up  standing waves is 
that the string then oscillates with a large, sustained amplitude, pushing back and 
forth against the surrounding air and thus generating a noticeable sound wave 
with the same frequency as the oscillations of the string. This production of sound 
is of obvious importance to, say, a guitarist.

Sound Waves. We can set up standing waves of sound in an air-filled pipe 
in a similar way. As sound waves travel through the air in the pipe, they are 
reflected at each end and travel back through the pipe. (The reflection occurs 
even if an end is open, but the reflection is not as complete as when the end is 
closed.) If the wave length of the sound waves is suitably matched to the length 
of the pipe, the  superposition of waves traveling in opposite directions through 
the pipe sets up a standing wave pattern. The wavelength required of the sound 
waves for such a match is one that corresponds to a resonant frequency of the 
pipe. The advan tage of such a standing wave is that the air in the pipe oscillates 
with a large,  sustained amplitude, emitting at any open end a sound wave that has 
the same frequency as the oscillations in the pipe. This emission of sound is of 
obvious  importance to, say, an organist.

Many other aspects of standing sound wave patterns are similar to those 
of string waves: The closed end of a pipe is like the fixed end of a string in that 
there must be a node (zero displacement) there, and the open end of a pipe is 
like  the end of a string attached to a freely moving ring, as in Fig. 16.7.3b, in 
that there must be an antinode there. (Actually, the antinode for the open end of 
a pipe is located slightly beyond the end, but we shall not dwell on that detail.)

Two Open Ends. The simplest standing wave pattern that can be set up in 
a pipe with two open ends is shown in Fig. 17.5.2a. There is an antinode across 
each open end, as  required. There is also a node across the middle of the pipe. 
An easier way of  representing this standing longitudinal sound wave is shown in  
Fig. 17.5.2b—by drawing it as a standing transverse string wave.

The standing wave pattern of Fig. 17.5.2a is called the fundamental mode 
or first harmonic. For it to be set up, the sound waves in a pipe of length L 
must have a wavelength given by L = λ/2, so that λ = 2L. Several more stand-
ing sound wave patterns for a pipe with two open ends are shown in Fig. 17.5.3a 

AlamyFigure 17.5.1 The air column within a 
didgeridoo (“a pipe”) oscillates when 
the instrument is played. 
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520 CHAPTER 17 WAvEs—II

 using string wave representations. The second harmonic requires sound waves of 
wavelength λ = L, the third harmonic requires wavelength λ = 2L/3, and so on.

More generally, the resonant frequencies for a pipe of length L with two 
open ends correspond to the wavelengths

   λ =   2L ___ n  ,    for n = 1, 2, 3, . . . , (17.5.1)

where n is called the harmonic number. Letting v be the speed of sound, we write 
the resonant frequencies for a pipe with two open ends as

   f =   v __ λ   =   nv ___ 
2L

  ,    for n = 1, 2, 3, . . .   (pipe, two open ends).      (17.5.2)

One Open End. Figure 17.5.3b shows (using string wave representations) 
some of the standing sound wave patterns that can be set up in a pipe with only 
one open end. As required, across the open end there is an antinode and across 
the closed end there is a node. The simplest pattern requires sound waves hav-
ing a wavelength given by L = λ/4, so that λ = 4L. The next simplest pattern 
requires a wavelength given by L = 3λ/4, so that λ = 4L/3, and so on.

More generally, the resonant frequencies for a pipe of length L with only 
one open end correspond to the wavelengths

  λ =   4L ___ n  ,  for n = 1, 3, 5, . . . , (17.5.3)

in which the harmonic number n must be an odd number. The resonant frequen-
cies are then given by

   f =   v __ λ   =   nv ___ 
4L

  ,    for n = 1, 3, 5, . . .   (pipe, one open end).  (17.5.4)

Note again that only odd harmonics can exist in a pipe with one open end. For 
 example, the second harmonic, with n = 2, cannot be set up in such a pipe. 
Note also that for such a pipe the adjective in a phrase such as “the third har-
monic” still refers to the harmonic number n (and not to, say, the third possible 
 harmonic). Finally note that Eqs. 17.5.1 and 17.5.2 for two open ends contain 
the number 2 and any integer value of n, but Eqs. 17.5.3 and 17.5.4 for one open 
end contain the number 4 and only odd values of n.

Length. The length of a musical instrument reflects the range of frequencies 
over which  the instrument is designed to function, and smaller length implies 
higher  frequencies, as we can tell from Eq. 16.7.9 for string instruments and 
Eqs. 17.5.2 and 17.5.4 for instruments with air columns. Figure 17.5.4, for example, 
shows the saxophone and violin families, with their frequency ranges suggested 

L

n = 2

Second

n = 3

Third

Fourth
n = 4

(a) Two open ends—
any harmonic

(b)

n = 1

First

Third

Fifth

Seventh

n = 3

n = 5

n = 7

One open end—
only odd harmonics

λ = 2L/2 = L

λ = 2L/4 = L/2

λ = 2L/3

λ = 4L/3

λ = 4L

λ = 4L/5

λ = 4L/7

Figure 17.5.3 Standing wave patterns for string waves superimposed on pipes to repre-
sent standing sound wave patterns in the pipes. (a) With both ends of the pipe open, any 
harmonic can be set up in the pipe. (b) With only one end open, only odd harmonics can 
be set up.
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52117.5 souRCEs of MusICAl sound

by the piano keyboard. Note that, for every instrument, there is overlap with its 
higher- and lower-frequency neighbors.

Net Wave. In any oscillating system that gives rise to a musical sound, whether 
it is a  violin string or the air in an organ pipe, the fundamental and one or more 
of the higher harmonics are usually generated simultaneously. Thus, you hear 
them  together—that is, superimposed as a net wave. When different instruments 
are played at the same note, they produce the same fundamental frequency but 
 different intensities for the higher harmonics. For example, the fourth harmonic 
of middle C might be relatively loud on one instrument and relatively quiet or 
even missing on another. Thus, because different instruments produce different 
net waves, they sound different to you even when they are played at the same 
note. That would be the case for the two net waves shown in Fig. 17.5.5, which 
were produced at the same note by different instruments. If you heard only the 
fundamentals, the music would not be musical.

Figure 17.5.4 The saxophone 
and violin families, showing 
the relations between instru-
ment length and frequency 
range. The frequency 
range of each instrument 
is indicated by a   horizontal 
bar along a frequency scale 
suggested by the keyboard 
at the bottom; the  frequency 
increases toward the right.

Figure 17.5.5 The wave forms pro-
duced by (a) a flute and (b) an oboe 
when played at the same note, with 
the same first harmonic frequency.

Time

(a)

(b)

A B C D E F G A B C D E F G A B C D E F G A B C D E F G A B C D E F G A B C D E F G A B CB C D E F GA

Bass saxophone

Soprano saxophone

Bass

Cello

Viola

Violin

Baritone saxophone

Tenor saxophone

Alto saxophone

Checkpoint 17.5.1
Pipe A, with length L, and pipe B, with length 2L, both have two open ends. Which 
harmonic of pipe B has the same frequency as the fundamental of pipe A?

Sample Problem 17.5.1 Resonance between pipes of different lengths

Pipe A is open at both ends and has length LA = 0.343 m. 
We want to place it near three other pipes in which stand-
ing waves have been set up, so that the sound can set up a 
standing wave in pipe A. Those other three pipes are each 
closed at one end and have lengths LB = 0.500LA, LC = 
0.250LA, and LD = 2.00LA. For each of these three pipes, 
which of their harmonics can excite a harmonic in pipe A?

KEY IDEAS

(1) The sound from one pipe can set up a standing wave in 
another pipe only if the harmonic frequencies match. (2) 
Equation 17.5.2 gives the harmonic frequencies in a pipe 
with two open ends (a symmetric pipe) as f = nv/2L, for 

n = 1, 2, 3, . . . , that is, for any positive integer. (3) Equa-
tion 17.5.4 gives the harmonic frequencies in a pipe with 
only one open end (an asymmetric pipe) as f = nv/4L, for 
n = 1, 3, 5, . . . , that is, for only odd positive integers.

Pipe A: Let’s first find the resonant frequencies of sym-
metric pipe A (with two open ends) by evaluating Eq. 
17.5.2:

    f  A   =   
 n  A  v

 ____ 
2 L  A  

   =   
 n  A    (  343 m/s )   

 ___________ 
2  (  0.343 m )   

    

 = nA(500 Hz) = nA(0.50 kHz),  for nA = 1, 2, 3, . . . .

The first six harmonic frequencies are shown in the top 
plot in Fig. 17.5.6. 
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Pipe B: Next let’s find the resonant frequencies of asym-
metric pipe B (with only one open end) by evaluating 
Eq. 17.5.4, being careful to use only odd integers for the 
 harmonic numbers:

    f  B   =    n  B  v
 ____ 4 L  B     =    n  B  v

 __________  
4  (  0.500  L  A   )   

   =   
 n  B    (  343 m/s )   

  ___________  2  (  0.343 m )      

 = nB(500 Hz) = nB(0.500 kHz),   for nB = 1, 3, 5, . . . .

Comparing our two results, we see that we get a match for 
each choice of nB:

fA = fB  for nA = nB   with nB = 1, 3, 5, . . . .  (Answer)

For example, as shown in Fig. 17.5.6, if we set up the fifth 
harmonic in pipe B and bring the pipe close to pipe A, the 
fifth harmonic will then be set up in pipe A. However, no 
harmonic in B can set up an even harmonic in A.

Pipe C: Let’s continue with pipe C (with only one end) 
by writing Eq. 17.5.4 as

    f  C   =   
 n  C  v

 ____ 
4 L  C  

   =   
 n  C  v
 __________ 

4  (  0.250  L  A   )   
   =   

 n  C    (  343 m/s )   
 ___________ 

0.343 m / s   

 = nC (1000 Hz) = nC (1.00 kHz),  for nC = 1, 3, 5, . . . .

From this we see that C can excite some of the harmonics 
of A but only those with harmonic numbers nA that are 
twice an odd integer:

fA = fC  for nA = 2nC,  with nC = 1, 3, 5, . . . . (Answer)

Pipe D: Finally, let’s check D with our same procedure:

  f  D   =   
 n  D  v

 ____ 
4 L  D  

   =   
 n  D  v

 _______ 
4  (  2 L  A   )   

   =   
 n  D    (  343 m / s )   

  ___________  
8 (  0.343 m / s )  

   

= nD (125 Hz) = nD (0.125 kHz),  for nD = 1, 3, 5, . . . .

As shown in Fig. 17.5.6, none of these frequencies match 
a harmonic frequency of A. (Can you see that we would 
get a match if nD = 4nA? But that is impossible because 
4nA cannot yield an odd integer, as required of nD.) Thus 
D cannot set up a standing wave in A.

1

1 3

3 5

1 3 5

1 32 4 65

0.500 1.51.0 2.0 3.02.5

7 9 11 13 15 17 19 21 23

nA

kHz

nB

nC

nD

Figure 17.5.6 Harmonic frequencies of four pipes.

17.6 BEATS
Learning Objectives 
After reading this module, you should be able to . . .

17.6.1 Explain how beats are produced.
17.6.2 Add the displacement equations for two sound 

waves of the same amplitude and slightly differ-
ent angular frequencies to find the displacement 
equation of the resultant wave and identify the time-
varying amplitude.

17.6.3 Apply the relationship between the beat fre-
quency and the frequencies of two sound waves 
that have the same amplitude when the frequencies 
(or, equivalently, the angular frequencies) differ by a 
small amount.

Key Idea 
● Beats arise when two waves having slightly different frequencies, f1 and f2, are  
detected together. The beat  frequency is

fbeat = f1 − f2.

Beats
If we listen, a few minutes apart, to two sounds whose frequencies are, say, 552 
and 564 Hz, most of us cannot tell one from the other because the frequencies 
are so close to each other. However, if the sounds reach our ears simultaneously, 

Additional examples, video, and practice available at WileyPLUS
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what we hear is a sound whose frequency is 558  Hz, the average of the two 
combining frequencies. We also hear a striking variation in the intensity of this 
sound—it increases and decreases in slow,  wavering beats that repeat at a fre-
quency of 12 Hz, the difference between the two combining frequencies. Figure 
17.6.1 shows this beat phenomenon.

Let the time-dependent variations of the displacements due to two sound 
waves of equal amplitude sm be

 s1 = sm cos ω1t    and    s2 = sm cos ω2t, (17.6.1)

where ω1 > ω2. From the superposition principle, the resultant displacement is 
the sum of the individual displacements:

s = s1 + s2 = sm(cos ω1t + cos ω2t).

Using the trigonometric identity (see Appendix E)

  cos  α + cos  β = 2  cos  [   1 _ 2    (  α − β )   ]  cos  [   1 _ 2    (  α + β )   ]      

allows us to write the resultant displacement as

   s = 2  s  m   cos  [   1 _ 2    (   ω  1   −  ω  2   )  t ]  cos  [   1 _ 2    (   ω  1   +  ω  2   )   t] .   (17.6.2)

If we write
 ω′ =    1 _ 2   (ω1 − ω2)   and   ω =    1 _ 2   (ω1 + ω2), (17.6.3)

we can then write Eq. 17.6.2 as

 s(t) = [2sm cos ω′t] cos ωt. (17.6.4)

We now assume that the angular frequencies ω1 and ω2 of the combining 
waves are almost equal, which means that ω ⪢ ω′ in Eq. 17.6.3. We can then 
 regard Eq. 17.6.4 as a cosine function whose angular frequency is ω and whose 
amplitude (which is not constant but varies with angular frequency ω′) is the 
 absolute value of the quantity in the brackets.

A maximum amplitude will occur whenever cos ω′t in Eq. 17.6.4 has the 
value +1 or −1, which happens twice in each repetition of the cosine function. 
Because cos ω′t has angular frequency ω′, the angular frequency ωbeat at which 
beats occur is ωbeat = 2ω′. Then, with the aid of Eq. 17.6.3, we can write the beat 
angular frequency as

  ω  beat   = 2ω′=   (  2 )     (    1 _ 2   )     (   ω  1   −  ω  2   )   =  ω  1   −  ω  2  .  

Because ω = 2πf, we can recast this as

 fbeat = f1 − f2   (beat frequency). (17.6.5)

Musicians use the beat phenomenon in tuning instruments. If an instru ment is 
sounded against a standard frequency (for example, the note called  “concert A”  
played on an orchestra’s first oboe) and tuned until the beat disappears, the 
instrument is in tune with that standard. In musical Vienna, concert A (440 Hz) is 
available as a convenient telephone service for the city’s many musicians.

Figure 17.6.1 (a, b) The pressure 
variations Δp of two sound waves as 
they would be  detected separately. 
The frequencies of the waves are 
nearly equal. (c) The resultant 
 pressure variation if the two waves 
are detected simultaneously.

Time

(c)

(b)

(a)

Checkpoint 17.6.1
Here are three pairs of sound frequencies. (a) Rank them according to their beat 
frequency, greatest first. (b) Next, rank them according to the frequency of the sound 
that would be perceived, greatest first. 

Pair A: 486 Hz and 490 Hz
Pair B: 501 Hz and 504 Hz
Pair C: 760 Hz and 762 Hz
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17.7 THE DOPPLER EFFECT
Learning Objectives 
After reading this module, you should be able to . . .

17.7.1 Identify that the Doppler effect is the shift in the 
detected frequency from the frequency emitted by a 
sound source due to the relative motion between the 
source and the detector.

17.7.2 Identify that in calculating the Doppler shift in 
sound, the speeds are measured relative to the 
medium (such as air or water), which may be moving.

17.7.3 Calculate the shift in sound frequency for (a) a 
source moving either directly toward or away from 

a stationary  detector, (b) a detector moving either 
directly toward or away from a stationary source, 
and (c) both source and  detector moving either 
directly toward each other or  directly away from 
each other.

17.7.4 Identify that for relative motion between a sound 
source and a sound detector, motion toward tends 
to shift the  frequency up and motion away tends to 
shift it down.

Key Ideas 
● The Doppler effect is a change in the observed 
frequency of a wave when the source or the detec-
tor  moves relative to the transmitting medium (such 
as air). For sound the observed frequency f ′ is given in 
terms of the source frequency f by

 f′  = f    
v ±  v  D  

 ______ v ±  v  S        (general Doppler effect),

where vD is the speed of the detector relative to the 
medium, vS is that of the source, and v is the speed of 
sound in the medium. 

● The signs are chosen such that f ′ tends to be greater 
for relative motion toward (one of the objects moves 
toward the other) and less for motion away.

Because the standing waves in the penguin are effec-
tively in a pipe with two open ends, the resonant frequen-
cies are given by Eq. 17.5.2 ( f = nv/2L), in which L is the 
 (unknown) length of the effective pipe. The  first-harmonic 
 frequency is f1 = v/2L, and the second-harmonic frequency 
is f2 = 2v/2L. Comparing these two frequencies, we see 
that, in general,

f2 = 2f1.

For the penguin, the second harmonic of side A has 
 frequency  fA2 = 2fA1 and the second harmonic of side B 
has frequency fB2 = 2fB1. Using Eq. 17.6.5 with frequencies 
fA2 and fB2, we find that the corresponding beat frequency 
associated with the second harmonics is

 fbeat,2 = fA2 − fB2 = 2fA1 − 2fB1

 = 2(432 Hz) − 2(371 Hz)

 = 122 Hz. (Answer)

Experiments indicate that penguins can perceive such 
large beat frequencies. (Humans cannot hear a beat fre-
quency any higher than about 12 Hz—we perceive the 
two separate frequencies.) Thus, a penguin’s cry can be 
rich with different harmonics and different beat frequen-
cies, allowing the voice to be recognized even among the 
voices of thousands of other, closely huddled penguins.

When an emperor penguin returns from a search for food, 
how can it find its mate among the thousands of pen-
guins huddled together for warmth in the harsh Antarc-
tic weather? It is not by sight, because penguins all look 
alike, even to a penguin.

The answer lies in the way penguins vocalize. Most 
birds vocalize by using only one side of their  two-sided 
vocal organ, called the syrinx. Emperor penguins,  however, 
vocalize by using both sides simultaneously. Each side 
sets up acoustic standing waves in the bird’s throat and 
mouth, much like in a pipe with two open ends. Suppose 
that the frequency of the first harmonic produced by side 
A is fA1 = 432 Hz and the frequency of the first harmonic 
produced by side B is fB1 = 371 Hz. What is the beat fre-
quency between those two first-harmonic frequencies and 
between the two second- harmonic frequencies? FCP

KEY IDEA

The beat frequency between two frequencies is their differ-
ence, as given by Eq. 17.6.5 ( fbeat = f1 − f2).

Calculations: For the two first-harmonic frequencies fA1 
and fB1, the beat frequency is
 fbeat,1 = fA1 − fB1 = 432 Hz − 371 Hz
 = 61 Hz. (Answer)

Sample Problem 17.6.1 Beat frequencies and penguins finding one another

Additional examples, video, and practice available at WileyPLUS
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The Doppler Effect
A police car is parked by the side of the highway, sounding its 1000 Hz siren. If 
you are also parked by the highway, you will hear that same frequency. How-
ever, if there is relative motion between you and the police car, either  toward or 
away from each other, you will hear a different frequency. For exam ple, if you are 
driving toward the police car at 120 km/h (about 75 mi/h), you will hear a higher 
frequency (1096 Hz, an increase of 96 Hz). If you are driving away from the 
police car at that same speed, you will hear a lower frequency (904 Hz, a  decrease  
of 96 Hz). FCP

These motion-related frequency changes are examples of the Doppler 
 effect. The effect was proposed (although not fully worked out) in 1842 by Aus-
trian physicist Johann Christian Doppler. It was tested experimentally in 1845 by 
Buys Ballot in Holland, “using a locomotive drawing an open car with several 
trumpeters.”

The Doppler effect holds not only for sound waves but also for electromag-
netic waves, including microwaves, radio waves, and visible light. Here, however, 
we shall consider only sound waves, and we shall take as a reference frame the 
body of air through which these waves travel. This means that we shall measure 
the speeds of a source S of sound waves and a detector D of those waves relative 
to that body of air. (Unless otherwise stated, the body of air is stationary rela-
tive to the ground, so the speeds can also be measured relative to the ground.) 
We shall assume that S and D move either directly toward or directly away from 
each other, at speeds less than the speed of sound.

General Equation. If either the detector or the source is moving, or both 
are moving, the emit ted frequency f and the detected frequency f ′ are related by

  f ′  = f   
v ±  v  D  

 ______ v ±  v  S        (general Doppler effect), (17.7.1)

where v is the speed of sound through the air, vD is the detector’s speed relative 
to the air, and vS is the source’s speed relative to the air. The choice of plus or 
 minus signs is set by this rule:

In short, toward means shift up, and away means shift down.
Here are some examples of the rule. If the detector moves toward the 

source, use the plus sign in the numerator of Eq. 17.7.1 to get a shift up in the 
 frequency. If it moves away, use the minus sign in the numerator to get a shift 
down. If it is stationary, substitute 0 for vD. If the source moves toward the 
 detector, use the minus sign in the denominator of Eq. 17.7.1 to get a shift up 
in the frequency. If it moves away, use the plus sign in the denominator to get 
a shift down. If the source is stationary, substitute 0 for vS.

Next, we derive equations for the Doppler effect for the following two  specific 
situations and then derive Eq. 17.7.1 for the general situation.

1. When the detector moves relative to the air and the source is stationary  relative 
to the air, the motion changes the frequency at which the detector  intercepts 
wavefronts and thus changes the detected frequency of the sound wave.

2. When the source moves relative to the air and the detector is stationary 
 relative to the air, the motion changes the wavelength of the sound wave 
and thus changes the detected frequency (recall that frequency is related to 
 wavelength).

 When the motion of detector or source is toward the other, the sign on its speed 
must give an upward shift in frequency. When the motion of detector or source is 
away from the other, the sign on its speed must give a downward shift in frequency.
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Detector Moving, Source Stationary
In Fig. 17.7.1, a detector D (represented by an ear) is moving at speed vD toward 
a stationary source S that emits spherical wavefronts, of wavelength λ and fre-
quency f, moving at the speed v of sound in air. The wavefronts are drawn one 
wavelength apart. The frequency detected by detector D is the rate at which D 
 intercepts wavefronts (or individual wavelengths). If D were stationary, that rate 
would be f, but since D is moving into the wavefronts, the rate of interception is 
greater, and thus the detected frequency f ′ is greater than f.

Let us for the moment consider the situation in which D is stationary 
(Fig. 17.7.2). In time t, the wavefronts move to the right a distance vt. The num-
ber of wavelengths in that distance vt is the number of wavelengths intercepted 
by D in time t, and that number is vt/λ. The rate at which D intercepts wave-
lengths, which is the frequency f detected by D, is

   f =   vt/λ ____ t   =   v __ λ  .   (17.7.2)

In this situation, with D stationary, there is no Doppler effect—the frequency 
 detected by D is the frequency emitted by S.

Now let us again consider the situation in which D moves in the direction 
 opposite the wavefront velocity (Fig. 17.7.3). In time t, the wavefronts move to 
the right a distance vt as previously, but now D moves to the left a distance 
vDt. Thus, in this time t, the distance moved by the wavefronts relative to D 
is vt + vDt. The number of wavelengths in this relative distance vt + vDt is the 
number of wavelengths intercepted by D in time t and is (vt + vDt)/λ. The rate at 
which D intercepts wavelengths in this situation is the frequency f ′, given by

   f ′ =   
 (vt +  v  D   t)  / λ

 ___________ t   =   
v +  v  D  

 ______ λ  .   (17.7.3)

From Eq. 17.7.2, we have λ = v/f. Then Eq. 17.7.3 becomes

   f ′ =   
v +  v  D  

 ______ 
v / f   = f    

v +  v  D  
 ______ v  .   (17.7.4)

Note that in Eq. 17.7.4, f ′ > f unless vD = 0 (the detector is  stationary).
Similarly, we can find the frequency detected by D if D moves away from 

the source. In this situation, the wavefronts move a distance vt − vDt relative to 
D in time t, and f ′ is given by

   f ′ = f    
v −  v  D  

 ______ v  .   (17.7.5)

In Eq. 17.7.5, f ′ < f unless vD = 0. We can summarize Eqs. 17.7.4 and 17.7.5 with

   f ′ = f    
v ±  v  D  

 ______ v     (detector moving, source stationary). (17.7.6)

Figure 17.7.1 A stationary source of 
sound S emits spherical wavefronts, 
shown one wavelength apart, that 
expand outward at speed v. A sound 
detector D, represented by an ear, 
moves with velocity     v →    D    toward the 
source. The detector senses a higher 
frequency  because of its motion.

vS = 0

S
x

D

vD

vv

Shift up: The detector
moves toward the source.

λ

λ

Figure 17.7.2 The wavefronts of Fig. 
17.7.1, assumed planar, (a) reach 
and (b) pass a  stationary detector D; 
they move a  distance vt to the right 
in time t.

v

v

D

vt

(a)

(b)

λ

Figure 17.7.3 Wavefronts traveling 
to the right (a) reach and (b) pass 
detector D, which moves in the 
opposite direction. In time t, the 
wavefronts move a distance vt to the 
right and D moves a distance vDt to 
the left.

v

v
vt

(a)

(b)

D

vDt

vD

vD

λ
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Source Moving, Detector Stationary
Let detector D be stationary with respect to the body of air, and let source S move 
toward D at speed vS (Fig. 17.7.4). The motion of S changes the wavelength of the 
sound waves it emits and thus the frequency detected by D.

To see this change, let T (= 1/f ) be the time between the emission of any 
pair of successive wavefronts W1 and W2. During T, wavefront W1 moves a dis-
tance vT and the source moves a distance vST. At the end of T, wavefront W2 is 
emitted. In the direction in which S moves, the distance between W1 and W2, which 
is the wavelength λ′ of the waves moving in that direction, is vT − vST. If D detects 
those waves, it detects frequency f ′ given by

  f ′ =   v __ λ′   =   v ________ 
vT −  v  S  T   =   v ________ 

v / f −  v  S   / f    

  = f   v ______ v −  v  S    .  (17.7.7)

Note that f ′ must be greater than f unless vS = 0.
In the direction opposite that taken by S, the wavelength λ′ of the waves is 

again the distance between successive waves but now that distance is vT + vST. If 
D detects those waves, it detects frequency f ′ given by

   f ′ = f   v ______ v +  v  S    .   (17.7.8)

Now f ′ must be less than f unless vS = 0.
We can summarize Eqs. 17.7.7 and 17.7.8 with

   f ′ = f   v ______ v ±  v  S        (source moving, detector stationary). (17.7.9)

General Doppler Effect Equation
We can now derive the general Doppler effect equation by replacing f in 
Eq. 17.7.9 (the source frequency) with f ′ of Eq. 17.7.6 (the frequency associated 
with motion of the detector). That simple replacement gives us Eq. 17.7.1 for the 
general Doppler effect. That general equation holds not only when both detector 
and source are moving but also in the two specific situations we just discussed. 
For the situation in which the detector is moving and the source is stationary, 
substitution of vS  = 0 into Eq. 17.7.1 gives us Eq. 17.7.6, which we previously 
found. For the  situation in which the source is moving and the detector is station-
ary, substitu tion of vD = 0 into Eq. 17.7.1 gives us Eq. 17.7.9, which we previously 
found. Thus, Eq. 17.7.1 is the equation to remember.

Figure 17.7.4 A detector D is station-
ary, and a source S is moving toward 
it at speed vS. Wavefront W1 was 
emitted when the source was at S1, 
wavefront W7 when it was at S7. At 
the moment depicted, the source is 
at S. The detector senses a higher fre-
quency  because the moving source, 
chasing its own wavefronts, emits a 
reduced wavelength λ′ in the direc-
tion of its motion.

W1

x
SS7S1

vS
W7

W2

vD = 0

D

Shift up: The source moves
toward the detector.

λ'
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Checkpoint 17.7.1
The figure indicates the directions of motion of a sound source and a detec-
tor for six situations in stationary air. For each  situation, is the detected 
frequency greater than or less than the emitted  frequency, or can’t we tell 
without more information about the actual speeds?

 Source Detector Source Detector

(a) ⏤⟶ • 0 speed (d ) ⟵⏤ ⟵⏤
(b) ⟵⏤ • 0 speed (e) ⏤⟶ ⟵⏤
(c)  ⏤⟶ ⏤⟶ (f ) ⟵⏤ ⏤⟶

tends to lower the detected frequency. Because the speed 
is in the numerator, we choose the minus sign to meet that 
tendency (the numerator becomes smaller). These reason-
ing steps are shown in Table 17.7.1.

We have the speed of the bat in the denominator of 
Eq. 17.7.10. The bat moves toward the moth, which tends 
to increase the detected frequency. Because the speed is 
in the denominator, we choose the minus sign to meet that 
tendency (the denominator becomes smaller).

With these substitutions and decisions, we have

   f  md   =  f  be     
v −  v  m  

 ______ v −  v  b     

  =   (  82.52 kHz )      343 m / s − 8.00 m / s  _________________  
343 m / s − 9.00 m / s   

  = 82.767 kHz ≈ 82.8 kHz.  (Answer)

Detection of echo by bat: In the echo back to the bat, 
the moth acts as a source of sound, emitting at the fre-
quency fmd we just calculated. So now the moth is the 
source (moving away) and the bat is the detector (moving 
toward). The reasoning steps are shown in Table 17.7.1. 
To find the frequency fbd detected by the bat, we write 
Eq. 17.7.10 as

   f  bd   =  f  md    
v +  v  b  

 ______ v +  v  m   

  =   (  82.767 kHz )      343 m / s + 9.00 m / s  _________________  
343 m / s + 8.00 m / s   

  = 83.00 kHz ≈ 83.0 kHz.  (Answer)

Some moths evade bats by “jamming” the detection sys-
tem with ultrasonic clicks.

Bats navigate and search out prey by emitting, and then 
detecting reflections of, ultrasonic waves, which are 
sound waves with frequencies greater than can be heard 
by a human. Suppose a bat emits ultrasound at frequency 
fbe = 82.52 kHz while flying with velocity     v →    b   =   (  9.00 m / s )    ̂ i    
as it chases a moth that flies with velocity     v →    m   =   (  8.00 m / s )    ̂ i  .  
What frequency fmd does the moth detect? What fre-
quency fbd does the bat detect in the returning echo from 
the moth? FCP

KEY IDEAS

The frequency is shifted by the relative motion of the 
bat and moth. Because they move along a single axis, the 
shifted frequency is given by Eq. 17.7.1. Motion toward 
tends to shift the frequency up, and motion away tends to 
shift it down.

Detection by moth: The general Doppler equation is

   f ′ = f   
 v ± v  D  

 ______ v ±  v  S    .    (17.7.10)

Here, the detected frequency f′ that we want to find is 
the frequency fmd detected by the moth. On the right side, 
the emitted frequency f is the bat’s emission frequency 
fbe = 82.52 kHz, the speed of sound is v = 343 m/s, the speed 
vD of the detector is the moth’s speed vm = 8.00 m/s, and the 
speed vS of the source is the bat’s speed vb = 9.00 m/s.

The decisions about the plus and minus signs can 
be tricky. Think in terms of toward and away. We have 
the speed of the moth (the detector) in the numerator of 
Eq.  17.7.10. The moth moves away from the bat, which 

Sample Problem 17.7.1 Double Doppler shift in the echoes used by bats

Table 17.7.1 

Bat to Moth Echo Back to Bat

Detector Source Detector Source

moth bat bat moth
speed vD = vm speed vS = vb speed vD = vb speed vS = vm

away toward toward away
shift down shift up shift up shift down
numerator denominator numerator denominator

minus minus plus plus

Additional examples, video, and practice available at WileyPLUS
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Supersonic Speeds, Shock Waves
If a source is moving toward a stationary detector at a speed vS 
equal to the speed of sound v , Eqs. 17.7.1 and 17.7.9 predict that 
the detected frequency f ′ will be infinitely great. This means that 
the source is moving so fast that it keeps pace with its own spher-
ical wavefronts (Fig. 17.8.1a). What happens when vS > v? For 
such supersonic speeds, Eqs. 17.7.1 and 17.7.9 no longer apply. 
Figure 17.8.1b depicts the spherical wavefronts that originated at 
various positions of the source. The radius of any wavefront is vt, 
where t is the time that has elapsed since the source emitted that 
wavefront. Note that all the wavefronts bunch along a V-shaped 
envelope in this two-dimensional drawing. The wavefronts actu-
ally extend in three dimensions, and the bunching actually forms 
a cone called the Mach cone. A shock wave exists along the sur-
face of this cone, because the bunch ing of wavefronts causes an 
abrupt rise and fall of air pressure as the surface passes through 
any point. From Fig. 17.8.1b, we see that the half-angle θ of the 
cone (the Mach cone angle) is given by

  sin  θ =   v ___  v  S   t   =   v __  v  S       (Mach cone angle). (17.8.1)

The ratio vS/v is the Mach number. If a plane flies at Mach 
2.3, its speed is 2.3 times the speed of sound in the air through 
which the plane is flying. The shock wave generated by a super-
sonic aircraft (Fig. 17.8.2) or projectile produces a burst of sound, 

Figure 17.8.2 Shock waves produced by the wings of a Navy FA 18 jet. 
The shock waves are visible because the sudden decrease in air pressure 
in them caused water molecules in the air to condense, forming a fog. 

U.S. Navy photo by Ensign John Gay

Figure 17.8.1 (a) A source of sound S moves at speed 
vS equal to the speed of sound and thus as fast as the 
wavefronts it generates. (b) A source S moves at speed 
vS faster than the speed of sound and thus faster than the 
wavefronts. When the source was at position S1 it gener-
ated wavefront W1, and at position S6 it generated W6. All 
the spherical wavefronts expand at the speed of sound v 
and bunch along the surface of a cone called the Mach 
cone, forming a shock wave. The surface of the cone has 
half-angle θ and is tangent to all the wavefronts.

Surface of
Mach cone

W6

W1

x

(b)

SS6S1

vS

vSt

vt

x
vS

(a)

S

θ

17.8 SUPERSONIC SPEEDS, SHOCK WAVES
Learning Objectives 
After reading this module, you should be able to . . .

17.8.1 Sketch the bunching of wavefronts for a sound 
source traveling at the speed of sound or faster.

17.8.2 Calculate the Mach number for a sound source 
 exceeding the speed of sound.

17.8.3 For a sound source exceeding the speed of 
sound, apply the relationship between the Mach 
cone angle, the speed of sound, and the speed of 
the source.

Key Idea 
● If the speed of a source relative to the medium exceeds the speed of sound in the 
medium, the Doppler  equation no longer applies. In such a case, shock waves result. 
The half-angle θ of the Mach cone is given by

 sin  θ =   v __  v  S       (Mach cone angle).

C
ou

rt
es

y 
of

 U
.S

. N
av

y 
ph

ot
o 

by
 E

ns
ig

n 
 

Jo
hn

 G
ay

c17WavesII.indd   529 05/05/21   8:08 PM



530 CHAPTER 17 WAvEs—II

called a sonic boom, in which the air pressure first suddenly increases and then 
suddenly decreases below normal before returning to normal. Part of the sound 
that is heard when a rifle is fired is the sonic boom produced by the bullet. When 
a long bull whip is snapped, its tip is moving faster than sound and produces a 
small sonic boom—the crack of the whip. FCP

Checkpoint 17.8.1
The speed of sound varies with altitude in Earth’s atmosphere. If a supersonic air-
plane changes altitude such that the speed of sound in the air is then slower, does the 
Mach angle increase or decrease?

Sound Waves  Sound waves are longitudinal mechanical 
waves that can travel through solids, liquids, or gases. The speed 
v of a sound wave in a medium having bulk modulus B and den-
sity ρ is

   v =  √ 
__

   B __ ρ         (speed of sound). (17.1.3)

In air at 20°C, the speed of sound is 343 m/s.
A sound wave causes a longitudinal displacement s of a 

mass element in a medium as given by

 s = sm cos(kx − ωt), (17.2.1)

where sm is the displacement amplitude (maximum displace-
ment) from equilibrium, k = 2π/λ, and ω = 2πf, λ and f  being the 
wavelength and frequency of the sound wave. The wave also 
causes a pressure change Δp from the equilibrium pressure:

 Δp = Δpm sin(kx − ωt), (17.2.2)

where the pressure amplitude is

 Δpm = (vρω)sm. (17.2.3)

Interference  The interference of two sound waves with 
identical wavelengths passing through a common point  depends 
on their phase difference ϕ there. If the sound waves were emit-
ted in phase and are traveling in approximately the same direc-
tion, ϕ is given by

   ϕ =   ΔL ___ λ   2π,    (17.3.3)

where ΔL is their path length difference (the difference in the 
 distances traveled by the waves to reach the common point). 
Fully constructive interference occurs when ϕ is an  integer mul-
tiple of 2π,

 ϕ = m(2π), for m = 0, 1, 2, . . . ,  (17.3.4)

and, equivalently, when ΔL is related to wavelength λ by

    ΔL ___ λ    = 0, 1, 2, . . . . (17.3.5)

Fully destructive interference occurs when ϕ is an odd mul tiple 
of π,

 ϕ = (2m + 1)π, for m = 0, 1, 2, . . . , (17.3.6)

Review & Summary

and, equivalently, when ΔL is related to λ by

    ΔL ___ λ    = 0.5, 1.5, 2.5, . . . . (17.3.7)

Sound Intensity  The intensity I of a sound wave at a  surface 
is the average rate per unit area at which energy is transferred 
by the wave through or onto the surface:

   I =   P __ 
A

  ,   (17.4.1)

where P is the time rate of energy transfer (power) of the sound 
wave and A is the area of the surface intercepting the  sound. 
The intensity I is related to the displacement amplitude sm of 
the sound wave by
   I =   1 _ 2    ρvω   2  s m  2  .   (17.4.2)

The intensity at a distance r from a point source that emits sound 
waves of power Ps is

   I =   
 P  s   ____ 

 4πr   2 
  .   (17.4.3)

Sound Level in Decibels  The sound level β in decibels 
(dB) is defined as

   β =   (  10 dB )    log   I __  I  0  
  ,   (17.4.4)

where I0 (= 10−12 W/m2) is a reference intensity level to which all 
intensities are compared. For every factor-of-10  increase in 
intensity, 10 dB is added to the sound level.

Standing Wave Patterns in Pipes  Standing sound wave 
patterns can be set up in pipes. A pipe open at both ends will 
 resonate at frequencies

  f =   v __ λ   =   nv ___ 
2L

  ,  n = 1, 2, 3, . . . , (17.5.2)

where v is the speed of sound in the air in the pipe. For a pipe 
closed at one end and open at the other, the resonant fre-
quencies are

  f =   v __ λ   =   nv ___ 
4L

  ,  n = 1, 3, 5, . . . . (17.5.4)

Beats  Beats arise when two waves having slightly different fre-
quencies, f1 and f2, are detected together. The beat  frequency is

 fbeat = f1 − f2. (17.6.5)
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The signs are chosen such that f ′ tends to be greater for motion 
toward and less for motion away.

Shock Wave  If the speed of a source relative to the medium 
exceeds the speed of sound in the medium, the Doppler  equation 
no longer applies. In such a case, shock waves result. The half-
angle θ of the Mach cone is given by

   sin  θ =   v __  v  S       (Mach cone angle). (17.8.1)

The Doppler Effect  The Doppler effect is a change in the 
 observed frequency of a wave when the source or the detec-
tor  moves relative to the transmitting medium (such as air). 
For  sound the observed frequency f ′ is given in terms of the 
source frequency f by

   f ′ = f   
v ±  v  D  

 ______ v ±  v  S       (general Doppler effect), (17.7.1)

where vD is the speed of the detector relative to the medium, vS 
is that of the source, and v is the speed of sound in the medium. 

1  In a first experiment, a sinusoidal sound wave is sent through 
a long tube of air, transporting energy at the average rate of 
Pavg,1. In a second experiment, two other sound waves, identical 
to the first one, are to be sent simultaneously through the tube 
with a phase difference ϕ of either 0, 0.2  wavelength, or 0.5 
wavelength between the waves. (a) With only mental calcula-
tion, rank those choices of ϕ  according to the average rate at 
which the waves will transport energy, greatest first. (b) For the 
first choice of ϕ, what is the average rate in terms of Pavg,1?

2  In Fig. 17.1, two point sources 
S1 and S2, which are in phase, 
emit identical sound waves of 
wavelength 2.0 m. In terms of 
wavelengths, what is the phase 
difference between the  waves 
arriving at point P if (a) L1 = 38 m and L2 = 34 m, and (b) 
L1 = 39 m and L2 = 36 m? (c) Assuming that the source sepa-
ration is much smaller than L1 and L2, what type of interfer-
ence occurs at P in situations (a) and (b)?

3  In Fig. 17.2, three long tubes 
(A, B, and C) are filled with 
different gases under differ-
ent pressures. The ratio of the 
bulk  modulus to the density is 
indicated for each gas in terms of 
a basic value B0/ρ0. Each tube has 
a piston at its left end that  can 
send a sound pulse through the 
tube (as in Fig. 16.1.2). The three 
pulses are sent simultaneously. 
Rank the tubes  according to the 
time of arrival of the pulses at the 
open right ends of the tubes, ear-
liest first.

4  The sixth harmonic is set up 
in a pipe. (a) How many open ends does the pipe have (it has at 
least one)? (b) Is there a node, antinode, or some intermediate 
state at the  midpoint?

5  In Fig. 17.3, pipe A is made to oscillate in its third harmonic 
by a small internal sound source. Sound emitted at the right end 
happens to resonate four nearby pipes, each with only one open 
end (they are not drawn to scale). Pipe B oscillates in its lowest 
harmonic, pipe C in its second lowest  harmonic, pipe D in its 

Figure 17.1 Question 2.

S1

S2

L1

L2

P

16B0/ρ0

4B0/ρ0

B0/ρ0

A

B

C

L

L

LL

L

Figure 17.2 Question 3.

third lowest harmonic, and pipe E in its fourth lowest harmonic. 
Without computation, rank all five pipes according to their 
length, greatest first. (Hint: Draw the standing waves to scale 
and then draw the pipes to scale.)

6  Pipe A has length L and one open end. Pipe B has length 2L 
and two open ends. Which harmonics of pipe B have a  frequency 
that matches a resonant frequency of pipe A?

7  Figure 17.4 shows a moving 
sound source S that emits at a cer-
tain frequency, and four station-
ary sound detectors. Rank  the 
detectors according to the fre-
quency of the sound they detect 
from the source, greatest first.

8  A friend rides, in turn, the 
rims of three fast merry- go-rounds 
while holding a sound source that 
emits isotro pically at a certain fre-
quency. You stand far from each 
merry- go-round. The frequency 
you hear for each of your friend’s 
three rides varies as the merry-go-
round rotates. The variations in frequency for the three rides are 
given by the three curves in Fig. 17.5. Rank the curves accord-
ing to (a) the linear speed v of the sound source, (b) the angu-
lar speeds ω of the merry-go-rounds, and (c) the radii r of the 
merry-go-rounds, greatest first.

9  For a particular tube, here are four of the six harmonic 
 frequencies below 1000 Hz: 300, 600, 750, and 900 Hz. What two 
frequencies are missing from the list?

10  Figure 17.6 shows a stretched string of length L and pipes 
a, b, c, and d of lengths L, 2L, L/2, and L/2, respectively. The 
string’s tension is adjusted until the speed of waves on the string 
equals the speed of sound waves in the air. The fundamental 

A

E

D

C

B

Figure 17.3 Question 5.

3

2 1

4

S

Figure 17.4 Question 7.

Figure 17.5 Question 8.

t

f

3

21

Questions

c17WavesII.indd   531 05/05/21   8:08 PM



532 CHAPTER 17 WAvEs—II

mode of oscillation is then set up on the string. In which pipe 
will the sound produced by the string cause  resonance, and what 
oscillation mode will that sound set up?

11  You are given four tuning forks. The fork with the lowest 
frequency oscillates at 500 Hz. By striking two tuning forks at a 
time, you can produce the following beat frequencies, 1, 2, 3, 5, 
7, and 8 Hz. What are the possible frequencies of the other three 
forks? (There are two sets of answers.)

L

b

dca

Figure 17.6 Question 10.

through the air alongside the rod. If the speed of sound in air is 
343 m/s, what is the length of the rod?

7 M  SSM  A stone is dropped into a well. The splash is heard 
3.00 s later. What is the depth of the well?

8 M  CALC  GO  FCP  Hot chocolate effect. Tap a metal spoon 
inside a mug of water and note the frequency fi you hear. Then 
add a spoonful of powder (say, chocolate mix or instant coffee) 
and tap again as you stir the powder. The frequency you hear 
has a lower value fs because the tiny air bubbles released by the 
powder change the water’s bulk modulus. As the bubbles reach 
the water surface and disappear, the frequency gradually shifts 
back to its initial value. During the effect, the bubbles don’t 
appreciably change the water’s density or volume or the sound’s 
wavelength. Rather, they change the value of dV/dp—that  
is, the differential change in volume due to the differential 
change in the pressure caused by the sound wave in the water. If 
fs /fi = 0.333, what is the ratio (dV/dp)s/(dV/dp)i? 

Module 17.2  Traveling Sound Waves
9 E  If the form of a sound wave traveling through air is

s(x, t) = (6.0 nm) cos(kx + (3000 rad/s)t + ϕ),

how much time does any given air molecule along the path take 
to move between displacements s = +2.0 nm and s = −2.0 nm?

10 E  BIO  FCP  Underwater illu-
sion. One clue used by your 
brain to determine the direction 
of a source of sound is the time 
delay Δt between the arrival of 
the sound at the ear closer to the 
source and the arrival at the far-
ther ear. Assume that the source 
is distant so that a wavefront from 
it is approximately planar when 
it reaches you, and let D represent the separation between 
your ears. (a) If the source is located at angle θ in front of you 
(Fig. 17.7), what is Δt in terms of D and the speed of sound v in 
air? (b) If you are submerged in water and the sound source is 
directly to your right, what is Δt in terms of D and the speed of 
sound vw in water? (c) Based on the time-delay clue, your brain 
interprets the submerged sound to arrive at an  angle θ from the 
forward direction. Evaluate θ for fresh water at 20°C.

Where needed in the problems, use

speed of sound in air = 343 m/s

and density of air = 1.21 kg/m3

unless otherwise specified.

Module 17.1  Speed of Sound
1 E  Two spectators at a soccer game see, and a moment later 
hear, the ball being kicked on the playing field. The time delay 
for spectator A is 0.23 s, and for spectator B it is 0.12 s. Sight 
lines from the two spectators to the player kicking the ball meet 
at an angle of 90°. How far are (a) spectator A and (b) specta-
tor B from the player? (c) How far are the spectators from each 
other?

2 E  What is the bulk modulus of oxygen if 32.0 g of oxygen 
occupies 22.4 L and the speed of sound in the oxygen is 317 m/s?

3 E  FCP  When the door of the Chapel of the Mausoleum in 
Hamilton, Scotland, is slammed shut, the last echo heard by 
someone standing just inside the door reportedly comes 15 s 
later. (a) If that echo were due to a single reflection off a wall 
opposite the door, how far from the door is the wall? (b) If, 
instead, the wall is 25.7 m away, how many reflections (back and 
forth) occur?

4 E  A column of soldiers, marching at 120 paces per minute, 
keep in step with the beat of a drummer at the head of the col-
umn. The soldiers in the rear end of the  column are striding for-
ward with the left foot when the drummer is advancing with the 
right foot. What is the  approximate length of the column?

5 M  SSM  Earthquakes generate sound waves inside Earth. 
Unlike a gas, Earth can experience both transverse (S) and longi-
tudinal (P) sound waves. Typically, the speed of S waves is about 
4.5 km/s, and that of P waves 8.0 km/s. A seismo graph records 
P and S waves from an earthquake. The first P  waves arrive 
3.0 min before the first S waves. If the waves travel in a straight 
line, how far away did the earthquake  occur? 

6 M  A man strikes one end of a thin rod with a hammer. 
The speed of sound in the rod is 15 times the speed of sound 
in  air. A woman, at the other end with her ear close to the 
rod,  hears the sound of the blow twice with a 0.12 s interval 
between; one sound comes through the rod and the other comes 
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11 E  BIO  SSM  Diagnostic ultrasound of frequency 4.50 MHz 
is used to examine tumors in soft tissue. (a) What is the wave-
length in air of such a sound wave? (b) If the speed of sound in 
 tissue is 1500 m/s, what is the wavelength of this wave in  tissue?

12 E  The pressure in a traveling sound wave is given by the 
equation

Δp = (1.50 Pa) sin π[(0.900 m−1) x − (315 s−1)t].

Find the (a) pressure amplitude, (b) frequency, (c) wavelength, 
and (d) speed of the wave.

13 M  A sound wave of the form s = sm cos(kx − ωt + ϕ) travels 
at 343 m/s through air in a long horizontal tube. At one instant, 
air molecule A at x = 2.000 m is at its maximum positive dis-
placement of 6.00 nm and air molecule B at x = 2.070 m is at a 
positive displacement of 2.00 nm. All the molecules between A 
and B are at intermediate displacements. What is the frequency 
of the wave?

14 M  Figure 17.8 shows the 
output from a pressure moni-
tor mounted at a point along 
the path taken by a sound wave 
of a single frequency traveling 
at 343  m/s through air with a 
uniform density of 1.21 kg/m3. 
The vertical axis scale is set by 
Δps = 4.0 mPa. If the displace-
ment function of the wave is 
s(x, t) = sm cos(kx − ωt), what 
are (a)  sm, (b) k, and (c) ω? 
The air is then cooled so that its density is 1.35 kg/m3 and the 
speed of a sound wave through it is 320 m/s. The sound source 
again emits the sound wave at the same frequency and same 
pressure amplitude. What now are (d) sm, (e) k, and (f) ω?

15 M  GO   FCP  A handclap on stage in an amphitheater sends 
out sound waves that scatter from terraces of width w = 0.75 m 
(Fig. 17.9). The sound returns to the stage as a periodic  series of 
pulses, one from each terrace; the parade of pulses sounds like 
a played note. (a) Assuming that all the rays in Fig.  17.9 are 
horizontal, find the frequency at which the pulses return (that is, 
the frequency of the perceived note). (b) If the width w of the 
terraces were smaller, would the  frequency be higher or lower? 

Module 17.3  Interference
16 E  Two sound waves, from two different sources with the 
same frequency, 540 Hz, travel in the same direction at 330 m/s. 
The sources are in phase. What is the phase differ ence of the 
waves at a point that is 4.40 m from one source and 4.00 m from 
the other?

17 M  FCP  Two loudspeakers are located 3.35 m apart on an 
outdoor stage. A listener is 18.3 m from one and 19.5 m from 
the other. During the sound check, a signal generator drives the 
two speakers in phase with the same amplitude and frequency. 
The transmitted frequency is swept through the audible range 
(20 Hz to 20 kHz). (a) What is the lowest frequency fmin,1 that 
gives minimum signal (destructive interference) at the listener’s 
location? By what number must fmin,1 be mul tiplied to get (b) 
the second lowest frequency fmin,2 that gives minimum signal 
and (c) the third lowest  frequency fmin,3 that gives minimum sig-
nal? (d) What is the lowest frequency fmax,1 that gives maximum 
signal (constructive interference) at the listener’s location? By 
what number must fmax,1 be multiplied to get (e) the second low-
est frequency fmax,2 that gives maximum  signal and (f) the third 
lowest frequency fmax,3 that gives maximum signal?

18 M  GO  In Fig. 17.10, sound 
waves A and B, both of wave-
length λ,  are ini tially in phase 
and traveling rightward, as indi-
cated by the two rays. Wave A is 
reflected from four surfaces but 
ends up traveling in its original 
direction. Wave B ends in that 
direction after reflecting from 
two surfaces. Let distance L in 
the figure be expressed as a mul-
tiple q of λ: L = qλ. What are the (a) smallest and (b) second 
smallest values of q that put A and B exactly out of phase with 
each other after the  reflections?

19 M  GO  Figure 17.11 shows two 
isotropic point sources of sound, 
S1 and S2. The sources emit waves 
in phase at wavelength 0.50 m; 
they are separated by D = 1.75 m. If we move a  sound detec-
tor along a large circle centered at the midpoint between the 
sources, at how many points do waves arrive at the detector (a) 
exactly in phase and (b) exactly out of phase?

20 M  Figure 17.12 shows four isotropic point sources of sound 
that are uniformly spaced on an x axis. The sources emit sound 
at the same wavelength λ and same amplitude sm, and they emit 
in phase. A point P is shown on the x axis. Assume that as the 
sound waves travel to P, the decrease in their  amplitude is negli-
gible. What multiple of sm is the amplitude of the net wave at P 
if distance d in the figure is (a) λ/4, (b) λ/2, and (c) λ?

21 M  SSM  In Fig. 17.13, two 
speakers separated by distance 
d1 = 2.00 m are in phase. Assume 
the amplitudes of the sound waves 
from the speakers are approxi-
mately the same at the listener’s 
ear at distance d2 = 3.75 m directly 
in front of one speaker. Consider 
the full audible range for normal 
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hearing, 20 Hz to 20 kHz. (a) What is the lowest  frequency fmin,1 
that gives minimum signal (destructive interference) at the lis-
tener’s ear? By what number must fmin,1 be multiplied to get  
(b) the second lowest frequency fmin,2 that gives minimum  signal 
and (c) the third lowest frequency fmin,3 that gives minimum sig-
nal? (d) What is the lowest frequency fmax,1 that gives maximum 
signal (constructive interference) at the listener’s ear? By what 
number must fmax,1 be multiplied to get (e) the second lowest 
frequency fmax,2 that gives maximum signal and (f) the third low-
est frequency fmax,3 that gives maximum  signal?

22 M  In Fig. 17.14, sound with a 
40.0 cm wavelength travels right-
ward from a source and through 
a tube that consists of a straight 
portion and a half-circle. Part of 
the sound wave travels through 
the half-circle and then rejoins the rest of the wave, which goes 
directly through the straight portion. This  rejoining results in 
interference. What is the smallest  radius r  that results in an 
intensity minimum at the detector?

23 H  GO  Figure 17.15 shows two 
point sources S1 and S2 that emit 
sound of wavelength λ = 2.00 m. 
The emissions are isotropic and in 
phase, and the separation between 
the sources  is d = 16.0 m. At any 
point P on the x axis, the wave 
from S1 and the wave from S2 
interfere. When P is very far away 
(x ≈ ∞), what are (a)  the phase 
difference between the arriving 
waves from S1 and S2 and (b) the type of interference they pro-
duce? Now move point P along the x axis toward S1. (c) Does 
the phase difference between the waves increase or decrease? 
At what distance x do  the waves have a phase  difference of  
(d) 0.50λ, (e) 1.00λ, and (f) 1.50λ? 

Module 17.4  Intensity and Sound Level
24 E  BIO  Suppose that the sound level of a conversation is 
initially at an angry 70 dB and then drops to a soothing 50 dB. 
Assuming that the frequency of the sound is 500 Hz, determine 
the (a) initial and (b) final sound intensities and the (c) initial 
and (d) final sound wave amplitudes.

25 E  A sound wave of frequency 300 Hz has an intensity of 
1.00 μW/m2. What is the amplitude of the air oscillations caused 
by this wave?

26 E  A 1.0 W point source emits sound waves isotropically. 
Assuming that the energy of the waves is conserved, find the 
intensity (a) 1.0 m from the source and (b) 2.5 m from the 
source.

27 E  SSM  A certain sound source is increased in sound level by 
30.0 dB. By what multiple is (a) its intensity increased and (b) its 
pressure amplitude increased?  
28 E  Two sounds differ in sound level by 1.00 dB. What is the 
ratio of the greater intensity to the smaller intensity?

29 E  SSM  A point source emits sound waves isotropically. 
The  intensity of the waves 2.50 m from the source is 1.91 × 10−4  
W/m2. Assuming that the energy of the waves is conserved, find 
the power of the source. 

30 E  The source of a sound wave has a power of 1.00 μW. If 
it is a point source, (a) what is the intensity 3.00 m away and 
(b) what is the sound level in decibels at that distance?

31 E  BIO  FCP  GO  When you “crack” a knuckle, you suddenly 
widen the knuckle cavity, allowing more volume for the synovial 
fluid inside it and causing a gas bubble suddenly to appear in the 
fluid. The sudden production of the bubble, called “cavitation,” 
produces a sound pulse—the cracking sound. Assume that the 
sound is transmitted uniformly in all directions and that it fully 
passes from the knuckle interior to the outside. If the pulse has 
a sound level of 62 dB at your ear, estimate the rate at which 
energy is produced by the cavitation.  
32 E  BIO  FCP  Approximately a third of people with normal 
hearing have ears that continuously emit a low-intensity sound 
outward through the ear canal. A person with such spontane-
ous otoacoustic emission is rarely aware of the sound, except 
 perhaps in a noise-free environment, but occasionally the emis-
sion is loud enough to be heard by someone else nearby. In one 
observation, the sound wave had a frequency of 1665 Hz and 
a pressure amplitude of 1.13 × 10−3 Pa. What were (a) the dis-
placement amplitude and (b) the intensity of the wave emitted 
by the ear? 

33 E  BIO  FCP  Male Rana catesbeiana bullfrogs are known for 
their loud mating call. The call is emitted not by the frog’s mouth 
but by its eardrums, which lie on the surface of the head. And, 
surprisingly, the sound has nothing to do with the frog’s inflated 
throat. If the emitted sound has a frequency of 260 Hz and a 
sound level of 85 dB (near the eardrum), what is the amplitude 
of the eardrum’s oscillation? The air density is 1.21 kg/m3.

34 M  GO  Two atmospheric sound sources A and B emit iso-
tropically at constant power. The sound levels β of their emis-
sions are plotted in Fig. 17.16 versus the radial distance r from 
the sources. The vertical axis scale is set by β1 = 85.0 dB and 
β2 = 65.0 dB. What are (a) the ratio of the larger power to the 
smaller power and (b) the sound level difference at r = 10 m? 

35 M  A point source emits 30.0 W of sound isotropically. A small 
microphone intercepts the sound in an area of 0.750 cm2, 200 m 
from the source. Calculate (a) the sound  intensity there and  
(b) the power intercepted by the microphone.

36 M  BIO  FCP  Party hearing. As the number of people at a 
party increases, you must raise your voice for a listener to hear 
you against the background noise of the other partygoers. How-
ever, once you reach the level of yelling, the only way you can 
be heard is if you move closer to your listener, into the listener’s 
“personal space.” Model the situation by replacing you with an 
isotropic point source of fixed power P and replacing your lis-
tener with a point that absorbs part of your sound waves. These 
points are initially separated by ri = 1.20 m. If the background 
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noise increases by Δβ = 5 dB, the sound level at your listener 
must also increase. What separation rf is then required?

37 H  GO  A sound source sends a sinusoidal sound wave of 
 angular frequency 3000 rad/s and amplitude 12.0 nm through a 
tube of air. The internal radius of the tube is 2.00 cm. (a) What 
is the average rate at which energy (the sum of the kinetic and 
potential  energies) is transported to the opposite end of the 
tube? (b) If, simultaneously, an identical wave  travels along an 
adjacent, identical tube, what is the total  average rate at which 
energy is transported to the opposite ends of the two tubes by 
the waves? If, instead, those two waves are sent along the same 
tube simultaneously, what is the  total average rate at which 
they transport energy when their phase difference is (c) 0,  
(d) 0.40π rad, and (e) π rad?

Module 17.5  Sources of Musical Sound
38 E  The water level in a vertical glass tube 1.00 m long can be 
adjusted to any position in the tube. A tuning fork vibrating at 
686 Hz is held just over the open top end of the tube, to set up a 
standing wave of sound in the air-filled top portion of the tube. 
(That air-filled top portion acts as a tube with one end closed 
and the other end open.) (a) For how many different positions 
of the water level will sound from the fork set up  resonance in 
the tube’s air-filled portion? What are the (b) least and (c) sec-
ond least water heights in the tube for resonance to occur?

39 E  SSM  (a) Find the speed of waves on a violin string of 
mass 800 mg and length 22.0 cm if the fundamental frequency 
is 920 Hz. (b) What is the tension in the string? For the funda-
mental, what is the wavelength of (c) the waves on the string and  
(d) the sound waves emitted by the string?

40 E  Organ pipe A, with both ends open, has a fundamental 
frequency of 300 Hz. The third harmonic of organ pipe B, with 
one end open, has the same frequency as the second  harmonic 
of pipe A. How long are (a) pipe A and (b) pipe B?

41 E  A violin string 15.0 cm long and fixed at both ends 
 oscillates in its n = 1 mode. The speed of waves on the string is 
250 m/s, and the speed of sound in air is 348 m/s. What are the 
(a) frequency and (b) wavelength of the emitted sound wave?

42 E  A sound wave in a fluid medium is reflected at a barrier so 
that a standing wave is formed. The distance between nodes is 
3.8 cm, and the speed of propagation is 1500 m/s. Find the fre-
quency of the sound wave.

43 E  SSM  In Fig. 17.17, S is a small loud-
speaker driven by an  audio oscillator with a fre-
quency that is varied from 1000 Hz to 2000 Hz, 
and D is a cylindrical pipe with two open ends 
and a length of 45.7 cm. The speed of sound in 
the air-filled pipe is 344 m/s. (a) At how many 
frequencies does the sound from the  loud-
speaker set up resonance in the pipe? What are 
the (b) lowest and (c) second lowest frequen-
cies at which  resonance occurs?

44 E  BIO  FCP  The crest of a Parasaurolophus  dinosaur skull is 
shaped somewhat like a trombone and contains a nasal passage 
in the form of a long, bent tube open at both ends. The dino-
saur may have used the passage to produce sound by  setting up 
the fundamental mode in it. (a) If the nasal passage in a certain 
Parasaurolophus fossil is 2.0 m long, what frequency would have 

been produced? (b) If that  dinosaur could be recreated (as in 
Jurassic Park), would a  person with a hearing range of 60 Hz to 
20 kHz be able to hear that fundamental mode and, if so, would 
the sound be high or low frequency? Fossil skulls that contain 
shorter nasal passages are thought to be those of the female 
Parasaurolophus. (c) Would that make the female’s fundamen-
tal frequency higher or lower than the male’s?

45 E  In pipe A, the ratio of a particular harmonic frequency to 
the next lower harmonic frequency is 1.2. In pipe B, the  ratio 
of a particular harmonic frequency to the next lower  harmonic 
frequency is 1.4. How many open ends are in (a)  pipe A and  
(b) pipe B?

46 M  GO  Pipe A, which is 1.20 m long and open at both ends, 
 oscillates at its third lowest harmonic frequency. It is filled with 
air for which the speed of sound is 343 m/s. Pipe B, which is closed 
at one end, oscillates at its second lowest  harmonic frequency. 
This frequency of B happens to match the frequency of A.  
An x axis extends along the interior of B, with x = 0 at the closed 
end. (a) How many nodes are along that axis? What are the (b) 
smallest and (c) second smallest value of x locating those nodes? 
(d) What is the fundamental frequency of B? 

47 M  A well with vertical sides and water at the bottom reso-
nates at 7.00 Hz and at no lower frequency. The air-filled portion 
of the well acts as a tube with one closed end (at the bottom) and 
one open end (at the top). The air in the well has a density of 
1.10 kg/m3 and a bulk modulus of 1.33 × 105 Pa. How far down 
in the well is the water surface?

48 M  One of the harmonic frequencies of tube A with two open 
ends is 325 Hz. The next-highest harmonic frequency is 390 Hz. 
(a) What harmonic frequency is next highest after the harmonic 
frequency 195 Hz? (b) What is the number of this next-highest 
harmonic? One of the harmonic frequencies of tube B with only 
one open end is 1080 Hz. The next-highest harmonic  frequency 
is 1320 Hz. (c) What harmonic frequency is next highest after 
the  harmonic frequency 600 Hz? (d) What is the number of this 
next-highest harmonic?

49 M  SSM  A violin string 30.0 cm long with linear density 
0.650 g/m is placed near a loudspeaker that is fed by an audio 
oscillator of variable frequency. It is found that the string is 
set into oscillation only at the frequencies 880 and 1320 Hz as the  
frequency of the oscillator is varied over the range 500–1500 Hz. 
What is the tension in the string?

50 M  GO  A tube 1.20 m long is closed at one end. A stretched 
wire is placed near the open end. The wire is 0.330 m long and 
has a mass of 9.60 g. It is fixed at both ends and oscillates in its 
fundamental mode. By resonance, it sets the air column in the 
tube into oscillation at that column’s fundamental  frequency. 
Find (a) that frequency and (b) the tension in the wire. 

Module 17.6  Beats
51 E  The A string of a violin is a little too tightly stretched. Beats 
at 4.00 per second are heard when the string is sounded together 
with a tuning fork that is oscillating accurately at concert A 
(440 Hz). What is the period of the violin string  oscillation?

52 E  A tuning fork of unknown frequency makes 3.00 beats 
per second with a standard fork of frequency 384 Hz. The beat 
frequency decreases when a small piece of wax is put on a prong 
of the first fork. What is the frequency of this fork?

Figure 17.17  
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53 M  SSM  Two identical piano wires have a fundamen-
tal  frequency of 600 Hz when kept under the same tension. 
What fractional increase in the tension of one wire will lead 
to the occurrence of 6.0 beats/s when both wires oscillate 
simul taneously? 

54 M  You have five tuning forks that oscillate at close but dif-
ferent resonant frequencies. What are the (a) maximum and 
(b) minimum number of different beat frequencies you can pro-
duce by sounding the forks two at a time, depending on how the 
resonant frequencies differ?

Module 17.7  The Doppler Effect
55 E  A whistle of frequency 540 Hz moves in a circle of  radius 
60.0 cm at an angular speed of 15.0 rad/s. What are the (a) low-
est and (b) highest frequencies heard by a listener a long dis-
tance away, at rest with respect to the center of the  circle? 

56 E  An ambulance with a siren emitting a whine at 1600 Hz 
overtakes and passes a cyclist pedaling a bike at 2.44 m/s. After 
being passed, the cyclist hears a frequency of 1590 Hz. How fast 
is the ambulance moving?

57 E  A state trooper chases a speeder along a straight road; 
both vehicles move at 160 km/h. The siren on  the trooper’s 
vehicle produces sound at a frequency of 500 Hz. What is the  
Doppler shift in the frequency heard by the speeder?

58 M  A sound source A and a reflecting surface B move  directly 
toward each other. Relative to the air, the speed of source A is 
29.9 m/s, the speed of surface B is 65.8 m/s, and the speed of 
sound is 329 m/s. The source emits waves at frequency 1200 Hz 
as measured in the source frame. In the  reflector frame, what 
are the (a) frequency and (b) wavelength of the arriving sound 
waves? In the source frame, what are the (c) frequency and  
(d) wavelength of the sound waves reflected back to the source?

59 M  GO  In Fig. 17.18, a French submarine and a U.S. subma-
rine move toward each other during maneuvers in motionless 
 water in  the North Atlantic. The French sub moves at speed 
vF  =  50.00 km/h, and the U.S. sub at vUS = 70.00 km/h. The 
French sub sends out a sonar signal (sound wave in water) at 
1.000 × 103 Hz. Sonar waves travel at 5470 km/h. (a) What is 
the  signal’s frequency as detected by the U.S. sub? (b) What 
frequency is detected by the French sub in the signal reflected 
back to it by the U.S. sub?

60 M  A stationary motion detector sends sound waves of 
 frequency 0.150 MHz toward a truck approaching at a speed of 
45.0 m/s. What is the frequency of the waves reflected back to 
the detector?

61 M  BIO  GO  FCP  A bat is flitting about in a cave, navigating via 
 ultrasonic bleeps. Assume that the sound emission frequency of 
the bat is 39 000 Hz. During one fast swoop directly toward a flat 
wall surface, the bat is moving at 0.025 times the speed of sound in 
air. What frequency does the bat hear reflected off the wall?

62 M  Figure 17.19 shows four tubes with lengths 1.0 m or 2.0 m, 
with one or two open ends as drawn. The third harmonic is set 

up in each tube, and some 
of the sound that  escapes 
from them is detected by 
detector D, which moves 
 directly away from the 
tubes. In terms of the 
speed of sound  v, what 
speed must the detector have such that the  detected  frequency 
of the sound from (a) tube 1, (b) tube 2, (c) tube 3, and (d) tube 
4 is equal to the tube’s fundamental frequency?

63 M  An acoustic burglar alarm consists of a source emitting 
waves of frequency 28.0 kHz. What is the beat frequency  between 
the source waves and the waves reflected from an  intruder walk-
ing at an average speed of 0.950 m/s directly away from the alarm?

64 M  A stationary detector measures the frequency of a sound 
source that first moves at constant velocity directly  toward the 
detector and then (after passing the detector)  directly away 
from it. The emitted frequency is f. During the approach the 
detected frequency is f ′app and during the recession it is f ′rec. If 
( f ′app − f ′rec)/f = 0.500, what is the ratio vs/v of the speed of the 
source to the speed of sound?

65 H  GO  A 2000 Hz siren and a civil defense official are both at 
rest with respect to the ground. What frequency does the  official 
hear if the wind is blowing at 12 m/s (a) from source to official 
and (b) from official to source?

66 H  GO  Two trains are traveling toward each other at 30.5 m/s 
relative to the ground. One train is blowing a whistle at 500 Hz. 
(a)  What frequency is heard on the other train in still air?  
(b) What frequency is heard on the other train if the wind is blow-
ing at 30.5 m/s toward the whistle and away from the listener? (c) 
What frequency is heard if the wind direction is reversed?

67 H  SSM  A girl is sitting near the open window of a train 
that is moving at a velocity of 10.00 m/s to the east. The girl’s 
 uncle stands near the tracks and watches the train move away. 
The locomotive whistle emits sound at frequency 500.0 Hz. The 
air is still. (a) What frequency does the uncle hear? (b) What 
frequency does the girl hear? A wind begins to blow from the 
east at 10.00 m/s. (c) What frequency does the uncle now hear?  
(d) What frequency does the girl now hear? 

Module 17.8  Supersonic Speeds, Shock Waves
68 E  The shock wave off the cockpit of the FA 18 in Fig. 17.8.2 
has an angle of about 60°. The airplane was traveling at about 
1350 km/h when the photograph was taken. Approximately 
what was the speed of sound at the airplane’s altitude?

69 M  SSM  FCP  A jet plane passes over you at a height of 
5000 m and a speed of Mach 1.5. (a) Find the Mach cone angle 
(the sound speed is 331 m/s). (b) How long after the jet passes 
directly overhead does the shock wave reach you?

70 M  A plane flies at 1.25 times the speed of sound. Its sonic 
boom reaches a man on the ground 1.00 min after the plane passes 
directly overhead. What is the altitude of the plane? Assume the 
speed of sound to be 330 m/s.

Additional Problems
71  At a distance of 10 km, a 100 Hz horn, assumed to be an 
isotropic point source, is barely audible. At what distance would 
it begin to cause pain?

French U.S.
vF vUS

Figure 17.18 Problem 59.
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Figure 17.19 Problem 62.
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72  A bullet is fired with a speed of 685 m/s. Find the angle 
made by the shock cone with the line of motion of the bullet.

73 BIO  FCP  A sperm whale (Fig. 17.20a) vocalizes by produc-
ing a  series of clicks. Actually, the whale makes only a single 
sound near the front of its head to start the series. Part of that 
sound then emerges from the head into the water to become 
the first click of the series. The rest of the sound travels back-
ward through the  spermaceti sac (a body of fat), reflects from 
the frontal sac (an air layer), and then travels forward through 
the spermaceti sac. When it reaches the distal sac (another air 
layer) at the front of the head, some of the sound escapes into 
the water to form the second click, and the rest is sent back 
through the spermaceti sac (and ends up forming later clicks).

Figure 17.20b shows a strip-chart recording of a series of clicks. 
A unit time  interval of 1.0 ms is indicated on the chart. Assum-
ing that the speed of sound in the spermaceti sac is 1372 m/s, find 
the length of the spermaceti sac. From such a calculation,  marine 
scientists estimate the length of a whale from its click  series.

74  The average density of Earth’s crust 10 km beneath the 
continents is 2.7 g/cm3. The speed of longitudinal seismic waves 
at that depth, found by timing their arrival from distant earth-
quakes, is 5.4 km/s. Find the bulk modulus of Earth’s crust at 
that depth. For comparison, the bulk modulus of steel is about 
16 × 1010 Pa.

75  A certain loudspeaker system emits sound isotropically 
with a  frequency of 2000 Hz and an intensity of 0.960 mW/m2 
at a  distance of 6.10 m. Assume that there are no reflections. 
(a) What is the intensity at 30.0 m? At 6.10 m, what are (b) the 
displacement amplitude and (c) the pressure amplitude?

76  Find the ratios (greater to smaller) of the (a) intensities, 
(b)  pressure amplitudes, and (c) 
particle displacement amplitudes 
for two sounds whose sound lev-
els differ by 37 dB.

77  In Fig. 17.21, sound waves A  
and B, both of wavelength λ, are 
initially in phase and traveling 
rightward, as indicated by the 
two rays. Wave A is reflected 
from four surfaces but ends up 

traveling in its original direction. What multiple of wavelength λ 
is the smallest value of distance L in the figure that puts A and B 
exactly out of phase with each other after the  reflections?

78  A trumpet player on a moving railroad flatcar moves toward 
a second trumpet player standing alongside the track while 
both play a  440 Hz note. The sound waves heard by a station-
ary  observer between the two players have a beat frequency of 
4.0 beats/s. What is the flatcar’s speed?

79 GO  In Fig. 17.22, sound of wavelength 0.850 m is emitted 
isotropically by point source S. Sound ray 1 extends directly to 
detector D, at distance L = 10.0 m. Sound ray 2 extends to D via 
a reflection (effectively, a “bouncing”) of the sound at a flat sur-
face. That reflection occurs on a perpendicular bisector to the SD 
line, at distance d from the line. Assume that the  reflection shifts 
the sound wave by 0.500λ. For what least value of d (other than 
zero) do the direct sound and the  reflected sound arrive at D  
(a) exactly out of phase and (b) exactly in phase?

80 GO  A detector initially moves at constant velocity directly 
 toward a stationary sound source and then (after passing it) 
directly from it. The emitted frequency is f. During the  approach 
the detected frequency is f ′app and during the recession it is f ′rec. 
If the frequencies are related by (f ′app − f ′rec)/f = 0.500, what is 
the ratio vD/v of the speed of the detector to the speed of sound?

81 SSM  (a) If two sound waves, one in air and one in (fresh) 
 water, are equal in intensity and angular frequency, what is the 
 ratio of the pressure amplitude of the wave in water to that of 
the wave in air? Assume the water and the air are at 20°C. (See 
Table 14.1.1.) (b) If the pressure amplitudes are equal instead, 
what is the ratio of the intensities of the waves?

82  A continuous sinusoidal longitudinal wave is sent along a 
very long coiled spring from an attached oscillating source. The 
wave travels in the negative direction of an x axis; the source fre-
quency is 25 Hz; at any instant the distance  between successive 
points of maximum expansion in the spring is 24 cm; the maxi-
mum longitudinal displacement of a spring particle is 0.30 cm; 
and the particle at x = 0 has zero displacement at time t = 0. If 
the wave is written in the form s(x, t) = sm cos(kx ± ωt), what are 
(a) sm, (b) k, (c) ω, (d) the wave speed, and (e) the correct choice 
of sign in front of ω?

83 BIO  SSM  Ultrasound, which 
consists of sound waves with fre-
quencies above the human audi-
ble range, can be used to  produce 
an image of the interior of a 
human body. Moreover, ultra-
sound can be used to measure the 
speed of the blood in the body; it 
does so by comparing the frequency of the  ultrasound sent into 
the body with the frequency of the ultrasound reflected back 
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to the body’s surface by the blood. As the blood pulses, this 
detected frequency varies.

Suppose that an ultrasound image of the arm of a  patient 
shows an artery that is angled at θ = 20° to the ultrasound’s 
line of travel (Fig. 17.23). Suppose also that the  frequency of 
the ultrasound  reflected by the blood in the artery is  increased 
by a maximum of 5495 Hz from the original ultrasound fre-
quency of 5.000 000 MHz. (a) In Fig. 17.23, is the  direction of 
the blood flow rightward or  leftward? (b) The speed of sound in 
the human arm is 1540 m/s. What is the maximum speed of the 
blood? (Hint: The Doppler effect is caused by the component of 
the blood’s velocity along the ultrasound’s direction of travel.) 
(c) If angle θ were greater, would the reflected  frequency be 
greater or less?

84  The speed of sound in a certain metal is vm. One end of a long 
pipe of that metal of length L is struck a hard blow. A  listener at 
the other end hears two sounds, one from the wave that travels 
along the pipe’s metal wall and the other from the wave that trav-
els through the air inside the pipe. (a) If v is the speed of sound 
in air, what is the time interval Δt between the arrivals of the two 
sounds at the listener’s ear? (b) If Δt = 1.00 s and the metal is 
steel, what is the length L?

85 FCP  An avalanche of sand along some rare desert sand 
dunes can produce a booming that is loud enough to be heard 
10 km away. The booming apparently results from a periodic 
oscillation of the sliding layer of sand—the layer’s thickness 
 expands and contracts. If the emitted frequency is 90 Hz, what 
are (a) the period of the thickness oscillation and (b) the wave-
length of the sound?

86  A sound source moves along an x axis, between detectors  
A and B. The wavelength of the sound detected at A is 0.500 that 
of the sound detected at B. What is the ratio νs/ν of the speed of 
the source to the speed of sound?

87 SSM  A siren emitting a sound of frequency 1000 Hz moves 
away from you toward the face of a cliff at a speed of 10 m/s. 
Take the speed of sound in air as 330 m/s. (a) What is the fre-
quency of the sound you hear coming directly from the siren? 
(b) What is the frequency of the sound you hear reflected off the 
cliff? (c) What is the beat frequency between the two sounds? Is 
it perceptible (less than 20 Hz)?

88  At a certain point, two waves produce pressure variations 
given by Δp1 = Δpm sin ωt and Δp2 = Δpm sin(ωt − ϕ). At this 
point, what is the ratio Δpr/Δpm, where Δpr is the  pressure 
 amplitude of the resultant wave, if ϕ is (a) 0, (b) π/2, (c) π/3, and 
(d) π/4?

89  Two sound waves with an amplitude of 12 nm and a wave-
length of 35 cm travel in the same direction through a long tube, 
with a phase difference of π/3 rad. What are the (a) amplitude 
and (b) wavelength of the net sound wave produced by their 
interference? If, instead, the sound waves travel through the 
tube in opposite directions, what are the (c)  amplitude and  
(d) wavelength of the net wave?

90  A sinusoidal sound wave moves at 343 m/s through air in 
the positive direction of an x axis. At one instant during the 
oscillations, air molecule A is at its maximum displacement in 
the negative direction of the axis while air molecule B is at its 
equilibrium  position. The separation between those molecules is 
15.0 cm, and the molecules between A and B have intermediate 

 displacements in the negative direction of the axis. (a) What is 
the frequency of the sound wave?

In a similar arrangement but for a different sinusoidal 
sound wave, at one instant air molecule C is at its maximum 
displacement in the positive direction while molecule D is at its 
maximum  displacement in the negative direction. The separa-
tion  between the molecules is again 15.0 cm, and the molecules 
 between C and D have intermediate displacements. (b) What is 
the frequency of the sound wave?

91  Two identical tuning forks can oscillate at 440 Hz. A  person 
is located somewhere on the line between them. Calculate the 
beat frequency as measured by this individual if (a) she is stand-
ing still and the tuning forks move in the same direction along 
the line at 3.00 m/s, and (b) the tuning forks are stationary and 
the listener moves along the line at 3.00 m/s.

92  You can estimate your distance from a lightning stroke by 
counting the seconds between the flash you see and the  thunder 
you later hear. By what integer should you divide the number of 
seconds to get the distance in kilometers?

93 SSM  Figure 17.24 shows an 
air-filled, acoustic interferometer, 
used to demonstrate the interfer-
ence of sound waves. Sound source 
S is an oscillating diaphragm; D is 
a sound detector, such as the ear 
or a microphone. Path SBD can be 
varied in length, but path SAD is 
fixed. At D, the sound wave com-
ing along path SBD interferes with that coming along path SAD. 
In one demonstration, the sound intensity at D has a minimum 
value of 100 units at one position of the movable arm and con-
tinuously climbs to a maximum value of 900 units when that arm 
is shifted by 1.65 cm. Find (a) the frequency of the sound emitted 
by the source and (b) the ratio of the  amplitude at D of the SAD 
wave to that of the SBD wave. (c) How can it happen that these 
waves have different amplitudes, considering that they originate 
at the same source?

94  On July 10, 1996, a granite block broke away from a wall in 
Yosemite Valley and, as it began to slide down the wall, was 
launched into projectile motion. Seismic waves produced by 
its  impact with the ground triggered seismographs as far away 
as 200 km. Later measurements indicated that the block had a 
mass between 7.3 × 107 kg and 1.7 × 108 kg and that it landed 
500 m vertically below the launch point and 30 m horizontally 
from it. (The launch angle is not known.) (a) Estimate the 
block’s kinetic energy just before it landed.

Consider two types of seismic waves that spread from the 
impact point—a hemispherical body wave traveled through the 
ground in an expanding hemisphere and a cylindrical surface 
wave traveled along the ground in an expanding shallow verti-
cal cylinder (Fig. 17.25). Assume that the  impact lasted 0.50 s, 
the vertical cylinder had a depth d of 5.0 m, and each wave type 
received 20% of the energy the block had just  before impact. 
Neglecting any  mechanical  energy loss the waves experienced 
as they traveled,  determine the intensities of (b) the body wave 
and (c) the surface wave when they reached a seismograph 
200 km away. (d) On the basis of these results, which wave is 
more easily detected on a  distant  seismograph?
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95 SSM  The sound intensity is 0.0080 W/m2 at a distance of 
10 m from an isotropic point source of sound. (a) What is the 
power of the source? (b) What is the sound intensity 5.0 m from 
the source? (c) What is the sound level 10 m from the source? 

96  Four sound waves are to be sent through the same tube of 
air, in the same direction:

s1(x, t) = (9.00 nm) cos(2πx − 700πt),

s2(x, t) = (9.00 nm) cos(2πx − 700πt + 0.7π),

s3(x, t) = (9.00 nm) cos(2πx − 700πt + π),

s4(x, t) = (9.00 nm) cos(2πx − 700πt + 1.7π).

What is the amplitude of the resultant wave? (Hint: Use a pha-
sor diagram to simplify the problem.)

97  Straight line AB connects two point sources that are 5.00 m 
apart, emit 300 Hz sound waves of the same ampli tude, and emit 
exactly out of phase. (a) What is the shortest distance between 
the midpoint of AB and a point on AB where the  interfering 
waves cause maximum oscillation of the air molecules? What 
are the (b) second and (c) third shortest  distances?

98  A point source that is stationary on an x axis emits a 
 sinusoidal sound wave at a frequency of 686 Hz and speed 
343  m/s. The wave travels radially outward from the source, 
causing air molecules to oscillate radially inward and outward. 
Let us define a wavefront as a line that connects points where 
the air molecules have the maximum, radially outward displace-
ment. At any given instant, the wavefronts are concentric circles 
that are centered on the source. (a) Along x, what is the adja-
cent wavefront separation? Next, the source moves along x at a 
speed of 110 m/s. Along x, what are the wavefront separations 
(b) in front of and (c) behind the source?

99  You are standing at a distance D from an isotropic point 
source of sound. You walk 50.0 m toward the source and 
 observe that the intensity of the sound has doubled. Calculate 
the distance D.

100  Pipe A has only one open end; pipe B is four times as long 
and has two open ends. Of the lowest 10 harmonic  numbers nB 
of pipe B, what are the (a) smallest, (b) second smallest, and 
(c) third smallest values at which a har monic  frequency of B 
matches one of the harmonic  frequencies of A?

101  A toy rocket moves at a speed of 242 m/s directly toward a 
stationary pole (through stationary air) while emitting sound 
waves at frequency f = 1250 Hz. (a) What frequency f ′ is 
sensed by a detector that is attached to the pole? (b) Some of 
the sound reaching the pole reflects to the rocket, which has an 
onboard detector. What frequency f″ does it detect?

102  SHM Doppler shift. A microscopic structure is in simple 
harmonic motion in air along an x axis with angular frequency  

ω = 6.80 ×  10  6   rad/s (Fig. 17.26). 
From a stationary source, a 
beam of ultrasound of frequency 
f0 is directed toward the struc-
ture along that axis. The echo 
returned to a stationary detector at the ultrasound source var-
ies in frequency during the oscillation from a lowest value fL 
to a highest value fH. The ratio fL/f0 is 0.800. (a) Where in the 
oscillation is the structure when fL is emitted? What are (b) the 
amplitude xm of the oscillation and (c) the ratio fH/f0?

103  Beats with Doppler shifts. 
Figure 17.27 shows two isotropic 
point sources of sound: Sources 
S1 and S2 are moving in the posi-
tive direction of an x axis toward 
detector D, and both emit sound with frequency f = 500 Hz. S1 
moves at speed vS1 = 0.180v, where v is the speed of sound. S2 
moves at vS2 = 0.185v. What is the beat frequency of the sound 
at the detector?

104  Off-axis Doppler shift. In 
Fig. 17.28, a bat flies at speed  
vb = 9.00 m/s along an x axis while 
emitting sound at frequency f = 
80.0 kHz. The sound is detected  
by D, located at distance d = 20.0 
m off the axis. Assume that the 
bat is an isotropic sound source. 
(a) What frequency f ′ is detected 
by D when the bat emits the sound 
at xb = −113 m. (Hint: What is the velocity component toward 
D just then?) (b) What is the bat’s coordinate at the moment 
of detection? (c) As the bat continues toward the origin of the 
coordinate system, does f ′ increase, decrease, or stay the same, 
and what is the detected frequency of the sound that is emitted 
at the origin?

105  Sound speed in aluminum. An experimenter wishes to 
measure the speed of sound in an aluminum rod 10 cm long by 
measuring the time a sound pulse takes to travel the length of 
the rod. If results good to four significant figures are desired,  
(a) how precisely must the length of the rod be known, and 
(b) how closely must the experimenter be able to resolve time 
intervals?

106  The loudest. One way to measure “loudness” is with the 
sound pressure level SPL (units dB SPL), which is defined as

 SPL = 20 log (  
Δ  p  m  

 ____  p  0    ) , 

where ∆pm is the measured pressure amplitude of the sound 
wave and p0 is the reference pressure of 20 µPa (= 20 µN/m2). 
For a sustained sinusoidal sound wave, the upper limit for the 
pressure amplitude is ∆pm = 1 atm. In that case, what are (a) the 
maximum pressure and (b) the minimum pressure in the wave? 
(c) What is the SPL? (This is the “loudest” that a sustained 
sound wave can be in Earth’s atmosphere.)

107  Longest string−can telephone. To make a string−can tele-
phone (Fig. 17.29), punch a hole in the bottom of two empty 
food cans (or paper cups). Then, from the exterior of each can, 
run a string through the hole and tie a knot at the end to prevent 
the end from slipping back through the hole. Give one can to 
someone with the instruction to walk away and then pull on that 
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can so that the string is under tension. You can then talk to the 
other person by speaking into your can. Your sound causes the 
can bottom to oscillate, which periodically pulls and releases the 
string, sending pulses along the string. When those pulses reach 
the bottom of the other can, that bottom oscillates, producing 
sound waves in the can’s air. The other person thus hears your 
message. A better design is with steel wire (instead of ordinary 
string) that is welded to the can bottoms to form rigid connec-
tions. The Guinness World Record for the longest string−can 
telephone is 242.62 m, set in Chosei, Chiba, Japan, in 2019. 
Assume that steel wire was used. What is the time difference 
∆t between a pulse sent along the wire and a pulse sent through 
the air?

108  Chalk squealing on a chalkboard. To make a chalk stick 
squeal when drawn across a ceramic (clay) chalkboard (Fig. 
17.30), first rub it several times over the area to be used. Then 
hold the chalk stick about 30° from a perpendicular to the 
board and pull it. The chalk can undergo repeated stick and 
slip, producing the irritating squeal. The oscillations respon-
sible for the sound occur in a shear layer that is a 0.3-mm-thick 
layer between the board and chalk stick whenever the chalk 
slips after sticking. Waves from that oscillating layer travel into 
the board, which radiates the sound much like a drumhead. If 

the frequency of the squeal-
ing is 2050 Hz, what is the 
wavelength of the sound that 
reaches you? (If the chalk 
stick is short, your grip on it 
damps out the oscillations, 
eliminating the squeal.)

109  Wave interference. Fig-
ure 17.31a shows two point 
sound sources S1 and S2 
located on a line. The sources 
emit sound isotropically, in 
phase, and at the same wave-
length  λ  and same amplitude. 
Detection point P1 is on a 
perpendicular bisector to 
the line between the sources; 
waves arrive there with zero 
phase difference. Detection 
point P2 is on the line through 
the sources; waves arrive 
there with a phase difference 
of 5.0 wavelengths. (a) In 
terms of wavelengths, what is the distance between the sources? 
(b) What type of interference occurs at point P1?

The sources are now both moved directly away from point 
P1 by a distance of  λ / 2,  at an angle of θ = 30° (Fig. 17.31b). (c) 
In terms of wavelengths, what is the phase difference between 
the waves arriving at point P3, which is on the new line through 
the sources? (d) What type of interference occurs at point P3?

110 BIO  Firing range. The most common handgun carried by 
United States police officers is the Glock 22 (0.40 caliber). The 
officers must qualify and train with the weapon on firing ranges 
where hearing protection is required to avoid hearing loss, pos-
sibly permanent loss. In one investigation of the protection, 
a Glock 22 was fired 1.0 m from a mannequin. The noise was 
detected by two microphones. One was under protective gear 
on the mannequin’s ear and one was adjacent to the mannequin 
and unprotected. The noise level was measured in terms of the 
sound pressure level SPL (units dB SPL), which is defined as

 

SPL = 20 log (  
p

 __  p  0    ) , 

where p is the measured sound pressure and p0 is the reference 
pressure of 20 µPa (= 20 µN/m2). What were the pressures for 
(a) 158 dB SPL for the unprotected microphone, (b) 123 dB SPL 
for the mannequin with the protective earmuffs, and (c) 103 dB 
SPL for the mannequin with both earmuffs and earplugs? The 
recommended allowable exposure set by the National Institute 
for Occupational Safety and Health is 140 dB SPL, which would 
be exceeded by an officer firing a Glock 22 without protection, 
as is sometimes required in the line of duty.
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Temperature, Heat, and the First 
Law of Thermodynamics

18.1 TEMPERATURE
Learning Objectives 
After reading this module, you should be able to . . .

18.1.1 Identify the lowest temperature as 0 on the 
 Kelvin scale (absolute zero).

18.1.2 Explain the zeroth law of thermodynamics.
18.1.3 Explain the conditions for the triple-point 

temperature.

18.1.4 Explain the conditions for measuring a tempera-
ture with a constant-volume gas thermometer.

18.1.5 For a constant-volume gas thermometer, relate 
the pressure and temperature of the gas in some 
given state to the pressure and temperature at the 
triple point.

Key Ideas 
● Temperature is an SI base quantity related to our 
sense of hot and cold. It is measured with a ther-
mometer, which contains a working substance with a 
measurable property, such as length or pressure, that 
changes in a regular way as the substance becomes 
hotter or colder.

● When a thermometer and some other object are 
placed in contact with each other, they eventually reach 
thermal equilibrium. The reading of the thermometer 
is then taken to be the temperature of the other 
object. The process provides consistent and useful 
temperature measurements because of the zeroth law of 
thermodynamics: If bodies A and B are each in thermal 
equilibrium with a third body C (the thermometer), then 
A and B are in thermal equilibrium with each other.

● In the SI system, temperature is measured on the 
Kelvin scale, which is based on the triple point of water 
(273.16 K). Other temperatures are then defined by 
use of a constant-volume gas thermometer, in which a 
sample of gas is maintained at constant volume so its 
pressure is proportional to its temperature. We define 
the temperature T as measured with a gas thermom-
eter to be

 T =  (273.16 K)   (    lim  
gas→0

     
p

 ___  p  3     )   . 

Here T is in kelvins, and p3 and p are the pressures of 
the gas at 273.16 K and the measured temperature, 
respectively.

What Is Physics?
One of the principal branches of physics and engineering is  thermodynamics, 
which is the study and application of the thermal energy (often called the  internal 
energy) of systems. One of the central concepts of thermodynamics is tempera-
ture. Since  childhood, you have been developing a working knowledge of thermal 
energy and temperature. For example, you know to be cautious with hot foods 
and hot stoves and to store perishable foods in cool or cold compartments. You 
also know how to control the temperature inside home and car, and how to pro-
tect yourself from wind chill and heat stroke.

C H A P T E R  1 8
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Examples of how thermodynamics figures into everyday engineering and 
 science are countless. Automobile engineers are concerned with the heating of a 
car engine, such as during a NASCAR race. Food engineers are concerned both 
with the proper heating of foods, such as pizzas being microwaved, and with the 
proper cooling of foods, such as TV dinners being quickly frozen at a processing 
plant. Geologists are concerned with the transfer of thermal energy in an El Niño 
event and in the gradual warming of ice expanses in the Arctic and Antarctic. 
Agricultural engineers are concerned with the weather conditions that determine 
whether the agriculture of a country thrives or vanishes. Medical engineers are 
concerned with how a patient’s temperature might distinguish  between a benign 
viral infection and a cancerous growth. FCP

The starting point in our discussion of thermodynamics is the concept of 
 temperature and how it is measured.

Temperature
Temperature is one of the seven SI base quantities. Physicists measure tempera-
ture on the Kelvin scale, which is marked in units called kelvins. Although the 
temperature of a body apparently has no upper limit, it does have a lower limit; 
this limiting low temperature is taken as the zero of the Kelvin temperature 
scale. Room temperature is about 290 kelvins, or 290 K as we write it, above this 
 absolute zero. Figure 18.1.1 shows a wide range of temperatures.

When the universe began 13.8 billion years ago, its temperature was about 
1039 K. As the universe expanded it cooled, and it has now reached an average 
temperature of about 3 K. We on Earth are a little warmer than that because we 
happen to live near a star. Without our Sun, we too would be at 3 K (or, rather, 
we could not exist).

The Zeroth Law of Thermodynamics
The properties of many bodies change as we alter their temperature, perhaps by 
moving them from a refrigerator to a warm oven. To give a few examples: As 
their temperature increases, the volume of a liquid increases, a metal rod grows a 
little longer, and the electrical resistance of a wire increases, as does the pressure 
exerted by a confined gas. We can use any one of these proper ties as the basis of 
an instrument that will help us pin down the concept of  temperature.

Figure 18.1.2 shows such an instrument. Any resourceful engineer could 
 design and construct it, using any one of the properties listed above. The instru-
ment is fitted with a digital readout display and has the following properties: If 
you heat it (say, with a Bunsen burner), the displayed number starts to increase; 
if you then put it into a refrigerator, the displayed number starts to decrease. The 
instrument is not calibrated in any way, and the numbers have (as yet) no physical 
meaning. The device is a thermoscope but not (as yet) a thermometer.

Suppose that, as in Fig. 18.1.3a, we put the thermoscope (which we shall call 
body T) into intimate contact with another body (body A). The entire system 
is confined within a thick-walled insulating box. The numbers displayed by the 
 thermoscope roll by until, eventually, they come to rest (let us say the reading 
is “137.04”) and no further change takes place. In fact, we suppose that every 
 measurable property of body T and of body A has assumed a stable, unchanging 
value. Then we say that the two bodies are in thermal equilibrium with each other. 
Even though the displayed readings for body T have not been calibrated, we 
 conclude that bodies T and A must be at the same (unknown) temperature.

Suppose that we next put body T into intimate contact with body B (Fig. 
18.1.3b) and find that the two bodies come to thermal equilibrium at the same 

Figure 18.1.1 Some temperatures on 
the Kelvin scale. Temperature T = 0 
corresponds to 10−∞ and cannot be 
plotted on this logarithmic scale.
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Figure 18.1.2 A thermoscope. The 
numbers increase when the device 
is heated and  decrease when it is 
cooled. The thermally sensitive 
element could be—among many 
 possibilities—a coil of wire whose 
electrical resistance is measured and 
displayed.

Thermally sensitive
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Figure 18.1.3 (a) Body T (a thermoscope) and body A are in thermal equilibrium. (Body 
S is a thermally insulating screen.) (b) Body T and body B are also in thermal equilib-
rium, at the same reading of the thermoscope. (c) If (a) and (b) are true, the zeroth law 
of  thermodynamics states that body A and body B are also in thermal equilibrium.

 reading of the thermoscope. Then bodies T and B must be at the same (still 
 unknown) temperature. If we now put bodies A and B into intimate contact (Fig. 
18.1.3c), are they immediately in thermal equilibrium with each other? Experi-
mentally, we find that they are.

The experimental fact shown in Fig. 18.1.3 is summed up in the zeroth law of 
thermodynamics:

 If bodies A and B are each in thermal equilibrium with a third body T, then A 
and B are in thermal equilibrium with each other.

In less formal language, the message of the zeroth law is: “Every body has 
a property called temperature. When two bodies are in thermal equilibrium, 
their temperatures are equal. And vice versa.” We can now make our thermo-
scope (the third body T) into a thermometer, confident that its readings will have 
 physical meaning. All we have to do is calibrate it.

We use the zeroth law constantly in the laboratory. If we want to know 
whether the liquids in two beakers are at the same temperature, we measure 
the temperature of each with a thermometer. We do not need to bring the two 
 liquids into  intimate contact and observe whether they are or are not in thermal 
equi librium.

The zeroth law, which has been called a logical afterthought, came to light 
only in the 1930s, long after the first and second laws of thermodynamics had 
been discovered and numbered. Because the concept of temperature is funda-
mental to those two laws, the law that establishes temperature as a valid concept 
should have the lowest number—hence the zero.

Measuring Temperature
Here we first define and measure temperatures on the Kelvin scale. Then we 
 calibrate a thermoscope so as to make it a thermometer.

The Triple Point of Water
To set up a temperature scale, we pick some reproducible thermal phenomenon 
and, quite arbitrarily, assign a certain Kelvin temperature to its environment; that 
is, we select a standard fixed point and give it a standard fixed-point temperature. 
We could, for example, select the freezing point or the boiling point of  water but, 
for technical reasons, we select instead the triple point of water.
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Liquid water, solid ice, and water vapor (gaseous water) can coexist, in ther-
mal equilibrium, at only one set of values of pressure and temperature.  Figure 
18.1.4 shows a triple-point cell, in which this so-called triple point of water can be 
achieved in the laboratory. By international agreement, the triple point of water 
has been assigned a value of 273.16 K as the standard fixed-point  temperature for 
the calibration of thermometers; that is,

 T3 = 273.16 K   (triple-point temperature), (18.1.1)

in which the subscript 3 means “triple point.” This agreement also sets the size of 
the kelvin as 1/273.16 of the difference between the triple-point temperature of 
water and absolute zero.

Note that we do not use a degree mark in reporting Kelvin temperatures. 
It is 300 K (not 300°K), and it is read “300 kelvins” (not “300 degrees Kelvin”). 
The usual SI prefixes apply. Thus, 0.0035 K is 3.5 mK. No distinction in nomen-
clature is made between Kelvin temperatures and temperature differences, so 
we can write, “the boiling point of sulfur is 717.8 K” and “the temperature of this 
 water bath was raised by 8.5 K.”

The Constant-Volume Gas Thermometer
The standard thermometer, against which all other thermometers are calibrated, 
is based on the pressure of a gas in a fixed volume. Figure 18.1.5 shows such a 
 constant-volume gas thermometer; it consists of a gas-filled bulb connected by a tube 
to a mercury manometer. By raising and lowering reservoir R, the mercury level in the 
left arm of the U-tube can always be brought to the zero of the scale to keep the gas 
volume constant (variations in the gas volume can affect tem perature measurements).

The temperature of any body in thermal contact with the bulb (such as the 
liquid surrounding the bulb in Fig. 18.1.5) is then defined to be

 T = Cp, (18.1.2)

in which p is the pressure exerted by the gas and C is a constant. From Eq. 14.3.2, 
the pressure p is

 p = p0 − 𝜌gh, (18.1.3)

in which p0 is the atmospheric pressure, 𝜌 is the density of the mercury in the 
manometer, and h is the measured difference between the mercury levels in the 
two arms of the tube.* (The minus sign is used in Eq. 18.1.3 because pressure p is 
measured above the level at which the pressure is p0.)

If we next put the bulb in a triple-point cell (Fig. 18.1.4), the temperature now 
being measured is

 T3 = Cp3, (18.1.4)

in which p3 is the gas pressure now. Eliminating C between Eqs. 18.1.2 and 18.1.4 
gives us the temperature as

   T =  T  3    (     
p

 ___  p  3     )    =   (  273.16 K )     (     
p

 ___  p  3     )      (provisional). (18.1.5)

We still have a problem with this thermometer. If we use it to measure, say, 
the boiling point of water, we find that different gases in the bulb give slightly 
 different results. However, as we use smaller and smaller amounts of gas to fill 
the bulb, the readings converge nicely to a single temperature, no matter what 
gas we use. Figure 18.1.6 shows this convergence for three gases.

Figure 18.1.4 A triple-point cell, in 
which solid ice, liquid water, and water 
vapor coexist in thermal equilibrium. 
By international  agreement, the tem-
perature of this mixture has been 
defined to be 273.16 K. The bulb of a 
constant-volume gas thermometer is 
shown  inserted into the well of the cell.

Gas
thermometer
bulb

Vapor

Water

Ice

*For pressure units, we shall use units introduced in Module 14.1. The SI unit for pressure is the 
 newton per square meter, which is called the pascal (Pa). The pascal is related to other common 
pressure units by

1 atm = 1.01 × 105 Pa = 760 torr = 14.7 lb/in.2 .

Figure 18.1.5 A constant-volume gas 
thermometer, its bulb immersed in a 
liquid whose  temperature T is to be 
measured.

0

h

R

T

Scale
Gas-f illed
bulb
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18.2 THE CELSIUS AND FAHRENHEIT SCALES
Learning Objectives 
After reading this module, you should be able to . . .

18.2.1 Convert a temperature between any two (linear) 
temperature scales, including the Celsius, Fahrenheit, 
and Kelvin scales.

18.2.2 Identify that a change of one degree is the same 
on the Celsius and Kelvin scales.

Key Idea 
● The Celsius temperature scale is defined by

TC = T − 273.15°,

with T in kelvins. The Fahrenheit temperature scale is 
defined by

   T  F   =   9 __ 5   T  C   + 32°. 
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Figure 18.1.6 Temperatures measured by a 
constant-volume gas thermometer, with its 
bulb  immersed in boiling water. For temper-
ature calculations using Eq. 18.1.5, pressure 
p3 was measured at the triple point of water. 
Three different gases in the thermometer 
bulb gave generally different results at dif-
ferent gas pressures, but as the amount of 
gas was  decreased (decreasing p3), all three 
curves converged to 373.125 K.

Thus the recipe for measuring a temperature with a gas thermometer is

  T =  (273.16 K)    (    lim  
gas→0

     
p

 ___  p  3     )   .  (18.1.6)

The recipe instructs us to measure an unknown temperature T as follows: 
Fill the  thermometer bulb with an arbitrary amount of any gas (for example, 
 nitrogen) and measure p3 (using a triple-point cell) and p, the gas pressure at 
the  temperature being measured. (Keep the gas volume the same.) Calculate the 
 ratio p/p3. Then repeat both measurements with a smaller amount of gas in the 
bulb, and again calculate this ratio. Continue this way, using smaller and smaller 
amounts of gas, until you can extrapolate to the ratio p/p3 that you would find 
if there were approximately no gas in the bulb. Calculate the temperature T by 
 substituting that extrapolated ratio into Eq. 18.1.6. (The temperature is called the 
ideal gas temperature.)

Checkpoint 18.1.1
For four gas samples, here are the pressure of the gas at temperature T and the pres-
sure of the gas at the triple point. Rank the samples according to T, greatest first.

Sample  Pressure (kPa)  Triple-Point Pressure (kPa)

1 2.6 2.0
2 4.8 4.0
3 5.5 5.0
4 7.2 6.0
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The Celsius and Fahrenheit Scales
So far, we have discussed only the Kelvin scale, used in basic scientific work. In 
nearly all countries of the world, the Celsius scale (formerly called the centigrade 
scale) is the scale of choice for popular and commercial use and much  scientific 
use. Celsius temperatures are measured in degrees, and the Celsius  degree has 
the same size as the kelvin. However, the zero of the Celsius scale is shifted to a 
more convenient value than absolute zero. If TC represents a Celsius temperature 
and T a Kelvin temperatu  re, then

 TC = T − 273.15°. (18.2.1)

In expressing temperatures on the Celsius scale, the degree symbol is commonly 
used. Thus, we write 20.00°C for a Celsius reading but 293.15 K for a Kelvin 
 reading.

The Fahrenheit scale, used in the United States, employs a smaller degree 
than the Celsius scale and a different zero of temperature. You can easily verify 
both these differences by examining an ordinary room thermometer on which 
both scales are marked. The relation between the Celsius and  Fahrenheit 
scales is

   T  F   =   9 _ 5   T  C   + 32° ,  (18.2.2)

where TF is Fahrenheit temperature. Converting between these two scales can be 
done easily by remembering a few corresponding points, such as the freezing and 
boiling points of water (Table 18.2.1). Figure 18.2.1 compares the Kelvin, Celsius, 
and Fahrenheit scales.

We use the letters C and F to distinguish measurements and degrees on the 
two scales. Thus,

0°C = 32°F

means that 0° on the Celsius scale measures the same temperature as 32° on the 
Fahrenheit scale, whereas

5 C° = 9 F°

means that a temperature difference of 5 Celsius degrees (note the degree sym-
bol appears after C) is equivalent to a temperature difference of 9 Fahrenheit 
 degrees.

Figure 18.2.1 The Kelvin, Celsius, and 
 Fahrenheit temperature scales compared.

Triple
point of

water

Absolute
zero

273.16 K 0.01°C 32.02°F

0 K –273.15°C –459.67°F

Table 18.2.1 Some Corresponding Temperatures

Temperature °C °F

Boiling point o f watera 100 212
Normal body temperature 37.0 98.6
Accepted comfort level 20 68
Freezing point of watera 0 32
Zero of Fahrenheit scale ≈ −18 0
Scales coincide −40 −40

aStrictly, the boiling point of water on the Celsius scale is 99.975°C,  
and the freezing point is 0.00°C. Thus, there is slightly less than 100 C°  
between those two points.
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18.3 THERMAL EXPANSION
Learning Objectives 
After reading this module, you should be able to . . .

18.3.1 For one-dimensional thermal expansion, apply 
the relationship between the temperature change 
∆T, the length change ∆L, the initial length L, and 
the coefficient of linear expansion 𝛼.

18.3.2 For two-dimensional thermal expansion, use 
one-dimensional thermal expansion to find the 
change in area.

18.3.3 For three-dimensional thermal expansion, apply 
the relationship between the temperature change 
∆T, the volume change ∆V, the initial volume V, and 
the coefficient of volume expansion 𝛽.

Checkpoint 18.2.1
The figure here shows three 
 linear temperature scales with 
the freezing and boiling points 
of water indicated. (a) Rank the 
 degrees on these scales by size, 
greatest first. (b) Rank the fol-
lowing temperatures, highest 
first: 50°X, 50°W, and 50°Y.

70°X

–20°X

120°W

30°W

90°Y

0°Y

Boiling point

Freezing point

Sample Problem 18.2.1 Conversion between t wo temperature scales

Suppose you come across old scientific notes that describe 
a temperature scale called Z on which the boiling point of 
 water is 65.0°Z and the freezing point is −14.0°Z. To what 
temperature on the Fahrenheit scale would a temperature 
of T = −98.0°Z correspond? Assume that the Z scale is 
linear; that is, the size of a Z degree is the same every-
where on the Z scale.

KEY IDEA

A conversion factor between two (linear) temperature 
scales can be calculated by using two known (benchmark) 
temperatures, such as the boiling and freezing points of 
water. The number of degrees between the known tem-
peratures on one scale is equivalent to the number of 
degrees between them on the other scale.

Calculations: We begin by relating the given temper-
ature T to either known temperature on the Z scale. Since 
T  = −98.0°Z is closer to the freezing point (−14.0°Z) 
than  to the boiling point (65.0°Z), we use the freezing 
point. Then we note that the T we seek is below this point 
by  −14.0°Z −  (−98.0°Z) = 84.0 Z° (Fig. 18.2.2). (Read 
this difference as “84.0 Z degrees.”)

Next, we set up a conversion factor  between the Z 
and  Fahrenheit scales to convert this difference. To do 
so, we use both known temperatures on the Z scale and 

the corresponding temperatures on the Fahrenheit scale. 
On the Z scale, the difference between the boiling and 
freezing points is 65.0°Z − (−14.0°Z) = 79.0 Z°. On the 
Fahrenheit scale, it is  212°F − 32.0°F = 180 F°. Thus, a 
temperature difference of 79.0 Z° is equivalent to a temper-
ature difference of 180 F° (Fig. 18.2.2), and we can use the 
ratio (180 F°)/(79.0 Z°) as our conversion factor.

Now, since T is below the freezing  point by 84.0 Z°, it 
must also be below the freezing point by

  (84.0 Z°)    180 F° _______ 
79.0 Z°

   = 191 F°. 

Because the freezing point is at 32.0°F, this means that

 T = 32.0°F − 191 F° = −159°F. (Answer)

Figure 18.2.2 An unknown temperature scale compared with 
the Fahrenheit temperature scale.

65.0°Z

–14.0°Z

T = –98.0°Z

79.0 Z°

84.0 Z°

Boil

Freeze

212°F

FZ

32°F

T = ?

180 F°

Additional examples, video, and practice available at WileyPLUS
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Key Ideas 
● All objects change size with changes in temperature. 
For a temperature change ∆T, a change ∆L in any 
linear dimension L is given by

∆L = L𝛼 ∆T,

in which 𝛼 is the coefficient of linear expansion.

● The change ∆V in the volume V of a solid or liquid is

∆V = V𝛽 ∆T.

Here 𝛽 = 3𝛼 is the material’s coefficient of volume 
 expansion.

Thermal Expansion
You can often loosen a tight metal jar lid by holding it under a stream of hot 
 water. Both the metal of the lid and the glass of the jar expand as the hot water 
adds energy to their atoms. (With the added energy, the atoms can move a bit 
 farther from one another than usual, against the spring-like interatomic forces 
that hold every solid together.) However, because the atoms in the metal move 
farther apart than those in the glass, the lid expands more than the jar and thus 
is loosened.

Such thermal expansion of materials with an increase in temperature must be 
anticipated in many common situations. When a bridge is subject to large  seasonal 
changes in temperature, for example, sections of the bridge are  separated by 
expansion slots so that the sections have room to expand on hot days without the 
bridge buckling. When a dental cavity is filled, the filling material must have the 
same thermal expansion properties as the surrounding tooth;  otherwise, consum-
ing cold ice cream and then hot coffee would be very painful. When the Concorde 
aircraft (Fig. 18.3.1) was built, the design had to allow for the thermal expansion 
of the fuselage during supersonic flight because of frictional heating by the pass-
ing air. FCP

The thermal expansion properties of some materials can be put to common 
use. Thermometers and thermostats may be based on the differences in expan-
sion between the components of a bimetal strip (Fig. 18.3.2). Also, the familiar 
 liquid-in-glass thermometers are based on the fact that liquids such as mercury 
and alcohol expand to a different (greater) extent than their glass containers.

Linear Expansion
If the temperature of a metal rod of length L is raised by an amount ∆T, its length 
is found to increase by an amount

 ∆L = L𝛼 ∆T, (18.3.1)

in which 𝛼 is a constant called the coefficient of linear expansion. The coefficient 𝛼 
has the unit “per degree” or “per kelvin” and depends on the material. Although 
𝛼 varies somewhat with temperature, for most practical purposes it can be taken 
as constant for a particular material. Table 18.3.1 shows some coefficients of lin-
ear expansion. Note that the unit C° there could be replaced with the unit K.

Hugh Thomas/BWP Media/Getty Images, Inc.Figure 18.3.1 When a Concorde flew 
faster than the speed of sound, ther-
mal expansion due to the rubbing by 
passing air  increased the aircraft’s 
length by about 12.5 cm. (The tem-
perature increased to about 128°C 
at the aircraft nose and about 90°C 
at the tail, and cabin windows were 
noticeably warm to the touch.) 

Figure 18.3.2 (a) A bimetal strip,  consisting of a strip of brass and a strip of steel welded 
 together, at temperature T0. (b) The strip bends as shown at temperatures above this 
 reference temperature. Below the reference temperature the strip bends the other way. 
Many thermostats  operate on this principle, making and breaking an electrical contact 
as the  temperature rises and falls.

Brass

Steel

T = T0

(a)

T  > T0

(b)

Different amounts of
expansion or contraction
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Table 18.3.1 Some Coefficients of 
Linear Expansiona

Substance 𝛼 (10−6/C°)

Ice (at 0°C) 51
Lead 29
Aluminum 23
Brass 19
Copper 17
Concrete 12
Steel 11
Glass (ordinary) 9
Glass (Pyrex) 3.2
Diamond 1.2
Invarb 0.7
Fused quartz 0.5

aRoom temperature values except for 
the listing for ice.
bThis alloy was designed to have a low 
coefficient of expansion. The word is a 
shortened form of “invariable.”
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The thermal expansion of a solid is like photographic enlargement except it 
is in three dimensions. Figure 18.3.3b shows the (exaggerated) thermal expansion 
of a steel ruler. Equation 18.3.1 applies to every linear dimension of the ruler, 
including its edge, thickness, diagonals, and the diameters of the circle etched 
on it and the circular hole cut in it. If the disk cut from that hole originally fits 
snugly in the hole, it will continue to fit snugly if it undergoes the same tempera-
ture  increase as the ruler.

Volume Expansion
If all dimensions of a solid expand with temperature, the volume of that solid 
must also expand. For liquids, volume expansion is the only meaningful expan-
sion parameter. If the temperature of a solid or liquid whose volume is V is 
 increased by an amount ∆T, the increase in volume is found to be

 ∆V = V𝛽 ∆T, (18.3.2)

where 𝛽 is the coefficient of volume expansion of the solid or liquid. The coef-
ficients of volume expansion and linear expansion for a solid are related by

 𝛽 = 3𝛼. (18.3.3)

The most common liquid, water, does not behave like other liquids. Above 
about 4°C, water expands as the temperature rises, as we would  expect. Between 
0 and about 4°C, however, water contracts with increasing temperature. Thus, at 
about 4°C, the density of water passes through a maximum. At all other tempera-
tures, the density of water is less than this maximum value.

This behavior of water is the reason lakes freeze from the top down rather 
than from the bottom up. As water on the surface is cooled from, say, 10°C 
 toward  the freezing point, it becomes denser (“heavier”) than lower water 
and sinks to the bottom. Below 4°C, however, further cooling makes the water 
then on the surface less dense (“lighter”) than the lower water, so it stays on 
the  surface until it freezes. Thus the surface freezes while the lower water is 
still  liquid. If lakes froze from the bottom up, the ice so formed would tend 
not to melt completely during the summer, because it would be insulated by 
the water above. After a few years, many bodies of open water in the temper-
ate zones of Earth would be frozen solid all year round—and aquatic life could 
not exist. FCP

1 2 3 4 5 6 7

1 2 3 4 5 6 7

(b)

Circular
hole

Circle(a)

Figure 18.3.3 The same steel ruler 
at two  different temperatures. 
When it expands, the scale, the 
numbers, the thickness, and the 
diameters of the circle and circu-
lar hole are all increased by the 
same factor. (The expansion has 
been exaggerated for clarity.)

Checkpoint 18.3.1
The figure here shows four rectangular metal plates, with sides  
of L, 2L, or 3L. They are all made of the same material, and their  
temperature is to be increased by the same amount. Rank the  
plates according to the expected  increase in (a) their vertical  
heights and (b) their areas, greatest first. (1) (2) (3) (4)
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Sample Problem 18.3.1 Thermal expansion on the Moon

When Apollo 15 landed on the Moon at the foot of 
the Apennines mountain range, an American flag was 
planted (Fig. 18.3.4). The aluminum, telescoping flagpole 
was 2.0 m long with a coefficient of linear expansion  2.3 ×  
10−5/° C.  At that latitude on the Moon (26.1° N), the tem-
perature varied from 290 K in the day to 110 K in the 
night. What was the change in length of the pole between 
day and night?

KEY IDEA

The length increased as the temperature increased. 

Calculation: We simply use Eq. 18.3.1:

 ΔL = Lα ΔT = (2.0 m)(2.3 × 10−5/ C° )(180 K)

= 8.3 × 10−3 m = 8.3 mm. Figure 18.3.4 Apollo 15.

18.4 ABSORPTION OF HEAT
Learning Objectives 
After reading this module, you should be able to . . .

18.4.1 Identify that thermal energy is associated with 
the random motions of the microscopic bodies in  
an object.

18.4.2 Identify that heat Q is the amount of transferred 
energy (either to or from an object’s thermal energy) 
due to a temperature difference between the object 
and its environment.

18.4.3 Convert energy units between various measure-
ment systems.

18.4.4 Convert between mechanical or electrical energy 
and thermal energy.

18.4.5 For a temperature change ∆T of a substance, 
relate the change to the heat transfer Q and the 
substance’s heat capacity C.

18.4.6 For a temperature change ∆T of a substance, 
relate the change to the heat transfer Q and the 
substance’s specific heat c and mass m.

18.4.7 Identify the three phases of matter.
18.4.8 For a phase change of a substance, relate the 

heat transfer Q, the heat of transformation L, and 
the amount of mass m transformed.

18.4.9 Identify that if a heat transfer Q takes a sub-
stance across a phase-change temperature, the 
transfer must be calculated in steps: (a) a tem-
perature change to reach the phase-change tem-
perature, (b) the phase change, and then (c) any 
temperature change that moves the substance away 
from the phase-change temperature.

Key Ideas 
● Heat Q is energy that is transferred between a sys-
tem and its environment because of a temperature 
difference  between them. It can be measured in joules 
(J), calories (cal), kilocalories (Cal or kcal), or British 
thermal units (Btu), with

1 cal = 3.968 × 10−3 Btu = 4.1868 J.

● If heat Q is absorbed by an object, the object’s tem-
perature change Tf − Ti is related to Q by

Q = C(Tf − Ti),

in which C is the heat capacity of the object. If the 
object has mass m, then

Q = cm(Tf − Ti),

where c is the specific heat of the material making up 
the  object. 

● The molar specific heat of a material is the heat 
capacity per mole, which means per 6.02 × 1023 ele-
mentary units of the material.
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Temperature and Heat
If you take a can of cola from the refrigerator and leave it on the kitchen table, its 
temperature will rise—rapidly at first but then more slowly—until the tempera-
ture of the cola equals that of the room (the two are then in thermal  equilibrium). 
In the same way, the temperature of a cup of hot coffee, left sitting on the table, 
will fall until it also reaches room temperature.

In generalizing this situation, we describe the cola or the coffee as a system 
(with temperature TS) and the relevant parts of the kitchen as the environment 
(with temperature TE) of that system. Our observation is that if TS is not equal to 
TE, then TS will change (TE can also change some) until the two temperatures are 
equal and thus thermal equilibrium is reached.

Such a change in temperature is due to a change in the thermal  energy of 
the system because of a transfer of energy between the system and the system’s 
 environment. (Recall that thermal energy is an  internal energy that consists of 
the kinetic and potential energies associated with the random motions of the 
atoms, molecules, and other microscopic bodies within an object.) The trans-
ferred  energy is called heat and is symbolized Q. Heat is positive when energy is 
transferred to a system’s thermal energy from its environment (we say that heat 
is  absorbed by the system). Heat is negative when energy is transferred from a 
 system’s thermal energy to its environment (we say that heat is released or lost 
by the system).

This transfer of energy is shown in Fig. 18.4.1. In the situation of Fig. 18.4.1a, 
in which TS > TE, energy is transferred from the system to the environment, so Q 
is negative. In Fig. 18.4.1b, in which TS = TE, there is no such transfer, Q is zero, 
and heat is neither released nor absorbed. In Fig. 18.4.1c, in which TS < TE, the 
transfer is to the system from the environment, so Q is positive.

We are led then to this definition of heat:

● Heat absorbed by a material may change the mate-
rial’s physical state—for example, from solid to liquid or 
from liquid to gas. The amount of energy required per unit 
mass to change the state (but not the temperature) of a 
particular  material is its heat of transformation L. Thus,

Q = Lm.

● The heat of vaporization LV is the amount of energy 
per unit mass that must be added to vaporize a liquid 
or that must be removed to condense a gas. 

● The heat of fusion LF is the amount of energy per 
unit mass that must be added to melt a solid or that 
must be removed to freeze a liquid.

 Heat is the energy transferred between a system and its environment because of 
a temperature difference that exists between them.

Language. Recall that energy can also be transferred between a system and 
its environment as work W via a force acting on a system. Heat and work, unlike 
temperature, pressure, and volume, are not intrinsic properties of a system. They 
have meaning only as they describe the transfer of energy into or out of a system. 
Similarly, the phrase “a $600 transfer” has meaning if it describes the transfer to or 
from an account, not what is in the account, because the account holds money, not 
a transfer. 

Units. Before scientists realized that heat is transferred energy, heat was 
measured in terms of its ability to raise the temperature of water. Thus, the 
 calorie (cal) was defined as the amount of heat that would raise the temperature 
of 1 g of  water from 14.5°C to 15.5°C. In the British system, the corresponding 
unit of heat was the British thermal unit (Btu), defined as the amount of heat that 
would raise the temperature of 1 lb of water from 63°F to 64°F.
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Environment

System
TS

Q
TETS >

Environment

System
TS

TETS = Q = 0

Q < 0

TE

TE

Environment

System
TS

Q

TETS <

TE

(a)

(b)

(c)
Q > 0

The system has a
higher temperature,
so ...

... it loses
energy as heat.

The system has the
same temperature,
so ...

... no energy
is transferred
as heat.

The system has a
lower temperature,
so ...

... it gains
energy as
heat.

Figure 18.4.1 If the temperature of a system  exceeds that of its environment as in (a), heat 
Q is lost by the system to the environment until thermal equilibrium (b) is established. 
(c) If the temperature of the system is below that of the environment, heat is absorbed 
by the system until thermal equilibrium is established.

In 1948, the scientific community decided that since heat (like work) is 
 transferred energy, the SI unit for heat should be the one we use for energy—
namely, the joule. The calorie is now defined to be 4.1868 J (exactly), with no refer-
ence to the heating of water. (The “calorie” used in nutrition, sometimes called the 
Calorie (Cal), is really a kilocalorie.) The relations among the various heat units are

 1 cal = 3.968 × 10−3 Btu = 4.1868 J. (18.4.1)

The Absorption of Heat by Solids and Liquids
Heat Capacity
The heat capacity C of an object is the proportionality constant between the heat 
Q that the object absorbs or loses and the resulting temperature change ∆T of 
the object; that is,

 Q = C ∆T = C(Tf  − Ti), (18.4.2)

in which Ti and Tf are the initial and final temperatures of the object. Heat 
 capacity  C has the unit of energy per degree or energy per kelvin. The heat 
 capacity C of, say, a marble slab used in a bun warmer might be 179 cal/C°, which 
we can also write as 179 cal/K or as 749 J/K.

The word “capacity” in this context is really misleading in that it suggests 
analogy with the capacity of a bucket to hold water. That analogy is false, and you 
should not think of the object as “containing” heat or being limited in its ability 
to absorb heat. Heat transfer can proceed without limit as long as the necessary 
temperature difference is maintained. The object may, of course, melt or vapor-
ize during the process.
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Specific Heat
Two objects made of the same material—say, marble—will have heat capacities 
proportional to their masses. It is therefore convenient to define a “heat capacity 
per unit mass” or specific heat c that refers not to an object but to a unit mass of 
the material of which the object is made. Equation 18.4.2 then becomes

 Q = cm ∆T = cm(Tf − Ti). (18.4.3)

Through experiment we would find that although the heat capacity of a particular 
marble slab might be 179 cal/C° (or 749 J/K), the specific heat of marble itself 
(in that slab or in any other marble object) is 0.21 cal/g · C° (or 880 J/kg · K).

From the way the calorie and the British thermal unit were initially defined, 
the specific heat of water is

 c = 1 cal/g · C° = 1 Btu/lb · F° = 4186.8 J/kg · K. (18.4.4)

Table 18.4.1 shows the specific heats of some substances at room temperature. 
Note that the value for water is relatively high. The specific heat of any substance 
actually depends somewhat on temperature, but the values in Table 18.4.1 apply 
reasonably well in a range of temperatures near room temperature.

Table 18.4.1 Some Specific Heats 
and Molar Specific Heats at Room 
Temperature

Specific Heat

Molar  
Specific 

Heat

cal J J

Substance g · K kg · K mol · K

Elemental 
Solids

Lead 0.0305 128 26.5
Tungsten 0.0321 134 24.8
Silver 0.0564 236 25.5
Copper 0.0923 386 24.5
Aluminum 0.215 900 24.4
Other Solids
Brass 0.092 380
Granite 0.19 790
Glass 0.20 840
Ice (−10°C) 0.530 2220
Liquids
Mercury 0.033 140
Ethyl  
alcohol 0.58 2430

Seawater 0.93 3900
Water 1.00 4187

Checkpoint 18.4.1
A certain amount of heat Q will warm 1 g of material A by 3 C° and 1 g of material B 
by 4 C°. Which material has the greater specific heat?

Molar Specific Heat
In many instances the most convenient unit for specifying the amount of a 
 substance is the mole (mol), where

1 mol = 6.02 × 1023 elementary units

of any substance. Thus 1 mol of aluminum means 6.02 × 1023 atoms (the atom is 
the elementary unit), and 1 mol of aluminum oxide means 6.02 × 1023 molecules 
(the molecule is the elementary unit of the compound).

When quantities are expressed in moles, specific heats must also involve moles 
(rather than a mass unit); they are then called molar specific heats. Table 18.4.1 
shows the values for some elemental solids (each consisting of a single  element) 
at room temperature.

An Important Point
In determining and then using the specific heat of any substance, we need to 
know the conditions under which energy is transferred as heat. For solids and 
 liquids, we usually assume that the sample is under constant pressure (usually 
 atmospheric) during the transfer. It is also conceivable that the sample is held at 
constant volume while the heat is absorbed. This means that thermal expansion 
of the sample is prevented by applying external pressure. For solids and liquids, 
this is very hard to arrange experimentally, but the effect can be calculated, and it 
turns out that the specific heats under constant pressure and constant volume for 
any solid or liquid differ usually by no more than a few percent. Gases, as you will 
see, have quite different values for their specific heats under constant-pressure 
conditions and under constant-volume conditions.

Heats of Transformation
When energy is absorbed as heat by a solid or liquid, the temperature of the 
 sample does not necessarily rise. Instead, the sample may change from one phase, 
or state, to another. Matter can exist in three common states: In the solid state, 
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the molecules of a sample are locked into a fairly rigid structure by their mutual 
 attraction. In the liquid state, the molecules have more energy and move about 
more. They may form brief clusters, but the sample does not have a rigid struc-
ture and can flow or settle into a container. In the gas, or vapor, state, the mol-
ecules have even more energy, are free of one another, and can fill up the full 
volume of a container.

Melting. To melt a solid means to change it from the solid state to the liq-
uid state. The process requires energy because the molecules of the solid must 
be freed from their rigid structure. Melting an ice cube to form liquid water is a 
common example. To freeze a liquid to form a solid is the reverse of melting and 
requires that energy be removed from the liquid, so that the molecules can settle 
into a rigid structure.

Vaporizing. To vaporize a liquid means to change it from the liquid state 
to the vapor (gas) state. This process, like melting, requires energy because the 
molecules must be freed from their clusters. Boiling liquid water to transfer it to 
water  vapor (or steam—a gas of individual water molecules) is a common exam-
ple. Condensing a gas to form a liquid is the reverse of vaporizing; it  requires 
that energy be  removed from the gas, so that the molecules can cluster instead of 
 flying away from one another.

The amount of energy per unit mass that must be transferred as heat when a 
sample completely undergoes a phase change is called the heat of  transformation L. 
Thus, when a sample of mass m completely undergoes a phase change, the total 
energy transferred is

 Q = Lm. (18.4.5)

When the phase change is from liquid to gas (then the sample must absorb heat) 
or from gas to liquid (then the sample must release heat), the heat of transfor-
mation is called the heat of vaporization LV. For water at its normal boiling or 
 condensation temperature,

 LV = 539 cal/g = 40.7 kJ/mol = 2256 kJ/kg. (18.4.6)

When the phase change is from solid to liquid (then the sample must absorb heat) 
or from liquid to solid (then the sample must release heat), the heat of transfor-
mation is called the heat of fusion LF. For water at its normal freezing or melting 
temperature,

 LF = 79.5 cal/g = 6.01 kJ/mol = 333 kJ/kg. (18.4.7)

Table 18.4.2 shows the heats of transformation for some substances.

Table 18.4.2 Some Heats of Transformation

Melting Boiling

Substance Melting Point (K) Heat of Fusion LF (kJ/kg) Boiling Point (K) Heat of Vaporization LV (kJ/kg)

Hydrogen 14.0 58.0 20.3 455
Oxygen 54.8 13.9 90.2 213
Mercury 234 11.4 630 296
Water 273 333 373 2256
Lead 601 23.2 2017 858
Silver 1235 105 2323 2336
Copper 1356 207 2868 4730
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Sample Problem 18.4.1 Hot slug in water, coming to equilibrium

A copper slug whose mass mc is 75 g is heated in a labora-
tory oven to a temperature T of 312°C. The slug is then 
dropped into a glass beaker containing a mass mw = 220 g 
of water. The heat capacity Cb of the beaker is 45 cal/K. 
The initial  temperature Ti of the water and the beaker is 
12°C. Assuming that the slug, beaker, and water are an 
isolated  system and the water does not vaporize, find the 
final temperature Tf of the system at thermal equilibrium.

KEY IDEAS

(1) Because the system is isolated, the system’s total energy 
cannot change and only internal transfers of thermal 
energy can occur. (2) Because nothing in the system under-
goes a phase change, the thermal energy transfers can only 
change the temperatures.

Calculations: To relate the transfers to the temperature 
changes, we can use Eqs. 18.4.2 and 18.4.3 to write

 for the water: Qw = cwmw(Tf − Ti); (18.4.8)
 for the beaker: Qb = Cb(Tf − Ti); (18.4.9)
 for the copper: Qc = ccmc(Tf − T). (18.4.10)

Because the  total energy of the system cannot change, the 
sum of these three energy transfers is zero:

 Qw + Qb + Qc = 0. (18.4.11)

Substituting Eqs. 18.4.8 through 18.4.10 into Eq. 18.4.11 
yields

cwmw(Tf − Ti) + Cb(Tf − Ti) + ccmc(Tf − T) = 0. (18.4.12)

Temperatures are contained in Eq. 18.4.12 only as differ-
ences. Thus, because the differences on the Celsius and 
Kelvin scales are identical, we can use either of those 
scales in this equation. Solving it for Tf, we obtain

  T  f   =   
 c  c   m  c  T +  C  b   T  i   +  c  w   m  w   T  i    _____________________  

 c  w   m  w   +  C  b   +  c  c   m  c  
  . 

Using Celsius temperatures and taking values for cc and 
cw from Table 18.4.1, we find the numerator to be

(0.0923 cal/g · K)(75 g)(312°C) + (45 cal/K)(12°C) 

 + (1.00 cal/g · K)(220 g)(12°C) = 5339.8 cal,

and the denominator to be

(1.00 cal/g · K)(220 g) + 45 cal/K 

 + (0.0923 cal/g · K)(75 g) = 271.9 cal/C°.

We then have

    T  f   =   5339.8 cal ___________ 
271.9 cal / C°

   = 19.6° C ≈ 20° C.     (  Answer )     

From the given data you can show that

 Qw ≈ 1670 cal,    Qb ≈ 342 cal,    Qc ≈ −2020 cal.

Apart from rounding errors, the algebraic sum of these 
three heat transfers is indeed zero, as required by the con-
servation of energy (Eq. 18.4.11).

Sample Problem 18.4.2 Heat to change temperature and state

(a) How much heat must be absorbed by ice of mass  
m = 720 g at −10°C to take it to the liquid state at 15°C?

KEY IDEAS

The heating process is accomplished in three steps: 
(1)  The ice cannot melt at a temperature below the 
freezing point — so initially, any energy transferred to 
the ice as heat can only increase the temperature of the 
ice, until 0°C is reached. (2) The temperature then cannot 
increase until all the ice melts—so any energy transferred 
to the ice as heat now can only change ice to liquid water, 
until all the ice melts. (3) Now the energy transferred to 
the liquid water as heat can only increase the temperature 
of the liquid water.

Warming the ice: The heat Q1 needed to take the ice from 
the initial Ti = −10°C to the final Tf = 0°C (so that the ice 
can then melt) is given by Eq. 18.4.3 (Q = cm ∆T). Using 
the specific heat of ice cice in Table 18.4.1 gives us

 Q1 = cicem(Tf − Ti)

 = (2220 J/kg · K)(0.720 kg)[0°C − (−10°C)]

 = 15 984 J ≈ 15.98 kJ.

Melting the ice: The heat Q2 needed to melt all the ice is 
given by Eq. 18.4.5 (Q = Lm). Here L is the heat of  fusion 
LF, with the value given in Eq. 18.4.7 and Table 18.4.2. 
We find

Q2 = LF m = (333 kJ/kg)(0.720 kg) ≈ 239.8 kJ.

Warming the liquid: The heat Q3 needed to increase the 
temperature of the water from the initial value Ti = 0°C 
to the final value Tf = 15°C is given by Eq. 18.4.3 (with the 
specific heat of liquid water cliq):

 Q3 = cliqm(Tf − Ti)

 = (4186.8 J/kg · K)(0.720 kg)(15°C − 0°C)

 = 45 217 J ≈ 45.22 kJ.

c18TemperatureHeatAndTheFirstLaw.indd   555 05/05/21   8:15 PM



556 CHAPTER 18 TEmPERATuRE, HEAT, And THE FiRsT LAw oF THERmodynAmiCs

Total: The total required heat Qtot is the sum of the 
amounts  required in the three steps:
 Qtot = Q1 + Q2 + Q3

 = 15.98 kJ + 239.8 kJ + 45.22 kJ
 ≈ 300 kJ. (Answer)

Note that most of the energy goes into melting the ice 
rather than raising the temperature.

(b) If we supply the ice with a total energy of only 210 kJ (as 
heat), what are the final state and temperature of the  water?

KEY IDEA

From step 1, we know that 15.98 kJ is needed to raise 
the temperatu      re of the ice to the melting point. The 
 remaining heat Qrem is then 210 kJ − 15.98 kJ, or about 

194 kJ. From step 2, we can see that this amount of heat 
is  insufficient to melt all the ice. Because the melting of 
the ice is incomplete, we must end up with a mixture of 
ice and liquid; the temperature of the mixture must be the 
freezing point, 0°C.

Calculations: We can find the mass m of ice that is melted 
by the available energy Qrem by using Eq. 18.4.5 with LF:

 m =   
 Q  rem  

 _____  L  F     =   194 kJ _________ 
333 kJ / kg

   = 0.583 kg ≈ 580 g. 

Thus, the mass of the ice that remains is 720 g − 580 g, or 
140 g, and we have

580 g water  and  140 g ice,  at 0°C.     (Answer)   

18.5 THE FIRST LAW OF THERMODYNAMICS
Learning Objectives 
After reading this module, you should be able to . . .

18.5.1 If an enclosed gas expands or contracts, cal-
culate the work W done by the gas by integrating 
the gas pressure with respect to the volume of the 
enclosure.

18.5.2 Identify the algebraic sign of work W associated 
with expansion and contraction of a gas.

18.5.3 Given a p-V graph of pressure versus volume for 
a process, identify the starting point (the initial state) 
and the final point (the final state) and calculate the 
work by using graphical integration.

18.5.4 On a p-V graph of pressure versus volume for a 
gas, identify the algebraic sign of the work associated 
with a right-going process and a left-going process.

18.5.5 Apply the first law of thermodynamics to relate 
the change in the internal energy ∆Eint of a gas, the 
energy Q transferred as heat to or from the gas, and 
the work W done on or by the gas.

18.5.6 Identify the algebraic sign of a heat transfer 
Q that is associated with a transfer to a gas and a 
transfer from the gas.

18.5.7 Identify that the internal energy ∆Eint of a gas 
tends to increase if the heat transfer is to the gas, 
and it tends to decrease if the gas does work on its 
environment.

18.5.8 Identify that in an adiabatic process with a gas, 
there is no heat transfer Q with the environment.

18.5.9 Identify that in a constant-volume process with 
a gas, there is no work W done by the gas.

18.5.10 Identify that in a cyclical process with a gas, 
there is no net change in the internal energy ∆Eint.

18.5.11 Identify that in a free expansion with a gas, the 
heat transfer Q, work done W, and change in inter-
nal energy ∆Eint are each zero.

Key Ideas 
● A gas may exchange energy with its surroundings 
through work. The amount of work W done by a gas as 
it expands or contracts from an initial volume Vi to a 
final volume Vf is given by

 W =   
 
     dW  =   

 v  i  
  

 v  f  
  p dV.   

The integration is necessary because the pressure p 
may vary during the volume change.

● The principle of conser vation of energy for a thermo-
dynamic process is expressed in the first law of ther-
modynamics, which may assume either of the forms

 ∆Eint = Eint, f − Eint, i = Q − W   (first law)

or dEint = dQ − dW   (first law).

Additional examples, video, and practice available at WileyPLUS
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Eint represents the internal energy of the material, which 
 depends only on the material’s state (temperature, pres-
sure, and volume). Q represents the energy exchanged 
as heat  between the system and its surroundings; Q is 
positive if the system absorbs heat and negative if the 
system loses heat. W is the work done by the system; 
W is positive if the system  expands against an external 
force from the surroundings and negative if the system 
contracts because of an external force. 

● Q and W are path dependent; ∆Eint is path 
independent.

● The first law of thermodynamics finds application in 
several special cases:

 adiabatic processes: Q = 0,  ∆Eint = −W

 constant-volume processes: W = 0,  ∆Eint = Q

 cyclical processes: ∆Eint = 0,  Q = W

 free expansions: Q = W = ∆Eint = 0

A Closer Look at Heat and Work
Here we look in some detail at how energy can be transferred as heat and work 
between a system and its environment. Let us take as our system a gas confined to 
a cylinder with a movable piston, as in Fig. 18.5.1. The upward force on the piston 
due to the pressure of the confined gas is equal to the weight of lead shot loaded 
onto the top of the piston. The walls of the cylinder are made of insulating mate-
rial that does not allow any transfer of energy as heat. The bottom of the cylinder 
rests on a reservoir for thermal energy, a thermal reservoir (perhaps a hot plate) 
whose temperature T you can control by turning a knob.

The system (the gas) starts from an initial state i, described by a pressure 
pi, a volume Vi, and a temperature Ti. You want to change the system to a final 
state f, described by a pressure pf, a volume Vf, and a temperature Tf. The proce-
dure by which you change the system from its initial state to its final state is called 
a thermodynamic process. During such a process, energy may be transferred into 
the system from the thermal reservoir (positive heat) or vice versa (negative 
heat). Also, work can be done by the system to raise the loaded piston (positive 
work) or lower it (negative work). We assume that all such changes occur slowly, 
with the result that the system is always in (approximate) thermal equilibrium 
(every part is always in thermal equilibrium).

Suppose that you remove a few lead shot from the piston of Fig. 18.5.1, 
 allowing the gas to push the piston and remaining shot upward through a 
dif ferential displacement  d   s →    with an upward force    F 

→
   . Since the displace-

ment is tiny, we can assume that    F 
→

    is constant during the displacement. 
Then    F 

→
    has a magnitude that is equal to pA, where p is the pressure of the 

gas and A is the face area of the piston. The differential work dW done by 
the gas during the displacement is

dW =    F 
→

    ·  d   s →    = (pA)(ds) = p(A ds)

  = p dV, (18.5.1)

in which dV is the differential change in the volume of the gas due to the 
movement of the piston. When you have removed enough shot to allow 
the gas to change its volume from Vi to Vf, the total work done by the 
gas is

   W =   
 
       dW =   

 V  i  
  

 V  f  
  p dV .   (18.5.2)

During the volume change, the pressure and temperature may also change. 
To evaluate Eq. 18.5.2 directly, we would need to know how pressure var-
ies with volume for the actual process by which the system changes from 
state i to state f.

One Path. There are actually many ways to take the gas from state i 
to state f. One way is shown in Fig. 18.5.2a, which is a plot of the pressure 

W

Insulation

Thermal reservoir
T

Control knob

Q

Liquid water

Steam

Figure 18.5.1 A gas is confined to a cyl-
inder with a movable piston. Heat Q can 
be added to or withdrawn from the gas 
by regulating the temperature T of the 
adjustable thermal reservoir. Work W can 
be done by the gas by raising or lowering 
the piston.

c18TemperatureHeatAndTheFirstLaw.indd   557 05/05/21   8:15 PM



558 CHAPTER 18 TEmPERATuRE, HEAT, And THE FiRsT LAw oF THERmodynAmiCs

of the gas versus its  volume and which is called a p-V diagram. In Fig. 18.5.2a, the 
curve indicates that the pressure decreases as the volume increases. The integral 
in Eq. 18.5.2 (and thus the work W done by the gas) is represented by the shaded 
area under the curve between points i and f. Regardless of what exactly we do 
to take the gas along the curve, that work is positive, due to the fact that the gas 
increases its volume by forcing the  piston upward.

Another Path. Another way to get from state i to state f is shown in Fig. 
18.5.2b. There the change takes place in two steps—the first from state i to state 
a, and the second from state a to state f.

Step ia of this process is carried out at constant pressure, which means 
that you leave undisturbed the lead shot that ride on top of the piston in Fig. 
18.5.1. You cause the volume to increase (from Vi to Vf) by slowly turning up 
the temperature control knob, raising the temperature of the gas to some higher 
value Ta. (Increasing the temperature increases the force from the gas on the 
piston, moving it upward.) During this step, positive work is done by the expand-
ing gas (to lift the loaded piston) and heat is absorbed by the system from the 
thermal reservoir (in response to the arbitrarily small temperature differences 
that you create as you turn up the temperature). This heat is positive because it 
is added to the system.

Step af of the process of Fig. 18.5.2b is carried out at constant volume, so you 
must wedge the piston, preventing it from moving. Then as you use the control 

Figure 18.5.2 (a) The shaded area represents the work W done by a system as it goes 
from an initial state i to a final state f . Work W is positive because the system’s volume 
 increases. (b) W is still positive, but now greater. (c) W is still positive, but now smaller. 
(d) W can be even smaller (path icdf ) or larger (path ighf). (e) Here the system goes 
from state f to state i as the gas is compressed to less volume by an external force. The 
work W done by the system is now negative. ( f ) The net work Wnet done by the system 
during a complete cycle is represented by the shaded area.
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We can control how
much work it does.

Moving from f to i, 
it does negative work.

Cycling clockwise
yields a positive net
work.

Gas moves from i to f,
doing positive work.

It still goes from i to f,
but now it does more
work.

It still goes from i to f,
but now it does less
work.

A
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knob to decrease the temperature, you find that the pressure drops from pa to its 
 final value pf. During this step, heat is lost by the system to the thermal  reservoir.

For the overall process iaf, the work W, which is positive and is carried out 
only during step ia, is represented by the shaded area under the curve. Energy is 
transferred as heat during both steps ia and af, with a net energy transfer Q.

Reversed Steps. Figure 18.5.2c shows a process in which the previous two 
steps are carried out in reverse order. The work W in this case is smaller than 
for Fig. 18.5.2b, as is the net heat absorbed. Figure 18.5.2d suggests that you can 
make the work done by the gas as small as you want (by following a path like 
icdf ) or as large as you want (by following a path like ighf ).

To sum up: A system can be taken from a given initial state to a given final 
state by an infinite number of processes. Heat may or may not be involved, and 
in general, the work W and the heat Q will have different values for different 
processes. We say that heat and work are path-dependent quantities.

Negative Work. Figure 18.5.2e shows an example in which negative work is 
done by a system as some external force compresses the system, reducing its vol-
ume. The absolute value of the work done is still equal to the area beneath the 
curve, but because the gas is compressed, the work done by the gas is negative.

Cycle. Figure 18.5.2f shows a thermodynamic cycle in which the system 
is taken from some initial state i to some other state f and then back to i. The 
net work done by the system during the cycle is the sum of the positive work 
done during the  expansion and the negative work done during the compression. 
In  Fig.  18.5.2f, the net work is positive because the area under the expansion 
curve (i to f ) is greater than the area under the compression curve ( f to i).

Checkpoint 18.5.1
The p-V diagram here shows six curved paths 
(connected by vertical paths) that can be followed 
by a gas. Which two of the curved paths should 
be part of a closed cycle (those curved paths plus 
connecting vertical paths) if the net work done by 
the gas during the cycle is to be at its maximum 
positive value?

p

V

b

d

f

a

c

e

The First Law of Thermodynamics
You have just seen that when a system changes from a given initial state to a 
given final state, both the work W and the heat Q depend on the nature of the 
process. Experimentally, however, we find a surprising thing. The quantity Q − W 
is the same for all processes. It depends only on the initial and final states and 
does not depend at all on how the system gets from one to the other. All other 
combinations of Q and W, including Q alone, W alone, Q + W, and Q − 2W, are 
path dependent; only the quantity Q − W is not.

The quantity Q − W must represent a change in some intrinsic property of 
the system. We call this property the internal energy Eint and we write

 ∆Eint = Eint,f − Eint,i = Q − W   (first law). (18.5.3)

Equation 18.5.3 is the first law of thermodynamics. If the thermodynamic system 
undergoes only a differential change, we can write the first law as*

 dEint = dQ − dW   (first law). (18.5.4)

*Here dQ and dW, unlike dEint, are not true differentials; that is, there are no such functions as 
Q(p, V) and W(p, V) that depend only on the state of the system. The quantities dQ and dW are 
called inexact differentials and are usually represented by the symbols d̄Q and d̄W. For our purposes, 
we can treat them simply as infinitesimally small energy transfers.
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In Chapter 8, we discussed the principle of energy conservation as it applies 
to isolated systems—that is, to systems in which no energy enters or leaves the 
system. The first law of thermodynamics is an extension of that principle to 
 systems that are not isolated. In such cases, energy may be transferred into or out 
of the system as either work W or heat Q. In our statement of the first law of ther-
modynamics above, we assume that there are no changes in the kinetic  energy or 
the potential energy of the system as a whole; that is, ∆K = ∆U = 0.

Rules. Before this chapter, the term work and the symbol W always meant 
the work done on a system. However, starting with Eq. 18.5.1 and continuing 
through the next two chapters about thermodynamics, we focus on the work done 
by a system, such as the gas in Fig. 18.5.1.

The work done on a system is always the negative of the work done by the 
system, so if we rewrite Eq. 18.5.3 in terms of the work Won done on the system, 
we have ∆Eint = Q + Won. This tells us the following: The internal energy of a 
 system tends to increase if heat is absorbed by the system or if positive work is 
done on the system. Conversely, the internal energy tends to decrease if heat is 
lost by the system or if negative work is done on the system.

The internal energy Eint of a system tends to increase if energy is added as 
heat Q and tends to decrease if energy is lost as work W done by the system.

Checkpoint 18.5.2
The figure here shows four paths on a p-V diagram 
along which a gas can be taken from state i to state f. 
Rank the paths according to (a) the change ∆Eint in 
the internal energy of the gas, (b) the work W done 
by the gas, and (c) the magnitude of the energy trans-
ferred as heat Q between the gas and its environ-
ment, greatest first.

i

f

V

p

1

2

3

4

 Some Special Cases of the First Law of 
Thermodynamics
Here are four thermodynamic processes as summarized in Table 18.5.1.

1. Adiabatic processes. An adiabatic process is one that occurs so rapidly or 
 occurs in a system that is so well insulated that no transfer of energy as heat 
 occurs between the system and its environment. Putting Q = 0 in the first law 
(Eq. 18.5.3) yields

 ∆Eint = −W   (adiabatic process). (18.5.5)

Table 18.5.1 The First Law of Thermodynamics: Four Special Cases

The Law: ∆Eint = Q − W (Eq. 18.5.3)

Process Restriction Consequence

Adiabatic Q = 0 ∆Eint = −W
Constant volume W = 0 ∆Eint = Q
Closed cycle ∆Eint = 0 Q = W
Free expansion Q = W = 0 ∆Eint = 0
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This tells us that if work is done by the system (that is, if W is positive), 
the  internal energy of the system decreases by the amount of work. Con-
versely, if work is done on the system (that is, if W is negative), the inter-
nal energy of the system increases by that amount.

Figure 18.5.3 shows an idealized adiabatic process. Heat cannot enter 
or leave the system because of the insulation. Thus, the only way energy 
can be transferred between the system and its environment is by work. 
If we remove shot from the piston and allow the gas to expand, the work 
done by the system (the gas) is positive and the internal energy of the gas 
decreases. If, instead, we add shot and compress the gas, the work done 
by the system is negative and the internal energy of the gas increases.

2. Constant-volume processes. If the volume of a system (such as a gas) is 
held constant, that system can do no work. Putting W = 0 in the first law 
(Eq. 18.5.3) yields

 ∆Eint = Q   (constant-volume process). (18.5.6)

Thus, if heat is absorbed by a system (that is, if Q is positive), the internal 
 energy of the system increases. Conversely, if heat is lost during the process 
(that is, if Q is negative), the internal energy of the system must decrease.

3. Cyclical processes. There are processes in which, after certain inter-
changes of heat and work, the system is restored to its initial state. In that 
case, no intrinsic property of the system—including its internal energy—
can possibly change. Putting ∆Eint = 0 in the first law (Eq. 18.5.3) yields

 Q = W   (cyclical process). (18.5.7)

Thus, the net work done during the process must exactly equal the net amount 
of energy transferred as heat; the store of internal energy of the system  remains 
unchanged. Cyclical processes form a closed loop on a p-V plot, as shown in 
Fig. 18.5.2f. We discuss such processes in detail in Chapter 20.

4. Free expansions. These are adiabatic processes in which no transfer of heat 
occurs between the system and its environment and no work is done on or by 
the system. Thus, Q = W = 0, and the first law requires that

 ∆Eint = 0   (free expansion). (18.5.8)

Figure 18.5.4 shows how such an expansion can be carried out. A gas, which is 
in thermal equilibrium within itself, is initially confined by a closed stopcock to 
one half of an insulated double chamber; the other half is evacuated. The stop-
cock is opened, and the gas expands freely to fill both halves of the chamber. 
No heat is transferred to or from the gas because of the insulation. No work is 
done by the gas because it rushes into a vacuum and thus does not meet any 
pressure.

A free expansion differs from all other processes we have considered 
 because it cannot be done slowly and in a controlled way. As a result, at any 
given instant during the sudden expansion, the gas is not in thermal equilib-
rium and its pressure is not uniform. Thus, although we can plot the initial and 
final states on a p-V diagram, we cannot plot the expansion itself.

Figure 18.5.4 The initial stage of a 
free-expansion process. After the 
stopcock is opened, the gas fills both 
chambers and eventually reaches an 
equilibrium state.

Vacuum

Insulation

Stopcock

Checkpoint 18.5.3
For one complete cycle as shown in the p-V diagram here, 
are (a) ∆Eint for the gas and (b) the net energy transferred 
as heat Q positive, negative, or zero?

p

V

Figure 18.5.3 An adiabatic expansion can 
be carried out by slowly removing lead 
shot from the top of the piston. Adding 
lead shot reverses the process at any stage.

Lead shot

W

Insulation

We slowly remove lead
shot, allowing an expansion
without any heat transfer.
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  KEY IDEA

The change in the  system’s internal energy is related to 
the heat (here, this is  energy transferred into the system) 
and the work (here, this is energy transferred out of the 
system) by the first law of thermodynamics (Eq. 18.5.3). 

Calculation: We write the first law as

∆Eint = Q − W = 2256 kJ − 169 kJ

 ≈ 2090 kJ = 2.09 MJ. (Answer)

This quantity is positive, indicating that the internal 
energy of the system has increased during the boiling 
process. The added  energy goes into separating the H2O 
molecules, which strongly attract one another in the liq-
uid state. We see that, when water is boiled, about 7.5% 
(= 169 kJ/2260 kJ) of the heat goes into the work of push-
ing back the atmo sphere. The rest of the heat goes into 
the internal energy of the system.

Let 1.00 kg of liquid water at 100°C be converted to steam 
at 100°C by boiling at standard atmospheric pressure 
(which is 1.00 atm or 1.01 × 105 Pa) in the arrangement of 
Fig. 18.5.5. The volume of that water changes from an ini-
tial value of 1.00 × 10−3 m3 as a liquid to 1.671 m3 as steam.

(a) How much work is done by the system during this 
process?

KEY IDEAS 

(1) The system must do positive work because the volume 
increases. (2) We calculate the work W done by integrat-
ing the pressure with respect to the volume (Eq. 18.5.2).

Calculation: Because here the pressure is constant at 
1.01 × 105 Pa, we can take p outside the integral. Thus,

 W =   
 V  i  

  
 V  f  

  p dV  = p  
 V  i  

  
 V  f  

  dV  = p ( V  f   −  V  i  ) 

=  ( 1.01 × 10  5  Pa)  (  1.671 m  3  − 1.00 × 10  
−3

  m  3 )

  =   1.69 × 10   5  J = 169 kJ. 

(b) How much energy is transferred as heat during the 
process?

  KEY IDEA

Because the heat causes only a phase change and not 
a change in temperature, it is given fully by Eq. 18.4.5 
(Q = Lm). 

Calculation: Because the change is from  liquid to gaseous 
phase, L is the heat of vaporization LV, with the value 
given in Eq. 18.4.6 and Table 18.4.2. We find

Q = LVm = (2256 kJ/kg)(1.00 kg)

 = 2256 kJ ≈ 2260 kJ. (Answer)

(c) What is the change in the system’s internal energy dur-
ing the process?

(Answer)

Sample Problem 18.5.1 First law of thermodynamics:  work, heat, internal energy change

18.6 HEAT TRANSFER MECHANISMS
Learning Objectives 
After reading this module, you should be able to . . .

18.6.1 For thermal conduction through a layer, apply 
the relationship between the energy-transfer rate 
Pcond and the layer’s area A, thermal conductiv-
ity k, thickness L, and temperature difference ∆T 
(between its two sides).

18.6.2 For a composite slab (two or more layers) that 
has reached the steady state in which temperatures 
are no longer changing, identify that (by the con-
servation of  energy) the rates of thermal conduction 
Pcond through the  layers must be equal.

Lead shot

W

Insulation

Thermal reservoir
T

Control knob

Q

Liquid water

Steam

Figure 18.5.5 Water boiling at constant pressure. Energy is 
transferred from the thermal reservoir as heat until the liquid 
water has changed completely into steam. Work is done by the 
expanding gas as it lifts the loaded piston.

Additional examples, video, and practice available at WileyPLUS
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18.6.3 For thermal conduction through a layer, apply 
the  relationship between thermal resistance R, thick-
ness L, and thermal conductivity k.

18.6.4 Identify that thermal energy can be transferred 
by convection, in which a warmer fluid (gas or liquid) 
tends to rise in a cooler fluid.

18.6.5 In the emission of thermal radiation by an 
object, apply the relationship between the energy-
transfer rate Prad and the object’s surface area A, 

emissivity ε, and surface temperature T  
(in kelvins).

18.6.6 In the absorption of thermal radiation by an object, 
 apply the relationship between the energy-transfer rate 
Pabs and the object’s surface area A and emissivity ε, 
and the environmental temperature T (in kelvins).

18.6.7 Calculate the net energy-transfer rate Pnet of 
an object emitting radiation to its environment and 
absorbing radiation from that environment.

Key Ideas 
● The rate Pcond at which energy is conducted through 
a slab for which one face is maintained at the higher 
temperature TH and the other face is maintained at the 
lower temperature TC is

  P  cond   =   
Q

 __ t   = kA   
 T  H   −  T  C  

 ________ 
L

  . 

Here each face of the slab has area A, the length of the 
slab (the distance between the faces) is L, and k is the 
thermal conductivity of the material.

● Convection occurs when temperature differences 
cause an energy transfer by motion within a fluid. 

● Radiation is an  energy transfer via the emission of 
electromagnetic energy. The rate Prad at which an 
object emits  energy via thermal radiation is

Prad = σεAT4,

where σ (= 5.6704 × 10−8 W/m2 ·K4) is the Stefan–  
Boltz mann constant, ε is the emissivity of the object’s 
surface, A is its surface area, and T is its surface temper-
ature (in kelvins). The rate Pabs at which an object absorbs 
energy via thermal radiation from its environment, which 
is at the uniform temperature Tenv (in kelvins), is

Pabs = σεAT4
env.

Heat Transfer Mechanisms
We have discussed the transfer of energy as heat between a system and its 
 en vironment, but we have not yet described how that transfer takes place. There 
are three transfer mechanisms: conduction, convection, and radiation. Let’s next 
examine these mechanisms in turn.

Conduction
If you leave the end of a metal poker in a fire for enough time, its handle will get 
hot. Energy is transferred from the fire to the handle by (thermal) conduction 
along the length of the poker. The vibration amplitudes of the atoms and elec-
trons of the metal at the fire end of the poker become relatively large because 
of the high temperature of their environment. These increased vibrational ampli-
tudes, and thus the associated energy, are passed along the poker, from atom to 
atom, during collisions between adjacent atoms. In this way, a region of rising 
temperature extends itself along the poker to the handle.

Consider a slab of face area A and thickness L, whose faces are maintained at 
temperatures TH and TC by a hot reservoir and a cold reservoir, as in Fig. 18.6.1. 
Let Q be the energy that is transferred as heat through the slab, from its hot face 
to its cold face, in time t. Experiment shows that the conduction rate Pcond (the 
amount of energy transferred per unit time) is

    P  cond   =   
Q

 ___ t   = kA   
 T  H   −  T  C  

 _________ 
L

  ,   (18.6.1)

in which k, called the thermal conductivity, is a constant that depends on the 
 material of which the slab is made. A material that readily transfers energy by 
conduction is a good thermal conductor and has a high value of k. Table 18.6.1 
gives the thermal conductivities of some common metals, gases, and building 
materials.

Figure 18.6.1 Thermal conduction. 
Energy is transferred as heat from 
a reservoir at  temperature TH to a 
cooler reservoir at temperature TC 
through a conducting slab of thick-
ness L and thermal conductivity k.

k

Hot reservoir
at TH

Cold reservoir
at TC

L

TCTH >

Q

We assume a steady
transfer of energy as heat.
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Thermal Resistance to Conduction (R-Value)
If you are interested in insulating your house or in keeping cola cans cold on a 
picnic, you are more concerned with poor heat conductors than with good ones. 
For this reason, the concept of thermal resistance R has been introduced into 
 engineering practice. The R-value of a slab of thickness L is defined as

   R =   L __ 
k

  .   (18.6.2)

The lower the thermal conductivity of the material of which a slab is made, the 
higher the R-value of the slab; so something that has a high R-value is a poor 
thermal conductor and thus a good thermal insulator.

Note that R is a property attributed to a slab of a specified thickness, not to 
a material. The commonly used unit for R (which, in the United States at least, is 
 almost never stated) is the square foot–Fahrenheit degree–hour per British ther-
mal unit (ft2 · F° · h/Btu). (Now you know why the unit is rarely stated.)

Conduction Through a Composite Slab
Figure 18.6.2 shows a composite slab, consisting of two materials having different 
thicknesses L1 and L2 and different thermal conductivities k1 and k2. The tem-
peratures of the outer surfaces of the slab are TH and TC. Each face of the slab has 
area A. Let us derive an expression for the conduction rate through the slab  under 
the assumption that the transfer is a steady-state process; that is, the temperatures 
everywhere in the slab and the rate of energy transfer do not change with time.

In the steady state, the conduction rates through the two materials must be 
equal. This is the same as saying that the energy transferred through one mate rial 
in a certain time must be equal to that transferred through the other  material in 
the same time. If this were not true, temperatures in the slab would be changing 
and we would not have a steady-state situation. Letting TX be the temperature of 
the interface between the two materials, we can now use Eq. 18.6.1 to write

    P  cond   =   
 k  2  A  (   T  H   −  T  X   )   

  _______________  L  2  
   =   

 k  1  A  (   T  X   −  T  C   )   
  _______________  L  1  

  .   (18.6.3)

Solving Eq. 18.6.3 for TX yields, after a little algebra,

    T  X   =   
 k  1   L  2   T  C   +  k  2   L  1   T  H  

  ___________________  
 k  1   L  2   +  k  2   L  1  

  .   (18.6.4)

Substituting this expression for TX into either equality of Eq. 18.6.3 yields

    P  cond   =   
A( T  H   −  T  C  )

  _______________  
 L  1   /  k  1   +  L  2   /  k  2  

  .   (18.6.5)

We can extend Eq. 18.6.5 to apply to any number n of materials making 
up a slab:

    P  cond   =   
A  (   T  H   −  T  C   )   

 _____________ ∑   (  L / k )   
  .   (18.6.6)

The summation sign in the denominator tells us to add the values of L/k for 
all the materials.

Table 18.6.1 Some Thermal 
Conductivities

Substance k (W/m · K)

Metals
Stainless steel 14
Lead 35
Iron 67
Brass 109
Aluminum 235
Copper 401
Silver 428

Gases
Air (dry) 0.026
Helium 0.15
Hydrogen 0.18

Building Materials
Polyurethane foam 0.024
Rock wool 0.043
Fiberglass 0.048
White pine 0.11
Window glass 1.0

Figure 18.6.2 Heat is transferred at a steady 
rate through a composite slab made up of 
two different materials with different thick-
nesses and different thermal conductivities. 
The steady-state temperature at the  interface 
of the two materials is TX.

Cold reservoir
at TC

Hot reservoir
at TH

k1

L1

Q

TX

k2

L2

The energy 
transfer per
second here ...

... equals the 
energy transfer 
per second here.

Checkpoint 18.6.1
The figure shows the face and  interface temperatures of a composite slab 
consisting of four  materials, of identical thicknesses, through which the heat 
transfer is steady. Rank the materials according to their thermal conductivi-
ties, greatest first.

25°C 15°C 10°C –5.0°C –10°C

a b c d
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Convection
When you look at the flame of a candle or a match, you are watching thermal 
 energy being transported upward by convection. Such energy transfer occurs 
when a fluid, such as air or water, comes in contact with an object whose tem-
perature is higher than that of the fluid. The temperature of the part of the fluid 
that is in contact with the hot object increases, and (in most cases) that fluid 
 expands and thus becomes less dense. Because this expanded fluid is now lighter 
than the surrounding cooler fluid, buoyant forces cause it to rise. Some of the 
 surrounding cooler fluid then flows so as to take the place of the rising warmer 
fluid, and the process can then continue.

Convection is part of many natural processes. Atmospheric convection plays a 
fundamental role in determining global climate patterns and daily weather variations. 
Glider pilots and birds alike seek rising thermals (convection currents of warm air) 
that keep them aloft. Huge energy transfers take place within the oceans by the same 
process. Finally, energy is transported to the surface of the Sun from the nuclear fur-
nace at its core by enormous cells of convection, in which hot gas rises to the surface 
along the cell core and cooler gas around the core descends below the surface.

Radiation
The third method by which an object and its environment can exchange energy 
as heat is via electromagnetic waves (visible light is one kind of electromagnetic 
wave). Energy transferred in this way is often called thermal radiation to distin-
guish it from electromagnetic signals (as in, say, television broadcasts) and from 
nuclear radiation (energy and particles emitted by nuclei). (To  “radiate” gener-
ally means to emit.) When you stand in front of a big fire, you are warmed by 
 absorbing thermal radiation from the fire; that is, your thermal energy  increases 
as the fire’s thermal energy decreases. No medium is required for heat transfer 
via radiation—the radiation can travel through vacuum from, say, the Sun to you.

The rate Prad at which an object emits energy via electromagnetic radiation 
depends on the object’s surface area A and the temperature T of that area in 
kelvins and is given by

 Prad = σεAT 4. (18.6.7)

Here σ = 5.6704 × 10−8 W/m2 · K4 is called the Stefan–Boltzmann constant after Josef 
Stefan (who discovered Eq. 18.6.7 experimentally in 1879) and Ludwig Boltzmann 
(who derived it theoretically soon after). The symbol ε represents the emissivity of 
the object’s surface, which has a value between 0 and 1, depending on the compo-
sition of the surface. A surface with the maximum emissivity of 1.0 is said to be a 
blackbody radiator, but such a surface is an ideal limit and does not occur in nature. 
Note again that the temperature in Eq. 18.6.7 must be in kelvins so that a tempera-
ture of absolute zero corresponds to no radiation. Note also that every object whose 
 temperature is above 0 K—including you—emits thermal radiation. (See Fig. 18.6.3.)

The rate Pabs at which an object absorbs energy via thermal radiation from 
its environment, which we take to be at uniform temperature Tenv (in kelvins), is

 Pabs = σεAT 4env. (18.6.8)

The emissivity ε in Eq. 18.6.8 is the same as that in Eq. 18.6.7. An idealized black-
body radiator, with ε = 1, will absorb all the radiated energy it intercepts (rather 
than sending a portion back away from itself through reflection or scattering).

Because an object both emits and absorbs thermal radiation, its net rate Pnet 
of energy exchange due to thermal radiation is

 Pnet = Pabs − Prad = σεA(T 4env − T 4). (18.6.9)

Figure 18.6.3 A false-color thermo-
gram reveals the rate at which energy 
is radiated by a cat. The rate is color-
coded, with white and red indicating 
the greatest radiation rate. The nose 
is cool. 

Edward Kinsman/Science SourceEdward Kinsman/Science Source

c18TemperatureHeatAndTheFirstLaw.indd   565 05/05/21   8:15 PM



566 CHAPTER 18 TEmPERATuRE, HEAT, And THE FiRsT LAw oF THERmodynAmiCs

Pnet is positive if net energy is being absorbed via radiation and nega-
tive if it is being lost via radiation.

Thermal radiation is involved in the numerous medical cases of 
a dead rattlesnake striking a hand reaching toward it. Pits between 
each eye and nostril of a rattlesnake (Fig. 18.6.4) serve as sensors 
of thermal radiation. When, say, a mouse moves close to a rattle-
snake’s head, the thermal radiation from the mouse triggers these 
sensors, causing a reflex action in which the snake strikes the mouse 
with its fangs and injects its venom. The thermal radiation from 
a reaching hand can cause the same reflex action even if the snake 
has been dead for as long as 30 min  because the snake’s nervous 
system continues to function. As one snake expert advised, if you 
must remove a recently killed rattlesnake, use a  long stick rather 
than your hand. FCP

Figure 18.6.4 A rattlesnake’s face has thermal 
radiation detectors, allowing the snake to strike at 
an animal even in complete darkness. 

© David A. Northcott/Corbis ImagesDavid A. Northcott/Getty Images

KEY IDEAS

(1) Temperature T4 helps determine the rate Pd at which 
energy is conducted through the brick, as given by Eq. 
18.6.1. However, we lack enough data to solve Eq. 18.6.1 
for T4. (2) Because the conduction is steady, the conduc-
tion rate Pd through the brick must equal the conduction 
rate Pa through the pine. That gets us going.

Calculations: From Eq. 18.6.1 and Fig. 18.6.5, we can 
write

  P  a   =  k  a  A   
 T  1   −  T  2   _______  L  a  

   and  P  d   =  k  d  A   
 T  4   −  T  5   _______  L  d    . 

Setting Pa = Pd and solving for T4 yield

  T  4   =   
 k  a   L  d  

 _____ 
 k  d   L  a  

     (   T  1   −  T  2   )   +  T  5  .  

Letting Ld = 2.0La and kd = 5.0ka, and inserting the known  
temperatures, we find

  
 T  4    

=
  
  
 k  a    (  2.0 L  a   )   

 _________ 
 (   5.0k  a   )   L  a  

     (  25° C − 20° C )   +   (  −10° C )    
  
 
     

 

  

=
  

− 8.0° C.

  

 

  

(Answer)

Figure 18.6.5 shows the cross section of a wall made 
of white pine of thickness La and brick of thickness Ld 
(= 2.0La), sandwiching two layers of unknown mate-
rial with identical thicknesses and thermal conductivi-
ties. The thermal conductivity of the pine is ka and that 
of the brick is kd (= 5.0ka). The face area A of the wall 
is unknown. Thermal conduction through the wall has 
reached the steady state; the only known interface tem-
peratures are  T1 = 25°C, T2 = 20°C, and T5 = −10°C. 
What is interface temperature T4?

Sample Problem 18.6.1 Thermal conduction through a layered wall

Figure 18.6.5 Steady-state heat  transfer through a wall.

Indoors Outdoors

(a) (b) (d)(c)

La Lb Lc Ld

ka kb kc kd 

T1 T2 T3 T4 T5

The energy transfer
per second is the
same in each layer.

water radiate energy to such a sky. To start, you thermally 
insulate a container from the ground by placing a poorly 
conducting layer of, say, foam rubber, bubble wrap, Sty-
rofoam peanuts, or straw beneath it. Then you pour water 
into the container, forming a thin, uniform layer with 
mass m = 4.5 g, top surface A = 9.0 cm2, depth d = 5.0 mm, 

During an extended wilderness hike, you have a ter-
rific craving for ice. Unfortunately, the air temperature 
drops to only 6.0°C each night—too high to freeze water. 
However, because a clear, moonless night sky acts like 
a blackbody radiator at a temperature of Ts = −23°C, 
perhaps you can make ice by letting a shallow layer of 

Sample Problem 18.6.2 Making ice by radiating to the sky

Additional examples, video, and practice available at WileyPLUS
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emissivity  ε  = 0.90, and initial temperature 6.0°C. Find the 
time required for the water to freeze via radiation. Can 
the freezing be accomplished during one night?

KEY IDEAS

(1) The water cannot freeze at a temperature above the 
freezing point. Therefore, the radiation must first remove 
an amount of energy Q1 to reduce the water temperature 
from 6.0°C to the freezing point of 0°C. (2) The radia-
tion then must remove an additional amount of energy Q2 
to freeze all the water. (3) Throughout this process, the 
water is also absorbing energy radiated to it from the sky. 
We want a net loss of energy.

Cooling the water: Using Eq. 18.4.3 and Table 18.4.1, 
we find that cooling the water to 0°C requires an energy 
loss of 

  Q  1   = cm( T  f   −  T  i  )

= (4190 J/kg ⋅ K)(4.5 × 10−3 kg)(0° C − 6.0° C)

= − 113 J. 

Thus, 113 J must be radiated away by the water to drop its 
temperature to the freezing point.

Freezing the water: Using Eq. 18.4.5 (Q = mL) with the 
value of L being LF from Eq. 18.4.7 or Table 18.4.2, and 
inserting a minus sign to indicate an energy loss, we find

   Q  2   = − m L  F   = − (4.5 × 10−3 kg)(3.33 × 105 J/kg)

 = − 1499 J. 

The total required energy loss is thus

  Q  tot   =  Q  1   +  Q  2   = − 113 J − 1499 J = − 1612 J. 

Radiation: While the water loses energy by radiating to 
the sky, it also absorbs energy radiated to it from the sky. 
In a total time t, we want the net energy of this exchange 
to be the energy loss Qtot; so we want the power of this 
exchange to be

  
power =   

net energy
 __________ 

time
   =   

 Q  tot   ____ t  .  (18.6.10)

The power of such an energy exchange is also the net rate 
Pnet of thermal radiation, as given by Eq. 18.6.9; so the 
time t required for the energy loss to be Qtot is

  

t =   
Q
 ____  P  net  
   =   

Q
 _______________  

σεA( T  s  4  − T 4)
  .  (18.6.11)

Although the temperature T of the water decreases 
slightly while the water is cooling, we can approximate T 
as being the freezing point, 273 K. With Ts = 250 K, the 
denominator of Eq. 18.6.11 is

 (5.67 × 10−8 W/m2 ⋅ K4)(0.90)(9.0 × 10−4 m2) 
× [(250 K)4 − (273 K)4]  = − 7.57 × 10−2 J/s, 

and Eq. 18.6.11 gives us

  t =   − 1612 J _________________  
− 7.57 × 10−2 J/s

   

(Answer)= 2.13 × 104 s = 5.9 h. 

Because t is less than a night, freezing water by having it 
radiate to the dark sky is feasible. In fact, in some parts 
of the world people used this technique long before the 
introduction of electric freezers.

Temperature; Thermometers  Temperature is an SI base 
quantity related to our sense of hot and cold. It is measured 
with a thermometer, which contains a working substance with a 
measur able property, such as length or pressure, that changes in 
a regular way as the substance becomes hotter or colder.

Zeroth Law of Thermodynamics  When a thermometer 
and some other object are placed in contact with each other, 
they eventually reach thermal equilibrium. The reading of the 
thermometer is then taken to be the temperature of the other 
object. The process provides consistent and useful temperature 
measurements because of the zeroth law of thermodynamics: If 
bodies A and B are each in thermal equilibrium with a third 
body C (the thermometer), then A and B are in thermal equilib-
rium with each other.

The Kelvin Temperature Scale  In the SI system, tem-
perature is measured on the Kelvin scale, which is based on the 

Review & Summary

triple point of water (273.16 K). Other temperatures are then 
defined by use of a constant-volume gas thermometer, in which a 
sample of gas is maintained at constant volume so its pressure is 
proportional to its temperature. We define the temperature T as 
measured with a gas thermometer to be

  T =  (273.16 K)   (    lim  
gas→0

     
p

 ___  p  3     )   .  (18.1.6)

Here T is in kelvins, and p3 and p are the pressures of the gas at 
273.16 K and the measured temperature, respectively.

Celsius and Fahrenheit Scales  The Celsius tempera-
ture scale is defined by

 TC = T − 273.15°, (18.2.1)

with T in kelvins. The Fahrenheit temperature scale is defined by

   T  F   =   9 _ 5   T  C   + 32° .  (18.2.2)
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Thermal Expansion  All objects change size with changes in 
temperature. For a temperature change ∆T, a change ∆L in any 
linear  dimension L is given by

 ∆L = L𝛼 ∆T, (18.3.1)

in which 𝛼 is the coefficient of linear expansion. The change ∆V 
in the volume V of a solid or liquid is

 ∆V = V𝛽 ∆T. (18.3.2)

Here 𝛽 = 3𝛼 is the material’s coefficient of volume  expansion.

Heat  Heat Q is energy that is transferred between a sys-
tem and its environment because of a temperature differ-
ence  between them. It can be measured in joules (J), calories 
(cal), kilocalories (Cal or kcal), or British thermal units 
(Btu), with

 1 cal = 3.968 × 10−3 Btu = 4.1868 J. (18.4.1)

Heat Capacity and Specific Heat  If heat Q is absorbed 
by an object, the object’s temperature change Tf − Ti is related 
to Q by

 Q = C(Tf − Ti), (18.4.2)

in which C is the heat capacity of the object. If the object has 
mass m, then

 Q = cm(Tf − Ti), (18.4.3)

where c is the specific heat of the material making up the 
 object. The molar specific heat of a material is the heat capacity 
per mole, which means per 6.02 × 1023 elementary units of the 
material.

Heat of Transformation  Matter can exist in three com-
mon states: solid, liquid, and vapor. Heat absorbed by a mate-
rial may change the material’s physical state—for example, 
from solid to liquid or from liquid to gas. The amount of energy 
required per unit mass to change the state (but not the temper-
ature) of a particular material is its heat of transformation L.  
Thus,

 Q = Lm. (18.4.5)

The heat of vaporization LV is the amount of energy per unit 
mass that must be added to vaporize a liquid or that must be 
removed to condense a gas. The heat of fusion LF is the amount 
of energy per unit mass that must be added to melt a solid or 
that must be removed to freeze a liquid.

Work Associated with Volume Change  A gas may 
 exchange energy with its surroundings through work. The amount 
of work W done by a gas as it expands or contracts from an initial 
volume Vi to a final volume Vf is given by

   W =   
 
  
 

  dW  =   
 V  i  

  
 V  f  

  p dV.    (18.5.2)

The integration is necessary because the pressure p may vary 
during the volume change.

First Law of Thermodynamics  The principle of conser-
vation of energy for a thermodynamic process is expressed in 
the first law of thermodynamics, which may assume either of 
the forms

 ∆Eint = Eint, f − Eint,i = Q − W (18.5.3)

or dEint = dQ − dW. (18.5.4)

Eint represents the internal energy of the material, which 
 depends only on the material’s state (temperature, pressure, and 
volume). Q represents the energy exchanged as heat  between 
the system and its surroundings; Q is positive if the system 
absorbs heat and negative if the system loses heat. W is the work 
done by the system; W is positive if the system  expands against 
an external force from the surroundings and negative if the sys-
tem contracts because of an external force. Q and W are path 
dependent; ∆Eint is path independent.

Applications of the First Law  The first law of thermody-
namics finds application in several special cases:

 adiabatic processes: Q = 0,  ∆Eint = −W

 constant-volume processes: W = 0,  ∆Eint = Q

 cyclical processes: ∆Eint = 0,  Q = W

 free expansions: Q = W = ∆Eint = 0

Conduction, Convection, and Radiation  The rate 
Pcond at which energy is conducted through a slab for which one 
face is maintained at the higher temperature TH and the other 
face is maintained at the lower temperature TC is

    P  cond   =   
Q

 ___ t   = kA   
 T  H   −  T  C  

 __________ 
L

    . (18.6.1)

Here each face of the slab has area A, the length of the slab (the 
distance between the faces) is L, and k is the thermal conductiv-
ity of the material.

Convection occurs when temperature differences cause an 
energy transfer by motion within a fluid. 

Radiation is an  energy transfer via the emission of electro-
magnetic energy. The rate Prad at which an object emits energy via 
thermal radiation is

 Prad = σεAT4, (18.6.7)

where σ (= 5.6704 × 10−8 W/m2 · K4) is the Stefan–Boltz mann 
constant, ε is the emissivity of the object’s surface, A is its sur-
face area, and T is its surface temperature (in kelvins). The rate 
Pabs at which an object absorbs energy via thermal radiation 
from its environment, which is at the  uniform temperature Tenv 
(in kelvins), is

 Pabs = σεAT4
env. (18.6.8)
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Figure 18.2 Questions 4 and 5.
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Figure 18.6 Question 11.

Questions

1  The initial length L, change in temperature ∆T, and change 
in length ∆L of four rods are given in the following table. Rank 
the rods according to their coefficients of thermal ex pansion, 
greatest first.

Rod L (m) ∆T (C°) ∆L (m)

a 2 10 4 × 10−4

b 1 20 4 × 10−4

c 2 10 8 × 10−4

d 4  5 4 × 10−4

2  Figure 18.1 shows three lin-
ear temperature scales, with the 
freezing and boiling points of 
water   indicated. Rank the three 
scales according to the size of one 
degree on them, greatest first.

3  Materials A, B, and C are solids 
that are at their melting tempera-
tures. Material A requires 200 J to melt 4 kg, material B requires 
300 J to melt 5 kg, and material C requires 300 J to melt 6 kg. Rank 
the materials according to their heats of  fusion, greatest first.

4  A sample A of liquid water and a sample B of ice, of iden-
tical mass, are placed in a thermally insulated container and 
allowed to come to thermal equilibrium. Figure 18.2a is a sketch 
of the temperature T of  the samples versus time t. (a) Is the 
equilibrium temperature above, below, or at the freezing point 
of water? (b) In reaching equilibrium, does the liquid partly 
freeze, fully freeze, or undergo no freezing? (c)  Does the ice 
partly melt, fully melt, or undergo no melting?

5  Question 4 continued: Graphs b through f of Fig. 18.2 
are additional sketches of T versus t, of which one or more 
are  impossible to produce. (a) Which is impossible and why?   
(b) In the possible ones, is the equilibrium temperature above, 
 below, or at the freezing point of water? (c) As the possible 
situations reach equilibrium, does the liquid partly freeze, fully 
freeze, or undergo no freezing? Does the ice partly melt, fully 
melt, or undergo no melting?

The left side of the wall 
is 20 C° higher than 
the right side. Rank the 
arrangements accord-
ing to (a) the (steady 
state) rate of energy 
conduction through the 
wall and (b) the tem-
perature difference across material 1, greatest first.

7  Figure 18.4 shows 
two closed cycles on 
p-V diagrams for a 
gas. The three parts 
of cycle 1 are of the 
same length and shape 
as those of cycle 2. 
For each cycle, should 
the cycle be traversed 
clockwise or counter-
clockwise if (a) the net work W done by the gas is to be positive and 
(b) the net energy transferred by the gas as heat Q is to be positive?

8  For which cycle in Fig. 18.4, traversed clockwise, is (a) W 
greater and (b) Q greater?

9  Three different materials of 
identical mass are placed one at a 
time in a special freezer that can 
extract energy from a material at 
a certain constant rate. During 
the cooling process, each material 
begins in the liquid state and ends 
in the solid state; Fig. 18.5 shows 
the temperature T versus time t. 
(a) For material 1, is the specific heat for the liquid state greater 
than or less than that for the solid state? Rank the  materials 
 according to (b) freezing-point temperature, (c) specific heat in 
the liquid state, (d) specific heat in the solid state, and (e) heat of 
fusion, all greatest first.

10  A solid cube of edge length r, a solid sphere of radius r, and 
a solid hemisphere of radius r, all made of the same  material, are 
maintained at temperature 300 K in an environment at tempera-
ture 350 K. Rank the objects according to the net rate at which 
thermal radiation is exchanged with the  environment, greatest first.

11  A hot object is dropped into a thermally insulated  container 
of water, and the object and water are then allowed to come 
to thermal equilibrium. The experiment is repeated twice, with 
different hot objects. All three objects have the same mass and 
initial temperature, and the mass and initial temperature of 
the water are the same in the three experiments. For each of the 
experiments, Fig. 18.6 gives graphs of the temperatures T of the 
object and the water versus time t. Rank the graphs according to 
the specific heats of the objects, greatest first.

p p

V V
(1) (2)

Figure 18.4 Questions 7 and 8.

T

t

1
2

3

Figure 18.5 Question 9.

150°

–50°

X

120°

–140°

Y

60°

20°

Z

Figure 18.1 Question 2.

1 2 3 1 3 2 13 2

(a) (b) (c)

Figure 18.3 Question 6.

QuEsTions

6  Figure 18.3 shows three different arrangements of materials 1, 
2, and 3 to form a wall. The thermal conductivities are k1 > k2 > k3. 
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Problems

          Tutoring problem available (at instructor’s discretion) in WileyPLUS

 Worked-out solution available in Student Solutions Manual

E  Easy M  Medium H  Hard

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

CALC  Requires calculus

BIO  Biomedical application

GO

FCP

SSM

10 E  An aluminum flagpole is 33 m high. By how much does its 
length increase as the temperature increases by 15 C°?

11 E  What is the volume of a lead ball at 30.00°C if the ball’s 
volume at 60.00°C is 50.00 cm3?

12 E  An aluminum-alloy rod has a length of 10.000 cm at 
20.000°C and a length of 10.015 cm at the boiling point of  water. 
(a) What is the length of the rod at the freezing point of water? 
(b) What is the temperature if the length of the rod is 10.009 cm?

13 E  SSM  Find the change in volume of an aluminum sphere 
with an initial radius of 10 cm when the sphere is heated from 
0.0°C to 100°C. 

14 M  When the temperature of a copper coin is raised by 100 C°, 
its diameter increases by 0.18%. To two significant  figures, give 
the percent increase in (a) the area of a face, (b) the thickness, 
(c) the volume, and (d) the mass of the coin. (e) Calculate the 
coefficient of linear expansion of the coin.

15 M  A steel rod is 3.000 cm in diameter at 25.00°C. A brass 
ring has an interior diameter of 2.992 cm at 25.00°C. At what 
common temperature will the ring just slide onto the rod? 

16 M  When the temperature of a metal cylinder is raised from 
0.0°C to 100°C, its length increases by 0.23%. (a) Find the per-
cent change in density. (b) What is the metal? Use Table 18.3.1.

17 M  SSM  An aluminum cup of 100 cm3 capacity is completely 
filled with glycerin at 22°C. How much glycerin, if any, will spill 
out of the cup if the temperature of both the cup and the glyc-
erin is increased to 28°C? (The coefficient of volume  expansion 
of glycerin is 5.1 × 10−4/C°.) 

18 M  At 20°C, a rod is exactly 20.05 cm long on a steel 
ruler. Both are placed in an oven at 270°C, where the rod now 
measures 20.11 cm on the same ruler. What is the coefficient of 
linear expansion for the mate rial of which the rod is made?

19 M  CALC  GO  A vertical glass tube of length L = 1.280 000 m 
is half filled with a liquid at 20.000 000°C. How much will the 
height of the liquid column change when the tube and liquid are 
heated to 30.000 000°C? Use coefficients 𝛼glass = 1.000 000 × 
10−5/K and 𝛽liquid = 4.000 000 × 10−5/K. 

20 M  GO  In a certain experi-
ment, a small radioactive 
source must move at selected, 
extremely slow speeds. This 
motion is accomplished by fas-
tening the source to one end of 
an  aluminum rod and heating 
the central section of the rod in a controlled way. If the effective 
heated section of the rod in Fig. 18.8 has length d = 2.00 cm, at 
what constant rate must the temperature of the rod be changed 
if the source is to move at a constant speed of 100 nm/s?

21 H  SSM  As a result of a temperature rise of 32 C°, a bar 
with a crack at its center buckles upward (Fig. 18.9). The fixed 

Radioactive
source

Electric
heater

Clamp 
d

Figure 18.8 Problem 20.

Module 18.1  Temperature
1 E  Suppose the temperature of a gas is 373.15 K when it is at 
the boiling point of water. What then is the limiting value of the 
ratio of the pressure of the gas at that boiling point to its pres-
sure at the triple point of water? (Assume the volume of the gas 
is the same at both temperatures.)

2 E  Two constant-volume gas thermometers are assembled,  
one with nitrogen and the other with hydrogen. Both contain 
enough gas so that p3 = 80 kPa. (a) What is the difference 
 between the pressures in the two thermometers if both bulbs are 
in boiling  water? (Hint: See Fig. 18.1.6.) (b) Which gas is at 
higher pressure?

3 E  A gas thermometer is con-
structed of two gas-containing 
bulbs, each in a water bath, as 
shown in Fig. 18.7. The  pressure 
difference between the two 
bulbs is measured by a mercury 
manometer as shown. Appropri-
ate reservoirs, not shown in the 
diagram, maintain constant gas volume in the two bulbs. There 
is no difference in pressure when both baths are at the triple 
point of water. The pressure difference is 120  torr when one 
bath is at the triple point and the other is at the boiling point of 
water. It is 90.0 torr when one bath is at the triple point and the 
other is at an unknown temperature to be measured. What is the 
unknown temperature?

Module 18.2  The Celsius and Fahrenheit Scales
4 E  (a) In 1964, the temperature in the Siberian village of 
Oymyakon reached −71°C. What temperature is this on the 
Fahrenheit scale? (b) The highest officially recorded tempera-
ture in the continental United States was 134°F in Death Valley, 
California. What is this temperature on the Celsius scale?

5 E  At what temperature is the Fahrenheit scale reading equal 
to (a) twice that of the Celsius scale and (b) half that of the Cel-
sius scale?

6 M  On a linear X temperature scale, water freezes at −125.0°X 
and boils at 375.0°X. On a linear Y temperature scale, water 
freezes at −70.00°Y and boils at −30.00°Y. A temperature of 
50.00°Y corresponds to what temperature on the X scale?

7 M  Suppose that on a linear temperature scale X, water boils at 
−53.5°X and freezes at −170°X. What is a temperature of 340 K 
on the X scale? (Approximate water’s boiling point as 373 K.) 

Module 18.3  Thermal Expansion
8 E  At 20°C, a brass cube has edge length 30 cm. What is 
the increase in the surface area when it is heated from 20°C 
to 75°C?

9 E  A circular hole in an aluminum plate is 2.725 cm in  diameter 
at 0.000°C. What is its diameter when the temperature of the 
plate is raised to 100.0°C? 

Figure 18.7 Problem 3.
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distance L0 is 3.77 m and the 
coefficient of linear expansion of 
the bar is 25 × 10−6/C°. Find the 
rise x of the center.

Module 18.4  Absorption of 
Heat 
22 E  FCP  One way to keep 
the contents of a garage from 
 becoming too cold on a night when a severe subfreezing 
 temperature is forecast is to put a tub of water in the garage. If 
the mass of the water is 125 kg and its initial temperature is 20°C, 
(a) how much energy must the water transfer to its  surroundings 
in order to freeze completely and (b) what is the lowest possible 
temperature of the water and its surroundings until that happens? 

23 E  SSM  A small electric immersion heater is used to heat 
100 g of water for a cup of instant coffee. The heater is labeled 
“200 watts” (it converts electrical energy to thermal energy at 
this rate). Calculate the time required to bring all this water 
from 23.0°C to 100°C, ignoring any heat losses. 

24 E  A certain substance has a mass per mole of 50.0 g/mol. 
When 314 J is added as heat to a 30.0 g sample, the sample’s 
temperature rises from 25.0°C to 45.0°C. What are the (a) spe-
cific heat and (b) molar specific heat of this substance? (c) How 
many moles are in the sample?

25 E  BIO  A certain diet doctor encourages people to diet by 
drinking ice water. His theory is that the body must burn off 
enough fat to raise the temperature of the water from 0.00°C to 
the body temperature of 37.0°C. How many liters of ice  water 
would have to be consumed to burn off 454 g (about 1 lb) of fat, 
assuming that burning this much fat requires 3500 Cal be trans-
ferred to the ice water? Why is it not advisable to follow this 
diet? (One liter = 103 cm3. The density of water is 1.00 g/cm3.)

26 E  What mass of butter, which has a usable energy content 
of 6.0 Cal/g (= 6000 cal/g), would be equivalent to the change 
in gravitational potential energy of a 73.0 kg man who  ascends 
from sea level to the top of Mt. Everest, at elevation 8.84 km? 
Assume that the average g for the ascent is 9.80 m/s2.

27 E  SSM  Calculate the minimum amount of energy, in joules, 
 required to completely melt 130 g of silver initially at 15.0°C. 

28 E  How much water remains unfrozen after 50.2 kJ is transferred 
as heat from 260 g of liquid water initially at its freezing point?

29 M  In a solar water heater, energy from the Sun is gathered 
by water that circulates through tubes in a rooftop  collector. The 
solar radiation enters the collector through a  transparent cover 
and warms the water in the tubes; this  water is pumped into a hold-
ing tank. Assume that the  efficiency of the overall system is 20% 
(that is, 80% of the  incident 
solar energy is lost from the 
system). What collector area 
is necessary to raise the tem-
perature of 200 L of water in 
the tank from 20°C to 40°C 
in 1.0 h when the intensity of 
 incident sunlight is 700 W/m2?

30 M  A 0.400 kg sample is 
placed in a cooling apparatus 
that removes energy as heat 

at a constant rate. Figure 18.10 gives the temperature T of the 
sample versus time t; the horizontal scale is set by ts = 80.0 min.  
The sample freezes during the energy removal. The specific heat 
of the sample in its initial liquid phase is 3000 J/kg · K. What are 
(a) the sample’s heat of fusion and (b) its specific heat in the 
frozen phase?

31 M  What mass of steam at 100°C must be mixed with 150 g 
of ice at its melting point, in a thermally insulated  container, to 
produce liquid water at 50°C? 

32 M  CALC  The specific heat of a substance varies with temper-
ature according to the function c = 0.20 + 0.14T + 0.023T 2, with 
T in °C and c in cal/g · K. Find the energy required to raise the 
 temperature of 2.0 g of this substance from 5.0°C to 15°C.

33 M  Nonmetric version: (a) How long does a 2.0 × 105 Btu/h 
water heater take to raise the temperature of 40 gal of water 
from 70°F to 100°F? Metric version: (b) How long does a 59 kW 
water heater take to raise the temperature of 150 L of water 
from 21°C to 38°C?

34 M  GO  Samples A and B are at different initial tempera-
tures when they are placed in a thermally insulated container 
and allowed to come to thermal equilibrium. Figure 18.11a gives 
their temperatures T versus time t. Sample A has a mass of 5.0 kg; 
sample B has a mass of 1.5 kg. Figure 18.11b is a  general plot for 
the material of sample B. It shows the  temperature change ∆T 
that the material undergoes when  energy is transferred to it as 
heat Q. The change ∆T is plotted versus the energy Q per unit 
mass of the material, and the scale of the vertical axis is set by 
∆Ts = 4.0 C°. What is the specific heat of sample A?
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Figure 18.11 Problem 34.

35 M  An insulated Thermos contains 130 cm3 of hot coffee at  
80.0°C. You put in a 12.0 g ice cube at its melting point to cool the 
coffee. By how many degrees has your coffee cooled once the ice has 
melted and equilibrium is reached? Treat the coffee as though it were 
pure water and neglect energy exchanges with the environment.

36 M  A 150 g copper bowl contains 220 g of water, both at 
20.0°C. A very hot 300 g copper cylinder is dropped into the 
water, causing the water to boil, with 5.00 g being converted to 
steam. The final temperature of the system is 100°C. Neglect 
energy transfers with the environment. (a) How much energy 
(in calories) is transferred to the water as heat? (b) How much to 
the bowl? (c) What is the original temperature of the cylinder?

37 M  A person makes a quantity of iced tea by mixing 500 g of 
hot tea (essentially water) with an equal mass of ice at its melt-
ing point. Assume the mixture has negligible energy  exchanges 
with its environment. If the tea’s initial temperature is Ti = 90°C, 
when thermal equilibrium is reached what are (a) the mix-
ture’s temperature Tf and (b) the remaining mass mf of ice? If Figure 18.10 Problem 30.
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Ti = 70°C, when thermal equilibrium is reached what are (c) Tf 
and (d) mf?

38 M  A 0.530 kg sample of liquid water and a sample of ice 
are placed in a thermally insulated container. The container also 
contains a device that transfers energy as heat from the liquid 
water to the ice at a constant rate P, until thermal equilibrium 
is reached. The temperatures T of the liquid water and the ice 
are given in Fig. 18.12 as functions of time t; the horizontal scale 
is set by ts = 80.0 min. (a) What is rate P? (b) What is the initial 
mass of the ice in the container? (c) When thermal equilibrium 
is reached, what is the mass of the ice produced in this process?
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Figure 18.12 Problem 38.

39 M  GO  Ethyl alcohol has a boiling point of 78.0°C, a freez-
ing point of −114°C, a heat of vaporization of 879 kJ/kg, a heat 
of fusion of 109 kJ/kg, and a specific heat of 2.43 kJ/kg · K.  
How much energy must be removed from 0.510 kg of ethyl 
alcohol that is initially a gas at 78.0°C so that it becomes a solid 
at −114°C? 

40 M  GO  Calculate the specific heat of a metal from the follow-
ing data. A container made of the metal has a mass of 3.6 kg and 
contains 14 kg of water. A 1.8 kg piece of the metal initially at a 
temperature of 180°C is dropped into the water. The  con tainer 
and  water initially have a temperature of 16.0°C, and the final 
temperature of the entire (insulated) system is 18.0°C.

41 H  SSM  (a) Two 50 g ice cubes are dropped into 200 g of water 
in a thermally insulated container. If the water is initially at 25°C, 
and the ice comes directly from 
a freezer at −15°C, what is the 
final temperature at thermal 
equilibrium? (b) What is the 
final temperature if only one 
ice cube is used? 

42 H  GO  A 20.0 g copper ring 
at 0.000°C has an inner diam-
eter of D = 2.54000 cm. An alu-
minum sphere at 100.0°C has 
a  diameter of d = 2.545 08 cm. 
The sphere is put on top of the 
ring (Fig. 18.13), and the two 
are allowed to come to  thermal 
equilibrium, with no heat 
lost to the surroundings. The 
sphere just passes through the 
ring at the equilibrium tem-
perature. What is the mass of 
the sphere?

Module 18.5  The First 
Law of Thermodynamics
43 E  CALC  In Fig. 18.14, a 
gas sample expands from 

V0 to 4.0V0 while its pressure decreases from p0 to p0/4.0. If 
V0 = 1.0 m3 and p0 = 40 Pa, how much work is done by the gas if 
its pressure changes with volume via (a) path A, (b) path B, and  
(c) path C?

44 E  CALC  GO  A thermodynamic system is taken from state  
A to state B to state C, and then back to A, as shown in the p-V 
 diagram of Fig. 18.15a. The vertical scale is set by ps = 40 Pa, and 
the horizontal scale is set by Vs = 4.0 m3. (a)–(g) Complete the 
table in Fig. 18.15b by  inserting a plus sign, a minus sign, or a 
zero in each indicated cell. (h) What is the net work done by the 
system as it moves once through the cycle ABCA?
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Figure 18.15 Problem 44.

45 E  CALC   SSM  A gas 
within a closed chamber 
undergoes the cycle shown 
in the p-V diagram of Fig. 
18.16. The horizontal scale 
is set by Vs = 4.0 m3. Cal-
culate the net  energy added 
to the system as heat during 
one complete  cycle.

46 E  Suppose 200 J of work 
is done on a system and 
70.0 cal is extracted from 
the system as heat. In the 
sense of the first law of ther-
modynamics, what are the values (including algebraic signs) of 
(a) W, (b) Q, and (c) ∆Eint?

47 M  SSM  When a system is 
taken from state i to state f along 
path iaf in Fig. 18.17, Q = 50 cal 
and W = 20 cal. Along path ibf, 
Q = 36 cal. (a) What is W along 
path ibf ? (b) If W = −13 cal for the  
return path fi, what is Q for this 
path? (c) If Eint,i = 10 cal, what is 
Eint,f? If Eint,b = 22 cal, what is Q for 
(d) path ib and (e) path bf ? 

48 M  GO  As a gas is held within a 
closed chamber, it passes through the 
cycle shown in Fig. 18.18. Determine 
the energy transferred by the system 
as heat during constant-pressure pro-
cess CA if the energy added as heat 
QAB  during constant-volume process 
AB is 20.0 J, no energy is transferred 
as heat during adiabatic process BC, 
and the net work done during the 
cycle is 15.0 J.
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49 M  GO  Figure 18.19 represents 
a closed cycle for a gas (the figure 
is not drawn to scale). The change 
in the internal energy of the gas as 
it moves from a to c along the path 
abc is −200 J. As it moves from c to 
d, 180 J must be transferred to it as 
heat. An additional transfer of 80 J 
to it as heat is needed as it  moves 
from d to a. How much work is done 
on the gas as it moves from c to d? 

50 M  GO  A lab sample of gas is 
taken through cycle abca shown in 
the p-V diagram of Fig. 18.20. The 
net work done is +1.2 J. Along path 
ab, the change in the internal energy 
is +3.0 J and  the magnitude of the 
work done is 5.0 J. Along path ca, 
the  energy transferred to the gas as 
heat is +2.5 J. How much  energy is 
transferred as heat along (a) path 
ab and (b) path bc?

Module 18.6  Heat Transfer Mechanisms
51 E  A sphere of radius 0.500 m, temperature 27.0°C, and emis-
sivity 0.850 is located in an environment of temperature 77.0°C. 
At what rate does the sphere (a) emit and (b) absorb thermal 
radiation? (c) What is the sphere’s net rate of energy exchange?

52 E  The ceiling of a single-family dwelling in a cold climate 
should have an R-value of 30. To give such insulation, how 
thick would a layer of (a) polyurethane foam and (b) silver have 
to be?

53 E  SSM  Consider the slab shown in Fig. 18.6.1. Suppose that 
L = 25.0 cm, A = 90.0 cm2, and the material is copper. If TH =  
125°C, TC = 10.0°C, and a steady state is reached, find the con-
duction rate through the slab. 

54 E  BIO  FCP  If you were to walk briefly in space without a 
spacesuit while far from the Sun (as an astronaut does in the 
movie 2001, A Space Odyssey), you would feel the cold of 
space—while you radiated energy, you would absorb almost 
none from your environment. (a) At what rate would you lose 
energy? (b) How much energy would you lose in 30 s? Assume 
that your  emissivity is 0.90, and estimate other data needed in 
the  calculations. 

55 E  CALC  A cylindrical copper rod of length 1.2 m and cross- 
sectional area 4.8 cm2 is insulated along its side. The ends are 
held at a temperature difference of 100 C° by having one end in 
a water–ice  mixture and the other in a mixture of boiling water 
and steam. At what rate (a) is energy conducted by the rod and 
(b) does the ice melt? 

56 M  BIO  FCP  The giant hornet Vespa mandarinia japonica 
preys on Japanese bees. However, if one of the hornets attempts 
to invade a beehive, several hundred of the bees quickly form a 
compact ball around the hornet to stop it. They don’t sting, bite, 
crush, or suffocate it. Rather they overheat it by quickly raising 
their body temperatures from the normal 35°C to 47°C or 48°C, 
which is lethal to the hornet but not to the bees (Fig. 18.21). 
Assume the following: 500 bees form a ball of radius R = 2.0 cm 
for a time t = 20 min, the primary loss of energy by the ball is 
by thermal radiation, the ball’s surface has emissivity ε = 0.80, 
and the ball has a uniform temperature. On  average, how much 

additional energy must each bee produce during the 20 min to 
maintain 47°C?

Figure 18.21 Problem 56.© Dr. Masato Ono, Tamagawa University

57 M  (a) What is the rate of energy loss in watts per square 
meter through a glass window 3.0 mm thick if the outside tem-
perature is −20°F and the inside temperature is +72°F? (b) A 
storm window having the same thickness of glass is  installed par-
allel to the first window, with an air gap of 7.5 cm between the 
two windows. What now is the rate of energy loss if conduction 
is the only important energy-loss mechanism? 

58 M  A solid cylinder of radius r1 = 2.5 cm, length h1 = 5.0 cm, 
emissivity 0.85, and temperature 30°C is suspended in an envi-
ronment of temperature 50°C. (a) What is the  cylinder’s net 
thermal radiation transfer rate P1? (b) If the cylinder is stretched 
until its radius is r2 = 0.50 cm, its net thermal radi ation transfer 
rate becomes P2. What is the ratio P2/P1?

59 M  In Fig. 18.22a, two identical 
rectangular rods of metal are 
welded end to end, with a tempera-
ture of T1 = 0°C on the left side and 
a temperature of T2 = 100°C on the 
right side. In 2.0 min, 10 J is con-
ducted at a constant rate from the 
right side to the left side. How 
much time would be required  
to conduct 10 J if the rods were 
welded side to side as in Fig. 18.22b?

60 M  GO  Figure 18.23 shows 
the cross section of a wall made 
of three layers. The layer thick-
nesses are L1, L2 = 0.700L1, and 
L3 = 0.350L1. The thermal con-
ductivities are k1, k2 = 0.900k1, 
and k3 = 0.800k1. The tempera-
tures at the left side and right side 
of the wall are TH = 30.0°C and  
TC = −15.0°C, respectively. Ther-
mal conduction is steady. (a) What 
is the temperature difference ∆T2 
across layer 2 (between the left 
and right sides of the layer)? If k2 
were, instead, equal to 1.1k1, (b) 
would the rate at which  energy 
is conducted through the  wall 
be greater than, less than, or the 
same as previously, and (c) what 
would be the value of ∆T2?

61 M  CALC  SSM  In Fig. 18.24, a 
5.0 cm slab has formed on an 
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outdoor tank of water. The air is at −10°C. Find the rate of ice 
formation (centimeters per hour). The ice has thermal conduc-
tivity 0.0040 cal/s · cm · C° and density 0.92 g/cm3. Assume there is 
no  energy transfer through the walls or bottom. 

62 M  FCP  Leidenfrost effect. A 
water drop will last about 1 s on 
a hot skillet with a temperature 
 between 100°C and about 200°C. 
However, if the skillet is much 
hotter, the drop can last several 
minutes, an effect named after an early investigator. The longer 
lifetime is due to the support of a thin layer of air and water vapor 
that separates the drop from the metal (by distance L in Fig. 
18.25). Let L = 0.100 mm, and assume that the drop is flat with 
height h = 1.50 mm and bottom face area A = 4.00 × 10−6 m2.  
Also assume that the skillet has a constant temperature 
Ts = 300°C and the drop has a temperature of 100°C. Water has 
density 𝜌 = 1000 kg/m3, and the supporting layer has thermal 
conductivity k = 0.026 W/m · K. (a) At what rate is energy con-
ducted from the skillet to the drop through the drop’s bottom 
surface? (b) If conduction is the primary way energy moves from 
the skillet to the drop, how long will the drop last? 

63 M  GO  Figure 18.26 shows (in cross section) a wall consisting 
of four layers, with thermal conductivities k1 = 0.060 W/m · K, 
k3 = 0.040 W/m · K, and k4 = 0.12 W/m · K (k2 is not known). The 
layer thicknesses are L1 = 1.5 cm, L3 = 2.8 cm, and L4 = 3.5 cm 
(L2 is not known). The known temperatures are T1 = 30°C, 
T12 = 25°C, and T4 = −10°C. Energy transfer through the wall is 
steady. What is interface temperature T34? 

T1 T4T34

L1 L2 L3 L4

k1 k2 k3 k4

T12 T23

Figure 18.26 Problem 63.

64 M  BIO  FCP  Penguin huddling. To withstand the harsh 
weather of the Antarctic, emperor penguins huddle in groups 
(Fig. 18.27). Assume that a penguin is a circular cylinder with 
a top surface area a = 0.34 m2 and height h = 1.1 m. Let Pr be 
the rate at which an individual penguin radiates energy to the 

Water drop

Skillet

h
L

Figure 18.25 Problem 62.

environment (through the top and the sides); thus NPr is the 
rate at which N identical, well-separated penguins radiate. If the 
penguins huddle closely to form a huddled cylinder with top sur-
face area Na and height h, the cylinder radiates at the rate Ph. If 
N = 1000, (a) what is the value of the fraction Ph/NPr and (b) by 
what percentage does huddling reduce the total radiation loss? 

65 M  Ice has formed on a shallow pond, and a steady state has 
been reached, with the air above the ice at −5.0°C and the bot-
tom of the pond at 4.0°C. If the total depth of ice + water is 1.4 m,  
how thick is the ice? (Assume that the thermal conductivities of 
ice and water are 0.40 and 0.12 cal/m · C° · s, respectively.)

66 H  CALC  GO  FCP  Evaporative cooling of beverages. A cold 
beverage can be kept cold even on a warm day if it is slipped 
into a porous ceramic container that has been soaked in water. 
Assume that energy lost to evaporation matches the net energy 
gained via the radiation exchange through the top and side sur-
faces. The container and beverage have temperature T = 15°C, 
the environment has temperature Tenv = 32°C, and the container 
is a cylinder with radius r = 2.2 cm and height 10 cm. Approxi-
mate the emissivity as ε = 1, and neglect other energy exchanges. 
At what rate dm/dt is the container losing water mass? 

Additional Problems
67  In the extrusion of cold chocolate from a tube, work is done 
on the chocolate by the pressure applied by a ram forcing the 
chocolate through the tube. The work per unit mass of extruded 
chocolate is equal to p/𝜌, where p is the difference between the 
applied pressure and the pressure where the chocolate emerges 
from the tube, and 𝜌 is the density of the chocolate. Rather than 
increasing the temperature of the chocolate, this work melts 
cocoa fats in the chocolate. These fats have a heat of fusion of 
150 kJ/kg. Assume that all of the work goes into that melting 
and that these fats make up 30% of the chocolate’s mass. What 
percentage of the fats melt during the extrusion if p = 5.5 MPa 
and 𝜌 = 1200 kg/m3?

68  Icebergs in the North Atlantic present hazards to shipping, 
causing the lengths of shipping routes to be increased by about 
30% during the iceberg season. Attempts to destroy icebergs 
include planting explosives, bombing, torpedoing, shelling, ram-
ming, and coating with black soot. Suppose that direct melting 
of the iceberg, by placing heat sources in the ice, is tried. How 
much energy as heat is required to melt 10% of an iceberg that 
has a mass of 200 000 metric tons? (Use 1 metric ton = 1000 kg.)

69  Figure 18.28 displays a closed cycle 
for a gas. The change in internal energy 
along path ca is −160 J. The energy trans-
ferred to the gas as heat is 200 J along 
path ab, and 40 J along path bc. How 
much work is done by the gas along (a) 
path abc and (b) path ab?

70  In a certain solar house, energy 
from the Sun is stored in barrels filled 
with water. In a particular winter stretch of five cloudy days, 
1.00 × 106 kcal is needed to maintain the inside of the house at 
22.0°C. Assuming that the water in the bar rels is at 50.0°C and 
that the water has a density of 1.00 × 103 kg/m3, what volume of 
water is required?

71  A 0.300 kg sample is placed in a  cooling apparatus that 
removes energy as heat at a constant rate of 2.81 W.  Figure 
18.29 gives the temperature T of the sample versus time t. The 
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Figure 18.27 Problem 64.© Alain Torterotot / Biosphoto
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temperature scale is set by Ts = 30°C 
and the time scale is set by ts = 20 
min. What is the specific heat of the 
sample?

72  The average rate at which 
energy is conducted outward 
through the ground surface in North 
America is 54.0 mW/m2, and the 
average thermal conductivity of the 
near-surface rocks is 2.50 W/m · K. 
Assuming a surface temperature of 
10.0°C, find the temperature at a 
depth of 35.0 km (near the base of the crust). Ignore the heat 
generated by the presence of  radioactive elements.

73  What is the volume increase of an aluminum cube 5.00 cm 
on an edge when heated from 10.0°C to 60.0°C?

74  In a series of experiments, 
block B is to be placed in a ther-
mally insulated container with 
block A, which has the same mass 
as block B. In each experiment, 
block B is initially at a  certain 
temperature TB, but temperature 
TA of block A is changed 
from  experiment to  experiment.  
Let Tf represent the final tem-
perature of the two blocks when 
they reach thermal equilibrium in 
any of the experiments. Figure 18.30 gives temperature Tf versus 
the initial temperature TA for a range of possible values of TA, 
from TA1 = 0 K to TA2 = 500 K. The vertical axis scale is set by 
Tfs = 400 K. What are (a) temperature TB and (b) the ratio cB/cA 
of the specific heats of the blocks?

75  Figure 18.31 displays a 
closed cycle for a gas. From c to 
b, 40 J is transferred from the 
gas as heat. From b to a, 130 J is 
transferred from the gas as heat, 
and the magnitude of the work 
done by the gas is 80 J. From a to 
c, 400 J is transferred to the gas 
as heat. What is the work done by 
the gas from a to c? (Hint: You 
need to supply the plus and minus signs for the given data.)

76  Three equal-length straight rods, of aluminum, Invar, and 
steel, all at 20.0°C, form an equilateral triangle with hinge pins 
at the vertices. At what temperature will the angle opposite the 
Invar rod be 59.95°? See Appendix E for needed trigonometric 
formulas and Table 18.3.1 for needed data.

77 SSM  The temperature of a 0.700 kg cube of ice is decreased 
to −150°C. Then energy is gradually transferred to the cube as 
heat  while it is otherwise thermally isolated from its environ-
ment. The total transfer is 0.6993 MJ. Assume the value of cice 
given in Table 18.4.1 is valid for temperatures from −150°C to 
0°C. What is the final temperature of the water? 

78 CALC  GO  FCP  Icicles. Liquid water coats an active (grow-
ing) icicle and extends up a short, narrow tube along the central 
axis (Fig. 18.32). Because the water–ice interface must have a 
temperature of 0°C, the water in the tube cannot lose energy 

Figure 18.30 Problem 74.
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through the sides of the icicle or 
down through the tip because 
there is no temperature change 
in those directions. It can lose 
energy and freeze only by sending 
energy up (through distance L) 
to the top of the icicle, where the 
temperature Tr can be below 0°C. 
Take L = 0.12 m and Tr = −5°C. 
Assume that the central tube 
and the upward conduction path 
both have cross-sectional area 
A. In terms of A, what rate is (a) 
energy conducted upward and 
(b) mass converted from liquid to ice at the top of the central 
tube? (c) At what rate does the top of the tube move downward 
because of water freezing there? The thermal conductivity of ice 
is 0.400 W/m · K, and the density of liquid water is 1000 kg/m3.

79 CALC  SSM  A sample of gas expands from an initial pres-
sure and volume of 10 Pa and 1.0 m3 to a final volume of 2.0 m3. 
During the expansion, the pressure and volume are related by 
the equation p = aV 2, where a = 10 N/m8. Determine the work 
done by the gas during this expansion. 

80  Figure 18.33a shows a cylinder containing gas and closed 
by a movable piston. The cylinder is kept submerged in an ice–
water mixture. The piston is quickly pushed down from position 
1 to position 2 and then held at position 2 until the gas is again at 
the temperature of the ice–water mixture; it then is slowly raised 
back to position 1.  Figure 18.33b is a p-V diagram for the pro-
cess. If 100 g of ice is melted during the  cycle, how much work 
has been done on the gas?
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81 SSM  A sample of gas 
undergoes a transition from an 
initial state a to a final state b 
by three different paths (pro-
cesses), as shown in the p-V 
diagram in Fig. 18.34, where 
Vb = 5.00Vi. The energy trans-
ferred to the gas as heat in 
process 1 is 10piVi. In terms of 
piVi, what are (a) the energy 
transferred to the gas as heat in 
process 2 and (b) the change in 
internal energy that the gas undergoes in process 3?
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3pi/2

Vi Vb
V

a
b

2
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Figure 18.34 Problem 81.
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82  A copper rod, an aluminum rod, and a brass rod, each of 
6.00 m length and 1.00 cm diameter, are placed end to end with 
the aluminum rod between the other two. The free end of the 
copper rod is maintained at water’s boiling point, and the free 
end of the brass rod is maintained at  water’s freezing point. What 
is the steady-state temperature of (a)  the copper– aluminum 
junction and (b) the aluminum–brass  junction?

83 SSM  The temperature of a Pyrex disk is changed from 
10.0°C to 60.0°C. Its initial radius is 8.00 cm; its initial thickness 
is 0.500 cm. Take these data as being exact. What is the change 
in the volume of the disk? (See Table 18.3.1.) 

84 BIO  (a) Calculate the rate at which body heat is conducted 
through the clothing of a skier in a steady-state process, given 
that the body surface area is 1.8 m2, and the clothing is 1.0 cm 
thick; the skin surface temperature is 33°C and the outer surface 
of the clothing is at 1.0°C; the thermal conductivity of the cloth-
ing is 0.040 W/m · K. (b) If, after a fall, the skier’s clothes became 
soaked with water of thermal conductivity 0.60 W/m · K, by how 
much is the rate of conduction multiplied?

85 SSM  A 2.50 kg lump of aluminum is heated to 92.0°C and 
then dropped into 8.00 kg of water at 5.00°C. Assuming that the 
lump–water system is thermally isolated, what is the  system’s 
equilibrium temperature? 

86  A glass window pane is exactly 20 cm by 30 cm at 10°C. By 
how much has its area increased when its temperature is 40°C, 
assuming that it can expand freely?

87 BIO  A recruit can join the semi-secret “300 F” club at the 
Amundsen–Scott South Pole Station only when the outside tem-
perature is below −70°C. On such a day, the recruit first basks 
in a hot sauna and then runs outside wearing only shoes. (This 
is, of course, extremely dangerous, but the rite is effectively a 
protest against the constant danger of the cold.)

Assume that upon stepping out of the sauna, the recruit’s 
skin temperature is 102°F and the walls, ceiling, and floor of 
the sauna room have a temperature of 30°C. Estimate the 
 recruit’s surface area, and take the skin emissivity to be 0.80. 
(a) What is the approximate net rate Pnet at which the recruit 
loses energy via thermal radiation exchanges with the room? 
Next, assume that when outdoors, half the recruit’s surface 
area exchanges thermal radiation with the sky at a tempera-
ture of −25°C and the other half  exchanges thermal radiation 
with the snow and ground at a temperature of −80°C. What is 
the approximate net rate at which the recruit loses energy via 
thermal radiation exchanges with (b) the sky and (c) the snow 
and ground?

88  A steel rod at 25.0°C is bolted at both ends and then cooled. 
At what temperature will it rupture? Use Table 12.3.1.

89 BIO  An athlete needs to lose weight and decides to do it by 
“pumping iron.” (a) How many times must an 80.0 kg weight 
be lifted a distance of 1.00 m in order to burn off 1.00 lb of fat, 
assuming that that much fat is equivalent to 3500 Cal? (b) If the 
weight is lifted once every 2.00 s, how long does the task take?

90  Soon after Earth was formed, heat released by the decay 
of radioactive elements raised the average internal tempera-
ture from 300 to 3000 K, at about which value it remains  today. 
Assuming an average coefficient of volume expansion of 
3.0 × 10−5 K−1, by how much has the radius of Earth  increased 
since the planet was formed?

91  It is possible to melt ice by rubbing one block of it against 
 another. How much work, in joules, would you have to do to get 
1.00 g of ice to melt?

92  A rectangular plate of glass initially has the dimensions 
0.200 m by 0.300 m. The coefficient of linear expansion for the 
glass is 9.00 × 10−6/K. What is the change in the plate’s area if its 
temperature is increased by 20.0 K?

93  Suppose that you intercept 5.0 × 10−3 of the energy  radiated 
by a hot sphere that has a radius of 0.020 m, an emissivity of 
0.80, and a surface temperature of 500 K. How much energy do 
you intercept in 2.0 min?

94  A thermometer of mass 0.0550 kg and of specific heat 
0.837 kJ/kg · K reads 15.0°C. It is then completely immersed in 
0.300 kg of water, and it comes to the same final temperature as 
the water. If the thermometer then reads 44.4°C, what was the 
temperature of the water before insertion of the  ther mometer?

95  A sample of gas expands from 
V1 = 1.0 m3 and p1 = 40 Pa to 
V2 = 4.0 m3 and p2 = 10 Pa along 
path  B in the p-V diagram in 
Fig.  18.35. It is then compressed 
back to V1 along  either path A or 
path C. Compute the net work done 
by the gas for the  complete cycle 
along (a) path BA and (b) path BC.

96  Figure 18.36 shows a compos-
ite bar of length L = L1 + L2 and 
consisting of two materials. 
One material has length 
L1 and coefficient of linear 
expansion 𝛼1; the other has 
length L2 and coefficient 
of linear expansion 𝛼2. (a) 
What is the coefficient of 
linear expansion 𝛼 for the composite bar? For a particular com-
posite bar, L is 52.4 cm, material 1 is steel, and material 2 is brass. 
If 𝛼 = 1.3 × 10−5/C°, what are the lengths (b) L1 and (c) L2?

97  On finding your stove out of order, you decide to boil the 
water for a cup of tea by shaking it in a Thermos flask. Suppose 
that you use tap water at 19°C, the water falls 32 cm each shake, 
and you make 27 shakes each minute. Neglecting any loss of 
thermal energy by the flask, how long (in minutes) must you 
shake the flask until the water reaches 100°C?

98  The p-V diagram in Fig. 18.37 
shows two paths along which a sam-
ple of gas can be taken from state a 
to state b, where Vb = 3.0V1. Path 1 
requires that energy equal to 5.0p1V1 
be transferred to the gas as heat. 
Path 2 requires that energy equal to 
5.5p1V1 be transferred to the gas as 
heat. What is the ratio p2/p1?

99  Density change. The density ρ 
of something is the ratio of its mass 
m to its volume V. If the volume is 
temperature dependent, so is the density. Show that a small 
change in density ∆ρ with a small increase ∆T in temperature is 
approximately given by 

 Δ ρ = − βρ ΔT, 
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Figure 18.35 Problem 95.
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where  β  is the coefficient of volume expansion. Explain the 
minus sign.

100  Two rods. (a) Show that if the lengths of two rods of dif-
ferent solids are inversely proportional to their respective coef-
ficients of linear expansion at the same initial temperature, the 
difference in length between them will be constant at all tem-
peratures. What should be the lengths of (b) a steel and (c) a 
brass rod at 0.00°C so that at all temperatures their difference in 
length is 0.30 m?

101  Ice skating. A long-
standing explanation of ice 
skating (Fig. 18.38) is that the 
ice is slippery beneath the 
skate because the weight of 
the  skater creates sufficient 
stress (pressure) beneath the 
skate to melt the ice, thus 
lubricating the skate–ice con-
tact area. At temperature  T = 
− 1° C,  the pressure required to 
melt ice is  1.4 × 107  N/m2. At 
that temperature, if a skater 
with weight Fg = 800 N stands 
evenly on both skates, with 
each contact area A = 14.3 mm2, 
what is the stress  σ  beneath 
each skate? (The result appears to support the pressure-melting 
explanation of ice skating, but the catch is that this is a static 
calculation whereas ice skating involves moving skates, perhaps 
rapidly. More promising explanations involve friction melting of 
the ice by a skate, with the skate not contacting the ice but being 
supported by meltwater beneath it.)

102  Heating ice. A 15.0 kg sample of ice is initially at a tem-
perature of  − 20° C.  Then  7.0 × 106  J is added as heat to the 
sample, which is otherwise isolated. What then is the sample’s 
temperature?

103 BIO  Candy bar energy. A candy bar has a marked nutri-
tional value of 350 Cal. How many kilowatt-hours of energy will 
it deliver to the body as it is digested?

104 BIO  Skunk cabbage. Unlike most other plants, a skunk cab-
bage can regulate its internal temperature (set at T = 22°C) by 

Figure 18.38 Problem 101.

altering the rate at which it produces energy. If it becomes cov-
ered with snow, it can increase that production so that its ther-
mal radiation melts the snow to re-expose the plant to sunlight. 
Let’s model a skunk cabbage with a cylinder of height h = 5.0 cm 
and radius R = 1.5 cm and assume it is surrounded by a snow 
wall at temperature Tenv = −3.0°C (Fig. 18.39). If the emissivity  ε 
is 0.80, what is the net rate of energy exchange via thermal radia-
tion between the plant’s curved side and the snow?

105  Rail expansions. Steel railroad rails are laid when the tem-
perature is  0° C.  What gap should be left between rail sections 
so that they just touch when the temperature rises to  42° C?  The 
sections are 12.0 m long and the coefficient of linear expansion 
for steel is  11 × 10−6/ C° . 

106  Martian thermal expansion. Near the equator on Mars, the 
temperature can range from  − 73° C  at night to  20° C  during the 
day. If a hut is constructed with steel beams of length 4.40 m, 
what would be the change in beam length from night to day? 
The coefficient of linear expansion for steel is  11 × 10−6/ C° . 

107  Suspended ball. A ball of radius 2.00 cm, temperature 280 
K, and emissivity 0.800 is suspended in an environment of tem-
perature 300 K. What is the net rate of energy transfer via radia-
tion between the ball and the environment?

108 BIO  Thermal emission from 
forehead. Noncontact thermom-
eters (Fig. 18.40) are used to 
quickly measure the temperature 
of a person, to monitor for fever 
from an infection. They measure 
the power of the radiation from a 
surface, usually the forehead, in 
the infrared range, which is just 
outside the visible light range. Skin 
has an emissivity  ε  = 0.97. What is 
the total power (infrared and vis-
ible) of the radiation per unit area 
when the temperature is (a) 97.0°F 
(a common early morning temper-
ature), (b) 99.0°F (a common late 
afternoon temperature), and (c) 
103°F (a temperature indicating 
infection)?

109  Composite slab conduction. A composite slab with face 
area A = 26 ft2 consists of 2.0 in. of rock wool and 0.75 in. of 
white pine. The thermal resistances for a 1.0 in. slab are

  R  rw   = 3.3 ft2 ⋅ ° F ⋅ h/Btu,

 R  wp   = 1.3 ft2 ⋅ ° F ⋅ h/Btu. 

The temperature difference between the slab faces is 65 F°. 
What is the rate of heat transfer through the slab?

Figure 18.40 Problem 108.
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C H A P T E R  1 9

The Kinetic Theory of Gases
19.1 AVOGADRO’S NUMBER

Learning Objectives  
After reading this module, you should be able to . . .

19.1.1 Identify Avogadro’s number NA.
19.1.2 Apply the relationship between the number  

of moles n, the number of molecules N, and  
Avogadro’s number NA.

19.1.3 Apply the relationships between the mass m of 
a sample, the molar mass M of the molecules in the 
sample, the number of moles n in the sample, and 
Avogadro’s number NA.

Key Ideas 
● The kinetic theory of gases relates the macroscopic 
 properties of gases (for example, pressure and temper-
ature) to the microscopic properties of gas molecules 
(for example, speed and kinetic energy).

● One mole of a substance contains NA (Avogadro’s 
 number) elementary units (usually atoms or molecules), 
where NA is found experimentally to be

NA = 6.02 × 1023 mol−1   (Avogadro’s number).

One molar mass M of any substance is the mass of 
one mole of the substance. 

● A mole is related to the mass m of the individual 
mole cules of the substance by

M = mNA.

● The number of moles n contained in a sample of 
mass Msam, consisting of N molecules, is related to 
the molar mass M of the molecules and to Avoga-
dro’s number NA as given by

 n =   N ___ 
 N  A  

   =   
 M  sam  

 _____ 
M

   =   
 M  sam  

 _____ 
m N  A  

   .

What Is Physics?
One of the main subjects in thermodynamics is the physics of gases. A gas con
sists of atoms (either individually or bound together as molecules) that fill their 
container’s volume and exert pressure on the container’s walls. We can usually 
assign a temperature to such a contained gas. These three variables associated 
with a gas—volume, pressure, and temperature—are all a consequence of the 
motion of the atoms. The volume is a result of the freedom the atoms have to 
spread throughout the container, the pressure is a result of the collisions of the 
atoms with the container’s walls, and the temperature has to do with the kinetic 
energy of the atoms. The kinetic theory of gases, the focus of this chapter, relates 
the  motion of the atoms to the volume, pressure, and temperature of the gas.

Applications of the kinetic theory of gases are countless. Automobile engi
neers are concerned with the combustion of vaporized fuel (a gas) in the auto
mobile engines. Food engineers are concerned with the production rate of the 
 fermentation gas that causes bread to rise as it bakes. Beverage engineers are 
concerned with how gas can produce the head in a glass of beer or shoot a cork 
from a champagne bottle. Medical engineers and physiologists are concerned 
with calculating how long a scuba diver must pause during ascent to eliminate 
 nitrogen gas from the bloodstream (to avoid the bends). Environmental  scientists 
are concerned with how heat exchanges between the oceans and the atmosphere 
can affect weather conditions.

The first step in our discussion of the kinetic theory of gases deals with measur
ing the amount of a gas present in a sample, for which we use Avogadro’s number.

C H A P T E R  1 9
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57919.2 Ideal Gases

Avogadro’s Number
When our thinking is slanted toward atoms and molecules, it makes sense to 
 measure the sizes of our samples in moles. If we do so, we can be certain that 
we are comparing samples that contain the same number of atoms or molecules. 
The mole is one of the seven SI base units and is defined as follows:

The obvious question now is: “How many atoms or molecules are there in a 
mole?” The answer is determined experimentally and, as you saw in Chapter 18, is

 NA = 6.02 × 1023 mol−1   (Avogadro’s number), (19.1.1)

where mol−1 represents the inverse mole or “per mole,” and mol is the abbre
viation for mole. The number NA is called Avogadro’s number after Italian 
 sci entist Amedeo Avogadro (1776–1856), who suggested that all gases occupying 
the same volume under the same conditions of temperature and pressure contain 
the same number of atoms or molecules.

The number of moles n contained in a sample of any substance is equal to the ratio 
of the number of molecules N in the sample to the number of molecules NA in 1 mol:

   n =   N ___ 
 N  A  

  .   (19.1.2)

(Caution: The three symbols in this equation can easily be confused with one 
 another, so you should sort them with their meanings now, before you end in 
“Nconfusion.”) We can find the number of moles n in a sample from the mass 
Msam of the sample and either the molar mass M (the mass of 1 mol) or the 
 molecular mass m (the mass of one molecule):

   n =   
 M   sam  

 _____ 
M

   =   
 M   sam  

 _____ 
m N  A  

  .   (19.1.3)

In Eq. 19.1.3, we used the fact that the mass M of 1 mol is the product of the 
mass m of one molecule and the number of molecules NA in 1 mol:

 M = mNA. (19.1.4)

19.2 IDEAL GASES
Learning Objectives  
After reading this module, you should be able to . . .

19.2.1 Identify why an ideal gas is said to be ideal.
19.2.2 Apply either of the two forms of the ideal gas 

law, written in terms of the number of moles n or the 
number of molecules N.

19.2.3 Relate the ideal gas constant R and the 
Boltzmann constant k.

19.2.4 Identify that the temperature in the ideal gas law 
must be in kelvins.

19.2.5 Sketch p-V diagrams for a constant-temperature 
expansion of a gas and a constant-temperature 
contraction.

19.2.6 Identify the term isotherm.
19.2.7 Calculate the work done by a gas, including 

the algebraic sign, for an expansion and a con-
traction along an isotherm.

19.2.8 For an isothermal process, identify that the 
change in internal energy ∆E is zero and that the 

One mole is the number of atoms in a 12 g sample of carbon12.

Checkpoint 19.1.1
If hydrogen H is collected from space (where it is monatomic) and forced into a con
tainer (where it forms H2 molecules), is the number of moles multiplied by 2, divided 
by 2, or unchanged?
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Ideal Gases
Our goal in this chapter is to explain the macroscopic properties of a gas—such 
as its pressure and its temperature—in terms of the behavior of the molecules 
that make it up. However, there is an immediate problem: which gas? Should it 
be hydrogen, oxygen, or methane, or perhaps uranium hexafluoride? They are 
all different. Experimenters have found, though, that if we confine 1 mol sam
ples of various gases in boxes of identical volume and hold the gases at the same 
 temperature, then their measured pressures are almost the same, and at lower 
densities the differences tend to disappear. Further experiments show that, at low 
enough densities, all real gases tend to obey the relation

 pV = nRT   (ideal gas law), (19.2.1)

in which p is the absolute (not gauge) pressure, n is the number of moles of gas 
present, and T is the temperature in kelvins. The symbol R is a constant called 
the gas constant that has the same value for all gases—namely,

 R = 8.31 J/mol · K. (19.2.2)

Equation 19.2.1 is called the ideal gas law. Provided the gas density is low, this 
law holds for any single gas or for any mixture of different gases. (For a mixture, 
n is the total number of moles in the mixture.)

We can rewrite Eq. 19.2.1 in an alternative form, in terms of a constant called 
the Boltzmann constant k, which is defined as

   k =   R _ 
NA

   =   8.31 J/mol ⋅ K   ___________  
6.02 × 1023 mol–1

      = 1.38 × 10−23 J/K.  (19.2.3)

This allows us to write R = kNA. Then, with Eq. 19.1.2 (n = N/NA), we see that

 nR = Nk. (19.2.4)

Substituting this into Eq. 19.2.1 gives a second expression for the ideal gas law:

 pV = NkT   (ideal gas law). (19.2.5)

(Caution: Note the difference between the two expressions for the ideal gas law—
Eq. 19.2.1 involves the number of moles n, and Eq. 19.2.5 involves the number of 
molecules N.)

You may well ask, “What is an ideal gas, and what is so ‘ideal’ about it?” The 
answer lies in the simplicity of the law (Eqs. 19.2.1 and 19.2.5) that governs its macro
scopic properties. Using this law—as you will see—we can deduce many properties 

energy Q transferred as heat is equal to the work W 
done.

19.2.9 On a p-V diagram, sketch a constant-volume 
process and identify the amount of work done in 
terms of area on the diagram.

19.2.10 On a p-V diagram, sketch a constant-pressure 
process and determine the work done in terms of 
area on the diagram.

Key Ideas  
● An ideal gas is one for which the pressure p, 
 volume V, and temperature T are related by

pV = nRT   (ideal gas law).

Here n is the number of moles of the gas present and 
R is a constant (8.31 J/mol · K) called the gas constant. 

● The ideal gas law can also be written as

pV = NkT,

where the Boltzmann constant k is

 k =   R ___ 
 N  A  

   = 1.38  × 10  −23   J / K. 

● The work done by an ideal gas during an isothermal 
(constant-temperature) change from volume Vi to  
volume Vf is

 W = nRT  ln   
 V  f   __ 
 V  i  

      (ideal gas, isothermal process).

c19TheKineticTheoryOfGases.indd   580 05/05/21   9:04 PM



58119.2 Ideal Gases

of the ideal gas in a simple way. Although there is no such thing in  nature as a 
truly ideal gas, all real gases approach the ideal state at low enough  densities—
that is, under conditions in which their molecules are far enough apart that they 
do not interact with one another. Thus, the ideal gas concept  allows us to gain 
useful insights into the limiting behavior of real gases.

Figure 19.2.1 gives a dramatic example of the ideal gas law. A stainless
steel tank with a volume of 18 m3 was filled with steam at a temperature of 
110°C through a valve at one end. The steam supply was then turned off 
and the valve closed, so that the steam was trapped inside the tank (Fig. 
19.2.1a). Water from a fire hose was then poured onto the tank to rapidly 
cool it. Within less than a minute, the enormously sturdy tank was crushed 
(Fig. 19.2.1b), as if some giant  invisible creature from a grade B science fic
tion movie had stepped on it during a rampage.

Actually, it was the atmosphere that crushed the tank. As the tank was 
cooled by the water stream, the steam cooled and much of it condensed, 
which means that the number N of gas molecules and the temperature T 
of the gas  inside the tank both decreased. Thus, the right side of Eq. 19.2.5 
decreased, and because volume V was constant, the gas pressure p on the 
left side also  decreased. The gas pressure decreased so much that the exter
nal atmospheric pressure was able to crush the tank’s steel wall. Figure 
19.2.1 was staged, but this type of crushing sometimes  occurs in industrial 
accidents (photos and videos can be found on the Web). FCP

Work Done by an Ideal Gas at Constant Temperature
Suppose we put an ideal gas in a piston–cylinder arrangement like those in 
 Chapter 18. Suppose also that we allow the gas to expand from an initial volume 
Vi to a final volume Vf while we keep the temperature T of the gas constant. 
Such a process, at constant temperature, is called an isothermal expansion (and 
the  reverse is called an isothermal compression).

On a p-V diagram, an isotherm is a curve that connects points that have the same 
temperature. Thus, it is a graph of pressure versus volume for a gas whose tempera
ture T is held constant. For n moles of an ideal gas, it is a graph of the equation

   p = nRT    1 __ 
V

   =  (a constant)    1 __ 
V

  .   (19.2.6)

Figure 19.2.2 shows three isotherms, each corresponding to a different (constant) 
value of T. (Note that the values of T for the isotherms increase upward to the 
right.) Superimposed on the middle isotherm is the path followed by a gas during 
an isothermal expansion from state i to state f at a constant temperature of 310 K.

To find the work done by an ideal gas during an isothermal expansion, we 
start with Eq. 18.5.2,

 W =    
 V  i   

  
Vf

     p dV.  (19.2.7)

This is a general expression for the work done during any change in volume of 
any gas. For an ideal gas, we can use Eq. 19.2.1 ( pV = nRT) to substitute for p, 
 obtaining

 W =    
 V  i   

  
Vf

       nRT _____ 
V

     dV.  (19.2.8)

Because we are considering an isothermal expansion, T is constant, so we can 
move it in front of the integral sign to write

 W = nRT   
 V  i   

  
Vf

       dV _____ 
V

    = nRT  
[

  
 
  ln   

 
  V

]
    . (19.2.9)

By evaluating the expression in brackets at the limits and then using the rela
tionship ln a − ln b = ln(a/b), we find that

   W = nRT  ln   
 V  f   __ 
 V  i  

      (ideal gas, isothermal process). (19.2.10)

Vi

Vf

Figure 19.2.1 (a) Before and (b) after 
images of a large steel tank crushed 
by atmospheric pressure after inter
nal steam cooled and condensed.

(a)

(b)
Courtesy www.doctorslime.com

Figure 19.2.2 Three isotherms on a 
p-V  diagram. The path shown along 
the middle isotherm represents an 
isothermal expansion of a gas from 
an initial state i to a final state f. 
The path from f to i along the iso
therm would represent the reverse 
 process—that is, an isothermal 
compression.

p
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582 CHaPTeR 19 THe KIneTIC THeoRy of Gases

Recall that the symbol ln specifies a natural logarithm, which has base e.
For an expansion, Vf is greater than Vi, so the ratio Vf/Vi in Eq. 19.2.10 is greater 

than unity. The natural logarithm of a quantity greater than unity is  positive, and 
so the work W done by an ideal gas during an isothermal expansion is positive, 
as we expect. For a compression, Vf is less than Vi, so the ratio of  volumes in 
Eq. 19.2.10 is less than unity. The natural logarithm in that equation—hence the 
work W—is negative, again as we expect.

Work Done at Constant Volume and at Constant Pressure
Equation 19.2.14 does not give the work W done by an ideal gas during every 
 thermodynamic process. Instead, it gives the work only for a process in which 
the temperature is held constant. If the temperature varies, then the symbol T 
in Eq. 19.2.8 cannot be moved in front of the integral symbol as in Eq. 19.2.9, and 
thus we do not end up with Eq. 19.2.10.

However, we can always go back to Eq. 19.2.7 to find the work W done by 
an  ideal gas (or any other gas) during any process, such as a constantvolume 
process and a constantpressure process. If the volume of the gas is constant, then 
Eq. 19.2.7 yields

 W = 0   (constantvolume process). (19.2.11)

If, instead, the volume changes while the pressure p of the gas is held constant, 
then Eq. 19.2.7 becomes

 W = p(Vf − Vi) = p ∆V   (constantpressure process). (19.2.12)

Checkpoint 19.2.1
An ideal gas has an initial  pressure of 3 pressure units and 
an initial volume of 4 volume units. The table gives the 
 final pressure and volume of the gas (in those same units) 
in five processes. Which processes start and end on the 
same isotherm?

 a b c d e

p 12 6 5 4 1
V 1 2 7 3 12

Note here that if we converted the given initial and final 
volumes from liters to the proper units of cubic meters, 
the multiplying conversion factors would cancel out of 
Eq. 19.2.13. The same would be true for conversion fac
tors that convert the pressures from atmospheres to the 
proper pascals. However, to convert the given tempera
tures to kelvins requires the  addition of an amount that 
would not cancel and thus must be included. Hence, we 
must write

 Ti = (273 + 20) K = 293 K

and Tf = (273 + 35) K = 308 K.

Inserting the given data into Eq. 19.2.13 then yields

  p  f   =    
  (  15 atm )     (  308 K )    (  12 L )    

  __________________  
 (  293 K )    (  8.5 L )    

     = 22 atm. (Answer)

Sample Problem 19.2.1 Ideal gas and changes of temperature, volume, and pressure

A cylinder contains 12 L of oxygen at 20°C and 15 atm. 
The temperature is raised to 35°C, and the volume is 
reduced to 8.5 L. What is the final pressure of the gas in 
atmospheres? Assume that the gas is ideal.

KEY IDEA

Because the gas is ideal, we can use the ideal gas law to  
relate its parameters, both in the initial state i and in the 
final state f.

Calculations: From Eq. 19.2.1 we can write

piVi = nRTi   and   pfVf = nRTf .

Dividing the second equation by the first equation and solv
ing for pf yields

   p  f   =   
 p  i    T  f    V  i   _____ 
 T  i    V  f  

   .  (19.2.13)

additional examples, video, and practice available at WileyPLUS
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58319.3 PRessuRe, TemPeRaTuRe, and Rms sPeed

You can show that if the expansion is now reversed, 
with the gas undergoing an isothermal compression from 
19 L to 12 L, the work done by the gas will be −1180 J. 
Thus, an  external force would have to do 1180 J of work 
on the gas to compress it.

Sample Problem 19.2.2 Work by an ideal gas

One mole of oxygen (assume it to be an ideal gas) expands 
at a constant temperature T of 310 K from an initial vol
ume Vi of 12 L to a final volume Vf of 19 L. How much 
work is done by the gas during the expansion?

KEY IDEA

Generally we find the work by integrating the gas pres
sure with respect to the gas volume, using Eq. 19.2.7. 
However, because the gas here is ideal and the expansion 
is isothermal, that integration leads to Eq. 19.2.10. 

Calculation: Therefore, we can write

 W = nRT  ln     
 V  f   __ 
 V  i  

   

   =   (  1 mol )    (  8.31 J / mol ⋅ K )     (  310 K )     ln   19 L _____ 
12 L 

   

  = 1180 J.  (Answer)

The expansion is graphed in the p-V diagram of Fig. 
19.2.3. The work done by the gas during the expansion is 
represented by the area beneath the curve if.

3.0

2.0

1.0

10 20 30 0
Volume (L)

Pr
es

su
re

 (
at

m
)

W

Vi Vf

T = 310 K

i

f

Figure 19.2.3 The 
shaded area rep
resents the work 
done by 1 mol of 
 oxygen in expand
ing from Vi to Vf 
at a temperature 
T of 310 K.

19.3 PRESSURE, TEMPERATURE, AND RMS SPEED
Learning Objectives  
After reading this module, you should be able to . . .

19.3.1 Identify that the pressure on the interior walls of 
a gas container is due to the molecular collisions with 
the walls.

19.3.2 Relate the pressure on a container wall to the 
momentum of the gas molecules and the time inter-
vals between their collisions with the wall.

19.3.3 For the molecules of an ideal gas, relate the 

root-mean-square speed vrms and the average 
speed vavg.

19.3.4 Relate the pressure of an ideal gas to the rms 
speed vrms of the molecules.

19.3.5 For an ideal gas, apply the relationship between 
the gas temperature T and the rms speed vrms and 
molar mass M of the molecules.

Key Ideas  
● In terms of the speed of the gas molecules, the pres-
sure  exerted by n moles of an ideal gas is

 p =    nMv rms  2  
 ________ 

3V
   ,

where   v  rms   =  √ 
_

  ( v   2 )  avg      is the root-mean-square speed 

of the molecules, M is the molar mass, and V is the 
volume.

● The rms speed can be written in terms of the  
temperature as

  v  rms   =  √ 
_____

   3RT ____ 
M

    . 

Pressure, Temperature, and RMS Speed
Here is our first kinetic theory problem. Let n moles of an ideal gas be confined 
in a cubical box of volume V, as in Fig. 19.3.1. The walls of the box are held at 
 temperature T. What is the connection between the pressure p exerted by the gas 
on the walls and the speeds of the molecules?

additional examples, video, and practice available at WileyPLUS
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584 CHaPTeR 19 THe KIneTIC THeoRy of Gases

The molecules of gas in the box are moving in all directions and with various 
speeds, bumping into one another and bouncing from the walls of the box like 
balls in a racquetball court. We ignore (for the time being) collisions of the mol
ecules with one another and consider only elastic collisions with the walls.

Figure 19.3.1 shows a typical gas molecule, of mass m and velocity    → v   , that is 
about to collide with the shaded wall. Because we assume that any collision of a 
molecule with a wall is elastic, when this molecule collides with the shaded wall, 
the only component of its velocity that is changed is the x component, and that 
component is reversed. This means that the only change in the particle’s momen
tum is along the x axis, and that change is

∆px = (−mvx) − (mvx) = −2mvx.

Hence, the momentum ∆px delivered to the wall by the molecule during the col
lision is +2mvx. (Because in this book the symbol p represents both momentum 
and pressure, we must be careful to note that here p represents momentum and 
is a vector quantity.)

The molecule of Fig. 19.3.1 will hit the shaded wall repeatedly. The time ∆t 
 between collisions is the time the molecule takes to travel to the opposite wall and 
back again (a distance 2L) at speed vx. Thus, ∆t is equal to 2L/vx. (Note that this 
result holds even if the molecule bounces off any of the other walls along the way, 
because those walls are parallel to x and so cannot change vx.) There fore, the aver
age rate at which momentum is delivered to the shaded wall by this  single molecule is

   
Δ  p  x   ____ 
Δt 

   =   
2m v  x   _____ 
2L /  v  x  

   =   
m v  x  

2 
 ____ 

L
  . 

From Newton’s second law  (  
→

 F   = d  → p   / dt) , the rate at which momentum is 
 delivered to the wall is the force acting on that wall. To find the total force, we 
must add up the contributions of all the molecules that strike the wall, allowing 
for the possibility that they all have different speeds. Dividing the magnitude of 
the total force Fx by the area of the wall (= L2) then gives the pressure p on that 
wall, where now and in the rest of this discussion, p represents pressure. Thus, 
 using the expression for ∆px/∆t, we can write this pressure as

  p =   
Fx ______ 
L2 

   =   
 mv  x1  

2   / L +  mv  x2  
2   / L  + ⋅ ⋅ ⋅ +   mv  xN  2   / L 

   _______________________________  
L2

    

  =  (  m _____ 
L3

  )   (   v  x1  
2   +  v  x2  

2   + ⋅ ⋅ ⋅ +  v  xN  2   )  ,    (19.3.1)

where N is the number of molecules in the box.
Since N = nNA, there are nNA terms in the second set of parentheses of 

Eq.  19.3.1. We can replace that quantity by nNA(  v   x  
2  )avg, where (  v   x  

2  )avg is the 
 average value of the square of the x components of all the molecular speeds. 
Equation 19.3.1 then becomes

 p =   
 nmN  A  

 ______ 
 L   3 

    ( v  x  
2 )  avg  . 

However, mNA is the molar mass M of the gas (that is, the mass of 1 mol of the 
gas). Also, L3 is the volume of the box, so

  p =   
nM ( v  x  

2 )  avg   _________ 
V 

  .  (19.3.2)

For any molecule, v2 =   v   x  
2   +   v   y  

2   +   v   z  
2  . Because there are many molecules 

and because they are all moving in random directions, the average values of the 
squares of their velocity components are equal, so that   v   x  

2  =   1 _ 3   v
2 . Thus, Eq. 19.3.2 

becomes

  p =   
nM ( v   2 )  avg   _________ 

3V 
  .  (19.3.3)

The square root of (v2)avg is a kind of average speed, called the root-mean-
square speed of the molecules and symbolized by vrms. Its name describes it rather 
well: You square each speed, you find the mean (that is, the average) of all these 

Figure 19.3.1 A cubical box of edge 
length L, containing n moles of an 
ideal gas. A molecule of mass m and 
velocity    → v    is about to collide with 
the shaded wall of area L2. A normal 
to that wall is shown.

y

z

x

L
L

L
m

Normal to
shaded wallv
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squared speeds, and then you take the square root of that mean. With   √ 
_

  ( v   2 )  avg     =  
v  rms   , we can then write Eq. 19.3.3 as

   p =   
 nMV  rms  

2  
 _______ 

3V
   .   (19.3.4)

This tells us how the  pressure of the gas (a purely macroscopic quantity) depends 
on the speed of the molecules (a purely microscopic quantity).

We can turn Eq. 19.3.4 around and use it to calculate vrms. Combining  
Eq. 19.3.4 with the ideal gas law ( pV = nRT ) leads to

    v  rms   =  √ 
_____

   3RT ____ 
M

     .   (19.3.5)

Table 19.3.1 shows some rms speeds calculated from Eq. 19.3.5. The speeds are 
surprisingly high. For hydrogen molecules at room temperature (300 K), the 
rms speed is 1920 m/s, or 4300 mi/h—faster than a speeding bullet! On the sur
face of the Sun, where the temperature is 2 × 106 K, the rms speed of hydrogen 
 molecules would be 82 times greater than at room temperature were it not for 
the fact that at such high speeds, the molecules cannot survive collisions among 
themselves. Remember too that the rms speed is only a kind of average speed; 
many molecules move much faster than this, and some much slower.

The speed of sound in a gas is closely related to the rms speed of the mol
ecules of that gas. In a sound wave, the disturbance is passed on from molecule 
to molecule by means of collisions. The wave cannot move any faster than the 
 “average” speed of the molecules. In fact, the speed of sound must be somewhat 
less than this “average” molecular speed because not all molecules are moving 
in exactly the same direction as the wave. As examples, at room temperature, 
the rms speeds of hydrogen and nitrogen molecules are 1920 m/s and 517 m/s, 
 respectively. The speeds of sound in these two gases at this temperature are 
1350 m/s and 350 m/s, respectively.

A question often arises: If molecules move so fast, why does it take as long as 
a minute or so before you can smell perfume when someone opens a bottle across 
a room? The answer is that, as we shall discuss in Module 19.5, each  perfume 
molecule may have a high speed but it moves away from the bottle only very 
slowly because its repeated collisions with other molecules prevent it from mov
ing directly across the room to you.

Table 19.3.1 Some RMS Speeds at 
Room Temperature (T = 300 K)a

 Molar 
 Mass 
 (10−3 vrms 
Gas kg/mol) (m/s)

Hydrogen (H2) 2.02 1920
Helium (He) 4.0 1370
Water vapor 

(H2O) 18.0 645
Nitrogen (N2) 28.0 517
Oxygen (O2) 32.0 483
Carbon dioxide 

(CO2) 44.0 412
Sulfur dioxide 

(SO2) 64.1 342

aFor convenience, we often set room 
 temperature equal to 300 K even though  
(at 27°C or 81°F) that  represents a fairly warm 
room.

Calculation: We find this from

  n  rms   =  √ 

_______________________

     
  5  2  +  11  2  +  32  2  +  67  2  +  89  2     _______________________  

5
     

  = 52.1.  (Answer)

The rms value is greater than the average value 
because the larger numbers—being squared—are rela
tively more  important in forming the rms value. 

Sample Problem 19.3.1 Average and rms values

Here are five numbers: 5, 11, 32, 67, and 89.

(a) What is the average value navg of these numbers?

Calculation: We find this from

   n  avg   =   5 + 11 + 32 + 67 + 89  __________________ 
5 

   = 40.8.  (Answer)

(b) What is the rms value nrms of these numbers?

Checkpoint 19.3.1
The following gives the temperatures and molar masses 
(in terms of a basic amount M0) for three gases. Rank the 
gases according to their rms speeds, greatest first.

Gas T M

A 400 K 4M0

B 360 K 3M0

C 280 K 2M0

additional examples, video, and practice available at WileyPLUS
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Translational Kinetic Energy
We again consider a single molecule of an ideal gas as it moves around in the 
box of Fig. 19.3.1, but we now assume that its speed changes when it collides with 
other molecules. Its translational kinetic energy at any instant is   1 _ 2   mv   2  . Its average 
 translational kinetic energy over the time that we watch it is

    K  avg   =  (   1 _ 2    mv   2 )  
avg

   =   1 _ 2   m  ( v   2 )  avg   =   1 _ 2   m v  rms  
2   ,   (19.4.1)

in which we make the assumption that the average speed of the molecule dur
ing our observation is the same as the average speed of all the molecules at any 
given time. (Provided the total energy of the gas is not changing and provided we 
 observe our molecule for long enough, this assumption is appropriate.) Substi
tuting for vrms from Eq. 19.3.5 leads to

  K  avg   =  (   1 _ 2   m)   3RT ____ 
M

   . 

However, M/m, the molar mass divided by the mass of a molecule, is simply 
 Avogadro’s number. Thus,

  K  avg   =   3RT ____ 
 2N  A   

  . 

Using Eq. 19.2.3 (k = R/NA), we can then write

    K  avg   =   3 _ 2   kT.   (19.4.2)

This equation tells us something unexpected:

19.4 TRANSLATIONAL KINETIC ENERGY
Learning Objectives  
After reading this module, you should be able to . . .

19.4.1 For an ideal gas, relate the average kinetic 
energy of the molecules to their rms speed.

19.4.2 Apply the relationship between the average 
kinetic  energy and the temperature of the gas.

19.4.3 Identify that a measurement of a gas tempera-
ture is  effectively a measurement of the average 
kinetic energy of the gas molecules.

Key Ideas  
● The average translational kinetic energy per molecule 
in an ideal gas is

  K  avg   =   1 _ 2    mv  rms  
2   . 

Checkpoint 19.4.1
A gas mixture consists of molecules of types 1, 2, and 3, with molecular masses m1 >  
m2 > m3. Rank the three types according to (a) average  kinetic energy and (b) rms 
speed, greatest first.

● The average translational kinetic energy is related to 
the temperature of the gas:

  K  avg   =   3 _ 2   kT. 

At a given temperature T, all ideal gas molecules—no matter what their mass—
have the same average translational kinetic energy—namely,    3 _ 2   kT. When we 
 measure the temperature of a gas, we are also measuring the average transla
tional kinetic energy of its molecules.
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Mean Free Path
We continue to examine the motion of molecules in an ideal gas. Figure 19.5.1 
shows the path of a typical molecule as it moves through the gas, changing both 
speed and direction abruptly as it collides elastically with other molecules. Between 
collisions, the molecule moves in a straight line at constant speed. Although the 
figure shows the other molecules as stationary, they are (of course) also  moving.

One useful parameter to describe this random motion is the mean free path 
𝜆 of the molecules. As its name implies, 𝜆 is the average distance traversed by a 
molecule between collisions. We expect 𝜆 to vary inversely with N/V, the num
ber of molecules per unit volume (or density of molecules). The larger N/V is, 
the more collisions there should be and the smaller the mean free path. We also 
 expect 𝜆 to vary inversely with the size of the molecules—with their diameter d, 
say. (If the molecules were points, as we have assumed them to be, they would 
never collide and the mean free path would be infinite.) Thus, the larger the 
 molecules are, the smaller the mean free path. We can even predict that 𝜆 should 
vary (inversely) as the square of the molecular diameter because the cross  section 
of a molecule—not its diameter—determines its effective target area.

The expression for the mean free path does, in fact, turn out to be

  λ =   1 ____________  
 √ 

_
 2   π d   2   N / V

      (mean free path). (19.5.1)

To justify Eq. 19.5.1, we focus attention on a single molecule and assume—as 
Fig. 19.5.1 suggests—that our molecule is traveling with a constant speed v and 
that all the other molecules are at rest. Later, we shall relax this assumption.

We assume further that the molecules are spheres of diameter d. A collision 
will then take place if the centers of two molecules come within a distance d of 
each other, as in Fig. 19.5.2a. Another, more helpful way to look at the situation 

19.5 MEAN FREE PATH
Learning Objectives  
After reading this module, you should be able to . . .

19.5.1 Identify what is meant by mean free path.
19.5.2 Apply the relationship between the mean free 

path, the diameter of the molecules, and the number 
of  molecules per unit volume.

Key Idea 
● The mean free path λ of a gas molecule is its average path length between  
collisions and is given by

 λ =   1 ___________ 
  √ 

_
 2   πd   

2
  N / V

  , 

where N/V is the number of molecules per unit volume and d is the molecular 
diameter.

Figure 19.5.1 A molecule traveling 
through a gas, colliding with other 
gas molecules in its path. Although 
the other molecules are shown as sta
tionary, they are also moving  
in a similar fashion.

Figure 19.5.2 (a) A collision occurs when 
the centers of two molecules come within a 
 distance d of each other, d being the molec
ular diameter. (b) An equivalent but more 
convenient representation is to think of the 
moving molecule as having a radius d and 
all other molecules as being points. The 
condition for a collision is unchanged. (b)2d

mm

(a)d d

d

m m
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Figure 19.5.3 In time ∆t the moving molecule effectively sweeps out a cylinder of length 
v ∆t and radius d.

v Δt
2d

Checkpoint 19.5.1
One mole of gas A, with mole c ular diameter 2d0 and average molecular speed v0, is 
placed inside a certain container. One mole of gas B, with molec ular diameter d0 and 
average molecular speed 2v0 (the mol ecules of B are smaller but faster), is placed 
in an identical container. Which gas has the greater average collision rate within its 
 container?

is to consider our single molecule to have a radius of d and all the other molecules 
to be points, as in Fig. 19.5.2b. This does not change our criterion for a collision.

As our single molecule zigzags through the gas, it sweeps out a short cylin
der of crosssectional area 𝜋d2 between successive collisions. If we watch this  
 mol ecule for a time interval ∆t, it moves a distance v ∆t, where v is its assumed 
speed. Thus, if we align all the short cylinders swept out in interval ∆t, we form 
a  composite cylinder (Fig. 19.5.3) of length v ∆t and volume (𝜋d2)(v ∆t). The 
number of collisions that occur in time ∆t is then equal to the number of (point) 
molecules that lie within this cylinder.

Since N/V is the number of molecules per unit volume, the number of mol e
cules in the cylinder is N/V times the volume of the cylinder, or (N/V )(𝜋d2v ∆t). 
This is also the number of collisions in time ∆t. The mean free path is the length 
of the path (and of the cylinder) divided by this number:

 λ =   
 length of path during Δt

   ________________________   
number of collisions in Δt 

   ≈   v Δt ___________ 
 πd   2 v Δt N / V

    

   =   1 _______ 
 πd   2  N / V

   .  (19.5.2)

This equation is only approximate because it is based on the assumption that 
all the molecules except one are at rest. In fact, all the molecules are moving; 
when this is taken properly into account, Eq. 19.5.1 results. Note that it differs 
from the (approximate) Eq. 19.5.2 only by a factor of  1/ √ 

_
 2   .

The approximation in Eq. 19.5.2 involves the two v symbols we canceled. 
The v in the numerator is vavg, the mean speed of the molecules relative to the 
 container. The v in the denominator is vrel, the mean speed of our single mol
ecule relative to the other molecules, which are moving. It is this latter average 
speed that determines the number of collisions. A detailed calculation, taking 
into  account the actual speed distribution of the molecules, gives   v  rel   =   √ 

_
 2  v  avg    and 

thus the factor   √ 
_

 2   .
The mean free path of air molecules at sea level is about 0.1 𝜇m. At an 

altitude of 100 km, the density of air has dropped to such an extent that the 
mean free path rises to about 16 cm. At 300 km, the mean free path is about 
20 km. A problem faced by those who would study the physics and chemistry of 
the upper atmosphere in the laboratory is the unavailability of containers large 
enough to hold gas samples (of Freon, carbon dioxide, and ozone) that simulate 
upper atmospheric conditions. 
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19.6 THE DISTRIBUTION OF MOLECULAR SPEEDS
Learning Objectives  
After reading this module, you should be able to . . .

19.6.1 Explain how Maxwell’s speed distribution law is 
used to find the fraction of molecules with speeds in 
a certain speed range.

19.6.2 Sketch a graph of Maxwell’s speed distribution, 
showing the probability distribution versus speed 
and indicating the relative positions of the average 
speed vavg, the most probable speed vP, and the rms 
speed vrms.

19.6.3 Explain how Maxwell’s speed distribution is 
used to find the average speed, the rms speed, and 
the most  probable speed.

19.6.4 For a given temperature T and molar mass M, 
calculate the average speed vavg, the most probable 
speed vP, and the rms speed vrms.

Key Ideas 
● The Maxwell speed distri bution P(v) is a function 
such that P(v) dv gives the fraction of molecules with 
speeds in the  interval dv at speed v:

 P  (  v )    = 4π  (    M _____ 
2πRT

   )    
3/2

  v   2   e    −Mv   2 /2RT . 

● Three measures of the distribution of speeds among 
the molecules of a gas are

   v  avg   =  √ 
_____

   8RT ____ πM
        (average speed),

   v  P   =  √ 
_____

   2RT ____ 
M

          (most probable speed),

and    v  rms   =  √ 
_____

   3RT ____ 
M

         (rms speed).

Sample Problem 19.5.1 Mean free path, average speed, collision frequency

(a) What is the mean free path 𝜆 for oxygen molecules at 
temperature T = 300 K and pressure p = 1.0 atm? Assume 
that the molecular diameter is d = 290 pm and the gas is 
ideal.

KEY IDEA

Each oxygen molecule moves among other moving oxy
gen molecules in a zigzag path due to the resulting collisions. 
Thus, we use Eq. 19.5.1 for the mean free path.

Calculation: We first need the number of molecules per 
unit volume, N/V. Because we assume the gas is ideal, we 
can use the ideal gas law of Eq. 19.2.5 (pV = NkT) to write 
N/V = p/kT. Substituting this into Eq. 19.5.1, we find

   λ =   1 ___________ 
  √ 

_
 2  πd   

2
   N / V

   =   kT ________ 
  √ 

_
 2  πd   

2
 p

   

 =   
  (1.38 × 10  −23   J/K )  (300 K)

   _________________________________   
 √ 

_
 2  π ( 2.9 × 10  −10  m)  

2
  ( 1.01 × 10  5  Pa) 

   

  =   1.1 × 10   −7   m.  (Answer)

This is about 380 molecular diameters.

(b) Assume the average speed of the oxygen molecules is 
v = 450 m/s. What is the average time t between successive 

collisions for any given molecule? At what rate does the mol
ecule collide; that is, what is the frequency f of its collisions?

KEY IDEAS

(1) Between collisions, the molecule travels, on average, 
the mean free path 𝜆 at speed v. (2) The average rate or 
frequency at which the collisions  occur is the inverse of 
the time t between collisions.

Calculations: From the first key idea, the average time 
 between collisions is

   t =   distance ________ 
speed

   =   λ ___ v   =    1.1 × 10  −7  m  ___________ 
450 m / s

   

   =   2.44 × 10   −10   s ≈ 0.24 ns.  (Answer)

This tells us that, on average, any given oxygen molecule 
has less than a nanosecond between collisions.

From the second key idea, the collision frequency is

  f =   1 __ t   =   1 _____________  
 2.44 × 10  −10   s 

   =  4.1 × 10  9   s  −1 .   (Answer)

This tells us that, on average, any given oxygen molecule 
makes about 4 billion collisions per second.

additional examples, video, and practice available at WileyPLUS
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The Distribution of Molecular Speeds
The rootmeansquare speed vrms gives us a general idea of molecular speeds in 
a gas at a given temperature. We often want to know more. For example, what 
fraction of the molecules have speeds greater than the rms value? What fraction 
have speeds greater than twice the rms value? To answer such questions, we need 
to know how the possible values of speed are distributed among the molecules. 
Figure 19.6.1a shows this distribution for oxygen molecules at room temperature 
(T = 300 K); Fig. 19.6.1b compares it with the distribution at T = 80 K.

In 1852, Scottish physicist James Clerk Maxwell first solved the problem of 
finding the speed distribution of gas molecules. His result, known as Maxwell’s 
speed distribution law, is

 P  (  v )    = 4π  (    M _____ 
2πRT

   )    
3/2

   v   2   e    −Mv   2 /2RT .  (19.6.1)

Here M is the molar mass of the gas, R is the gas constant, T is the gas temper
ature, and v is the molecular speed. It is this equation that is plotted in  
Fig. 19.6.1a, b. The quantity P(v) in Eq. 19.6.1 and Fig. 19.6.1 is a probability distri-
bution function: For any speed v, the product P(v) dv (a dimensionless quantity) is 
the fraction of molecules with speeds in the interval dv centered on speed v.

As Fig. 19.6.1a shows, this fraction is equal to the area of a strip with height 
P(v) and width dv. The total area under the distribution curve corresponds to 
the fraction of the molecules whose speeds lie between zero and infinity. All 
 molecules fall into this category, so the value of this total area is unity; that is,

    
0
  
 ∞     

  P(v) dv = 1.   (19.6.2)

The fraction (frac) of molecules with speeds in an interval of, say, v1 to v2 is then

 frac  =     
v1

  
v2

  P(v) dv.   (19.6.3)

Average, RMS, and Most Probable Speeds
In principle, we can find the average speed vavg of the molecules in a gas with 
the following procedure: We weight each value of v in the distribution; that is, 
we multiply it by the fraction P(v) dv of molecules with speeds in a differential 
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Figure 19.6.1 (a) The Maxwell speed distribution for oxy
gen molecules at T = 300 K. The three characteristic speeds 
are marked. (b) The curves for 300 K and 80 K. Note that 
the molecules move more slowly at the lower temperature. 
Because these are probability  distributions, the area under 
each curve has a numerical value of unity.

A

c19TheKineticTheoryOfGases.indd   590 05/05/21   9:04 PM
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interval dv centered on v. Then we add up all these values of v P(v) dv. The result 
is vavg. In practice, we do all this by evaluating

    v  avg   =   
 0      

  
 ∞      

  v  P  (  v )   dv.     (19.6.4)

Substituting for P(v) from Eq. 19.6.1 and using generic integral 20 from the list of 
integrals in Appendix E, we find

    v  avg   =  √ 
_____

   8RT ____ πM
         (average speed).  (19.6.5)

Similarly, we can find the average of the square of the speeds (v2)avg with

 (   v2)  avg   =   
 0      

  
 ∞      

  v2  P  (  v )   dv.    (19.6.6)

Substituting for P(v) from Eq. 19.6.1 and using generic integral 16 from the list of 
integrals in Appendix E, we find

   ( v   2 )  avg   =   3RT ____ 
M 

  .   (19.6.7)

The square root of (v2)avg is the rootmeansquare speed vrms. Thus,

    v  rms   =  √ 
_____

   3RT ____ 
M

         (rms speed), (19.6.8)

which agrees with Eq. 19.3.5.
The most probable speed vP is the speed at which P(v) is maximum (see  

Fig. 19.6.1a). To calculate vP, we set dP/dv = 0 (the slope of the curve in Fig. 19.6.1a 
is zero at the maximum of the curve) and then solve for v. Doing so, we find

    v  P   =  √ 
_____

   2RT ____ 
M

         (most probable speed). (19.6.9)

A molecule is more likely to have speed vP than any other speed, but some  molecules 
will have speeds that are many times vP. These molecules lie in the  high-speed tail 
of a distribution curve like that in Fig. 19.6.1a. Such higher speed molecules make 
possible both rain and sunshine (without which we could not exist):

Rain The speed distribution of water molecules in, say, a pond at summer
time temperatures can be represented by a curve similar to that of Fig. 19.6.1a. 
Most of the molecules lack the energy to escape from the surface. However, a 
few of the molecules in the highspeed tail of the curve can do so. It is these water 
molecules that evaporate, making clouds and rain possible.

As the fast water molecules leave the surface, carrying energy with them, 
the  temperature of the remaining water is maintained by heat transfer from the 
surroundings. Other fast molecules—produced in particularly favorable  collisions—
quickly take the place of those that have left, and the speed distribution is maintained.

Sunshine Let the distribution function of Eq. 19.6.1 now refer to protons in 
the core of the Sun. The Sun’s energy is supplied by a nuclear fusion process 
that starts with the merging of two protons. However, protons repel each other 
 because of their electrical charges, and protons of average speed do not have 
enough kinetic energy to overcome the repulsion and get close enough to merge. 
Very fast protons with speeds in the highspeed tail of the distribution curve can 
do so, however, and for that reason the Sun can shine.

Checkpoint 19.6.1
For any given temperature, rank the three measures of speed—vavg, vP, and vrms—
greatest first. 
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The total area under the plot of P(v) in Fig. 19.6.1a is 
the total fraction of molecules (unity), and the area of the 
thin gold strip (not to scale) is the fraction we seek. Let’s 
evaluate frac in parts:

 frac = (4𝜋)(A)(v2)(eB)(∆v), (19.6.10)

where

 A =   (   M _____ 
2πRT

   )   
3/2

  =   (   
0.0320 kg/mol 

  _____________________________   
 (2π) (8.31 J / mol ⋅ K) (300 K)  

  )   
3/2

  

  =   2.92 × 10   −9     s  3  /  m  3  

 and B = −   M v   2  ____ 
2RT

   = −   
(0.0320 kg/mol)  (600 m/ s)  2 

   _______________________   
(2) (8.31 J/mol ⋅ K) (300 K)  

    

  = − 2.31. 

Substituting A and B into Eq. 19.6.10 yields

 frac = (4𝜋)(A)(v2)(eB)(∆v)

 = (4𝜋)(2.92 × 10−9 s3/m3)(600 m/s)2(e−2.31)(2 m/s)

 = 2.62 × 10−3 = 0.262%.  (Answer)

Sample Problem 19.6.1 Speed distribution in a gas

In oxygen (molar mass M = 0.0320 kg/mol) at room tem
perature (300 K), what fraction of the molecules have 
speeds in the interval 599 to 601 m/s?

KEY IDEAS

1. The speeds of the molecules are distributed over a wide 
range of values, with the distribution P(v) of Eq. 19.6.1.

2.  The fraction of molecules with speeds in a differential 
 interval dv is P(v) dv.

3.  For a larger interval, the fraction is found by integrat
ing P(v) over the interval.

4.   However, the interval ∆v = 2 m/s here is small compared 
to the speed v = 600 m/s on which it is centered.

Calculations: Because ∆v is small, we can avoid the inte
gration by approximating the fraction as

 frac = P  (  v )    Δv = 4π  (  M _____ 
2πRT

  )   
3/2

  v   2   e    −Mv   2 /2RT   Δv. 

Calculation: We end up with Eq. 19.6.8, which gives us

   v  rms   =  √ 
_____

   3RT ____ 
M

       

  =  √ 

______________________

     
3 (8.31 J/mol ⋅ K) (300 K)  

   ______________________  
 0.0320 kg / mol 

     

  = 483 m / s.  (Answer)

This result, plotted in Fig. 19.6.1a, is greater than vavg 
because the greater speed values influence the calculation 
more when we integrate the v2 values than when we inte
grate the v values.

(c) What is the most probable speed vP at 300 K?

KEY IDEA

Speed vP corresponds to the maximum of the distribution 
function P(v), which we obtain by setting the derivative 
dP/dv = 0 and solving the result for v. 

Calculation : We end up with Eq. 19.6.9, which gives us

   v  P   =  √ 
_____

   2RT ____ 
M

       

  =  √ 

______________________

     
2  (  8.31 J/mol ⋅ K )    (  300 K )    

   ______________________  
 0.0320 kg/mol 

     

  = 395 m / s.  (Answer)

This result is also plotted in Fig. 19.6.1a.

Sample Problem 19.6.2 Average speed, rms speed, most probable speed

The molar mass M of oxygen is 0.0320 kg/mol.

(a) What is the average speed vavg of oxygen gas mole
cules at T = 300 K?

KEY IDEA

To find the average speed, we must weight speed v with 
the distribution function P(v) of Eq. 19.6.1 and then inte
grate the resulting expression over the range of possible 
speeds (from zero to the limit of an infinite speed).

Calculation: We end up with Eq. 19.6.5, which gives us

   v  avg   =  √ 
_____

   8RT ____ πM
       

  =  √ 

______________________

     
8  (  8.31 J/mol ⋅ K )    (  300 K )    

   ______________________  
π  (  0.0320 kg/mol )   

     

  = 445 m / s.  (Answer)

This result is plotted in Fig. 19.6.1a.

(b) What is the rootmeansquare speed vrms at 300 K?

KEY IDEA

To find vrms, we must first find (v2)avg by weighting v2 with 
the distribution function P(v) of Eq. 19.6.1 and then inte
grating the expression over the range of possible speeds. 
Then we must take the square root of the result. 

additional examples, video, and practice available at WileyPLUS
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The Molar Specific Heats of an Ideal Gas
In this module, we want to derive from molecular considerations an expression for 
the internal energy Eint of an ideal gas. In other words, we want an expression for 
the energy associated with the random motions of the atoms or molecules in the gas. 
We shall then use that expression to derive the molar specific heats of an ideal gas.

Internal Energy Eint

Let us first assume that our ideal gas is a monatomic gas (individual atoms rather 
than molecules), such as helium, neon, or argon. Let us also assume that the 
internal energy Eint is the sum of the translational kinetic energies of the atoms. 
(Quantum theory disallows rotational kinetic energy for individual atoms.)

The average translational kinetic energy of a single atom depends only on the 
gas temperature and is given by Eq. 19.4.2 as   K  avg   =  3 _ 2  kT . A sample of n moles of 
such a gas contains nNA atoms. The internal energy Eint of the sample is then

    E   int   =   (   nN  A   )    K   avg   =   (   nN  A   )     (    3 _ 2   kT )   .   (19.7.1)

19.7 THE MOLAR SPECIFIC HEATS OF AN IDEAL GAS
Learning Objectives  
After reading this module, you should be able to . . .

19.7.1 Identify that the internal energy of an ideal mona-
tomic gas is the sum of the translational kinetic ener-
gies of its atoms.

19.7.2 Apply the relationship between the internal 
energy Eint of a monatomic ideal gas, the number of 
moles n, and the gas temperature T.

19.7.3 Distinguish between monatomic, diatomic, and 
 polyatomic ideal gases.

19.7.4 For monatomic, diatomic, and polyatomic 
ideal gases, evaluate the molar specific heats for a 
constant-volume process and a constant-pressure 
process.

19.7.5 Calculate a molar specific heat at constant pres-
sure Cp by adding R to the molar specific heat at 
constant  volume CV, and explain why (physically) Cp 
is greater.

19.7.6 Identify that the energy transferred to an ideal 
gas as heat in a constant-volume process goes 

entirely into the  internal energy (the random trans-
lational motion) but that in a constant-pressure 
process energy also goes into the work done to 
expand the gas.

19.7.7 Identify that for a given change in temperature, 
the change in the internal energy of an ideal gas is 
the same for any process and is most easily calcu-
lated by assuming a constant-volume process.

19.7.8 For an ideal gas, apply the relationship between 
heat Q, number of moles n, and temperature change 
∆T, using the appropriate molar specific heat.

19.7.9 Between two isotherms on a p-V diagram, 
sketch a constant-volume process and a constant-
pressure process, and for each identify the work 
done in terms of area on the graph.

19.7.10 Calculate the work done by an ideal gas for a 
constant-pressure process.

19.7.11 Identify that work is zero for constant volume.

Key Ideas  
● The molar specific heat CV of a gas at constant vol-
ume is  defined as

  C   V   =   
 Q

 _____ 
n ΔT

   =   
 ΔE   int   _____ 
n ΔT

  , 

in which Q is the energy transferred as heat to or from 
a  sample of n moles of the gas, ∆T is the resulting 
temperature change of the gas, and ∆Eint is the result-
ing change in the  internal energy of the gas. 

● For an ideal monatomic gas,

  C   V   =   3 _ 2   R = 12.5 J/mol ⋅ K. 

● The molar specific heat Cp of a gas at constant 

pressure is  defined to be

  C  p   =   
Q
 _____ 

n ΔT
  , 

in which Q, n, and ΔT are defined as above. Cp is also 
given by

Cp = CV + R.

● For n moles of an ideal gas,

Eint = nCVT   (ideal gas).

● If n moles of a confined ideal gas undergo a temper-
ature change ∆T due to any process, the change in the 
internal  energy of the gas is

∆Eint = nCV ∆T   (ideal gas, any process).
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With Eq. 19.7.2 in hand, we are now able to derive an expression for the 
 molar specific heat of an ideal gas. Actually, we shall derive two expressions. 
One is for the case in which the volume of the gas remains constant as energy 
is transferred to or from it as heat. The other is for the case in which the pres
sure of the gas remains constant as energy is transferred to or from it as heat. 
The symbols for these two molar specific heats are CV and Cp, respectively. 
(By convention, the capital letter C is used in both cases, even though CV and 
Cp represent types of specific heat and not heat capacities.)

Molar Specific Heat at Constant Volume
Figure 19.7.1a shows n moles of an ideal gas at pressure p and temperature T, 
 confined to a cylinder of fixed volume V. This initial state i of the gas is marked 
on the p-V diagram of Fig. 19.7.1b. Suppose now that you add a small amount 
of  energy to the gas as heat Q by slowly turning up the temperature of the 
thermal reservoir. The gas temperature rises a small amount to T + ∆T, and its 
pressure rises to p + ∆p, bringing the gas to final state f. In such experiments, 
we would find that the heat Q is related to the tem perature change ∆T by

 Q = nCV ∆T   (constant volume), (19.7.3)

where CV is a constant called the molar specific heat at constant volume. Substi
tuting this expression for Q into the first law of thermodynamics as given by 
Eq. 18.5.3 (∆Eint = Q − W ) yields

 ∆Eint = nCV ∆T − W. (19.7.4)

With the volume held constant, the gas cannot expand and thus cannot do any 
work. Therefore, W = 0, and Eq. 19.7.4 gives us

   C   V   =   
 ΔE   int   _____ 
n ΔT

   .  (19.7.5)

From Eq. 19.7.2, the change in internal energy must be

    Δ E   int   =   3 _ 2   nR ΔT.    (19.7.6)

Substituting this result into Eq. 19.7.5 yields

    C   V   =   3 _ 2   R = 12.5 J/mol ⋅ K      (monatomic gas). (19.7.7)

As Table 19.7.1 shows, this prediction of the kinetic theory (for ideal gases) 
agrees very well with experiment for real monatomic gases, the case that we 
have  assumed. The (predicted and) experimental values of CV for diatomic gases 
(which have molecules with two atoms) and polyatomic gases (which have mol
ecules with more than two atoms) are greater than those for monatomic gases 
for reasons that will be suggested in Module 19.8. Here we make the prelimi
nary assumption that the CV values for diatomic and polyatomic gases are greater 
than for monatomic gases because the more complex molecules can rotate and 
thus have rotational kinetic energy. So, when Q is transferred to a diatomic or 

Figure 19.7.1 (a) The temperature 
of an ideal gas is raised from T to 
T + ∆T in a constantvolume process. 
Heat is added, but no work is done. 
(b) The process on a p-V diagram.
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Using Eq. 19.2.3 (k = R/NA), we can rewrite this as

  E  int   =   3 _ 2   nRT   (monatomic ideal gas). (19.7.2)

Table 19.7.1 Molar Specific Heats at 
Constant Volume

  CV  
Molecule      Example (J/mol · K)

Monatomic
 Ideal    3 _ 2   R = 12.5

 
Real

 He 12.5
  Ar 12.6

Diatomic
 Ideal    5 _ 2   R = 20.8

 
Real

 N2 20.7
  O2 20.8

Polyatomic
 Ideal 3R = 24.9

 
Real

 NH4 29.0
  CO2 29.7

The internal energy Eint of an ideal gas is a function of the gas temperature 
only; it does not depend on any other variable.

c19TheKineticTheoryOfGases.indd   594 05/05/21   9:04 PM
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polyatomic gas, only part of it goes into the translational kinetic energy, 
increasing the temperature. (For now we neglect the possibility of also put
ting energy into oscillations of the molecules.)

We can now generalize Eq. 19.7.2 for the internal energy of any ideal gas 
by substituting CV for    3 _ 2   R; we get

 Eint = nCVT   (any ideal gas). (19.7.8)

This equation applies not only to an ideal monatomic gas but also to diatomic 
and polyatomic ideal gases, provided the appropriate value of CV is used. 
Just as with Eq. 19.7.2, we see that the internal energy of a gas depends on 
the temper ature of the gas but not on its pressure or density.

When a confined ideal gas undergoes temperature change ∆T, then from 
either Eq. 19.7.5 or Eq. 19.7.8 the resulting change in its internal energy is

 ∆Eint = nCV ∆T   (ideal gas, any process). (19.7.9)

This equation tells us:

Figure 19.7.2 Three paths represent
ing three different processes that take 
an ideal gas from an initial state i at 
temperature T to some final state f 
at temperature T + ∆T. The change 
∆Eint in the internal energy of the gas 
is the same for these three processes 
and for any  others that result in the 
same change of temperature.
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As examples, consider the three paths between the two isotherms in the 
p-V diagram of Fig. 19.7.2. Path 1 represents a constant volume process. Path 2 
 represents a constantpressure process (we examine it next). Path 3 represents a 
process in which no heat is exchanged with the system’s environment (we 
discuss this in Module 19.9). Although the values of heat Q and work W 
associated with these three paths differ, as do pf and Vf , the values of ∆Eint 
 associated with the three paths are identical and are all given by Eq. 19.7.9, 
 because they all involve the same temperature change ∆T. Therefore, no 
matter what path is actually taken between T and T + ∆T, we can always use 
path 1 and Eq. 19.7.9 to compute ∆Eint easily.

Molar Specific Heat at Constant Pressure
We now assume that the temperature of our ideal gas is increased by the 
same small amount ∆T as previously but now the necessary energy (heat 
Q) is added with the gas under constant pressure. An experiment for doing 
this is shown in Fig. 19.7.3a; the p-V diagram for the process is plotted in 
Fig. 19.7.3b. From such experiments we find that the heat Q is related to the 
temperature change ∆T by

 Q = nCp ∆T   (constant pressure), (19.7.10)

where Cp is a constant called the molar specific heat at constant pressure. 
This Cp  is greater than the molar specific heat at constant volume CV, 
because energy must now be supplied not only to raise the temperature of 
the gas but also for the gas to do work—that is, to lift the weighted piston 
of Fig. 19.7.3a.

To relate molar specific heats Cp and CV, we start with the first law of 
ther modynamics (Eq. 18.5.3):
 ∆Eint = Q − W.    (19.7.11)

We next replace each term in Eq. 19.7.11. For ∆Eint, we substitute from Eq. 
19.7.9. For Q, we substitute from Eq. 19.7.10. To replace W, we first note 
that since the pressure remains constant, Eq. 19.2.12 tells us that W = p ∆V. 
Then we note that, using the ideal gas equation (pV = nRT), we can write

 W = p ∆V = nR ∆T.    (19.7.12)
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Figure 19.7.3 (a) The temperature 
of an ideal gas is raised from T to 
T + ∆T in a constantpressure pro
cess. Heat is added and work is done 
in lifting the loaded  piston. (b) The 
process on a p-V diagram. The work  
p ∆V is given by the shaded area.

A change in the internal energy Eint of a confined ideal gas depends on only the 
change in the temperature, not on what type of process produces the change.
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Making these substitutions in Eq. 19.7.11 and then dividing through by n ∆T, 
we find

CV = Cp − R
and then

 Cp = CV + R. (19.7.13)

This prediction of kinetic theory agrees well with experiment, not only for mona
tomic gases but also for gases in general, as long as their density is low enough so 
that we may treat them as ideal.

The left side of Fig. 19.7.4 shows the relative values of Q for a monatomic 
gas undergoing either a constantvolume process    (  Q =   3 _ 2   nR ΔT )     or a constant 
pressure process    (  Q =   5 _ 2   nR ΔT )    . Note that for the latter, the value of Q is higher 
by the amount W, the work done by the gas in the expansion. Note also that for 
the constantvolume process, the energy added as Q goes entirely into the change 
in internal energy ∆Eint and for the constantpressure process, the energy added 
as Q goes into both ∆Eint and the work W.

Monatomic Diatomic

nR ΔT7__
2

nR ΔT5__
2

nR ΔT Q @ con V

Q @ con p

W

W ΔEint trans

3__
2

ΔEint trans

Q @ con V

Q @ con p

W

ΔEint trans
rotation

trans
rotation

ΔEint

W
Figure 19.7.4 The relative 
values of Q for a mona
tomic gas (left side) and 
a diatomic gas undergo
ing a constantvolume 
process (labeled “con V”) 
and a constantpressure 
process (labeled “con p”). 
The transfer of the 
energy into work W and 
internal energy (∆Eint) is 
noted.

Checkpoint 19.7.1
The figure here shows five paths traversed by a gas on a 
p-V diagram. Rank the paths according to the change in 
internal energy of the gas, greatest first.

p

V
T1

T2

T3
4

3
2

1

5

heat at constant pressure Cp and Eq. 19.7.10,

 Q = nCp ∆T, (19.7.14)

to find Q. To evaluate Cp we go to Eq. 19.7.13, which 
tells us that  for any ideal gas, Cp = CV + R. Then from 
Eq. 19.7.7, we know that for any monatomic gas (like the 
helium here),   C   V   =  3 _ 2  R . Thus, Eq. 19.7.14 gives us

  Q = n  (   C   V   + R )    ΔT = n  (    3 _ 2   R + R )    ΔT = n  (    5 _ 2   R )    ΔT 

  =   (  5.00 mol )    (  2.5 )    (  8.31 J/mol ⋅ K )     (  20.0 C° )      

  = 2077.5 J ≈ 2080 J.  (Answer)

(b) What is the change ∆Eint in the internal energy of the 
 helium during the temperature increase?

Sample Problem 19.7.1 Monatomic gas, heat, internal energy, and work

A bubble of 5.00 mol of helium is submerged at a certain 
depth in liquid water when the water (and thus the helium) 
undergoes a temperature increase ∆T of 20.0 C° at constant 
pressure. As a result, the bubble expands. The helium is 
monatomic and ideal.

(a) How much energy is added to the helium as heat dur
ing the increase and expansion?

KEY IDEA

Heat Q is related to the temperature change ∆T by a 
molar specific heat of the gas. 

Calculations: Because the pressure p is held constant 
during the addition of energy, we use the molar specific 
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KEY IDEA

Because the bubble expands, this is not a  constantvolume 
process. However, the helium is nonetheless confined (to 
the bubble). Thus, the change ∆Eint is the same as would 
occur in a constantvolume process with the same tem
perature change ∆T.

Calculation: We can now easily find the constant volume 
change ∆Eint with Eq. 19.7.9:

   ΔE  int   =   nC   V    ΔT = n  (    3 _ 2   R )    ΔT 

  =   (  5.00 mol )    (  1.5 )    (  8.31 J/mol ⋅ K )     (  20.0 C° )      

  = 1246.5 J ≈ 1250 J.  (Answer)

(c) How much work W is done by the helium as it expands 
against the pressure of the surrounding water during the 
temperature increase?

KEY IDEAS

The work done by any gas expanding against the pressure 
from its environment is given by Eq. 19.2.7, which tells us 
to integrate p dV. When the pressure is constant (as here), 

we can simplify that to W = p ∆V. When the gas is ideal 
(as here), we can use the ideal gas law (Eq. 19.2.1) to write 
p ∆V = nR ∆T.

Calculation: We end up with

  W = nR ΔT 
  =   (  5.00 mol )    (  8.31 J/mol ⋅ K )     (  20.0 C° )     
  = 831 J.  (Answer)

Another way: Because we happen to know Q and ∆Eint, 
we can work this problem another way: We can  account 
for the energy changes of the gas with the first law of ther
modynamics, writing

W = Q − ∆Eint = 2077.5 J − 1246.5 J

 = 831 J. (Answer)

The transfers: Let’s follow the energy. Of the 2077.5 J 
transferred to the helium as heat Q, 831 J goes into the 
work W required for the expansion and 1246.5 J goes into 
the internal energy Eint, which, for a monatomic gas, is 
entirely the kinetic energy of the atoms in their transla
tional motion. These several results are suggested on the 
left side of Fig. 19.7.4.

19.8 DEGREES OF FREEDOM AND MOLAR SPECIFIC HEATS
Learning Objectives  
After reading this module, you should be able to . . .

19.8.1 Identify that a degree of freedom is associated 
with each way a gas can store energy (translation, 
rotation, and oscillation).

19.8.2 Identify that an energy of   1 _ 2  kT  per molecule is 
associated with each degree of freedom.

19.8.3 Identify that a monatomic gas can have an inter-
nal  energy consisting of only translational motion.

19.8.4 Identify that at low temperatures a diatomic gas 
has  energy in only translational motion, at higher tem-
peratures it also has energy in molecular rotation, and 
at even higher temperatures it can also have energy in 
molecular oscillations.

19.8.5 Calculate the molar specific heat for monatomic 
and diatomic ideal gases in a constant-volume pro-
cess and a constant-pressure process.

Key Ideas  
● We find CV by using the equipartition of energy 
theorem, which states that every  degree of freedom 
of a molecule (that is, every independent way it can 
store energy) has  associated with it—on average—an 
energy    1 _ 2   kT per molecule ( =    1 _ 2   RT per mole). 

● If f is the number of degrees of freedom, then  

Eint  =  ( f /2)nRT and

  C   V   =  (  
f
 __ 

2
  ) R = 4.16f J/mol ⋅ K. 

● For monatomic gases f = 3 (three translational 
degrees); for diatomic gases f = 5 (three translational 
and two rotational degrees).

Degrees of Freedom and Molar Specific Heats
As Table 19.7.1 shows, the prediction that   C   V   =   3 _ 2  R  agrees with experiment for 
monatomic gases but fails for diatomic and polyatomic gases. Let us try to explain 
the discrepancy by considering the possibility that molecules with more than one 
atom can store internal energy in forms other than translational  kinetic energy.

additional examples, video, and practice available at WileyPLUS
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He

O
O

(b) O2

(a) He

H

H
H

H

C

(c) CH4

Figure 19.8.1 Models of molecules as 
used in kinetic theory: (a) helium, 
a typical monatomic molecule; (b) 
oxygen, a typical diatomic molecule; 
and (c) methane, a  typical polyatomic 
molecule. The spheres represent 
atoms, and the lines between them 
represent bonds. Two rotation axes 
are shown for the oxygen molecule.

Let us apply the theorem to the translational and rotational motions of the 
molecules in Fig. 19.8.1. (We discuss oscillatory motion below.) For the transla
tional motion, superimpose an xyz coordinate system on any gas. The molecules 
will, in general, have velocity components along all three axes. Thus, gas mole
cules of all types have three degrees of translational freedom (three ways to move 
in translation) and, on average, an associated energy of  3  (    1 _ 2  kT )     per molecule.

For the rotational motion, imagine the origin of our xyz coordinate system at 
the center of each molecule in Fig. 19.8.1. In a gas, each molecule should be able 
to rotate with an angular velocity component along each of the three axes, so each 
gas should have three degrees of rotational freedom and, on average, an  additional 
energy of  3  (    1 _ 2  kT )     per molecule. However, experiment shows this is true only for the 
polyatomic molecules. According to quantum theory, the physics dealing with the 
allowed motions and energies of molecules and atoms, a monatomic gas molecule 
does not rotate and so has no rotational energy (a single atom cannot rotate like a 
top). A diatomic molecule can rotate like a top only about axes perpendicular to the 
line connecting the atoms (the axes are shown in Fig. 19.8.1b) and not about that 
line itself. Therefore, a diatomic molecule can have only two degrees of rotational 
freedom and a rotational energy of only  2  (    1 _ 2  kT )     per molecule.

To extend our analysis of molar specific heats (Cp and CV in Module 19.7) to 
ideal diatomic and polyatomic gases, it is necessary to retrace the derivations of 
that analysis in detail. First, we replace Eq. 19.7.2   ( E   int   =  3 _ 2  nRT )     with Eint = ( f/2)
nRT, where f is the number of degrees of freedom listed in Table 19.8.1. Doing 
so leads to the prediction

   C  V   =  (  
 f
 __ 

2
  ) R = 4.16f J/mol ⋅ K,  (19.8.1)

which agrees—as it must—with Eq. 19.7.7 for monatomic gases ( f = 3). As 
Table 19.7.1 shows, this prediction also agrees with experiment for diatomic gases 
( f = 5), but it is too low for polyatomic gases ( f = 6 for molecules comparable 
to CH4).

Table 19.8.1 Degrees of Freedom for Various Molecules

 Degrees of Freedom Predicted Molar Specific Heats

Molecule Example Translational Rotational Total ( f ) CV (Eq. 19.8.1) Cp = CV + R

Monatomic He 3 0 3   3 _ 2  R    5 _ 2  R 

Diatomic O2 3 2 5   5 _ 2  R    7 _ 2  R 

Polyatomic CH4 3 3 6 3R 4R

Figure 19.8.1 shows common models of helium (a monatomic molecule, con
taining a single atom), oxygen (a diatomic molecule, containing two atoms), and 
methane (a polyatomic molecule). From such models, we would assume that all 
three types of molecules can have translational motions (say, moving left–right 
and up–down) and rotational motions (spinning about an axis like a top). In 
 addition, we would assume that the diatomic and polyatomic molecules can have 
oscillatory motions, with the atoms oscillating slightly toward and away from one 
another, as if attached to opposite ends of a spring.

To keep account of the various ways in which energy can be stored in a gas, 
James Clerk Maxwell introduced the theorem of the equipartition of energy:

Every kind of molecule has a certain number f of degrees of freedom, which are 
independent ways in which the molecule can store energy. Each such degree of 
 freedom has associated with it—on average—an energy of   1 _ 2  kT  per molecule  
(or   1 _ 2  RT  per mole).
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Checkpoint 19.8.1
Here are three gases with the same value of n that will undergo constantvolume pro
cesses with the same temperature change of ΔT = 10 C°.

1. Monatomic gas
2. Diatomic gas without rotation
3. Diatomic gas with rotation

(a) Rank the processes according to the value of the molar specific heat at constant 
volume CV, greatest first. (b) Next, rank them according to the value of the change 
ΔKtran in the translational kinetic energy, greatest first. (c) Now rank them according 
to the value of the change ΔEint in the internal energy, greatest first.

Sample Problem 19.8.1 Diatomic gas, heat, temperature, internal energy

We transfer 1000 J as heat Q to a diatomic gas, allowing 
the gas to expand with the pressure held constant. The gas 
molecules each rotate around an internal axis but do not 
oscillate. How much of the 1000 J goes into the increase of 
the gas’s internal energy? Of that amount, how much goes 
into ∆Ktran (the kinetic energy of the translational motion 
of the molecules) and ∆Krot (the kinetic energy of their 
rotational motion)?

KEY IDEAS

1.   The transfer of energy as heat Q to a gas under con
stant pressure is related to the resulting temperature 
increase ∆T via Eq. 19.7.10 (Q = nCp ∆T ).

2.  Because the gas is diatomic with molecules undergoing 
rotation but not oscillation, the molar specific heat is, 
from Fig. 19.7.4 and Table 19.8.1,   C   p   =  7 _ 2  R .

3.  The increase ∆Eint in the internal energy is the same 
as would occur with a constantvolume process result
ing in the same ∆T. Thus, from Eq. 19.7.9, ∆Eint =  
nCV ∆T. From Fig. 19.7.4 and Table 19.8.1, we see that   
C    V   =  5 _ 2  R .

4.  For the same n and ∆T, ∆Eint is greater for a diatomic 
gas than for a monatomic gas because additional 
energy is required for rotation. 

Increase in Eint: Let’s first get the temperature change ∆T 
due to the transfer of energy as heat. From Eq. 19.7.10, sub
stituting   7 _ 2  R  for Cp, we have

  ΔT =   
Q
 ____ 

  7 _ 2   nR
  .  (19.8.2)

We next find ΔEint from Eq. 19.7.9, substituting the molar 
specific heat   C   V     (  =   5 _ 2   R )     for a constantvolume process  
and using the same ΔT. Because we are dealing with a 

diatomic gas, let’s call this change ΔEint,dia. Equation 
19.7.9 gives us

   ΔE   int,dia   =   nC   V    ΔT = n   5 _ 2   R (   
Q
 ____ 

 7 _ 2  nR
  )  =   5 _ 7   Q 

   = 0.71428Q = 714.3 J.  (Answer)

In words, about 71% of the energy transferred to the gas 
goes into the internal energy. The rest goes into the work 
required to increase the volume of the gas, as the gas 
pushes the walls of its container outward.

Increases in K: If we were to increase the temperature of 
a monatomic gas (with the same value of n) by the amount 
given in Eq. 19.8.2, the internal energy would change by 
a smaller amount, call it ∆Eint, mon, because rotational 
motion is not involved. To calculate that smaller amount, 
we still use Eq. 19.7.9 but now we substitute the value of 
CV for a monatomic gas—namely,   C   V   =  3 _ 2  R . So,

  ΔE   int,mon   = n   3 _ 2   R ΔT. 

Substituting for ∆T from Eq. 19.8.2 leads us to

   ΔE    int,mon   = n   3 _ 2   R (  
Q
 ____ 

n  7 _ 2  R
  )  =   3 _ 7   Q 

 = 0.42857Q = 428.6 J. 

For the monatomic gas, all this energy would go into the 
kinetic energy of the translational motion of the atoms. 
The important point here is that for a diatomic gas with 
the same values of n and ∆T, the same amount of energy 
goes into the kinetic energy of the translational motion of 
the molecules. The rest of ∆Eint,dia (that is, the additional 
285.7 J) goes into the rotational motion of the molecules. 
Thus, for the diatomic gas,

 ∆Ktrans = 428.6 J  and  ∆Krot = 285.7 J. (Answer)

additional examples, video, and practice available at WileyPLUS
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A Hint of Quantum Theory
We can improve the agreement of kinetic theory with experi
ment by including the oscillations of the atoms in a gas of 
diatomic or polyatomic molecules. For  example, the two atoms 
in the O2 molecule of Fig. 19.8.1b can oscillate toward and away 
from each other, with the interconnecting bond acting like a 
spring. However, experiment shows that such oscillations occur 
only at relatively high temperatures of the gas—the motion is 
“turned on” only when the gas molecules have relatively large 
energies. Rotational motion is also subject to such “turning 
on,” but at a lower temperature.

Figure 19.8.2 is of help in seeing this turning on of rotational 
motion and  oscillatory motion. The ratio CV/R for diatomic 

hydrogen gas (H2) is plotted there against temperature, with the temperature 
scale logarithmic to cover several  orders of magnitude. Below about 80 K, we 
find that CV/R = 1.5. This result  implies that only the three translational degrees 
of freedom of hydrogen are  involved in the specific heat.

As the temperature increases, the value of CV/R gradually increases to 2.5, 
implying that two additional degrees of freedom have become involved. Quantum 
theory shows that these two degrees of freedom are associated with the rotational 
motion of the hydrogen molecules and that this motion requires a  certain mini
mum amount of energy. At very low temperatures (below 80 K), the molecules 
do not have enough energy to rotate. As the temperature increases from 80 K, 
first a few molecules and then more and more of them obtain enough energy to 
rotate, and the value of CV/R increases, until all of the molecules are rotating and 
CV/R = 2.5.

Similarly, quantum theory shows that oscillatory motion of the molecules 
 requires a certain (higher) minimum amount of energy. This minimum amount 
is not met until the molecules reach a temperature of about 1000 K, as shown in 
Fig. 19.8.2. As the temperature increases beyond 1000 K, more and more mol
ecules have enough energy to oscillate and the value of CV/R increases, until all 
of the molecules are oscillating and CV/R = 3.5. (In Fig. 19.8.2, the plotted curve 
stops at 3200 K because there the atoms of a hydrogen molecule oscillate so much 
that they overwhelm their bond, and the molecule then dissociates into two sepa
rate atoms.)

The turning on of the rotation and vibration of the diatomic and polyatomic 
molecules is due to the fact that the energies of these motions are quantized, 
that is, restricted to certain values. There is a lowest allowed value for each type 
of motion. Unless the thermal agitation of the surrounding molecules provides 
those lowest amounts, a molecule simply cannot rotate or vibrate.
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Figure 19.8.2 CV/R versus temperature 
for (diatomic) hydrogen gas. Because 
rotational and oscillatory motions 
begin at certain energies, only transla
tion is possible at very low tempera
tures. As the temperature increases, 
rotational motion can begin. At still 
higher temperatures, oscillatory 
motion can begin.

19.9 THE ADIABATIC EXPANSION OF AN IDEAL GAS
Learning Objectives  
After reading this module, you should be able to . . .

19.9.1 On a p-V diagram, sketch an adiabatic expan-
sion (or contraction) and identify that there is no heat 
exchange Q with the environment.

19.9.2 Identify that in an adiabatic expansion, the gas 
does work on the environment, decreasing the gas’s 
internal  energy, and that in an adiabatic contrac-
tion, work is done on the gas, increasing the internal 
energy.

19.9.3 In an adiabatic expansion or contraction, relate the 
initial pressure and volume to the final pressure and 
volume.

19.9.4 In an adiabatic expansion or contraction, relate 
the initial temperature and volume to the final tem-
perature and volume.

19.9.5 Calculate the work done in an adiabatic process 
by  integrating the pressure with respect to volume.
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19.9.6 Identify that a free expansion of a gas into a 
vacuum is adiabatic but no work is done and thus, 

by the first law of thermodynamics, the internal 
energy and temperature of the gas do not change.

Key Ideas  
● When an ideal gas undergoes a slow adia  batic vol-
ume change (a change for which Q = 0), 

pV𝛾 = a constant   (adiabatic process),

in which 𝛾 (= Cp/CV) is the ratio of molar specific heats 
for the gas. 

● For a free expansion, pV = a constant.

The Adiabatic Expansion of an Ideal Gas
We saw in Module 17.2 that sound waves are propagated through air and 
other gases as a series of compressions and expansions; these variations in the 
transmission medium take place so rapidly that there is no time for energy to 
be  transferred from one part of the medium to another as heat. As we saw in 
Module 18.5, a process for which Q = 0 is an adiabatic process. We can ensure 
that Q = 0 either by carrying out the process very quickly (as in sound waves) or 
by doing it (at any rate) in a wellinsulated container. 

Figure 19.9.1a shows our usual insulated cylinder, now containing an ideal 
gas and resting on an insulating stand. By removing mass from the piston, we can 
 allow the gas to expand adiabatically. As the volume increases, both the pressure 
and the temperature drop. We shall prove next that the relation between the 
pressure and the volume during such an adiabatic process is

 pV 𝛾 = a constant    (adiabatic process), (19.9.1)

in which 𝛾 = Cp/CV, the ratio of the molar specific heats for the gas. On a p-V 
 diagram such as that in Fig. 19.9.1b, the process occurs along a line (called an 
 adiabat) that has the equation p = (a constant)/V 𝛾. Since the gas goes from an 
initial state i to a final state f, we can rewrite Eq. 19.9.1 as

 piV
𝛾
i  = pfV

𝛾
f    (adiabatic process). (19.9.2)

To write an equation for an adiabatic process in terms of T and V, we use the 
ideal gas equation ( pV = nRT ) to eliminate p from Eq. 19.9.1, finding

  (  nRT _____ 
V

  )   V    γ  = a constant. 

Adiabat (Q = 0)

700 K
500 K
300 K

i

f

(a) (b)

Volume

Pr
es

su
re

W

Insulation

Isotherms:

We slowly remove lead shot, allowing an
expansion without any heat transfer.

Figure 19.9.1 (a) The volume of an ideal gas is increased by removing mass from the 
piston. The process is adiabatic (Q = 0). (b) The process  proceeds from i to f along an 
adiabat on a p-V  diagram.
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Because n and R are constants, we can rewrite this in the alternative form

 TV 𝛾−1 = a constant   (adiabatic process), (19.  9.3)

in which the constant is different from that in Eq. 19.9.1. When the gas goes from 
an initial state i to a final state f, we can rewrite Eq. 19.9.3 as

 TiV
𝛾−1 
i  = TfV

𝛾−1 
f    (adiabatic process). (19.9.4)

Understanding adiabatic processes allows you to understand why popping the 
cork on a cold bottle of champagne or the tab on a cold can of soda causes a slight 
fog to form at the opening of the container. At the top of any unopened carbon
ated drink sits a gas of carbon dioxide and water vapor. Because the pressure of 
that gas is much greater than atmospheric pressure, the gas expands out into the 
 atmosphere when the container is opened. Thus, the gas volume increases, but 
that means the gas must do work pushing against the atmosphere. Because the 
expansion is rapid, it is adiabatic, and the only source of energy for the work is the 
internal energy of the gas. Because the internal energy decreases, the tempera
ture of the gas also decreases and so does the number of water molecules that can 
remain as a vapor. So, lots of the water molecules condense into tiny drops of fog.

Proof of Eq. 19.9.1
Suppose that you remove some shot from the piston of Fig. 19.9.1a, allowing the 
ideal gas to push the piston and the remaining shot upward and thus to increase 
the volume by a differential amount dV. Since the volume change is tiny, we may 
assume that the pressure p of the gas on the piston is constant during the change. 
This assumption allows us to say that the work dW done by the gas during the 
volume increase is equal to p dV. From Eq. 18.5.4, the first law of thermodynam
ics can then be written as

 dEint = Q − p dV. (19.9.5)

Since the gas is thermally insulated (and thus the expansion is adiabatic), we
substitute 0 for Q. Then we use Eq. 19.7.9 to substitute nCV dT for dEint. With 
these substitutions, and after some rearranging, we have

  n dT = − (  
p
 ___ 

 C   V  
  )  dV.  (19.9.6)

Now from the ideal gas law ( pV = nRT ) we have

 p dV + V dp = nR dT. (19.9.7)

Replacing R with its equal, Cp − CV, in Eq. 19.9.7 yields

  n dT =    p dV + V dp
  ____________ 

 C   p   −  C   V  
  .  (19.9.8)

Equating Eqs. 19.9.6 and 19.9.8 and rearranging then give

   
dp

 ___ p   +  (  
 C   p  

 ___ 
 C   V  

  )   dV ___ 
V

   = 0. 

Replacing the ratio of the molar specific heats with 𝛾 and integrating (see 
 integral 5 in Appendix E) yield

ln p + 𝛾 ln V = a constant.

Rewriting the left side as ln pV 𝛾 and then taking the antilog of both sides, we find

 pV 𝛾 = a constant. (19.9.9)
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Free Expansions
Recall from Module 18.5 that a free expansion of a gas is an adiabatic process 
with no work or change in internal energy. Thus, a free expansion differs from 
the adiabatic process described by Eqs. 19.9.1 through 19.9.9, in which work is 
done and the  internal energy changes. Those equations then do not apply to a 
free expansion, even though such an expansion is adiabatic.

Also recall that in a free expansion, a gas is in equilibrium only at its initial 
and final points; thus, we can plot only those points, but not the expansion 
 itself, on a p-V diagram. In addition, because ∆Eint = 0, the temperature of 
the final state must be that of the initial state. Thus, the initial and final points 
on a p-V  diagram must be on the same isotherm, and instead of Eq. 19.9.4 
we have

 Ti = Tf   (free expansion). (19.9.10)

If we next assume that the gas is ideal (so that pV = nRT ), then because there 
is no change in temperature, there can be no change in the product pV. Thus, 
instead of Eq. 19.9.1 a free expansion involves the relation

 piVi = pfVf   (free expansion). (19.9.11)

this  expression into Eq. 19.9.12 and integrating lead us to

  W =   
 v  i   

  
vf

  p  dV =    
 v  i   

  
vf

      V   −γ   p  i    V  i  
γ   dV 

 =   p  i    V  i  
γ      

 v  i   
  

vf

      V   −γ   dV  =    1 ______ − γ + 1
    p  i    V  i  γ   [    V   −γ+1  ]   

 V  i  
   V  f     

  =   1 ______ − γ + 1
    p  i    V  i  

γ   [    V f  −γ+1  −  V i  −γ+1  ]  .   (19.9.14)

Before we substitute in given data, we must determine 
the ratio 𝛾 of molar specific heats for a gas of diatomic 
molecules with rotation but no oscillation. From Table 
19.8.1 we find

  γ =   
 C  p  

 ___ 
 C  V  

   =   
  7 _ 2   R ____ 
  5 _ 2   R 

   = 1.4.   (19.9.15)

We can now write the work done by the gas as the follow
ing (with volume in cubic meters and pressure in pascals):

 W =   1 ________ − 1.4 + 1
   ( 2.00 × 10  5 ) ( 4.00 × 10  −6 )  

1.4
     

 × [(8.00 × 10−6)−1.4+1 − (4.00 × 10−6)−1.4+1]

  = 0.48 J.   (Answer)

The first law of thermodynamics (Eq. 18.5.3) tells us that 
∆Eint = Q − W. Because Q = 0 in the adiabatic expansion, 
we see that

 ∆Eint = −0.48 J. (Answer)

With this decrease in internal energy, the gas tempera
ture must also decrease because of the expansion.

Sample Problem 19.9.1 Work done by a gas in an adiabatic expansion

Initially an ideal diatomic gas has pressure pi = 2.00 × 105 Pa  
and volume Vi = 4.00 × 10−6 m3. How much work W does 
it do, and what is the change ∆Eint in its internal energy 
if it expands adiabatically to volume Vf = 8.00 × 10−6 m3? 
Throughout the process, the molecules have rotation but 
not oscillation.

KEY IDEAS

(1) In an adiabatic expansion, no heat is exchanged 
between the gas and its environment, and the energy 
for the work done by the gas comes from the internal 
energy. (2)  The final pressure and volume are related 
to the initial pressure and volume by Eq. 19.9.2    (   p  i    V  i  

γ  =  
p  f    V f  γ  )    . (3) The work done by a gas in any process can be 
calculated by  integrating the  pressure with respect to 
the volume (the work is due to the gas pushing the walls 
of its container outward).

Calculations: We want to calculate the work by filling 
out this integration,

 W =   
 v  i   

  
vf

    p dV, (19.9.12)

but we first need an expression for the pressure as a func
tion of volume (so that we integrate the expression with 
 respect to volume). So, let’s rewrite Eq. 19.9.2 with indefi
nite symbols (dropping the subscripts f ) as

   p =   1 ___ 
 V    γ 

    p  i   V  i  
γ  =  V   −γ  p  i   V  i  

γ .   (19.9.13)

The initial quantities are given constants but the pres
sure p is a function of the variable volume V. Substituting 
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 γ =   
 C   p  

 ___ 
 C   V  

   =   
 7 _ 2  R ___ 
 5 _ 2  R

   = 1.40. 

Solving Eq. 19.9.16 for Tf and inserting known data then 
yield

   T  f    =   
 T  i   V  i  

γ−1 
 ______ 

 V  f  
 γ−1 

   =   
  (  310 K )    (  12 L )     1.40−1 

  _________________  
  (  19 L )    1.40−1 

    

   =   (  310 K )     (     12 _ 19   )    
0.40

  = 258 K.  (Answer)

(b) What would be the final temperature and pressure if, 
 instead, the gas expands freely to the new volume, from 
an initial pressure of 2.0 Pa?

KEY IDEA

The temperature does not change in a free expansion 
because there is nothing to change the kinetic energy of 
the molecules.

Calculation: Thus, the temperature is

 Tf = Ti = 310 K. (Answer)

We find the new pressure using Eq. 19.9.11, which gives us

   p  f   =  p  i     
 V  i   __ 
 V  f  

    =  (  2.0 Pa )     12 L _____ 
19 L

   = 1.3 Pa.  (Answer)

Sample Problem 19.9.2 Adiabatic expansion, free expansion

Initially, 1 mol of oxygen (assumed to be an ideal gas) has 
temperature 310 K and volume 12 L. We will allow it to 
 expand to volume 19 L.

(a) What would be the final temperature if the gas expands 
adiabatically? Oxygen (O2) is diatomic and here has rotation 
but not oscillation.

KEY IDEAS

1.  When a gas expands against the pressure of its envi
ronment, it must do work.

2.  When the process is adiabatic (no energy is transferred 
as heat), then the energy required for the work can come 
only from the internal energy of the gas.

3.   Because the internal energy decreases, the tempera
ture T must also decrease.

Calculations: We can relate the initial and final tempera
tures and volumes with Eq. 19.9.4:

    T  i    V  i  
γ−1  =  T  f    V  f  

 γ−1 .   (19.9.16)

Because the molecules are diatomic and have rotation but 
not oscillation, we can take the molar specific heats from 
Table 19.8.1. Thus,

Problem-Solving Tactics A Graphical Summary of Four Gas Processes

In this chapter we have discussed four special processes 
that an ideal gas can undergo. An example of each (for 
a mon atomic ideal gas) is shown in Fig. 19.9.2, and some 
associated characteristics are given in Table 19.9.1, includ
ing two process names (isobaric and isochoric) that we 
have not used but that you might see in other courses.

Checkpoint 19.9.1
Rank paths 1, 2, and 3 in Fig. 19.9.2 according to the energy 
transfer to the gas as heat, greatest first.

700 K
500 K
400 K

i

Volume

Pr
es

su
re

f

f

f
f

1

2
3

4

Figure 19.9.2 A p-V diagram representing four special pro
cesses for an ideal monatomic gas.

Table 19.9.1 Four Special Processes

 Some Special Results

 Path in Fig. 19.9.2 Constant Quantity Process Type (∆Eint = Q − W and ∆Eint = nCV ∆T for all paths)

  1 p Isobaric Q = nCp ∆T; W = p ∆V

  2 T Isothermal Q = W = nRT ln(Vf /Vi);  ∆Eint = 0 
  3 pV𝛾, TV𝛾−1 Adiabatic Q = 0;  W = −∆Eint

  4 V Isochoric Q = ∆Eint = nCV ∆T;  W = 0 

additional examples, video, and practice available at WileyPLUS

c19TheKineticTheoryOfGases.indd   604 05/05/21   9:04 PM



605RevIew & summaRy

Kinetic Theory of Gases  The kinetic theory of gases 
relates the macroscopic properties of gases (for example, pres
sure and temperature) to the microscopic properties of gas mol
ecules (for example, speed and kinetic energy).

Avogadro’s Number  One mole of a substance contains 
NA  (Avogadro’s number) elementary units (usually atoms or 
molecules), where NA is found experimentally to be

 NA = 6.02 × 1023 mol−1   (Avogadro’s number). (19.1.1)

One molar mass M of any substance is the mass of one mole of 
the substance. It is related to the mass m of the individual mole
cules of the substance by

 M = mNA. (19.1.4)

The number of moles n contained in a sample of mass Msam, 
 consisting of N molecules, is given by

  n =   N ___ 
 N  A  

   =   
 M   sam  

 _____ 
M

   =   
 M   sam  

 _____ 
 mN  A  

   .  (19.1.2, 19.1.3)

Ideal Gas  An ideal gas is one for which the pressure p, 
 volume V, and temperature T are related by

 pV = nRT   (ideal gas law). (19.2.1)

Here n is the number of moles of the gas present and R is a con
stant (8.31 J/mol · K) called the gas constant. The ideal gas law 
can also be written as
 pV = NkT, (19.2.5)

where the Boltzmann constant k is

  k =   R ___ 
 N  A  

   = 1.38 ×  10  −23  J / K.  (19.2.3)

Work in an Isothermal Volume Change  The work 
done by an ideal gas during an isothermal (constanttemperature) 
change from volume Vi to volume Vf  is

  W = nRT  ln     
 V  f   __ 
 V  i  

       (ideal gas, isothermal process). (19.2.10)

Pressure, Temperature, and Molecular Speed  The 
pressure exerted by n moles of an ideal gas, in terms of the speed 
of its molecules, is

  p =   
 nMV rms  2  

 _______ 
3V 

  ,  (19.3.4)

where   v  rms   =  √ 
_

    (v   2 )  avg      is the root-mean-square speed of the  
molecules of the gas. With Eq. 19.2.1 this gives

   v  rms   =  √ 
_____

   3RT ____ 
M

    .  (19.3.5)

Temperature and Kinetic Energy  The average transla
tional kinetic energy Kavg per molecule of an ideal gas is

    K  avg   =   3 _ 2   kT.   (19.4.2)

Review & Summary

Mean Free Path  The mean free path 𝜆 of a gas molecule is 
its average path length between collisions and is given by

  λ =     1 ____________  
 √ 

_
 2   π  d   2   N / V

   , (19.5.1)

where N/V is the number of molecules per unit volume and d is 
the molecular diameter.

Maxwell Speed Distribution  The Maxwell speed distri-
bution P(v) is a function such that P(v) dv gives the fraction 
of molecules with speeds in the interval dv at speed v:

  P  (  v )    = 4π  (  M ______ 
2πRT

  )   
3/2

  v   2   e    −Mv   2 /2RT .  (19.6.1)

Three measures of the distribution of speeds among the mol
ecules of a gas are

   v  avg   =  √ 
_____

   8RT ____ πM
        (average speed), (19.6.5)

   v  P   =  √ 
_____

   2RT ____ 
M

       (most probable speed), (19.6.9)

and the rms speed defined above in Eq. 19.3.5.

Molar Specific Heats  The molar specific heat CV of a gas 
at constant volume is defined as

   C   V   =   
Q
 _____ 

n ΔT
   =   

 ΔE   int   _____ 
n ΔT

  ,  (19.7.3, 19.7.5)

in which Q is the energy transferred as heat to or from a sample 
of n moles of the gas, ∆T is the resulting temperature change of 
the gas, and ∆Eint is the resulting change in the  internal energy 
of the gas. For an ideal monatomic gas,

   C  V   =   3 _ 2  R = 12.5 J/mol ⋅ K.  (19.7.7)

The molar specific heat Cp of a gas at constant pressure is 
 defined to be

   C  p   =   
Q
 _____ 

n ΔT
  ,  (19.7.10)

in which Q, n, and ∆T are defined as above. Cp is also given by

 Cp = CV + R. (19.7.13)

For n moles of an ideal gas,

 Eint = nCVT   (ideal gas). (19.7.8)

If n moles of a confined ideal gas undergo a temperature change 
∆T due to any process, the change in the internal  energy of the 
gas is

 ∆Eint = nCV ∆T   (ideal gas, any process). (19.7.9)

Degrees of Freedom and CV  The equipartition of energy 
theorem states that every  degree of freedom of a molecule has an 
energy   1 _ 2  kT  per molecule ( =  1 _ 2  RT  per mole). If f is the number of 
degrees of freedom, then Eint = (f/2)nRT and

   C  V   =   (    f _ 2   )   R = 4.16f J/mol ⋅ K.  (19.8.1)
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For monatomic gases f = 3 (three translational degrees); for diatomic 
gases f = 5 (three translational and two rotational degrees).

Adiabatic Process  When an ideal gas undergoes an adia 
batic volume change (a change for which Q = 0), 

 pV 𝛾 = a constant   (adiabatic process), (19.9.1)

in which 𝛾 (= Cp/CV) is the ratio of molar specific heats for the 
gas. For a free expansion, however, pV = a constant.

1  For four situations for an 
ideal gas, the table gives the 
 energy transferred to or from 
the  gas as heat Q and either 
the work W done by the gas 
or the work Won done on the 
gas, all in joules. Rank the 
four situations in terms of the temperature change of the gas, 
most positive first.

2  In the p-V diagram of 
Fig. 19.1, the gas does 5 J of work 
when taken along isotherm ab 
and 4 J when taken along  adiabat 
bc. What is the change in the 
internal energy of the gas when 
it is taken along the straight path 
from a to c?

3  For a temperature increase of 
∆T1, a certain amount of an ideal 
gas requires 30 J when heated at 
constant volume and 50  J when heated at constant pressure. 
How much work is done by the gas in the second situation?

4  The dot in Fig. 19.2a represents the initial state of a gas, and 
the vertical line through the dot divides the p-V diagram into 
regions 1 and 2. For the following processes, determine whether 
the work W done by the gas is positive, negative, or zero: (a) the 
gas moves up along the vertical line, (b) it moves down along 
the vertical line, (c) it moves to anywhere in  region 1, and (d) it 
moves to anywhere in region 2.

p pp

V VV

11

22
21

(a) (b) (c)

Figure 19.2 Questions 4, 6, and 8.

5  A certain amount of energy is 
to be transferred as heat to 1 mol 
of a monatomic gas (a) at constant 
pressure and (b) at constant vol
ume, and to 1 mol of a diatomic 
gas (c) at constant pressure and 
(d) at constant volume. Figure 
19.3 shows four paths from an ini
tial point to four  final points on a 
p-V  diagram for the two gases. Which path goes with which pro
cess? (e) Are the molecules of the  diatomic gas rotating?

6  The dot in Fig. 19.2b represents the initial state of a gas, 
and the isotherm through the dot divides the p-V diagram into 
regions 1 and 2. For the following processes, determine whether 
the change ∆Eint in the internal energy of the gas is positive, 
negative, or zero: (a) the gas moves up along the isotherm, (b) 
it moves down along the isotherm, (c) it moves to anywhere in 
region 1, and (d) it moves to anywhere in  region 2.

7  (a) Rank the four paths of Fig. 19.9.2 according to the 
work done by the gas, greatest first. (b) Rank paths 1, 2, and 3 
 according to the change in the internal energy of the gas, most 
positive first and most negative last.

8  The dot in Fig. 19.2c represents the initial state of a gas, 
and the adiabat through the dot divides the p-V diagram into 
regions 1 and 2. For the following processes, determine whether 
the corresponding heat Q is positive, negative, or zero: (a) the 
gas moves up along the adiabat, (b) it moves down along the 
adiabat, (c) it moves to anywhere in region 1, and (d) it moves 
to anywhere in region 2.

9  An ideal diatomic gas, with molecular rotation but without 
any molecular  oscillation, loses a certain amount of energy as 
heat Q. Is the resulting decrease in the internal energy of the 
gas greater if the loss occurs in a constantvolume process or in 
a constantpressure process?

10  Does the temperature of an ideal gas increase, decrease, 
or  stay the same during (a) an isothermal expansion, (b) an 
expansion at constant pressure, (c) an adiabatic expansion, and 
(d) an  increase in pressure at constant volume?

Questions

a b c d

Q −50 +35 −15 +20

W −50 +35

Won −40 +40

a

b

c

V

p

Figure 19.1 Question 2.

4
3

2

1

V

p

Figure 19.3 Question 5.

2 E  Gold has a molar mass of 197 g/mol. (a) How many moles 
of gold are in a 2.50 g sample of pure gold? (b) How many atoms 
are in the sample?

Module 19.1  Avogadro’s Number
1 E  Find the mass in kilograms of 7.50 × 1024 atoms of  arsenic, 
which has a molar mass of 74.9 g/mol.

Problems

          Tutoring problem available (at instructor’s discretion) in WileyPLUS

 Worked-out solution available in Student Solutions Manual

E  Easy M  Medium H  Hard

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

CALC  Requires calculus

BIO  Biomedical application

GO

FCP

SSM
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607PRoblems

the chamber reached the hatch and clamped to the hull, the 
crew could escape into the chamber. During the descent, air was 
released from tanks to prevent water from flooding the cham
ber. Assume that the interior air pressure matched the water 
pressure at depth h as given by p0 + 𝜌gh, where p0 = 1.000 atm is 
the surface pressure and 𝜌 = 1024 kg/m3 is the density of seawa
ter. Assume a surface temperature of 20.0°C and a submerged 
water temperature of −30.0°C. (a) What is the air volume in the 
chamber at the surface? (b) If air had not been released from 
the tanks, what would have been the air volume in the chamber 
at depth h = 80.0 m? (c) How many moles of air were needed to 
be released to maintain the original air volume in the chamber?  

13 M  GO  A sample of an ideal gas 
is taken through the cyclic process 
abca shown in Fig. 19.4. The scale 
of the vertical axis is set by pb = 7.5 
kPa and pac = 2.5 kPa. At point a, 
T = 200 K. (a)  How many moles 
of gas are in the sample? What 
are (b) the temperature of the gas 
at point b, (c) the temperature of 
the gas at point c, and (d) the net 
energy added to the gas as heat 
during the cycle?

14 M  In the temperature range 310 K to 330 K, the pressure p 
of a certain nonideal gas is related to volume V and temperature 
T by

 p =   (  24.9 J/K )     T __ 
V

   −  ( 0.006 62 J/K  2 )    T    2  ___ 
V

  . 

How much work is done by the gas if its temperature is raised 
from 315 K to 325 K while the pressure is held constant?

15 M  Suppose 0.825 mol of an ideal gas undergoes an isother
mal expansion as energy is added to it as heat Q. If Fig. 19.5 
shows the final volume Vf versus Q, what is the gas tempera
ture? The scale of the vertical axis is set by Vfs = 0.30 m3, and the 
scale of the horizontal axis is set by Qs = 1200 J.

Figure 19.5 Problem 15.

Vfs

0
Q (J)

Q s

V f
 (

m
3 )

16 H  An air bubble of volume 20 cm3 is at the bottom of a lake 
40 m deep, where the temperature is 4.0°C. The bubble rises to 
the surface, which is at a temperature of 20°C. Take the tem
perature of the bubble’s air to be the same as that of the sur
rounding water. Just as the bubble reaches the surface, what is 
its volume?

17 H  GO  Container A in Fig. 19.6 holds an ideal gas at a pres
sure of 5.0 × 105 Pa and a temperature of 300 K. It is connected 
by a thin tube (and a closed valve) to container B, with four 

Module 19.2  Ideal Gases
3 E  SSM  Oxygen gas having a volume of 1000 cm3 at 40.0°C 
and 1.01 × 105 Pa expands until its volume is 1500 cm3 and 
its pressure is 1.06 × 105 Pa. Find (a) the number of moles of 
 oxygen present and (b) the final temperature of the sample. 

4 E  A quantity of ideal gas at 10.0°C and 100 kPa occupies a 
volume of 2.50 m3. (a) How many moles of the gas are  present? 
(b) If the pressure is now raised to 300 kPa and the  tempera
ture is raised to 30.0°C, how much volume does the gas occupy? 
Assume no leaks.

5 E  The best laboratory vacuum has a pressure of about 
1.00  × 10−18 atm, or 1.01 × 10−13 Pa. How many gas molecules 
are there per cubic centimeter in such a vacuum at 293 K?

6 E  FCP  Water bottle in a hot car. In the American Southwest, 
the temperature in a closed car parked in sunlight during the 
summer can be high enough to burn flesh. Suppose a bottle of 
water at a refrigerator temperature of 5.00°C is opened, then 
closed, and then left in a closed car with an internal tempera
ture of 75.0°C. Neglecting the thermal expansion of the water 
and the bottle, find the pressure in the air pocket trapped in the 
bottle. (The pressure can be enough to push the bottle cap past 
the threads that are intended to keep the bottle closed.) 

7 E  Suppose 1.80 mol of an ideal gas is taken from a volume of 
3.00 m3 to a volume of 1.50 m3 via an isothermal compression 
at 30°C. (a) How much energy is transferred as heat during the 
compression, and (b) is the transfer to or from the gas?

8 E  Compute (a) the number of moles and (b) the number of 
 molecules in 1.00 cm3 of an ideal gas at a pressure of 100 Pa and 
a temperature of 220 K.

9 E  An automobile tire has a volume of 1.64 × 10−2 m3 and con
tains air at a gauge pressure (pressure above atmospheric pres
sure) of 165 kPa when the temperature is 0.00°C. What is the 
gauge pressure of the air in the tires when its temperature rises 
to 27.0°C and its volume increases to 1.67 × 10−2 m3? Assume 
atmospheric pressure is 1.01 × 105 Pa.

10 E  A container encloses 2 mol of an ideal gas that has molar 
mass M1 and 0.5 mol of a second ideal gas that has molar mass  
M2 = 3M1. What fraction of the total pressure on the container 
wall is attributable to the second gas? (The kinetic  theory expla
nation of pressure leads to the experimentally discovered law of 
partial pressures for a mixture of gases that do not react chemi
cally: The total pressure exerted by the mixture is equal to the 
sum of the pressures that the several gases would exert separately 
if each were to occupy the vessel alone. The molecule–vessel 
collisions of one type would not be altered by the presence of 
another type.)

11 M  CALC  SSM  Air that initially occupies 0.140 m3 at a gauge 
pressure of 103.0 kPa is expanded isothermally to a pressure of 
101.3 kPa and then cooled at constant pressure until it reaches 
its initial volume. Compute the work done by the air. (Gauge 
pressure is the difference between the actual pressure and 
 atmospheric pressure.) 

12 M  BIO  FCP  GO  Submarine rescue. When the U.S. subma
rine Squalus became disabled at a depth of 80 m, a cylindrical 
chamber was lowered from a ship to rescue the crew. The cham
ber had a  radius of 1.00 m and a height of 4.00 m, was open at 
the bottom, and held two rescuers. It slid along a guide cable 
that a diver had  attached to a hatch on the submarine. Once 

pb

pac

1.0 3.0
Volume (m3)
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kP

a)

b

ca

Figure 19.4 Problem 13.
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30 E  The mean free path of nitrogen molecules at 0.0°C and 
1.0 atm is 0.80 × 10−5 cm. At this temperature and pressure there 
are 2.7 × 1019 molecules/cm3. What is the molecular  diameter?

31 M  In a certain particle accelerator, protons travel around 
a circular path of diameter 23.0 m in an evacuated chamber, 
whose residual gas is at 295 K and 1.00 × 10−6 torr pressure. (a) 
Calculate the number of gas molecules per cubic centimeter at 
this pressure. (b) What is the mean free path of the gas mol
ecules if the molecular diameter is 2.00 × 10−8 cm?

32 M  At 20°C and 750 torr pressure, the mean free paths for 
argon gas (Ar) and nitrogen gas (N2) are 𝜆Ar = 9.9 × 10−6 cm 
and 𝜆 N  2    = 27.5 × 10−6 cm. (a) Find the ratio of the diameter of an 
Ar atom to that of an N2 molecule. What is the mean free path 
of  argon at (b) 20°C and 150 torr, and (c) −40°C and 750 torr?

Module 19.6  The Distribution of Molecular Speeds
33 E  SSM  The speeds of 10 molecules are 2.0, 3.0, 4.0, . . . , 
11 km/s. What are their (a) average speed and (b) rms speed? 

34 E  The speeds of 22 particles are as follows (Ni represents the 
number of particles that have speed vi):

Ni 2 4 6 8 2

vi (cm/s) 1.0 2.0 3.0 4.0 5.0

What are (a) vavg, (b) vrms, and (c) vP?

35 E  Ten particles are moving with the following speeds: four  
at 200 m/s, two at 500 m/s, and four at 600 m/s. Calculate their 
(a) average and (b) rms speeds. (c) Is vrms > vavg?

36 M  The most probable speed of the molecules in a gas at tem
perature T2 is equal to the rms speed of the molecules at tem
perature T1. Find T2/T1.

37 M  SSM  Figure 19.7 shows a 
hypothetical speed distri bution for 
a sample of N gas particles (note 
that P(v) = 0 for speed v > 2v0). 
What are the values of (a) av0, 
(b)  vavg/v0, and (c) vrms/v0? (d) 
What fraction of the particles has 
a speed  between 1.5v0 and 2.0v0? 

38 M  Figure 19.8 gives the probability distribution for  nitrogen 
gas. The scale of the horizontal axis is set by vs = 1200 m/s. What 
are the (a) gas temperature and (b) rms speed of the molecules?

0 vs
v (m/s)

P(
v)

Figure 19.8 Problem 38.

times the volume of A. Container 
B holds the same ideal gas at a 
pressure of 1.0 × 105 Pa and a 
temperature of 400 K. The valve 
is opened to allow the pressures 
to equalize, but the temperature 
of each container is maintained. 
What then is the pressure? 

Module 19.3  Pressure, Temperature, and RMS Speed
18 E  The temperature and pressure in the Sun’s atmosphere are 
2.00 × 106 K and 0.0300 Pa. Calculate the rms speed of free elec
trons (mass 9.11 × 10−31 kg) there, assuming they are an ideal 
gas.

19 E  (a) Compute the rms speed of a nitrogen molecule at 
20.0°C. The molar mass of nitrogen molecules (N2) is given 
in  Table 19.3.1. At what temperatures will the rms speed be 
(b) half that value and (c) twice that value?

20 E  Calculate the rms speed of helium atoms at 1000 K. See 
Appendix F for the molar mass of helium atoms.

21 E  SSM  The lowest possible temperature in outer space is 
2.7 K. What is the rms speed of hydrogen molecules at this tem
perature? (The molar mass is given in Table 19.3.1.) 

22 E  Find the rms speed of argon atoms at 313 K. See Appendix 
F for the molar mass of argon atoms.

23 M  A beam of hydrogen molecules (H2) is directed toward 
a wall, at an angle of 55° with the normal to the wall. Each 
molecule in the beam has a speed of 1.0 km/s and a mass of 
3.3 × 10−24 g. The beam strikes the wall over an area of 2.0 cm2, 
at the rate of 1023 molecules per second. What is the beam’s 
pressure on the wall?

24 M  At 273 K and 1.00 × 10−2 atm, the density of a gas is 1.24 × 
10−5 g/cm3. (a) Find vrms for the gas molecules. (b) Find the 
molar mass of the gas and (c) identify the gas. See Table 19.3.1.

Module 19.4  Translational Kinetic Energy
25 E  Determine the average value of the translational kinetic 
energy of the molecules of an ideal gas at temperatures (a) 
0.00°C and (b) 100°C. What is the translational kinetic energy 
per mole of an ideal gas at (c) 0.00°C and (d) 100°C?

26 E  What is the average translational kinetic energy of  nitrogen 
molecules at 1600 K?

27 M  Water standing in the open at 32.0°C evaporates  because 
of  the escape of some of the surface molecules. The heat of 
vaporization (539 cal/g) is approximately equal to εn, where ε is 
the average energy of the escaping molecules and n is the num
ber of molecules per gram. (a) Find ε. (b) What is the ratio of ε 
to the  average kinetic energy of H2O molecules, assuming the 
latter is related to temperature in the same way as it is for gases?

Module 19.5  Mean Free Path
28 E  At what frequency would the wavelength of sound in air 
be equal to the mean free path of oxygen molecules at 1.0 atm 
pressure and 0.00°C? The molecular diameter is 3.0 × 10−8 cm.

29 E  SSM  The atmospheric density at an altitude of 2500 km is 
about 1 molecule/cm3. (a) Assuming the molecular diameter of 
2.0 × 10−8 cm, find the mean free path predicted by Eq. 19.5.1. 
(b) Explain whether the predicted value is meaningful.

Figure 19.6 Problem 17.
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by the gas, (b) the energy transferred as heat Q, (c) the change 
∆Eint in the internal energy of the gas, and (d) the change ∆K in 
the average kinetic energy per atom?

48 M  GO  When 20.9 J was added as heat to a particular ideal 
gas, the volume of the gas changed from 50.0 cm3 to 100 cm3 
while the pressure remained at 1.00 atm. (a) By how much did 
the internal energy of the gas change? If the quantity of gas 
 present was 2.00 × 10−3 mol, find (b) Cp and (c) CV.

49 M  SSM  A container holds a mixture of three nonreact
ing gases: 2.40 mol of gas 1 with CV1 = 12.0 J/mol · K, 1.50 mol 
of gas  2 with CV2 = 12.8 J/mol · K, and 3.20 mol of gas 3 with 
CV3 = 20.0 J/mol · K. What is CV of the mixture? 

Module 19.8  Degrees of Freedom and Molar Specific 
Heats
50 E  We give 70 J as heat to a diatomic gas, which then  expands 
at constant pressure. The gas molecules rotate but do not oscil
late. By how much does the internal energy of the gas increase?

51 E  When 1.0 mol of oxygen (O2) gas is heated at constant 
pressure starting at 0°C, how much energy must be added to the 
gas as heat to double its volume? (The molecules rotate but do 
not oscillate.) 

52 M  GO  Suppose 12.0 g of oxygen (O2) gas is heated at con
stant atmo spheric pressure from 25.0°C to 125°C. (a) How 
many moles of oxygen are present? (See Table 19.3.1 for the 
molar mass.) (b) How much energy is transferred to the oxygen 
as heat? (The molecules rotate but do not oscillate.) (c) What 
fraction of the heat is used to raise the internal energy of the 
oxygen?

53 M  SSM  Suppose 4.00 mol of an ideal diatomic gas, with 
molecular rotation but not oscillation, experienced a tempera
ture increase of 60.0 K under constantpressure conditions. 
What are (a) the energy transferred as heat Q, (b) the change 
∆Eint in internal energy of the gas, (c) the work W done by the 
gas, and (d)  the change ∆K in the total translational kinetic 
energy of the gas? 

Module 19.9  The Adiabatic Expansion of an Ideal Gas
54 E  We know that for an adiabatic process pV 𝛾 = a constant. 
Evaluate “a constant” for an adiabatic process involving  exactly 
2.0 mol of an ideal gas passing through the state  having exactly 
p = 1.0 atm and T = 300 K. Assume a diatomic gas whose mol
ecules rotate but do not oscillate.

55 E  A certain gas occupies a volume of 4.3 L at a pressure of 
1.2 atm and a temperature of 310 K. It is compressed adiabati
cally to a volume of 0.76 L. Determine (a) the final pressure and  
(b) the final temperature, assuming the gas to be an ideal gas for 
which 𝛾 = 1.4.

56 E  Suppose 1.00 L of a gas with 𝛾 = 1.30, initially at 273 K and 
1.00 atm, is suddenly compressed adiabatically to half its initial 
volume. Find its final (a) pressure and (b) temperature. (c) If 
the gas is then cooled to 273 K at constant pressure, what is its 
final volume?

57 M  The volume of an ideal gas is adiabatically reduced 
from 200 L to 74.3 L. The initial pressure and temperature are 
1.00 atm and 300 K. The final pressure is 4.00 atm. (a) Is the gas 
monatomic, diatomic, or polyatomic? (b) What is the final tem
perature? (c) How many moles are in the gas?

39 M  At what temperature does the rms speed of (a) H2 (molec
ular hydrogen) and (b) O2 (molecular oxygen) equal the escape 
speed from Earth (Table 13.5.1)? At what temperature does the 
rms speed of (c) H2 and (d) O2 equal the escape speed from 
the Moon (where the gravitational acceleration at the surface 
has magnitude 0.16g)? Considering the answers to parts (a) and 
(b), should there be much (e) hydrogen and (f)  oxygen high 
in Earth’s upper atmo sphere, where the temperature is about 
1000 K?  

40 M  Two containers are at the same temperature. The first 
contains gas with pressure p1, molecular mass m1, and rms speed 
vrms1. The second contains gas with pressure 2.0p1, mo lec ular 
mass m2, and average speed vavg2 = 2.0vrms1. Find the mass ratio 
m1/m2.

41 M  A hydrogen molecule (diameter 1.0 × 10−8 cm), traveling at 
the rms speed, escapes from a 4000 K furnace into a chamber con
taining cold argon atoms (diameter 3.0 × 10−8 cm) at a density of  
4.0 × 1019 atoms/cm3. (a) What is the speed of the hydrogen mol
ecule? (b) If it collides with an  argon atom, what is the closest 
their centers can be, considering each as spherical? (c) What is 
the initial number of collisions per second experienced by the 
hydrogen molecule? (Hint: Assume that the argon atoms are 
stationary. Then the mean free path of the hydrogen molecule is 
given by Eq. 19.5.2 and not Eq. 19.5.1.)

Module 19.7  The Molar Specific Heats of an Ideal Gas
42 E  What is the internal energy of 1.0 mol of an ideal mona
tomic gas at 273 K?

43 M  GO  The temperature of 3.00 mol of an ideal diatomic gas 
is increased by 40.0 C° without the pressure of the gas changing. 
The molecules in the gas rotate but do not oscillate. (a) How 
much  energy is transferred to the gas as heat? (b) What is the 
change in the internal energy of the gas? (c) How much work is 
done by the gas? (d) By how much does the rotational  kinetic 
energy of the gas increase? 

44 M  GO  One mole of an ideal 
diatomic gas goes from a to c 
along the diagonal path in Fig. 
19.9. The scale of the vertical axis 
is set by pab = 5.0 kPa and pc = 2.0 
kPa, and the scale of the horizon
tal axis is set by Vbc = 4.0 m3 and 
Va = 2.0 m3. During the transition, 
(a) what is the change in internal 
energy of the gas, and (b)  how 
much energy is added to the gas as heat? (c) How much heat is 
required if the gas goes from a to c along the  indirect path abc?

45 M  The mass of a gas molecule can be computed from its 
specific heat at constant volume cV. (Note that this is not CV.) 
Take cV = 0.075 cal/g · C° for argon and calculate (a) the mass of 
an argon atom and (b) the molar mass of argon.

46 M  Under constant pressure, the temperature of 2.00 mol 
of an ideal monatomic gas is raised 15.0 K. What are (a) the 
work W done by the gas, (b) the energy transferred as heat Q, 
(c) the change ∆Eint in the internal energy of the gas, and (d) the 
change ∆K in the average kinetic energy per atom?

47 M  The temperature of 2.00 mol of an ideal monatomic gas is 
raised 15.0 K at constant volume. What are (a) the work W done 
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Figure 19.9 Problem 44.
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W? For 2 → 3, what are (d) Q, (e) 
∆Eint, and (f) W? For 3 → 1, what 
are (g) Q, (h) ∆Eint, and (i) W? 
For the full  cycle, what are (j) Q, 
(k) ∆Eint, and (l) W? The initial 
pressure at point 1 is 1.00 atm 
(= 1.013 × 105 Pa). What are the 
(m) volume and (n) pressure at 
point 2 and the (o) volume and 
(p) pressure at point 3?

Additional Problems
64  Calculate the work done by an external agent during an 
isothermal compression of 1.00 mol of oxygen from a volume of 
22.4 L at 0°C and 1.00 atm to a volume of 16.8 L.

65  An ideal gas undergoes an adiabatic compression from 
p = 1.0 atm, V = 1.0 × 106 L, T = 0.0°C to p = 1.0 × 105 atm, 
V = 1.0 × 103 L. (a) Is the gas monatomic, diatomic, or poly
atomic? (b) What is its final temperature? (c) How many moles 
of gas are present? What is the total translational  kinetic energy 
per mole (d) before and (e) after the compression? (f) What is 
the ratio of the squares of the rms speeds  before and after the 
compression?

66  An ideal gas consists of 1.50 mol of diatomic mole cules that 
rotate but do not oscillate. The molecular diameter is 250 pm. 
The gas is expanded at a constant pressure of 1.50 × 105 Pa, with 
a transfer of 200 J as heat. What is the change in the mean free 
path of the molecules?

67  An ideal monatomic gas initially has a temperature of 
330 K and a pressure of 6.00 atm. It is to expand from volume 
500 cm3 to  volume 1500 cm3. If the expansion is isothermal, 
what are  (a)  the final pressure and (b) the work done by the 
gas? If, instead, the expansion is adiabatic, what are (c) the  final 
pressure and (d) the work done by the gas?

68  In an interstellar gas cloud at 50.0 K, the pressure is  
1.00 × 10−8 Pa. Assuming that the molecular diameters of the 
gases in the cloud are all 20.0 nm, what is their mean free path?

69 SSM  The envelope and basket of a hotair balloon have a 
 combined weight of 2.45 kN, and the envelope has a capacity 
(volume) of 2.18 × 103 m3. When it is fully inflated, what should 
be the temperature of the enclosed air to give the balloon a lifting 
 capacity (force) of 2.67 kN (in addition to the balloon’s weight)? 
Assume that the surrounding air, at 20.0°C, has a weight per unit 
volume of 11.9 N/m3 and a molecular mass of 0.028 kg/mol, and 
is at a pressure of 1.0 atm. 

70  An ideal gas, at initial temperature T1 and initial volume 
2.0  m3, is expanded adiabatically to a volume of 4.0 m3, then 
expanded isothermally to a volume of 10 m3, and then com
pressed adiabatically back to T1. What is its final volume?

71 SSM  The temperature of 2.00 mol of an ideal monatomic 
gas is raised 15.0 K in an adiabatic process. What are (a) the 
work W done by the gas, (b) the energy transferred as heat Q, 
(c) the change ∆Eint in internal energy of the gas, and (d) the 
change ∆K in the average kinetic energy per atom? 

72  At what temperature do atoms of helium gas have the same 
rms speed as molecules of hydrogen gas at 20.0°C? (The molar 
masses are given in Table 19.3.1.)

58 M  GO  FCP  Opening champagne. In a bottle of champagne, 
the pocket of gas (primarily carbon dioxide) between the liquid 
and the cork is at pressure of pi = 5.00 atm. When the cork is 
pulled from the bottle, the gas undergoes an adiabatic expan
sion until its pressure matches the ambient air pressure of 1.00 
atm. Assume that the ratio of the molar specific heats is  γ =   4 _ 3   .  
If the gas has  initial temperature Ti = 5.00°C, what is its tem
perature at the end of the adiabatic expansion? 

59 M  GO  Figure 19.10 shows two paths that may be taken by 
a gas from an initial point i to a final point f. Path 1 consists of 
an isothermal expansion (work is 50 J in magnitude), an adia
batic  expansion (work is 40 J in magnitude), an isothermal 
compression (work is 30  J in magnitude), and then an adia
batic  compression (work is 25 J in magnitude). What is the 
change in the internal energy of the gas if the gas goes from 
point i to point f along path 2?

p

V

Path 1

Isothermal

Isothermal

AdiabaticPath 2

f

i

Figure 19.10 Problem 59.

60 M  GO  FCP  Adiabatic wind. The normal airflow over the 
Rocky Mountains is west to east. The air loses much of its 
moisture content and is chilled as it climbs the western side 
of the mountains. When it descends on the eastern side, the 
increase in pressure toward lower altitudes causes the tem
perature to increase. The flow, then called a chinook wind, 
can rapidly raise the air temperature at the base of the moun
tains. Assume that the air pressure p depends on altitude 
y according to p = p0 exp (−ay), where p0 = 1.00 atm and 
a = 1.16 × 10−4 m−1. Also assume that the ratio of the molar 
specific heats is  γ =   4 _ 3   . A parcel of air with an initial tempera
ture of −5.00°C descends adiabatically from y1 = 4267 m to  
y = 1567 m. What is its temperature at the end of the descent? 

61 M  GO  A gas is to be expanded from initial state i to final 
state f along either path 1 or path 2 on a p-V diagram. Path 1 
consists of three steps: an isothermal expansion (work is 40 J in 
magnitude), an adiabatic expansion (work is 20 J in magnitude), 
and another isothermal expansion (work is 30 J in magnitude). 
Path 2 consists of two steps: a pressure reduction at constant vol
ume and an expansion at constant pressure. What is the change 
in the internal energy of the gas along path 2?

62 H  GO  An ideal diatomic gas, with rotation but no oscillation, 
undergoes an adiabatic compression. Its initial pressure and vol
ume are 1.20 atm and 0.200 m3. Its final pressure is 2.40 atm. 
How much work is done by the gas? 

63 H  Figure 19.11 shows a cycle undergone by 1.00 mol of 
an ideal monatomic gas. The temperatures are T1 = 300 K, 
T2 = 600 K, and T3 = 455 K. For 1 → 2, what are (a)  heat Q, 
(b) the change in internal energy ∆Eint, and (c) the work done 
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83 SSM  A sample of ideal gas expands from an initial pressure 
and volume of 32 atm and 1.0 L to a final volume of 4.0 L. The 
 initial temperature is 300 K. If the gas is monatomic and the 
expansion isothermal, what are the (a) final pressure pf, (b) final 
temperature Tf, and (c) work W done by the gas? If the gas is 
monatomic and the expansion adiabatic, what are (d) pf, (e) Tf, 
and (f) W? If the gas is diatomic and the expansion adiabatic, 
what are (g) pf, (h) Tf, and (i) W? 

84  An ideal gas with 3.00 mol is initially in state 1 with pres
sure p1 = 20.0 atm and volume V1 = 1500 cm3. First it is taken 
to state 2 with pressure p2 = 1.50p1 and volume V2 = 2.00V1. 
Then it is taken to state 3 with pressure p3 = 2.00p1 and volume 
V3 = 0.500V1. What is the temperature of the gas in (a) state 1 
and (b) state 2? (c) What is the net change in internal energy 
from state 1 to state 3?

85  Uranium diffusion. To enhance the effectiveness of the 
nuclear fission of uranium, the highly fissionable U235 iso
tope must be separated from the less readily fissionable U238 
 isotope. One way to do this is to form the uranium into a gas 
(UF6) and allow it to diffuse repeatedly through a porous bar
rier (up 4000 times). The lighter molecule will diffuse faster, the 
effectiveness of the barrier being determined by a separation 
factor  α , defined as the ratio of the two rms speeds. What is the 
separation factor for the two kinds of uranium hexafluoride gas 
molecules?

86  Opening a freezer door. Initially a household freezer com
partment is filled with air at room temperature Ti = 27.0°C. 
Then the door is closed and the cooling in the walls is turned on 
until the air temperature is at the recommended value of Tf = 
−18.0°C. The door has height h = 0.600 m and width w = 0.760 m, 
with hinges on the left edge (and thus with a rotation axis there) 
and a handle on the right edge. Assume that the freezer is air
tight. What are (a) the pressure difference Δp between the inside 
and outside of the door, (b) the net force F on the door from that 
pressure difference, and (c) the force Fa needed to open the door 
by pulling on the handle perpendicular to the door?

87  Work in adiabatic expansion. Determine the work done by 
any ideal gas (monatomic, diatomic, or polyatomic) during an 
adiabatic expansion from volume Vi and pressure pi to volume 
Vf and pressure pf by apply
ing  W = ∫ p dV  and  p V   γ  =  
a constant. (b) Show that 
the result is equivalent to  
 − Δ E   int  , where the change in 
internal energy is given by  
 Δ E   int   = n C  V   ΔT. 

88  Champagne cork pop-
ping. When the cork on a 
champagne bottle is pulled 
out, the carbon dioxide 
gas (CO2) above the liq
uid undergoes adiabatic 
expansion as it pushes its 
way out into the air. If 
the bottle was initially at 
temperature Ti = 20.0°C 
and the gas pressure 
was initially at pressure  

73 SSM  At what frequency do molecules (diameter 290 pm) 
collide in (an ideal) oxygen gas (O2) at temperature 400 K and 
pressure 2.00 atm? 

74  (a) What is the number of molecules per cubic meter in air 
at 20°C and at a pressure of 1.0 atm (= 1.01 × 105 Pa)? (b) What 
is the mass of 1.0 m3 of this air? Assume that 75% of the mol
ecules are nitrogen (N2) and 25% are oxygen (O2).

75  The temperature of 3.00 mol of a certain gas with CV = 6.00  
cal/mol · K is to be raised 50.0 K. If the process is at constant vol-
ume, what are (a) the energy transferred as heat Q, (b) the work 
W done by the gas, (c) the change ∆Eint in internal  energy of 
the gas, and (d) the change ∆K in the total translational kinetic 
energy? If the process is at constant pressure, what are (e) Q,  
(f) W, (g) ∆Eint, and (h) ∆K? If the process is adiabatic, what are 
(i) Q, (j) W, (k) ∆Eint, and (l) ∆K?

76  During a compression at a constant pressure of 250 Pa, the 
volume of an ideal gas decreases from 0.80 m3 to 0.20 m3. The 
initial temperature is 360 K, and the gas loses 210 J as heat. 
What are (a) the change in the internal energy of the gas and (b) 
the final temperature of the gas?

77 CALC  SSM  Figure 19.12 
shows a hypothetical speed dis
tribution for particles of a certain 
gas: P(v) = Cv2 for 0 < v ≤ v0 and 
P(v) = 0 for v > v0. Find (a) an 
expression for C in terms of v0, 
(b) the  aver age speed of the par
ticles, and (c) their rms speed. 

78  (a) An ideal gas initially at pressure p0 undergoes a free 
expansion until its volume is 3.00 times its initial volume. What 
then is the ratio of its pressure to p0? (b) The gas is next slowly 
and adiabatically compressed back to its original volume. The 
pressure after compression is (3.00)1/3p0. Is the gas monatomic, 
diatomic, or polyatomic? (c) What is the ratio of the average 
kinetic energy per molecule in this final state to that in the initial 
state?

79 SSM  An ideal gas undergoes isothermal compression from 
an initial volume of 4.00 m3 to a final volume of 3.00 m3. There is 
3.50 mol of the gas, and its temperature is 10.0°C. (a) How much 
work is done by the gas? (b) How much energy is transferred as 
heat between the gas and its environment? 

80  Oxygen (O2) gas at 273 K and 1.0 atm is confined to a 
 cubical container 10 cm on a side. Calculate ∆Ug/Kavg, where 
∆Ug is the change in the gravitational potential energy of an 
oxygen molecule falling the height of the box and Kavg is the 
molecule’s average translational kinetic energy.

81  An ideal gas is taken through a complete cycle in three 
steps: adiabatic expansion with work equal to 125 J, isothermal 
contraction at 325 K, and increase in pressure at constant vol
ume. (a) Draw a p-V diagram for the three steps. (b) How much 
energy is transferred as heat in step 3, and (c) is it transferred to 
or from the gas?

82  (a) What is the volume occupied by 1.00 mol of an ideal 
gas at standard conditions—that is, 1.00 atm (= 1.01 × 105 Pa) 
and 273 K? (b) Show that the number of molecules per cubic 
centimeter (the Loschmidt number) at standard conditions is 
2.69 × 109.
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the flight and assuming the release is outdoors (no ceiling), how 
high will the cork fly?

91  Most probable speed. A container holds a gas of molecular 
hydrogen (H2) at a temperature of 250 K. What are (a) the most 
probable speed vP of the molecules and (b) the maximum value 
Pmax of the probability distribution function P(v)? (c) With a 
graphing calculator or computer math package, determine what 
percentage of the molecules have speeds between 0.500vP and 
1.50vP. The temperature is then increased to 500 K. What are 
(d) the most probable speed vP of the molecules and (e) the 
maximum value Pmax of the probability distribution function 
P(v)? Did (f) vP and (g) Pmax increase, decrease, or remain the 
same during the temperature increase?

pi = 7.5 atm, what is the temperature of the gas at the end of the 
expansion? The decrease in temperature causes water mole
cules in the gas to condense, forming a fog of tiny water drops  
(Fig. 19.13).

89  At what temperature is the average translational kinetic 
energy of a molecule in a gas equal to  4.0 ×  10  −19  J? 

90  Champagne cork flight. When a champagne bottle is 
opened, the cork shoots vertically upward from the bottle into 
the air due to the pressure difference between the 7.5 atm of 
the carbon dioxide gas beneath it and the atmospheric air pres
sure. The cork has mass m = 9.1 g and crosssectional area  
A = 2.5 cm2, and the cork’s acceleration (assumed constant) lasts 
for time interval Δt = 1.2 ms. Neglecting air resistance during 
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Entropy and the Second Law 
of Thermodynamics

20.1 ENTROPY
Learning Objectives 
After reading this module, you should be able to . . .

20.1.1 Identify the second law of thermodynamics: If a 
process occurs in a closed system, the entropy of 
the  system increases for irreversible processes and 
remains constant for reversible processes; it never 
decreases.

20.1.2 Identify that entropy is a state function (the value 
for a particular state of the system does not depend 
on how that state is reached).

20.1.3 Calculate the change in entropy for a process by 
 integrating the inverse of the temperature (in kelvins) 
with respect to the heat Q transferred during the 
process.

20.1.4 For a phase change with a  constant-temperature 
process, apply the relationship between the entropy 
change ΔS, the total transferred heat Q, and the 
 temperature T (in kelvins).

20.1.5 For a temperature change ΔT that is small 
relative to the temperature T, apply the relationship 
between the  entropy change ΔS, the transferred 
heat Q, and the  average temperature Tavg 
(in kelvins).

20.1.6 For an ideal gas, apply the relationship between 
the  entropy change ΔS and the initial and final 
values of the pressure and volume.

20.1.7 Identify that if a process is an irreversible one, 
the  integration for the entropy change must be 
done for a reversible process that takes the system 
between the same initial and final states as the 
irreversible process.

20.1.8 For stretched rubber, relate the elastic force to 
the rate at which the rubber’s entropy changes with 
the change in the stretching distance.

Key Ideas 
● An irreversible process is one that cannot be 
reversed by means of small changes in the environ-
ment. The direction in which an irreversible process 
proceeds is set by the change in entropy ΔS of the sys-
tem undergoing the process. Entropy S is a state prop-
erty (or state function) of the system; that is, it depends 
only on the state of the system and not on the way in 
which the system reached that state. The entropy pos-
tulate states (in part): If an irreversible process occurs 
in a closed system, the entropy of the system always 
 increases.

● The entropy change ΔS for an irreversible process 
that takes a system from an initial state i to a final 
state f is exactly equal to the entropy change ΔS for 
any reversible process that takes the system between 
those same two states. We can compute the latter (but 
not the  former) with

 ΔS =  S  f   −  S  i   =   
i
  
f

    
dQ

 ___ 
T

   . 

Here Q is the energy transferred as heat to or from the 
 system during the process, and T is the temperature of 
the system in kelvins during the process.

● For a reversible isothermal process, the expression 
for an entropy change reduces to

 ΔS =  S  f   −  S  i   =   
Q

 __ 
T

  . 

● When the temperature change ΔT of a system is 
small relative to the temperature (in kelvins) before and 
after the process, the entropy change can be approxi-
mated as

 ΔS =  S  f   −  S  i   ≈   
Q
 ____  T  avg  
  , 

where Tavg is the system’s average temperature during 
the process.

● When an ideal gas changes reversibly from an initial 
state with temperature Ti and volume Vi to a final state 

C H A P T E R  2 0
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with temperature Tf and volume Vf, the change ΔS in 
the entropy of the gas is

 ΔS =  S  f   −  S  i   = nR ln   
 V  f   ___  V  i  

   + n C  V   ln   
 T  f   __  T  i  

  . 

● The second law of thermodynamics, which is an 
extension of the entropy postulate, states: If a process 

occurs in a closed system, the entropy of the system 
increases for  irreversible processes and remains con-
stant for reversible processes. It never decreases. In 
equation form,

ΔS ≥ 0.

What Is Physics?
Time has direction, the direction in which we age. We are accustomed to  many 
one-way processes—that is, processes that can occur only in a certain sequence 
(the right way) and never in the reverse sequence (the wrong way). An egg is 
dropped onto a floor, a pizza is baked, a car is driven into a lamppost, large waves 
erode a sandy beach—these one-way processes are irreversible, meaning  that 
they cannot be reversed by means of only small changes in their  environment.

One goal of physics is to understand why time has direction and why one-way 
processes are irreversible. Although this physics might seem disconnected from 
the practical issues of everyday life, it is in fact at the heart of any engine, such as 
a car engine, because it determines how well an engine can run.

The key to understanding why one-way processes cannot be reversed  involves 
a quantity known as entropy.

Irreversible Processes and Entropy
The one-way character of irreversible processes is so pervasive that we take it 
for granted. If these processes were to occur spontaneously (on their own) in the 
wrong way, we would be astonished. Yet none of these wrong-way events would 
violate the law of conservation of energy.

For example, if you were to wrap your hands around a cup of hot coffee, 
you would be astonished if your hands got cooler and the cup got warmer. That 
is  obviously the wrong way for the energy transfer, but the total energy of the 
closed system (hands + cup of coffee) would be the same as the total energy if the 
process had run in the right way. For another example, if you popped a  helium 
balloon, you would be astonished if, later, all the helium molecules were to gather 
together in the original shape of the balloon. That is obviously the wrong way for 
molecules to spread, but the total energy of the closed system (molecules + room) 
would be the same as for the right way.

Thus, changes in energy within a closed system do not set the direction of 
 irreversible processes. Rather, that direction is set by another property that we 
shall discuss in this chapter—the change in entropy ΔS of the system. The change 
in entropy of a system is defined later in this module, but we can here state its 
 central property, often called the entropy postulate:

 If an irreversible process occurs in a closed system, the entropy S of the system 
 always increases; it never decreases.

Entropy differs from energy in that entropy does not obey a conservation law. The 
energy of a closed system is conserved; it always remains constant. For  irreversible 
processes, the entropy of a closed system always increases. Because of this prop-
erty, the change in entropy is sometimes called “the arrow of time.” For example, 
we associate the explosion of a popcorn kernel with the forward  direction of time 
and with an increase in entropy. The backward direction of time (a video run 
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backwards) would correspond to the exploded popcorn  re-forming the original 
kernel. Because this backward process would result in an  entropy decrease, it 
never happens.

There are two equivalent ways to define the change in entropy of a system: 
(1) in terms of the system’s temperature and the energy the system gains or loses 
as heat, and (2) by counting the ways in which the atoms or molecules that make 
up the system can be arranged. We use the first approach in this module and the 
second in Module 20.4.

Change in Entropy
Let’s approach this definition of change in entropy by looking again at a pro-
cess that we described in Modules 18.5 and 19.9: the free expansion of an ideal 
gas. Figure 20.1.1a shows the gas in its initial equilibrium state i, confined by a 
closed stopcock to the left half of a thermally insulated container. If we open the 
 stopcock, the gas rushes to fill the entire container, eventually reaching the final 
equilibrium state f shown in Fig. 20.1.1b. This is an irreversible process; all the 
 molecules of the gas will never return to the left half of the container.

The p-V plot of the process, in Fig. 20.1.2, shows the pressure and volume 
of  the gas in its initial state i and final state f. Pressure and volume are state 
 properties, properties that depend only on the state of the gas and not on how it 
reached that state. Other state properties are temperature and energy. We now 
assume that the gas has still another state property—its entropy. Furthermore, we 
define the change in entropy Sf − Si of a system during a process that takes the 
system from an initial state i to a final state f as

  ΔS =  S  f   −  S  i   =   
t
  
f

    
dQ

 ____ 
T

     (change in entropy defined). (20.1.1)

Here Q is the energy transferred as heat to or from the system during the pro-
cess, and T is the temperature of the system in kelvins. Thus, an entropy change 
 depends not only on the energy transferred as heat but also on the temperature at 
which the transfer takes place. Because T is always positive, the sign of ΔS is the 
same as that of Q. We see from Eq. 20.1.1 that the SI unit for entropy and  entropy 
change is the joule per kelvin.

There is a problem, however, in applying Eq. 20.1.1 to the free expansion of 
Fig. 20.1.1. As the gas rushes to fill the entire container, the pressure, temperature, 
and volume of the gas fluctuate unpredictably. In other words, they do not have a 
sequence of well-defined equilibrium values during the intermediate stages of the 
change from initial state i to final state f. Thus, we cannot trace a pressure–volume 
path for the free expansion on the p-V plot of Fig. 20.1.2, and we cannot find a 
relation between Q and T that allows us to integrate as Eq. 20.1.1 requires.

However, if entropy is truly a state property, the difference in entropy  between 
states i and f must depend only on those states and not at all on the way the system 
went from one state to the other. Suppose, then, that we replace the  irreversible 
free expansion of Fig. 20.1.1 with a reversible process that connects states i and f. 
With a reversible process we can trace a pressure–volume path on a p-V plot, and 
we can find a relation between Q and T that allows us to use Eq. 20.1.1 to obtain 
the entropy change.

We saw in Module 19.9 that the temperature of an ideal gas does not change 
during a free expansion: Ti = Tf = T. Thus, points i and f in Fig. 20.1.2 must be on 
the same isotherm. A convenient replacement process is then a  reversible isother-
mal expansion from state i to state f, which actually proceeds along that isotherm. 
Furthermore, because T is constant throughout a reversible isothermal expan-
sion, the integral of Eq. 20.1.1 is greatly simplified.

Figure 20.1.1 The free expansion 
of an ideal gas. (a) The gas is con-
fined to the left half of an insulated 
container by a closed stopcock. (b) 
When the stopcock is opened, the gas 
rushes to fill the entire container. 
This process is irreversible; that is, it 
does not  occur in reverse, with the 
gas spontaneously collecting itself in 
the left half of the container.

Vacuum

Insulation

System

(a) Initial state i

(b) Final state f

Irreversible
process

Stopcock open

Stopcock closed

Pr
es

su
re

Volume

i

f

Figure 20.1.2 A p-V diagram showing 
the initial state i and the final state 
f of the free expansion of Fig. 20.1.1. 
The intermediate states of the gas 
cannot be shown because they are 
not equilibrium states.
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Figure 20.1.3 shows how to produce such a reversible isothermal expansion. 
We confine the gas to an insulated cylinder that rests on a thermal reservoir 
maintained at the temperature T. We begin by placing just enough lead shot on 
the movable piston so that the pressure and volume of the gas are those of the 
initial state i of Fig. 20.1.1a. We then remove shot slowly (piece by piece) until 
the pressure and volume of the gas are those of the final state f of Fig. 20.1.1b. 
The  temperature of the gas does not change because the gas remains in thermal 
 contact with the reservoir throughout the process.

The reversible isothermal expansion of Fig. 20.1.3 is physically quite different 
from the irreversible free expansion of Fig. 20.1.1. However, both processes have 
the same initial state and the same final state and thus must have the same change 
in entropy. Because we removed the lead shot slowly, the intermediate states of 
the gas are equilibrium states, so we can plot them on a p-V diagram (Fig. 20.1.4).

To apply Eq. 20.1.1 to the isothermal expansion, we take the constant tem-
perature T outside the integral, obtaining

 ΔS =  S  f   −  S  i   =   1 __ 
T

     
i
  
f

  dQ.  

Because ∫ dQ = Q, where Q is the total energy transferred as heat during the 
process, we have

  ΔS =  S  f   −  S  i   =   
Q

 ___ 
T

    (change in entropy, isothermal process). (20.1.2)

To keep the temperature T of the gas constant during the isothermal expansion 
of Fig. 20.1.3, heat Q must have been energy transferred from the reservoir to the 
gas. Thus, Q is positive and the entropy of the gas increases during the isothermal 
process and during the free expansion of Fig. 20.1.1.

To summarize:

T

Lead shot

Insulation

Thermal reservoir
T

Control knob

Q

(a) Initial state i

Reversible
process

Lead shot

(b) Final state f

Figure 20.1.3 The isothermal 
expansion of an ideal gas, done in a 
reversible way. The gas has the same 
initial state i and same final state f 
as in the irreversible process of Figs. 
20.1.1 and 20.1.2.

Figure 20.1.4 A p-V diagram for the 
reversible isothermal expansion of 
Fig. 20.1.3. The intermediate states, 
which are now equilibrium states, 
are shown.

Isotherm

TPr
es

su
re

Volume

i

f

 To find the entropy change for an irreversible process, replace that process with 
any reversible process that connects the same initial and  final states. Calculate 
the entropy change for this reversible process with Eq. 20.1.1.

When the temperature change ΔT of a system is small relative to the tem-
perature (in kelvins) before and after the process, the entropy change can be 
 approximated as

   ΔS =  S  f   −  S  i   ≈   
Q
 _____  T  avg  
  ,   (20.1.3)

where Tavg is the average temperature of the system in kelvins during the process.

Checkpoint 20.1.1
Water is heated on a stove. Rank the entropy changes of the water as its temperature 
rises (a) from 20°C to 30°C, (b) from 30°C to 35°C, and (c) from 80°C to 85°C, 
greatest first.

Entropy as a State Function
We have assumed that entropy, like pressure, energy, and temperature, is a prop-
erty of the state of a system and is independent of how that state is reached. 
That entropy is indeed a state function (as state properties are usually called) 
can be deduced only by experiment. However, we can prove it is a state func-
tion for the special and important case in which an ideal gas is taken through a 
 reversible process.
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To make the process reversible, it is done slowly in a series of small steps, with 
the gas in an equilibrium state at the end of each step. For each small step, the 
energy transferred as heat to or from the gas is dQ, the work done by the gas is 
dW, and the change in internal energy is dEint. These are related by the first law of 
thermodynamics in differential form (Eq. 18.5.4):

dEint = dQ − dW.

Because the steps are reversible, with the gas in equilibrium states, we can use 
Eq. 18.5.1 to replace dW with p dV and Eq. 19.7.9 to replace dEint with nCV dT. 
Solving for dQ then leads to

dQ = p dV + nCV dT.

Using the ideal gas law, we replace p in this equation with nRT/V. Then we  divide 
each term in the resulting equation by T, obtaining

   
dQ

 ___ 
T

   = nR   dV ___ 
V

   + n C  V     dT ___ 
T

   . 

Now let us integrate each term of this equation between an arbitrary initial state 
i and an arbitrary final state f to get

   
i
  
f

    
dQ

 ___ 
T

      =   
i
  
f

  nR   dV ___ 
V

    +   
i
  
f

  n C  V     dT ___ 
T

   . 

The quantity on the left is the entropy change ΔS (= Sf − Si) defined by Eq. 20.1.1. 
Substituting this and integrating the quantities on the right yield

   ΔS =  S  f   −  S  i   = nR ln   
 V  f   ___  V  i  

   + n C  V   ln   
 T  f   ___  T  i  

  .   (20.1.4)

Note that we did not have to specify a particular reversible process when we 
 integrated. Therefore, the integration must hold for all reversible processes that 
take the gas from state i to state f. Thus, the change in entropy ΔS between the 
 initial and final states of an ideal gas depends only on properties of the initial 
state (Vi and Ti) and properties of the final state (Vf and Tf); ΔS does not depend 
on how the gas changes between the two states.

Checkpoint 20.1.2
An ideal gas has temperature T1 at the initial state i shown in the p-V diagram here. 
The gas has a higher temperature T2 at final states a and b, which it can reach along 
the paths shown. Is the entropy change along the path to state a larger than, smaller 
than, or the same as that along the path to state b?

T2

T1 T2
b

i

a

Volume

Pr
es

su
re

Sample Problem 20.1.1 Entropy change of two blocks coming to thermal equilibrium

Figure 20.1.5a shows two identical copper blocks of mass 
m = 1.5 kg: block L at temperature TiL = 60°C and block 
R at temperature TiR = 20°C. The blocks are in a thermally 
insulated box and are separated by an insulating shutter. 
When we lift the shutter, the blocks eventually come to 
the equilibrium temperature Tf = 40°C (Fig. 20.1.5b). What 
is the net  entropy change of the two-block system during 
this  irreversible process? The specific heat of copper is 
386 J/kg · K.

KEY IDEA

To calculate the entropy change, we must find a revers-
ible process that takes the  system from the initial state of 
Fig. 20.1.5a to the final state of Fig. 20.1.5b. We can calcu-
late the net entropy change ΔSrev of the reversible process 
using Eq. 20.1.1, and then the entropy change for the irre-
versible process is equal to ΔSrev.
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Calculations: For the reversible process, we need a ther-
mal reservoir whose temperature can be changed slowly 
(say, by turning a knob). We then take the blocks through 
the following two steps, illustrated in Fig. 20.1.6.

Step 1: With the reservoir’s temperature set at 60°C, 
put block L on the reservoir. (Since block and reservoir 
are at the same temperature, they are already in thermal 
equilibrium.) Then slowly lower the temperature of the 
reservoir and the block to 40°C. As the block’s tempera-
ture changes by each increment dT during this process, 
energy dQ is transferred as heat from the block to the 
reservoir. Using Eq. 18.4.3, we can write this transferred 
energy as dQ = mc dT, where c is the specific heat of cop-
per. According to Eq. 20.1.1, the entropy change ΔSL of 
block L during the full tem perature change from  initial 
tem perature TiL (= 60°C = 333 K) to final temperature Tf 
(= 40°C = 313 K) is

  
Δ  S  L  

  
=

  
  

i
  
f

    
dQ

 ____ 
T

    =   
TiL

  
Tf

     mc dT _______ 
T

    = mc   
 T  iL  

  
 T  f  

     dT ____ 
T

     
 

  
     

 

  

      =

  

mc ln   
 T  f   ____  T  iL    .

   

Inserting the given data yields

  Δ S  L    =   (1.5 kg)  (386 J/kg ⋅ K)  ln   313 K ______ 
333 K

      
 
  
=

  
− 35.86 J/K.

   

Step 2: With the reservoir’s temperature now set at 20°C, 
put block R on the reservoir. Then slowly raise the tem-
perature of the reservoir and the block to 40°C. With the 
same reasoning used to find ΔSL, you can show that the 
entropy change ΔSR of block R during this process is

  
Δ S  R  

  
=

  
 (1.5 kg)  (386 J/kg ⋅ K)  ln   313 K ______ 

293 K
  
    

 
  
=

  
+ 38.23 J/K.

   

The net entropy change ΔSrev of the two-block system 
undergoing this two-step reversible process is then

Sample Problem 20.1.2 Entropy change of a free expansion of a gas

Suppose 1.0 mol of nitrogen gas is confined to the left side 
of the container of Fig. 20.1.1a. You open the stopcock, and 
the volume of the gas doubles. What is the entropy change 
of the gas for this irreversible process? Treat the gas as ideal.

KEY IDEAS

(1) We can determine the entropy change for the irrevers-
ible process by calculating it for a reversible process that 
provides the same change in volume. (2) The temper ature 
of the gas does not change in the free expansion. Thus, the 
 reversible process should be an isothermal expansion—
namely, the one of Figs. 20.1.3 and 20.1.4.

Calculations: From Table 19.9.1, the energy Q added as 
heat to the gas as it expands isothermally at temperature 
T from an initial  volume Vi to a final volume Vf is

 Q = nRT ln   
 V  f   ___  V  i  

  , 

in which n is the number of moles of gas present. From 
Eq. 20.1.2 the entropy change for this reversible process 
in which the temperature is held constant is

 Δ S  rev   =   
Q

 __ 
T

   =   
nRT ln  ( V  f   /  V  i  ) 

  ______________ 
T

   = nR ln   
 V  f   ___  V  i  

  . 

Warm Cool
TiL TiR

L R Irreversible
process

Insulation

(a) (b)

Tf Tf

L R

Movable
shutter

Figure 20.1.5 (a) In the initial state, two copper blocks L and R, 
identical except for their temperatures, are in an insulating box 
and are separated by an insulating shutter. (b) When the shut-
ter is removed, the blocks exchange energy as heat and come 
to a final state, both with the same temperature Tf.

Figure 20.1.6 The blocks of Fig. 20.1.5 can proceed from their 
initial state to their final state in a reversible way if we use a 
reservoir with a controllable temperature (a) to extract heat 
reversibly from block L and (b) to add heat reversibly to 
block R.

Q

Reservoir

L

Insulation

Q

R

(a) Step 1 (b) Step 2

 ΔSrev = ΔSL + ΔSR

  = −35.86 J/K + 38.23 J/K = 2.4 J/K.

Thus, the net entropy change ΔSirrev for the two-block sys-
tem undergoing the actual irreversible process is

 ΔSirrev = ΔSrev = 2.4 J/K. (Answer)

This result is positive, in accordance with the entropy 
postulate.
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The Second Law of Thermodynamics
Here is a puzzle. In the process of going from (a) to (b) in Fig. 20.1.3, the entropy 
change of the gas (our system) is positive. However, because the process is revers-
ible, we can also go from (b) to (a) by, say, gradually adding lead shot to the piston, 
to restore the initial gas volume. To maintain a constant temperature, we need to 
remove energy as heat, but that means Q is negative and thus the entropy change 
is also. Doesn’t this entropy decrease violate the entropy postulate: Entropy 
always increases? No, because the postulate holds only for irreversible processes 
in closed systems. Here, the process is not irreversible and the system is not closed 
(because of the energy transferred to and from the reservoir as heat).

However, if we include the reservoir, along with the gas, as part of the  system, 
then we do have a closed system. Let’s check the change in entropy of the  enlarged 
system gas + reservoir for the process that takes it from (b) to (a) in Fig. 20.1.3. 
During this reversible process, energy is transferred as heat from the gas to the 
reservoir—that is, from one part of the enlarged system to  another. Let |Q| repre-
sent the absolute value (or magnitude) of this heat. With Eq. 20.1.2, we can then 
calculate separately the entropy changes for the gas (which loses  |Q|) and the 
reservoir (which gains |Q|). We get

 Δ S  gas   = −    |  Q |  
 ___ 

T
   

and  Δ S  res   = +    |  Q |  
 ____ 

T
  .  

The entropy change of the closed system is the sum of these two quantities: 0.
With this result, we can modify the entropy postulate to  include both revers-

ible and irreversible processes:

Substituting n = 1.00 mol and Vf /Vi = 2, we find

  
Δ S  rev    

=
  
nR ln   

 V  f   ___  V  i  
   =  (1.00 mol)  (8.31 J / mol ⋅ K)  (ln 2) 

     

 

  

=

  

+ 5.76 J/K.

   

Thus, the entropy change for the free expansion (and for 
all other processes that connect the initial and final states 
shown in Fig. 20.1.2) is

 ΔSirrev = ΔSrev = +5.76 J/K. (Answer)

Because ΔS is positive, the entropy increases, in accor-
dance with the entropy postulate.   

If a process occurs in a closed system, the entropy of the system increases for 
irreversible processes and remains constant for reversible processes. It never 
decreases.

Although entropy may decrease in part of a closed system, there will always be an 
equal or larger entropy increase in another part of the system, so that the  entropy 
of the system as a whole never decreases. This fact is one form of the  second law 
of thermodynamics and can be written as

 ΔS ≥ 0 (second law of thermodynamics), (20.1.5)

where the greater-than sign applies to irreversible processes and the equals sign 
to reversible processes. Equation 20.1.5 applies only to closed systems.

Additional examples, video, and practice available at WileyPLUS
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In the real world almost all processes are irreversible to some extent  because 
of friction, turbulence, and other factors, so the entropy of real closed systems 
 undergoing real processes always increases. Processes in which the  system’s 
 entropy remains constant are always idealizations.

Force Due to Entropy
To understand why rubber resists being stretched, let’s write the first law of 
thermodynamics

dE = dQ − dW

for a rubber band undergoing a small increase in length dx as we stretch it 
 between our hands. The force from the rubber band has magnitude F, is directed 
inward, and does work dW = −F dx during length increase dx. From Eq. 20.1.2 
(ΔS = Q/T), small changes in Q and S at constant temperature are related by 
dS = dQ/T, or dQ = T dS. So, now we can rewrite the first law as

 dE = T dS + F dx. (20.1.6)

To good approximation, the change dE in the internal energy of rubber is 0 if 
the total stretch of the rubber band is not very much. Substituting 0 for dE in  
Eq. 20.1.6 leads us to an expression for the force from the rubber band:

 
  F = − T    dS ___ 

dx
  .   (20.1.7)

This tells us that F is proportional to the rate dS/dx at which the rubber band’s 
entropy changes during a small change dx in the rubber band’s length. Thus, you 
can feel the effect of entropy on your hands as you stretch a rubber band.

To make sense of the relation between force and entropy, let’s consider a 
simple model of the rubber material. Rubber consists of cross-linked polymer 
chains (long molecules with cross links) that resemble three-dimensional zig-zags 
(Fig. 20.1.7). When the rubber band is at its rest length, the polymers are coiled up 
in a spaghetti-like arrangement. Because of the large disorder of the molecules, 
this rest state has a high value of entropy. When we stretch a rubber band, we 
uncoil many of those polymers, aligning them in the direction of stretch. Because 
the alignment decreases the disorder, the entropy of the stretched rubber band 
is less. That is, the change dS/dx in Eq. 20.1.7 is a negative quantity because the 
entropy decreases with stretching. Thus, the force on our hands from the rubber 
band is due to the tendency of the polymers to return to their former disordered 
state and higher value of entropy. FCP

Figure 20.1.7 A section of a rub-
ber band (a) unstretched and (b) 
stretched, and a polymer within it  
(a) coiled and (b) uncoiled.

(a)

(b)

Coiled

Uncoiled

F F

20.2 ENTROPY IN THE REAL WORLD: ENGINES
Learning Objectives 
After reading this module, you should be able to . . .

20.2.1 Identify that a heat engine is a device that 
extracts  energy from its environment in the form of 
heat and does  useful work and that in an ideal heat 
engine, all processes are reversible, with no wasteful 
energy transfers.

20.2.2 Sketch a p-V diagram for the cycle of a Carnot 
engine, indicating the direction of cycling, the nature 
of the processes involved, the work done during 
each process (including algebraic sign), the net work 

done in the cycle, and the heat transferred during 
each process (including  algebraic sign).

20.2.3 Sketch a Carnot cycle on a temperature–entropy 
 diagram, indicating the heat transfers.

20.2.4 Determine the net entropy change around a 
 Carnot cycle.

20.2.5 Calculate the efficiency εC of a Carnot engine in 
terms of the heat transfers and also in terms of the 
temperatures of the reservoirs.
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Entropy in the Real World: Engines
A heat engine, or more simply, an engine, is a device that extracts energy from 
its environment in the form of heat and does useful work. At the heart of every 
 engine is a working substance. In a steam engine, the working substance 
is water, in both its vapor and its liquid form. In an automobile engine the 
working substance is a gasoline–air mixture. If an engine is to do work 
on a sustained basis, the working substance must operate in a cycle; that 
is, the working substance must pass through a closed series of thermody-
namic processes, called strokes,  returning again and again to each state in 
its cycle. Let us see what the laws of thermodynamics can tell us about 
the operation of engines.

A Carnot Engine
We have seen that we can learn much about real gases by analyzing an 
ideal gas, which obeys the simple law pV = nRT. Although an ideal gas 
does not exist, any real gas approaches ideal behavior if its density is low 
enough. Similarly, we can study real engines by analyzing the behavior of 
an ideal engine.

Figure 20.2.1 The elements of a 
Carnot engine. The two black arrow-
heads on the central loop suggest 
the working substance operating in a 
cycle, as if on a p-V plot. Energy |QH| 
is transferred as heat from the high-
temperature reservoir at temperature 
TH to the working substance. Energy 
|QL| is transferred as heat from the 
working substance to the low-tem-
perature reservoir at temperature TL. 
Work W is done by the engine (actu-
ally by the working substance) on 
something in the environment.

TH

TL

Q H

Q L

W

Schematic of 
a Carnot engine

Work is done
by the engine.

Heat is
absorbed.

Heat is lost.

20.2.6 Identify that there are no perfect engines in 
which the energy transferred as heat Q from a high-
temperature reservoir goes entirely into the work W 
done by the engine.

20.2.7 Sketch a p-V diagram for the cycle of a Stirling 
engine, indicating the direction of cycling, the nature 
of the processes involved, the work done during each 
process (including algebraic sign), the net work done in 
the cycle, and the heat transfers during each process.

Key Ideas 
● An engine is a device that, operating in a cycle, 
 extracts energy as heat |QH| from a high-temperature 
reservoir and does a certain amount of work |W|. The 
efficiency ε of any  engine is defined as

 ε =   
energy we get

  ________________  
energy we pay for

   =   
 |  W |  

 _____ 
 |   Q  H   |  

  . 

● In an ideal engine, all processes are reversible and 
no wasteful energy transfers occur due to, say, friction 
and turbulence. 

● A Carnot engine is an ideal engine that follows the 
cycle of Fig. 20.2.2. Its efficiency is

  ɛ  C   = 1 −   
 |   Q  L   |  

 _____ 
 |   Q  H   |  

   = 1 −   
 T  L  

 ___  T  H    , 

in which TH and TL are the temperatures of the high- 
and low-temperature reservoirs, respectively. Real 
engines always have an efficiency lower than that of 
a Carnot engine. Ideal engines that are not Carnot 
engines also have  efficiencies lower than that of a 
 Carnot engine.

● A perfect engine is an imaginary engine in which 
energy  extracted as heat from the high-temperature 
reservoir is  converted completely to work. Such an 
engine would violate the second law of thermodynam-
ics, which can be  restated as follows: No series of 
processes is possible whose sole result is the absorp-
tion of energy as heat from a thermal reservoir and the 
complete conversion of this  energy to work.

In an ideal engine, all processes are reversible and no wasteful energy transfers 
 occur due to, say, friction and turbulence.

We shall focus on a particular ideal engine called a Carnot engine after the 
French scientist and engineer N. L. Sadi Carnot (pronounced “car-no”), who first 
proposed the engine’s concept in 1824. This ideal engine turns out to be the best 
(in principle) at using energy as heat to do useful work. Surprisingly, Carnot was 
able to analyze the performance of this engine before the first law of thermo-
dynamics and the concept of entropy had been discovered.

Figure 20.2.1 shows schematically the operation of a Carnot engine. During 
each cycle of the engine, the working substance absorbs energy |QH| as heat from 
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a thermal reservoir at constant temperature TH and discharges energy |QL| as 
heat to a second thermal reservoir at a constant lower temperature TL.

Figure 20.2.2 shows a p-V plot of the Carnot cycle—the cycle followed by 
the working substance. As indicated by the arrows, the cycle is traversed in the 
clockwise direction. Imagine the working substance to be a gas, confined to 
an insu lating cylinder with a weighted, movable piston. The cylinder may be 
placed at will on either of the two thermal reservoirs, as in Fig. 20.1.6, or on an 
insulating slab. Figure 20.2.2a shows that, if we place the cylinder in contact 
with the high- temperature reservoir at temperature TH, heat |QH| is transferred 
to the working substance from this reservoir as the gas undergoes an isothermal 
expansion from volume Va to volume Vb. Similarly, with the working substance 
in contact with the low-temperature reservoir at temperature TL, heat |QL| is 
transferred from the working substance to the low-temperature reservoir as 
the gas undergoes an isothermal compression from volume Vc to volume Vd  
(Fig. 20.2.2b).

In the engine of Fig. 20.2.1, we assume that heat transfers to or from the work-
ing substance can take place only during the isothermal processes ab and cd of 
Fig. 20.2.2. Therefore, processes bc and da in that figure, which connect the two 
isotherms at temperatures TH and TL, must be (reversible) adiabatic processes; 
that is, they must be processes in which no energy is transferred as heat. To ensure 
this, during processes bc and da the cylinder is placed on an insulating slab as the 
volume of the working substance is changed.

During the processes ab and bc of Fig. 20.2.2a, the working substance is 
 expanding and thus doing positive work as it raises the weighted  piston. This 
work is represented in Fig. 20.2.2a by the area under curve abc. During the 
processes cd and da (Fig. 20.2.2b), the working substance is being compressed, 
which means that it is doing negative work on its environment or, equivalently, 
that its environment is doing work on it as the loaded piston  descends. This work 
is  represented by the area under curve cda. The net work per cycle, which is rep-
resented by W in both Figs. 20.2.1 and 20.2.2, is the difference between these two 
areas and is a positive quantity equal to the area enclosed by cycle abcda in Fig. 
20.2.2. This work W is performed on some outside object, such as a load to  
be lifted.

A

Figure 20.2.2 A pressure–
volume plot of the cycle 
followed by the working 
substance of the Carnot 
engine in Fig. 20.2.1. The cycle 
consists of two isothermal 
processes (ab and cd) and two 
adiabatic processes (bc and 
da). The shaded area enclosed 
by the cycle is equal to the 
work W per cycle done by the 
Carnot engine.
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Carnot engine Isothermal:
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Equation 20.1.1 (ΔS = ∫ dQ/T) tells us that any energy transfer as heat 
must involve a change in entropy. To see this for a Carnot  engine, we can plot 
the Carnot cycle on a temperature–entropy (T-S) diagram as in Fig. 20.2.3. 
The  lettered points a, b, c, and d there correspond to the lettered points in the 
p-V  diagram in Fig. 20.2.2. The two horizontal lines in Fig. 20.2.3 correspond 
to the two isothermal processes of the cycle. Process ab is the isothermal 
expansion of the cycle. As the working substance (reversibly) absorbs energy 
|QH| as heat at  constant temperature TH during the expansion, its entropy 
increases. Similarly, during the isothermal compression cd, the working sub-
stance (reversibly) loses energy |QL| as heat at constant temperature TL, and 
its entropy decreases.

The two vertical lines in Fig. 20.2.3 correspond to the two adiabatic processes 
of the Carnot cycle. Because no energy is transferred as heat during the two pro-
cesses, the entropy of the working substance is constant during them.

The Work To calculate the net work done by a Carnot engine during a cycle, 
let us apply Eq. 18.5.3, the first law of thermodynamics (ΔEint = Q − W), to the 
working substance. That substance must return again and again to any arbitrarily 
 selected state in the cycle. Thus, if X represents any state property of the working 
substance, such as pressure, temperature, volume, internal energy, or  entropy, we 
must have ΔX = 0 for every cycle. It follows that ΔEint = 0 for a complete cycle 
of the working substance. Recalling that Q in Eq. 18.5.3 is the net heat transfer 
per cycle and W is the net work, we can write the first law for this cycle (or any 
ideal cycle) as

   W =   |   Q  H   |    −   |   Q  L   |   .   (20.2.1)

Entropy Changes In a Carnot engine, there are two (and only two) reversible 
energy transfers as heat, and thus two changes in the entropy of the working 
 substance—one at temperature TH and one at TL. The net entropy change per 
 cycle is then

   ΔS = Δ S  H   + Δ S  L   =   
 |   Q  H   |  

 _____  T  H     −   
 |   Q  L   |  

 _____  T  L    .
   (20.2.2)

Here ΔSH is positive because energy |QH| is added to the working substance as 
heat (an increase in entropy) and ΔSL is negative because energy |QL| is  removed 
from the working substance as heat (a decrease in entropy). Because entropy 
is a state function, we must have ΔS = 0 for a complete cycle. Putting ΔS = 0 in 
Eq. 20.2.2 requires that

     
 |   Q  H   |  

 _____  T  H     =   
 |   Q  L   |  

 _____  T  L    .
   (20.2.3)

Note that, because TH > TL, we must have |QH| > |QL|; that is, more energy is 
 extracted as heat from the high-temperature reservoir than is delivered to the 
low-temperature reservoir.

We shall now derive an expression for the efficiency of a Carnot engine.

Efficiency of a Carnot Engine
The purpose of any engine is to transform as much of the extracted energy QH 
into work as possible. We measure its success in doing so by its thermal efficiency 
ε, defined as the work the engine does per cycle (“energy we get”) divided by the 
energy it absorbs as heat per cycle (“energy we pay for”):

  ε =   
energy we get

  ___________________  
energy we pay for

   =   
 |  W |  

 _____ 
 |   Q  H   |  

      (efficiency, any engine). (20.2.4)

Figure 20.2.3 The Carnot cycle of 
Fig. 20.2.2 plotted on a temperature–
entropy  diagram. During processes 
ab and cd the temperature remains 
constant. During processes bc 
and da the entropy remains constant.
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For any ideal engine we substitute for W from Eq. 20.2.1 to write Eq. 20.2.4 as

   ɛ =   
  |   Q  H   |    −   |   Q  L   |   

 ____________ 
 |   Q  H   |  

   = 1 −   
 |   Q  L   |  

 _____ 
 |   Q  H   |  

  .   (20.2.5)

Using Eq. 20.2.3 for a Carnot engine, we can write this as

  ɛC = 1 −   
TL ____ 
TH

      (efficiency, Carnot engine), (20.2.6)

where the temperatures TL and TH are in kelvins. Because TL < TH, the Car-
not engine necessarily has a thermal efficiency less than unity—that is, less than 
100%. This is indicated in Fig. 20.2.1, which shows that only part of the energy 
 extracted as heat from the high-temperature reservoir is available to do work, and 
the rest is delivered to the low-temperature reservoir. We shall show in Module 
20.3 that no real engine can have a thermal efficiency greater than that calculated 
from Eq. 20.2.6.

Inventors continually try to improve engine efficiency by reducing the  energy 
|QL| that is “thrown away” during each cycle. The inventor’s dream is to produce 
the perfect engine, diagrammed in Fig. 20.2.4, in which |QL| is reduced to zero 
and |QH| is converted completely into work. Such an engine on an ocean liner, 
for  example, could extract energy as heat from the water and use it to drive the 
 propellers, with no fuel cost. An automobile fitted with such an engine could 
 extract energy as heat from the surrounding air and use it to drive the car, again 
with no fuel cost. Alas, a perfect engine is only a dream: Inspection of Eq. 20.2.6 
shows that we can achieve 100% engine efficiency (that is, ε = 1) only if TL = 0 
or TH → ∞, impossible  requirements. Instead, experience gives the following 
 alternative version of the second law of thermodynamics, which says in short, 
there are no perfect engines:

 No series of processes is possible whose sole result is the transfer of energy as heat 
from a thermal reservoir and the complete conversion of this energy to work.

To summarize: The thermal efficiency given by Eq. 20.2.6 applies 
only to Carnot engines. Real engines, in which the processes that form 
the engine cycle are not reversible, have lower efficiencies. If your 
car were powered by a Carnot engine, it would have an efficiency of 
about 55% according to Eq. 20.2.6; its actual efficiency is probably 
about 25%. A nuclear power plant (Fig. 20.2.5), taken in its entirety, is 
an engine. It extracts energy as heat from a reactor core, does work by 
means of a turbine, and discharges energy as heat to a nearby river. 
If the power plant operated as a Carnot engine, its efficiency would 
be about 40%; its actual efficiency is about 30%. In designing engines 
of any type, there is simply no way to beat the efficiency limitation 
imposed by Eq. 20.2.6.

Stirling Engine
Equation 20.2.6 applies not to all ideal engines but only to those that can be 
 represented as in Fig. 20.2.2—that is, to Carnot engines. For example, Fig. 20.2.6 
shows the operating cycle of an ideal Stirling engine. Comparison with the 
Carnot cycle of Fig. 20.2.2 shows that each engine has isothermal heat trans-
fers at temperatures TH and TL. However, the two isotherms of the Stirling 
engine cycle are connected, not by adiabatic processes as for the Carnot engine 
but by  constant-volume processes. To increase the temperature of a gas at 

John McDonnell/The Washington Post/Getty Images
Figure 20.2.5 The North Anna nuclear 
power plant near  Charlottesville, 
Virginia, which generates electric 
energy at the rate of 900 MW. At 
the same time, by design, it discards 
 energy into the nearby river at the 
rate of 2100 MW. This plant and all 
others like it throw away more energy 
than they deliver in useful form. They 
are real counterparts of the ideal 
engine of Fig. 20.2.1.
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Figure 20.2.4 The elements of 
a perfect engine—that is, one 
that converts heat QH from a 
 high-temperature reservoir directly 
to work W with 100% efficiency.
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W (= Q H)

Q H

Q L = 0

Perfect engine:
total conversion
of heat to work
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constant volume reversibly from TL to TH (process da of Fig. 20.2.6) requires 
a transfer of energy as heat to the working substance from a thermal reser-
voir whose temperature can be varied smoothly between those limits. Also, a 
reverse transfer is required in process bc. Thus, reversible heat transfers (and 
corresponding entropy changes) occur in all four of the processes that form the 
 cycle of a Stirling engine, not just two processes as in a Carnot engine. Thus, the 
derivation that led to Eq. 20.2.6 does not apply to an ideal Stirling engine. More 
important, the efficiency of an ideal Stirling engine is lower than that of a Car-
not engine operating between the same two temperatures. Real Stirling engines 
have even lower efficiencies.

The Stirling engine was developed in 1816 by Robert Stirling. This engine, 
long neglected, is now being developed for use in automobiles and spacecraft. 
A Stirling engine delivering 5000 hp (3.7 MW) has been built. Because they are 
quiet, Stirling engines are used on some military submarines.

Checkpoint 20.2.1
Three Carnot engines operate between reservoir temperatures of (a) 400 and 500 K, 
(b) 600 and 800 K, and (c) 400 and 600 K. Rank the engines according to their ther-
mal  efficiencies, greatest first.

Sample Problem 20.2.1 Carnot engine, efficiency, power, entropy changes

Imagine a Carnot engine that operates between the tem-
peratures TH = 850 K and TL = 300 K. The engine per-
forms 1200 J of work each cycle, which takes 0.25 s.

(a) What is the efficiency of this engine?

KEY IDEA

The efficiency ε of a Carnot engine depends only on the 
ratio TL/TH of the tem peratures (in kelvins) of the ther-
mal reservoirs to which it is connected. 

Calculation: Thus, from Eq. 20.2.6, we have

  ɛ = 1 −   
 T  L  

 ____  T  H     = 1 −   300 K _______ 
850 K

   = 0.647 ≈ 65%.  (Answer)

(b) What is the average power of this engine?

KEY IDEA

The average power P of an engine is the ratio of the work 
W it does per cycle to the time t that each cycle takes.

Calculation: For this Carnot engine, we find

  P =   W ___ t   =   1200 J ______ 
0.25 s

   = 4800 W = 4.8 kW.  (Answer)

(c) How much energy |QH| is extracted as heat from the 
high-temperature reservoir every cycle?

KEY IDEA

The efficiency ε is the ratio of the work W that is done per 
 cycle to the energy |QH| that is extracted as heat from the 
high-temperature reservoir per cycle (ε = W/|QH|). 

Calculation: Here we have

    |   Q  H   |    =   W ___ ε   =   1200 J ______ 
0.647

   = 1855 J.   (  Answer )    

(d) How much energy |QL| is delivered as heat to the low-
temperature reservoir every cycle?

KEY IDEA

For a Carnot engine, the work W done per cycle is equal to 
the difference in the energy transfers as heat: |QH| − |QL|, 
as in Eq. 20.2.1.

Calculation: Thus, we have

 |QL| = |QH| − W

 = 1855 J − 1200 J = 655 J. (Answer)

(e) By how much does the entropy of the working sub-
stance change as a result of the energy transferred to it 
from the high-temperature reservoir? From it to the low-
temperature reservoir?

Vb
Volume
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Q H
Q

Q

Q L

W

TH

TL

Stages of a
Stirling engine

Figure 20.2.6 A p-V plot for the 
working  substance of an ideal Stir-
ling engine, with the working sub-
stance assumed for convenience to 
be an ideal gas.
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Similarly, for the negative transfer of energy QL to the 
low-temperature reservoir at TL, we have

  Δ S  L   =   
 Q  L  

 ____  T  L     =   − 655 J ________ 
300 K

   = − 2.18 J/K.     (Answer)

Note that the net entropy change of the working sub-
stance for one cycle is zero, as we discussed in deriving 
Eq. 20.2.3.

KEY IDEA

The entropy change ΔS during a transfer of energy as heat Q 
at constant temperature T is given by Eq. 20.1.2 (ΔS = Q/T  ).

Calculations: Thus, for the positive  transfer of energy QH 
from the high-temperature reservoir at TH, the change in 
the entropy of the working substance is

  Δ S  H   =   
 Q  H  

 ____  T  H     =   1855 J _______ 
850 K

   = + 2.18 J/K.  (Answer)

20.3 REFRIGERATORS AND REAL ENGINES
Learning Objectives 
After reading this module, you should be able to . . .

20.3.1 Identify that a refrigerator is a device that uses 
work to transfer energy from a low-temperature res-
ervoir to a high-temperature reservoir, and that an 
ideal refrigerator is one that does this with reversible 
processes and no wasteful losses.

20.3.2 Sketch a p-V diagram for the cycle of a Carnot 
refrigerator, indicating the direction of cycling, the 
nature of the processes involved, the work done 
during each process (including algebraic sign), the 
net work done in the cycle, and the heat transferred 
during each process (including  algebraic sign).

20.3.3 Apply the relationship between the coeffi-
cient of  performance K and the heat exchanges 
with the reservoirs and the temperatures of the 
reservoirs.

20.3.4 Identify that there is no ideal refrigerator in 
which all of the energy extracted from the low-
temperature  reservoir is transferred to the high-
temperature reservoir.

20.3.5 Identify that the efficiency of a real engine is less 
than that of the ideal Carnot engine.

Key Ideas 
● A refrigerator is a device that, operating in a cycle, 
has work W done on it as it extracts energy |QL| as 
heat from a low-temperature reservoir. The coefficient 
of performance K of a refrigerator is defined as

 K =   what we want  ______________  
what we pay for

   =   
 |    Q  L   |  

 ____  |  W |    . 

● A Carnot refrigerator is a Carnot engine operating in 
 reverse. Its coefficient of performance is

  K  C   =   
 |   Q  L   |  
 ___________ 

  |   Q  H   |    −   |   Q  L   |   
   =   

 T  L  
 ________  T  H   −  T  L    . 

● A perfect refrigerator is an entirely imaginary 
refrigerator in which energy extracted as heat 
from the low-temperature reservoir is somehow 
converted completely to heat discharged to the 
 high-temperature reservoir without any need for work. 

● A perfect refrigerator would violate the second law 
of thermodynamics, which can be restated as fol-
lows: No series of processes is possible whose sole 
result is the transfer of energy as heat from a reser-
voir at a given temperature to a reservoir at a higher 
temperature (without work being involved).

Calculation: From Eq. 20.2.6, we find that the efficiency 
of a Carnot engine operating between the boiling and 
freezing points of water is

 ε = 1 −   
 T  L  

 ___  T  H     = 1 −   
 (0 + 273)  K

  _____________  
 (100 + 273)  K

   = 0.268 ≈ 27%. 

Thus, for the given temperatures, the claimed efficiency of 
75% for a real engine (with its irreversible processes and 
wasteful energy transfers) is impossible.

An inventor claims to have constructed an engine that has 
an efficiency of 75% when operated between the boiling 
and freezing points of water. Is this possible?

KEY IDEA

The efficiency of a real engine must be less than the effi-
ciency of a Carnot engine operating between the same 
two temperatures. 

Sample Problem 20.2.2 Impossibly efficient engine

Additional examples, video, and practice available at WileyPLUS
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Entropy in the Real World: Refrigerators
A refrigerator is a device that uses work in order to transfer energy from a low- 
temperature reservoir to a high-temperature reservoir as the device continuously 
repeats a set series of thermodynamic processes. In a household refrigerator, for 
example, work is done by an electrical compressor to transfer energy from the 
food storage compartment (a low-temperature reservoir) to the room (a high-
temperature reservoir).

Air conditioners and heat pumps are also refrigerators. For an air conditioner, 
the low-temperature reservoir is the room that is to be cooled and the high- 
temperature reservoir is the warmer outdoors. A heat pump is an air conditioner 
that can be operated in reverse to heat a room; the room is the high-temperature 
reservoir, and heat is transferred to it from the cooler outdoors.

Let us consider an ideal refrigerator:

 In an ideal refrigerator, all processes are reversible and no wasteful energy trans-
fers occur as a result of, say, friction and turbulence.

Figure 20.3.1 shows the basic elements of an ideal refrigerator. Note that its oper-
ation is the reverse of how the Carnot engine of Fig. 20.2.1 operates. In other 
words, all the energy transfers, as either heat or work, are reversed from those of 
a Carnot engine. We can call such an ideal refrigerator a Carnot refrigerator.

The designer of a refrigerator would like to extract as much energy |QL| as 
possible from the low-temperature reservoir (what we want) for the least amount 
of work |W| (what we pay for). A measure of the efficiency of a refrigerator, then, is

  K =   what we want  _________________  
what we pay for

   =   
 |   Q  L   |  

 _____  |  W |        
(coefficient of performance, 

any refrigerator),  (20.3.1)

where K is called the coefficient of performance. For any ideal refrigerator, the first 
law of thermodynamics gives |W| = |QH| − |QL|, where |QH| is the magnitude of 
the energy transferred as heat to the high-temperature reservoir.  Equation 20.3.1 
then becomes

   K =   
 |    Q  L   |  
 ____________ 

  |    Q  H   |    −   |    Q  L   |   
  .   (20.3.2)

Because a Carnot refrigerator is a Carnot engine operating in reverse, we can 
combine Eq. 20.2.3 with Eq. 20.3.2; after some algebra we find

   K  C   =   
 T  L  
 _________  T  H   −  T  L        

(coefficient of performance, 
Carnot refrigerator).  (20.3.3)

For typical room air conditioners, K ≈ 2.5. For household refrigerators, K ≈ 5. 
Perversely, the value of K is higher the closer the temperatures of the two reser-
voirs are to each other. That is why heat pumps are more effective in  temperate 
climates than in very cold climates.

It would be nice to own a refrigerator that did not require some input of 
work—that is, one that would run without being plugged in. Figure 20.3.2 rep-
resents another “inventor’s dream,” a perfect refrigerator that transfers energy 
as heat Q from a cold reservoir to a warm reservoir without the need for work. 
Because the unit operates in cycles, the entropy of the working substance does 
not change during a complete cycle. The entropies of the two reservoirs, however, 
do change: The entropy change for the cold reservoir is −|Q|/TL, and that for the 
warm reservoir is +|Q|/TH. Thus, the net entropy change for the entire system is

 ΔS = −   
 |  Q |  

 ___  T  L     +   
 |  Q |  

 ___  T  H    . 

TH

TL

Q H

Q L

W

Heat is 
absorbed.

Heat 
is lost.

Work is done
on the engine.

Schematic of 
a refrigerator

Figure 20.3.1 The elements of a Carnot 
refrigerator. The two black arrowheads 
on the central loop suggest the work-
ing substance operating in a cycle, as if 
on a p-V plot. Energy is transferred as 
heat QL to the working substance from 
the  low-temperature reservoir. Energy 
is transferred as heat QH to the high-
temperature reservoir from the work-
ing  substance. Work W is done on the 
refrigerator (on the working substance) 
by something in the environment.

Q

TL

TH

Q

Perfect refrigerator:
total transfer of heat
from cold to hot
without any work

Figure 20.3.2 The elements of 
a perfect refrigerator—that is, 
one that transfers energy from a 
 low-temperature reservoir to a high-
temperature reservoir without any 
input of work.
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Because TH > TL, the right side of this equation is negative and thus the net 
change in entropy per cycle for the closed system refrigerator + reservoirs is also 
negative. Because such a decrease in entropy violates the second law of ther-
modynamics (Eq. 20.1.5), a perfect refrigerator does not exist. (If you want your 
 refrigerator to operate, you must plug it in.)

Here, then, is another way to state the second law of thermodynamics:

 No series of processes is possible whose sole result is the transfer of energy 
as heat from a reservoir at a given temperature to a reservoir at a higher 
temperature.

In short, there are no perfect refrigerators.

Checkpoint 20.3.1
You wish to increase the coefficient of performance of an ideal refrigerator. You can 
do so by (a) running the cold chamber at a slightly higher temperature, (b) running 
the cold chamber at a slightly lower temperature, (c) moving the unit to a slightly 
warmer room, or (d) moving it to a slightly cooler room. The magnitudes of the tem-
perature changes are to be the same in all four cases. List the changes according to 
the resulting coefficients of performance, greatest first.

The Efficiencies of Real Engines
Let εC be the efficiency of a Carnot engine operating between two given tem-
peratures. Here we prove that no real engine operating between those tempera-
tures can have an efficiency greater than εC. If it could, the engine would violate 
the second law of thermodynamics.

Let us assume that an inventor, working in her garage, has constructed an 
 engine X, which she claims has an efficiency εX that is greater than εC:

 εX > εC   (a claim). (20.3.4)

Let us couple engine X to a Carnot refrigerator, as in Fig. 20.3.3a. We adjust the 
strokes of the Carnot refrigerator so that the work it requires per cycle is just equal 
to that provided by engine X. Thus, no (external) work is performed on or by the 
combination engine + refrigerator of Fig. 20.3.3a, which we take as our system.

If Eq. 20.3.4 is true, from the definition of efficiency (Eq. 20.2.4), we must have

   
 |  W |  

 _____ 
 |  Q ′  H   |  

   >   
 |  W |  

 _____ 
 |   Q  H   |  

  , 

where the prime refers to engine X and the right side of the inequality is the  efficiency 
of the Carnot refrigerator when it operates as an engine. This inequality requires that

     |   Q  H   |    >   |  Q ′  H   |   .   (20.3.5)

Engine
X

TL

(a) (b)

TH

Carnot
refrigerator

Perfect
refrigeratorW

Q'H
Q

Q
Q'L

Q H

Q L

Figure 20.3.3 (a) Engine X drives 
a Carnot refrigerator. (b) If, as 
claimed, engine X is more effi-
cient than a Carnot engine, then 
the combination shown in (a) is 
equivalent to the perfect refrig-
erator shown here. This violates 
the second law of thermodynam-
ics, so we conclude that engine X 
cannot be more efficient than a 
Carnot engine.
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Because the work done by engine X is equal to the work done on the Carnot 
 refrigerator, we have, from the first law of thermodynamics as given by Eq. 20.2.1,

   |    Q  H   |    −   |    Q  L   |    =   |  Q ′  H   |    −   |  Q ′  L   |   , 

which we can write as

     |   Q  H   |    −   |  Q ′  H   |    =   |   Q  L   |    −   |  Q ′  L   |    = Q.   (20.3.6)

Because of Eq. 20.3.5, the quantity Q in Eq. 20.3.6 must be positive.
Comparison of Eq. 20.3.6 with Fig. 20.3.3 shows that the net effect of engine 

X and the Carnot refrigerator working in combination is to transfer energy Q as 
heat from a low-temperature reservoir to a high-temperature reservoir without 
the requirement of work. Thus, the combination acts like the perfect refrigerator 
of Fig. 20.3.2, whose existence is a violation of the second law of thermodynamics.

Something must be wrong with one or more of our assumptions, and it can 
only be Eq. 20.3.4. We conclude that no real engine can have an efficiency greater 
than that of a Carnot engine when both engines work between the same two tem-
peratures. At most, the real engine can have an efficiency equal to that of a Carnot 
engine. In that case, the real engine is a Carnot engine.

20.4 A STATISTICAL VIEW OF ENTROPY
Learning Objectives 
After reading this module, you should be able to . . .

20.4.1 Explain what is meant by the configurations of a 
system of molecules.

20.4.2 Calculate the multiplicity of a given 
configuration.

20.4.3 Identify that all microstates are equally probable 
but the configurations with more microstates are 
more probable than the other configurations.

20.4.4 Apply Boltzmann’s entropy equation to calculate 
the entropy associated with a multiplicity.

Key Ideas 
● The entropy of a system can be defined in terms of 
the possible distributions of its  molecules. For identical 
molecules, each possible distribution of molecules is 
called a microstate of the system. All equivalent micro-
states are grouped into a configuration of the  system. 
The number of microstates in a configuration is the 
multiplicity W of the configuration.

● For a system of N molecules that may be distributed 
 between the two halves of a box, the multiplicity is 
given by

 W =   N ! _______ 
 n  1   !  n  2   !

  , 

in which n1 is the number of molecules in one half of 
the box and n2 is the number in the other half. A basic 

assumption of statistical mechanics is that all the micro-
states are equally probable. Thus, configurations with a 
large multiplicity occur most often. When N is very large 
(say, N = 1022 molecules or more), the molecules are 
nearly always in the configuration in which n1 = n2.

● The multiplicity W of a configuration of a system and 
the entropy S of the system in that configuration are 
related by Boltzmann’s entropy equation:

S = k ln W,

where k = 1.38 × 10−23 J/K is the Boltzmann constant.

● When N is very large (the usual case), we can 
approximate ln N! with Stirling’s approximation:

ln N! ≈ N(ln N) − N.

A Statistical View of Entropy
In Chapter 19 we saw that the macroscopic properties of gases can be explained in 
terms of their microscopic, or molecular, behavior. Such explanations are part of 
a study called statistical mechanics. Here we shall focus our attention on a single 
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problem, one involving the  distribution of gas molecules between the two halves 
of an insulated box. This problem is reasonably simple to analyze, and it allows us 
to use statistical  mechanics to calculate the entropy change for the free expansion 
of an ideal gas. You will see that statistical mechanics leads to the same entropy 
change as we would find using thermodynamics.

Figure 20.4.1 shows a box that contains six identical (and thus indistinguish-
able) molecules of a gas. At any instant, a given molecule will be in either the 
left or the right half of the box; because the two halves have equal volumes, the 
 molecule has the same likelihood, or probability, of being in either half.

Table 20.4.1 shows the seven possible configurations of the six molecules, 
each configuration labeled with a Roman numeral. For example, in configuration 
I, all six molecules are in the left half of the box (n1 = 6) and none are in the right 
half (n2 = 0). We see that, in general, a given configuration can be achieved in a 
 number of different ways. We call these different arrangements of the molecules 
microstates. Let us see how to calculate the number of microstates that corre-
spond to a given configuration.

Suppose we have N molecules, distributed with n1 molecules in one half of 
the box and n2 in the other. (Thus n1 + n2 = N.) Let us imagine that we distribute 
the molecules “by hand,” one at a time. If N = 6, we can select the first molecule 
in six independent ways; that is, we can pick any one of the six molecules. We can 
pick the second molecule in five ways, by picking any one of the remaining five 
molecules; and so on. The total number of ways in which we can select all six mol-
ecules is the product of these independent ways, or 6 × 5 × 4 × 3 × 2 × 1 = 720. 
In mathematical shorthand we write this product as 6! = 720, where 6! is pro-
nounced “six factorial.” Your hand calculator can probably calculate factorials. 
For later use you will need to know that 0! = 1. (Check this on your calculator.)

However, because the molecules are indistinguishable, these 720 arrange-
ments are not all different. In the case that n1 = 4 and n2 = 2 (which is config-
uration III in Table 20.4.1), for example, the order in which you put four molecules 
in one half of the box does not matter, because after you have put all four in, there 
is no way that you can tell the order in which you did so. The number of ways in 
which you can order the four molecules is 4! = 24. Similarly, the number of ways 
in which you can order two molecules for the other half of the box is  simply 2! = 2. 
To get the number of different arrangements that lead to the (4, 2) split of configu-
ration III, we must divide 720 by 24 and also by 2. We call the  resulting quantity, 
which is the number of microstates that correspond to a given configuration, the 
multiplicity W of that configuration. Thus, for configuration III,

  W  III   =   6! _____ 
4 ! 2 !

   =   720 ______ 
24 × 2

   = 15. 

Thus, Table 20.4.1 tells us there are 15 independent microstates that correspond to 
configuration III. Note that, as the table also tells us, the total number of micro-
states for six molecules distributed over the seven configurations is 64.

Extrapolating from six molecules to the general case of N molecules, we have

  W =   N! ________ 
 n  1  !  n  2  !

      (multiplicity of configuration). (20.4.1)

You should verify the multiplicities for all the configurations in Table 20.4.1.
The basic assumption of statistical mechanics is that

All microstates are equally probable.

Figure 20.4.1 An insulated box con-
tains six gas molecules. Each mol-
ecule has the same probability of 
being in the left half of the box as 
in the right half. The arrangement in 
(a) corresponds to configuration III 
in Table 20.4.1, and that in (b) corre-
sponds to  configuration IV.

(a) Insulation

(b)

In other words, if we were to take a great many snapshots of the six molecules as 
they jostle around in the box of Fig. 20.4.1 and then count the number of times 
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each microstate occurred, we would find that all 64 microstates would occur 
equally often. Thus the system will spend, on average, the same amount of time 
in each of the 64 microstates.

Because all microstates are equally probable but different configurations 
have different numbers of microstates, the configurations are not all equally prob-
able. In Table 20.4.1 configuration IV, with 20 microstates, is the most probable 
configuration, with a probability of 20/64 = 0.313. This result means that the sys-
tem is in configuration IV 31.3% of the time. Configurations I and VII, in which 
all the molecules are in one half of the box, are the least probable, each with a 
probability of 1/64 = 0.016 or 1.6%. It is not surprising that the most probable 
configuration is the one in which the molecules are evenly divided between the 
two halves of the box, because that is what we expect at thermal equilibrium. 
However, it is surprising that there is any probability, however small, of finding all 
six molecules clustered in half of the box, with the other half empty.

For large values of N there are extremely large numbers of microstates, but 
nearly all the microstates belong to the configuration in which the molecules are 
divided equally between the two halves of the box, as Fig. 20.4.2 indicates. Even 
though the measured temperature and pressure of the gas remain constant, the 
gas is churning away endlessly as its molecules “visit” all probable microstates 
with equal probability. However, because so few microstates lie outside the very 
narrow central configuration peak of Fig. 20.4.2, we might as well assume that the 
gas molecules are always divided equally between the two halves of the box. As 
we shall see, this is the configuration with the greatest entropy.

Figure 20.4.2 For a large number 
of molecules in a box, a plot of the 
number of microstates that require 
various percentages of the molecules 
to be in the left half of the box. Nearly 
all the microstates correspond to an 
approximately equal sharing of the 
molecules  between the two halves of 
the box; those microstates form the 
central configuration peak on the plot. 
For N ≈ 1022, the central configuration 
peak is much too narrow to be drawn 
on this plot.

0 25 50 75 100%

N
um

be
r 

of
 m

ic
ro

st
at

es
 W

Percentage of molecules in left half

Central
con�guration
peak

Table 20.4.1 Six Molecules in a Box

Calculation 
of W

(Eq. 20.4.1)

Entropy 
10−23 J/K

(Eq. 20.4.2)
Configuration Multiplicity W

(number of microstates)Label n1 n2

  I 6 0 1 6!/(6! 0!) = 1 0
   II 5 1 6 6!/(5! 1!) = 6 2.47
 III 4 2 15 6!/(4! 2!) = 15 3.74
 IV 3 3 20 6!/(3! 3!) = 20 4.13
 V 2 4 15 6!/(2! 4!) = 15 3.74
 VI 1 5 6 6!/(1! 5!) = 6 2.47
VII 0 6 1 6!/(0! 6!) = 1 0

Total = 64

Calculations: Thus, for the (n1, n2) configuration (50, 50), 

  

W

  

=

  

  N ! _______ 
 n  1   !   n  2   !

   =   100 ! _______ 
50 ! 50 !

  

  

 

       =    9.33 ×  10  157   ______________________   
 (3.04 ×  10  64 )  (3.04 ×  10  64 ) 

         

 

  

=

  

1.01 ×  10  29 .

       

 (Answer) 

 

Similarly, for the configuration (100, 0), we have

   W =   N ! _______ 
 n  1   !   n  2   !

   =   100 ! _______ 
100 ! 0 !

   =   1 __ 
0 !

   =   1 __ 
1
   = 1.  

 
    (Answer) 

Suppose that there are 100 indistinguishable molecules in 
the box of Fig. 20.4.1. How many microstates are associated 
with the configuration n1 = 50 and n2 = 50, and with the 
configuration n1 = 100 and n2 = 0? Interpret the results in 
terms of the relative probabilities of the two configurations.

KEY IDEA

The multiplicity W of a configuration of indistinguishable 
molecules in a closed box is the number of independent 
microstates with that configuration, as given by Eq. 20.4.1. 

Sample Problem 20.4.1 Microstates and multiplicity
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The meaning: Thus, a 50–50 distribution is more 
likely than a 100–0 distribution by the enormous fac-
tor of about 1 × 1029. If you could count, at one per 
 nanosecond, the number of microstates that correspond 
to the 50–50 distribution, it would take you about 
3 × 1012 years, which is about 200 times longer than the 
age of the universe. Keep in mind that the 100  molecules 

used in this sample problem is a very small number. 
Imagine what these calculated probabilities would be 
like for a mole of molecules, say about N = 1024. Thus, 
you need never worry about suddenly finding all the 
air molecules clustering in one corner of your room, 
with you gasping for air in another corner. So, you can 
breathe easy because of the physics of entropy.

Probability and Entropy
In 1877, Austrian physicist Ludwig Boltzmann (the Boltzmann of Boltzmann’s 
constant k) derived a relationship between the entropy S of a configuration of a 
gas and the multiplicity W of that configuration. That relationship is

 S = k ln W   (Boltzmann’s entropy equation). (20.4.2)

This famous formula is engraved on Boltzmann’s tombstone.
It is natural that S and W should be related by a logarithmic function. The 

 total entropy of two systems is the sum of their separate entropies. The proba-
bility of occurrence of two independent systems is the product of their separate 
probabilities. Because ln ab = ln a + ln b, the logarithm seems the logical way to 
 connect these quantities.

Table 20.4.1 displays the entropies of the configurations of the six-molecule 
system of Fig. 20.4.1, computed using Eq. 20.4.2. Configuration IV, which has the 
greatest multiplicity, also has the greatest entropy.

When you use Eq. 20.4.1 to calculate W, your calculator may signal “OVER-
FLOW” if you try to find the factorial of a number greater than a few hundred. 
Instead, you can use Stirling’s approximation for ln N!: 

 ln N! ≈ N(ln N) − N   (Stirling’s approximation). (20.4.3)

The Stirling of this approximation was an English mathematician and not the 
Robert Stirling of engine fame.

Checkpoint 20.4.1
A box contains 1 mol of a gas. Consider two configurations: (a) each half of the box 
contains half the molecules and (b) each third of the box  contains one-third of the 
molecules. Which configuration has more microstates?

KEY IDEA

We can relate the  entropy S of any given configuration of 
the molecules in the gas to the multiplicity W of micro-
states for that configuration, using Eq. 20.4.2 (S = k ln W).

In Sample Problem 20.1.1, we showed that when n moles 
of an ideal gas doubles its volume in a free expansion, the 
entropy increase from the initial state i to the final state 
f is Sf − Si = nR ln 2. Derive this increase in entropy by 
using statistical mechanics.

Sample Problem 20.4.2 Entropy change of free expansion using microstates

Additional examples, video, and practice available at WileyPLUS
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Calculations: We are interested in two config urations: 
the final configuration f (with the molecules occupying 
the full volume of their container in Fig. 20.1.1b) and the 
 initial configuration i (with the molecules occupying the 
left half of the container). Because the molecules are in 
a closed container, we can calculate the multiplicity W of 
their microstates with Eq. 20.4.1. Here we have N mole-
cules in the n moles of the gas. Initially, with the molecules 
all in the left half of the container, their (n1, n2) configura-
tion is (N, 0). Then, Eq. 20.4.1 gives their multiplicity as

  W  i   =   N ! _____ 
N ! 0 !

   = 1. 

Finally, with the molecules spread through the full vol-
ume, their (n1, n2) configuration is (N/2, N/2). Then, Eq. 
20.4.1 gives their multiplicity as

  W  f   =   N ! ____________  
 (N / 2)  !  (N / 2)  !

  . 

From Eq. 20.4.2, the initial and final entropies are

Si = k ln Wi = k ln 1 = 0
and

Sf = k ln Wf = k ln(N!) − 2k ln[(N/2)!].  (20.4.4)

In writing Eq. 20.4.4, we have used the relation

 ln   a ___ 
 b   2 

   = ln  a − 2 ln  b. 

Now, applying Eq. 20.4.3 to evaluate Eq. 20.4.4, we find 
that

 Sf = k ln(N!) − 2k ln[(N/2)!]

 = k[N(ln N) − N] − 2k[(N/2) ln(N/2) − (N/2)]

 = k[N(ln N) − N − N ln(N/2) + N]

 = k[N(ln N) − N(ln N − ln 2)] = Nk ln 2. (20.4.5)

From Eq. 19.2.4 we can substitute nR for Nk, where R is 
the  universal gas constant. Equation 20.4.5 then becomes

Sf = nR ln 2.

The change in entropy from the initial state to the final 
is thus

Sf − Si = nR ln 2 − 0

 = nR ln 2, (Answer)

which is what we set out to show. In the first sample 
problem of this chapter we calculated this entropy 
increase for a free expansion with thermodynamics by 
finding an equivalent reversible process and calculat-
ing the entropy change for that process in terms of tem-
perature and heat transfer. In this sample problem, we 
calculate the same increase in entropy with statistical 
mechanics using the fact that the system consists of mol-
ecules. In short, the two, very different approaches give 
the same answer. 

One-Way Processes  An irreversible process is one that 
cannot be reversed by means of small changes in the environ-
ment. The direction in which an irreversible process proceeds is 
set by the change in entropy ΔS of the system undergoing the 
process. Entropy S is a state property (or state function) of the 
system; that is, it depends only on the state of the system and not 
on the way in which the system reached that state. The entropy 
postulate states (in part): If an irreversible process occurs in a 
closed system, the entropy of the system always  increases.

Calculating Entropy Change  The entropy change ΔS for 
an irreversible process that takes a system from an initial state 
i to a final state f is exactly equal to the entropy change ΔS for 
any reversible process that takes the system between those same 
two states. We can compute the latter (but not the  former) with

  ΔS =  S  f   −  S  i   =   
i
  
f

    
dQ

 ____ 
T

   .  (20.1.1)

Here Q is the energy transferred as heat to or from the system 
during the process, and T is the temperature of the system in 
kelvins during the process.

For a reversible isothermal process, Eq. 20.1.1 reduces to

  ΔS =  S  f   −  S  i   =   
Q

 ___ 
T

  .  (20.1.2)

Review & Summary

When the temperature change ΔT of a system is small relative 
to the temperature (in kelvins) before and after the process, the 
entropy change can be approximated as

  ΔS =  S  f   −  S  i   ≈   
Q
 _____  T  avg  
  ,  (20.1.3)

where Tavg is the system’s average temperature during the process.
When an ideal gas changes reversibly from an initial state 

with temperature Ti and volume Vi to a final state with tempera-
ture Tf and volume Vf, the change ΔS in the entropy of the gas is

  ΔS =  S  f   −  S  i   = nR ln   
 V  f   ___  V  i  

   + n C  V   ln   
 T  f   ___  T  i  

  .  (20.1.4)

The Second Law of Thermodynamics  This law, which 
is an extension of the entropy postulate, states: If a process 
occurs in a closed system, the entropy of the system increases for 
 irreversible processes and remains constant for reversible pro-
cesses. It never decreases. In equation form,

 ΔS ≥ 0. (20.1.5)

Engines  An engine is a device that, operating in a cycle, 
 extracts energy as heat |QH| from a high-temperature reservoir and 

Additional examples, video, and practice available at WileyPLUS
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does a certain amount of work |W|. The efficiency ε of any engine 
is defined as

  ε =   
energy we get

  _____________________  
energy we pay for

   =   
 |  W |  

 ______ 
 |    Q  H   |  

  .  (20.2.4)

In an ideal engine, all processes are reversible and no waste-
ful energy transfers occur due to, say, friction and turbulence. 
A Carnot engine is an ideal engine that follows the cycle of Fig. 
20.2.2. Its efficiency is

   ɛ  C   = 1 −   
 |    Q  L   |  

 ______ 
 |    Q  H   |  

   = 1 −   
 T  L  

 ____  T  H    ,  (20.2.5, 20.2.6)

in which TH and TL are the temperatures of the high- and low-
temperature reservoirs, respectively. Real engines always have 
an efficiency lower than that given by Eq. 20.2.6. Ideal engines 
that are not Carnot engines also have lower efficiencies.

A perfect engine is an imaginary engine in which energy 
extracted as heat from the high-temperature reservoir is  converted 
completely to work. Such an engine would violate the second law 
of thermodynamics, which can be restated as follows: No series of 
processes is possible whose sole result is the absorption of energy 
as heat from a thermal reservoir and the complete conversion of 
this energy to work.

Refrigerators  A refrigerator is a device that, operating in 
a cycle, has work W done on it as it extracts energy |QL| as heat 
from a low-temperature reservoir. The coefficient of perfor-
mance K of a refrigerator is defined as

  K =    what we want   ___________________  
 what we pay for 

   =   
 |   Q  L   |  

 _____  |  W |    .  (20.3.1)

A Carnot refrigerator is a Carnot engine operating in  reverse. 
For a Carnot refrigerator, Eq. 20.3.1 becomes

   K  C   =   
 |    Q  L   |  
 _____________ 

  |    Q  H   |    −   |    Q  L   |   
   =   

 T  L  
 __________  T  H   −  T  L    .  (20.3.2, 20.3.3)

A perfect refrigerator is an imaginary refrigerator in which 
 energy extracted as heat from the low-temperature reservoir is 
converted completely to heat discharged to the  high-temperature 
reservoir, without any need for work. Such a refrigerator would 
violate the second law of thermodynamics, which can be restated 
as follows: No series of processes is possible whose sole result is 
the transfer of energy as heat from a reservoir at a given tem-
perature to a reservoir at a higher temperature.

Entropy from a Statistical View  The entropy of a sys-
tem can be defined in terms of the possible distributions of its 
 molecules. For identical molecules, each possible distribution of 
molecules is called a microstate of the system. All equivalent 
microstates are grouped into a configuration of the  system. The 
number of microstates in a configuration is the multiplicity W of 
the configuration.

For a system of N molecules that may be distributed between 
the two halves of a box, the multiplicity is given by

  W =   N ! _________ 
 n  1   !   n  2   !

  ,  (20.4.1)

in which n1 is the number of molecules in one half of the box and 
n2 is the number in the other half. A basic assumption of statistical 
mechanics is that all the microstates are equally probable. Thus, 
configurations with a large multiplicity occur most often. 

The multiplicity W of a configuration of a system and the 
entropy S of the system in that configuration are related by 
Boltzmann’s entropy equation:

 S = k ln W, (20.4.2)

where k = 1.38 × 10−23 J/K is the Boltzmann constant.

1  Point i in Fig. 20.1 represents 
the initial state of an ideal gas at 
temperature T. Taking algebraic 
signs into account, rank the entropy 
changes that the gas undergoes as 
it moves, successively and revers-
ibly, from point i to points a, b, c, 
and d, greatest first.

2  In four experiments, blocks 
A and B, starting at different ini-
tial temperatures, were brought together in an insulating box 
and allowed to reach a common final temperature. The entropy 
changes for the blocks in the four experiments had the follow-
ing values (in joules per kelvin), but not necessarily in the order 
given. Determine which values for A go with which values for B.

Block Values

A  8  5  3  9
B −3 −8 −5 −2

3  A gas, confined to an insulated cylinder, is compressed 
 adiabatically to half its volume. Does the entropy of the gas 
 increase, decrease, or remain unchanged during this process?

4  An ideal monatomic gas at initial temperature T0 (in kelvins) 
expands from initial volume V0 to volume 2V0 by each of the 
five processes indicated in the T-V diagram of Fig. 20.2. In which 
process is the expansion (a)  isothermal, (b) isobaric (constant 
pressure), and (c) adiabatic? Explain your answers. (d) In which 
processes does the entropy of the gas decrease?

Figure 20.2 Question 4.
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5  In four experiments, 2.5 mol of hydrogen gas undergoes 
 reversible isothermal expansions, starting from the same vol-
ume but at different temperatures. The corresponding p-V plots 

Questions

Figure 20.1 Question 1.
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are shown in Fig. 20.3. 
Rank the situations 
according to the 
change in the entropy 
of the gas, greatest first. 

6  A box contains 100 
atoms in a configura-
tion that has 50 atoms 
in each half of the 
box. Suppose that you 
could count the differ-
ent microstates associated with this configuration at the rate of 
100 billion states per second, using a super computer. Without 
written calculation, guess how much  computing time you would 
need: a day, a year, or much more than a year.

7  Does the entropy per cycle increase, decrease, or remain the 
same for (a) a Carnot engine, (b) a real engine, and (c) a perfect 
engine (which is, of course, impossible to build)?

8  Three Carnot engines operate between temperature limits 
of (a) 400 and 500 K, (b) 500 and 600 K, and (c) 400 and 600 K. 
Each engine extracts the same amount of energy per cycle from 
the high-temperature reservoir. Rank the magnitudes of the 
work done by the engines per cycle, greatest first.

9  An inventor claims to have invented four engines, each of 
which operates between constant-temperature reservoirs at 
400 and 300 K. Data on each engine, per cycle of operation, 
are: engine A, QH = 200 J, QL = −175 J, and W = 40 J; engine B, 
QH = 500 J, QL = −200 J, and W = 400 J; engine C, QH = 600 J, 
QL = −200 J, and W = 400 J; engine D, QH = 100 J, QL = −90 J, 
and W = 10 J. Of the first and second laws of thermodynamics, 
which (if either) does each engine  violate?

10  Does the entropy per cycle increase, decrease, or remain 
the same for (a) a Carnot refrigerator, (b) a real refrigerator, 
and (c)  a perfect refrigerator (which is, of course, impossible to 
build)?

a

b
c

d

p

V

Figure 20.3 Question 5.

energy of the system between the initial state and the equilib-
rium state? (c) What is the change in the entropy of the system? 
(See Table 18.4.1.)

8 M  At very low temperatures, the molar specific heat CV of 
many solids is approximately CV = AT 3, where A depends on the 
particular substance. For aluminum, A = 3.15 × 10−5 J/mol · K4. 
Find the entropy change for 4.00 mol of aluminum when its tem-
perature is raised from 5.00 K to 10.0 K.

9 M  CALC  A 10 g ice cube at −10°C is placed in a lake whose 
 temperature is 15°C. Calculate the change in entropy of the 
cube–lake system as the ice cube comes to thermal equilibrium 
with the lake. The specific heat of ice is 2220 J/kg · K. (Hint: Will 
the ice cube affect the lake temperature?)

10 M  CALC  A 
364 g block is put in 
contact with a ther-
mal reservoir. The 
block is initially at a 
lower temperature 
than the reservoir. 
Assume that the 
consequent transfer 
of energy as heat 
from the reservoir to 
the block is reversible. Figure 20.4 gives the change in entropy ΔS 
of the block until thermal equilibrium is reached. The scale of the 
horizontal axis is set by Ta = 280 K and Tb = 380 K. What is the 
specific heat of the block?

11 M  SSM  In an experiment, 200 g of aluminum (with a specific  
heat of 900 J/kg · K) at 100°C is mixed with 50.0 g of water at 

Module 20.1  Entropy
1 E  CALC  SSM  Suppose 4.00 mol of an ideal gas undergoes 
a reversible isothermal expansion from volume V1 to volume 
V2 = 2.00V1 at temperature T = 400 K. Find (a) the work done 
by the gas and (b) the entropy change of the gas. (c) If the expan-
sion is reversible and adiabatic instead of isothermal, what is the 
 entropy change of the gas?

2 E  An ideal gas undergoes a reversible isothermal expansion at 
77.0°C, increasing its volume from 1.30 L to 3.40 L. The entropy 
change of the gas is 22.0 J/K. How many moles of gas are present?

3 E  A 2.50 mol sample of an ideal gas expands reversibly and 
isothermally at 360 K until its volume is doubled. What is the 
increase in entropy of the gas?

4 E  How much energy must be transferred as heat for a 
 reversible isothermal expansion of an ideal gas at 132°C if the 
entropy of the gas increases by 46.0 J/K?

5 E  Find (a) the energy absorbed as heat and (b) the change 
in entropy of a 2.00 kg block of copper whose temperature is 
increased reversibly from 25.0°C to 100°C. The specific heat of 
copper is 386 J/kg · K.

6 E  (a) What is the entropy change of a 12.0 g ice cube that 
melts completely in a bucket of water whose temperature is 
just above the freezing point of water? (b) What is the entropy 
change of a 5.00 g spoonful of water that evaporates completely 
on a hot plate whose temperature is slightly above the boiling 
point of water?

7 M  A 50.0 g block of copper whose temperature is 400 K is 
placed in an insulating box with a 100 g block of lead whose 
temperature is 200 K. (a) What is the equilibrium temperature 
of the two-block system? (b) What is the change in the internal 

Problems

          Tutoring problem available (at instructor’s discretion) in WileyPLUS

 Worked-out solution available in Student Solutions Manual

E  Easy M  Medium H  Hard

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com
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20.0°C, with the mixture thermally isolated. (a) What is the equi-
librium temperature? What are the entropy changes of (b) the 
aluminum, (c) the water, and (d) the aluminum–water system?

12 M  A gas sample undergoes a reversible isothermal expan-
sion. Figure 20.5 gives the change ΔS in entropy of the gas versus 
the  final volume Vf of the gas. The scale of the vertical axis is set 
by ΔSs = 64 J/K. How many moles are in the sample?

ΔSs

0 0.8 1.6 2.4
Vf (m3)

3.2 4.0

Δ
S 

(J
/K

)

Figure 20.5 Problem 12.

13 M  In the irreversible process of Fig. 20.1.5, let the initial 
temperatures of the identical blocks L and R be 305.5 and 
294.5 K,  respectively, and let 215 J be the energy that must be 
transferred between the blocks in order to reach equilibrium. 
For the  reversible processes of Fig. 20.1.6, what is ΔS for (a) 
block L, (b) its reservoir, (c) block R, (d) its reservoir, (e) the 
two-block system, and (f) the system of the two blocks and 
the two reservoirs?

14 M  CALC  (a) For 1.0 mol of 
a monatomic ideal gas taken 
through the cycle in Fig. 20.6, 
where V1 = 4.00V0, what is 
W/p0V0 as the gas goes from 
state a to state c along path 
abc? What is ΔEint /p0V0 in 
going (b) from b to c and (c) 
through one full cycle? What 
is ΔS in going (d) from b to c 
and (e) through one full cycle?

15 M  A mixture of 1773 g of water and 227 g of ice is in an initial 
equilibrium state at 0.000°C. The mixture is then, in a revers-
ible process, brought to a second equilibrium state where the 
water–ice ratio, by mass, is 1.00:1.00 at 0.000°C. (a) Calculate the 
entropy change of the system during this process. (The heat of 
fusion for water is 333 kJ/kg.) (b) The system is then returned 
to the initial equilibrium state in an  irreversible process (say, by 
using a Bunsen burner). Calculate the entropy change of the sys-
tem during this process. (c) Are your answers consistent with the 
second law of  thermodynamics?

16 M  GO  An 8.0 g ice cube at 
−10°C is put into a Thermos 
flask containing 100 cm3 of water 
at 20°C. By how much has the 
 entropy of the cube–water sys-
tem changed when equilibrium 
is reached? The specific heat of 
ice is 2220 J/kg · K.

17 M  In Fig. 20.7, where V23 = 
3.00V1, n moles of a diatomic 
ideal gas are taken through the 
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Figure 20.6 Problem 14.

cycle with the molecules rotating but not oscillating. What are 
(a)  p2/p1, (b)  p3/p1, and (c) T3/T1? For path 1 → 2, what are  
(d)  W/nRT1, (e)  Q/nRT1, (f)  ΔEint/nRT1, and (g)  ΔS/nR? For 
path 2 → 3, what are (h)  W/nRT1, (i)  Q/nRT1, (j)  ΔEint/nRT1, 
(k) ΔS/nR? For path 3 → 1, what are (l) W/nRT1, (m) Q/nRT1, 
(n) ΔEint/nRT1, and (o) ΔS/nR?

18 M  GO  A 2.0 mol sample of an 
ideal monatomic gas undergoes 
the  reversible process shown in 
Fig. 20.8. The scale of the vertical 
axis is set by Ts = 400.0 K and 
the scale of the horizontal axis 
is set by Ss = 20.0 J/K. (a) How 
much  energy is absorbed as 
heat by the gas? (b) What is the 
change in the internal energy of 
the gas? (c) How much work is 
done by the gas?

19 H  Suppose 1.00 mol of a monatomic ideal gas is taken from 
initial pressure p1 and volume V1 through two steps: (1) an iso-
thermal expansion to volume 2.00V1 and (2) a pressure increase 
to 2.00p1 at constant volume. What is Q/p1V1 for (a) step 1 and 
(b) step 2? What is W/p1V1 for (c) step 1 and (d)  step 2? For 
the full process, what are (e) ΔEint/p1V1 and (f) ΔS? The gas is 
returned to its initial state and again taken to the same final state 
but now through these two steps: (1) an isothermal compression 
to pressure 2.00p1 and (2) a volume increase to 2.00V1 at con-
stant pressure. What is Q/p1V1 for (g) step 1 and (h) step 2? What 
is W/p1V1 for (i) step 1 and (j) step 2? For the full process, what 
are (k) ΔEint/p1V1 and (l) ΔS?

20 H  CALC  Expand 1.00 mol of an monatomic gas initially at 
5.00  kPa and 600 K from initial volume Vi = 1.00 m3 to final 
volume Vf = 2.00 m3. At any instant during the expansion, the 
pressure p and volume V of the gas are related by p = 5.00 
exp[(Vi − V)/a], with p in kilopascals, Vi and V in cubic  meters, 
and a = 1.00 m3. What are the final (a) pressure and (b) tempera-
ture of the gas? (c) How much work is done by the gas during 
the expansion? (d) What is ΔS for the expansion? (Hint: Use 
two simple reversible processes to find ΔS.)

21 H  GO  FCP  Energy can be removed from water as heat at 
and even below the normal freezing point (0.0°C at atmospheric 
pressure) without causing the water to freeze; the water is then 
said to be supercooled. Suppose a 1.00 g water drop is super-
cooled until its temperature is that of the surrounding air, which 
is at −5.00°C. The drop then suddenly and irreversibly freezes, 
transferring energy to the air as heat. What is the  entropy change 
for the drop? (Hint: Use a three-step  reversible process as if the 
water were taken through the normal freezing point.) The spe-
cific heat of ice is 2220 J/kg · K.

22 H  CALC  GO  An insulated Thermos contains 130 g of water 
at 80.0°C. You put in a 12.0 g ice cube at 0°C to form a sys-
tem of ice + original water. (a) What is the equilibrium tem-
perature of the system? What are the entropy changes of the 
water that was originally the ice cube (b) as it melts and (c) 
as it warms to the equilibrium temperature? (d) What is the 
entropy change of the original water as it cools to the equi-
librium temperature? (e) What is the net entropy change of 
the ice + original water system as it reaches the equilibrium 
temperature?
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Module 20.2  Entropy in the Real World: Engines
23 E  A Carnot engine whose low-temperature reservoir is 
at 17°C has an efficiency of 40%. By how much should the 
 temperature of the high-temperature reservoir be increased to 
increase the efficiency to 50%?

24 E  A Carnot engine absorbs 52 kJ as heat and exhausts 36 kJ 
as heat in each cycle. Calculate (a) the engine’s efficiency and (b) 
the work done per cycle in kilojoules.

25 E  A Carnot engine has an efficiency of 22.0%. It operates 
between constant-temperature reservoirs differing in temperature 
by 75.0 C°. What is the temperature of the (a)  lower-temperature 
and (b) higher-temperature reservoir?

26 E  In a hypothetical nuclear fusion reactor, the fuel is deu-
terium gas at a temperature of 7 × 108 K. If this gas could be 
used to operate a Carnot engine with TL = 100°C, what would 
be the engine’s efficiency? Take both temperatures to be exact 
and report your  answer to seven significant figures.

27 E  SSM  A Carnot engine operates between 235°C and 
115°C, absorbing 6.30 × 104 J per cycle at the higher tempera-
ture. (a)  What is the efficiency of the engine? (b) How much 
work per cycle is this engine capable of performing?

28 M  In the first stage of a two-stage Carnot engine, energy is 
absorbed as heat Q1 at temperature T1, work W1 is done, and 
energy is expelled as heat Q2 at a lower temperature T2. The 
second stage absorbs that energy as heat Q2, does work W2, and 
expels energy as heat Q3 at a still lower temperature T3. Prove 
that the efficiency of the engine is (T1 − T3)/T1.

29 M  GO  Figure 20.9 shows a 
reversible cycle through which 
1.00 mol of a monatomic ideal 
gas is taken. Assume that p = 2p0, 
V = 2V0, p0 = 1.01 × 105 Pa, and 
V0 = 0.0225 m3. Calculate (a) the 
work done during the cycle, (b) 
the energy added as heat during 
stroke abc, and (c) the efficiency 
of the cycle. (d) What is the effi-
ciency of a Carnot engine oper-
ating between the highest and 
lowest temperatures that occur in the cycle? (e) Is this greater 
than or less than the efficiency calculated in (c)?

30 M  A 500 W Carnot engine operates between constant-
temperature reservoirs at 100°C and 60.0°C. What is the rate 
at which energy is (a) taken in by the engine as heat and (b) 
exhausted by the engine as heat?

31 M  The efficiency of a particular car engine is 25% when 
the engine does 8.2 kJ of work per cycle. Assume the process 
is reversible. What are (a) the energy the engine gains per  cycle 
as heat Qgain from the fuel combustion and (b) the  energy 
the engine loses per cycle as heat Qlost? If a tune-up  increases 
the efficiency to 31%, what are (c) Qgain and (d) Qlost at the same 
work value?

32 M  GO  A Carnot engine is set up to produce a certain work 
W per cycle. In each cycle, energy in the form of heat QH is 
transferred to the working substance of the engine from the 
higher-temperature thermal reservoir, which is at an  adjustable 
temperature TH. The lower-temperature thermal reservoir is 
maintained at temperature TL = 250 K. Figure 20.10 gives QH for 
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a range of TH. The scale of the vertical axis is set by QHs = 6.0 kJ.  
If TH is set at 550 K, what is QH?

Figure 20.10 Problem 32.
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33 M  SSM  Figure 20.11 shows 
a reversible cycle through which 
1.00 mol of a monatomic ideal 
gas is taken. Volume Vc = 8.00Vb. 
Process bc is an adiabatic expan-
sion, with pb  = 10.0 atm and 
Vb = 1.00 × 10−3 m3. For the cycle, 
find (a) the energy added to the 
gas as heat, (b)  the energy leav-
ing the gas as heat, (c) the net 
work done by the gas, and (d) the 
efficiency of the cycle.

34 M  GO  An ideal gas (1.0 mol) is the working substance in 
an engine that operates on the cycle shown in Fig. 20.12. Pro-
cesses BC and DA are reversible and adiabatic. (a) Is the gas 
monatomic, diatomic, or polyatomic? (b) What is the  engine 
efficiency?
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Figure 20.12 Problem 34.

35 H  CALC  The cycle in Fig. 
20.13 represents the operation 
of a gasoline internal combus-
tion engine.  Volume V3 = 4.00V1. 
Assume the  gasoline–air intake 
mixture is an  ideal gas with 
γ = 1.30. What are the  ratios 
(a)  T2/T1, (b) T3/T1, (c) T4/T1, 
(d) p3/p1, and (e) p4/p1? (f) What 
is the engine efficiency?

Module 20.3  Refrigerators 
and Real Engines
36 E  How much work must be done by a Carnot refrigerator to 
transfer 1.0 J as heat (a) from a reservoir at 7.0°C to one at 27°C, 
(b) from a reservoir at −73°C to one at 27°C, (c) from a reservoir 
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at −173°C to one at 27°C, and (d) from a reservoir at −223°C to 
one at 27°C?

37 E  SSM  A heat pump is used to heat a building. The external 
 temperature is less than the internal temperature. The pump’s 
coefficient of performance is 3.8, and the heat pump delivers 
7.54 MJ as heat to the building each hour. If the heat pump is 
a Carnot engine working in reverse, at what rate must work be 
done to run it?

38 E  The electric motor of a heat pump transfers energy as heat 
from the outdoors, which is at −5.0°C, to a room that is at 17°C. If 
the heat pump were a Carnot heat pump (a Carnot engine work-
ing in reverse), how much energy would be transferred as heat to 
the room for each joule of electric energy consumed?

39 E  SSM  A Carnot air conditioner takes energy from the 
thermal energy of a room at 70°F and transfers it as heat to 
the  outdoors, which is at 96°F. For each joule of electric energy 
 required to operate the air conditioner, how many joules are 
removed from the room?

40 E  To make ice, a freezer that is a reverse Carnot engine 
extracts 42 kJ as heat at −15°C during each cycle, with coeffi-
cient of  performance 5.7. The room temperature is 30.3°C. How 
much (a) energy per cycle is delivered as heat to the room and 
(b) work per cycle is required to run the freezer?

41 M  An air conditioner operating between 93°F and 70°F is 
rated at 4000 Btu/h cooling capacity. Its coefficient of perfor-
mance is 27% of that of a Carnot refrigerator operating  between 
the same two temperatures. What horsepower is  required of the 
air conditioner motor?

42 M  The motor in a refrigerator has a power of 200 W. If the 
freezing compartment is at 270 K and the outside air is at 300 K, 
and assuming the efficiency of a Carnot refrigerator, what is the 
maximum amount of energy that can be extracted as heat from 
the freezing compartment in 10.0 min?

43 M  GO  Figure 20.14 
represents a Carnot 
engine that works 
between temperatures 
T1 = 400 K and T2 = 
150 K and drives a Car-
not refrigerator that 
works between temper-
atures T3 = 325 K and 
T4 = 225 K. What is the  
ratio Q3/Q1?

44 M  (a) During each 
cycle, a  Carnot engine 
absorbs 750 J as heat 
from a  high-temperature 
reservoir at 360 K, with the low-temperature reservoir at 280 K. 
How much work is done per cycle? (b) The engine is then 
made to work in reverse to  function as a Carnot  refrigerator 
between those same two reservoirs. During each cycle, how 
much work is required to remove 1200 J as heat from the low- 
temperature reservoir?

Module 20.4  A Statistical View of Entropy
45 E  Construct a table like Table 20.4.1 for eight molecules.

46 M  A box contains N identical gas molecules equally  divided 
between its two halves. For N = 50, what are (a) the multiplicity 

Figure 20.14 Problem 43.
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W of the central configuration, (b) the total  number of micro-
states, and (c) the percentage of the time the system spends in 
the central configuration? For N = 100, what are (d) W of the 
central configuration, (e) the total number of microstates, and 
(f) the percentage of the time the system spends in the central 
configuration? For N = 200, what are (g) W of the central config-
uration, (h) the total number of microstates, and (i) the percent-
age of the time the system spends in the central configuration? 
(j) Does the time spent in the central configuration increase or 
decrease with an increase in N?

47 H  SSM  A box contains N gas molecules. Consider the box 
to  be divided into three equal parts. (a) By extension of 
Eq. 20.4.1, write a formula for the multiplicity of any given con-
figuration. (b) Consider two configurations: configuration A 
with equal numbers of molecules in all three thirds of the box, 
and configuration B with equal numbers of molecules in each 
half of the box divided into two equal parts rather than three. 
What is the ratio WA/WB of the multiplicity of config uration A 
to that of configuration B? (c) Evaluate WA/WB for N = 100. 
(Because 100 is not evenly divisible by 3, put 34 molecules into 
one of the three box parts of configuration A and 33 in each of 
the other two parts.) 

Additional Problems
48  Four particles are in the insulated box of Fig. 20.4.1. 
What  are (a) the least multiplicity, (b) the greatest multiplic-
ity, (c) the least entropy, and (d) the greatest entropy of the 
four-particle system?

49  A cylindrical copper rod of length 1.50 m and radius 2.00 cm 
is insulated to prevent heat loss through its curved surface. One 
end is attached to a thermal reservoir fixed at 300°C; the other is 
attached to a thermal reservoir fixed at 30.0°C. What is the rate 
at which entropy increases for the rod–reservoirs system?

50  Suppose 0.550 mol of an ideal gas is isothermally and 
 reversibly expanded in the four situations given below. What is 
the change in the entropy of the gas for each situation?

Situation (a) (b) (c) (d)

Temperature (K) 250 350 400 450
Initial volume (cm3) 0.200 0.200 0.300 0.300
Final volume (cm3) 0.800 0.800 1.20 1.20

51 SSM  As a sample of nitrogen gas (N2) undergoes a tempera-
ture increase at constant volume, the distribution of molecular 
speeds increases. That is, the probability distribution function 
P(v) for the molecules spreads to higher speed values, as sug-
gested in Fig. 19.6.1b. One way to report the spread in P(v) is 
to measure the difference Δv between the most probable speed 
vP and the rms speed vrms. When P(v) spreads to higher speeds, 
Δv increases. Assume that the gas is ideal and the N2 molecules 
rotate but do not oscillate. For 1.5 mol, an initial temperature of 
250 K, and a final temperature of 500 K, what are (a) the initial 
difference Δvi, (b) the final difference Δvf, and (c) the entropy 
change ΔS for the gas?

52  Suppose 1.0 mol of a monatomic ideal gas initially at 10 L 
and 300 K is heated at constant volume to 600 K, allowed to 
expand isothermally to its initial pressure, and finally com-
pressed at constant pressure to its original volume, pressure, 
and temperature. During the cycle, what are (a) the net energy 
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entering the system (the gas) as heat and (b) the net work done 
by the gas? (c) What is the efficiency of the cycle?

53 CALC  GO  Suppose that a deep shaft were drilled in Earth’s 
crust near one of the poles, where the surface temperature is 
−40°C, to a depth where the temperature is 800°C. (a) What 
is the theoretical limit to the efficiency of an engine operating 
between these  temperatures? (b) If all the energy released as 
heat into the low-temperature reservoir were used to melt ice 
that was initially at −40°C, at what rate could liquid water at 0°C 
be produced by a 100 MW power plant (treat it as an  engine)? 
The specific heat of ice is 2220 J/kg · K; water’s heat of fusion is 
333 kJ/kg. (Note that the engine can operate only between 0°C 
and 800°C in this case. Energy exhausted at −40°C cannot warm 
anything above −40°C.)

54  What is the entropy change for 3.20 mol of an ideal mona-
tomic gas undergoing a reversible increase in temperature from 
380 K to 425 K at constant volume?

55 CALC  A 600 g lump of copper at 80.0°C is placed in 70.0 g of 
water at 10.0°C in an insulated container. (See Table 18.4.1 for 
specific heats.) (a) What is the equilibrium temperature of the 
copper–water system? What entropy changes do (b) the copper, 
(c) the  water, and (d) the copper–water system undergo in 
reaching the equilibrium temperature?

56 CALC  FCP  Figure 20.15 gives the 
force magnitude F versus stretch dis-
tance x for a rubber band, with the 
scale of the F axis set by Fs = 1.50 N 
and the scale of the x axis set by xs = 
3.50 cm. The temperature is 2.00°C. 
When the rubber band is stretched 
by x = 1.70 cm, at what rate does the 
entropy of the rubber band change 
during a small additional stretch?

57 CALC  The temperature of 
1.00  mol of a monatomic ideal gas 
is raised reversibly from 300 K to 400 K, with its volume kept 
 constant. What is the entropy change of the gas?

58  Repeat Problem 57, with the pressure now kept constant.

59 CALC  SSM  A 0.600 kg sample of water is initially ice at tem-
perature −20°C. What is the sample’s entropy change if its tem-
perature is increased to 40°C?

60  A three-step cycle is undergone by 3.4 mol of an ideal 
 diatomic gas: (1) the temperature of the gas is increased from 
200 K to 500 K at constant volume; (2) the gas is then iso-
thermally expanded to its original pressure; (3) the gas is then 
 contracted at constant pressure back to its original volume. 
Throughout the cycle, the molecules rotate but do not oscillate. 
What is the efficiency of the cycle?

61  An inventor has built an engine X and claims that its  efficiency 
εX is greater than the efficiency ε of an ideal engine operating 
between the same two temperatures. Suppose you couple engine X 
to an ideal refrigerator (Fig. 20.16a) and  adjust the cycle of engine 
X so that the work per cycle it  provides equals the work per cycle 
required by the ideal  refrigerator. Treat this combination as a sin-
gle unit and show that if the inventor’s claim were true (if εX > ε), 
the combined unit would act as a perfect refrigerator (Fig. 20.16b), 
transferring energy as heat from the low- temperature reservoir to 
the high-temperature reservoir without the need for work.
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Figure 20.15  
Problem 56.

62 CALC  Suppose 2.00 mol 
of a diatomic gas is taken 
reversibly around the cycle 
shown in the T-S diagram of 
Fig.  20.17, where S1 = 6.00 
J/K and S2 = 8.00 J/K. The 
molecules do not rotate or 
oscillate. What is the energy 
transferred as heat Q for (a) 
path 1 → 2, (b) path 2 → 3, 
and (c) the full cycle? (d) 
What is the work W for the 
isothermal process? The vol-
ume V1 in state 1 is 0.200 m3. 
What is the volume in (e) state 2 and (f) state 3?

What is the change ΔEint for (g) path 1 → 2, (h) path 2 → 3,  
and (i) the full cycle? (Hint: (h) can be done with one or two lines 
of calculation using Module 19.7 or with a page of calculation using 
Module 19.9.) (j) What is the work W for the adiabatic process?

63 CALC  A three-step cycle is undergone reversibly by 4.00 mol 
of an ideal gas: (1) an adiabatic expansion that gives the gas 2.00 
times its initial volume, (2) a constant-volume process, (3)  an 
isothermal compression back to the initial state of the gas. We 
do not know whether the gas is monatomic or  diatomic; if it is 
diatomic, we do not know whether the molecules are rotating 
or oscillating. What are the entropy changes for (a) the cycle,  
(b) process 1, (c) process 3, and (d) process 2?

64  (a) A Carnot engine operates between a hot reservoir at 
320 K and a cold one at 260 K. If the engine absorbs 500 J as 
heat per cycle at the hot reservoir, how much work per cycle 
does it deliver? (b) If the engine working in reverse functions as 
a refrigerator between the same two reservoirs, how much work 
per cycle must be supplied to remove 1000 J as heat from the 
cold reservoir?

65  A 2.00 mol diatomic gas initially at 300 K undergoes this 
 cycle: It is (1) heated at constant volume to 800 K, (2) then 
 allowed to expand isothermally to its initial pressure, (3) then 
compressed at constant pressure to its initial state. Assuming the 
gas molecules neither rotate nor oscillate, find (a) the net energy 
transferred as heat to the gas, (b) the net work done by the gas, 
and (c) the efficiency of the cycle.

66  An ideal refrigerator does 150 J of work to remove 560 J 
as heat from its cold compartment. (a) What is the refrigerator’s 
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coefficient of performance? (b) How much heat per cycle is 
exhausted to the kitchen?

67  Suppose that 260 J is conducted from a constant- 
temperature reservoir at 400 K to one at (a) 100 K, (b) 200 K, 
(c) 300 K, and (d) 360 K. What is the net change in entropy ΔSnet 
of the reservoirs in each case? (e) As the temperature difference 
of the two reservoirs decreases, does ΔSnet increase, decrease, or 
remain the same?

68  An apparatus that liquefies helium is in a room maintained 
at 300 K. If the helium in the apparatus is at 4.0 K, what is the 
minimum ratio Qto/Qfrom, where Qto is the energy delivered as 
heat to the room and Qfrom is the energy removed as heat from 
the helium?

69 GO  A brass rod is in thermal contact with a constant- 
temperature reservoir at 130°C at one end and a constant- 
temperature reservoir at 24.0°C at the other end. (a) Compute 
the total change in entropy of the rod–reservoirs system when 
5030 J of energy is conducted through the rod, from one reser-
voir to the other. (b) Does the entropy of the rod change?

70 CALC  A 45.0 g block of tungsten at 30.0°C and a 25.0 g block 
of  silver at −120°C are placed together in an insulated container. 
(See Table 18.4.1 for specific heats.) (a) What is the equilibrium 
temperature? What entropy changes do (b) the tungsten, (c) the 
silver, and (d) the tungsten–silver system undergo in reaching 
the equilibrium temperature?

71  Turbine. The turbine in a steam power plant takes steam 
from a boiler at  520° C  and exhausts it into a condenser at  100° C.  
What is its maximum possible efficiency?

72  Heat pump. A heat pump can act as a refrigerator to heat 
a house by drawing heat from outside, doing some work, and 
discharging heat inside the house. At what minimum rate must 

energy be supplied to the heat pump if the outside temperature 
is  − 10° C , the interior temperature is kept at  22° C , and the rate 
of heat delivery to the interior must be 16 kW to offset the nor-
mal heat losses there?

73  Stirling engine. Figure 20.2.6 is a p-V diagram for an ideal-
ized version of a small Stirling engine, named for Reverend Rob-
ert Stirling of the Church of Scotland, who proposed the scheme 
in 1816. The engine uses  n = 8.1 ×  10  −3   mol of an ideal gas, oper-
ates between hot and cold heat reservoirs of temperatures   T  H   
= 95° C  and   T  L   = 24° C,  and runs at the rate of 0.70 cycle per 
second. A cycle consists of an isothermal expansion (ab, from 
Va to 1.5Va), an isothermal compression (cd), and two constant-
volume processes (bc and da). (a) What is the engine’s net work 
per cycle? (b) What is the power of the engine? (c) What is the 
net heat transfer into the gas during a cycle? (d) What is the 
efficiency  ε  of the engine?

74  Automobile. An automobile engine with an efficiency  ε  of 
22.0% operates at 95.0 cycles per second and does work at the 
rate of 120 hp. (a) How much work in joules does the engine do 
per cycle? (b) How much heat does the engine absorb (extract 
from the “reservoir”) per cycle? (c) How much heat is dis-
carded by the engine per cycle and lost to the low-temperature 
reservoir?

75  Backward engine. An ideal engine has efficiency  ε.  Show 
that if you run it backward as an ideal refrigerator, the coeffi-
cient of performance will be  K = (1 − ε)/ε. 

76  Refrigerator work and heat. A household refrigerator, 
whose coefficient of performance K is 4.70, extracts heat from 
the cold chamber at the rate of 250 J per cycle. (a) How much 
work per cycle is required to operate the refrigerator? (b) How 
much heat per cycle is discharged to the room, which forms the 
high-temperature reservoir of the refrigerator? 
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A-1

*Adapted from “The International System of Units (SI),” National Bureau of Standards Special Publication 
330, 1972 edition. The definitions above were adopted by the General Conference of Weights and Measures, 
an international body, on the dates shown. In this book we do not use the candela.

THE INTERNATIONAL SYSTEM OF UNITS (SI)*

Table 1 The SI Base Units

 Quantity Name Symbol Definition

length meter m “. . . the length of the path traveled by light in vacuum in 
   1/299,792,458 of a second.” (1983)
mass kilogram kg “. . . this prototype [a certain platinum–iridium cylinder] shall  
   henceforth be considered to be the unit of mass.” (1889)

time second s “. . . the duration of 9,192,631,770 periods of the radiation  
   corresponding to the transition between the two hyperfine  
   levels of the ground state of the cesium-133 atom.” (1967)

electric current ampere A “. . . that constant current which, if maintained in two  
   straight parallel conductors of infinite length, of negligible  
   circular cross section, and placed 1 meter apart in vacuum,  
   would produce between these conductors a force equal to  
   2 × 10−7 newton per meter of length.” (1946)

thermodynamic temperature kelvin K “. . . the fraction 1/273.16 of the thermodynamic temperature 
   of the triple point of water.” (1967)

amount of substance mole mol “. . . the amount of substance of a system which contains as  
   many elementary entities as there are atoms in 0.012 kilo- 
   gram of carbon-12.” (1971)

luminous intensity candela cd “. . . the luminous intensity, in a given direction, of a source  
   that emits monochromatic radiation of frequency 540 ×  
   1012 hertz and that has a radiant intensity in that direction  
   of 1/683 watt per steradian.” (1979)

A P P E N D I X  A
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A-2 APPENDIX A THE INTERNATIONAL SYSTEM OF UNITS (SI)

Table 2 Some SI Derived Units

 Quantity Name of Unit Symbol

area square meter m2

volume cubic meter m3

frequency hertz Hz s−1

mass density (density) kilogram per cubic meter kg/m3

speed, velocity meter per second m/s

angular velocity radian per second rad/s
acceleration meter per second per second m/s2

angular acceleration radian per second per second rad/s2

force newton N kg ⋅ m/s2

pressure pascal Pa N/m2

work, energy, quantity of heat joule J N ⋅ m
power watt W J/s
quantity of electric charge coulomb C A ⋅ s
potential difference, electromotive force volt V W/A
electric field strength volt per meter (or newton per coulomb) V/m N/C

electric resistance ohm Ω V/A
capacitance farad F A ⋅ s/V
magnetic flux weber Wb V ⋅ s
inductance henry H V ⋅ s/A
magnetic flux density tesla T Wb/m2

magnetic field strength ampere per meter A/m
entropy joule per kelvin J/K
specific heat joule per kilogram kelvin J/(kg ⋅ K)
thermal conductivity watt per meter kelvin W/(m ⋅ K)
radiant intensity watt per steradian W/sr

Table 3 The SI Supplementary Units

 Quantity Name of Unit Symbol

plane angle radian rad
solid angle steradian sr
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A P P E N D I X  B

SOME FUNDAMENTAL CONSTANTS OF PHYSICS*

*The values in this table were selected from the 1998 CODATA recommended values  
(www.physics.nist.gov).

 Best (1998) Value

 Constant Symbol Computational Value Valuea Uncertaintyb

Speed of light in a vacuum c 3.00 × 108 m/s 2.997 924 58 exact
Elementary charge e 1.60 × 10−19 C 1.602 176 487 0.025
Gravitational constant G 6.67 × 10−11 m3/s2 ⋅ kg 6.674 28 100
Universal gas constant R 8.31 J/mol ⋅ K 8.314 472 1.7
Avogadro constant NA 6.02 × 1023 mol−1 6.022 141 79 0.050
Boltzmann constant k 1.38 × 10−23 J/K 1.380 650 4 1.7
Stefan–Boltzmann constant σ 5.67 × 10−8 W/m2 ⋅ K4 5.670 400 7.0
Molar volume of ideal gas at STPd Vm 2.27 × 10−2 m3/mol 2.271 098 1 1.7
Permittivity constant ε0 8.85 × 10−12 F/m 8.854 187 817 62 exact
Permeability constant μ0 1.26 × 10−6 H/m 1.256 637 061 43 exact
Planck constant h 6.63 × 10−34 J ⋅ s 6.626 068 96 0.050

Electron massc me 9.11 × 10−31 kg 9.109 382 15 0.050
   5.49 × 10−4 u 5.485 799 094 3 4.2 × 10−4

Proton massc mp 1.67 × 10−27 kg 1.672 621 637 0.050
   1.0073 u 1.007 276 466 77 1.0 × 10−4

Ratio of proton mass to electron mass mp/me 1840 1836.152 672 47 4.3 × 10−4

Electron charge-to-mass ratio e/me 1.76 × 1011 C/kg 1.758 820 150 0.025
Neutron massc mn 1.68 × 10−27 kg 1.674 927 211 0.050
   1.0087 u 1.008 664 915 97 4.3 × 10−4

Hydrogen atom massc m  1  H    1.0078 u 1.007 825 031 6 0.0005
Deuterium atom massc m  2  H    2.0136 u 2.013 553 212 724 3.9 × 10−5

Helium atom massc m  4  He    4.0026 u 4.002 603 2 0.067
Muon mass mμ 1.88 × 10−28 kg 1.883 531 30 0.056

Electron magnetic moment μe 9.28 × 10−24 J/T 9.284 763 77 0.025
Proton magnetic moment μp 1.41 × 10−26 J/T 1.410 606 662 0.026
Bohr magneton μB 9.27 × 10−24 J/T 9.274 009 15 0.025
Nuclear magneton μN 5.05 × 10−27 J/T 5.050 783 24 0.025
Bohr radius a 5.29 × 10−11 m 5.291 772 085 9 6.8 × 10−4

Rydberg constant R 1.10 × 107 m−1 1.097 373 156 852 7 6.6 × 10−6

Electron Compton wavelength λC 2.43 × 10−12 m 2.426 310 217 5 0.0014

aValues given in this column should be given the same unit and power of 10 as the computational value.
bParts per million.
cMasses given in u are in unified atomic mass units, where 1 u = 1.660 538 782 × 10−27 kg.
dSTP means standard temperature and pressure: 0oC and 1.0 atm (0.1 MPa).
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A P P E N D I X  C

SOME ASTRONOMICAL DATA
Some Distances from Earth

To the Moon* 3.82 × 108 m To the center of our Galaxy 2.2 × 1020 m
To the Sun* 1.50 × 1011 m To the Andromeda Galaxy 2.1 × 1022 m
To the nearest star (Proxima Centauri) 4.04 × 1016 m To the edge of the observable universe  ∼1026 m

*Mean distance.

The Sun, Earth, and the Moon

 Property Unit Sun Earth Moon

Mass kg 1.99 × 1030 5.98 × 1024 7.36 × 1022

Mean radius m 6.96 × 108 6.37 × 106 1.74 × 106

Mean density kg/m3 1410 5520 3340
Free-fall acceleration at the surface m/s2 274 9.81 1.67
Escape velocity km/s 618 11.2 2.38
Period of rotationa — 37 d at polesb  26 d at equatorb 23 h 56 min 27.3 d
Radiation powerc W 3.90 × 1026

aMeasured with respect to the distant stars.
bThe Sun, a ball of gas, does not rotate as a rigid body.
cJust outside Earth’s atmosphere solar energy is received, assuming normal incidence, at the rate of 1340 W/m2.

Some Properties of the Planets

  Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Plutod

Mean distance from Sun,  
  106 km 

57.9 108 150 228 778 1430 2870 4500 5900

Period of revolution, y 0.241 0.615 1.00 1.88 11.9 29.5 84.0 165 248

Period of rotation,a d 58.7 −243b 0.997 1.03 0.409 0.426 −0.451b 0.658 6.39

Orbital speed, km/s 47.9 35.0 29.8 24.1 13.1 9.64 6.81 5.43 4.74

Inclination of axis to orbit <28° ≈3° 23.4° 25.0° 3.08° 26.7° 97.9° 29.6° 57.5°

Inclination of orbit to  
  Earth’s orbit 

7.00° 3.39°  1.85° 1.30° 2.49° 0.77° 1.77° 17.2°

Eccentricity of orbit 0.206 0.0068 0.0167 0.0934 0.0485 0.0556 0.0472 0.0086 0.250

Equatorial diameter, km 4880 12 100 12 800 6790 143 000 120 000 51 800 49 500 2300

Mass (Earth = 1) 0.0558 0.815 1.000 0.107 318 95.1 14.5 17.2 0.002

Density (water = 1) 5.60 5.20 5.52 3.95 1.31 0.704 1.21 1.67 2.03

Surface value of g,c m/s2 3.78 8.60 9.78 3.72 22.9 9.05 7.77 11.0 0.5

Escape velocity,c km/s 4.3 10.3 11.2 5.0 59.5 35.6 21.2 23.6 1.3

Known satellites 0 0 1 2 79 + ring 82 + rings 27 + rings 14 + rings 5

aMeasured with respect to the distant stars.
bVenus and Uranus rotate opposite their orbital motion.
cGravitational acceleration measured at the planet’s equator.
dPluto is now classified as a dwarf planet.
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A P P E N D I X  D

CONVERSION FACTORS

Plane Angle

 ° ′ ″ RADIAN rev

 1 degree = 1 60 3600 1.745 × 10−2 2.778 × 10−3

 1 minute = 1.667 × 10−2 1 60 2.909 × 10−4 4.630 × 10−5

 1 second = 2.778 × 10−4 1.667 × 10−2 1 4.848 × 10−6 7.716 × 10−7

1 RADIAN = 57.30 3438 2.063 × 105 1 0.1592
 1 revolution = 360 2.16 × 104 1.296 × 106 6.283 1

Solid Angle

1 sphere = 4π steradians = 12.57 steradians

Length

 cm METER km in. ft mi

 1 centimeter = 1 10−2 10−5 0.3937 3.281 × 10−2 6.214 × 10−6

 1 METER = 100 1 10−3 39.37 3.281 6.214 × 10−4

 1 kilometer = 105 1000 1 3.937 × 104 3281 0.6214
 1 inch = 2.540 2.540 × 10−2 2.540 × 10−5 1 8.333 × 10−2 1.578 × 10−5

 1 foot = 30.48 0.3048 3.048 × 10−4 12 1 1.894 × 10−4

 1 mile = 1.609 × 105 1609 1.609 6.336 × 104 5280 1

1 angström = 10−10 m 1 fermi = 10−15 m 1 fathom = 6 ft 1 rod = 16.5 ft

1 nautical mile = 1852 m  1 light-year = 9.461 × 1012 km 1 Bohr radius = 5.292 × 10−11 m 1 mil = 10−3 in.
  = 1.151 miles = 6076 ft 1 parsec = 3.084 × 1013 km 1 yard = 3 ft 1 nm = 10−9 m

Area

 METER2 cm2 ft2 in.2

 1 SQUARE METER = 1 104 10.76 1550
 1 square centimeter = 10−4 1 1.076 × 10−3 0.1550
 1 square foot = 9.290 × 10−2 929.0 1 144
 1 square inch = 6.452 × 10−4 6.452 6.944 × 10−3 1

1 square mile = 2.788 × 107 ft2 = 640 acres 1 acre = 43 560 ft2

1 barn = 10−28 m2 1 hectare = 104 m2 = 2.471 acres

Conversion factors may be read directly from these tables. For example, 1 degree = 2.778 × 10−3 
revolutions, so 16.7° = 16.7 × 2.778 × 10−3 rev. The SI units are fully capitalized. Adapted in part 
from G. Shortley and D. Williams, Elements of Physics, 1971, Prentice-Hall, Englewood Cliffs, NJ.
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Volume

 METER3 cm3 L ft3 in.3

 1 CUBIC METER = 1 106 1000 35.31 6.102 × 104

 1 cubic centimeter = 10−6 1 1.000 × 10−3 3.531 × 10−5 6.102 × 10−2

 1 liter = 1.000 × 10−3 1000 1 3.531 × 10−2 61.02
 1 cubic foot = 2.832 × 10−2 2.832 × 104 28.32 1 1728
 1 cubic inch = 1.639 × 10−5 16.39 1.639 × 10−2 5.787 × 10−4 1

1 U.S. fluid gallon = 4 U.S. fluid quarts = 8 U.S. pints = 128 U.S. fluid ounces = 231 in.3

1 British imperial gallon = 277.4 in.3 = 1.201 U.S. fluid gallons

Mass
Quantities in the colored areas are not mass units but are often used as such. For example, when we write 1 kg “=” 
2.205 lb, this means that a kilogram is a mass that weighs 2.205 pounds at a location where g has the standard value  
of 9.80665 m/s2.

 g KILOGRAM slug u oz lb ton

 1 gram = 1 0.001 6.852 × 10−5 6.022 × 1023 3.527 × 10−2 2.205 × 10−3 1.102 × 10−6

 1 KILOGRAM = 1000 1 6.852 × 10−2 6.022 × 1026 35.27 2.205 1.102 × 10−3

 1 slug = 1.459 × 104 14.59 1 8.786 × 1027 514.8 32.17 1.609 × 10−2

            1 atomic  
 mass unit = 1.661 × 10−24 1.661 × 10−27 1.138 × 10−28 1 5.857 × 10−26 3.662 × 10−27 1.830 × 10−30

 1 ounce = 28.35 2.835 × 10−2 1.943 × 10−3 1.718 × 1025 1 6.250 × 10−2 3.125 × 10−5

 1 pound = 453.6 0.4536 3.108 × 10−2 2.732 × 1026 16 1 0.0005
 1 ton = 9.072 × 105 907.2 62.16 5.463 × 1029 3.2 × 104 2000 1

1 metric ton = 1000 kg

Density
Quantities in the colored areas are weight densities and, as such, are dimensionally different from mass densities. 
See the note for the mass table.

  KILOGRAM/  
 slug/ft3 METER3 g/cm3 lb/ft3 lb/in.3

 1 slug per foot3 = 1 515.4 0.5154 32.17 1.862 × 10−2

 1 KILOGRAM  
   per METER3 = 1.940 × 10−3 1 0.001 6.243 × 10−2 3.613 × 10−5

1 gram per centimeter3 = 1.940 1000 1 62.43 3.613 × 10−2

 1 pound per foot3 = 3.108 × 10−2 16.02 16.02 × 10−2 1 5.787 × 10−4

 1 pound per inch3 = 53.71 2.768 × 104 27.68 1728 1

 y d h min SECOND

 1 year = 1 365.25 8.766 × 103 5.259 × 105 3.156 × 107

 1 day = 2.738 × 10−3 1 24 1440 8.640 × 104

 1 hour = 1.141 × 10−4 4.167 × 10−2 1 60 3600
 1 minute = 1.901 × 10−6 6.944 × 10−4 1.667 × 10−2 1 60
 1 SECOND = 3.169 × 10−8 1.157 × 10−5 2.778 × 10−4 1.667 × 10−2 1

Time
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A-7APPENDIX D CONVERSION FACTORS

Speed

 ft/s km/h METER/SECOND mi/h cm/s

 1 foot per second = 1 1.097 0.3048 0.6818 30.48
 1 kilometer per hour = 0.9113 1 0.2778 0.6214 27.78
 1 METER per SECOND = 3.281 3.6 1 2.237 100
 1 mile per hour = 1.467 1.609 0.4470 1 44.70
 1 centimeter per second = 3.281 × 10−2 3.6 × 10−2 0.01 2.237 × 10−2 1

1 knot = 1 nautical mi/h = 1.688 ft/s    1 mi/min = 88.00 ft/s = 60.00 mi/h

Pressure

 atm dyne/cm2 inch of water cm Hg PASCAL lb/in.2 lb/ft2

 1 atmosphere = 1 1.013 × 106 406.8 76 1.013 × 105 14.70 2116
 1 dyne per 
 centimeter2 = 9.869 × 10−7 1 4.015 × 10−4 7.501 × 10−5 0.1 1.405 × 10−5 2.089 × 10−3

 1 inch of 
 watera at 4°C = 2.458 × 10−3 2491 1 0.1868 249.1 3.613 × 10−2 5.202
 1 centimeter
   of mercurya

   at 0°C = 1.316 × 10−2 1.333 × 104 5.353 1 1333 0.1934 27.85
 1 PASCAL = 9.869 × 10−6 10 4.015 × 10−3 7.501 × 10−4 1 1.450 × 10−4 2.089 × 10−2

 1 pound per inch2 = 6.805 × 10−2 6.895 × 104 27.68 5.171 6.895 × 103 1 144
 1 pound per foot2 = 4.725 × 10−4 478.8 0.1922 3.591 × 10−2 47.88 6.944 × 10−3 1

aWhere the acceleration of gravity has the standard value of 9.80665 m/s2.

1 bar = 106 dyne/cm2 = 0.1 MPa 1 millibar = 103 dyne/cm2 = 102 Pa 1 torr = 1 mm Hg

Force
Force units in the colored areas are now little used. To clarify: 1 gram-force (= 1 gf) is the force of gravity  
that would act on an object whose mass is 1 gram at a location where g has the standard value of 9.80665 m/s2.

 dyne NEWTON lb pdl gf kgf

 1 dyne = 1 10−5 2.248 × 10−6 7.233 × 10−5 1.020 × 10−3 1.020 × 10−6

 1 NEWTON = 105 1 0.2248 7.233 102.0 0.1020
 1 pound = 4.448 × 105 4.448 1 32.17 453.6 0.4536
 1 poundal = 1.383 × 104 0.1383 3.108 × 10−2 1 14.10 1.410 × 102

 1 gram-force = 980.7 9.807 × 10−3 2.205 × 10−3 7.093 × 10−2 1 0.001
 1 kilogram-force = 9.807 × 105 9.807 2.205 70.93 1000 1

1 ton = 2000 lb
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Power

 Btu/h ft ⋅ lb/s hp cal/s kW WATT

 1 British thermal unit per hour = 1 0.2161 3.929 × 10−4 6.998 × 10−2 2.930 × 10−4 0.2930
 1 foot-pound per second = 4.628 1 1.818 × 10−3 0.3239 1.356 × 10−3 1.356
 1 horsepower = 2545 550 1 178.1 0.7457 745.7
 1 calorie per second = 14.29 3.088 5.615 × 10−3 1 4.186 × 10−3 4.186
 1 kilowatt = 3413 737.6 1.341 238.9 1 1000
 1 WATT = 3.413 0.7376 1.341 × 10−3 0.2389 0.001 1

Magnetic Field

 gauss TESLA milligauss

 1 gauss = 1 10−4 1000
 1 TESLA = 104 1 107

 1 milligauss = 0.001 10−7 1

1 tesla = 1 weber/meter2

Magnetic Flux

 maxwell WEBER

 1 maxwell = 1 10−8

 1 WEBER = 108 1

Energy, Work, Heat
Quantities in the colored areas are not energy units but are included for convenience. They arise from the relativistic 
mass–energy equivalence formula E = mc2 and represent the energy released if a kilogram or unified atomic mass 
unit (u) is completely converted to energy (bottom two rows) or the mass that would be completely converted to  
one unit of energy (rightmost two columns).

  Btu erg ft ⋅ lb hp ⋅ h JOULE cal kW ⋅ h eV MeV kg u

 1 British    1.055   3.929    2.930  6.585  6.585  1.174  7.070 
 thermal unit = 1  × 1010 

777.9
    × 10−4 

1055
 

252.0
    × 10−4    × 1021    × 1015    × 10−14    × 1012

   9.481   7.376  3.725   2.389  2.778  6.242  6.242  1.113  
 1 erg = × 10−11 1    × 10−8    × 10−14 10−7    × 10−8    × 10−14    × 1011    × 105    × 10−24 

670.2

   1.285  1.356   5.051    3.766  8.464  8.464  1.509  9.037 
 1 foot-pound = × 10−3    × 107 1    × 10−7 1.356 0.3238    × 10−7    × 1018    × 1012    × 10−17    × 109

 1 horsepower-  2.685  1.980   2.685  6.413   1.676  1.676  2.988  1.799 
 hour = 2545    × 1013    × 106 1    × 106    × 105 0.7457    × 1025    × 1019    × 10−11    × 1016

   9.481    3.725    2.778  6.242  6.242  1.113  6.702 
 1 JOULE = × 10−4 107 0.7376    × 10−7 1 0.2389    × 10−7    × 1018    × 1012    × 10−17    × 109

   3.968  4.1868   1.560    1.163  2.613  2.613  4.660  2.806 
 1 calorie =  × 10−3    × 107 3.088    × 10−6 4.1868 1    × 10−6    × 1019    × 1013    × 10−17    × 1010

 1 kilowatt-   3.600  2.655   3.600  8.600   2.247  2.247  4.007  2.413 
 hour = 3413    × 1013    × 106 1.341    × 106    × 105 1    × 1025    × 1019    × 10−11    × 1016

    1.519  1.602  1.182  5.967  1.602  3.827  4.450    1.783  1.074 
 1 electron-volt = × 10−22    × 10−12    × 10−19    × 10−26    × 10−19    × 10−20    × 10−26 1 10−6    × 10−36    × 10−9

 1 million    1.519  1.602  1.182  5.967  1.602  3.827  4.450    1.783  1.074 
 electron-volts =    × 10−16    × 10−6    × 10−13    × 10−20    × 10−13    × 10−14    × 10−20 10−6 1    × 10−30    × 10−3

   8.521  8.987  6.629  3.348  8.987  2.146  2.497  5.610  5.610   6.022 
 1 kilogram =   × 1013    × 1023    × 1016    × 1010    × 1016    × 1016    × 1010    × 1035    × 1029 

1
    × 1026

 1 unified 
 atomic mass   1.415  1.492  1.101  5.559  1.492  3.564  4.146  9.320  932.0 1.661  
 unit = × 10−13    × 10−3    × 10−10    × 10−17    × 10−10    × 10−11    × 10−17    × 108     × 10−27 

1
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A P P E N D I X  E

MATHEMATICAL FORMULAS

Geometry
Circle of radius r: circumference = 2πr; area = πr2.

Sphere of radius r: area = 4πr2;  volume =  4 _ 3  π  r   3  .

Right circular cylinder of radius r and height h:  
  area = 2πr2 + 2πrh; volume = πr2h.

Triangle of base a and altitude h:  area =  1 _ 2  ah .

Quadratic Formula

If ax2 + bx + c = 0, then  x =   − b ±  √ 
_

  b   2  − 4ac    ______________ 
2a

   .

Trigonometric Functions of Angle θ
  sin θ =   

y
 __ r   cos θ =   x __ r   

  tan θ =   
y
 __ x   cot θ =   x __ y   

  sec θ =   r __ x   csc θ =   r __ y   

Pythagorean Theorem
In this right triangle,  
 a2 + b2 = c2

Triangles
Angles are A, B, C

Opposite sides are a, b, c

Angles A + B + C = 180o

    sin A _____ 
a
   =   sin B _____ 

b
   =   sin C _____ 

c
   

c2 = a2 + b2 − 2ab cos C
Exterior angle D = A + C

Mathematical Signs and Symbols
= equals

≈ equals approximately

∼ is the order of magnitude of

≠ is not equal to

≡ is identical to, is defined as

> is greater than (⪢ is much greater than)

< is less than (⪡ is much less than)

≥ is greater than or equal to (or, is no less than)

≤ is less than or equal to (or, is no more than)

± plus or minus

∝ is proportional to

Σ the sum of

xavg the average value of x

Trigonometric Identities
sin(90° − θ) = cos θ

cos(90° − θ) = sin θ

sin θ/cos θ = tan θ

sin2 θ + cos2 θ = 1

sec2 θ − tan2 θ = 1

csc2 θ − cot2 θ = 1

sin 2θ = 2 sin θ cos θ

cos 2θ = cos2 θ − sin2 θ = 2 cos2 θ − 1 = 1 − 2 sin2 θ

sin(α ± β) = sin α cos β ± cos α sin β

cos(α ± β) = cos α cos β ∓ sin α sin β

 tan (α ± β)  =   
tan α ± tan β  _____________  

1 ∓ tan α tan β   

 sin α ± sin β = 2 sin   1 _ 2   (α ± β)  cos   1 _ 2   (α ∓ β)  

 cos α + cos β = 2 cos   1 _ 2   (α + β)  cos   1 _ 2   (α − β)  

 cos α − cos β = −2 sin   1 _ 2   (α + β)  sin   1 _ 2   (α − β)  

 Binomial Theorem

 (  1 + x )  n  = 1 +   nx ___ 
1!

   +   
n (n − 1)  x   2 

 _________ 
2!

   + . . .   ( x   2  < 1) 

 Exponential Expansion

   e   x  = 1 + x +    x   2  __ 
2 !

   +    x   3  __ 
3!

   + . . . 

y axis

x axis

r
y

x0
θ

c
a

b

b a

c

C

B
D

A
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A-10 APPENDIX E MATHEMATICAL FORMULAS

Logarithmic Expansion
 ln (1 + x)  = x −   1 _ 2    x   2  +   1 _ 3    x   3  − . . .   (  |  x |   < 1 )   

Trigonometric Expansions  
(θ in radians)

 sin θ = θ −    θ   3  __ 
3 !

   +    θ   5  __ 
5 !

   − . . . 

 cos θ = 1 −    θ   2  __ 
2 !

   +    θ   4  __ 
4 !

   − . . .  

 tan θ = θ +    θ   3  __ 
3
   +   2 θ   5  ____ 

15
   + . . . 

Cramer’s Rule
Two simultaneous equations in unknowns x and y,

a1x + b1y = c1  and  a2x + b2y = c2,

have the solutions

  x =   
 |    c  1    

 b  1    
 c  2  

  
 b  2  

   |  
 _______ 

 |    a  1    
 b  1    

 a  2  
  

 b  2  
   |  
   =   

 c  1   b  2   −  c  2   b  1   __________ 
 a  1   b  2   −  a  2   b  1  

   

and

 y =   
 |    a  1    

 c  1     a  2  
   c  2  

   |  
 _______ 

 |    a  1    
 b  1    

 a  2  
  

 b  2  
   |  
   =   

 a  1   c  2   −  a  2   c  1   __________ 
 a  1    b  2   −  a  2   b  1  

  . 

Products of Vectors
Let   ̂ i  ,   ̂ j  , and    ̂  k   be unit vectors in the x, y, and z direc- 
tions. Then

  ̂ i  ⋅  ̂ i  =  ̂ j  ⋅  ̂ j  =   ̂  k  ⋅   ̂  k  = 1,   ̂ i  ⋅  ̂ j  =  ̂ j  ⋅   ̂  k  =   ̂  k  ⋅  ̂ i  = 0, 

  ̂ i  ×  ̂ i  =  ̂ j  ×  ̂ j  =   ̂  k  ×   ̂  k  = 0, 

  ̂ i  ×  ̂ j  =   ̂  k ,    ̂ j  ×   ̂  k  =  ̂ i ,     ̂  k  ×  ̂ i  =  ̂ j  

Any vector    → a    with components ax, ay, and az along the  
x, y, and z axes can be written as

   → a   =  a  x   ̂ i  +  a  y   ̂ j  +  a  z    ̂  k .  

Let    → a   ,    
→

 b   , and    → c    be arbitrary vectors with magnitudes a,   
b, and c. Then

   → a   ×  (  
→

 b   +   → c  )  =  (  → a   ×   
→

 b  )  +  (  → a   ×   → c  )   

  (s  → a  )  ×   
→

 b   =   → a   ×  (s  
→

 b  )  = s (  → a   ×   
→

 b  )    (s = a scalar) .  

Let θ be the smaller of the two angles between    → a    and    
→

 b   .  

Then

   → a   ⋅   
→

 b   =   
→

 b   ⋅   → a   =  a  x    b  x   +  a  y    b  y   +  a  z    b  z   = ab cos θ  

    → a   ×   
→

 b   = −   
→

 b   ×   → a   =   |     ̂ i    ̂ j 
  

  ̂  k 
   a  x     a  y     a  z    

 b  x  
  

 b  y  
  

 b  z  
  |    

  =  ̂ i   |     a  y  
  

 a  z  
   b  y  

   b  z  
  |   −  ̂ j   |     a  x  

  
 a  z  

   b  x  
   b  z  

  |    +   ̂  k   |     a  x  
  

 a  y  
   b  x  

   b  y  
  |     

 =   ( a  y   b  z   −  b  y   a  z  ) ̂ i   + ( a  z   b  x   −  b  z   a  x  ) ̂ j   

  +   ( a  x   b  y   −  b  x   a  y  )   ̂  k  

     |     → a   ×   
→

 b    |    = ab sin θ 

   → a   ⋅  (  
→

 b   ×   → c  )  =   
→

 b   ⋅  (  → c   ×   → a  )  =   → c   ⋅  (  → a   ×   
→

 b  )   

    → a   ×  (  
→

 b   ×   → c  )  =  (  → a   ⋅   → c  )   
→

 b   −  (  → a   ⋅   
→

 b  )   → c   
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Derivatives and Integrals
In what follows, the letters u and v stand for any functions 
of x, and a and m are constants. To each of the indefinite 
integrals should be added an arbitrary constant of inte-
gration. The Handbook of Chemistry and Physics (CRC 
Press Inc.) gives a more extensive tabu lation.

 1.    dx ___ 
dx

   = 1 

 2.    d ___ 
dx

    (au)  = a   du ___ 
dx

   

 3.    d ___ 
dx

    (u + v)  =   du ___ 
dx

   +   dv ___ 
dx

   

 4.    d ___ 
dx

    x   m  = m x   m−1  

 5.    d ___ 
dx

   ln x =   1 __ x   

 6.    d ___ 
dx

    (uv)  = u    dv ___ 
dx

   + v    du ___ 
dx

   

 7.    d ___ 
dx

    e   x  =  e   x  

 8.    d ___ 
dx

   sin x = cos x 

 9.    d ___ 
dx

   cos x = − sin x 

 10.    d ___ 
dx

   tan x =  sec  2  x 

 11.    d ___ 
dx

   cot x = −  csc  2  x 

 12.    d ___ 
dx

   sec x = tan x sec x 

 13.    d ___ 
dx

   csc x = − cot x csc x 

 14.    d ___ 
dx

    e   u  =  e   u    du ___ 
dx

   

 15.    d ___ 
dx

   sin u = cos u    du ___ 
dx

   

 16.    d ___ 
dx

   cos u = − sin u    du ___ 
dx

   

 

 1.    
 
  
 
   d x = x 

 2.    
 
  
 
   a  u dx = a   

 
  
 
   u d  x

 3.    
 
  
 
   (  u + v) dx =    

 
  
 
   u   dx +    

 
  
 
   v d  x

 4.    
 
  
 
     x   m    dx =    x   m+1  ______ 

m + 1
   (m ≠ −1) 

 5.    
 
  
 
      dx ___ x     = ln   |   x  |   

 6.    
 
  
 
   u   dv ___ 

dx
     dx = uv −    

 
  
 
   v   du ___ 

dx
     dx

 7.    
 
  
 
    e   x    dx =  e   x 

 8.    
 
  
 
   sin x   dx = −cos x

 9.    
 
  
 
   c  os x dx = sin x

10.    
 
  
 
   ta  n x dx = ln   |   sec x  |   

11.    
 
  
 
    sin  2    x dx =    1 _ 2    x −    1 _ 4    sin 2x

12.    
 
  
 
    e   −ax    dx = −   1 __ a    e   −ax 

13.    
 
  
 
   x e   −ax    dx = −   1 __ 

 a   2 
   (ax + 1)  e   −ax 

14.    
 
  
 
    x   2  e   −ax    dx = −   1 __ 

 a   3 
    (    a   2  x   2  + 2ax + 2 )    e   −ax 

15.    
0
  
∞
   x   n   e   −ax  dx =   n ! ____ 

 a   n+1 
   

16.    
0
  
∞
   x   2n  e  − a x   2   dx =   

1 ⋅ 3 ⋅ 5 . . .  (2n − 1) 
  _________________  

 2  n+1  a   n 
    √ 

__
   π __ a     

17.    
 
  
 
     dx _________ 
 √ 

_______
  x   2  +  a   2   
     = ln (x +  √ 

_______
  x   2  +  a   2   ) 

18.    
 
  
 
     x dx __________ 
( x   2  +  a   2  )  3/2 

     = −   1 __________ 
 ( x   2  +  a   2 )  

1/2
 
  

19.    
 
  
 
      dx __________ 
( x   2  +  a   2  )  3/2 

     =   x ____________  
 a   2  ( x   2  +  a   2 )  

1/2
 
  

20.    
0
  
∞
   x   2n+1   e  − a x   2   dx =   n ! _____ 

2 a   n+1 
    (a > 0)  

21.    
 
  
 
     x dx _____ 
x + d

     = x − d ln (x + d) 
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A P P E N D I X  F

PROPERTIES OF THE ELEMENTS

All physical properties are for a pressure of 1 atm unless otherwise specified.

        Specific 
   Atomic  Molar    Boiling  Heat,  
   Number  Mass,  Density,  Melting  Point,  J/(g ⋅ °C)  
 Element Symbol Z g/mol g/cm3 at 20°C Point, °C °C at 25°C

Actinium Ac 89 (227) 10.06 1323 (3473) 0.092
Aluminum Al 13 26.9815 2.699 660 2450 0.900
Americium Am 95 (243) 13.67 1541 — —
Antimony Sb 51 121.75 6.691 630.5 1380 0.205
Argon Ar 18 39.948 1.6626 × 10−3 −189.4 −185.8 0.523
Arsenic As 33 74.9216 5.78 817 (28 atm) 613 0.331
Astatine At 85 (210) — (302) — —
Barium Ba 56 137.34 3.594 729 1640 0.205
Berkelium Bk 97 (247) 14.79 — — —
Beryllium Be 4 9.0122 1.848 1287 2770 1.83
Bismuth Bi 83 208.980 9.747 271.37 1560 0.122
Bohrium Bh 107 262.12 — — — —
Boron B 5 10.811 2.34 2030 — 1.11
Bromine Br 35 79.909 3.12 (liquid) −7.2 58 0.293
Cadmium Cd 48 112.40 8.65 321.03 765 0.226
Calcium Ca 20 40.08 1.55 838 1440 0.624
Californium Cf 98 (251) — — — —
Carbon C 6 12.01115 2.26 3727 4830 0.691
Cerium Ce 58 140.12 6.768 804 3470 0.188
Cesium Cs 55 132.905 1.873 28.40 690 0.243
Chlorine Cl 17 35.453 3.214 × 10−3 (0°C) −101 −34.7 0.486
Chromium Cr 24 51.996 7.19 1857 2665 0.448
Cobalt Co 27 58.9332 8.85 1495 2900 0.423
Copernicium Cn 112 (285) — — — —
Copper Cu 29 63.54 8.96 1083.40 2595 0.385
Curium Cm 96 (247) 13.3 — — —
Darmstadtium Ds 110 (271) — — — —
Dubnium Db 105 262.114 — — — —
Dysprosium Dy 66 162.50 8.55 1409 2330 0.172
Einsteinium Es 99 (254) — — — —
Erbium Er 68 167.26 9.15 1522 2630 0.167
Europium Eu 63 151.96 5.243 817 1490 0.163
Fermium Fm 100 (237) — — — —
Flerovium Fl 114 (289) — — — —
Fluorine F 9 18.9984 1.696 × 10−3 (0°C) −219.6 −188.2 0.753
Francium Fr 87 (223) — (27) — —
Gadolinium Gd 64 157.25 7.90 1312 2730 0.234
Gallium Ga 31 69.72 5.907 29.75 2237 0.377
Germanium Ge 32 72.59 5.323 937.25 2830 0.322
Gold Au 79 196.967 19.32 1064.43 2970 0.131
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        Specific 
   Atomic  Molar    Boiling  Heat,  
   Number  Mass,  Density,  Melting  Point,  J/(g ⋅ °C)  
 Element Symbol Z g/mol g/cm3 at 20°C Point, °C °C at 25°C

Hafnium Hf 72 178.49 13.31 2227 5400 0.144
Hassium Hs 108 (265) — — — —
Helium He 2 4.0026 0.1664 × 10−3 −269.7 −268.9 5.23
Holmium Ho 67 164.930 8.79 1470 2330 0.165
Hydrogen H 1 1.00797 0.08375 × 10−3 −259.19 −252.7 14.4
Indium In 49 114.82 7.31 156.634 2000 0.233
Iodine I 53 126.9044 4.93 113.7 183 0.218
Iridium Ir 77 192.2 22.5 2447 (5300) 0.130
Iron Fe 26 55.847 7.874 1536.5 3000 0.447
Krypton Kr 36 83.80 3.488 × 10−3 −157.37 −152 0.247
Lanthanum La 57 138.91 6.189 920 3470 0.195
Lawrencium Lr 103 (257) — — — —
Lead Pb 82 207.19 11.35 327.45 1725 0.129
Lithium Li 3 6.939 0.534 180.55 1300 3.58
Livermorium Lv 116 (293) — — — —
Lutetium Lu 71 174.97 9.849 1663 1930 0.155
Magnesium Mg 12 24.312 1.738 650 1107 1.03
Manganese Mn 25 54.9380 7.44 1244 2150 0.481
Meitnerium Mt 109 (266) — — — —
Mendelevium Md 101 (256) — — — —
Mercury Hg 80 200.59 13.55 −38.87 357 0.138
Molybdenum Mo 42 95.94 10.22 2617 5560 0.251
Moscovium Mc 115 (289) — — — —
Neodymium Nd 60 144.24 7.007 1016 3180 0.188
Neon Ne 10 20.183 0.8387 × 10−3 −248.597 −246.0 1.03
Neptunium Np 93 (237) 20.25 637 — 1.26
Nickel Ni 28 58.71 8.902 1453 2730 0.444
Nihonium Nh 113 (286) — — — —
Niobium Nb 41 92.906 8.57 2468 4927 0.264
Nitrogen N 7 14.0067 1.1649 × 10−3 −210 −195.8 1.03
Nobelium No 102 (255) — — — —
Organesson Og 118 (294) — — — —
Osmium Os 76 190.2 22.59 3027 5500 0.130
Oxygen O 8 15.9994 1.3318 × 10−3 −218.80 −183.0 0.913
Palladium Pd 46 106.4 12.02 1552 3980 0.243
Phosphorus P 15 30.9738 1.83 44.25 280 0.741
Platinum Pt 78 195.09 21.45 1769 4530 0.134
Plutonium Pu 94 (244) 19.8 640 3235 0.130
Polonium Po 84 (210) 9.32 254 — —
Potassium K 19 39.102 0.862 63.20 760 0.758
Praseodymium Pr 59 140.907 6.773 931 3020 0.197
Promethium Pm 61 (145) 7.22 (1027) — —
Protactinium Pa 91 (231) 15.37 (estimated) (1230) — —
Radium Ra 88 (226) 5.0 700 — —
Radon Rn 86 (222) 9.96 × 10−3 (0°C) (−71) −61.8 0.092
Rhenium Re 75 186.2 21.02 3180 5900 0.134
Rhodium Rh 45 102.905 12.41 1963 4500 0.243
Roentgenium Rg 111 (280) — — — —
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        Specific 
   Atomic  Molar    Boiling  Heat,  
   Number  Mass,  Density,  Melting  Point,  J/(g ⋅ °C)  
 Element Symbol Z g/mol g/cm3 at 20°C Point, °C °C at 25°C

Rubidium Rb 37 85.47 1.532 39.49 688 0.364
Ruthenium Ru 44 101.107 12.37 2250 4900 0.239
Rutherfordium Rf 104 261.11 — — — —
Samarium Sm 62 150.35 7.52 1072 1630 0.197
Scandium Sc 21 44.956 2.99 1539 2730 0.569
Seaborgium Sg 106 263.118 — — — —
Selenium Se 34 78.96 4.79 221 685 0.318
Silicon Si 14 28.086 2.33 1412 2680 0.712
Silver Ag 47 107.870 10.49 960.8 2210 0.234
Sodium Na 11 22.9898 0.9712 97.85 892 1.23
Strontium Sr 38 87.62 2.54 768 1380 0.737
Sulfur S 16 32.064 2.07 119.0 444.6 0.707
Tantalum Ta 73 180.948 16.6 3014 5425 0.138
Technetium Tc 43 (99) 11.46 2200 — 0.209
Tellurium Te 52 127.60 6.24 449.5 990 0.201
Tennessine Ts 117 (293) — — — —
Terbium Tb 65 158.924 8.229 1357 2530 0.180
Thallium Tl 81 204.37 11.85 304 1457 0.130
Thorium Th 90 (232) 11.72 1755 (3850) 0.117
Thulium Tm 69 168.934 9.32 1545 1720 0.159
Tin  Sn 50 118.69 7.2984 231.868 2270 0.226
Titanium Ti 22 47.90 4.54 1670 3260 0.523
Tungsten W 74 183.85 19.3 3380 5930 0.134
Uranium U 92 (238) 18.95 1132 3818 0.117
Vanadium V 23 50.942 6.11 1902 3400 0.490
Xenon Xe 54 131.30 5.495 × 10−3 −111.79 −108 0.159
Ytterbium Yb 70 173.04 6.965 824 1530 0.155
Yttrium Y 39 88.905 4.469 1526 3030 0.297
Zinc Zn 30 65.37 7.133 419.58 906 0.389
Zirconium Zr 40 91.22 6.506 1852 3580 0.276

The values in parentheses in the column of molar masses are the mass numbers of the longest-lived isotopes of those elements that are 
radioactive. Melting points and boiling points in parentheses are uncertain.

The data for gases are valid only when these are in their usual molecular state, such as H2, He, O2, Ne, etc. The specific heats of the gases are the 
 values at constant pressure.

Source: Adapted from J. Emsley, The Elements, 3rd ed., 1998, Clarendon Press, Oxford. See also www.webelements.com for the latest values and 
newest elements.
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A P P E N D I X  G

PERIODIC TABLE OF THE ELEMENTS

See www.webelements.com for the latest information and newest elements. 

H
1

IA

IIA

Alkali
metals

Li
3

Na
11

K
19

Rb
37

Cs
55

Fr
87

1

2

3

4

5

6

7

Be
4

Mg
12

Ca
20

Sr
38

Ba
56

Ra
88

Sc
21

Y
39

*
57-71

†
89-103

Ti
22

Zr
40

Hf
72

Rf
104

V
23

Nb
41

Ta
73

Db
105

Cr
24

Mo
42

W
74

Sg
106

Mn
25

Tc
43

Re
75

Bh
107

Fe
26

Ru
44

Os
76

Hs
108

Co
27

VIIIB

Transition metals

Rh
45

Ir
77

Mt
109

Ni
28

Pd
46

Pt
78

Cu
29

Ag
47

Au
79

111

Zn
30

Cd
48

Hg
80

112

Ga
31

In
49

Tl
81

113

Ge
32

Sn
50

Pb
82

114

As
33

Sb
51

Bi
83

115

Se
34

Te
52

Po
84

116

Br
35

I
53

At
85

117

Kr
36

Al
13

Si
14

P
15

S
16

Cl
17

Ar
18

B
5

C
6

N
7

O
8

F
9

Ne
10

He
2

IIIB IVB VB VIB VIIB IB IIB

IIIA

Nonmetals

IVA VA VIA VIIA

0

Noble
gases

Xe
54

Rn
86

La
57

Ce
58

Pr
59

Nd
60

Pm
61

Sm
62

Eu
63

Gd
64

Tb
65

Dy
66

Ho
67

Er
68

Tm
69

Yb
70

Lu
71

Ac

Lanthanide series *

Actinide series †
89

Th
90

Pa
91

U
92

Np
93

Pu
94

Am
95

Cm
96

Bk
97

Cf
98

Es
99

Fm
100

Md
101

No
102

Lr
103

118

T
H

E
 H

O
R

IZ
O

N
T

A
L

 P
E

R
IO

D
S

Inner transition metals

Metalloids

Metals

Ds
110

Rg Cn Nh McFl Lv Ts Og
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AN-1

A N S W E R S

To Checkpoints and Odd‑Numbered Questions and Problems

Chapter 1
P  1. (a) 4.00 × 104 km; (b) 5.10 × 108 km2; (c) 1.08 × 1012 km3   

3. (a) 109 μm; (b) 10−4; (c) 9.1 × 105 μm  5. (a) 160 rods; (b) 40 
chains  7. 1.1 × 103 acre-feet  9. 1.9 × 1022 cm3  11. (a) 1.43; 
(b) 0.864  13. (a) 495 s; (b) 141 s; (c) 198 s; (d) −245 s   
15. 1.21 × 1012 μs  17. C, D, A, B, E; the important criterion is the 
consistency of the daily variation, not its magnitude  19. 5.2 × 
106 m  21. 9.0 × 1049 atoms  23. (a) 1 × 103 kg; (b) 158 kg/s   
25. 1.9 × 105

 kg  27. (a) 1.18 × 10−29 m3; (b) 0.282 nm   
29. 1.75 × 103 kg  31. 1.43 kg/min  33. (a) 293 U.S. bushels; 
(b) 3.81 × 103 U.S. bushels  35. (a) 22 pecks; (b) 5.5 Impe-
rial bushels; (c) 200 L  37. 8 × 102 km  39. (a) 18.8 gallons; 
(b) 22.5 gallons  41. 0.3 cord  43. 3.8 mg/s  45. (a) yes; 
(b) 8.6 universe seconds  47. 0.12 AU/min  49. (a) 3.88; 
(b) 7.65; (c) 156 ken3; (d) 1.19 × 103 m3  51. 1.4 × 103 kg/m3   
53. 3.0 × 109 ft2  55. 72 y  57. 8.07 × 1060  59. 6.400 m   
61. (a) 1.4 × 103 h; (b) 5.2 × 106 s

Chapter 2
CP  2.1.1 b and c  2.2.1 (check the derivative dx/dt) (a) 1 and 4;  
(b) 2 and 3  2.3.1 (a) plus; (b) minus; (c) minus; (d) plus   
2.4.1 1 and 4 (a = d2x/dt2 must be constant)  2.5.1 (a) plus 
(upward displacement on y axis); (b) minus (downward displace-
ment on y axis); (c) a = −g = −9.8 m/s2  2.6.1 (a) integrate; (b) 
find the slope   
Q  1. (a) negative; (b) positive; (c) yes; (d) positive; (e) con-
stant  3. (a) all tie; (b) 4, tie of 1 and 2, then 3  5. (a) positive 
direction; (b) negative direction; (c) 3 and 5; (d) 2 and 6 tie, 
then 3 and 5 tie, then 1 and 4 tie (zero)  7. (a) D; (b) E  9. (a) 
3, 2, 1; (b) 1, 2, 3; (c) all tie; (d) 1, 2, 3  11. 1 and 2 tie, then 3 
P  1. 13 m  3. (a) +40 km/h; (b) 40 km/h  5. (a) 0; (b) −2 m; 
(c) 0; (d) 12 m; (e) +12 m; (f) +7 m/s  7. 60 km  9. 1.4 m   
11. 128 km/h  13. (a) 73 km/h; (b) 68 km/h; (c) 70 km/h; 
(d) 0  15. (a) −6 m/s; (b) −x direction; (c) 6 m/s; (d) decreas-
ing; (e) 2 s; (f) no  17. (a) 28.5 cm/s; (b) 18.0 cm/s; (c) 40.5 cm/s; 
(d) 28.1 cm/s; (e) 30.3 cm/s  19. −20 m/s2  21. (a) 1.10 m/s; 
(b) 6.11 mm/s2; (c) 1.47 m/s; (d) 6.11 mm/s2  23. 1.62 × 1015 m/s2   
25. (a) 30 s; (b) 300 m  27. (a) +1.6 m/s; (b) +18 m/s   
29. (a) 10.6 m; (b) 41.5 s  31. (a) 3.1 × 106 s; (b) 4.6 × 1013 m   
33. (a) 3.56 m/s2; (b) 8.43 m/s  35. 0.90 m/s2  37. (a) 4.0 m/s2;  
(b) +x  39. (a) −2.5 m/s2; (b) 1; (d) 0; (e) 2  41. 40 m   
43. (a) 0.994 m/s2  45. (a) 31 m/s; (b) 6.4 s  47. (a) 29.4 m; 
(b) 2.45 s  49. (a) 5.4 s; (b) 41 m/s  51. (a) 20 m; (b) 59 m   
53. 4.0 m/s  55. (a) 857 m/s2; (b) up  57. (a) 1.26 × 103 m/s2; 
(b) up  59. (a) 89 cm; (b) 22 cm  61. 20.4 m  63. 2.34 m   
65. (a) 2.25 m/s; (b) 3.90 m/s  67. 0.56 m/s  69. 100 m   
71. (a) 2.00 s; (b) 12 cm; (c) −9.00 cm/s2; (d) right; (e) left; 
(f) 3.46 s  73. (a) 82 m; (b) 19 m/s  75. (a) 0.74 s; (b) 6.2 m/s2   

77. (a) 3.1 m/s2; (b) 45 m; (c) 13 s  79. 17 m/s  81. +47 m/s   
83. (a) 1.23 cm; (b) 4 times; (c) 9 times; (d) 16 times; (e) 25 
times  85. (a) 434 ms; (b) 2.79 ft  87. (a) 34 m; (b) 34 m   
89. 2 cm/y  91. (a) 9.8 m/s; (b) 12 m/s; (c) 11 m/s  93. 108   

95. (a) 12 min; (b) 5.9 min  97. (a) 46 mi/h; (b) 66 yd  99. (a) 
47.2 m/s2; (b) 4.81g; (c) 810 m/s2; (d) 82.7g  101. (a) 10.16 m/s; 
(b) 0.6610 m/s2  103. (a) +0.90 m/s3; (b) −0.20 m/s3; (c) −0.21 
m/s3; (d) +0.68 m/s3  105. (a) −11 m; (b) 15 m/s  107. (a) 6.3 m, 
6.8 yd; (b) 25 m, 27 yd; (c) 63 m, 68 yd (more than half of a foot-
ball playing field!)  109. (a) 17 kn; (b) 20 mi/h; (c) 31 km/h

Chapter 3
CP  3.1.1 (a) 7 m (   a →    and    b 

→
    are in same direction); (b) 1 m (   a →    

and    b 
→

    are in opposite directions)  3.1.2 c, d, f (components must 
be head to tail;    a →    must extend from tail of one component to 
head of the other)  3.2.1 (a) +, +; (b) +, −; (c) +, + (draw vector 
from tail of     d 

→
    1    to head of    d 

→
  2 )  3.3.1 (a) 90°; (b) 0° (vectors are 

parallel—same direction); (c) 180° (vectors are antiparallel— 
opposite directions)  3.3.2 (a) 0° or 180°; (b) 90°
Q  1. yes, when the vectors are in same direction  3. Either the 
sequence     d 

→
    2   ,     d 

→
    1    or the sequence     d 

→
    2   ,     d 

→
    2   ,     d 

→
    3     5. all but (e)   

7. (a) yes; (b) yes; (c) no  9. (a) +x for (1), +z for (2), +z for (3); 
(b) −x for (1), −z for (2), −z for (3)  11.    s →   ,    p →   ,    r →    or    p →   ,    s →   ,    r →      
13. Correct: c, d, f, h. Incorrect: a (cannot dot a vector with a 
scalar), b (cannot cross a vector with a scalar), e, g, i, j (cannot add 
a scalar and a vector). 
P  1. (a) −2.5 m; (b) −6.9 m  3. (a) 47.2 m; (b) 122°  5. (a) 156 
km; (b) 39.8° west of due north  7. (a) parallel; (b) antiparallel; 
(c) perpendicular  9. (a) (3.0 m)   i ̂    − (2.0 m)  ̂ j   + (5.0 m)  k ̂   ; (b) (5.0 
m)   i ̂    − (4.0 m)  ̂ j   − (3.0 m)  k ̂   ; (c) (−5.0 m)   i ̂    + (4.0 m)  ̂ j   + (3.0 m)  k ̂      
11. (a) (−9.0 m)   i ̂    + (10 m)  ̂ j  ; (b) 13 m; (c) 132°  13. 4.74 km   
15. (a) 1.59 m; (b) 12.1 m; (c) 12.2 m; (d) 82.5°  17. (a) 38 m; (b) 
−37.5°; (c) 130 m; (d) 1.2°; (e) 62 m; (f) 130°  19. 5.39 m at 21.8° 
left of  forward  21. (a) −70.0 cm; (b) 80.0 cm; (c) 141 cm; (d) 
−172°  23. 3.2  25. 2.6 km  27. (a) 8   i ̂    + 16  ̂ j  ; (b) 2   i ̂    + 4  ̂ j     
29. (a) 7.5 cm; (b) 90°; (c) 8.6 cm; (d) 48°  31. (a) 9.51 m; 
(b) 14.1 m; (c) 13.4 m; (d) 10.5 m  33. (a) 12; (b) +z; (c) 12; 
(d) −z; (e) 12; (f) +z  35. (a) −18.8 units; (b) 26.9 units, +z direc-
tion  37. (a) −21; (b) −9; (c) 5   i ̂    − 11  ̂ j   − 9  k ̂     39. 70.5°  41. 22°   
43. (a) 3.00 m; (b) 0; (c) 3.46 m; (d) 2.00 m; (e) −5.00 m; (f) 8.66 
m; (g) −6.67; (h) 4.33  45. (a) −83.4; (b) (1.14 × 103)  k ̂   ; (c) 1.14 × 
103, 𝜃 not defined, 𝜙 = 0°; (d) 90.0°; (e) −5.14   i ̂    + 6.13  ̂ j   + 3.00  k ̂   ;  
(f) 8.54, 𝜃 = 130°, 𝜙 = 69.4°  47. (a) 140°; (b) 90.0°; (c) 99.1°   
49. (a) 103 km; (b) 60.9° north of due west  51. (a) 27.8 m; 
(b) −13.4 m  53. (a) 30; (b) 52  55. (a) −2.83 m; (b) −2.83 m;  
(c) 5.00 m; (d) 0; (e) 3.00 m; (f) 5.20 m; (g) 5.17 m; (h) 2.37 m; (i) 
5.69 m; (j) 25° north of due east; (k) 5.69 m; (l) 25° south of due 
west  57. 4.1  59. (a) (9.19 m)   i ̂  ′  + (7.71 m)  ̂ j ′ ; (b) (14.0 m)   i ̂  ′  +  
(3.41 m)  ̂ j ′   61. (a) 11   i ̂    + 5.0  ̂ j   − 7.0  k ̂   ; (b) 120°; (c) −4.9; (d) 7.3   
63. (a) 3.0 m2; (b) 52 m3; (c) (11 m2)   i ̂    + (9.0 m2)  ̂ j   + (3.0 m2)  k ̂      
65. (a) (–40   i ̂    – 20  ̂ j   + 25  k ̂   ) m; (b) 45 m  67. (a) 0; (b) 0; (c) −1; 
(d) west; (e) up; (f) west  69. (a) 168 cm; (b) 32.5°  71. (a) 
15 m; (b) south; (c) 6.0 m; (d) north  73. (a) 2  k ̂   ; (b) 26; (c) 46; 
(d) 5.81  75. (a) up; (b) 0; (c) south; (d) 1; (e) 0  77. (a) 
(1300 m)   i ̂    + (2200 m)  ̂ j   − (410 m)  k ̂   ; (b) 2.56 × 103 m  79. (a) 
13.9 m; (b) −12.7°  81. 4.8 m  83. 18 m  85. 20 m  87. 42 km
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AN-2 ANSWERS

5.2.1 (a) equal; (b) greater (acceleration is upward, thus net 
force on body must be upward)  5.2.2 (a) equal; (b) greater; (c) 
less  5.3.1 (a) increase; (b) yes; (c) same; (d) yes     
Q  1. (a) 2, 3, 4; (b) 1, 3, 4; (c) 1, +y; 2, +x; 3, fourth quadrant; 
4, third quadrant  3. increase  5. (a) 2 and 4; (b) 2 and 4   
7. (a) M; (b) M; (c) M; (d) 2M; (e) 3M  9. (a) 20 kg; (b) 18 kg; 
(c) 10 kg; (d) all tie; (e) 3, 2, 1  11. (a) increases from initial 
value mg; (b) decreases from mg to zero (after which the block 
moves up away from the floor)     
P  1. 2.9 m/s2  3. (a) 1.88 N; (b) 0.684 N; (c) (1.88 N)   i ̂    + 
(0.684 N)  ̂ j    5. (a) (0.86 m/s2)   i ̂    − (0.16 m/s2)  ̂ j  ; (b) 0.88 m/s2; 
(c) −11°  7. (a) (−32.0 N)   i ̂    − (20.8 N)  ̂ j  ; (b) 38.2 N; (c) −147°   
9. (a) 8.37 N; (b) −133°; (c) −125°  11. 9.0 m/s2  13. (a) 4.0 kg;  
(b) 1.0 kg; (c) 4.0 kg; (d) 1.0 kg  15. (a) 108 N; (b) 108 N; (c) 
108 N  17. (a) 42 N; (b) 72 N; (c) 4.9 m/s2  19. 1.2 × 105 N   
21. (a) 11.7 N; (b) −59.0°  23. (a) (285 N)   i ̂    + (705 N)  ̂ j  ; (b)  
(285 N)   i ̂    − (115 N)  ̂ j  ; (c) 307 N; (d) −22.0°; (e) 3.67 m/s2; (f) 
−22.0°  25. (a) 0.022 m/s2; (b) 8.3 × 104 km; (c) 1.9 × 103 m/s   
27. 1.5 mm  29. (a) 494 N; (b) up; (c) 494 N; (d) down  31. (a) 
1.18 m; (b) 0.674 s; (c) 3.50 m/s  33. 1.8 × 104 N  35. (a) 46.7°;  
(b) 28.0°  37. (a) 0.62 m/s2; (b) 0.13 m/s2; (c) 2.6 m  39. (a) 2.2 ×  
10−3 N; (b) 3.7 × 10−3 N  41. (a) 1.4 m/s2; (b) 4.1 m/s  43. (a) 
1.23 N; (b) 2.46 N; (c) 3.69 N; (d) 4.92 N; (e) 6.15 N; (f) 0.250 N   
45. (a) 31.3 kN; (b) 24.3 kN  47. 6.4 × 103 N  49. (a) 2.18 m/s2; 
(b) 116 N; (c) 21.0 m/s2  51. (a) 3.6 m/s2; (b) 17 N  53. (a) 0.970 
m/s2; (b) 11.6 N; (c) 34.9 N  55. (a) 1.1 N  57. (a) 0.735 m/s2; 
(b) down; (c) 20.8 N  59. (a) 4.9 m/s2; (b) 2.0 m/s2; (c) up;  
(d) 120 N  61. 2Ma/(a + g)  63. (a) 8.0 m/s; (b) +x   
65. (a) 0.653 m/s3; (b) 0.896 m/s3; (c) 6.50 s  67. 81.7 N   
69. 2.4 N  71. (a) 4.9 × 105 N; (b) 1.5 × 106 N  73. (a) first 
pair:     F 

→
    HS    = −    F 

→
    SH    (hand and stick), second pair:     F 

→
    SB    = −    F 

→
    BS    

(stick and block); (b) 19 N; (c) 18 N; (d) 1.7 N  75. (a) 0.36 m;  
(b) 0.24 m/s  77. 3.4 × 102 N  79. (a) 17.1 kN; (b) 68.5 kN   
81. 2.2 kg  83. (a) 147 N; (b) 33.0 lb; (c) 147 N

Chapter 6
CP  6.1.1 (a) zero (because there is no attempt at sliding); 
(b) 5 N; (c) no; (d) yes; (e) 8 N  6.2.1 greater  6.3.1 (   a →    is direct-
ed toward center of circular path) (a)    a →    downward,    F 

→
  N  upward; 

(b)    a →    and     F 
→

    N    upward; (c) same; (d) greater at lowest point 
Q  1. (a) decrease; (b) decrease; (c) increase; (d) increase;  
(e) increase  3. (a) same; (b) increases; (c) increases; (d) no   
5. (a) upward; (b) horizontal, toward you; (c) no change;  
(d) increases; (e) increases  7. At first,     f 

→
    s    is directed up 

the ramp and its magnitude increases from mg sin 𝜃 until it 
reaches fs,max. Thereafter the force is kinetic friction directed 
up the ramp, with magnitude fk (a constant value smaller than 
fs,max).  9. 4, 3, then 1, 2, and 5 tie  11. (a) all tie; (b) all tie; 
(c) 2, 3, 1  13. (a) increases; (b) increases; (c) decreases; 
(d) decreases; (e) decreases
P  1. 36 m  3. (a) 2.0 × 102 N; (b) 1.2 × 102 N  5. (a) 6.0 N;  
(b) 3.6 N; (c) 3.1 N  7. (a) 1.9 × 102 N; (b) 0.56 m/s2  9. (a) 
11 N; (b) 0.14 m/s2  11. (a) 3.0 × 102 N; (b) 1.3 m/s2  13. (a) 
1.3 × 102 N; (b) no; (c) 1.1 × 102 N; (d) 46 N; (e) 17 N  15. 2°   
17. (a) (17 N)   i ̂   ; (b) (20 N)   i ̂   ; (c) (15 N)   i ̂     19. (a) no; (b) (−12 N)   i ̂    
+ (5.0 N)  ̂ j    21. (a) 19°; (b) 3.3 kN  23. 0.37  25. 1.0 × 102 N   
27. (a) 0; (b) (−3.9 m/s2)   i ̂   ; (c) (−1.0 m/s2)   i ̂     29. (a) 66 N; (b) 2.3  
m/s2  31. (a) 3.5 m/s2; (b) 0.21 N  33. 9.9 s  35. 4.9 × 102 N   
37. (a) 3.2 × 102 km/h; (b) 6.5 × 102 km/h; (c) no  39. 2.3  41. 
0.60  43. 21 m  45. (a) light; (b) 778 N; (c) 223 N; (d) 1.11 kN   
47. (a) 10 s; (b) 4.9 × 102 N; (c) 1.1 × 103 N  49. 1.37 × 103 N   

Chapter 4
CP  4.1.1 xy plane  4.2.1 (draw    v →    tangent to path, tail on 
path) (a) first; (b) third  4.3.1 (take second derivative with 
respect to time) (1) and (3) ax and ay are both constant and 
thus    a →    is constant; (2) and (4) ay is constant but ax is not, thus    a →    
is not  4.4.1 yes  4.4.2 (a) vx constant; (b) vy initially positive, 
decreases to zero, and then becomes  progressively more nega-
tive; (c) ax = 0 throughout; (d) ay = −g throughout  4.5.1 (a)  
−(4 m/s)   i ̂   ; (b) −(8 m/s2)  ̂ j    4.6.1 (a) 0; (b) increasing; (c) de-
creasing  4.7.1 −(10 + 3t)   i ̂    − (6 + 4t)  ̂ j   + 2t  k ̂   
Q  1. a and c tie, then b  3. decreases  5. a, b, c  7. (a) 0; 
(b) 350 km/h; (c) 350 km/h; (d) same (nothing changed about 
the vertical motion)  9. (a) all tie; (b) all tie; (c) 3, 2, 1; (d) 3, 
2, 1  11. 2, then 1 and 4 tie, then 3  13. (a) yes; (b) no; (c) 
yes  15. (a) decreases; (b) increases  17. maximum height 
P  1. (a) 6.2 m  3. (−2.0 m)   i ̂    + (6.0 m)  ̂ j   − (10 m)  k ̂     5. (a) 7.59 
km/h; (b) 22.5° east of due north  7. (−0.70 m/s)   i ̂    + (1.4 m/s)  ̂ j   − 
(0.40 m/s)  k ̂     9. (a) 0.83 cm/s; (b) 0°; (c) 0.11 m/s; (d) −63°   
11. (a) (6.00 m)   i ̂    − (106 m)  ̂ j  ; (b) (19.0 m/s)   i ̂    − (224 m/s)  ̂ j  ; (c) (24.0 
m/s2)   i ̂    − (336 m/s2)  ̂ j  ; (d) −85.2°  13. (a) (8 m/s2)t   ̂ j   + (1 m/s)  k ̂   ;  
(b) (8 m/s2)  ̂ j    15. (a) (−1.50 m/s)  ̂ j  ; (b) (4.50 m)   i ̂    − (2.25 m)  ̂ j     
17. (32 m/s)   i ̂     19. (a) (72.0 m)   i ̂    + (90.7 m)  ̂ j  ; (b) 49.5°  21. (a) 
18 cm; (b) 1.9 m  23. (a) 3.03 s; (b) 758 m; (c) 29.7 m/s   
25. 43.1 m/s (155 km/h)  27. (a) 10.0 s; (b) 897 m  29. 78.5°   
31. 3.35 m  33. (a) 202 m/s; (b) 806 m; (c) 161 m/s; (d) −171 m/s   
35. 4.84 cm  37. (a) 1.60 m; (b) 6.86 m; (c) 2.86 m  39. (a) 
32.3 m; (b) 21.9 m/s; (c) 40.4°; (d) below  41. 55.5°  43. (a) 
11 m; (b) 23 m; (c) 17 m/s; (d) 63°  45. (a) ramp; (b) 5.82 m; 
(c) 31.0°  47. (a) yes; (b) 2.56 m  49. (a) 31°; (b) 63°  51. (a) 
2.3°; (b) 1.1 m; (c) 18°  53. (a) 75.0 m; (b) 31.9 m/s; (c) 66.9°; (d) 
25.5 m  55. the third  57. (a) 7.32 m; (b) west; (c) north  59. (a) 
12 s; (b) 4.1 m/s2; (c) down; (d) 4.1 m/s2; (e) up  61. (a) 1.3 × 105 

m/s; (b) 7.9 × 105 m/s2; (c) increase  63. 2.92 m  65. (3.00 m/s2)   i ̂    
+ (6.00 m/s2)  ̂ j    67. 160 m/s2  69. (a) 13 m/s2; (b) eastward; (c) 13 
m/s2; (d) eastward  71. 1.67  73. (a) (80 km/h)   i ̂    − (60 km/h)  ̂ j  ; 
(b) 0°; (c) answers do not change  75. 32 m/s  77. 60°   
79. (a) 38 knots; (b) 1.5° east of due north; (c) 4.2 h; (d) 1.5° 
west of due south  81. (a) (−32 km/h)   i ̂    − (46 km/h)  ̂ j  ; (b) 
[(2.5 km) − (32 km/h)t]   i ̂    + [(4.0 km) − (46 km/h)t]  ̂ j  ; (c) 0.084 h; 
(d) 2 × 102 m  83. (a) −30°; (b) 69 min; (c) 80 min; (d) 80 min; 
(e) 0°; (f) 60 min  85. (a) 2.7 km; (b) 76° clockwise  87. (a) 
44 m; (b) 13 m; (c) 8.9 m  89. (a) 45 m; (b) 22 m/s  91. (a) 2.6 ×  
102 m/s; (b) 45 s; (c) increase  93. (a) 63 km; (b) 18° south of 
due east; (c) 0.70 km/h; (d) 18° south of due east; (e) 1.6 km/h; 
(f) 1.2 km/h; (g) 33° north of due east  95. (a) 1.5; (b) (36 m, 
54 m)  97. (a) 62 ms; (b) 4.8 × 102 m/s  99. 2.64 m  101. (a) 
2.5 m; (b) 0.82 m; (c) 9.8 m/s2; (d) 9.8 m/s2  103. (a) 6.79 km/h; (b) 
6.96°  105. (a) 16 m/s; (b) 23°; (c) above; (d) 27 m/s; (e) 57°; (f) 
below  107. (a) 4.2 m, 45°; (b) 5.5 m, 68°; (c) 6.0 m, 90°; (d) 4.2 m, 
135°; (e) 0.85 m/s, 135°; (f) 0.94 m/s, 90°; (g) 0.94 m/s, 180°; (h) 
0.30 m/s2, 180°; (i) 0.30 m/s2, 270°  109. (a) 5.4 × 10–13 m; (b) 
decrease  111. (a) 0.034 m/s2; (b) 84 min  113. (a) 8.43 m; (b) 
−129°  115. (a) 1.30 × 1014 m; (b) 2.3 × 108 y  117. 1.9 × 1013 m   
119. (a) 2.1 m/s; (b) no accident  121. (a) 3.0 s; (b) 21 m;  
(c) (−1.8   i ̂    + 1.1  ̂ j  ) m/s2  123. (a) 12 m/s2; (b) 3.0 m/s2; (c) 1.0 m/s2   
125. 4.5 m  127. (a) −1.29 m; (b) −0.90 m; (c) 38 cm; (d) below

Chapter 5
CP  5.1.1 c, d, and e (    F 

→
    1    and     F 

→
    2    must be head to tail,     F 

→
    net    must 

be from tail of one of them to head of the other)  5.1.2 (a) and 
(b) 2 N, leftward (acceleration is zero in each situation)   
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51. 2.2 km  53. 12°  55. 2.6 × 103 N  57. 1.81 m/s  59. (a) 8.74 N; 
(b) 37.9 N; (c) 6.45 m/s; (d) radially inward  61. (a) 27 N; (b) 3.0 
m/s2  63. (b) 240 N; (c) 0.60  65. (a) 69 km/h; (b) 139 km/h; (c) 
yes  67. g(sin 𝜃 − 20.5μk cos 𝜃)  69. 3.4 m/s2  71. (a) 35.3 N; (b) 
39.7 N; (c) 320 N  73. (a) 7.5 m/s2; (b) down; (c) 9.5 m/s2; (d) 
down  75. (a) 3.0 × 105 N; (b) 1.2°  77. 147 m/s  79. (a) 13 N; 
(b) 1.6 m/s2  81. (a) 275 N; (b) 877 N  83. (a) 84.2 N; (b) 52.8 N; 
(c) 1.87 m/s2  85. 3.4%  87. (a) 3.21 × 103 N; (b) yes  89. (a) 222 
N; (b) 334 N; (c) 311 N; (d) 311 N; (e) c, d  91. (a) −7.5 m/s2;  
(b) −9.5 m/s2  93. (a) v2

0/(4g sin 𝜃); (b) no  95. (a) 2.3 × 108 y; (b) 
3.5 × 1020 N  97. (a) 52 m; (b) 120 m; (c) 240 m  99. (a) −9.5 m/s 
(slowed); (b) −17 m/s (speeded up); (c) −25 m/s (fatal); (d) 200 m   
101. (a) 11.1 m/s (= 24.9 mi/h = 40.0 km/h); (b) 7.27 m/s  
(= 16.3 mi/h = 26.2 km/h); (c) 17.6 m/s (= 39.3 mi/h = 63.3 km/h); 
(d) 11.5 m/s (= 25.7 mi/h = 41.4 km/h)

Chapter 7
CP  7.1.1 9.0  7.2.1 (a) decrease; (b) same; (c) negative, 
zero  7.3.1 greater than (greater height)  7.4.1 (a) positive; 
(b) negative; (c) zero  7.5.1 8.0 J  7.6.1 zero     
Q  1. all tie  3. (a) positive; (b) negative; (c) negative  5. b 
(positive work), a (zero work), c (negative work), d (more  
negative work)  7. all tie  9. (a) A; (b) B  11. 2, 3, 1   
P  1. (a) 2.9 × 107 m/s; (b) 2.1 × 10−13 J  3. (a) 5 × 1014 J; 
(b) 0.1 megaton TNT; (c) 8 bombs  5. (a) 2.4 m/s; (b) 4.8 m/s   
7. 0.96 J  9. 20 J  11. (a) 62.3°; (b) 118°  13. (a) 1.7 × 102 

N; (b) 3.4 × 102 m; (c) −5.8 × 104 J; (d) 3.4 × 102 N; (e) 1.7 × 
102 m; (f) −5.8 × 104 J  15. (a) 1.50 J; (b) increases  17. (a) 
12 kJ; (b) −11 kJ; (c) 1.1 kJ; (d) 5.4 m/s  19. 25 J  21. (a) 
−3Mgd/4; (b) Mgd; (c) Mgd/4; (d) (gd/2)0.5  23. 4.41 J  25. (a) 
25.9 kJ; (b) 2.45 N  27. (a) 7.2 J; (b) 7.2 J; (c) 0; (d) −25 J   
29. (a) 0.90 J; (b) 2.1 J; (c) 0  31. (a) 6.6 m/s; (b) 4.7 m   
33. (a) 0.12 m; (b) 0.36 J; (c) −0.36 J; (d) 0.060 m; (e) 0.090 J   
35. (a) 0; (b) 0  37. (a) 42 J; (b) 30 J; (c) 12 J; (d) 6.5 m/s, +x 
axis; (e) 5.5 m/s, +x axis; (f) 3.5 m/s, +x axis  39. 4.00 N/m   
41. 5.3 × 102 J  43. (a) 0.83 J; (b) 2.5 J; (c) 4.2 J; (d) 5.0 W   
45. 4.9 × 102 W  47. (a) 1.0 × 102 J; (b) 8.4 W  49. 7.4 × 102 W   
51. (a) 32.0 J; (b) 8.00 W; (c) 78.2°  53. (a) 1.20 J; (b) 1.10 m/s   
55. (a) 1.8 × 105 ft · lb; (b) 0.55 hp  57. (a) 797 N; (b) 0; 
(c) −1.55 kJ; (d) 0; (e) 1.55 kJ; (f) F varies during displace-
ment  59. (a) 11 J; (b) −21 J  61. −6 J  63. (a) 314 J; (b) 
−155 J; (c) 0; (d) 158 J  65. (a) 98 N; (b) 4.0 cm; (c) 3.9 J; 
(d) −3.9 J  67. (a) 23 mm; (b) 45 N  69. 165 kW  71. 23.1 kJ   
73. 2.21 hp  75. (a) 17.0 kN; (b) 68.6 kN; (c) 4  77. (a) 
0.5ma2t2; (b) 0.5ma2t2 + maut

Chapter 8
CP  8.1.1 no (consider round trip on the small loop)   
8.1.2 3, 1, 2 (see Eq. 8.1.6)  8.2.1 (a) all tie; (b) all tie   
8.3.1 (a) CD, AB, BC (0) (check slope magnitudes); (b) posi-
tive direction of x  8.4.1 all tie  8.5.1 9.8 J 
Q  1. (a) 3, 2, 1; (b) 1, 2, 3  3. (a) 12 J; (b) −2 J  5. (a) increas-
ing; (b) decreasing; (c) decreasing; (d) constant in AB and BC, 
decreasing in CD  7. +30 J  9. 2, 1, 3  11. −40 J 
P  1. 89 N/cm  3. (a) 167 J; (b) −167 J; (c) 196 J; (d) 29 J; (e) 
167 J; (f) −167 J; (g) 296 J; (h) 129 J  5. (a) 4.31 mJ; (b) −4.31 
mJ; (c) 4.31 mJ; (d) −4.31 mJ; (e) all increase  7. (a) 13.1 J; 
(b) −13.1 J; (c) 13.1 J; (d) all increase  9. (a) 17.0 m/s; (b) 26.5 
m/s; (c) 33.4 m/s; (d) 56.7 m; (e) all the same  11. (a) 2.08 m/s; 
(b) 2.08 m/s; (c) increase  13. (a) 0.98 J; (b) −0.98 J; (c) 3.1 N/cm   
15. (a) 2.6 × 102 m; (b) same; (c) decrease  17. (a) 2.5 N; 
(b) 0.31 N; (c) 30 cm  19. (a) 784 N/m; (b) 62.7 J; (c) 62.7 J; 

(d) 80.0 cm  21. (a) 8.35 m/s; (b) 4.33 m/s; (c) 7.45 m/s; (d) both 
decrease  23. (a) 4.85 m/s; (b) 2.42 m/s  25. −3.2 × 102 J   
27. (a) no; (b) 9.3 × 102 N  29. (a) 35 cm; (b) 1.7 m/s  31. (a) 
39.2 J; (b) 39.2 J; (c) 4.00 m  33. (a) 2.40 m/s; (b) 4.19 m/s   
35. (a) 39.6 cm; (b) 3.64 cm  37. −18 mJ  39. (a) 2.1 m/s; (b) 
10 N; (c) +x direction; (d) 5.7 m; (e) 30 N; (f) −x direction   
41. (a) −3.7 J; (c) 1.3 m; (d) 9.1 m; (e) 2.2 J; (f) 4.0 m;  
(g) (4 − x)e−x/4; (h) 4.0 m  43. (a) 5.6 J; (b) 3.5 J  45. (a) 30.1 J; 
(b) 30.1 J; (c) 0.225  47. 0.53 J  49. (a) −2.9 kJ; (b) 3.9 × 102 J; 
(c) 2.1 × 102 N  51. (a) 1.5 MJ; (b) 0.51 MJ; (c) 1.0 MJ; (d) 63 m/s   
53. (a) 67 J; (b) 67 J; (c) 46 cm  55. (a) −0.90 J; (b) 0.46 J; (c) 
1.0 m/s  57. 1.2 m  59. (a) 19.4 m; (b) 19.0 m/s  61. (a) 1.5 × 
10−2 N; (b) (3.8 × 102)g  63. (a) 7.4 m/s; (b) 90 cm; (c) 2.8 m; (d) 
15 m  65. 20 cm  67. (a) 7.0 J; (b) 22 J  69. 3.7 J  71. 4.33 m/s   
73. 25 J  75. (a) 4.9 m/s; (b) 4.5 N; (c) 71°; (d) same  77. (a) 4.8 N;  
(b) +x direction; (c) 1.5 m; (d) 13.5 m; (e) 3.5 m/s  79. (a) 24 kJ; 
(b) 4.7 × 102 N  81. (a) 5.00 J; (b) 9.00 J; (c) 11.0 J; (d) 3.00 J; 
(e) 12.0 J; (f) 2.00 J; (g) 13.0 J; (h) 1.00 J; (i) 13.0 J; (j) 1.00 J; 
(l) 11.0 J; (m) 10.8 m; (n) It returns to x = 0 and stops.  83. (a) 
6.0 kJ; (b) 6.0 × 102 W; (c) 3.0 × 102 W; (d) 9.0 × 102 W  85. 880 
MW  87. (a) v0 = (2gL)0.5; (b) 5mg; (c) −mgL; (d) −2mgL   
89. (a) 109 J; (b) 60.3 J; (c) 68.2 J; (d) 41.0 J  91. (a) 2.7 J; 
(b) 1.8 J; (c) 0.39 m  93. (a) 10 m; (b) 49 N; (c) 4.1 m; (d) 1.2 × 
102 N  95. (a) 5.5 m/s; (b) 5.4 m; (c) same  97. 80 mJ   
99. 24 W  101. −12 J  103. (a) 8.8 m/s; (b) 2.6 kJ; (c) 1.6 kW   
105. (a) 7.4 × 102 J; (b) 2.4 × 102 J  107. 15 J  109. (a) 2.35 × 
103 J; (b) 352 J  111. 738 m  113. (a) −3.8 kJ; (b) 31 kN   
115. (a) 300 J; (b) 93.8 J; (c) 6.38 m  117. (a) 5.6 J; (b) 12 J; (c) 
13 J  119. (a) 1.2 J; (b) 11 m/s; (c) no; (d) no  121. (a) 2.1 ×  
106 kg; (b) (100 + 1.5t)0.5 m/s; (c) (1.5 × 106)/(100 + 1.5t)0.5 N; 
(d) 6.7 km  123. 54%  125. (a) 2.7 × 109 J; (b) 2.7 × 109 W; 
(c) $2.4 × 108  127. (a) 2.1 m; (b) 2.27 × 103 N  129. (a) 0.396 m; 
(b) 3.6 cm  131. (a) 17 cm; (b) 12 cm  133. (a) 70 J; (b) −98 J; 
(c) 190 J  135. (a) −495 J; (b) 1.65 kN

Chapter 9
CP  9.1.1 (a) origin; (b) fourth quadrant; (c) on y axis below 
 origin; (d) origin; (e) third quadrant; (f) origin  9.2.1 (a)−(c) 
at the center of mass, still at the origin (their forces are internal 
to the system and cannot move the center of mass)  9.3.1 
(Consider slopes and Eq. 9.3.2) (a) 1, 3, and then 2 and 4 tie 
(zero force); (b) 3  9.4.1 (a) unchanged; (b) unchanged (see 
Eq. 9.4.5); (c) decrease (Eq. 9.4.8)  9.4.2 (a) zero; (b) positive 
 (initial py down y; final py up y); (c) positive direction of y   
9.5.1 (no net external force;    P 

→
    conserved.) (a) 0; (b) no; (c) −x   

9.6.1 (a) 10 kg · m/s; (b) 14 kg · m/s; (c) 6 kg · m/s  9.7.1 (a) 4 
kg · m/s; (b) 8 kg · m/s; (c) 3 J  9.8.1 (a) 2 kg · m/s (conserve 
momentum along x); (b) 3 kg · m/s (conserve momentum 
along y)  9.9.1 (a) 1; (b) increases  
Q  1. (a) 2 N, rightward; (b) 2 N, rightward; (c) greater than 
2 N, rightward  3. b, c, a  5. (a) x yes, y no; (b) x yes, y no; 
(c) x no, y yes  7. (a) c, kinetic energy cannot be negative; d, 
total kinetic energy cannot increase; (b) a; (c) b  9. (a) one was 
stationary; (b) 2; (c) 5; (d) equal (pool player’s result)   
11. (a) C; (b) B; (c) 3     
P  1. (a) −1.50 m; (b) −1.43 m  3. (a) −6.5 cm; (b) 8.3 cm; (c) 
1.4 cm  5. (a) −0.45 cm; (b) −2.0 cm  7. (a) 0; (b) 3.13 × 10−11 m   
9. (a) 28 cm; (b) 2.3 m/s  11. (−4.0 m)   i ̂    + (4.0 m)  ̂ j    13. 53 m   
15. (a) (2.35   i ̂    – 1.57  ̂ j  ) m/s2; (b) (2.35   i ̂    – 1.57  ̂ j  )t m/s, with t in seconds; 
(d) straight, at downward angle 34°  17. 4.2 m  19. (a) 7.5 × 
104 J; (b) 3.8 × 104 kg · m/s; (c) 39° south of due east  21. (a) 
5.0 kg · m/s; (b) 10 kg · m/s  23. 1.0 × 103 to 1.2 × 103 kg · m/s   
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25. (a) 42 N · s; (b) 2.1 kN  27. (a) 67 m/s; (b) −x; (c) 1.2 kN; 
(d) −x  29. 5 N  31. (a) 2.39 × 103 N · s; (b) 4.78 × 105 N; (c) 
1.76 × 103 N · s; (d) 3.52 × 105 N  33. (a) 5.86 kg · m/s; (b) 59.8°; 
(c) 2.93 kN; (d) 59.8°  35. 9.9 × 102 N  37. (a) 9.0 kg · m/s; (b) 
3.0 kN; (c) 4.5 kN; (d) 20 m/s  39. 3.0 mm/s  41. (a) −(0.15 
m/s)   i ̂   ; (b) 0.18 m  43. 55 cm  45. (a) (1.00   i ̂    – 0.167  ̂ j  ) km/s;  
(b) 3.23 MJ  47. (a) 14 m/s; (b) 45°  49. 3.1 × 102 m/s   
51. (a) 721 m/s; (b) 937 m/s  53. (a) 33%; (b) 23%; (c) decreases   
55. (a) +2.0 m/s; (b) −1.3 J; (c) +40 J; (d) system got energy from 
some source, such as a small explosion  57. (a) 4.4 m/s;  
(b) 0.80  59. 25 cm  61. (a) 99 g; (b) 1.9 m/s; (c) 0.93 m/s   
63. (a) 3.00 m/s; (b) 6.00 m/s  65. (a) 1.2 kg; (b) 2.5 m/s 
67. −28 cm  69. (a) 0.21 kg; (b) 7.2 m  71. (a) 4.15 × 105 m/s;  
(b) 4.84 × 105 m/s  73. 120°  75. (a) 433 m/s; (b) 250 m/s   
77. (a) 46 N; (b) none  79. (a) 1.57 × 106 N; (b) 1.35 × 105 kg;  
(c) 2.08 km/s  81. (a) 7290 m/s; (b) 8200 m/s; (c) 1.271 × 1010 J;  
(d) 1.275 × 1010 J  83. (a) 1.92 m; (b) 0.640 m  85. (a) 1.78 m/s;  
(b) less; (c) less; (d) greater  87. (a) 3.7 m/s; (b) 1.3 N · s;  
(c) 1.8 × 102 N  89. (a) (7.4 × 103 N · s)   i ̂    − (7.4 × 103 N · s)  ̂ j  ;  
(b) (−7.4 × 103 N · s)   i ̂   ; (c) 2.3 × 103 N; (d) 2.1 × 104 N; (e) −45°   
91. +4.4 m/s  93. 1.18 × 104 kg  95. (a) 1.9 m/s; (b) −30°; (c) 
elastic  97. (a) 6.9 m/s; (b) 30°; (c) 6.9 m/s; (d) −30°; (e) 2.0 m/s; 
(f) −180°  99. (a) xcom = 0, ycom = 0; (b) 0  101. 2.7 m/s  103. 
(a) 4m1m2/(m1 + m2)

2; (b) lead, 0.019; carbon, 0.28; hydrogen, 
1.00  105. (a) 35 cm; (b) 35 cm  107. 2.78 m/s  109. (a) −2.9 
m/s; (b) 52 m/s  111. (a) 12 m; (b) 7.4 × 1010 J  113. (a) m2/(m1 + 
m2); (b) m1/(m1 + m2); (c) less massive block  115. (a) −(9.1 × 
102)   i ̂    − (3.5 × 103)  ̂ j   kg · m/s; 3.6 × 103 kg · m/s, 255.4° (or −105°); 
(b) 2.6 × 105 N; (c) 329g  117. (a) 5mg; (b) 7mg; (c) 5 m

Chapter 10
CP  10.1.1 b and c  10.2.1 (a) and (d) (α = d2𝜃/dt2 must be 
a  constant)  10.3.1 (a) yes; (b) no; (c) yes; (d) yes  10.4.1 all 
tie  10.5.1 1, 2, 4, 3 (see Eq. 10.5.2)  10.6.1 (see Eq. 10.6.2) 1 and 
3 tie, 4, then 2 and 5 tie (zero)  10.7.1 (a) downward in the 
figure (τnet = 0); (b) less (consider moment arms)  10.8.1 (a) A 
and C tie, then B and D tie; (b) B and D; (c) A and C   
Q  1. (a) c, a, then b and d tie; (b) b, then a and c tie, then d   
3. all tie  5. (a) decrease; (b) clockwise; (c) counterclock-
wise  7. larger  9. c, a, b  11. less 
P  1. 14 rev  3. (a) 4.0 rad/s; (b) 11.9 rad/s  5. 11 rad/s  7. (a) 
4.0 m/s; (b) no  9. (a) 3.00 s; (b) 18.9 rad  11. (a) 30 s; (b) 1.8 × 
103 rad  13. (a) 3.4 × 102 s; (b) −4.5 × 10−3 rad/s2; (c) 98 s   
15. 8.0 s  17. (a) 44 rad; (b) 5.5 s; (c) 32 s; (d) −2.1 s; (e) 40 s   
19. (a) 2.50 × 10−3 rad/s; (b) 20.2 m/s2; (c) 0  21. 6.9 × 10−13 

rad/s  23. (a) 20.9 rad/s; (b) 12.5 m/s; (c) 800 rev/min2; (d) 600 
rev  25. (a) 7.3 × 10−5 rad/s; (b) 3.5 × 102 m/s; (c) 7.3 × 10−5 
rad/s; (d) 4.6 × 102 m/s  27. (a) 73 cm/s2; (b) 0.075; (c) 0.11   
29. (a) 3.8 × 103 rad/s; (b) 1.9 × 102 m/s  31. (a) 40 s; (b) 2.0 
rad/s2  33. 12.3 kg · m2  35. (a) 1.1 kJ; (b) 9.7 kJ  37. 0.097 
kg · m2  39. (a) 49 MJ; (b) 1.0 × 102 min  41. (a) 0.023 kg · m2; 
(b) 1.1 mJ  43. 4.7 × 10−4 kg · m2  45. −3.85 N · m  47. 4.6 N · m   
49. (a) 28.2 rad/s2; (b) 338 N · m  51. (a) 6.00 cm/s2; (b) 4.87 N; 
(c) 4.54 N; (d) 1.20 rad/s2; (e) 0.0138 kg · m2  53. 0.140 N   
55. 2.51 × 10−4 kg · m2  57. (a) 4.2 × 102 rad/s2; (b) 5.0 × 102 

rad/s  59. 396 N · m  61. (a) −19.8 kJ; (b) 1.32 kW  63. 
5.42 m/s  65. (a) 5.32 m/s2; (b) 8.43 m/s2; (c) 41.8º  67. 9.82 
rad/s  69. 6.16 × 10−5 kg · m2  71. (a) 31.4 rad/s2; (b) 0.754 m/s2; 
(c) 56.1 N; (d) 55.1 N  73. (a) 4.81 × 105 N; (b) 1.12 × 104 N · m; 
(c) 1.25 × 106 J  75. (a) 2.3 rad/s2; (b) 1.4 rad/s2  77. (a) −67  
rev/min2; (b) 8.3 rev  81. 3.1 rad/s  83. (a) 1.57 m/s2; (b) 4.55 N;  
(c) 4.94 N  85. (a) 0.262 rad/h; (b) 0.267 rad/h; (c) 373 d   
87. (a) 0.74778 rev/s; (b) 1.40 ms  89. (a) −4.9 rad/s2; (b) stay the 

same  91. (a) 3.4 × 105 g · cm2; (b) 2.9 × 105 g · cm2; (c) 6.3 × 
105 g · cm2; (d) (1.2 cm)   i ̂    + (5.9 cm)  ̂ j    93. (a) 12:00; (b) 3:00, 6:00, 
9:00, 12:00; (c) 2:24, 4:48, 7:12, 9:36, 12:00  95. 0.56 N · m   
97. ( μsg/R)0.5

Chapter 11
CP  11.1.1 (a) same; (b) less  11.2.1 less (consider the transfer 
of  energy from rotational kinetic energy to gravitational potential 
energy)  11.3.1 decreases  11.4.1 (draw the vectors, use right-
hand rule) (a) ±z; (b) +y; (c) −x  11.5.1 (see Eq. 11.5.4) (a) 1 
and 3 tie; then 2 and 4 tie, then 5 (zero); (b) 2 and 3  11.6.1 (see 
Eqs. 11.6.2 and 11.4.3) (a) 3, 1; then 2 and 4 tie (zero); (b) 3   
11.7.1 (a) all tie (same 𝜏, same t, thus same ΔL); (b) sphere, disk, 
hoop (reverse order of I)  11.8.1 (a) decreases; (b) same (𝜏net = 0, 
so L is conserved); (c) increases  11.9.1 (a) decreases; (b) 
remains the same; (c) decreases   
Q  1. a, then b and c tie, then e, d (zero)  3. (a) spins in place; 
(b) rolls toward you; (c) rolls away from you  5. (a) 1, 2, 3 
(zero); (b) 1 and 2 tie, then 3; (c) 1 and 3 tie, then 2  7. (a) 
same; (b) increase; (c) decrease; (d) same, decrease, increase   
9. D, B, then A and C tie  11. (a) same; (b) same 
P  1. (a) 0; (b) (22 m/s)   i ̂   ; (c) (−22 m/s)   i ̂   ; (d) 0; (e) 1.5 × 103 m/s2; 
(f) 1.5 × 103 m/s2; (g) (22 m/s)   i ̂   ; (h) (44 m/s)   i ̂   ; (i) 0; (j) 0; (k) 1.5 ×  
103 m/s2; (l) 1.5 × 103 m/s2  3. −3.15 J  5. 0.020  7. (a) 63 rad/s;  
(b) 4.0 m  9. 4.8 m  11. (a) (−4.0 N)   i ̂   ; (b) 0.60 kg · m2  13. 0.50   
15. (a) −(0.11 m)ω; (b) −2.1 m/s2; (c) −47 rad/s2; (d) 1.2 s; (e) 8.6 
m; (f) 6.1 m/s  17. (a) 13 cm/s2; (b) 4.4 s; (c) 55 cm/s; (d) 18 mJ;  
(e) 1.4 J; (f) 27 rev/s  19. (−2.0 N · m)   i ̂     21. (a) (6.0 N · m)  ̂ j   +  
(8.0 N · m)  k ̂   ; (b) (−22 N · m)   i ̂     23. (a) (−1.5 N · m)   i ̂    − (4.0 N · m)  ̂ j    
− (1.0 N · m)  k ̂   ; (b) (−1.5 N · m)   i ̂    − (4.0 N · m)  ̂ j   − (1.0 N · m)  k ̂      
25. (a) (50 N · m)  k ̂   ; (b) 90º  27. (a) 0; (b) (8.0 N · m)   i ̂    +  
(8.0 N · m)  k ̂     29. (a) 9.8 kg · m2/s; (b) +z direction  31. (a) 0; (b) 
−22.6 kg · m2/s; (c) −7.84 N · m; (d) −7.84 N · m  33. (a) (−1.7 × 
102 kg · m2/s)  k ̂   ; (b) (+56 N · m)  k ̂   ; (c) (+56 kg · m2/s2)  k ̂     35. (a) 
48t  k ̂    N · m; (b) increasing  37. (a) 4.6 × 10−3 kg · m2; (b) 1.1 × 
10−3 kg · m2/s; (c) 3.9 × 10−3 kg · m2/s  39. (a) 1.47 N · m; (b) 20.4 
rad; (c) −29.9 J; (d) 19.9 W  41. (a) 1.6 kg · m2; (b) 4.0 kg · m2/s   
43. (a) 1.5 m; (b) 0.93 rad/s; (c) 98 J; (d) 8.4 rad/s; (e) 8.8 × 102 J;  
(f) internal energy of the skaters  45. (a) 3.6 rev/s; (b) 3.0; 
(c) forces on the bricks from the man transferred energy from 
the man’s internal energy to kinetic energy  47. 0.17 rad/s   
49. (a) 750 rev/min; (b) 450 rev/min; (c) clockwise  51. (a) 267  
rev/min; (b) 0.667  53. 1.3 × 103 m/s  55. 3.4 rad/s  57. (a) 18 
rad/s; (b) 0.92  59. 11.0 m/s  61. 1.5 rad/s  63. 0.070 rad/s   
65. (a) 0.148 rad/s; (b) 0.0123; (c) 181°  67. (a) 0.180 m; (b) 
clockwise  69. 0.041 rad/s  71. (a) 1.6 m/s2; (b) 16 rad/s2; (c)  
(4.0 N)   i ̂     73. (a) 0; (b) 0; (c) −30t3  k ̂    kg · m2/s; (d) −90t2  k ̂    N · m; (e) 
30t3  k ̂    kg · m2/s; (f) 90t2  k ̂    N · m  75. (a) 149 kg · m2; (b) 158 kg · m2/s;  
(c) 0.744 rad/s  77. (a) 6.65 × 10−5 kg · m2/s; (b) no; (c) 0; (d) yes 
79. −5.58 rad/s · m  81. (a) 0; (b) −2.86 × 10−4 kg · m2/s; (c) 
2.86 × 10−4 kg · m2/s  83. (a) 3.14 × 10−4 N · m; (b) −1.97 mJ; 
(c) −3.59 mJ; (d) 0.0126

Chapter 12
CP  12.1.1 c, e, f  12.2.1 (a) no; (b) at site of     F 

→
    1   , perpendicular 

to plane of  figure; (c) 45 N  12.3.1 d   
Q  1. (a) 1 and 3 tie, then 2; (b) all tie; (c) 1 and 3 tie, then 2 
(zero)  3. a and c (forces and torques balance)  5. (a) 12 kg; 
(b) 3 kg; (c) 1 kg  7. (a) at C (to eliminate forces there from a 
torque  equation); (b) plus; (c) minus; (d) equal  9. increase   
11. A and B, then C 
P  1. (a) 1.00 m; (b) 2.00 m; (c) 0.987 m; (d) 1.97 m  3. (a) 
9.4 N; (b) 4.4 N  5. 7.92 kN  7. (a) 2.8 × 102 N; (b) 8.8 × 102 N;  
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14.5.1 (a) all tie (the gravitational force on the  penguin is the 
same); (b) 0.95𝜌0, 𝜌0, 1.1𝜌0  14.6.1 13 cm3/s, outward   
14.7.1 (a) all tie; (b) 1, then 2 and 3 tie, 4 (wider means slower); 
(c) 4, 3, 2, 1 (wider and lower mean more pressure) 
Q  1. (a) moves downward; (b) moves downward  3. (a) 
downward; (b) downward; (c) same  5. b, then a and d tie 
(zero), then c  7. (a) 1 and 4; (b) 2; (c) 3  9. B, C, A 
P  1. 0.074  3. 1.1 × 105 Pa  5. 2.9 × 104 N  7. (b) 26 kN   
9. (a) 1.0 × 103 torr; (b) 1.7 × 103 torr  11. (a) 94 torr; (b) 4.1 × 
102 torr; (c) 3.1 × 102 torr  13. 1.08 × 103 atm  15. −2.6 × 104 Pa   
17. 7.2 × 105 N  19. 4.69 × 105 N  21. 0.635 J  23. 44 km   
25. 739.26 torr  27. (a) 7.9 km; (b) 16 km  29. 8.50 kg  31. (a) 
6.7 × 102 kg/m3; (b) 7.4 × 102 kg/m3   33. (a) 2.04 × 10−2 m3;  
(b) 1.57 kN  35. five  37. 57.3 cm  39. (a) 1.2 kg; (b) 1.3 × 103 
kg/m3  41. (a) 0.10; (b) 0.083  43. (a) 637.8 cm3; (b) 5.102 m3;  
(c) 5.102 × 103 kg  45. 0.126 m3  47. (a) 1.80 m3; (b) 4.75 m3   
49. (a) 3.0 m/s; (b) 2.8 m/s  51. 8.1 m/s  53. 66 W  55. 1.4 ×  
105 J  57. (a) 1.6 × 10−3 m3/s; (b) 0.90 m  59. (a) 2.5 m/s;  
(b) 2.6 × 105 Pa  61. (a) 3.9 m/s; (b) 88 kPa  63. 1.1 × 102 
m/s  65. (b) 2.0 × 10−2 m3/s  67. (a) 74 N; (b) 1.5 × 102 m3   
69. (a) 0.0776 m3/s; (b) 69.8 kg/s  71. (a) 35 cm; (b) 30 cm;  
(c) 20 cm  73. 1.5 g/cm3  75. 5.11 × 10−7 kg  77. 44.2 g   
79. 42 h  81. (a) 0.10; (b) 2.94 × 1015 N  83. −1.1 kPa   
85. 0.95 m  87. 6 × 109   89. (a) 1.5 m/s; (b) RV/2πrv1;  
(c) decreases; (d) 0.0042 cm; (e) 3.1 cm/s

Chapter 15
CP  15.1.1 (sketch x versus t) (a) −xm; (b) +xm; (c) 0  15.1.2 c 
(a must have the form of Eq. 15.1.8)  15.1.3 a (F must have the 
form of Eq. 15.1.10)  15.2.1 (a) 5 J; (b) 2 J; (c) 5 J  15.3.1 (a) 
1.5R0, 1.2R0, R0; (b) k0, 1.1k0, 1.3k0; (c) all tie  15.4.1 all tie (in 
Eq. 15.4.6, m is included in I)  15.5.1 1, 2, 3 (the ratio m/b mat-
ters; k does not)  15.6.1 (a) decrease; (b) increase 
Q  1. a and b  3. (a) 2; (b) positive; (c) between 0 and +xm   
5. (a) between D and E; (b) between 3π/2 rad and 2π rad   
7. (a) all tie; (b) 3, then 1 and 2 tie; (c) 1, 2, 3 (zero); (d) 1, 2, 3 
(zero); (e) 1, 3, 2  9. b (infinite period, does not oscillate), c, a   
11. (a) greater; (b) same; (c) same; (d) greater; (e) greater   
P  1. (a) 0.50 s; (b) 2.0 Hz; (c) 18 cm  3. 37.8 m/s2  5. (a) 1.0 
mm; (b) 0.75 m/s; (c) 5.7 × 102 m/s2  7. (a) 498 Hz; (b) greater   
9. (a) 3.0 m; (b) −49 m/s; (c) −2.7 × 102

 m/s2; (d) 20 rad; (e) 1.5 
Hz; (f) 0.67 s  11. 39.6 Hz  13. (a) 0.500 s; (b) 2.00 Hz; (c) 12.6 
rad/s; (d) 79.0 N/m; (e) 4.40 m/s; (f) 27.6 N  15. (a) 0.18A; (b) same 
 direction  17. (a) 5.58 Hz; (b) 0.325 kg; (c) 0.400 m  19. (a) 
25 cm; (b) 2.2 Hz  21. 54 Hz  23. 3.1 cm  25. (a) 0.525 m; (b) 
0.686 s  27. (a) 0.75; (b) 0.25; (c) 2−0.5xm  29. 37 mJ  31. (a) 
2.25 Hz; (b) 125 J; (c) 250 J; (d) 86.6 cm  33. (a) 1.1 m/s;  
(b) 3.3 cm  35. (a) 3.1 ms; (b) 4.0 m/s; (c) 0.080 J; (d) 80 N; 
(e) 40 N  37. (a) 2.2 Hz; (b) 56 cm/s; (c) 0.10 kg; (d) 20.0 cm   
39. (a) 39.5 rad/s; (b) 34.2 rad/s; (c) 124 rad/s2  41. (a) 0.205 
kg · m2; (b) 47.7 cm; (c) 1.50 s  43. (a) 1.64 s; (b) equal   
45. 8.77 s  47. 0.366 s  49. (a) 0.845 rad; (b) 0.0602 rad   
51. (a) 0.53 m; (b) 2.1 s  53. 0.0653 s  55. (a) 2.26 s; (b) increas-
es; (c) same  57. 6.0%  59. (a) 14.3 s; (b) 5.27  61. (a) Fm/b𝜔; 
(b) Fm/b  63. 5.0 cm  65. (a) 2.8 × 103 rad/s; (b) 2.1 m/s; (c) 5.7 
km/s2  67. (a) 1.1 Hz; (b) 5.0 cm  69. 7.2 m/s  71. (a) 7.90 N/m; 
(b) 1.19 cm; (c) 2.00 Hz  73. (a) 1.3 × 102 N/m; (b) 0.62 s;  
(c) 1.6 Hz; (d) 5.0 cm; (e) 0.51 m/s  75. (a) 16.6 cm; (b) 1.23%   
77. (a) 1.2 J; (b) 50  79. 1.53 m  81. (a) 0.30 m; (b) 0.28 s;  
(c) 1.5 × 102 m/s2; (d) 11 J  83. (a) 1.23 kN/m; (b) 76.0 N   
85. 1.6 kg  87. (a) 0.735 kg · m2; (b) 0.0240 N · m; (c) 0.181 
rad/s  89. (a) 3.5 m; (b) 0.75 s  91. (a) 0.35 Hz; (b) 0.39 Hz; 

(c) 71°  9. 74.4 g  11. (a) 1.2 kN; (b) down; (c) 1.7 kN; (d) up; 
(e) left; (f) right  13. (a) 2.7 kN; (b) up; (c) 3.6 kN; (d) down   
15. (a) 5.0 N; (b) 30 N; (c) 1.3 m  17. (a) 0.64 m; (b) in-
creased  19. 8.7 N  21. (a) 6.63 kN; (b) 5.74 kN; (c) 5.96 kN   
23. (a) 192 N; (b) 96.1 N; (c) 55.5 N  25. 13.6 N  27. (a) 1.9 kN; 
(b) up; (c) 2.1 kN; (d) down  29. (a) (−80 N)   i ̂    + (1.3 × 102 N)  ̂ j  ;  
(b) (80 N)   i ̂    + (1.3 × 102 N)  ̂ j    31. 2.20 m  33. (a) 60.0°; (b) 300 N   
35. (a) 445 N; (b) 0.50; (c) 315 N  37. 0.34  39. (a) 207 N;  
(b) 539 N; (c) 315 N  41. (a) slides; (b) 31°; (c) tips; (d) 34°   
43. (a) 6.5 × 106 N/m2; (b) 1.1 × 10−5 m  45. (a) 0.80; (b) 0.20; 
(c) 0.25  47. (a) 1.4 × 109 N; (b) 75  49. (a) 866 N; (b) 143 N; 
(c) 0.165  51. (a) 1.2 × 102 N; (b) 68 N  53. (a) 1.8 × 107 N; (b) 
1.4 × 107 N; (c) 16  55. 0.29  57. 76 N  59. (a) 8.01 kN; (b) 
3.65 kN; (c) 5.66 kN  61. 71.7 N  63. (a) L/2; (b) L/4; (c) L/6; 
(d) L/8; (e) 25L/24  65. (a) 88 N; (b) (30   i ̂    + 97  ̂ j  ) N   
67. 2.4 × 109 N/m2  69. 60°  71. (a) μ < 0.57; (b) μ > 0.57   
73. (a) (35   i ̂    + 200  ̂ j  ) N; (b) (–45   i ̂    + 200  ̂ j  ) N; (c) 1.9 × 102 N   
75. (a) BC, CD, DA; (b) 535 N; (c) 757 N  77. (a) 2.5 m; (b) 7.3° 
79. 340 N  81. 1.9 km  83. (a) 1.39 × 105 N; (b) 1.70 × 105 
N; (c) 2.52 × 105 N; (d) 2.26 × 108 N/m2; (e) 2.76 × 108 N/m2; 
(f) 4.09 × 108 N/m2; (g) first two are safe  85. 1.8 × 102 N

Chapter 13
CP  13.1.1 all tie  13.2.1 (a) 1, tie of 2 and 4, then 3; (b) line d   
13.3.1 less than  13.4.1 (a) decreases; (b) sphere  13.5.1 (a) 
increase; (b) negative  13.6.1 (a) 2; (b) 1  13.7.1 (a) path 1  
 (decreased E (more negative) gives decreased a); (b) less 
 (decreased a gives decreased T)   
Q  1. 3GM2/d2, leftward  3. Gm2/r2, upward  5. b and c tie, 
then a (zero)  7. 1, tie of 2 and 4, then 3  9. (a) positive y; (b) 
yes, rotates counterclockwise until it points toward particle B   
11. b, d, and f all tie, then e, c, a  
P  1.   1 _ 2    3. 19 m  5. 0.8 m  7. −5.00d  9. 2.60 × 105 km  
11. (a) M = m; (b) 0  13. 8.31 × 10−9 N  15. (a) −1.88d;  
(b) −3.90d; (c) 0.489d  17. (a) 17 N; (b) 2.4  19. 2.6 × 106 m   
21. 5 × 1024 kg  23. (a) 7.6 m/s2; (b) 4.2 m/s2  25. (a) (3.0 ×  
10−7 N/kg)m; (b) (3.3 × 10−7 N/kg)m; (c) (6.7 × 10−7 N/kg · m)mr   
27. (a) 9.83 m/s2; (b) 9.84 m/s2; (c) 9.79 m/s2  29. 5.0 × 109 J   
31. (a) 0.74; (b) 3.8 m/s2; (c) 5.0 km/s  33. (a) 0.0451;  
(b) 28.5  35. −4.82 × 10−13 J  37. (a) 0.50 pJ; (b) −0.50 pJ   
39. (a) 1.7 km/s; (b) 2.5 × 105 m; (c) 1.4 km/s  41. (a) 82 km/s; 
(b) 1.8 × 104 km/s  43. (a) 7.82 km/s; (b) 87.5 min  45. 6.5 × 
1023 kg  47. 5 × 1010 stars  49. (a) 1.9 × 1013 m; (b) 6.4RP   
51. (a) 6.64 × 103 km; (b) 0.0136  53. 5.8 × 106 m  57. 0.71 y   
59. (GM/L)0.5  61. (a) 3.19 × 103 km; (b) lifting   
63. (a) 2.8 y; (b) 1.0 × 10−4  65. (a) r1.5; (b) r−1; (c) r0.5; (d) r−0.5   
67. (a) 7.5 km/s; (b) 97 min; (c) 4.1 × 102 km; (d) 7.7 km/s;  
(e) 93 min; (f) 3.2 × 10−3 N; (g) no; (h) yes  69. 1.1 s   
71. (a) GMmx(x2 + R2)−3/2; (b) [2GM(R−1 − (R2 + x2)−1/2)]1/2   
73. (a) 1.0 × 103 kg; (b) 1.5 km/s  75. 3.2 × 10−7 N  77. 037  ̂ j   μN   
79. 2πr1.5G−0.5(M + m/4)−0.5  81. (a) 2.2 × 10−7 rad/s;  
(b) 89 km/s  83. (a) 2.15 × 104 s; (b) 12.3 km/s; (c) 12.0 
km/s; (d) 2.17 × 1011 J; (e) −4.53 × 1011 J; (f) −2.35 × 1011 J; 
(g) 4.04 × 107 m; (h) 1.22 × 103 s; (i) elliptical  85. 2.5 × 104 km   
87. (a) 1.4 × 106 m/s; (b) 3 × 106 m/s2  89. −7.67 × 1028 J   
91. (a) 1.2 × 1014 m; (b) 1.9 × 1013 m; (c) 2.9 × 107 m; (d) 2.9 × 
103 m; (e) 3.0 × 10−35 m  93. (a) 3.5 × 1022 N; (b) 1 y (un-
changed)  95. 7.2 × 10−9 N

Chapter 14
CP  14.1.1 1, 2, 3  14.2.1 all tie  14.3.1 2, 1, 3  14.4.1 (a) 
smaller face area; (b) larger face area; (c) same value   
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(c) 0 (no  oscillation)  93. (a) 245 N/m; (b) 0.284 s  95. 0.079 
kg · m2  97. (a) 8.11 × 10−5 kg · m2; (b) 3.14 rad/s  99. 14.0°   
101. (a) 3.2 Hz; (b) 0.26 m; (c) x = (0.26 m) cos(20t − π/2), with t 
in seconds  103. (a) 0.44 s; (b) 0.18 m  105. 0.93 s  107. 5.1 ×  
102 m/s2  109. (a) 30°; (b) 6m2R

2; (c) 3.8 rad/s  111. (a) 12 μm; 
(b) 2.8 cm/s

Chapter 16
CP  16.1.1 a, 2; b, 3; c, 1 (compare with the phase in Eq. 16.1.2, 
then see Eq. 16.1.5)  16.1.2 (a) 2, 3, 1 (see Eq. 16.1.12); (b) 
3, then 1 and 2 tie (find amplitude of dy/dt)  16.2.1 (a) same 
(independent of f); (b) decrease (𝜆 = v/f); (c) increase; (d) 
increase  16.3.1 (a) P2 =   √ 

__
 2   P1; (b) P3 =   √ 

__
 2   P1  16.4.1 (a) ex-

treme displacement; (b) extreme displacement  16.5.1 0.20 and 
0.80 tie, then 0.60, 0.45  16.6.1 A, D, C, B  16.7.1 (a) 1; (b) 3; 
(c) 2  16.7.2 (a) 75 Hz; (b) 525 Hz   
Q  1. (a) 1, 4, 2, 3; (b) 1, 4, 2, 3  3. a, upward; b, upward; c, 
downward; d, downward; e, downward; f, downward; g, upward; 
h, upward  5. intermediate (closer to fully destructive)   
7. (a) 0, 0.2 wavelength, 0.5 wavelength (zero); (b) 4Pavg,1  9. d   
11. c, a, b   
P  1. 1.1 ms  3. (a) 3.49 m−1; (b) 31.5 m/s  5. (a) 0.680 s; (b) 
1.47 Hz; (c) 2.06 m/s  7. (a) 64 Hz; (b) 1.3 m; (c) 4.0 cm; (d) 
5.0 m−1; (e) 4.0 × 102 s−1; (f) π/2 rad; (g) minus  9. (a) 3.0 mm; 
(b) 16 m−1; (c) 2.4 × 102 s−1; (d) minus  11. (a) negative; (b) 4.0 
cm; (c) 0.31 cm−1; (d) 0.63 s−1; (e) π rad; (f) minus; (g) 2.0 cm/s;  
(h) −2.5 cm/s  13. (a) 11.7 cm; (b) π rad  15. (a) 0.12 mm; 
(b) 141 m−1; (c) 628 s−1; (d) plus  17. (a) 15 m/s; (b) 0.036 N   
19. 129 m/s  21. 2.63 m  23. (a) 5.0 cm; (b) 40 cm; (c) 12 m/s; 
(d) 0.033 s; (e) 9.4 m/s; (f) 16 m−1; (g) 1.9 × 102 s−1; (h) 0.93 rad; 
(i) plus  27. 3.2 mm  29. 0.20 m/s  31. 1.41ym  33. (a) 9.0 mm; 
(b) 16 m−1; (c) 1.1 × 103 s−1; (d) 2.7 rad; (e) plus  35. 5.0 cm   
37. (a) 3.29 mm; (b) 1.55 rad; (c) 1.55 rad  39. 84°  41. (a) 82.0 
m/s; (b) 16.8 m; (c) 4.88 Hz  43. (a) 7.91 Hz; (b) 15.8 Hz; (c) 23.7 
Hz  45. (a) 105 Hz; (b) 158 m/s  47. 260 Hz  49. (a) 144 m/s;  
(b) 60.0 cm; (c) 241 Hz  51. (a) 0.50 cm; (b) 3.1 m−1; (c) 3.1 ×  
102 s−1; (d) minus  53. (a) 0.25 cm; (b) 1.2 × 102 cm/s; (c) 3.0 cm;  
(d) 0  55. 0.25 m  57. (a) 2.00 Hz; (b) 2.00 m; (c) 4.00 m/s; (d) 
50.0 cm; (e) 150 cm; (f) 250 cm; (g) 0; (h) 100 cm; (i) 200 cm   
59. (a) 324 Hz; (b) eight  61. 36 N  63. (a) 75 Hz; (b) 13 ms   
65. (a) 2.0 mm; (b) 95 Hz; (c) +30 m/s; (d) 31 cm; (e) 1.2 m/s   
67. (a) 0.31 m; (b) 1.64 rad; (c) 2.2 mm  69. (a) 0.83y1; (b) 37°   
71. (a) 3.77 m/s; (b) 12.3 N; (c) 0; (d) 46.4 W; (e) 0; (f) 0;  
(g) ±0.50 cm  73. 1.2 rad  75. (a) 300 m/s; (b) no  77. (a)  
[k ∆ℓ(ℓ + ∆ℓ)/m]0.5  79. (a) 144 m/s; (b) 3.00 m; (c) 1.50 m;  
(d) 48.0 Hz; (e) 96.0 Hz  81. (a) 1.00 cm; (b) 3.46 × 103 s−1; (c) 
10.5 m−1; (d) plus  83. (a) 2πym/𝜆; (b) no  85. (a) 240 cm; (b) 
120 cm; (c) 80 cm  87. (a) 1.33 m/s; (b) 1.88 m/s; (c) 16.7 m/s2;  
(d) 23.7 m/s2  89. (a) 0.52 m; (b) 40 m/s; (c) 0.40 m  91. (a) 
0.16 m; (b) 2.4 × 102 N; (c) y(x, t) = (0.16 m) sin[(1.57 m−1)x] 
sin[(31.4 s−1)t]  93. (a) v1 = 2v2; (b) 5L2/8  95. −0.64 rad

Chapter 17
CP  17.1.1 B  17.2.1 beginning to decrease (example: mentally 
move the curves of Fig. 17.2.3 rightward past the point at x = 42 
cm)  17.3.1 C, then A and B tie  17.4.1 (a) 1 and 2 tie, then 3 
(see Eq. 17.4.3); (b) 3, then 1 and 2 tie (see Eq. 17.4.1)   
17.5.1 second (see Eqs.17.5.2 and 17.5.4)  17.6.1 (a) A, B, C; 
(b) C, B, A  17.7.1 a, greater; b, less; c, can’t tell; d, can’t tell; e, 
greater; f, less  17.8.1 decreases 
Q  1. (a) 0, 0.2 wavelength, 0.5 wavelength (zero); (b) 4Pavg,1   
3. C, then A and B tie  5. E, A, D, C, B  7. 1, 4, 3, 2  9. 150 Hz  
and 450 Hz  11. 505, 507, 508 Hz or 501, 503, 508 Hz  

P  1. (a) 79 m; (b) 41 m; (c) 89 m  3. (a) 2.6 km; (b) 2.0 × 102   
5. 1.9 × 103 km  7. 40.7 m  9. 0.23 ms  11. (a) 76.2 μm; (b) 
0.333 mm  13. 960 Hz  15. (a) 2.3 × 102 Hz; (b) higher   
17. (a) 143 Hz; (b) 3; (c) 5; (d) 286 Hz; (e) 2; (f) 3  19. (a) 14;  
(b) 14  21. (a) 343 Hz; (b) 3; (c) 5; (d) 686 Hz; (e) 2; (f) 3   
23. (a) 0; (b) fully constructive; (c)  increase; (d) 128 m;  
(e) 63.0 m; (f) 41.2 m  25. 36.8 nm  27. (a) 1.0 × 103; (b) 32   
29. 15.0 mW  31. 2 μW  33. 0.76 μm  35. (a) 5.97 × 10−5  
W/m2; (b) 4.48 nW  37. (a) 0.34 nW; (b) 0.68 nW; (c) 1.4 nW;  
(d) 0.88 nW; (e) 0  39. (a) 405 m/s; (b) 596 N; (c) 44.0 cm;  
(d) 37.3 cm  41. (a) 833 Hz; (b) 0.418 m  43. (a) 3; (b) 1129 Hz;  
(c) 1506 Hz  45. (a) 2; (b) 1  47. 12.4 m  49. 45.3 N   
51. 2.25 ms  53. 0.020  55. (a) 526 Hz; (b) 555 Hz  57. 0   
59. (a) 1.022 kHz; (b) 1.045 kHz  61. 41 kHz  63. 155 Hz   
65. (a) 2.0 kHz; (b) 2.0 kHz  67. (a) 485.8 Hz; (b) 500.0 Hz; 
(c) 486.2 Hz; (d) 500.0 Hz  69. (a) 42º; (b) 11 s  71. 1 cm   
73. 2.1 m  75. (a) 39.7 μW/m2; (b) 171 nm; (c) 0.893 Pa   
77. 0.25  79. (a) 2.10 m; (b) 1.47 m  81. (a) 59.7; (b) 2.81 × 10−4   
83. (a) rightward; (b) 0.90 m/s; (c) less  85. (a) 11 ms;  
(b) 3.8 m  87. (a) 9.7 × 102 Hz; (b) 1.0 kHz; (c) 60 Hz, no   
89. (a) 21 nm; (b) 35 cm; (c) 24 nm; (d) 35 cm  91. (a) 7.70 Hz;  
(b) 7.70 Hz  93. (a) 5.2 kHz; (b) 2  95. (a) 10 W;  
(b) 0.032 W/m2; (c) 99 dB  97. (a) 0; (b) 0.572 m; (c) 1.14 m   
99. 171 m  101. (a) 4.25 × 103 Hz; (b) 7.4 × 103 Hz   
103. 3.74 Hz  105. (a) uncertainty of no more than 0.001 cm; 
(b) no worse than one part in 6000  107. 0.667 s  109. (a) 5.0λ; 
(b) fully constructive; (c) 5.5λ; (d) fully destructive

Chapter 18
CP  18.1.1 1, then a tie of 2 and 4, then 3  18.2.1 (a) all tie; 
(b) 50°X, 50°Y, 50°W  18.3.1 (a) 2 and 3 tie, then 1, then 4; (b) 
3, 2, then 1 and 4 tie (from Eqs. 18.3.1 and 18.3.2, assume that 
change in area is proportional to initial area)  18.4.1 A (see 
Eq. 18.4.3)  18.5.1 c and e (maximize area enclosed by a clock-
wise  cycle)  18.5.2 (a) all tie (∆Eint depends on i and f, not on 
path); (b) 4, 3, 2, 1 (compare areas under curves); (c) 4, 3, 2, 1  
(see Eq. 18.5.3)  18.5.3 (a) zero (closed cycle); (b) negative 
(Wnet is negative; see Eq. 18.5.3)  18.6.1 b and d tie, then a, c 
(Pcond identical; see Eq. 18.6.1)   
Q  1. c, then the rest tie  3. B, then A and C tie  5. (a) f, 
because ice temperature will not rise to freezing point and then 
drop; (b) b and c at freezing point, d above, e below; (c) in b 
liquid partly freezes and no ice melts; in c no liquid freezes and 
no ice melts; in d no liquid freezes and ice fully melts; in e liquid 
fully freezes and no ice melts  7. (a) both clockwise; (b) both 
clockwise  9. (a) greater; (b) 1, 2, 3; (c) 1, 3, 2; (d) 1, 2, 3; (e) 2, 
3, 1  11. c, b, a   
P  1. 1.366  3. 348 K  5. (a) 320°F; (b) −12.3°F  7. −92.1°X   
9. 2.731 cm  11. 49.87 cm3  13. 29 cm3  15. 360°C   
17. 0.26 cm3  19. 0.13 mm  21. 7.5 cm  23. 160 s  25. 94.6 L   
27. 42.7 kJ  29. 33 m2  31. 33 g  33. 3.0 min  35. 13.5 C°   
37. (a) 5.3°C; (b) 0; (c) 0°C; (d) 60 g  39. 742 kJ  41. (a) 0°C;  
(b) 2.5°C  43. (a) 1.2 × 102 J; (b) 75 J; (c) 30 J  45. −30 J   
47. (a) 6.0 cal; (b) −43 cal; (c) 40 cal; (d) 18 cal; (e) 18 cal   
49. 60 J  51. (a) 1.23 kW; (b) 2.28 kW; (c) 1.05 kW  53. 1.66 
kJ/s  55. (a) 16 J/s; (b) 0.048 g/s  57. (a) 1.7 × 104 W/m2;  
(b) 18 W/m2  59. 0.50 min  61. 0.40 cm/h  63. −4.2°C   
65. 1.1 m  67. 10%  69. (a) 80 J; (b) 80 J  71. 4.5 × 102 J/kg · K   
73. 0.432 cm3  75. 3.1 × 102 J  77. 79.5ºC  79. 23 J   
81. (a) 11p1V1; (b) 6p1V1  83. 4.83 × 10−2 cm3  85. 10.5ºC   
87. (a) 90 W; (b) 2.3 × 102 W; (c) 3.3 × 102 W  89. (a) 1.87 × 
104; (b) 10.4 h  91. 333 J  93. 8.6 J  95. (a) −45 J; (b) +45 J   
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97. 4.0 × 103 min  101. 2.8 × 107 N/m2  103. 0.407 kW · h   
105. 5.5 mm  107. 0.445 W  109. 65 W

Chapter 19
CP   19.1.1 divided by 2  19.2.1 all but c  19.3.1 C, B, A   
19.4.1 (a) all tie; (b) 3, 2, 1  19.5.1 gas A  19.6.1 vrms, vavg, vP   
19.7.1 5 (greatest change in T), then tie of 1, 2, 3, and 4   
19.8.1 (a) 3, then a tie of 1 and 2; (b) all tie; (c) 3, then a tie of 1 
and 2  19.9.1 1, 2, 3 (Q3 = 0, Q2 goes into work W2, but Q1 goes 
into greater work W1 and  increases gas  temperature)   
Q  1. d, then a and b tie, then c  3. 20 J  5. (a) 3; (b) 1; (c) 4; 
(d) 2; (e) yes  7. (a) 1, 2, 3, 4; (b) 1, 2, 3  9. constant-volume 
process   
P  1. 0.933 kg  3. (a) 0.0388 mol; (b) 220°C  5. 25 molecules/
cm3  7. (a) 3.14 × 103 J; (b) from  9. 186 kPa  11. 5.60 kJ   
13. (a) 1.5 mol; (b) 1.8 × 103 K; (c) 6.0 × 102 K; (d) 5.0 kJ   
15. 360 K  17. 2.0 × 105 Pa  19. (a) 511 m/s; (b) −200°C; (c) 
899°C  21. 1.8 × 102 m/s  23. 1.9 kPa  25. (a) 5.65 × 10−21 J; 
(b) 7.72 × 10−21 J; (c) 3.40 kJ; (d) 4.65 kJ  27. (a) 6.76 × 10−20 J; 
(b) 10.7  29. (a) 6 × 109 km  31. (a) 3.27 × 1010 molecules/cm3; 
(b) 172 m  33. (a) 6.5 km/s; (b) 7.1 km/s  35. (a) 420 m/s; (b) 
458 m/s; (c) yes  37. (a) 0.67; (b) 1.2; (c) 1.3; (d) 0.33   
39. (a) 1.0 × 104 K; (b) 1.6 × 105 K; (c) 4.4 × 102 K; (d) 7.0 × 103 
K; (e) no; (f) yes  41. (a) 7.0 km/s; (b) 2.0 × 10−8 cm; (c) 3.5 × 
1010 collisions/s  43. (a) 3.49 kJ; (b) 2.49 kJ; (c) 997 J; (d) 1.00 
kJ  45. (a) 6.6 × 10−26 kg; (b) 40 g/mol  47. (a) 0; (b) +374 J; 
(c) +374 J; (d) +3.11 × 10−22 J  49. 15.8 J/mol· K  51. 8.0 kJ   
53. (a) 6.98 kJ; (b) 4.99 kJ; (c) 1.99 kJ; (d) 2.99 kJ  55. (a) 14 
atm; (b) 6.2 × 102 K  57. (a) diatomic; (b) 446 K; (c) 8.10 mol   
59. −15 J  61. −20 J  63. (a) 3.74 kJ; (b) 3.74 kJ; (c) 0; (d) 0; 
(e) −1.81 kJ; (f) 1.81 kJ; (g) −3.22 kJ; (h) −1.93 kJ; (i) −1.29 
kJ; (j) 520 J; (k) 0; (l) 520 J; (m) 0.0246 m3; (n) 2.00 atm; (o) 
0.0373 m3; (p) 1.00 atm  65. (a) monatomic; (b) 2.7 × 104 K;  
(c) 4.5 × 104 mol; (d) 3.4 kJ; (e) 3.4 × 102 kJ; (f) 0.010   
67. (a) 2.00 atm; (b) 333 J; (c) 0.961 atm; (d) 236 J  69. 349 K   
71. (a) −374 J; (b) 0; (c) +374 J; (d) +3.11 × 10−22 J  73. 7.03 × 
109 s−1  75. (a) 900 cal; (b) 0; (c) 900 cal; (d) 450 cal; (e) 1200 
cal; (f) 300 cal; (g) 900 cal; (h) 450 cal; (i) 0; (j) −900 cal;  

(k) 900 cal; (l) 450 cal  77. (a)  3/ v  0  3  ; (b) 0.750v0; (c) 0.775v0   
79. (a) −2.37 kJ; (b) 2.37 kJ  81. (b) 125 J; (c) to  83. (a) 8.0 
atm; (b) 300 K; (c) 4.4 kJ; (d) 3.2 atm; (e) 120 K; (f) 2.9 kJ; 
(g) 4.6 atm; (h) 170 K; (i) 3.4 kJ  85. 1.0043  89. 1.93 × 104 K   
91. (a) 1.44 × 103 m/s; (b) 5.78 × 10−4; (c) 71%; (d) 2.03 × 
103 m/s; (e) 4.09 × 10−4; (f) increased; (g) decreased

Chapter 20
CP  20.1.1 a, b, c  20.1.2 smaller (Q is smaller)  20.2.1 c, b, a   
20.3.1 a, d, c, b  20.4.1 b   
Q  1. b, a, c, d  3. unchanged  5. a and c tie, then b and d tie   
7. (a) same; (b) increase; (c) decrease  9. A, first; B, first and 
 second; C, second; D, neither   
P  1. (a) 9.22 kJ; (b) 23.1 J/K; (c) 0  3. 14.4 J/K  5. (a) 5.79 ×  
104 J; (b) 173 J/K  7. (a) 320 K; (b) 0; (c) +1.72 J/K  9. +0.76 
J/K  11. (a) 57.0°C; (b) −22.1 J/K; (c) +24.9 J/K; (d) +2.8 J/K   
13. (a) −710 mJ/K; (b) +710 mJ/K; (c) +723 mJ/K; (d) −723 
mJ/K; (e) +13 mJ/K; (f) 0  15. (a) −943 J/K; (b) +943 J/K; 
(c) yes  17. (a) 0.333; (b) 0.215; (c) 0.644; (d) 1.10; (e) 1.10; 
(f) 0; (g) 1.10; (h) 0; (i) −0.889; (j) −0.889; (k) −1.10; (l) −0.889; 
(m) 0; (n) 0.889; (o) 0  19. (a) 0.693; (b) 4.50; (c) 0.693; (d) 0; 
(e) 4.50; (f) 23.0 J/K; (g) −0.693; (h) 7.50; (i) −0.693; (j) 3.00; 
(k) 4.50; (l) 23.0 J/K  21. −1.18 J/K  23. 97 K  25. (a) 266 
K; (b) 341 K  27. (a) 23.6%; (b) 1.49 × 104 J  29. (a) 2.27 kJ; 
(b) 14.8 kJ; (c) 15.4%; (d) 75.0%; (e) greater  31. (a) 33 kJ;  
(b) 25 kJ; (c) 26 kJ; (d) 18 kJ  33. (a) 1.47 kJ; (b) 554 J;  
(c) 918 J; (d) 62.4%  35. (a) 3.00; (b) 1.98; (c) 0.660; (d) 0.495;  
(e) 0.165; (f) 34.0%  37. 440 W  39. 20 J  41. 0.25 hp   
43. 2.03  47. (a) W = N!/(n1! n2! n3!); (b) [(N/2)! (N/2)!]/[(N/3)! 
(N/3)! (N/3)!]; (c) 4.2 × 1016  49. 0.141 J/K· s  51. (a) 87 m/s;  
(b) 1.2 × 102 m/s; (c) 22 J/K  53. (a) 78%; (b) 82 kg/s   
55. (a) 40.9°C; (b) −27.1 J/K; (c) 30.3 J/K; (d) 3.18 J/K  57. 
+3.59 J/K  59. 1.18 × 103 J/K  63. (a) 0; (b) 0; (c) −23.0 J/K;  
(d) 23.0 J/K  65. (a) 25.5 kJ; (b) 4.73 kJ; (c) 18.5%  67. (a)  
1.95 J/K; (b) 0.650 J/K; (c) 0.217 J/K; (d) 0.072 J/K; (e) decrease   
69. (a) 4.45 J/K; (b) no  71. 53%  73. (a) 1.9 J; (b) 1.4 W;  
(c) 1.9 J; (d) 19%
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I N D E X

Figures are noted by page numbers in italics, tables are indicated by t following the page number, 
footnotes are indicated by n following the page number.

A
absolute pressure, 411
absorption:

of heat, 550–556, 552
photon, see photon absorption

absorption lines, 1280, 1281
ac (alternating current), 957, 966–967
acceleration, 20–29, 298t

average, 20
centripetal, 82
constant, 23–27, 24
free-fall, 28, 28–29
graphical integration in motion analysis, 

30, 30–31
instantaneous, 20–23, 22, 73–75
negative, 21–22
and Newton’s first law, 102–105
Newton’s laws applied to, 115–121
and Newton’s second law, 105–108
principle of equivalence (with gravitation), 

393–394
projectile motion, 75–81
reference particle, 453
relating linear to angular, 282, 283–284
relative motion in one dimension, 85–86
relative motion in two dimensions, 86–87
rockets, 252–254, 253
rolling down ramp, 314, 314–315
sign of, 21–22
simple harmonic motion, 441, 441, 443
system of particles, 229–233
two- and three-dimensional motion, 86–87
uniform circular motion, 82, 82–84, 83, 

140–145
as vector quantity, 45
yo-yo, 317

acceleration amplitude, in  simple harmonic 
motion, 441, 441, 443

acceleration vectors, 45
accelerators, 866–869, 1410–1411
acceptor atom, 1339
acre-foot, 8
action at a distance, 665
activity, of radioactive sample, 1363
addition:

of vectors by components, 50, 50–51, 52
of vectors geometrically, 45, 45–46, 46

adiabat, 601, 601
adiabatic expansion, 560–561, 561

ideal gas, 601, 601–604
adiabatic processes:

first law of thermodynamics for, 560–561, 
560t

summarized, 604, 604t
adiabatic wind, 610
ag (gravitational acceleration), 378, 378t
air:

bulk modulus, 506–507
density, 407t

dielectric properties at 1 atm, 775, 775t
and drag force, 138–140
effect on projectile motion, 79, 79–80
electric breakdown, 682, 682
index of refraction at STP, 1052t
speed of sound in, 506–508, 507t
terminal speeds in, 139t
thermal conductivity, 564t
thin-film interference of water film in, 

1132
air conditioners, 627
airplanes:

dangers of high electric potential, 748, 748
projectile dropped from, 81
turns by top gun pilots, 83–84
two-dimensional relative motion of, 87

air-puff tonometer, 1081–1082, 1082
airspeed, 97
alligators, 431
alpha decay, 1365–1367, 1366
alpha particles, 655, 745, 1353–1355, 1365

binding energy per nucleon, 1359
radiation dosage, 1372–1373
in thermonuclear fusion, 1400–1401

alternating current (ac), 957, 966–967
alternating-current circuits, 956–990

damped oscillations in RLC, 963–965, 964
forced oscillations, 966–974, 967, 968
LC oscillations, 957, 957–959, 959
phase and amplitude relationships, 973t
power in, 982, 982–984
resistive load, 968
series RLC circuits, 974–981, 976, 978, 979
in transformers, 985–989

alternating-current generator, 967, 967
with capacitive load, 970, 970–972, 971
inductive load, 972
with inductive load, 972, 972–974, 973
with resistive load, 968, 968–969

ammeters, 833, 833
ampere (unit), 646, 790, 893
Ampère, André-Marie, 894–895
Ampere–Maxwell law, 1001–1002, 1004, 

1007t
Ampere’s law, 894–898, 895, 896
Amperian loop, 895, 895, 896
amplitude:

alternating current, 973t
current, 975–977, 976, 979
defined, 439
of emf in ac, 967
exponentially decaying in RLC circuits, 

964–965
LC oscillations, 958
simple harmonic motion, 439–441, 440
waves, 471, 471, 472, 472

amplitude ratio, traveling electromagnetic 
waves, 1036

amusement park rides:

Ferris wheel, 160, 327, 327, 328
roller coasters, 21, 118–119, 118
Rotor, 280–281
vertical circle, 151

analyzer, 1047
Andromeda Galaxy, 372–373, 373
angle of incidence, 1051, 1051
angle of minimum deviation, 1067, 1069
angle of reflection, 1051, 1051
angle of refraction, 1051, 1051
angles, 49

angle between two vectors, 57
degrees and radian measures, 49
vector, 47, 47, 49

angular acceleration, 274–275, 298t
relating, to linear, 282, 283
rolling wheel, 314, 315
rotation with constant, 279–281

angular amplitude (simple  pendulum), 449
angular displacement, 273, 274, 278–279
angular frequency:

circulating charged particle, 862–863
damped harmonic oscillator, 453–455
driving, 967
LC oscillations, 961–962
natural, 456, 457, 967
simple harmonic motion, 437–441, 440
simple pendulum, 449
sound waves, 509
waves, 472

angular magnification:
compound microscope, 1096
refracting telescope, 1097
simple magnifying lens, 1095–1096

angular momentum, 320–334, 327t
atoms, 1295, 1295
conservation of, 328–332, 329, 330
defined, 320, 320
at equilibrium, 345
intrinsic, 1010, 1012
Newton’s second law in  angular form, 

322–323
nuclear, 1360
orbital, 1012, 1012, 1296–1297, 1297, 1297t
rigid body rotating about fixed axis, 326–328
sample problems involving, 321, 323–324, 

331–332
spin, 1010–1012, 1297t, 1298, 1299
system of particles, 325–326

angular motion, 273
angular position, 273, 273, 298t

relating, to linear, 282
angular simple harmonic motion, 446–447, 

447
angular simple harmonic oscillator, 446–447, 

447
angular speed, 274

relating, to linear, 281–284
in rolling, 310–312, 311
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angular velocity, 274–277, 298t
average, 274
instantaneous, 274
vector nature of, 277–279, 278

angular wave number, 471–472, 1243
sound waves, 509

annihilation:
electron–positron, 655, 655–656
particle–antiparticle, 1414
proton–antiproton, 1416–1417, 1416t

annihilation process, 655
annular cylinder, rotational  inertia  

for, 287t
antenna, 1034, 1034–1035
antiderivative, 27
antihydrogen, 1414
antimatter, 1386t, 1414–1415
antineutrino, 1368n
antinodes, 490, 491, 491, 492–494
antiparticles, 1414–1418, 1435
antiprotons, 1414
antisolar point, 1054, 1054
aphelion distance, 388
apparent weight, 111

in fluids, 417
applied force:

work and, 727–728
work done by, 169

Archimedes’ principle, 415, 415–419, 416
areas, law of, 388, 388–389
area vector, 698, 698
Argentinosaurus, 429
astronomical Doppler effect, 1207–1208
astronomical unit, 11
atmosphere (atm), 408
atmospheric pressure, 408t
atmospheric sprites, 672–673
atomic bomb, 1390–1391, 1402–1403
atomic clocks, 5–6
atomic clocks, time dilation tests, 1194
atomic mass, 1356t, 1358–1359
atomic mass units, 7, 1358–1359
atomic number, 655, 1299, 1356
atoms, 1258–1259, 1293–1326. See also  

electrons;  neutrons; protons
Bohr model, 1276–1278, 1277
exclusion principle in, 1304
formation in early universe, 1436
and lasers, 1314–1319
magnetic resonance, 1303–1304, 1304
matter wave interference, 1239, 1240
and multiple electrons in a trap, 1305–1308
and periodic table, 1308–1310
properties of, 1293–1299
Stern–Gerlach experiment, 1300,  

1300–1302
x rays and ordering of  elements, 1310–1314

atoms, elasticity of, 356, 356–357
attractive forces, 374, 643
Atwood’s machine, 127, 129
Auger, Pierre, 655
Auger–Meitner electrons, 655, 664
aurora, 642, 864, 864
auroral oval, 864
automobile(s). See also race cars

autonomous, 25–26, 41, 42
average velocity of, 17–18

head-on crash, surviving, 246–247, 246
in flat circular turn, 143–144
magnet applications, 851
safe trailing, 41
spark discharge from, 747, 747–748
tire pressure, 408t

autonomous car passing slower car, 25–26
average acceleration:

one-dimensional motion, 20
two- and three-dimensional motion, 73–75

average angular acceleration, 274
average angular velocity, 274
average force (of collision), 238
average life, radionuclide, 1363–1364
average power, 174, 208

engines, 625
traveling wave on stretched string, 479–480

average speed:
of gas molecules, 590–591
one-dimensional motion, 17

average velocity:
constant acceleration, 23–27
one-dimensional motion, 15–17, 16
two- and three-dimensional motion, 70

Avogadro, Amedeo, 579
Avogadro’s number, 579, 792
axis(es):

rotating, of vectors, 51
of rotation, 272, 272
separation of, in Newton’s second law, 

105–106
of symmetry, 667, 667–668

B
Babinet’s principle, 1179
background noise, 534–535
ball, motion of, 76, 76–78, 77, 78
ballet dancing:

en pointe balancing, 308
grand jeté, 231–232, 232
tour jeté, 330, 330–331

ballooning, spider, 695
balloons, lifting capacity, 610
Balmer series, 1280, 1281
banana, radioactive potassium, 1365
bandage pressure, 369
band–gap pattern:

crystalline solid, 1329
insulator, 1330
metal, 1331
semiconductor, 1337

bands, energy bands in crystalline solids, 
1329, 1329

Barish, Barry C., 1138
bar magnets:

Earth as, 1008, 1008
magnetic dipole moment of small, 875, 

875t
magnetic field, 999, 999
magnetic field lines, 854, 854

barrel units, 10
barrier tunneling, 1248–1251, 1249, 1250, 

1366–1367
baryonic matter, 1434, 1437, 1437
baryon number, conservation of, 1421
baryons, 1414, 1421

conservation of baryon number, 1421

and eightfold way, 1423–1424, 1423t
and quark model, 1426–1427

baseball:
collision of ball with bat, 237, 237
flight time, 40, 99
fly ball, air resistance to, 79, 79, 79t
metal bat danger, 42
rising fast ball, 100
time of free-fall flight, 29
throw from third, 99

base quantities, 2
base standards, 2
basic equations for constant acceleration, 24
basilisk lizards, 261, 261
basketball free throws, 67–68
bats, navigation using ultrasonic  

waves, 528
batteries. See also electromotive force (emf)

connected to capacitors, 760, 760–761, 770
and current, 790, 790–791
as emf devices, 817–819
in multiloop circuits, 826, 826–833
multiple batteries in multiloop circuit, 

829–830, 830
potential difference across, 823–825, 825
and power in circuits, 805, 805–806
in RC circuits, 833–838, 834
real, 818, 818–819, 823–825, 825
rechargeable, 818, 818–819
recharging, 824
in RL circuits, 936–939
in single-loop circuits, 818, 819
work and energy, 818, 818–819

beam, 1036
beam expander, 1109
beam splitter, 1135, 1236, 1236
beats, 522–524, 523, 539
becquerel, 1363
bends, the, 428, 578
Bernoulli, Daniel, 424
Bernoulli’s equation, 423–426

proof of, 425
sample problems involving, 426

beta decay, 662, 1368–1371, 1369, 1427
beta-minus decay, 664, 1369
beta-plus decay, 1369
beta-plus (positron) emitter, 656
bi-concave lens, 1109
bi-convex lens, 1109
bicycle wheels:

rolling, 310–312, 311–312
rolling, with friction, 314, 314–315

bifurcate (term), 61
Big Bang, 1431–1432, 1434–1437, 1435
billiard balls, Newton’s second law and 

motion of, 230–231
binding energy, see nuclear  binding energy
Biot–Savart law, 887–888, 894, 904
bivalent atom, 1331
blackbody radiator, 565
black holes, 372–373, 395–396, 405

acceleration, head, feet, 380
event horizon, 395–396
gravitational lensing caused by, 395, 395
miniature, 399
stellar, 395
supermassive, 373, 390, 396
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blocks:
connected to massless-frictionless pulleys, 

112, 113, 115, 115–116
floating, 419
forces on stationary, 133–134, 133–134
friction of sliding, 112, 112
hanging and sliding, 115, 115–116
Newton’s laws applied to, 106, 115–121
normal forces, 111, 111–112
power used in work on, 175–176, 176
stable static equilibrium, 345–346, 346, 

349–354
third-law force pair, 113, 113–114
work done by external force with friction, 

201–203, 203
block–spring oscillator, 960–961
block–spring systems:

damped oscillating systems, 454, 454
and electrical–mechanical analogy,  

959–960, 959t
kinetic energy, 167, 167–170, 170
oscillating systems, 442
potential energy, 188, 188, 191–193

blood pressure, 407t, 429
blue shift, 1206
bob, of pendulum, 448
bobsled, 42
body armor, 503–504, 504
body diagonal, 61–62
body mass index (BMI), 184
body wave, 537
Bohr, Niels, 1265, 1374, 1388
Bohr magneton, 1011–1012, 1298
Bohr model, of hydrogen, 1276–1278, 1277
Bohr radius, 1277, 1283, 1285
boiling point, 554, 554t

for selected substances, 554t
of water, 546t

Boltzmann, Ludwig, 565, 632
Boltzmann constant, 580, 1237
bone screw, 308
Bose, Satyendra Nath, 1413
Bose–Einstein condensate, 1413, 1413
bosons, 1413, 1413
Boston molasses disaster, 435
bottomness, 1422
bottom quark, 1426t, 1427
boundary condition, 1175, 1210, 1283

Bragg angle, 1106, 1247
Bragg angle, 1175
Bragg’s law, 1175
Brahe, Tycho, 388
brain resistances, 848
branches, circuits, 826
breakdown potential, 775
breakeven, in magnetic  confinement,  

1404
Brewster angle, 1060, 1060
Brewster’s law, 1060
bright fringes:

single-slit diffraction, 1150, 1150–1151
British thermal unit (Btu), 551
Brookhaven accelerator, 1411
Brookhaven National Laboratory, 1411
Brout, Robert, 1430
bubble chambers, 655, 655, 853, 853

gamma ray track, 1241, 1241

proton–antiproton annihilation, 1416–1417, 
1416t

bubbles in stouts, 267
buildings:

mile-high, 400
natural angular frequency, 456, 457
swaying in wind, 445, 494

bulk modulus, 358, 506–508
bungee-cord jumping, 187, 187
buoyant force, 415, 415–419, 416

C
c, see speed of light
calorie (cal) (heat), 551
Calorie (Cal) (nutritional), 552
cameras, 1094
canal effect, 431–432
cancer radiation therapy, 664, 1352
capacitance, 759–781

calculating, 761–765
of capacitors, 759–761
of capacitors with dielectrics, 774–777
defined, 760
and dielectrics/Gauss’ law, 778, 778–781
and energy stored in electric fields, 

770–773
LC oscillations, 957–959
for parallel and series  capacitors, 765–770
parallel circuits, 828t
RC circuits, 833–838, 834
RLC circuits, 963–965
RLC series circuits, 974–981
series circuits, 828t

capacitive reactance, 970
capacitive time constant, for RC circuits, 835, 

835–836
capacitors, 759–761, 760, 761. See also  

parallel-plate capacitors
with ac generator, 970,  970–972, 971
capacitance of, 759–761
charging, 760–761, 770, 834, 834–835
cylindrical, 763, 763–764
with dielectrics, 774, 774–776
discharging, 761, 834, 836
displacement current,  1004–1006, 1006
electric field calculation, 762
energy density, 772
Faraday’s, 774, 774–776
induced magnetic field, 1001
isolated spherical, 764
LC oscillations, 957, 957–958
in parallel, 766, 766–767, 768–769, 828t
and phase/amplitude for ac circuits, 973t
potential difference  calculation, 762
RC circuits, 833–838, 834
in series, 767, 767–769, 828t, 975, 976
series RLC circuits, 975
variable, 784–785

carbon14 dating, 1371
carbon cycle, 1409
carbon dioxide:

molar specific heat at  constant volume, 
594t

RMS speed at room  temperature, 585t
carbon disulfide, index of  refraction, 1052t
Carnot, N. L. Sadi, 621
Carnot cycle, 622, 622–623, 623

Carnot engines, 621, 621–626
efficiency, 623–624, 628–629
real vs., 628–629

Carnot refrigerators, 627–629
carrier charge density, 794. See also current 

density
cars, see automobile(s)
cascade, decay process, 1424–1425
cat, terminal speed of falling, 139, 139
catapulting mushrooms, 35
cathode ray tube, 856, 856–857
cavitation, 534
cell phone oscillations, 467
Celsius temperature scale, 545–547, 546,  

546t
center of curvature:

spherical mirrors, 1077, 1077
spherical refracting surfaces, 1083–1086, 

1084
center of gravity, 347–349, 348
center of mass, 226–229

and center of gravity, 347–349
defined, 226
motion of system’s, 230
one-dimensional inelastic  collisions, 

244–247, 245
pregnancy shift, 268, 268
rolling wheel, 311, 311
sample problems involving, 228–229, 233
solid bodies, 228–229
system of particles, 226,  226–227,  

230–233
velocity of, 245–246

center of oscillation (physical pendulum), 450
centigrade temperature scale, 545–547, 546
central axis, spherical mirror, 1077, 1077
central configuration peak, 631
central diffraction maximum, 1156, 1156
central interference maximum, 1120
central line, 1167
central maximum, diffraction patterns, 1149, 

1149, 1154
centripetal acceleration, 82
centripetal force, 141–144, 142
Cerenkov counters, 1442
Ceres, escape speed for, 386t
CERN accelerator, 1188, 1411, 1429

antihydrogen, 1414
pion beam experiments, 1188

chain-link conversion, of units, 3
chain reaction:

of elastic collisions, 250
nuclear, 1391

chalk:
rock climbing, 155
squeal, 540

Challenger Deep, 429
champagne cork flight, 611, 612
characteristic x-ray spectrum, 1311–1312, 

1312
charge, see electric charge
charge carriers, 791

doped semiconductors, 1338, 1338–1340
silicon vs. copper, 807–808, 807t

charged disk:
electric field due to, 679–680
electric potential due to, 740, 740
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charge density. See also current density
carrier, 794
linear, 674, 674t
surface, 661, 674t
volume, 661, 663, 674t

charged isolated conductor:
with cavity, 706, 706
electric potential, 746–748
in external electric field, 747, 747–748, 748
Gauss’ law for, 705–707

charge distributions:
circular arc, 676
continuous, 676, 738–740, 739, 740
ring, 674–676, 675, 678
spherically symmetric,  713–715, 714, 734
straight line, 678
uniform, 666, 666–668, 667, 678

charged objects, 666
charged particles, 644

in cyclotron, 866–867
electric field due to, 668–669, 669
electric potential due to group of, 735, 735
electric potential energy of system,  

743–746, 745
equilibrium of forces on, 650–651
helical paths of, 863–866, 864
magnetic field due to, 851–852
motion, in electric field, 683
net force due to, 647, 648–650

charged rod, electric field of, 676–677
charge number, 1299
charge quantum number, 1417
charging:

of capacitors, 760–761, 770, 834, 834–835, 
1001

electrostatic, 643
charm, 1422
charm quark, 1426t, 1427
cheerleaders, diffraction of sound, 1149
chimney climb, 354
chip (integrated circuits), 1346
chlorine, 1309–1310
chocolate crumbs, 722, 787
chromatic aberration, 1097
chromatic dispersion, 1053, 1053–1054
circuit elements, 761
circuits, 760–761, 761, 816–838, 828t. See also 

alternating-current circuits
ammeter and voltmeter for measuring, 833
capacitive load, 970, 970–972, 971
direct-current (dc), 817
grounding, 823–824, 824
with inductive load, 972, 972–974, 973
integrated, 1346
multiloop, 820, 826, 826–833, 827
oscillating, 957
parallel capacitors, 766,  766–767, 768–769, 

828t
parallel resistors, 827,  827–830, 828t
power in, 805–806
RC, 833–838, 834
resistive load, 968, 968–969
RL, 935–939, 936, 937
RLC, 963–965, 964, 974–981, 976, 978, 979
series capacitors, 767,  767–769, 828t
series resistors, 822, 822, 828t
single-loop, 816–825

circular aperture, diffraction  patterns,  
1158–1162, 1159

circular arc, current in, 890–892
circular arc charge distributions, 678
circular orbits, 392–393
circus train, 131
clocks:

event measurement with array of, 1189, 
1189

macroscopic, 1194
microscopic, 1193
time dilation tests, 1193–1194

closed circuit, 821, 821
closed cycle processes, first law of thermody-

namics for, 559–561, 560t
closed path, 188–189, 189
closed-path test, for conservative force, 

188–190
closed shell, 1375
closed subshell, 1309
closed surface, electric flux in, 698–699
closed system, 240, 241

entropy, 619–620
linear momentum  conservation, 240–241

clouds, noctilucent, 12
COBE (Cosmic Background Explorer)  

satellite, 1436, 1437
coefficient of kinetic friction, 135–137
coefficient of linear expansion, 548, 548t
coefficient of performance (refrigerators), 

627
coefficient of static friction, 135–137
coefficient of volume expansion, 549
coherence, 1122–1123
coherence length, 1315
coherent light, 1122–1123, 1315
coils, 873. See also inductors

of current loops, 873
in ideal transformers, 986, 986
induced emf, 918–919
magnetic field, 901–904, 903, 904
mutual induction, 943–945, 944
self-induction, 934, 934–935

cold-weld, 134–135, 135
collective model, of nucleus, 1374
collimator, 1168, 1300, 1300
collision(s), 236–239

elastic in one dimension, 247–250, 248
glancing, 251, 251
impulse of series of, 238–239
impulse of single, 237, 237–238
inelastic, in one dimension, 244, 244–247, 

245
momentum and kinetic  energy in, 243–244
two-dimensional, 251, 251

color force, 1430
color-neutral quarks, 1430
color-shifting inks, 1112, 1130, 1130–1131, 

1131
compass, 1007, 1008, 1022, 1023
completely inelastic collisions, 244, 244–246, 

245
component notation (vectors), 47
components:

of light, 1053–1054
vector, 46–49, 47, 50, 50–51, 51, 52

composite slab, conduction through, 564, 564

compound microscope, 1096, 1096
compound nucleus, 1374, 1376
compressibility, 359, 407
compressive stress, 357–358
Compton scattering, 1231,  1231–1234, 1232
Compton shift, 1231, 1231–1234, 1232
Compton wavelength, 1233
concave lenses, 1109
concave mirrors, 1076–1083, 1077, 1077, 1078, 

1079, 1080t, 1081
concrete:

coefficient of linear  expansion, 548t
elastic properties, 358t

condensing, 554
conducting devices, 651–652, 801–802
conducting path, 644
conducting plates:

eddy currents, 926
Gauss’ law, 711–712, 712

conduction, 563, 563, 564, 1327–1351
and electrical properties of metals,  

1327–1336
in p-n junctions, 1341–1346
by semiconductors, 1336–1340
in transistors, 1345–1346

conduction band, 1337, 1337
conduction electrons, 644, 790, 796,  

1331–1336
conduction rate, 563–564
conductivity, 798, 1332
conductors, 644–645, 790–791. See also 

electric current
drift speed in, 793–794, 796
Hall effect for moving, 858–861
metallic, 790, 807
Ohm’s law, 801–804
potential difference across, 859, 860–861

configurations, in statistical mechanics, 
629–631

confinement principle, 1259
conical pendulum, 152
conservation of angular  momentum, 328–331, 

 328–332, 329, 330, 331
conservation of baryon number, 1421
conservation of electric charge, 654–656
conservation of energy, 156, 205–209, 207

in electric field, 727
mechanical and electric potential energy, 

745–746
principle of conservation of mechanical 

energy, 194
in proton decay, 1424
sample problems involving, 196,  

208–209
conservation of linear momentum, 240–243, 

252–253
conservation of quantum  numbers,  

1424–1425
conservation of strangeness, 1422
conservative forces, 188–190, 189
constant acceleration (one-dimensional 

motion), 23–27, 24
constant angular acceleration, rotation with, 

279–281
constant linear acceleration, 279
constant-pressure molar specific heat, 

595–596
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constant-pressure processes, 558, 558–559
summarized, 604, 604t
work done by ideal gases, 582–583

constant-pressure specific heat, 553
constant-temperature processes:

summarized, 604, 604t
work done by ideal gases, 581–582

constant-volume gas  thermometer, 544, 
544–545

constant-volume molar specific heat, 594–595
constant-volume processes, 558, 558–559

first law of thermodynamics for, 560t, 561
summarized, 604, 604t
work done by ideal gases, 582

constant-volume specific heat, 553
consumption rate, nuclear  reactor, 1395–1396
contact potential difference, 1342
continuity, equation of, 419–423, 421, 422
continuous bodies, 286
continuous charge distribution, 676, 738–740, 

739, 740
continuous x-ray spectrum, 1311, 1311
contracted length, 1196–1197
convection, 565
converging lens, 1087, 1087, 1088, 1088, 1089, 

1089, 1090t
conversion factors, 3
convex lenses, 1109
convex mirrors, 1076–1083, 1077, 1078, 1080t, 

1081
cooling:

evaporative, 574
super-, 636

Coordinated Universal Time (UTC), 6
copper:

coefficient of linear  expansion, 548t
conduction electrons, 644
electric properties of silicon vs., 807–808, 

807t, 1329t, 1337
energy levels, 1329, 1329
Fermi energy, 1331
Fermi speed, 1331
heats of transformation, 554t
mean free time, 804
resistivity, 798–799, 798t, 799, 1338
rubbing rod with wool, 642–644
temperature coefficient of resistivity,  

1338
unit cell, 1328, 1328

copper wire:
as conductor, 644, 644, 790, 790–791
drift speed in, 793–794
magnetic force on current  carrying,  

869–871, 870, 871
cord (unit of wood), 11
core (Sun):

density, 407t
pressure, 408t
speed distribution of photons in, 591

core (Earth), 400, 400–401
density, 378, 378, 408t
pressure, 408t

corona discharge, 747
correspondence principle, 1265
cosine, 49
cosine-squared rule, for intensity of transmit-

ted polarized light, 1047

Cosmic Background Explorer (COBE) 
satellite, 1436, 1437

cosmic background radiation, 1433–1434, 
1436, 1437

cosmic ray protons, 661
cosmological red shift, 1443–1444
cosmology, 1431–1438

background radiation,  1433–1434
Big Bang theory, 1434–1437
dark matter, 1434
expansion of universe, 1432

coulomb (unit), 646
Coulomb barrier, 1398
coulomb per second, 790
Coulomb’s law, 641–656

conductors and insulators, 644–645
conservation of charge, 654–656
electric charge, 642–644
formulas for, 645–647
and Gauss’ law, 703–705
quantization of charge, 652–654
for spherical conductors, 648–652

COVID-19 drops, electric removal of, 758
COVID-19 pandemic, airborne water  

drops, 723
Cowan, C. L., 1369
crimp hold, 365
critical angle, for total internal reflection, 

1056
crossed magnetic fields:

and discovery of electrons, 855–857
Hall effect in, 857–861, 858

crossed sheets, polarizers, 1048, 1048
cross product, 55–58
crust (Earth), 378, 400, 400–401, 407t
crystal defects, 662
crystalline lattice, 407
crystalline solids:

electrical properties, 1327–1336, 1328
energy bands, 1329, 1329

crystal planes, 1174, 1174–1175
crystals:

matter waves incident after scattering, 
1239, 1240, 1240

polycrystalline solids, 1021
x-ray diffraction, 1174, 1174–1175

curie (unit), 1363
Curie constant, 1018
Curie’s law, 1018
Curie temperature, 1020
curled–straight right-hand rule, 888
currency, anti-counterfeiting measures, 1112, 

1130
current, see electric current
current amplitude:

alternating current, 981–982
series RLC circuits, 975–977, 976, 981–982

current-carrying wire:
energy dissipation in, 806
magnetic field due to, 887, 887–890, 888
magnetic field inside long straight, 896, 

896–897
magnetic field outside long straight, 896, 

896
magnetic force between  parallel, 891–892, 

892
magnetic force on, 869–871, 870, 871

current density, 792–796, 793
current law, Kirchoff’s, 826
current-length element, 887, 887
current loops, 790, 790

electrons, 1013, 1013
Faraday’s law of induction, 916, 916–919
Lenz’s law for finding  direction of current, 

919, 919–923, 920
as magnetic dipoles, 901–904, 903, 904
solenoids and toroids, 899–901
torque on, 872, 872–873

curvature, of space, 394,  394–395, 1436, 1437
cutoff frequency, photoelectric effect, 

1228–1229
cutoff wavelength:

continuous x-ray spectrum, 1311, 1311
photoelectric effect, 1228

cycle:
engines, 622–623
simple harmonic motion, 437
thermodynamic, 558, 559, 561

cycloid, 311
cyclotrons, 866–869, 867, 885
cylinders:

of current, 897–898, 898
rotational inertia, 287t
tracer study of flow around, 421

cylindrical capacitor, capacitance of, 763, 
763–764

cylindrical symmetry, Gauss’ law,  
708–709, 709

D
damped energy, 454–455
damped oscillations, 454, 454, 963–965
damped simple harmonic motion, 453–455, 

454
damped simple harmonic  oscillator, 453–455, 

454
damping constant, simple  harmonic motion, 

454
damping force, simple harmonic motion, 454
dance, see ballet
dark energy, 1437
dark fringes:

double-slit interference, 1119, 1119, 1121
single-slit diffraction, 1150, 1150–1151, 

1154, 1156
dark matter, 1434, 1437, 1437
Darwin, Charles, 695
daughter nuclei, 655, 1378
day:

10-hour day, 6
variations in length of, 6

dc (direct current), 817, 966
de Broglie wavelength, 1239, 1241, 1243
decay, see radioactive decay
decay constant, 1362
decay rate, 1362–1364
deceleration, 21
decibel, 516–518
decimal places, significant  figures with, 4
dees, cyclotron, 867, 867
de-excitation, of electrons, 1262
defibrillator devices, 788
deformation, 357, 357
degenerate energy levels, 1274
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degrees of freedom, ideal gas molecules, 
597–599

density:
defined, 7
fluids, 407
kinetic energy density, 424
linear, of stretched string, 476, 477
and liquefaction, 11
nuclear matter, 1361
occupied states, 1335–1336, 1336
selected engineering  materials, 358t
selected materials and objects, 407t
states, 1332–1333, 1333
uniform, for solid bodies, 228

density gradient, 1341
depletion zone, p-n junction, 1342
detection, see probability of detection
deuterium, 1370
deuterium–tritium fuel pellets, 1404, 1404
deuterons, 868, 1403
deuteron–triton reaction, 1403
diamagnetic material, 1014
diamagnetism, 1014, 1015–1016, 1016
diamond:

as insulator, 1330, 1337
unit cell, 1328, 1328

diamond lattice, 1328
diatomic molecules, 598, 598

degrees of freedom, 597–599, 598, 598t
molar specific heats at  constant volume, 

594t
potential energy, 216

dielectric constant, 774–776, 775t
dielectrics:

atomic view, 776–777, 777
capacitors with, 774–776
and Gauss’ law, 778, 778–781
polarization of light by  reflection, 1060

dielectric strength, 775–776, 775t
differential equations, 960, 961
diffraction, 1148–1178. See also interference; 

single-slit  diffraction
circular aperture, 1158–1162, 1159
double-slit, 1162–1165, 1163, 1164
electron, 1240
Fresnel bright spot,  1149–1150, 1150
intensity in double-slit, 1163, 1163–1164
intensity in single-slit,  1153–1158, 1155, 

1156
interference vs., 1163–1164
neutron, 1240
pinhole, 1149
and wave theory of light, 1149–1150
x-ray, 1173–1176, 1174, 1175
and Young’s interference experiment, 

1117–1121, 1118, 1119
diffraction factor, 1164
diffraction gratings, 1166,  1166–1170, 1167, 

1168, 1169
dispersion, 1170–1173, 1171, 1172
resolving power, 1171–1173, 1172
spacing, 1167
x rays, 1174–1175

diffraction patterns:
defined, 1149
double-slit, 1163–1164, 1164
single-slit, 1163–1164, 1164

diffusion current, p-n junctions, 1342
dimensional analysis, 476–477
dinosaurs, 269, 429, 431, 434, 535
dip angle, 147
Diplodocus, dinosaur wading, 434
dip meter, 1008
dip north pole, 1008
dipole antenna, 1034, 1034–1035
dipole axis, 671
dip-slip, 63
direct current (dc), 817, 966
direction:

of acceleration in one-dimensional  
motion, 21

of acceleration in two- and three- 
dimensional motion, 73–74

of angular momentum, 320
of displacement in one-dimensional 

motion, 14–15
of vector components, 47
of vectors, 45–46, 46
of velocity in one-dimensional motion, 

16–17
of velocity in two- and three dimensional 

motion, 71–72
discharging, 643

capacitors, 761, 834, 836
charged objects, 644

disintegration, 1356, 1364
disintegration constant, 1362
disintegration energy, 1366
disks:

diffraction by circular  aperture, 1158–1162, 
1159

electric field due to charged, 679–680
electric potential due to charged, 740, 740

dispersion:
chromatic, 1053, 1053–1054
by diffraction gratings,  1170–1173, 1171, 

1172
displacement:

damped harmonic oscillator, 453–455, 454
electric, 779
one-dimensional motion, 14–15
simple harmonic motion,  437–438, 438, 

439, 443–444
traveling waves, 473–474
two- and three-dimensional motion,  

68–69, 69
as vector quantity, 15, 45, 45
waves on vibrating string, 470–472, 471

displacement amplitude:
forced oscillations, 456, 456
sound waves, 509, 509–510

displacement current,  1003–1007, 1005
displacement ton, 10
displacement vector, 15, 45, 45
dissipated energy, in resistors, 806, 819
distortion parameter, 1390
distribution of molecular speeds, 589–592, 

590
diverging lens, 1087, 1088, 1089, 1089, 1090t
dog years, 12
dominoes, 345, 345
donor atoms, 1339
doped semiconductors, 807–808, 1338, 

1338–1340

doping, 1338
Doppler effect, 524–528, 526, 527

astronomical, 1207–1208
detector moving, source  stationary, 526, 

526
for light, 1205–1208, 1208, 1433
low-speed, 1207
source moving, detector  stationary, 527, 

527
transverse, 1208, 1208

dose equivalent, radiation, 1373
dot product, 54, 54, 57, 698
double-slit diffraction, 1162–1165, 1163, 

1163–1164, 1164
double-slit interference:

intensity, 1123–1126, 1124, 1164
from matter waves, 1239, 1239–1241
single-photon, wide-angle  version,  

1235–1236, 1236
single-photon version, 1235
Young’s experiment,  1117–1121, 1118, 

1119
doubly magic nuclide, 1375
down force, see negative lift, in race cars
down quark, 1425, 1426t, 1427
drag coefficient, 138–139
drag force, 138–140

damped simple harmonic motion, 453, 454
mechanical energy not  conserved in  

presence of, 196
as nonconservative force, 188

dragster, 42, 183
drain, FETs, 1345, 1346
drift current, p-n junctions, 1342
drift speed:

and current density, 793, 793–794, 796
Hall effect for determining, 857–861, 858

driven oscillations, 456, 967
driving frequency, of emf, 967
d subshells, 1309, 1310

E
E (exponent of 10), 2
Earth, 372–373. See also  gravitational force

atmospheric electric field, 759
average density, 407t
density of, as function of  distance from 

center, 378
eccentricity of orbit, 388
effective magnetic dipole moment, 1299
ellipsoidal shape of, 378–379
escape speed, 386–387, 386t
gravitation near surface, 377–381
interior of, 400, 400–401
Kepler’s law of periods, 389t
level of compensation, 430
magnetic dipole moment, 875t
magnetism, 1008, 1008–1009, 1009
nonuniform distribution of mass, 378, 378
rotation, 379, 379
satellite orbits and energy, 390–393, 391
variation in length of day over 4-year 

period, 6
earthquakes:

building oscillations during, 437
buildings submerged  during, 11
and liquefaction, 11
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natural angular frequency of buildings, 
457, 457

S and P waves, 532
Earth’s magnetic field, 854, 1008, 1008–1009, 

1009, 1021–1022
polarity reversal, 1009, 1009
at surface, 853t

Easter Island, 204–205
eccentricity, of orbits, 388, 388

and orbital energy, 391
planets of Solar System, 389t

eddy currents, 926
edge effect, 712
edges, diffraction of light at, 1149
effective cross-sectional area, 138
effective magnetic dipole moment, 1299
effective phase difference,  optical  

interference, 1115
efficiency:

Carnot engines, 623–624
real engines, 623–624, 628–629
Stirling engines, 624–625

eightfold way, 1423, 1423–1424, 1423t
Einstein, Albert, 102, 1037, 1136, 1187, 1187, 

1188, 1190, 1192, 1194, 1200–1201, 1210, 
1238. See also relativity

Bose-Einstein condensate, 1413, 1413
and bosons, 1413
and lasers, 1316
view of gravitation, 393–396, 394
work on photoelectric effect, 1229–1230
work on photons, 1225–1226

Einstein–de Haas experiment, 1296, 1296
Einstein ring, 395, 395
elastic bodies, 356–357
elastic collisions:

defined, 243–244
elasticity, 344, 356–359, 357
in one dimension, with  moving target, 

249–250
in one dimension, with  stationary target, 

248, 248–249
in two dimensions, 251, 251
and wave speed on stretched string, 

476–478
elasticity, 355–359

of atoms and rigid bodies, 356, 356–357
and dimensions of solids, 357, 357
and equilibrium of  indeterminate struc-

tures, 355–356, 356
hydraulic stress, 358–359, 358t
sample problem involving, 359
shearing, 358
tension and compression, 357–358, 358

elastic potential energy, 187
determining, 191–192
traveling wave on stretched string, 478, 

478–479
electrical breakdown, 682, 682
electrically isolated object, 643–644, 644
electrically neutral objects, 643
electrical–mechanical analogy, 959–960, 959t
electric charge, 642–644. See also circuits

conservation of, 654–656
and current, 791–792
enclosed, 704–705, 707–708
excess, 643

free, 778–779
hypercharge, 1440
induced, 644–645
LC oscillations, 961
lines of, 674–679, 675, 739, 739–740
measures of, 674t
negative, 643, 644
net, 643
neutralization of, 643
positive, 643–644, 777
quantization of, 652–654
in RLC circuits, 964, 965
sharing of, 651–652
in single-loop circuits, 817–818

electric circuits, see circuits
electric current, 789–792, 790, 791

in alternating current, 966–967
for capacitive load, 971–972
current density, 792–796, 793
decay, 938
direction in circuits, 790, 791–792
induced, 916, 921–922
for inductive load, 974
LC oscillations, 957, 961, 962–963
magnetic field due to, 887, 887–890, 888
in multiloop circuits, 826–828
power in, 805–806
for resistive load, 969–970
in single-loop circuits, 819, 819–821
time-varying, in RC circuits, 836

electric dipole, 875
in electric field, 683–686
electric field due to, 670–673, 672
electric potential due to, 736–738, 737
induced, 737–738, 738
potential energy of, 685

electric dipole antenna, 1034, 1034–1035
electric dipole moment, 672, 684, 684

dielectrics, 776–777
induced, 737–738, 738
permanent, 737–738

electric displacement, 779
electric eels, 848, 848
electric field, 665–686, 851

calculating from potential, 741,  
741–742

calculating potential from, 730,  
730–733

capacitors, 762
crossed fields, 857–861, 858
as displacement current, 1006
due to charged disk, 679–680, 740, 740
due to charged particle, 668–670, 669
due to electric dipole,  670–673, 672
due to line of charge,  674–679, 675
electric dipole in, 683–686
energy stored in capacitor, 770–773
equipotential surfaces,  729–733, 730, 731
external, 706–707, 747–748, 748
field lines in, 666–668
and Gauss’ law, 703–705, 894, 999, 1007t
Hall effect, 857–861, 858, 869
induced, 927–932, 928, 931, 1037,  

1037–1038
net, 669–670
nonuniform, 667, 700–701
point charge in, 680–683

polarized light, 1047
potential energy in, 726–728, 772
rms of, 1041–1042
in spherical metal shell, 707–708
system of charged particles in,  

743–746, 745
traveling electromagnetic waves in, 1034, 

1034–1040, 1035, 1036, 1037
uniform, 667, 697–701, 731–732
as vector field, 666
work done by, 724–729

electric field lines, 666–668, 667
electric fish, 831–832
electric flux, 696–701

in closed surface, 698–699
and Gauss’ law, 696–701
and induction, 924
net, 698–699
through Gaussian surfaces, 697, 697–701, 

698
in uniform electric fields, 697–701

electric force, 850
electric generator, 817
electric motor, 872, 872–873, 1007
electric potential:

calculating field from, 741, 741–742
charged isolated conductor, 746–748
defined, 725
due to charged particles, 733–736,  

734, 735
due to continuous charge  distribution, 

738–740, 739, 740
due to electric dipole,  736–738, 737
from electric fields, 730–732
and electric potential energy, 725,  

725–729
equipotential surfaces,  729–733, 730, 731
and induced electric field, 930–932
in LC oscillator, 962–963
orientation, 736, 736
potential energy of charged particle  

system, 743–746, 745
and power/emf, 824
scalar, 736, 736
and self-induction, 935

electric potential energy:
and electric potential, 725, 725–729
for system of charged  particles, 743–746, 

745
electric quadrupole, 691
electric spark, 682, 682

airborne dust explosions set off by, 772
dangers of, 747, 747–748, 748
and pit stop fuel dispenser fire, 837, 

837–838
electrojet, 988
electromagnetic energy, 962. See also 

electromagnetic waves
electromagnetic force, 1414, 1428–1429
electromagnetic oscillations, 957

damped, in RLC circuits, 963–965
defined, 957
forced, 966–974, 967, 968
LC oscillations, 957–959

electromagnetic radiation, 1034, 1042
electromagnetic spectrum, 1033,  

1033–1034
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electromagnetic waves, 469, 1032–1061. See 
also  reflection; refraction

energy transport and Poynting vector, 
1040–1043, 1042

Maxwell’s rainbow, 1033, 1033–1034, 1034
polarization, 1045–1050, 1046, 1047, 1048, 

1059–1060, 1060
radiation pressure, 1043–1045
reflection of, 1050–1056, 1051
refraction of, 1050–1056, 1051, 1052, 1052t, 

1053, 1054
traveling, 1034, 1034–1040, 1035, 1036, 

1037
electromagnetism, 886–887, 1007, 1410
electromagnets, 851, 851, 853t
electromotive force (emf),  817–819. See also 

emf devices
in alternating current, 967
defined, 817, 929–930
and energy and work, 818, 818–819
induced, 916, 918–919,  921–923, 924, 928
potential and power in  circuits, 824
self-induced, 934, 934

electron capture, 655, 1368n
electron diffraction, 1240
electron gun, 862, 862
electron neutrinos, 1419–1420, 1420t
electron–positron annihilation, 655, 655
electrons, 644, 1211t, 1411

accelerator studies, 866
in alternating current, 966, 967
barrier tunneling, 1248–1251, 1249, 1250
in Bohr model, 1276–1278, 1277
bubble chamber tracks, 655, 655, 853
charge, 652–653, 653t
Compton scattering, 1231, 1231–1234, 1232
conduction, 1331–1336
discovery by Thomson,  855–857, 856, 1352
energy of, 1213, 1258–1263
excitation of, 1261, 1261, 1330
as fermions, 1412
in hydrogen atom, 1285–1286
kinetic energy of, 1213
as leptons, 1414, 1420, 1420t
magnetic dipole moment, 875, 875t
and magnetism, 1009–1014, 1011, 1012, 

1013
majority carrier in p-type semiconductors, 

1339, 1340t
matter waves, 1238–1241, 1239, 1240, 1245, 

1258
momentum, 1011, 1011
momentum of, 1010–1014, 1011, 1012, 1213
orbits of, 1013, 1013
in p-type semiconductors, 1339–1340, 

1340t
radial probability density of, 1285
speed of, 1188, 1212
spin, 1412–1413, 1413
in superconductors, 808
valence, 1259, 1309, 1331
wave functions of trapped, 1264–1267

electron spin, 1412–1413, 1413
electron traps:

finite well, 1268, 1268–1270
hydrogen atoms as, 1276
multiple electrons in  rectangular, 1305–1308

nanocrystallites, 1271, 1271
one-dimensional, 1260
quantum corrals, 1272, 1273
quantum dots, 1259,  1271–1272, 1272
two- and three-dimensional, 1272–1275, 

1273, 1274
wave functions, 1264–1267, 1265

electron-volt, 728, 1333
electroplaques, 831, 831–832
electrostatic equilibrium, 706
electrostatic force, 643–644, 666, 667

and Coulomb’s law, 645, 645–652
electric field due to point charge, 668–670, 

669
point charge in electric field, 680–683
work done by, 727–728

electrostatic stress, 787
electroweak force, 1429, 1430
elementary charge, 652, 681–682
elementary particles, 1410–1430

and bosons, 1413, 1413
conservation of strangeness, 1422
eightfold way, 1423,  1423–1424, 1423t
fermions, 1412
general properties, 1410–1419
hadrons, 1414, 1421
leptons, 1414, 1419–1421
messenger particles,  1428–1430
quarks, 1425–1430

elliptical orbits, 392–393
emf, see electromotive force
emf devices, 817, 818. See also batteries

internal dissipation rate, 824
real and ideal, 818, 818–819

emf rule, 820
emission lines, 1168, 1168–1169, 1280
emissions. See also photon  emission

from hydrogen atom, 1286
spontaneous, 1316, 1316
stimulated, 1316, 1316–1317

emissivity, 565, 1238
enclosed charge, 704–705, 707–708
endothermic reactions, 1419
energy. See also kinetic energy; potential 

energy; work
for capacitor with dielectric, 776
conservation of, 156, 205–209, 207, 

745–746
in current-carrying wire, 806
damped, 454–455
defined, 156
of electric dipole in electric field, 685
in electric field, 770–773
and induction, 925
kinetic, 1212, 1212–1213
and magnetic dipole moment, 875,  

1011–1012
in magnetic field, 940–941
mass, 1210–1212
and relativity, 1210–1214, 1211t, 1213
rest, 1210
in RLC circuits, 965
scalar nature of, 45
in simple harmonic motion, 444–446, 445
as state property, 615–616
total, 1211–1212
in transformers, 897

transport, by electromagnetic waves, 
1040–1043, 1042

of trapped electrons, 1258–1263
traveling wave on stretched string, 478, 

478–480
energy bands, 1329, 1329
energy density, 772, 942–943
energy density, kinetic, 424
energy gap, 1329, 1329
energy-level diagrams, 1261, 1261, 1306, 1306
energy levels:

excitation and de-excitation, 1261–1262
hydrogen, 1279–1280
in infinite potential well, 1262–1263,  

1274–1275, 1306–1308
multiple electron traps, 1305–1308
nuclear, 1360
in single electron traps, 1260
of trapped electrons,  1260–1263

energy method, of  calculating current in 
single-loop  circuits, 819

engines:
Carnot, 621, 621–626, 628–629
efficiency, 623–624, 624, 628, 628–629
ideal, 621
perfect, 624, 624
Stirling, 624–625, 625

Englert, François, 1430
entoptic halos, 1177, 1179–1180
entropy, 613–633

change in, 615–619
engines, 621–626
force due to, 620
and irreversible processes, 614–615
and probability, 632
refrigerators, 626–629, 627
sample problems involving, 617–619, 

625–626, 631, 632–633
and second law of  thermodynamics, 

619–620
as state function, 616–617
statistical mechanics view of, 629–633

entropy changes, 615–619
Carnot engines, 623
Stirling engines, 624–625

entropy postulate, 614
envelope, in diffraction  intensity, 1163
epidural, 173–174, 1184
equation of continuity, 419–423, 421, 422
equations of motion:

constant acceleration, 24–25, 25t
constant linear vs. angular acceleration, 

280t
free-fall, 28–29

equilibrium, 106, 344–359, 1384
and center of gravity,  347–349, 348
electrostatic, 706
of forces on particles, 650–651
and Hall effect, 858
of indeterminate structures, 355–356, 356
protons, 650–651
requirements of, 346–347
sample problems involving, 350–354, 555
secular, 1380
static, 345, 345–347, 346

equilibrium charge, capacitors in RC circuits, 
834–835
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equilibrium points, in potential energy 
curves, 199–200

equilibrium position, simple pendulum, 449
equilibrium separation, atoms in diatomic 

molecules, 216
equipartition of energy, 598
equipotential surfaces, 729–733, 730, 731
equivalence, principle of, 393–394
equivalent capacitance, 766

in parallel capacitors, 766, 766–767,  
768–769, 828t

in series capacitors, 767, 767–769, 828t
equivalent resistance:

in parallel resistors, 827, 827–830, 828t
in series resistors, 822, 828t

escape speed, 386–387, 386t, 744, 754
evaporative cooling, 574
event horizon, 395–396
events:

defined, 1188
Lorentz factor, 1193, 1193, 1196
Lorentz transformation, 1199–1204
measuring, 1188–1190
relativity of length,  1196–1199, 1197
relativity of simultaneity, 1190–1191
relativity of time, 1191–1195
relativity of velocity,  1204–1205

excess charge, 643
exchange coupling, 1019–1020
excitation, of electrons, 1261, 1261, 1330
excitation energy, 1290
excited states, 1261, 1261
expansion, of universe,  1432–1433
exploding bodies, Newton’s  second law and 

motion of, 231
explosions:

one-dimensional, 241, 241–242
two-dimensional, 242, 242–243

extended objects, 115
drawing rays to locate, 1090, 1090
in plane mirrors, 1074, 1074–1075

external agents, applied force from, 727–728
external electric field:

Gaussian surfaces, 706–707
isolated conductor in, 747, 747–748, 748

external field, 681
external forces, 106

collisions and internal energy transfers, 
206–207

system of particles, 230–233
work done with friction, 201–205
work done without friction, 202

external magnetic field:
and diamagnetism, 1014, 1015–1016, 1016
and ferromagnetism, 1014, 1019–1023, 

1020
and paramagnetism, 1014, 1016–1019

external torque, 325–326, 329, 330
eye, see human eye and fish eye
eyepiece:

compound microscope, 1096, 1096
refracting telescope,  1096–1097, 1097

F
face-centered cubic, 1328
Fahrenheit temperature scale, 545–547, 546, 

546t

falling body, terminal speed of, 138–140, 139
farad, 760
Faraday, Michael, 642, 666, 774–775,  

916, 933
Faraday’s experiments, 916

and Lenz’s law, 919, 919–923, 920
mutual induction, 944
reformulation, 929–930
self-induction, 934, 934–935

Faraday’s law of induction, 916, 916–919, 
1000–1003, 1037–1038

Maxwell’s equation form, 1007t
faults, rock, 63
femtometer, 1358
fermi (unit), 1358
Fermi, Enrico, 1386, 1396, 1412
Fermi–Dirac statistics, 1334
Fermi energy, 1331, 1334–1336
Fermilab accelerator, 1411
Fermi level, 1331
fermions, 1412, 1413
Fermi speed, 1331
Ferris, George Washington Gale, Jr., 327
Ferris wheel, 327–328
ferromagnetic materials, 1014, 1019–1023, 

1020
ferromagnetism, 1014, 1019–1023, 1020.  

See also iron
FET (field-effect transistor), 1345–1346, 1346
fiber Bragg grating, 1184–1185
field declination, 1008
field-effect transistor (FET), 1345–1346, 1346
field inclination, 1008
field of view:

refracting telescope, 1097
spherical mirror, 1077

final state, 557, 558, 594
finite well electron traps, 1268, 1268–1270
fires, fuel dispenser, 837, 837–838, 849
first law of thermodynamics, 556–562

equation and rules, 560–561
heat, work, and energy of a system, 

557–559, 562
sample problem involving, 562
special cases of, 560–561, 560t

first-order line, 1167
first reflection point, 1068
fish, electric, 831–832
fish eye, 1085–1086
fission, 1360
fission, nuclear, 1386–1392
fission rate, nuclear reactor, 1395–1396
floaters, 1149
floating, 416, 416–417
flow, 420–422, 421, 422, 424
fluids, 138, 406–426

apparent weight in, 417
Archimedes’ principle, 415, 415–419, 416
Bernoulli’s equation, 423–426
defined, 406–407
density, 407
equation of continuity,  420–423, 422
motion of ideal, 420, 420–421
Pascal’s principle, 413–414, 413–414
pressure, 407–408
pressure measurement, 412, 412–413
at rest, 409–411, 410

sample problems involving, 408, 411, 
418–419, 423, 426

fluid streamlines, 421–422, 422
flux. See also electric flux

magnetic, 917–918, 933, 999
fly fishing, 224
focal length:

compound microscope, 1096, 1096
refracting telescope, 1097, 1097
simple magnifying lens,  1095–1096, 1096
spherical mirrors, 1077–1078, 1078
thin lenses, 1087–1088, 1088

focal plane, 1121
focal point:

compound microscope, 1096, 1096
objects outside, 1079
real, 1078, 1078
refracting telescope, 1097, 1097
simple magnifying lens,  1095–1096, 1096
spherical mirrors, 1077–1078, 1078
thin lenses, 1087–1088, 1088
two-lens system, 1091,  1091–1092
virtual, 1078, 1078

football, see soccer
force constant, 168
forced oscillations, 456, 456–457
force law, for simple harmonic motion, 442
force(s), 327t. See also specific forces, e.g.: 

gravitational force
attractive, 374
buoyant, 415, 415–419, 416
centripetal, 141–144, 142
conservative, 188–190, 189
in crossed fields, 856–857
defined, 101
and diamagnetism, 1015–1016
due to entropy, 620
equilibrium, 106
equilibrium of, on particles, 650–651
external vs. internal, 106
forced oscillations, 966–974, 967, 968
and linear momentum, 234–235
lines of, 666–668
and motion, 14
net, 103, 106, 647, 648–650
and Newton’s first law, 103–105
Newton’s laws applied to, 115–121
and Newton’s second law, 105–108
and Newton’s third law, 113–114
nonconservative, 188
normal, 111, 111–112
path independence of  conservative, 

188–190, 189
principle of superposition for, 103
and radiation pressure, 1044
resultant, 103
of rolling, 314, 314–316
superposition principle for, 647
tension, 112, 112–113
unit of, 103, 103–104
as vector quantities, 103
and weight, 110–111

forward-bias connection,  junction rectifiers, 
1343, 1344

fractional efficiency, 1254
Franklin, Benjamin, 643, 652, 654, 811
Fraunhofer lines, 1325
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free-body diagrams, 106–108, 107, 115–121
free charge, 778–779
free-electron model, 803, 1331
free electrons, 790
free expansion:

first law of thermodynamics for, 560t, 561
ideal gases, 603–604, 615, 615–619, 616

free-fall acceleration (g), 28, 28–29, 450
free-fall flight, 28–29
free oscillations, 456, 967
free particle:

Heisenberg’s uncertainty principle for, 
1244–1246

matter waves for, 1259
free space, 1034
freeway entrance ramp, 41
freeze-frames, 438, 438–439
freezing point, 546t
freight ton, 10
frequency. See also angular  frequency

of circulating charged  particles, 861–866
cutoff, 1228–1229
of cyclotrons, 866–867
driving, 967
and index of refraction, 1114
natural, 967
of photons, 1226
proper, 1206
simple harmonic motion, 437–440, 440
sound waves, 509
and wavelength, 470–473
wave on stretched string, 478
waves, 472

Fresnel bright spot, 1149–1150, 1150
friction, 112, 112, 132–137, 133–134

cold-weld, 134–135, 135
as nonconservative force (kinetic friction), 

188
properties of, 135
and rolling, 314, 314, 343
sample problems involving, 136–137, 140
types of, 133, 134
work done by external force with, 201–205, 

202, 203
frictionless surface, 102, 112
fringing, 712
f subshells, 1309
fuel charge, nuclear reactor, 1395–1396
fuel rods, 1393, 1395–1396
fulcrum, 362
full electron levels, 1305
fully charged capacitor, 761
fully constructive interference, 484, 485, 485t, 

491, 512–513
fully destructive interference, 485, 485, 485t, 

491, 513
functional near infrared spectroscopy 

(fNIRS), 1097–1098
fundamental mode, 494
fused quartz:

coefficient of linear  expansion, 548t
index of refraction, 1052t
index of refraction as function of wave-

length, 1053
resistivity, 798t

fusion, 1360, 1398–1405
controlled, 1402–1405

laser, 1404–1405
most probable speed in, 1398, 1409
process of, 1398–1399
in Sun and stars, 1398, 1400, 1400–1402

fusion reaction, 1212

G
g (free-fall acceleration), 28, 28–29

measuring, with physical  pendulum, 450
G (gravitational constant), 373
galactic year, 12
galaxies, 372

Doppler shift, 1207
formation in early universe, 1436
gravitational lensing caused by, 395, 395
matter and antimatter in, 1414–1415
recession of, and expansion of universe, 

1432
Galilean transformation  equations, 1200
Galileo, 402
gamma cameras, 664
gamma-ray photons, 1400, 1414
gamma rays, 655, 853, 1034

bubble chamber track, 1241, 1241
radiation dosage, 1373
ultimate speed, 1188

gas constant, 580
gases, 578. See also ideal gases; kinetic theory 

of gases
compressibility, 407
confined to cylinder with movable piston, 

557, 557–559
density of selected, 407t
as fluids, 407
polyatomic, 594
specific heats of selected, 553t
speed of sound in, 507t
thermal conductivity of  selected, 564t

gasoline tanker truck, 849
gas state, 554
gastrolithes, 431
gauge, 811
gauge pressure, 411
gauss (unit), 853
Gauss, Carl Friedrich, 697
Gaussian form, of thin-lens  formula, 1108
Gaussian surfaces:

capacitors, 762
defined, 697
electric field flux through, 697, 697–701, 

698
external electric field,  706–707, 707
and Gauss’ law for magnetic fields, 999

Gauss’ law, 696–715
charged isolated conductor, 705–708
and Coulomb’s law, 703–705
cylindrical symmetry,  708–709, 709
defined, 697
dielectrics, 778, 778–781
for electric fields, 999, 1007t
and electric flux, 696–701
formulas, 699–701
for magnetic fields, 998–1000, 999, 1007t
and Maxwell’s equation, 998, 1007t
planar symmetry, 710–713, 711, 712
spherical symmetry, 713–715, 714

Geiger counter, 722–723, 723, 1352

general theory of relativity, 394, 1187, 1194
generator. See also alternating-current 

generator
electric, 817

Genzel, Reinhard, 390
geomagnetically induced current (GIC), 988
geomagnetic pole, 854, 1008, 1008, 1022, 1022
geometric addition of vectors, 45, 45–46, 46
geometrical optics, 1051, 1112, 1118, 1149
geosynchronous orbit, 402
Ghez, Andrea, 390
Glashow, Sheldon, 1429
glass:

coefficient of linear  expansion, 548t
index of refraction, 1052t
as insulator, 644
polarization of light by  reflection, 1060
rubbing rod with silk, 642, 642–644, 654
shattering by sound waves, 516

glaucoma, 1081–1082, 1082
Global Positioning System (GPS), 1, 1187
g-LOC (g-induced loss of  consciousness), 

83, 429
gluons, 866, 1426, 1430
go kart collision, 267, 267
gold, 1313

alpha particle scattering, 1354–1355
impact with alpha particle, 745
isotopes, 1356

Goudsmit, S. A., 884
GPS (Global Positioning System), 1, 1187
grand jeté, 231–232, 232
grand unification theories (GUTs), 1430
graphical integration:

of force in collision, 237–238, 238
for one-dimensional motion, 30, 30–31

graphs, average velocity on, 16, 16
grating spectroscope, 1168, 1168–1169
gravitation, 372–396

and Big Bang, 1436
defined, 373
Einstein’s view of, 393–396, 395
gravitational acceleration (ag), 378
inside Earth, 381–383
near Earth’s surface, 377–381, 378
Newton’s law of, 373–374, 388
potential energy of, 383–387
sample problems involving, 376, 380–381, 

387, 392–393
variation with altitude, 378t

gravitational constant (G), 373
gravitational force, 109–110, 654, 1414

center of gravity, 347–349, 348
and Newton’s law of  gravitation, 373–374, 

374
pendulums, 448, 449
and potential energy, 385
and principle of  superposition, 375–377
work done by, 163–166, 164

gravitational lensing, 395, 395
gravitational potential energy, 187, 383–387, 

384
determining, 191
and escape speed, 386–387
and gravitational force, 385

gravitational waves, 469,  1136–1138, 1137
gray (unit), 1373
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Griffith, George, 382
ground currents, 710
grounding, electrical, 644, 849
grounding a circuit, 823–824, 824
ground speed, 97
ground state, 1261, 1261

wave function of hydrogen, 1282–1284t, 
1283

zero-point energy, 1266
gry (unit), 8
g subshells, 1309
Guericke, Otto von, 428
g units (acceleration), 21
gurney, 772–773
gyroscope precession, 333, 333–334

H
hadrons, 1414, 1421
half-life, 1363, 1371, 1411
half-width of diffraction grating lines, 1167, 

1167–1168
Hall, Edwin H., 858
Hall effect, 857–861, 858, 869
Hall-effect thrusters, 885
Hall potential difference, 858
halogens, 1310
halo nuclides, 1358
halteres, 261–262
hammer-fist strike, 268, 268
hand-to-hand current, 997
hang, in basketball, 93
hanging blocks, 115, 115–116
hard reflection, of traveling waves at  

boundary, 492
harmonic motion, 437
harmonic number, 494, 518–522
harmonic series, 494
head-on crash, 246–247
hearing threshold, 517t
heat, 550–567, 551, 624–626

absorption by solids and  liquids, 552–556
absorption of, 550–556
defined, 551
first law of thermodynamics, 556–562
path-dependent quantity, 559
sample problems involving, 555–556, 562, 

566–567
signs for, 551–552
and temperature, 551–552, 552, 555–556
thermal expansion, 547–550, 548
and thermal expansion, 547–550, 548
transfer of, 563–567
and work, 557–560

heat capacity, 552
heat engines, 621–626
heat of fusion, 554, 554t
heat of vaporization, 554, 554t
heat pumps, 627, 640
heats of transformation,  553–554, 554t
heat transfer, 563–567
heat transfer mechanisms, 562–567
hectare, 11
hedge maze, 64
height, of potential energy step, 1246–1247
Heisenberg’s uncertainty  principle,  

1244–1246
helical paths, charged particles, 863–866, 864

helium burning, in fusion, 1400
helium–neon gas laser, 1317, 1317–1319
Helmholtz coils, 911, 914
henry (unit), 933
hertz, 437
Hesperoyucca whipplei, 9
Higgs, Peter, 1430
Higgs boson, 1430
Higgs field, 1430
high heels, 294–295
holes, 1312, 1337

majority carrier in p-type  semiconductors, 
1339, 1340t

minority carrier in n-type semiconductors, 
1339, 1340t

holograms, 1315
home-base level, for spectral series, 1280
Hooke, Robert, 167
Hooke’s law, 167–168, 197
hoop, rotational inertia for, 287t
horizontal range, in projectile motion, 77, 79
horsepower (hp), 175
hot chocolate effect, 532
h subshells, 1309
Hubble constant, 1432
Hubble’s law, 1432–1433
human body:

as conductor, 644–645
physiological emf devices, 818

human eye, 1095
floaters, 1149
image production, 1074, 1074, 1085–1086, 

1086
and resolvability in vision, 1159–1160, 1161
sensitivity to different  wavelengths, 1034, 

1034
human wave, 497
Huygens, Christian, 1112
Huygens’ principle, 1112, 1112–1113
Huygens’ wavelets, 1150
hydraulic compression, 358
hydraulic engineering, 406
hydraulic jack, 414
hydraulic jump, 435
hydraulic lever, 414, 414
hydraulic stress, 358–359, 358t
hydrogen, 1275–1286

Bohr model, 1276–1278, 1277
as electron trap, 1276
emission lines, 1168,  1168–1169
formation in early universe, 1436
fusion, 1398–1405
in fusion, 1212
heats of transformation, 554t
quantum numbers, 1280–1282, 1282t
RMS speed at room  temperature, 585t
and Schrödinger’s equation, 1278–1286
spectrum of, 1279–1280
speed of sound in, 507t
thermal conductivity, 564t
wave function of ground state, 1282–1284t, 

1283
hydrogen atom model, 723
hydrogen bomb (thermonuclear bomb), 

1402–1403
hydrostatic pressures, 409–411
hyperbaric chamber, 772–773, 773

hypercharge, 1440
hysteresis, 1022, 1022

I
ice skating, 577
icicles, 575
ideal diode, 787
ideal emf devices, 818
ideal engines, 621
ideal fluids, 420, 420–421
ideal gases, 579–583

adiabatic expansion, 601, 601–604
average speed of molecules, 590–591
free expansion, 615, 615–619, 616
ideal gas law, 580–581
internal energy, 593–597
mean free path, 587, 587–589
molar specific heats, 593–597
most probable speed of  molecules, 591
RMS speed, 583–585, 584, 585t
sample problems involving, 582–583, 585, 

589, 592, 596–597, 603–604
translational kinetic energy, 586
work done by, 581–583

ideal gas law, 580–581, 581
ideal gas temperature, 545
ideal inductor, 935
ideal refrigerators, 627
ideal solenoid, 899
ideal spring, 168
ideal toroids, 901
ideal transformers, 986, 986–987
ignition, in magnetic  confinement, 1404
image distances, 1074
images, 1072–1101

defined, 1072–1073
extended objects, 1090, 1090
from half-submerged eye, 1085–1086, 1086
locating by drawing rays, 1090, 1090
from plane mirrors, 1074, 1074–1076, 1075
from spherical mirrors, 1076–1083, 1077, 

1078, 1079, 1080t, 1081, 1082,  
1096–1097, 1097

from spherical refracting surfaces,  
1083–1086, 1084, 1098, 1098–1099

from thin lenses, 1086–1094, 1087, 1088, 
1089, 1090, 1090t, 1091, 1099,  1099–1100

types of, 1072–1073
impedance, 897–988, 976, 981–982
impedance matching, in  transformers, 897–988
impulse, 237

series of collisions, 238, 238
single collision, 237, 237

incident ray, 1051, 1051
incoherent light, 1122
incompressible flow, 420
indefinite integral, 27
independent particle model, of nucleus, 

1374–1375
indeterminate structures,  equilibrium of, 

355–356, 356
index of refraction

and chromatic dispersion, 1053, 1053
common materials, 1052t
defined, 1052, 1113
and wavelength, 1114–1115

induced charge, 644–645
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induced current, 916
induced dipole moment,  737–738, 738
induced electric dipole moment, 737–738, 738
induced electric fields, 927–932, 928, 931, 

1037, 1037–1038
induced emf, 916, 918–919, 921–923, 924, 928
induced magnetic fields,  1000–1003, 1001, 

1002
displacement current, 1005, 1005–1006
finding, 1005–1006
from traveling electromagnetic waves, 1039, 

1039–1040
inductance, 932–933

LC oscillations, 957–959
RLC circuits, 963–965
RL circuits, 935–939, 936, 937
series RLC circuits, 974–981
solenoids, 933, 933

induction:
of electric fields, 927–932
and energy density of  magnetic fields, 

942–943
and energy stored in magnetic fields, 

940–941
and energy transfers, 923–927, 924, 926
Faraday’s and Lenz’s laws, 915–945, 1037
in inductors, 932–933
Maxwell’s law, 1001, 1039
mutual, 943–945, 944
and RL circuits, 935–939, 936, 937
self-, 934, 934–935, 943

inductive reactance, 972
inductive time constant, 937–938
inductors, 932–933

with ac generator, 972,  972–974, 973
phase and amplitude relationships for ac 

circuits, 973t
RL circuits, 935–939, 936, 937
series RLC circuits, 975, 976

inelastic collisions:
defined, 244
in one dimension, 244,  244–246, 245
in two dimensions, 251

inertial confinement, 1404
inertial reference frames, 103, 1187–1190
inexact differentials, 559
infinitely deep potential energy well, 1260, 

1261
infinite potential well, 1261

detection probability in, 1264–1265
energy levels in, 1262–1263, 1274–1275, 

1306–1308
wave function normalization in, 1267

inflation, of early universe, 1435
initial state, 557, 558, 594
ink-jet printing, 682, 682
in phase:

ac circuits, 973t
resistive load, 968
sound waves, 512, 513
thin-film interference, 1127, 1129, 1129t
waves, 483, 484

instantaneous acceleration:
one-dimensional motion, 20–23, 22
two- and three-dimensional motion, 73–75

instantaneous angular  acceleration, 274
instantaneous angular velocity, 274

instantaneous power, 174, 208
instantaneous velocity:

one-dimensional motion, 18–19
two- and three-dimensional motion, 70–72

insulators, 644–645, 807
electrical properties, 1330, 1330
resistivities of selected, 798t
unit cell, 1328

integrated circuits, 1346
intensity:

defined, 1041
diffraction gratings, 1166, 1166–1167
double-slit diffraction, 1163, 1163–1164
double-slit interference,  1123–1126, 1124, 

1164
electromagnetic waves,  1041–1042, 1042
single-slit diffraction,  1153–1158, 1155, 

1156
of sound waves, 515–518, 516
of transmitted polarized light, 1047–1050, 

1048, 1049
interference, 474, 483–486, 485, 1111–1138. 

See also  diffraction
combining more than two waves,  

1125–1126
diffraction vs., 1163–1164
double-slit from matter waves, 1239, 

1239–1240
double-slit from single  photons, 1234, 

1235–1236
fully constructive, 484, 485, 485t, 491, 

512–513
fully destructive, 485, 485, 485t, 491, 513
intensity in double-slit,  1122–1126, 1124
intermediate, 485, 485t, 486, 513
and rainbows, 1115–1116, 1116
sound waves, 511–514, 512
thin films, 1126–1135, 1127, 1128, 1129t
and wave theory of light, 1111–1116
Young’s double-slit experiment, 1117–1121, 

1118, 1119
interference factor, 1164
interference fringes, 1119, 1119
interference pattern, 1119, 1119, 1121
interfering waves, 474, 483–486, 485
interferometer, 1135–1138, 1136
intermediate interference, 485, 485t, 486, 513
internal energy, 541, 559

and conservation of total energy, 205
and external forces, 207
and first law of  thermodynamics, 559–560
of ideal gas by kinetic theory, 593–597

internal forces, 106, 230–233
internal resistance:

ammeters, 833
circuits, 821, 821
emf devices, 824–825

internal torque, 325
International Bureau of Weights and 

Standards, 3, 7
International System of Units, 2–3
interocular pressure (IOP), 1081–1082
interplanar spacing, 1175
intrinsic angular momentum, 1010, 1012
inverse cosine, 49, 49
inverse sine, 49, 49
inverse tangent, 49, 49

inverse trigonometric functions, 49, 49
inverted images, 1079, 1080
ionization energy, 1294, 1295
ionized atoms, 1280
ion tail, 1064
iron, 1310

Curie temperature, 1020
ferromagnetic materials, 1014, 1019, 1020
quantum corrals, 1272, 1273
radius of nucleus, 653–654
resistivity, 798t

iron filings:
bar magnet’s effect on, 999, 999
current-carrying wire’s effect on, 888, 888

irreversible processes, 614, 615, 616–620
irrotational flow, 420, 424
island of stability, 1357
isobaric processes summarized, 604, 604t
isobars, 1357
isochoric processes summarized, 604, 604t
isolated spherical capacitors, 764
isolated system, 193–194

conservation of total energy, 207–208
linear momentum  conservation, 240–241

isospin, 1440
isotherm, 581, 581
isothermal compression, 581, 622, 622
isothermal expansion, 581

Carnot engine, 622, 622
entropy change, 615–616, 616

isothermal processes, 604, 604t
isotopes, 1356
isotopic abundance, 1356n
isotropic materials, 798
isotropic point source, 1042
isotropic sound source, 516

J
Jackson, Michael, 308–309, 309
jerk, vehicle, 42
joint, in rock layers, 147
Josephson junction, 1250
joule (J), 157, 552
judo, 295–296, 295, 305, 305
junction diodes, 807
junction lasers, 1345, 1345
junction plane, 1341, 1342
junction rectifiers, 1343, 1343
junction rule, Kirchoff’s, 826, 832
junctions, circuits, 826–827. See also p-n  

junctions
Jupiter, escape speed for, 386t

K
kaons, 1195, 1411

and eightfold way, 1423t
and strangeness, 1422

karate, see taekwondo
kelvins, 542, 548
Kelvin temperature scale, 542, 542, 546
Kepler, Johannes, 388
Kepler’s first law (law of orbits), 388, 388
Kepler’s second law (law of areas), 388, 

388–389
Kepler’s third law (law of  periods), 389,  

389, 389t
Kibble balance, 7
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kilocalorie, 552
kilogram, 7, 7
kilopascals (kPa), 428
kilowatt-hour, 175
kinematics, 14
kinetic energy, 298t, 1212, 1212–1213

in collisions, 243–244
and conservation of mechanical energy, 

193–196
and conservation of total energy, 205–209
defined, 157
and momentum, 1213, 1215
in pion decay, 1418
and relativity, 1212, 1212–1213
of rolling, 312, 313–316
of rotation, 285–286, 286
sample problems involving, 157–158,  

170, 290
satellites in orbit, 391, 391
simple harmonic motion, 445, 445
traveling wave on stretched string, 478, 478
and work, 159–163, 160
yo-yo, 317

kinetic energy density, of fluids, 424
kinetic energy function, 198
kinetic frictional force, 134, 134–135

as nonconservative force, 188
rolling wheel, 314

kinetic theory of gases, 578–604
adiabatic expansion of ideal gases, 601, 

601–604
average speed of molecules, 590–591
and Avogadro’s number, 579
distribution of molecular speeds, 589–592, 

590
ideal gases, 579–583
mean free path, 587, 587–589
molar specific heat, 593–599
most probable speed of  molecules, 591
pressure, temperature, and RMS speed, 

583–585
and quantum theory, 598, 600
RMS speed, 583–585, 585t
translational kinetic energy, 586

Kirchhoff, Gustav Robert, 820
Kirchhoff’s current law, 826
Kirchhoff’s junction rule, 826
Kirchhoff’s loop rule, 820
Kirchhoff’s voltage law, 820
K shell, 1312, 1312
knots (speed), 43

L
lagging, in ac circuits, 973, 973t
lagging waves, 486
lambda particles, eightfold way and, 1423t
lambda-zero particle, 1424
laminar flow, 420
language, and magnetic dipole moment, 875
Laplace equation, 369
Large Magellanic Cloud, 372, 1369
laser fusion, 1404–1405
Laser Interferometer Gravitational-wave 

Observatory (LIGO), 1137, 1137–1138
lasers, 1314–1319

coherence, 1123
helium-neon gas laser, 1317, 1317–1319

junction, 1345, 1345
operation, 1316, 1316–1319
radiation pressure, 1045
surgery applications, 1315, 1315

lasing, 1318
lateral magnification:

compound microscope, 1096
spherical mirrors, 1079–1080
two-lens system, 1091,  1091–1092

lateral manipulation, using STM, 1250
lattice, 356, 356, 1328, 1328
law of areas (Kepler’s second law), 388, 

388–389
law of Biot and Savart, 887–888, 894, 904
law of conservation of angular momentum, 

328–332
law of conservation of electric charge, 

654–656
law of conservation of energy, 205–209, 207
law of conservation of linear momentum, 240
law of orbits (Kepler’s first law), 388, 388
law of periods (Kepler’s third law), 389, 389, 

389t
law of reflection, 1051
law of refraction, 1052, 1112, 1112–1115
Lawrence, E. O., 885
laws of physics, 51–52
Lawson’s criterion, 1403, 1404–1405
LC oscillations, 957–959

and electrical–mechanical analogy,  
959–960, 959t

qualitative aspects, 957, 957–959, 959
quantitative aspects, 960–963

LC oscillators, 959–963, 959t
electrical–mechanical  analogy, 959–960
electromagnetic waves, 1034, 1034
quantitative treatment of, 960–963

lead:
coefficient of linear  expansion, 548t
heats of transformation, 554t
specific heats, 553t
thermal conductivity, 564t

leading, in ac circuits, 973, 973t
leading waves, 486
LEDs (light-emitting diodes), 1344–1345, 

1345
Leidenfrost effect, 574
length:

coherence, 1315
consequences of Lorentz transformation 

equations, 1200, 1201t
length contraction, 1196–1197, 1202–1203
proper, 1196
relativity of, 1196–1199, 1197
rest, 1196
units of, 3–4
in wavelengths of light, 1136

lens, 1087. See also thin lenses
bi-concave, 1109
bi-convex, 1109
converging, 1087, 1087, 1088, 1088, 1089, 

1089, 1090t
diffraction by, 1159
diverging, 1087, 1088, 1089, 1089, 1090t
magnifying, 1095–1096, 1096
meniscus concave, 1109
meniscus convex, 1109

plane-concave, 1109
plane-convex, 1109
simple magnifying, 1095–1096, 1096
symmetric, 1089, 1092–1093
thin-film interference of  coating on, 

1132–1133
lens maker’s equation, 1087–1088
Lenz’s law, 919, 919–923, 920, 934
lepton number, 1420–1421
leptons, 1414, 1419–1421, 1420t

conservation of lepton  number, 1420–1421
formation in early universe, 1435

let-go current, 997
lifetime:

compound nucleus, 1376
of muon, 1193
radionuclide, 1363–1364
subatomic particles, 1193

lifting capacity, balloons, 610
light, 469, 1037. See also diffraction; interfer-

ence; photons; reflection; refraction
absorption and emission by atoms, 1295
coherent, 1122–1123, 1315
components of, 1053–1054
Doppler effect, 525
in early universe, 1435–1436
Huygens’ principle, 1112, 1112–1113
incoherent, 1122
law of reflection, 1051
law of refraction, 1052, 1112, 1112–1115
monochromatic, 1053,  1055–1056, 1315
polarized light, 1046,  1046–1048, 1047
as probability wave,  1234–1236
speed of, 469, 1037
travel through media of  different indices 

of refraction, 1114, 1114
unpolarized light, 1047, 1047–1048
visible, 1033, 1034, 1188
as wave, 1111–1116, 1112, 1114
wave theory of, 1111–1116, 1149–1150
white, 1053, 1053, 1054, 1152–1153

light-emitting diodes (LEDs), 1344–1345, 
1345

light-gathering power refracting telescope, 
1097

lightning, 642, 759
in creation of lodestones, 1022
ground currents, 710
standing under trees, dangers of, 842, 842
strike radius, 710, 710

light quantum, 1226
light wave, 1037, 1042–1043
line(s):

diffraction gratings, 1167
spectral, 1280
as unit, 8

linear charge density, 674, 674t
linear density, of stretched string, 476, 477
linear expansion, 548–549, 549
linear momentum, 234–235, 327t

completely inelastic collisions in one 
dimension, 244–246

conservation of, 240–243, 252–253
elastic collisions in one dimension, with 

moving target, 249–250
elastic collisions in one dimension, with 

stationary target, 248–249
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linear momentum (continued )
elastic collisions in two dimensions, 251
at equilibrium, 345
and impulse of series of  collisions, 238
and impulse of single  collision, 237
inelastic collisions in one dimension, 244, 

244–246, 245
inelastic collisions in two dimensions, 251
of photons, 1231, 1231–1234, 1232
sample problems involving, 239, 241–243, 

246–247, 250, 254
system of particles, 235–236

linear momentum-impulse  theorem, 237
linear motion, 272
linear oscillator, 442, 442–444
linear simple harmonic  oscillators, 442, 

442–444
line integral, 731
line of action, of torque, 292, 292
line of symmetry, center of mass of solid 

bodies with, 228
line shapes, diffraction grating, 1172
lines of charge, electric field due to, 674–679, 

675
lines of force, 666–668
liquefaction, of ground during  

earthquakes, 11
liquids:

compressibility, 358, 407
density of selected, 407t
as fluids, 406–407
heat absorption, 552–556
speed of sound in, 507t
thermal expansion, 549

liquid state, 554
Local Group, 372
Local Supercluster, 372
lodestones, 1007, 1022
longitudinal motion, 470
longitudinal waves, 470, 470
long jump, conservation of angular momen-

tum in, 330, 330
loop equations, multiloop  circuits, 832–833
loop model, for electron orbits, 1013, 1013
loop rule, 820, 826–827
Lorentz factor, 1193, 1193, 1196
Lorentz transformation:

Galilean transformation  equations, 1200
Lorentz transformation  equations,  

1200–1201
pairs of events, 1201
and reversing the sequence of events, 

1203–1204
Loschmidt number, 611
loudness, 515, 516
L shell, 1312, 1312
Lyman series, 1280, 1281, 1286

M
Mach cone, 529, 529
Mach cone angle, 529, 529
Mach number, 529
macroscopic clocks, time  dilation tests, 1194
magic electron numbers, 1375
magnetically hard material, 1025
magnetically soft material, 1025
magnetic confinement,  1403–1404

magnetic dipole moment,  874–876, 875, 1295, 
1295, 1296. See also orbital  magnetic 
dipole moment; spin magnetic dipole 
moment

of compass needle, 1023
diamagnetic materials, 1014, 1015–1016
effective, 1299
ferromagnetic materials, 1014, 1019–1021, 

1023
orbital, 1297–1298
paramagnetic materials, 1014, 1017, 1018

magnetic dipoles, 854, 874–876, 875, 999, 999
rotating in magnetic field, 876

magnetic domains, 1020–1021, 1021
magnetic energy, 940–941
magnetic energy density, 942–943
magnetic field, 850–876,  886–905. See also 

Earth’s magnetic field
Ampere’s law, 894–898, 895, 896
circulating charged particle, 862, 862–866, 

864
crossed fields and electrons, 855–857, 858
current-carrying coils as  magnetic dipoles, 

902–904
cyclotrons and synchrotrons, 866–869, 867
defined, 851–855, 853
dipole moment, 874–876
displacement current,  1003–1007, 1005
due to current, 887–898
Earth, 1008, 1008–1009, 1009
energy density of, 942–943
energy stored in, 940–941
external, 1014–1022
and Faraday’s law of  induction, 916–919
force on current-carrying wires, 869–871
Gauss’ law for, 998–1000, 999, 1007t
Hall effect, 857–861, 858
induced, 1000–1003, 1001, 1002
induced electric field from, 930–931
induced emf in, 921–923
and Lenz’ law, 919, 919–923, 920
parallel currents, 891–892, 892
producing, 851
rms of, 1041–1042
selected objects and  situations, 853t
solenoids and toroids, 899–901
torque on current loops, 872, 872–873
traveling electromagnetic waves, 1034, 

1034–1040, 1035, 1036, 1037
magnetic field lines, 853–854, 854, 888, 888
magnetic flux, 917–918, 933, 999
magnetic force, 642, 851

circulating charged particle, 862, 862–866, 
864

current-carrying wire, 869–871, 870
magnetic potential energy, 940–941
parallel currents, 891–892, 892
particle in magnetic field, 852–853

magnetic materials, 998, 1014
magnetic monopole, 851, 999
magnetic resonance, 1303–1304, 1304
magnetic resonance imaging (MRI), 998, 998
magnetic wave component, of electromag-

netic waves, 1035, 1036
magnetism, 998–1024. See also Earth’s  

magnetic field
of atoms, 1295, 1295

diamagnetism, 1014,  1015–1016, 1016
and displacement current, 1003–1007
of electrons, 1009–1014, 1011, 1012, 1013
ferromagnetism, 1014,  1019–1023, 1020
Gauss’ law for magnetic fields, 998–1000, 

999, 1007t
induced magnetic fields, 1000–1003
magnets, 1007–1009
Mid-Atlantic Ridge,  1008–1009, 1009
paramagnetism, 1014,  1016–1019, 1017

magnetization:
ferromagnetic materials, 1020, 1020
paramagnetic materials,  1017–1019, 1018

magnetization curves:
ferromagnetic materials, 1020, 1020
hysteresis, 1022, 1022
paramagnetic materials, 1018, 1018

magnetizing current,  transformers, 986
magnetoencephalography (MEG), 891
magnetohydrodynamic (MHD) drive, 859, 

859
magnetometers, 1008
magnets, 642, 850–855, 851, 854, 1007–1009

applications, 850–851
bar, 854, 854, 875, 875t, 999, 999, 1008, 

1008
electromagnets, 851, 851, 853t
north pole, 854, 854, 999
permanent, 851

magnification:
angular, 1095–1097
lateral, 1091, 1091–1092
magnification, 1079–1080

magnifying lens, simple,  1095–1096, 1096
magnitude:

of acceleration, in one-dimensional 
motion, 21

of acceleration, in two- and three- 
dimensional motion, 74

of angular momentum, 320–321
of displacement in one-dimensional 

motion, 15
estimating order of, 5
of free-fall acceleration, 28
of vectors, 45–46, 46
of velocity, in one-dimensional motion, 15
of velocity, in two- and three dimensional 

motion, 74
magnitude-angle notation (vectors), 47
magnitude ratio, traveling electromagnetic 

waves, 1036
majority carriers, 1339, 1341–1342, 1342
mantle (Earth), 378, 400, 400–401
Marianas Trench, 429
Mars, thermal expansion, 577
martial arts, 268, 268, 295–296, 295, 305, 305
mass, 298t

approximate, 7t
defined, 104–105
sample problems involving, 254
scalar nature of, 45, 105
units of, 6–7
and wave speed on stretched string, 476
weight vs., 111

mass dampers, 445–446
mass energy, 1210–1212
mass excess, 1359
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mass flow rate, 422
massless cord, 112, 112
massless-frictionless pulleys, 112, 113, 115, 

115–116
massless spring, 168
mass number, 655, 1356, 1356t
mass spectrometer, 865,  865–866, 884, 884
matter:

antimatter, 1386t, 1414–1415
baryonic, 1434, 1437
dark, 1434, 1437, 1437
energy released by 1 kg, 1386t
magnetism of, see magnetism
nonbaryonic, 1437, 1437
nuclear, 1361
particle nature of, 1240, 1240–1241
wave nature of, 1238–1241

matter wave interference, 1240
matter waves, 469, 1238–1241, 1258–1292

barrier tunneling, 1248–1251
of electrons, 1238–1241, 1239, 1240, 1241, 

1245, 1258
of electrons in finite wells, 1268,  

1268–1270, 1269
energies of trapped electrons, 1258–1263
and Heisenberg’s uncertainty principle, 

1244–1246
hydrogen atom models, 1275–1286
reflection from a potential step, 1246–1248
Schrödinger’s equation for, 1242–1244
two- and three-dimensional electron traps, 

1270–1275
wave functions of trapped electrons, 

1264–1267
maxima:

diffraction patterns, 1149, 1149
double-slit interference, 1119, 1119–1121, 

1123–1124, 1124
single-slit diffraction, 1149, 1150, 1154, 

1156, 1157–1158
thin-film interference, 1129

Maxwell, James Clerk, 590, 598, 642, 895, 
1001, 1033, 1044, 1112, 1429

Maxwellian electromagnetism, 1410
Maxwell’s equations, 998, 1007, 1007t, 1243
Maxwell’s law of induction, 1001, 1039
Maxwell’s rainbow, 1033,  1033–1034, 1034
Maxwell’s speed distribution law, 590, 

590–591
maze, 64
mean free distance, 804
mean free path, of gases, 587, 587–589
mean free time, 804
mean life, radioactive decay, 1363, 1411
measurement, 1–7

of angles, 49
conversion factors, 3
International System of Units, 2–3
of length, 3–4
of mass, 6–7
of pressure, 412, 412–413
sample problems involving, 5
significant figures and decimal places, 4
standards for, 1–2
of time, 5–6

mechanical energy:
conservation of, 193–196

and conservation of total energy, 205
damped harmonic oscillator, 453–455
and electric potential energy, 745–746
satellites in orbit, 391, 391
in simple harmonic motion, 444–445, 445

mechanical waves, 469. See also wave(s)
medical procedures and equipment:

air‐puff tonometer, 1081–1082, 1081
bone screw, 308
cancer radiation treatment, 655, 664
COVID‐19 drops, 723, 758, 758
cyclotron in cancer treatment, 868–869, 

868
defibrillator devices, 788, 788
epidural, 173–174, 173, 1184, 1184
fiber Bragg grating, 1184–1185, 1184
functional near infrared spectroscopy 

(fNIRS), 1097–1098, 1097
gamma camera, 664, 664
glaucoma, 1081–1082, 1081
hospital gurney fire with fire victim, 

772–773, 772
interocular pressure (IOP), 1081–1082, 

1081
magnetic resonance imaging (MRI), 998, 

998, 926, 926
magnetoencephalography (MEG), 891, 

891
neutron beam therapy, 868, 868
noncontact thermometer, 577, 577
positron emission tomography (PET), 656, 

656
single‐port surgery with optical fibers, 

1057–1058, 1058
transcranial magnetic stimulation, 913, 913
ultrasound measurement of blood flow, 

537–538
medium, 1037
megaphones, 1149
Meitner, Lise, 655
melting point, 554, 554t
Men in Black, upside down racing, 143–144
meniscus concave lens, 1109
meniscus convex lens, 1109
mercury barometer, 408, 412, 412
mercury thermometer, 548
mesons, 1414, 1421

and eightfold way, 1423–1424, 1423t
and quark model, 1427
underlying structure  suggested, 1424

messenger particles, 1428–1430
metallic conductors, 790, 807
metal-oxide-semiconductor-field-effect transis-

tor (MOSFET), 1345–1346, 1346
metals:

coefficient of linear  expansion, 548t
density of occupied states, 1335–1336, 1336
density of states, 1332–1333, 1333
elastic properties of selected, 358t
electrical properties,  1327–1336
lattice, 356, 356
occupancy probability, 1334, 1334–1335
resistivities of selected, 798t
speed of sound in, 507t
thermal conductivity of  selected, 564t
unit cell, 1328

metastable states, 1316

meter (m), 1–4
metric system, 2
Michelson’s interferometer, 1135–1138, 1136
microfarad, 760
micron, 8
microscopes, 1094, 1096, 1096
microscopic clocks, time dilation tests, 1193
microstates, in statistical mechanics,  

629–633
microwaves, 469, 525, 685–686
Mid-Atlantic Ridge, magnetism, 1008–1009, 

1009
Milky Way Galaxy, 372–373
Millikan, Robert A., 681
Millikan oil-drop experiment, 681, 681–682
millimeter of mercury (mm Hg), 408
miniature black holes, 399
minima:

circular aperture diffraction, 1158–1159, 
1159

diffraction patterns, 1149, 1149
double-slit interference, 1119, 1119–1121, 

1123–1124, 1124
single-slit diffraction,  1150–1152, 1151
thin-film interference, 1129

minority carriers, 1339, 1342
mirage, 1073, 1073
mirror maze, 1075, 1075–1076
mirrors, 1074

length, 1110
maze, 1075, 1075–1076
in Michelson’s interferometer, 1136, 1136
plane, 1074, 1074–1076, 1075
spherical, 1076–1083, 1077, 1078, 1079, 

1080t, 1081, 1082, 1096–1097, 1097
moderators, for nuclear reactors, 1393
modulus of elasticity, 357
Mohole, 401
molar mass, 579
molar specific heat, 553, 553t, 593–599

at constant pressure, 595–596, 595–596
at constant volume, 594, 594–595, 594t, 595
and degrees of freedom, 597–599, 598t
of ideal gas, 593–597
and rotational/oscillatory motion, 598, 

600, 600
of selected materials, 553t

molar specific heats, 553, 553t
mole (mol), 553
molecular mass, 579
molecular speeds, Maxwell’s  distribution of, 

589–592, 590
molecules, 1294
moment arm, 292, 292
moment of inertia, 285
momentum, 234–235. See also angular 

momentum; linear momentum
and kinetic energy, 1213, 1213
in pion decay, 1418
in proton decay, 1424
and relativity, 1209–1214
and uncertainty principle, 1245–1246

monatomic molecules, 593, 598, 598, 598t
monochromatic light, 1053, 1055–1056

lasers, 1315
reflection and refraction of, 1055–1056

monovalent atom, 1331
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Moon, 372, 373
escape speed, 386t
potential effect on humans, 399
radioactive dating of rocks, 1372
thermal expansion on, 550

more capacitive than inductive circuit, 977
more inductive than capacitive circuit, 977
Moseley plot, 1312, 1313–1314
MOSFET (metal-oxide-semiconductor-field-

effect transistor), 1345–1346, 1346
most probable configuration, 631
most probable speed in fusion, 591, 1398, 

1409
motion:

graphical integration, 30, 30–31
one-dimensional, see one-dimensional 

motion
oscillatory and rotational, 598, 600, 600
projectile, 75, 75–81
properties of, 14
relative in one dimension, 84, 84–86
relative in two dimensions, 86, 86–87
of system’s center of mass, 230
three-dimensional, see three-dimensional 

motion
two-dimensional, see two-dimensional 

motion
MRI (magnetic resonance  imaging), 998, 998
M shell, 1312, 1312
multiloop circuits, 826, 826–833, 827, 832, 

832–833
current in, 826–827
resistances in parallel, 827, 827–830

multimeter, 833
multiplication factor, nuclear reactors, 1394
multiplication of vectors, 52–58

multiplying a vector by a scalar, 53
multiplying two vectors, 53–58
scalar product of, 53–54, 54
vector product of, 53, 55–58, 56

multiplicity, of configurations in statistical 
mechanics, 629–633

muon neutrinos, 1419, 1420t
muons, 728–729, 1193, 1411, 1420, 1420t

decay, 1417–1418
from proton–antiproton  annihilation, 

1416t, 1417
musical sounds, 518–522, 519, 520, 521
mutual induction, 943–945, 944
mysterious sliding stones, 147

N
nano-technology, 1259
National Institute of Standards and 

Technology (NIST), 6
natural angular frequency, 456, 457, 967
nautical mile, 11, 12
NAVSTAR satellites, 1187
n channel, in MOSFET, 1346
near point, 1095, 1095
negative charge, 643–644
negative charge carriers, 791, 794
negative direction, 14, 14
negative lift, in race cars,  143–144, 144, 434
negative terminal, batteries, 760–761,  

761, 818
negative work, 559

net current, 895–896, 900–901
net electric charge, 643, 644
net electric field, 669–670
net electric flux, 698–699
net electric potential, 735
net force, 103, 106, 647, 648–650
net torque, 292, 325–326, 872–873
net wave, 482, 483, 483, 521
net work, 161, 623
neutral equilibrium (potential energy 

curves), 199
neutralization, of charge, 643
neutral pion, 1188
neutrinos, 655, 1368

and beta decay, 1368, 1369
and conservation of lepton number, 

1420–1421
in fusion, 1400
as leptons, 1414
as nonbaryonic dark matter, 1434
from proton–antiproton  annihilation, 

1416t
neutron beam therapy, 868–869
neutron capture, 1376
neutron diffraction, 1240
neutron excess, 1357
neutron number, 1356, 1356t
neutron-rich nuclei, 1388
neutrons, 644, 1411

accelerator studies, 866
balance in nuclear reactors, 1393,  

1393–1394
charge, 652–653, 653t
control in nuclear reactors, 1392–1395, 

1393
discovery of, 1429
and eightfold way, 1423t
as fermions, 1412
formation in early universe, 1435
as hadrons, 1414
magnetic dipole moment, 875
and mass number, 655
as matter wave, 1240
spin angular momentum, 1012
thermal, 1386–1393

neutron stars, 94, 400
density of core, 407t
escape speed, 386t
magnetic field at surface of, 853t

newton (N), 103
Newton, Isaac, 102, 373, 388, 1149
Newtonian form, of thin-lens formula, 1108
Newtonian mechanics, 102, 1243
Newtonian physics, 1259
newton per coulomb, 666
Newton’s first law, 102–105
Newton’s law of gravitation, 373–374, 388
Newton’s laws, 102, 115–121
Newton’s second law, 105–108

angular form, 322–323
and Bohr model of hydrogen, 1276–1278, 

1277
for rotation, 292–296
sample problems involving, 107–108, 

115–121, 233, 294–296
system of particles, 230–233, 231
in terms of momentum, 234–235

translational vs. rotational forms,  
298t, 327t

units in, 106t
Newton’s third law, 113–114
Nichrome, 811, 815
NIST (National Institute of Standards and 

Technology), 6
NMR (nuclear magnetic  resonance),  

1303–1304, 1304
NMR spectrum, 1303–1304, 1304
noble gases, 1309, 1375
noctilucent clouds, 12
nodes, 490, 491, 491, 492–494
noise, background, 534–535
nonbaryonic dark matter, 1434
nonbaryonic matter, 1437, 1437
nonconductors, 644–645

electric field near parallel, 712–713
Gauss’ law for, 711, 711

nonconservative forces, 188
noncontact thermometers, 577, 577
noninertial frame, 104
nonlaminar flow, 420
nonpolar dielectrics, 777
nonpolar molecules, 737
nonquantized portion, of energy-level  

diagram, 1269, 1269
nonsteady flow, 420
nonuniform electric field, 667, 700–701
nonuniform magnetic field, 1013,  

1013–1014
nonviscous flow, 420
normal (optics), 1051, 1051
normal force, 111, 111–112
normalizing, wave function, 1266
normal vector, for a coil of  current  

loop, 873
northern lights, 864, 864
north magnetic pole, 1008, 1008
north pole, magnets, 854, 854, 999, 999
n-type semiconductors, 815, 1338, 1338–1339. 

See also p-n junctions
nuclear angular momentum, 1360
nuclear binding energy, 1359, 1359–1360, 

1388, 1389
per nucleon, 1359, 1359, 1361, 1388
selected nuclides, 1356t

nuclear energy, 1360, 1385–1409
fission, 1386–1392
in nuclear reactors, 1392–1396
thermonuclear fusion,  1398–1405

nuclear fission, 1360, 1386–1392, 1389
nuclear force, 1360
nuclear fusion, see thermonuclear fusion
nuclear magnetic moment, 1360
nuclear magnetic resonance (NMR),  

1303–1304, 1304
nuclear physics, 1352–1384

alpha decay, 1365–1367
beta decay, 1368–1371, 1369
discovery of nucleus,  1352–1355
nuclear models, 1373–1376
nuclear properties, 1355–1361
radiation dosage, 1372–1373
radioactive dating, 1371–1372
radioactive decay, 1362–1365

nuclear power plant, 624, 624, 1394
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nuclear radii, 1358
nuclear reactions, 1210–1211
nuclear reactors, 1392–1396
nuclear spin, 1360
nuclear weapons, 1360
nucleons, 1356, 1414

binding energy per, 1359, 1359, 1361
magic nucleon numbers, 1375
nuclear binding per, 1388

nucleus, 644
discovery of, 1352–1355
models, 1373–1376, 1374
mutual electric repulsion in, 653–654
properties, 1355–1361
radioactive decay, 655, 1411–1412

nuclides, 1356, 1356t. See also radioactive 
decay

halo, 1358
magic nucleon numbers, 1375
organizing, 1356–1357, 1357
transuranic, 1395
valley of, 1370, 1370

nuclidic chart, 1357, 1357,  1369–1370, 1370
number density:

of charge carriers, 858–859, 1329t, 1337
of conduction electrons, 1331

O
object distance, 1074
objective:

compound microscope, 1096, 1096
refracting telescope,  1096–1097, 1097

objects:
charged objects, 666, 666
electrically isolated, 643–644
electrically neutral, 643
extended, 1074, 1074–1075, 1090, 1090

occupancy probability, 1334, 1334–1335
occupied levels, 1305
occupied state density,  1335–1336, 1336
Oersted, Hans Christian, 642
ohm (unit), 797, 798
ohmic losses, 985
ohmmeter, 798, 833
Ohm’s law, 801–804, 802, 803
oil slick, interference patterns from,  

1127
one-dimensional elastic  collisions, 247–250, 

248
one-dimensional electron traps:

infinite potential well,  1260–1261
multiple electrons in, 1305
single electron, 1260

one-dimensional explosions, 241, 241–242
one-dimensional inelastic  collisions, 244, 

244–246, 245
one-dimensional motion, 13–33

acceleration, 20–29
average velocity and speed, 15–18
constant acceleration, 23–27
defined, 14
free-fall acceleration, 28–29
graphical integration for, 30, 30–31
instantaneous acceleration, 20–23
instantaneous velocity and speed, 18–20
position and displacement, 14–15
properties of, 14

relative, 84, 84–86
sample problems involving, 17–20, 22–23, 

25–26, 29, 31, 85–86
Schrödinger’s equation for, 1242–1244

one-dimensional variable force, 171, 171
one-half rule, for intensity of transmitted 

polarized light, 1047
one-way processes, 614
Onewheel, 310, 310
Onnes, Kamerlingh, 808
open ends (sound waves), 519–521
open-tube manometer, 412, 412–413
optical fibers, 1057–1058, 1315, 1345
optical instruments, 1094–1098, 1095, 1096, 

1097
optical interference, 1111. See also  

interference
optically variable graphics (OVG), 1169, 

1169–1170
optical neuroimaging, 1097, 1097–1098
optics, 1033
orbital angular momentum, 1012, 1012,  

1296–1297, 1297, 1297t
orbital energy, 1278
orbital magnetic dipole moment, 1012, 1012, 

1297–1298
diamagnetic materials, 1014, 1015–1016
ferromagnetic materials, 1014, 1019–1021, 

1023
paramagnetic materials, 1014, 1017, 1018

orbital magnetic quantum  number, 1012, 1280, 
1282t, 1297t

orbital quantum number, 1280, 1282t, 1297t, 
1329

orbital radius, 1277
orbit(s):

circular vs. elliptical, 392–393
eccentricity of, 388, 389t, 391
geosynchronous, 402
law of, 388, 388
sample problems involving, 392–393
of satellites, 390–393, 391
semimajor axis of, 388, 388
of stars, 403

order numbers, diffraction  gratings, 1166, 
1167

order of magnitude, 5
organizing tables, for images in mirrors,  

1080, 1080t
orienteering, 48
origin, coordinate, 14
oscillating bar, 467
oscillation(s), 436–458. See also 

 electromagnetic  oscillations; simple 
 harmonic motion (SHM)

of angular simple harmonic oscillator, 
446–447, 447

damped, 454, 454
damped simple harmonic motion, 453–455, 

454
energy in simple harmonic motion, 

444–446
forced, 456, 456–457
free, 456
and molar specific heat, 598, 600, 600
of pendulums, 448–451
simple harmonic motion, 436–444

simple harmonic motion and uniform cir-
cular motion, 451–453, 452

oscillation mode, 493, 494
out of phase:

ac circuits, 973t
capacitive load, 971
inductive load, 973
sound waves, 513
thin-film interference, 1129, 1129t
wave, 484

overpressure, 413
oxygen, 598

distribution of molecular speeds at  
300 K, 590

heats of transformation, 554t
molar specific heat and degrees of  

freedom, 598t
molar specific heat at  constant volume, 

594t
paramagnetism of liquid, 1018
RMS speed at room  temperature, 585t

P
paintball strike, 267
pair production, 655–656
pancake collapse, of tall  building, 265
panic escape, 34
parallel-axis theorem, for  calculating rota-

tional  inertia, 287, 287–288
parallel circuits:

capacitors, 766, 766–767, 768–769, 828t
resistors, 827, 827–830, 828t
summary of relations, 828t

parallel components, of  unpolarized light, 
1060

parallel currents, magnetic field between two, 
891–892, 892

parallel-plate capacitors, 760, 760
capacitance, 762–763
with dielectrics, 776, 778, 778–780, 779
displacement current,  1004–1006, 1006
energy density, 772
induced magnetic fields, 1000–1003

paramagnetic materials, 1014, 1017, 1018
paramagnetism, 1014,  1016–1019, 1017
parent nucleus, 655
partial derivatives, 510, 1038
partially occupied levels, 1305
partially polarized light, 1046
particle accelerators, 866,  1410–1411, 1412
particle–antiparticle  annihilation, 1414
particle detectors, 1411, 1412
particle nature of matter, 1240, 1240–1241, 

1241
particles, 14, 653. See also specific types,  

e.g.: alpha particles
particle systems. See also collision(s)

angular momentum, 325–326
center of mass, 225–229, 226
electric potential energy of, 743–746, 745
linear momentum, 235–236
Newton’s second law for, 230–233, 231

pascal (Pa), 408, 506, 544, 1045
Pascal’s principle, 413–414, 413–414
Paschen series, 1280, 1281
patch elements, 698
path-dependent quantities, 559
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path-independent quantities, 727
conservative forces, 188–190, 189
gravitational potential energy, 385

path length difference:
double-slit interference, 1119, 1119–1120, 

1125
and index of refraction, 1115
single-slit diffraction,  1150–1151, 1151, 

1154
sound waves, 512
thin-film interference,  1128–1129, 1129t

Pauli, Wolfgang, 1369
Pauli exclusion principle, 1304

and energy levels in  crystalline solids, 1329, 
1413

and fermions, 1413
and Fermi speed, 1331
nucleons, 1374–1375
and periodic table, 1309

pendulum(s), 448–451
as angular simple harmonic oscillator, 

446–447, 447
bob of, 448
conical, 152
conservation of mechanical energy, 

194–195, 195
physical, 450, 450–451, 451
simple, 448–449, 449
torsion, 446–447, 447
underwater swinging (damped), 453

perfect engines, 624, 624
perfect refrigerators, 627, 627–628
perihelion distance, 388
period(s), 1294

law of, 389, 389, 389t
of revolution, 82
simple harmonic motion, 437, 438, 439
sound waves, 509
waves, 472, 472

periodic motion, 437
periodic table, 1225, 1294–1295

building, 1308–1310
x rays and ordering of  elements, 1310–1314

permanent electric dipole moment, 737–738
permanent magnets, 851
permeability constant, 886, 887
permittivity constant, 647
perpendicular components, of unpolarized 

light, 1060
phase:

simple harmonic motion, 439, 439
waves, 471, 471

phase angle, 439, 439
alternating current, 973t

phase change, 554
phase constant, 439, 439, 443–444

alternating current, 973t, 981–982
series RLC circuits, 977–978, 978, 981–982
waves, 473, 473

phase difference:
double-slit interference, 1119, 1120,  

1123–1124, 1124
in Michelson’s interferometer, 1136
optical interference, 1114–1115
and resulting interference type, 485t
single-slit diffraction, 1154
sound waves, 512

thin-film interference,  1128–1129
waves, 483–485

phase-shifted sound waves, 513
phase-shifted waves, 484–485
phase shifts, reflection, 1128, 1128, 1129t
phasor diagram, 487–489
phasors, 487–490, 488

capacitive load, 971, 971
double-slit interference, 1124, 1124–1126
inductive load, 973, 973
resistive load, 968–969
series RLC circuits, 976, 976, 977, 978
single-slit diffraction,  1153–1158, 1155, 

1156
phosphorus, doping silicon with, 1340
photodiode, 1344–1345
photoelectric current, 1228
photoelectric effect, 1227–1230
photoelectric equation,  1229–1230
photoelectrons, 1228
photomultiplier tube, 1236
photon absorption, 1226, 1229, 1295

absorption lines, 1280, 1281
energy changes in hydrogen atom, 1279
energy for electrons from, 1261–1262
lasers, 1316

photon emission, 1226, 1295
emission lines, 1280, 1281
energy changes in hydrogen atom, 1279
energy from electrons for, 1262
lasers, 1316, 1316–1319
stimulated emission, 1316, 1316–1317

photons, 1225–1227
as bosons, 1413
defined, 1226
in early universe, 1435
gamma-ray, 1400, 1414
and light as probability wave, 1234–1236
as matter wave, 1240
momentum, 1231, 1231–1234, 1232
and photoelectric effect, 1227–1230
as quantum of light,  1226–1227
in quantum physics,  1236–1238
virtual, 1429

physical pendulum, 450,  450–451, 451
physics, 13–14
physics, laws of, 51–52
Piccard, Jacques, 429
picofarad, 760
piezoelectricity, 1250
pinhole diffraction, 1149
pions, 1188, 1411

decay, 1417, 1418
and eightfold way, 1423t
as hadrons, 1414
as mesons, 1414
proton–antiproton  annihilation, 1416–1419, 

1416t
reaction with protons,  1418–1419

pipes, resonance between, 521–522
pitch, 407, 863
pitot tube, 432
Pittsburgh left, 99
planar symmetry, Gauss’ law, 710–713, 711, 

712
planar waves, 506
Planck, Max, 1237–1238

Planck constant, 1226
Planck time, 12
plane-concave lens, 1109
plane-convex lens, 1109
plane mirrors, 1074, 1074–1076, 1075
plane of incidence, 1051
plane of oscillation, polarized light, 1046, 

1046
plane of symmetry, center of mass of solid  

bodies with, 228
plane-polarized waves, 1046, 1046
plane waves, 1035
plastics:

electric field of plastic rod, 676–677
as insulators, 644–645

plates, capacitor, 760–761, 761
plate tectonics, 13–14
plum pudding model, of atom, 1353
pn junction diode, 802, 807
p-n junctions, 1341–1342, 1342

junction lasers, 1345, 1345
junction rectifiers, 1343, 1343
light-emitting diodes (LEDs), 1344–1345, 

1345
point (unit), 8
point charges. See also charged particles

Coulomb’s law, 645, 645–652
in electric field, 668–670, 681–683
electric potential due to, 733–736, 734, 735

pointillism, 1160, 1160, 1161
point image, 1074–1075
point of symmetry, center of mass of solid bod-

ies with, 228
point source: sound, 506, 516, 1042

light, 1042, 1074–1075
polar dielectrics, 776–777
polarity:

of applied potential  difference, 801–802
of Earth’s magnetic field, reversals in, 

1008, 1008
polarization, 1045–1050, 1046, 1047, 1048

intensity of transmitted  polarized light, 
1047–1050, 1048, 1049

and polarized light, 1046, 1046–1048, 1047
by reflection, 1059–1060, 1060

polarized light, 1046, 1046–1048, 1047
polarized waves, 1046,  1046–1048, 1047
polarizer, 1047
polarizing direction, 1046–1047, 1047
polarizing sheets, 1047,  1047–1048
polarizing sunglasses, 1060
polar molecules, 737
Polaroid filters, 1046
pole faces, horseshoe magnet, 854, 854
polyatomic gases, 594
polyatomic molecules, 598

degrees of freedom, 597–599, 598, 598t
molar specific heats at  constant volume, 

594t
polycrystalline solids, 1021
population inversion, in lasers, 1317–1319, 

1345
porcelain, dielectric properties, 776
position, 298t

one-dimensional motion, 14, 14–15
reference particle, 452
relating linear to angular, 282
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simple harmonic motion, 439
two- and three-dimensional motion, 68, 

68–69, 69
uncertainty of particle, 1245–1246
velocity, 438, 440–441, 441

position vector, 68, 68
positive charge, 643–644, 777
positive charge carriers, 791

drift speed, 793–794
emf devices, 818–819

positive direction, 14, 14
positive ions, 644
positive kaons, 1195
positive terminal, batteries, 760–761, 761, 

818–819
positron emission tomography (PET) scans, 

656, 656
positrons:

antihydrogen, 1414
bubble chamber tracks, 655, 853, 853
electron–positron annihilation, 655, 655, 

1414
in fusion, 1398–1399

potassium, radioactivity of, 1365
potential, see electric potential
potential barrier, 1248–1251, 1249, 1250, 

1366–1367, 1390
potential difference, 823

across moving conductors, 859, 860–861
across real battery, 823–825
for capacitive load, 971–972
capacitors, 762
capacitors in parallel, 766, 766–767, 

768–769
capacitors in series, 767, 767–769
Hall
for inductive load, 974
LC oscillation, 957
and Ohm’s law, 801–802
for resistive load, 969–970
resistors in parallel, 827–830
resistors in series, 822, 822, 829–830
RL circuits, 935–939, 936
single-loop circuits, 819, 820
between two points in circuit, 823, 823–

825, 824
potential energy, 186–193

and conservation of mechanical energy, 
193–196, 195

and conservation of total energy, 205–209
defined, 187
determining, 190–193
electric, 725, 725–729,  743–746, 745
of electric dipoles, 685
in electric field, 726–728, 772
magnetic, 940–941
sample problems involving, 190, 192–193, 

200–201, 204
satellites in orbit, 391, 391
in simple harmonic motion, 444–445, 445
and work, 187, 187–190, 188
yo-yo, 316–317

potential energy barrier,  1248–1251, 1249, 
1250

potential energy curves,  196–201, 198–199
potential energy function,  197–200,  

198–199

potential energy step, reflection from,  
1246–1248, 1247

potential method, of calculating current in 
single-loop  circuits, 820

potential well, 200
potentiometer, 775
pounds per square inch (psi), 408
power, 174–176, 175, 208–209, 298t

in alternating-current circuits, 982, 982–984
average, 174
defined, 174
in direct-current circuits, 805–806
of electric current, 805–806
and emf in circuits, 824
radiated, 1238
resolving, 1097, 1097,  1171–1173, 1172, 

1255
in RLC circuit, 984, 989
in rotation, 297
sample problem involving, 175–176
traveling wave on stretched string, 478, 

478–480
power factor, 983, 984
power lines, transformers for, 985, 986
power transmission systems, 789, 985–986
Poynting vector, 1040–1043, 1042
pregnancy com shift, 268 
precession, of gyroscope, 333, 333–334
pressure:

fluids, 407–408
and ideal gas law, 579–583
measuring, 412, 412–413
radiation, 1043–1045
and RMS speed of ideal gas, 583–585
scalar nature of, 45
as state property, 616
work done by ideal gas at constant, 582

pressure amplitude (sound waves), 509, 510
pressure field, 666
pressure sensor, 407
pressurized-water nuclear  reactor, 1394, 1394
primary coil, transformer, 986
primary loop, pressurized-water reactor, 

1394, 1394–1395
primary rainbows, 1054, 1054, 1069, 1116, 

1116
primary winding, transformer, 986
principal quantum number, 1280, 1282t, 

1297t, 1329
principle of conservation of mechanical 

energy, 194
principle of energy  conservation, 156
principle of equivalence, 393–394
principle of superposition, 103, 647

for gravitation, 375–377
for waves, 483, 483

prisms, 1054, 1054, 1067
probability, entropy and, 632
probability density, 1244

barrier tunneling, 1249
trapped electrons, 1264–1265, 1265

probability distribution function, 590–591
probability of detection:

in a 1D infinite potential well,  
1266–1267

hydrogen electron, 1283, 1286
trapped electrons, 1264–1265

probability wave:
light as, 1234–1236
matter wave as, 1239

projectile(s):
defined, 76
dropped from airplane, 81
elastic collisions in one dimension, with 

moving target, 249–250
elastic collisions in one dimension, with 

stationary target, 248–249
inelastic collisions in one dimension, 244
series of collisions, 238
single collision, 236–237

projectile motion, 75, 75–81
effects of air on, 79, 79
trajectory of, 79, 79
vertical and horizontal  components of, 

76–79, 77–78
proper frequency, 1206
proper length, 1196, 1215
proper period, 1208
proper time, 1192, 1215
proper wavelength, 1206, 1215
proton number, 1356, 1356t
proton-proton (p-p) cycle, 1400, 1400–1402
proton-rich nuclei, 1370
protons, 644, 1411

accelerator studies, 866
and atomic number, 655–656
as baryons, 1414
charge, 652–653, 653t
decay of, 1424
in equilibrium, 650–651
as fermions, 1412
in fusion, 1398–1405
as hadrons, 1414
magnetic dipole moment, 875, 875t
mass energy, 1214
and mass number, 655–656
as matter wave, 1259
reaction with pions, 1418–1419
spin angular momentum, 1012
ultrarelativistic, 1214

proton synchrotrons, 867–868
p subshells, 1309, 1310
p-type semiconductors,  1339–1340, 1340t
pulleys, 371

massless-frictionless, 112, 113, 115, 
115–116

pulsar, 302, 308
secondary time standard based on, 9

pulse, wave, 469, 470
P waves, 532

Q
QCD (quantum chromodynamics), 1430
QED (quantum electrodynamics), 1011, 1428
quadrupole moment, 691
quanta, 1226
quantization, 653, 1226, 1259

electric charge, 652–654
energy of trapped electrons, 1260–1263
orbital angular momentum, 1012
of orbital energy, 1278
quantum dots, 1259
spin angular momentum, 1011

quantum, 1226
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quantum chromodynamics (QCD), 1430
quantum corrals, 1272, 1273
quantum dots, 1271–1272, 1272
quantum electrodynamics (QED), 1011, 1428
quantum jump, 1261
quantum mechanics, 102, 1226
quantum numbers, 1260, 1297t

charge, 1417
conservation of, 1324–1325
for hydrogen, 1280–1282, 1282t
orbital, 1280, 1282t, 1297t, 1329
orbital magnetic, 1011, 1280, 1282t, 1297t
and Pauli exclusion principle, 1304
and periodic table, 1308–1310
principal, 1280, 1282t, 1297t, 1329
spin, 1297t, 1298, 1299, 1411–1412
spin magnetic, 1011, 1297t, 1298,  

1411–1412
quantum physics. See also  electron traps; 

Pauli  exclusion principle;  photons; 
Schrödinger’s equation

barrier tunneling, 1248–1251, 1249, 1250
and basic properties of atoms, 1294–1296
confinement principle, 1259
correspondence principle, 1265
defined, 1226
Heisenberg’s uncertainty principle, 

1244–1246
hydrogen wave function, 1282–1284t
matter waves, 1259
nucleus, 1352
occupancy probability, 1334, 1334–1335
particles, 1411
photons in, 1236–1238
and solid-state electronic devices, 1328

quantum states, 1259, 1295
degenerate, 1274
density of, 1332–1333, 1333
density of occupied,  1335–1336, 1336
hydrogen with n = 2, 1284, 1284–1285

quantum theory, 598, 600, 1226, 1259, 1272
quantum transition, 1261
quantum tunneling, 1248–1251, 1249, 1250
quark family, 1426t
quark flavors, 1426, 1430
quarks, 866, 1425–1430, 1426, 1426t

charge, 653, 653t
formation in early universe, 1435

quasars, 395, 395, 1432
quicksand, 434
Q value, 1211, 1367, 1370–1371, 1392, 

1400–1401

R
race cars:

fuel dispenser fires, 837, 837–838
negative lift in Grand Prix cars, 143–144, 

144
rad (unit), 1373
radar waves, 469
radial component:

of linear acceleration, 283
of torque, 291

radial probability density, 1283, 1285–1286
radians, 49, 273
radiated power, 1238
radiated waves, 1034

radiation:
in cancer therapy, 1352
cosmic background,  1433–1434, 1436, 1437
dose equivalent, 1373
electromagnetic, 1035
reflected, 1044
short wave, 1034
ultraviolet, 1034

radiation dosage, 1372–1373
radiation heat transfer, 565–566
radiation pressure, 1043–1045
radioactive dating, 1371,  1371–1372
radioactive decay, 655,  1362–1365, 1411–1412

alpha decay, 1365–1367, 1366
beta decay, 1368–1371, 1369, 1427
muons, 1193
and nuclidic chart, 1369–1370, 1370
process, 1362–1364

radioactive elements, 1353
radioactive wastes, 1395, 1395
radioactivity, of potassium, 1365
radionuclides, 655, 664, 1356
radio waves, 469, 525, 1033, 1034
radius of curvature:

spherical mirrors, 1077, 1077, 1078, 1078
spherical refracting surfaces, 1083–1086, 

1084
radon, 1352
rail gun, 893, 893–894, 914
railroad rails, 577
rainbows, 1054, 1054–1055

Maxwell’s, 1033, 1033–1034, 1034
and optical interference, 1115–1116, 1116
primary, 1054, 1054, 1069, 1116, 1116
secondary, 1054, 1054, 1069, 1116
tertiary, 1069

raindrop, terminal speed of  falling, 140
randomly polarized light, 1046, 1046
range, in projectile motion, 79, 79
rare earth elements, 1014, 1313
rattlesnake, thermal radiation sensors, 566, 

566
ray diagrams, 1080–1081, 1081
Rayleigh’s criterion, 1159, 1159–1160, 

1161–1162
rays, 506, 506

incident, 1051, 1051
locating direct images with, 1080–1081, 

1081
locating indirect object  images with, 1090, 

1090
reflected, 1051, 1051
refracted, 1051, 1051
tracing, 1074

RBE (relative biology effectiveness factor), 
1373

RC circuits, 833–838, 834
capacitor charging, 834, 834–835
capacitor discharging, 834, 836

real batteries, 818, 818–819, 823, 823–825
real emf devices, 818, 818–819
real engines, efficiency of,  623–624,  

628–629
real fluids, 420
real focal point, 1078, 1078
real images, 1073

spherical mirrors, 1079

spherical refracting surfaces, 1083–1086, 
1084

thin lenses, 1089, 1089
real solenoids, 899, 900
recessional speed, of universe, 1433
rechargeable batteries, 818, 818–819, 824
red giant, 1401
red shift, 1206, 1215, 1443–1444
reference circle, 452, 452
reference configuration, for potential  

energy, 191
reference frames, 84–85

inertial, 103
noninertial, 104

reference line, 272, 273
reference particle, 452, 452–453
reference point, for potential energy, 191
reflected light, 1051
reflected radiation, 1044
reflected ray, 1051, 1051
reflecting planes, crystal, 1174,  1174–1175
reflection, 1050–1056, 1051. See also index of 

refraction
first and second reflection points, 1068
law of, 1051
polarization by, 1059–1060, 1060
from potential energy step, 1246–1248, 

1247
from a potential step,  1246–1248
of standing waves at boundary, 492, 492
total internal, 1056–1059, 1057

reflection coefficient, 1248
reflection phase shifts, 1128, 1128, 1129t
refracted light, 1051
refracted ray, 1051, 1051
refracting telescope, 1096–1097, 1097
refraction, 1050–1056, 1051, 1052, 1052t, 

1053, 1054. See also index of refraction
angle of, 1051, 1051
and chromatic dispersion, 1053, 1053–1054
law of, 1052, 1112, 1112–1115

refrigerators, 626–629, 627
register ton, 10
Reines, F., 1369
relative biology effectiveness (RBE) factor, 

1373
relative motion:

in one dimension, 84, 84–86
in two dimensions, 86, 86–87

relative speed, 253
relativistic particles, 1195
relativity, 1225, 1410

Doppler effect for light,  1205–1208, 1208
and energy, 1210–1214, 1211t, 1213
general theory of, 394, 1187, 1194
of length, 1196–1199, 1197
Lorentz transformation, 1200–1201, 

1203–1204
measuring events, 1188–1190
and momentum, 1209–1214
postulates, 1187–1188
puzzle, 1224
simultaneity of, 1186–1195
special theory of, 102, 1037, 1187, 1188, 

1200, 1208, 1215
of time, 1191–1195
of velocities, 1204–1205, 1205
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relaxed state, of spring, 167, 167–168
released energy, from fusion reaction
rem (unit), 1373
repulsion, in nucleus, 653–654
repulsive force, 643
resistance, 796–801

alternating current, 973t
Ohm’s law, 801–804, 802
parallel circuits, 827, 827–830
and power in electric current, 805–806
RC circuits, 833–838, 834
and resistivity, 797–799, 799
RLC circuits, 963–965, 974–981
RL circuits, 935–939
in semiconductors, 807–808
series circuits, 822, 822, 974–981
superconductors, 808

resistance rule, 820
resistivity, 798, 1328

calculating resistance from, 798, 798–799
Ohm’s law, 801–804
selected materials at room temperature, 

798t
semiconductors, 1338
silicon vs. copper, 807–808, 807t, 1329t

resistors, 797, 797–798
with ac generator, 967–969, 968
in multiloop circuits, 826–833, 827, 830
Ohm’s law, 801–804, 802
in parallel, 827, 827–830
phase and amplitude in ac circuits, 973t
power dissipation in ac  circuits, 983
and power in electric current, 805–806
RC circuits, 833–838, 834
RLC circuits, 975, 976
RL circuits, 935–939, 936
in series, 822, 822, 975, 976
single-loop circuits, 819, 819–820
work, energy, and emf, 818, 818–819

resolvability, 1159, 1159–1160, 1161–1162
resolving power:

diffraction grating, 1171–1173, 1172
refracting telescope, 1097, 1097

resolving vectors, 47
resonance:

forced oscillations, 456–457
magnetic, 1303–1304, 1304
magnetic resonance imaging, 998, 998
nuclear magnetic, 1303–1304, 1304
between pipes, 521–522
series RLC circuits, 977, 978–981, 979
and standing waves, 493, 493–495, 494

resonance capture, of neutrons in nuclear 
reactors, 1393

resonance condition cyclotrons, 867
resonance curves, series RLC circuits, 

978–979, 979
resonance hill, 980–981
resonance peak, 457, 1304
resonant frequencies, 493,  493–494, 519, 520
response time, nuclear reactor control rods, 

1394
rest, fluids at, 409–411, 410
rest energy, 1210
rest frame, 1193, 1206
rest length, 1196
restoring torque, 448–449

resultant, of vector addition, 45
resultant force, 103, 106
resultant torque, 292
resultant wave, 483, 483
reverse saturation current,  junction rectifiers, 

1350
reversible processes, 615–619
right-handed coordinate system, 50, 50
right-hand rule, 277–278, 278, 852

Ampere’s law, 894, 895
angular quantities, 277–278, 278
displacement current, 1005, 1005
induced current, 919, 920
Lenz’s law, 919, 920
magnetic dipole moment, 875, 875
magnetic field due to current, 888, 889, 890
magnetic force, 852, 852–853
magnetism, 894, 895
vector products, 55, 56, 57, 891–892

rigid bodies:
angular momentum of  rotation about fixed 

axis, 326, 326–327
defined, 272
elasticity of real, 356–357

ring charge distributions,  674–676, 675, 678
Ritz combination principle, 1292
RLC circuits, 963–965, 964

resonance curves, 978–979, 979
series, 974–981, 976, 978, 979
transient current series, 977

RL circuits, 935–939, 936, 937
RMS, see root-mean-square
RMS current:

in ac circuits, 982–983
in transformers, 989

rock climbing:
belay, 364
chalk, 155
chimney climb, 162, 162
crimp hold, 365, 365, 371, 371
energy conservation in descent using rings, 

206, 206
energy expended against gravitational 

force climbing Mount Everest, 221
friction coefficients between shoes and 

rock, 135
lie-back climb along fissure, 364, 364

rockets, 252–254, 253
mass ratio, 264

rocket sled acceleration, 21, 22, 42
roller coasters, maximum  acceleration of, 21
rolling, 310–317

down ramp, 314, 314–316
forces of, 314, 314–316
friction during, 314, 314, 343
kinetic energy of, 312, 313–316
as pure rotation, 311, 312, 312
sample problem involving, 316
as translation and rotation combined, 

310–312, 312
yo-yo, 316–317, 317

root-mean-square (RMS):
and distribution of molecular speeds, 

590–591
of electric/magnetic fields, 1041–1042
for selected substances, 585t
speed, of ideal gas, 583–585, 584

rotation, 270–301
angular momentum of rigid body rotating 

about fixed axis, 326, 326–327
constant angular acceleration, 279–281
kinetic energy of, 285–286, 286
and molar specific heat, 598, 600, 600
Newton’s second law for, 292–296
relating linear and angular variables, 

281–284, 282
in rolling, 310–312, 311
sample problems involving, 275–277,  

280–281, 283–284, 288–290, 294–296
rotational equilibrium, 346
rotational inertia, 272, 285, 287–290, 298t
rotational kinetic energy, 285–286

of rolling, 314
and work, 296–299
yo-yo, 316–317

rotational symmetry, 668, 669
rotational variables, 272–277, 327t
rotation axis, 272, 272
Rotor (amusement park ride), 280–281
roundabout traffic computer control, 309
Rowland ring, 1020, 1020
rubber band, entropy change on stretching, 

620
Rubbia, Carlo, 1429
rulers, 2
rulings, diffraction grating, 1166
Rutherford, Ernest, 723, 1352
Rutherford atomic model, 723
Rutherford scattering, 1354–1355
R-value, 564
Rydberg constant, 1279

S
Sagittarius A*, 373, 390, 390
Salam, Abdus, 1429
satellites:

energy of, in orbit, 390–393
geosynchronous orbit, 402
gravitational potential energy, 384
Kepler’s laws, 387–390
orbits and energy, 391

satellite thrusters, 885
Saturn dust rings, 758
scalar components, 50, 51
scalar fields, 666
scalar product, 53–54, 54
scalars:

multiplying vectors by, 53
vectors vs., 44–45

scanning tunneling microscope (STM), 1250, 
1250

scattering:
Compton, 1231, 1231–1234, 1232
of polarized light, 1048
Rutherford, 1354–1355
x rays, 1174, 1174

schematic diagrams, 760, 761
Schrödinger’s equation, 1242–1244

for electron in finite well, 1268
for electron in infinite well, 1264
for electron in rectangular box, 1274
for electron in rectangular corral, 1273
and hydrogen, 1278–1286
for hydrogen ground state, 1282–1284t
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Schrödinger’s equation (continued )
for multicomponent atoms, 1308
probability density from, 1244

Schwarzschild, Karl, 396
Schwarzschild radius, 396
scientific notation, 2–3
screen, in Young’s experiment, 1118, 1119, 

1121
scuba diving, 435
sea mile, 12
seat of emf, 817
secondary coil, transformer, 986
secondary loop, pressurized water reactor, 

1394, 1395
secondary maxima, diffraction patterns, 1149, 

1149
secondary rainbows, 1054, 1054, 1069, 1116
secondary standards, 3–4
secondary winding, transformer, 986
second law of thermodynamics, 619–620
second minima:

and interference patterns, 1121
for single-slit diffraction, 1151, 1151, 1154

second-order bright fringes, 1120–1121
second-order dark fringes, 1121
second-order line, 1167
second reflection point, 1068
second side maxima, interference patterns of, 

1120–1121
secular equilibrium, 1380
seismic waves, 469, 537, 538
self-induced emf, 934, 934
self-induction, 934, 934–935, 943
semi-classical angle, 1297
semiconducting devices, 807–808
semiconductors, 644, 1336–1340. See also p-n 

junctions; transistors
doped, 1338, 1338–1340
electrical properties, 1337, 1337
light-emitting diodes (LEDs), 1344–1345, 

1345
nanocrystallites, 1271, 1271
n-type, 1338–1339, 1338. See also p-n  

junctions
p-type, 1339–1340, 1340t
resistance in, 807–808
resistivities of, 798t
unit cell, 1328

semimajor axis, of orbits, 388, 388, 389t
separation factor, 611
series, of spectral lines, 1280
series circuits:

capacitors, 767, 767–769, 828t
RC, 833–838, 834
resistors, 822, 822, 828t
RLC, 964, 974–981, 976, 978, 979
summary of relations, 828t

series limit, 1280, 1281
shake (unit), 11
shearing stress, 357, 357
shear modulus, 358
shells, 1285, 1299

and characteristic x-ray  spectrum,  
1311–1312

and electrostatic force, 647, 648
and energy levels in  crystalline solids, 1329
and periodic table, 1308–1310

shell theorem, 374, 381
ship squat, 435
SHM, see simple harmonic motion
shock wave, 34
shock waves, 529, 529–530
shortwave radiation, 1034
shot put, 128, 129
side maxima:

diffraction patterns, 1149, 1149
interference patterns,  1120–1121

sievert (unit), 1373
sigma particles, 1411, 1422, 1423t
sign:

acceleration, 21–22
displacement, 15
heat, 551–552
velocity, 21–22, 30
work, 160

significant figures, 4
Silbury Hill center of mass, 268, 268
silicon:

doping of, 1340
electric properties of copper vs., 807–808, 

807t, 1329t, 1337
in MOSFETs, 1346
properties of n- vs. p-doped, 1340t
resistivity of, 798t
as semiconductor, 644,  807–808, 1337
unit cell, 1328, 1328

silk, rubbing glass rod with, 642, 642–644, 654
simple harmonic motion (SHM), 436–458, 

438, 440
acceleration, 441, 441, 443
angular, 446–447, 447
damped, 453–455, 454
energy in, 444–446, 445
force law for, 442
freeze-frames of, 438, 438–439
pendulums, 448–451, 449, 450
quantities for, 439, 439–440
sample problems involving, 443–444, 447, 

451, 455
and uniform circular motion, 451–453, 452
velocity, 438, 440–441, 441, 443–444
waves produced by, 469–470

simple harmonic oscillators:
angular, 446–447, 447
linear, 442, 442–444

simple magnifying lens, 1095–1096, 1096
simple pendulum, 448–449, 449
simultaneity, 1186–1195

and Lorentz transformation equations, 
1200

relativity of, 1186–1195
sine, 49, 49
single-component forces, 103
single-loop circuits, 816–825, 968

charges in, 817–818
current in, 819, 819–821
internal resistance, 821, 821
potential difference between two points, 

823, 823–825, 825
with resistances in series, 822, 822
work, energy, and emf, 818, 818–819

single-slit diffraction, 1148–1158, 1163–1164, 
1164

intensity in, 1153–1158, 1155, 1156

minima for, 1150–1152, 1151
and wave theory of light, 1149–1150
Young’s interference experiment,  

1117–1121, 1118, 1119
sinusoidal waves, 470, 470–471, 471
Sirius B, escape speed for, 386t
SI units, 2–3
skateboarding, 79, 269
skiing, 138, 138
skunk cabbage, 577
slab (rotational inertia), 287t
sliding block, 115, 115–116
sliding friction, 135, 135
slope, of line, 16, 16
smoke detectors, 664
Smoot, 8–9
Snell’s law, 1052, 1112–1113
snorkeling, 429, 435
snowboarding, 137, 137
snowshoes, 370
soap bubbles, interference patterns from, 

1127, 1130, 1130
soccer, heading in, 239
soccer handspring throw-in, 80
sodium, 1309
sodium chloride, 1310

index of refraction, 1052t
x-ray diffraction, 1174, 1174

sodium doublet, 1325
sodium vapor lamp, 1227
soft reflection, of traveling waves at  

boundary, 492
solar cells, 817
solar flare, 988
solar system, 1437
solar wind, 1064
solenoids, 899, 899–901, 900

induced emf, 918–919
inductance, 933, 933
magnetic energy density, 942–943
magnetic field, 899, 899–901, 900
real, 899, 900

solid bodies:
center of mass, 228–229
Newton’s second law, 231

solids:
compressibility, 359
crystalline, 1327–1336, 1328
elasticity and dimensions of, 357, 357
heat absorption, 552–556
polycrystalline, 1021
specific heats of selected, 553t
speed of sound in, 507t
thermal conductivity of  selected, 564t
thermal expansion, 548–550, 549

solid state, 553–554
solid-state electronic devices, 1328
sonar, 506
sonic boom, 529–530
sound intensity, 515–518, 516
sound levels, 515–518, 517t, 534, 539, 540
sound waves, 469–470, 505–531

beats, 522–524, 523
defined, 505–506
Doppler effect, 524–528, 526, 527
intensity and sound level, 515–518, 516, 

517t
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interference, 511–514, 512
sample problems involving, 511, 513–514, 

518, 521–522, 524, 528
speed of, 506–508, 507t
supersonic speed, 529, 529–530
traveling waves, 508–511, 509

south pole, magnet’s, 854, 854, 999, 999
space charge, 1342
space curvature, 394, 394–395
spacetime, 394, 1435
spacetime coordinates,  1189–1190
spark, see electric spark
special theory of relativity, 102, 1037, 1187, 

1188, 1200, 1208, 1215
specific heat, 553, 553t. See also molar  

specific heat
speckle, 1122
spectral radiancy, 1237
spectroscope, grating, 1168, 1168–1169
spectrum, 1280
speed:

average in one-dimensional motion, 17
drift, 793, 793–794, 796, 857–861, 858
escape, 744, 754
Fermi, 1331
most probable, 1398, 1409
one-dimensional motion, 18
recessional, of universe, 1433
relating linear to angular, 282–283
relative, 253
in rolling, 311–312, 312
waves, see wave speed

speed amplifier, 265
speed deamplifier, 265
speed of light, 469, 1037, 1188, 1212, 1212
speed of light postulate, 1187, 1188
speed of sound, 506–508, 507t

and RMS speed in gas, 585
in various media, 507t

speed parameter, in time  dilation, 1193, 1193
spelunking, 48
spherical aberrations, 1097
spherical capacitors, 764
spherical conductors, Coulomb’s law for, 

648–652
spherically symmetric charge distribution, 

713–715, 714, 734
spherical mirrors, 1077, 1078, 1079

focal points, 1077–1078, 1078
formulas, 1098, 1098
images from, 1076–1083, 1077, 1078, 1079, 

1080t, 1081, 1082, 1096–1097, 1097
spherical refracting surfaces, 1083–1086, 

1084, 1098, 1098–1099
spherical shell:

Coulomb’s law for, 648–652
electric field and enclosed charge, 707–708
rotational inertia of, 287t

spherical symmetry, Gauss’ law, 713–715,  
714

spherical waves, 506
spiders ballooning, 695
spin, 1297t, 1412

electron, 1412, 1413
isospin, 1440
nuclear, 1360
nuclides, 1356t, 1360

spin angular momentum, 1012, 1297t, 1298, 
1299

spin-down proton or electron state, 1011, 
1298, 1303, 1303

spin-flip, 1025
spin-flipping, 1025, 1303, 1304
spin magnetic dipole moment, 1010–1012, 

1011, 1299, 1299
diamagnetic materials, 1014
ferromagnetic materials, 1014
paramagnetic materials, 1014, 1017

spin magnetic quantum  number, 1011, 1297t, 
1298, 1411–1412

spin quantum number, 1297t, 1298, 1299, 
1411–1412

spin-up proton or electron state, 1011, 1298, 
1303, 1303

spontaneous emission, 1316, 1316
spontaneous otoacoustic emission, 534
spring constant, 168
spring force, 167–169

as conservative force, 189, 189
work done by, 167, 167–170

spring scale, 110, 110–111
sprites, 672–673, 673
s subshells, 1309, 1310
stable equilibrium potential energy curves, 

200
stable static equilibrium, 345, 345–346, 346
stainless steel, thermal conductivity of, 564t
standard kilogram, 7, 7
standard meter bar, 3–4
Standard Model, of elementary particles, 

1412
standards, 2
standing waves, 490–495, 491, 492, 493, 1259

electric shaver, 495
reflections at boundary, 492, 492
and resonance, 493, 493–495, 494
transverse and longitudinal waves on, 

469–470, 470
wave equation, 480–482
wave speed on, 476–478, 477

stars (also see black holes), 1225
Doppler shift, 1207
formation in early universe, 1436
fusion in, 1360, 1398, 1400, 1400–1402
matter and antimatter in, 1414–1415
neutron, 853t
orbiting, 403
rotational speed as function of distance 

from galactic center, 1434, 1434
state, 553–554
state function, entropy as, 616–617
state properties, 616–617
static equilibrium, 345, 345–347, 346

fluids, 409–411, 410
indeterminate structures, 355–356, 356
requirements of, 346–347
sample problems involving, 350–354

static frictional force, 133–134, 133–135, 
314–315

static wicks, 748, 748
statistical mechanics, 629–633
steady flow, 420
steady-state current, 790, 977
Stefan, Josef, 565

Stefan–Boltzmann constant, 565, 1238
step-down transformer, 987
step-up transformer, 987
Stern–Gerlach experiment, 1300, 1300–1302
stick-and-slip, 135
stimulated emission, 1316, 1316–1317
Stirling, Robert, 625, 632, 640
Stirling engines, 624–625, 625
Stirling’s approximation, 632
STM, see scanning tunneling microscope
stopping potential, photoelectric effect, 1228, 

1229
straight line charge distributions, 678
strain, 357, 357–359
strain gage, 358, 358
strangeness, conservation of, 1422
strange particles, 1422
strange quark, 1425, 1426t
streamlines:

in electric fields, 793, 793
in fluid flow, 421–422, 421–422

strength:
ultimate, 357, 357, 358t
yield, 357, 357, 358t

stress, 357, 357
compressive, 357–358
electrostatic, 787
hydraulic, 358–359, 358t
shearing, 357, 357
tensile, 357, 357

stress-strain curves, 357, 357
stress-strain test specimen, 357
stretched strings, 506

energy and power of traveling wave on, 
478, 478–480

and resonance, 493, 493–495, 494
strike-slip, 63
string theory, 1430
string waves, 475–480
strokes, 621
strong force, 1360, 1414

conservation of strangeness, 1422
messenger particle, 1429–1430

strong interaction, 1422
strong nuclear force, 654
subcritical state, nuclear  reactors, 1394
submarines, rescue from, 607
subshells, 1285, 1299

and energy levels in  crystalline solids, 1329
and periodic table, 1308–1310

substrate, MOSFET, 1346
subtraction:

of vectors by components, 52
of vectors geometrically, 46, 46

Sun, 1437
convection cells in, 565
density at center of, 407t
escape speed for, 386t
fusion in, 1360, 1398, 1400, 1400–1402
monitoring charged particles from, 789
neutrinos from, 1369
period of revolution about galactic  

center, 402
pressure at center of, 408t
randomly polarized light, 1046
speed distribution of photons in core, 591

sunglasses, polarizing, 1060
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sunjamming, 126
sunlight, coherence of, 1122
superconductivity, 808
superconductors, 644, 808
supercooling, 636
supercritical state, nuclear  reactors, 1394
supermassive black holes, 373, 390, 396
supernovas, 94, 386t, 1401, 1401, 1437
supernova SN1987a, 1401
supernumeraries, 1116, 1116
superposition, principle of, see principle of 

superposition
supersonic speed, 529, 529–530
surface charge density, 661, 674t
surface wave, 538
S waves, 532
symmetric lenses, 1089,  1092–1093
symmetry:

axis of, 667–668
center of mass of bodies with, 228
cylindrical, Gauss’ law,  708–709, 709
importance in physics, 696–697
of messenger particles, 1430
planar, Gauss’ law, 710–713, 711, 712
rotational, 667, 669
spherical, Gauss’ law,  713–715, 714

system, 106, 551–552, 552. See also particle 
systems

systolic blood pressure, normal, 407t

T
taekwondo, 268, 268
tangent, 49, 49
tangential component:

of linear acceleration, 283
of torque, 291

target:
collisions in two dimensions, 251, 251
elastic collisions in one dimension, with 

moving, 249–250
elastic collisions in one dimension, with 

stationary, 248, 248–249
inelastic collisions in one dimension, 244
series of collisions, 238, 238
single collision, 236, 237

tattoo inks, magnetic particles in, 998, 998
tau neutrinos, 1420, 1420t
tau particles, 1420, 1420t
teapot effect, 427
telescopes, 1094, 1096–1097, 1097
television, 850–851, 1007
television waves, 469
temperature, 542, 543

defined, 543
for fusion, 1399
and heat, 551–552, 552,  553–556, 555–556
and ideal gas law, 579–583
measuring, 543–545
and RMS speed of ideal gas, 583–585
sample problems involving, 547, 550
scalar nature of, 45
selected values, 546t
as state property, 616–617
work done by ideal gas at constant, 581, 

581–582
and zeroth law of thermodynamics, 

542–543, 543

temperature coefficient of  resistivity, 799, 
1328

selected materials, 798t
as semiconductor, 1338
silicon vs. copper, 807t, 1329t

temperature field, 666
temperature scales:

Celsius, 545–547, 546, 546t
compared, 546
Fahrenheit, 545–547, 546, 546t
Kelvin, 542, 542, 546

temporal separation, of events, 1191
10-hour day, 6
tensile stress, 357, 357
tension force, 112, 112–113

and elasticity, 357–358
and wave speed on stretched string, 476, 

477
terminals, battery, 760–761, 818–819
terminal speed, 138–140, 139
tertiary rainbows, 1069
tesla (unit), 853
test charge, 666, 666–667
Tevatron, 1428
The Hunt for Red October, 859
theories of everything (TOE), 1430
thermal agitation:

of ferromagnetic materials, 1020
of paramagnetic materials, 1017

thermal capture, of neutrons, 1393
thermal conduction, 563, 563
thermal conductivity, 563, 564t
thermal conductor, 563
thermal efficiency:

Carnot engines, 623–624
Stirling engines, 624–625

thermal energy, 188, 205, 541, 925
thermal equilibrium, 542–543
thermal expansion, 547–550, 548

on Mars, 577
on the Moon, 550

thermal insulator, 564
thermal neutrons, 1386–1393
thermal radiation, 565–567
thermal reservoir, 557, 557
thermal resistance to  conduction, 564
thermodynamic cycles, 558, 559, 561
thermodynamic processes, 557–560, 558, 604
thermodynamics, 541

defined, 541
first law, 556–562
zeroth law, 542–543, 543

thermodynamics:
first law, 556–562
second law, 619–620

thermometers:
constant-volume gas, 544, 544–545
liquid-in-glass, 548

thermonuclear bomb, 1402–1403
thermonuclear fusion, 1360, 1398–1405

controlled, 1402–1405
process of, 1398–1399
in Sun and stars, 1398, 1400, 1400–1402

thermopiles, 818
thermoscope, 542, 542
thin films, interference,  1126–1135, 1127, 

1128, 1129t

thin-lens approximation, 1100
thin lenses, 1086–1094

formulas, 1087–1088, 1099, 1099–1100
images from, 1086–1094, 1087, 1088, 1089, 

1090, 1090t, 1091, 1099, 1099–1100
two-lens systems, 1091,  1091–1092,  

1093–1094
third-law force pair, 113–114, 374
Thomson, J. J., 758, 856
Thorne, Kip S., 1138
three-dimensional electron traps, 1272–1275, 

1273, 1274
three-dimensional motion:

acceleration, 73–74
position and displacement, 68, 68
velocity, 70–73, 71, 72

three-dimensional space, center of mass in, 
227

three-dimensional variable force, 171–172
thrust, 253, 254
thunderstorm potentials,  measuring with 

muons, 728–729
thunderstorm sprites, 672–673, 673
time:

directional nature of, 614
for free-fall flight, 29
proper, 1192
between relativistic events, 1192, 1192
relativity of, 1191–1195
scalar nature of, 45
space, 1225, 1435
units of, 5–6

time constants:
inductive, 937–938
for LC oscillations, 957
for RC circuits, 835, 835–836
for RL circuits, 937–938

time dilation, 1186–1195
and length contraction, 1198
and Lorentz transformation, 1202
for a space traveler who returns to Earth, 

1194–1195
tests of, 1193–1194
and travel distance for a  relativistic  

particle, 1195
time intervals, 5–6, 6t
time signals, 6
TOE (theories of everything), 1430
tokamak, 1403
ton, 10
top gun pilots, turns by, 83–84
top quark, 1426t, 1427, 1428
toroids, 901, 901
torque, 272, 291–296, 317–319, 327t

and angular momentum of system of  
particles, 325–326

and conservation of angular momentum, 
329

for current loop, 872, 872–873
of electric dipole in electric field, 686
and gyroscope precession, 333, 333
internal and external, 325–326
and magnetic dipole moment, 875
net, 292, 325–326
Newton’s second law in  angular form, 

322–323
particle about fixed point, 318, 318–319
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restoring, 448–449
rolling down ramp, 314–315
sample problems involving, 319, 323–324
and time derivative of angular momentum, 

323–324
torr, 408
Torricelli, Evangelista, 408
torsion constant, 446, 447
torsion pendulum, 446, 447
total energy, relativity of, 1211–1212
total internal reflection,  1056–1059, 1057
tour jeté, 330, 330–331
Tower of Pisa, 369–370, 370
townships, 11
tracer, for following fluid flow, 420–421, 421
trajectory, in projectile motion, 79
transcranial magnetic stimulation, 913
transfer:

collisions and internal energy transfers, 
206–207

heat, 563–567
transformers, 985–989

energy transmission  requirements, 985–986
ideal, 986, 986–987
impedance matching, 897–988
in LC oscillators, 1034
power-grid systems, 988
solar activity, 988

transient current series RLC circuits, 977
transistors, 807–808, 1345–1346

FET, 1345–1346, 1346
MOSFET, 1345–1346, 1346

transition elements,  paramagnetism of, 1014
translation, 271, 310–312, 311
translational equilibrium, 346
translational kinetic energy:

ideal gases, 586
of rolling, 313
yo-yo, 316–317

translational variables, 327t
transmission coefficient, 1248, 1249
transparent materials, 1051

in Michelson’s interferometer, 1136
thin-film interference in, 1133–1135, 1134

transuranic nuclides, 1395
transverse Doppler effect, 1208, 1208
transverse motion, 470
transverse waves, 469–470, 470, 474–475, 

1035
travel distance, for relativistic particle, 1195
traveling waves, 470, 1259

electromagnetic, 1034,  1034–1040, 1035, 
1036, 1037

energy and power, 478, 478–480
hard vs. soft reflection of, at boundary, 492
sound, 508–511, 509
speed, 473, 473–474
wave function, 1242–1244

travel time, 1189, 1214
trebuchet, 92
triangular prisms, 1054, 1054
Trieste, 429
trigonometric functions, 49, 49
triple-point cell, 544
triple point of water, 543–544
tritium, 1370, 1403, 1404–1405
triton, 1403

tube length, compound  microscope, 1096, 
1096

tube of flow, 422, 422
tunneling, barrier, 1248–1251, 1249, 1250, 

1366–1367
turbulent flow, 420
turning points, in potential  energy curves, 

198–199, 198–199
turns:

in coils, 873
in solenoids, 899

turns ratio, transformer, 897, 988, 989
two-dimensional collisions, 251, 251
two-dimensional electron traps, 1272–1275, 

1273, 1274
two-dimensional explosions, 242, 242–243
two-dimensional motion:

acceleration, 73–75, 74
position and displacement, 68–69, 69
relative, 86, 86–87
sample problems involving, 69, 74–75, 

80–81, 87
uniform circular motion, 82–84
velocity, 70–73

Tyrannosaurus rex, 269, 269

U
ultimate strength, 357, 357, 358t
ultrarelativistic proton, 1214
ultrasound (ultrasound imaging), 506, 506

bat navigation using, 528
blood flow speed measurement using, 537, 

537–538
ultraviolet light, 469
ultraviolet radiation, 1034
uncertainty principle, 1244–1246
underwater illusion, 532
uniform charge distributions:

electric field lines, 666, 666–668, 667
types of, 678

uniform circular motion, 82–84
centripetal force in, 141–144, 142
sample problems involving, 143–144
and simple harmonic motion, 451–453, 452
velocity and acceleration for, 82, 83

uniform electric fields, 667
electric potential of, 730
flux in, 697–701

unit cells, 1174, 1174
determining, with x-ray diffraction, 

1175–1176
metals, insulators, and semiconductors, 

1328, 1328
United States Naval Observatory time  

signals, 6
units, 2

changing, 3
heat, 552–553
length, 3–4
mass, 6–7
time, 5–6

unit vectors, 50, 50, 52, 57–58
universe:

Big Bang, 1434–1437, 1435
color-coded image of universe at 379 000 yrs 

old, 1436, 1436
cosmic background radiation, 1433–1434

dark energy, 1437
dark matter, 1434
estimated age, 1432
expansion of, 1432–1433

unoccupied levels, 1305, 1330, 1375
unpolarized light, 1047, 1047–1048
unstable equilibrium, 199
unstable static equilibrium, 345–346
up quark, 1425, 1426t
upside down driving, 143–144
uranium, 407t

enrichment of, 1393
mass energy of, 1211t

uranium228:
alpha decay, 1365–1366
half-life, 1366, 1367t

uranium235:
enriching fuel, 1393
fission, 1387–1390, 1389
fissionability, 1390–1392, 1390t, 1395
in natural nuclear reactor, 1395–1396

uranium236, 1388, 1390t
uranium238, 655, 1362

alpha decay, 1365–1367, 1366
binding energy per nucleon, 1359
fissionability, 1390–1392, 1390t, 1395
half-life, 1367, 1367t

uranium239, 1390t
UTC (Coordinated Universal Time), 6

V
vacant levels, 1330
valence band, 1338, 1338, 1339
valence electrons, 1259, 1309, 1331
valence number, 1339
valley of nuclides, 1370, 1370
Van Allen radiation belts, 863
vaporization, 554
vapor state, 554
variable capacitor, 784–785
variable force:

work done by applied force, 169
work done by general  variable, 171, 

171–174
work done by spring force, 167, 168–169

variable-mass systems, rockets, 252–254, 253
vector(s), 44–58, 666

adding, by components, 50–51, 52
adding, geometrically, 45, 45–46, 46
area, 698, 698
for a coil of current loop, 873
coupled, 1295
and laws of physics, 50–51
multiplying, 52–58, 54, 56
Poynting, 1040–1043, 1042
problem-solving with, 49
resolving, 47
sample problems involving, 48, 57–58
scalars vs., 44–45
unit, 50, 50, 52, 57–58
velocity, 45

vector angles, 47, 47, 49
vector-capable calculator, 50, 53, 56
vector components, 46–49, 47

addition, 50–52
rotating axes of vectors and, 51

vector equation, 45
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vector fields, 666
vector product, 53, 55–58, 56
vector quantities, 15, 45, 103
vector sum (resultant), 45, 45–46
velocity, 298t

angular, 274–277, 278, 298t
average, 15–17, 16, 24, 70
of center of mass, 245–246
graphical integration in motion analysis, 

30, 30
instantaneous, 18–20
line of sight, 403
and Newton’s first law, 102–105
and Newton’s second law, 105–108
one-dimensional motion, 15–20
reference particle, 453
relative motion in one  dimension, 84–86
relative motion in two  dimensions,  

86–87
relativity of, 1204–1205, 1205
rockets, 252–254
sign of, 21–22
simple harmonic motion, 438, 440–441, 

441, 443–444
two- and three-dimensional motion, 70–73, 

71–73
uniform circular motion, 82, 82–84, 83
as vector quantity, 45

velocity amplitude:
forced oscillations, 456, 456
simple harmonic motion, 441, 441

velocity vectors, 45
venturi meter, 433
vertical circular loop, 143
vertical motion, in projectile motion,  

78, 79
Vespa mandarinia japonica, 573
virtual focal point, 1078, 1078
virtual images:

defined, 1073
spherical mirrors, 1079
spherical refracting surfaces, 1083–1086, 

1084
thin lenses, 1089, 1089

virtual photons, 1429
viscous drag force, 420
visible light, 469, 1033, 1034, 1188
vision, resolvability in, 1159–1160
void ratio, 11
volcanic bombs, 97
volt, 726, 728
voltage. See also potential  difference

ac circuits, 973t
transformers, 986–987

voltage law, Kirchhoff’s, 820
volt-ampere, 806
voltmeters, 833, 833
volume:

and ideal gas law, 579–583
as state property, 616–617
work done by ideal gas at constant, 582

volume charge density, 661, 663, 674t
volume expansion, 549
volume flow rate, 422
volume probability density, 1283, 1284,  

1285

W
Walsh, Donald, 429
water:

boiling/freezing points of, in Celsius and 
Fahrenheit, 546t

bulk modulus, 358, 507
as conductor, 644
density, 407t
dielectric properties, 775, 775t, 776
diffraction of waves, 1117, 1117
as electric dipole, 684, 684
heats of transformation, 553–554, 554t
index of refraction, 1052t
as insulator, 644–645
in microwave cooking, 685–686
as moderator for nuclear reactors, 1393
polarization of light by  reflection in, 1060
RMS speed at room  temperature, 585t
specific heats, 553t
speed of sound in, 507, 507t
thermal properties, 549
thin-film interference of, 1132

water waves, 469
watt (W), 2, 175
Watt, James, 175
wave(s), 468–496. See also  electromagnetic 

waves; matter waves
amplitude, 471, 471, 472, 472
lagging vs. leading, 486
light as, 1111–1116, 1112, 1114
net, 482, 483, 483, 521
phasors, 487–490, 488
principle of superposition for, 483, 483
probability, 1234–1236, 1239
resultant, 483, 483
sample problems involving, 474–476, 480, 

489–490, 495
seismic, 537, 538
shock, 34, 529, 529–530
sinusoidal, 470, 470–471, 471
sound, see sound waves
speed of traveling waves, 473, 473–474
standing, see standing waves
on stretched string, 476–478, 477
string, 475–480
transverse and longitudinal, 469–470, 470, 

474–475
traveling, see traveling waves
types of, 469
wavelength and frequency of, 470–473

wave equation, 480–482
wave forms, 470, 473
wavefronts, 506, 506, 1025, 1036
wave function, 1242–1244. See also 

Schrödinger’s equation
hydrogen ground state, 1282–1284t, 1283
normalizing, 1266
of trapped electrons, 1264–1267, 1265

wave interference, 474, 483–486, 485,  
511–514, 512

wavelength, 471–472
Compton, 1233
cutoff, 1228, 1311
de Broglie, 1239, 1243, 1261
determining, with diffraction grating, 1167
and frequency, 470–473

of hydrogen atom, 1276
and index of refraction, 1114–1115
proper, 1206, 1215
sound waves, 509

wavelength Doppler shift, 1206, 1215
wave shape, 471
wave speed, 473, 473–478

electromagnetic waves, 1035–1036
sound waves, 509
on stretched string, 476–478, 477
traveling waves, 473, 473–474

wave theory of light, 1111–1116, 1149–1150
wave trains, 1315
weak force, 1414, 1429
weak interaction, 1417
weber (unit), 917
weight, 110–111

apparent, 111, 417
mass vs., 111

weightlessness, 142
Weinberg, Steven, 1429
Weiss, Rainer, 1137, 1138
well depth, 1268
wheelchair motion, 309, 309
Wheeler, John, 1388
whiplash injury, 31
white dwarfs, 386t, 407t
white light:

chromatic dispersion, 1053, 1053, 1054
single-slit diffraction pattern,  

1152–1153
Wien’s law, 1238
Wilkinson Microwave Anisotropy Probe 

(WMAP), 1436
windings, solenoid, 899
window glass, thermal  conductivity of, 564t
Wintergreen LifeSaver, blue flashes  

from, 645
WMAP (Wilkinson Microwave Anisotropy 

Probe), 1436
W messenger particle, 1429
work, 298t

and applied force, 727–728
for capacitor with dielectric, 776
Carnot engines, 623
and conservation of  mechanical energy, 

193–196
and conservation of total energy, 205–209, 

207
defined, 157
done by applied force, 169
done by electric field, 727–728
done by electrostatic force, 727–728
done by external force with friction, 

201–205
done by external force  without friction, 

202
done by gravitational force, 163–166, 164
done by ideal gas, 581–582
done by spring force, 167, 167–170
done by variable force, 171, 171–174
done in lifting and lowering objects, 164, 

164–166
done on system by external force, 201–205, 

203
and energy/emf, 818–819
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first law of thermodynamics, 557–559, 
559–561

and heat, 552–553, 557–560
and induction, 923, 924, 925
and kinetic energy, 159–163, 160,  

1212–1213
and magnetic dipole moment, 875
negative, 559
net, 161, 623
path-dependent quantity, 559
path independence of  conservative forces, 

188–190, 189
and photoelectric effect, 1230
and potential energy, 187, 187–190, 188
and power, 174–176, 175
and rotational kinetic energy, 296–299
sample problems involving, 161–163, 

165–166, 170, 173–174, 562
signs for, 160

work function, 1229
and photoelectric effect, 1230

working substance, 621–623
work-kinetic energy theorem, 161–163, 172, 

298t
Wright, Frank Lloyd, 400

X
x component, of vectors, 46–47, 47
xenon, decay chain, 1387–1388
xi-minus particle, 1423t,  1424–1425,  

1428
x-ray diffraction, 1173–1176, 1174, 1175
x rays, 469, 1033, 1034

characteristic x-ray spectrum, 1311–1312, 
1312

continuous x-ray spectrum, 1311, 1311
and ordering of elements, 1310–1314
radiation dosage, 1372–1373

Y
y component, of vectors, 46–47, 47
yield strength, 357, 357, 358t
Young’s double-slit interference experiment, 

1117–1121, 1118, 1119
single-photon version, 1234, 1235
wide-angle version,  1235–1236, 1236

Young’s modulus, 358, 358t
yo-yo, 316–317, 317

Z
zero angular position, 273
zero-point energy, 1266
zeroth law of thermodynamics,  

542–543, 543
zeroth-order line, 1167
Z messenger particle, 1429
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SOME PHYSICAL CONSTANTS*
Speed of light c 2.998 × 108 m/s
Gravitational constant G 6.673 × 10−11 N · m2/kg2

Avogadro constant NA 6.022 × 1023 mol−1

Universal gas constant R 8.314 J/mol · K
Mass–energy relation c2 8.988 × 1016 J/kg
  931.49 MeV/u
Permittivity constant 𝜀0 8.854 × 10−12 F/m
Permeability constant 𝜇0 1.257 × 10−6 H/m
Planck constant h 6.626 × 10−34 J · s
  4.136 × 10−15 eV · s
Boltzmann constant k 1.381 × 10−23 J/K
  8.617 × 10−5 eV/K
Elementary charge e 1.602 × 10−19 C
Electron mass me 9.109 × 10−31 kg
Proton mass mp 1.673 × 10−27 kg
Neutron mass mn 1.675 × 10−27 kg
Deuteron mass md 3.344 × 10−27 kg
Bohr radius a 5.292 × 10−11 m
Bohr magneton 𝜇B 9.274 × 10−24 J/T
  5.788 × 10−5 eV/T
Rydberg constant R 1.097 373 × 107 m−1

*For a more complete list, showing also the best experimental values, see Appendix B.

THE GREEK ALPHABET
Alpha A 𝛼 Iota Ι ι Rho Ρ ρ
Beta B β Kappa Κ κ Sigma Σ σ
Gamma Γ γ Lambda Λ λ Tau Τ τ
Delta Δ δ Mu Μ μ Upsilon Υ υ
Epsilon Ε ε Nu Ν ν Phi Φ ϕ, φ
Zeta Ζ ζ Xi Ξ ξ Chi Χ χ
Eta Η η Omicron  Ο ο Psi  Ψ ψ
Theta Θ θ Pi Π π Omega Ω ω
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Mass and Density
1 kg = 1000 g = 6.02 × 1026 u
1 slug = 14.59 kg
1 u = 1.661 × 10−27 kg
1 kg/m3 = 10−3 g/cm3

Length and Volume
1 m = 100 cm = 39.4 in. = 3.28 ft
1 mi = 1.61 km = 5280 ft
1 in. = 2.54 cm
1 nm = 10−9 m = 10 Å
1 pm = 10−12 m = 1000 fm
1 light-year = 9.461 × 1015 m
1 m3 = 1000 L = 35.3 ft3 = 264 gal

Time
1 d = 86 400 s
1 y = 365   1 _ 4   d = 3.16 × 107 s

Angular Measure
1 rad = 57.3° = 0.159 rev
π rad = 180° =   1 _ 2   rev

Speed
1 m/s = 3.28 ft/s = 2.24 mi/h
1 km/h = 0.621 mi/h = 0.278 m/s

Force and Pressure
1 N = 105 dyne = 0.225 lb
1 lb = 4.45 N
1 ton = 2000 lb
1 Pa = 1 N/m2 = 10 dyne/cm2

 = 1.45 × 10−4 lb/in.2

1 atm = 1.01 × 105 Pa = 14.7 lb/in.2

 = 76.0 cm Hg

Energy and Power
1 J = 107 erg = 0.2389 cal = 0.738 ft · lb
1 kW · h = 3.6 × 106 J
1 cal = 4.1868 J
1 eV = 1.602 × 10−19 J
1 horsepower = 746 W = 550 ft · lb/s

Magnetism
1 T = 1 Wb/m2 = 104 gauss

SOME CONVERSION FACTORS*

*See Appendix D for a more complete list.
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